- Remove unnecessary header (time.h)
[dragonfly.git] / sys / kern / vfs_subr.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
39 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
40 * $DragonFly: src/sys/kern/vfs_subr.c,v 1.50 2004/12/17 00:18:07 dillon Exp $
41 */
42
43/*
44 * External virtual filesystem routines
45 */
46#include "opt_ddb.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/buf.h>
51#include <sys/conf.h>
52#include <sys/dirent.h>
53#include <sys/domain.h>
54#include <sys/eventhandler.h>
55#include <sys/fcntl.h>
56#include <sys/kernel.h>
57#include <sys/kthread.h>
58#include <sys/malloc.h>
59#include <sys/mbuf.h>
60#include <sys/mount.h>
61#include <sys/proc.h>
62#include <sys/reboot.h>
63#include <sys/socket.h>
64#include <sys/stat.h>
65#include <sys/sysctl.h>
66#include <sys/syslog.h>
67#include <sys/vmmeter.h>
68#include <sys/vnode.h>
69
70#include <machine/limits.h>
71
72#include <vm/vm.h>
73#include <vm/vm_object.h>
74#include <vm/vm_extern.h>
75#include <vm/vm_kern.h>
76#include <vm/pmap.h>
77#include <vm/vm_map.h>
78#include <vm/vm_page.h>
79#include <vm/vm_pager.h>
80#include <vm/vnode_pager.h>
81#include <vm/vm_zone.h>
82
83#include <sys/buf2.h>
84#include <sys/thread2.h>
85
86static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
87
88int numvnodes;
89SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
90int vfs_fastdev = 1;
91SYSCTL_INT(_vfs, OID_AUTO, fastdev, CTLFLAG_RW, &vfs_fastdev, 0, "");
92
93enum vtype iftovt_tab[16] = {
94 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
95 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
96};
97int vttoif_tab[9] = {
98 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
99 S_IFSOCK, S_IFIFO, S_IFMT,
100};
101
102static int reassignbufcalls;
103SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW,
104 &reassignbufcalls, 0, "");
105static int reassignbufloops;
106SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW,
107 &reassignbufloops, 0, "");
108static int reassignbufsortgood;
109SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW,
110 &reassignbufsortgood, 0, "");
111static int reassignbufsortbad;
112SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW,
113 &reassignbufsortbad, 0, "");
114static int reassignbufmethod = 1;
115SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW,
116 &reassignbufmethod, 0, "");
117
118int nfs_mount_type = -1;
119static struct lwkt_token spechash_token;
120struct nfs_public nfs_pub; /* publicly exported FS */
121
122int desiredvnodes;
123SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
124 &desiredvnodes, 0, "Maximum number of vnodes");
125
126static void vfs_free_addrlist (struct netexport *nep);
127static int vfs_free_netcred (struct radix_node *rn, void *w);
128static int vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
129 struct export_args *argp);
130
131extern int dev_ref_debug;
132extern struct vnodeopv_entry_desc spec_vnodeop_entries[];
133
134/*
135 * Return 0 if the vnode is already on the free list or cannot be placed
136 * on the free list. Return 1 if the vnode can be placed on the free list.
137 */
138static __inline int
139vshouldfree(struct vnode *vp, int usecount)
140{
141 if (vp->v_flag & VFREE)
142 return (0); /* already free */
143 if (vp->v_holdcnt != 0 || vp->v_usecount != usecount)
144 return (0); /* other holderse */
145 if (vp->v_object &&
146 (vp->v_object->ref_count || vp->v_object->resident_page_count)) {
147 return (0);
148 }
149 return (1);
150}
151
152/*
153 * Initialize the vnode management data structures.
154 *
155 * Called from vfsinit()
156 */
157void
158vfs_subr_init(void)
159{
160 /*
161 * Desired vnodes is a result of the physical page count
162 * and the size of kernel's heap. It scales in proportion
163 * to the amount of available physical memory. This can
164 * cause trouble on 64-bit and large memory platforms.
165 */
166 /* desiredvnodes = maxproc + vmstats.v_page_count / 4; */
167 desiredvnodes =
168 min(maxproc + vmstats.v_page_count /4,
169 2 * (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) /
170 (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
171
172 lwkt_token_init(&spechash_token);
173}
174
175/*
176 * Knob to control the precision of file timestamps:
177 *
178 * 0 = seconds only; nanoseconds zeroed.
179 * 1 = seconds and nanoseconds, accurate within 1/HZ.
180 * 2 = seconds and nanoseconds, truncated to microseconds.
181 * >=3 = seconds and nanoseconds, maximum precision.
182 */
183enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
184
185static int timestamp_precision = TSP_SEC;
186SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
187 &timestamp_precision, 0, "");
188
189/*
190 * Get a current timestamp.
191 */
192void
193vfs_timestamp(struct timespec *tsp)
194{
195 struct timeval tv;
196
197 switch (timestamp_precision) {
198 case TSP_SEC:
199 tsp->tv_sec = time_second;
200 tsp->tv_nsec = 0;
201 break;
202 case TSP_HZ:
203 getnanotime(tsp);
204 break;
205 case TSP_USEC:
206 microtime(&tv);
207 TIMEVAL_TO_TIMESPEC(&tv, tsp);
208 break;
209 case TSP_NSEC:
210 default:
211 nanotime(tsp);
212 break;
213 }
214}
215
216/*
217 * Set vnode attributes to VNOVAL
218 */
219void
220vattr_null(struct vattr *vap)
221{
222 vap->va_type = VNON;
223 vap->va_size = VNOVAL;
224 vap->va_bytes = VNOVAL;
225 vap->va_mode = VNOVAL;
226 vap->va_nlink = VNOVAL;
227 vap->va_uid = VNOVAL;
228 vap->va_gid = VNOVAL;
229 vap->va_fsid = VNOVAL;
230 vap->va_fileid = VNOVAL;
231 vap->va_blocksize = VNOVAL;
232 vap->va_rdev = VNOVAL;
233 vap->va_atime.tv_sec = VNOVAL;
234 vap->va_atime.tv_nsec = VNOVAL;
235 vap->va_mtime.tv_sec = VNOVAL;
236 vap->va_mtime.tv_nsec = VNOVAL;
237 vap->va_ctime.tv_sec = VNOVAL;
238 vap->va_ctime.tv_nsec = VNOVAL;
239 vap->va_flags = VNOVAL;
240 vap->va_gen = VNOVAL;
241 vap->va_vaflags = 0;
242}
243
244/*
245 * Update outstanding I/O count and do wakeup if requested.
246 */
247void
248vwakeup(struct buf *bp)
249{
250 struct vnode *vp;
251
252 bp->b_flags &= ~B_WRITEINPROG;
253 if ((vp = bp->b_vp)) {
254 vp->v_numoutput--;
255 if (vp->v_numoutput < 0)
256 panic("vwakeup: neg numoutput");
257 if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
258 vp->v_flag &= ~VBWAIT;
259 wakeup((caddr_t) &vp->v_numoutput);
260 }
261 }
262}
263
264/*
265 * Flush out and invalidate all buffers associated with a vnode.
266 *
267 * vp must be locked.
268 */
269int
270vinvalbuf(struct vnode *vp, int flags, struct thread *td,
271 int slpflag, int slptimeo)
272{
273 struct buf *bp;
274 struct buf *nbp, *blist;
275 int s, error;
276 vm_object_t object;
277
278 if (flags & V_SAVE) {
279 s = splbio();
280 while (vp->v_numoutput) {
281 vp->v_flag |= VBWAIT;
282 error = tsleep((caddr_t)&vp->v_numoutput,
283 slpflag, "vinvlbuf", slptimeo);
284 if (error) {
285 splx(s);
286 return (error);
287 }
288 }
289 if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
290 splx(s);
291 if ((error = VOP_FSYNC(vp, MNT_WAIT, td)) != 0)
292 return (error);
293 s = splbio();
294 if (vp->v_numoutput > 0 ||
295 !TAILQ_EMPTY(&vp->v_dirtyblkhd))
296 panic("vinvalbuf: dirty bufs");
297 }
298 splx(s);
299 }
300 s = splbio();
301 for (;;) {
302 blist = TAILQ_FIRST(&vp->v_cleanblkhd);
303 if (!blist)
304 blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
305 if (!blist)
306 break;
307
308 for (bp = blist; bp; bp = nbp) {
309 nbp = TAILQ_NEXT(bp, b_vnbufs);
310 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
311 error = BUF_TIMELOCK(bp,
312 LK_EXCLUSIVE | LK_SLEEPFAIL,
313 "vinvalbuf", slpflag, slptimeo);
314 if (error == ENOLCK)
315 break;
316 splx(s);
317 return (error);
318 }
319 /*
320 * XXX Since there are no node locks for NFS, I
321 * believe there is a slight chance that a delayed
322 * write will occur while sleeping just above, so
323 * check for it. Note that vfs_bio_awrite expects
324 * buffers to reside on a queue, while VOP_BWRITE and
325 * brelse do not.
326 */
327 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
328 (flags & V_SAVE)) {
329
330 if (bp->b_vp == vp) {
331 if (bp->b_flags & B_CLUSTEROK) {
332 BUF_UNLOCK(bp);
333 vfs_bio_awrite(bp);
334 } else {
335 bremfree(bp);
336 bp->b_flags |= B_ASYNC;
337 VOP_BWRITE(bp->b_vp, bp);
338 }
339 } else {
340 bremfree(bp);
341 (void) VOP_BWRITE(bp->b_vp, bp);
342 }
343 break;
344 }
345 bremfree(bp);
346 bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
347 bp->b_flags &= ~B_ASYNC;
348 brelse(bp);
349 }
350 }
351
352 /*
353 * Wait for I/O to complete. XXX needs cleaning up. The vnode can
354 * have write I/O in-progress but if there is a VM object then the
355 * VM object can also have read-I/O in-progress.
356 */
357 do {
358 while (vp->v_numoutput > 0) {
359 vp->v_flag |= VBWAIT;
360 tsleep(&vp->v_numoutput, 0, "vnvlbv", 0);
361 }
362 if (VOP_GETVOBJECT(vp, &object) == 0) {
363 while (object->paging_in_progress)
364 vm_object_pip_sleep(object, "vnvlbx");
365 }
366 } while (vp->v_numoutput > 0);
367
368 splx(s);
369
370 /*
371 * Destroy the copy in the VM cache, too.
372 */
373 if (VOP_GETVOBJECT(vp, &object) == 0) {
374 vm_object_page_remove(object, 0, 0,
375 (flags & V_SAVE) ? TRUE : FALSE);
376 }
377
378 if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
379 panic("vinvalbuf: flush failed");
380 return (0);
381}
382
383/*
384 * Truncate a file's buffer and pages to a specified length. This
385 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
386 * sync activity.
387 *
388 * The vnode must be locked.
389 */
390int
391vtruncbuf(struct vnode *vp, struct thread *td, off_t length, int blksize)
392{
393 struct buf *bp;
394 struct buf *nbp;
395 int s, anyfreed;
396 int trunclbn;
397
398 /*
399 * Round up to the *next* lbn.
400 */
401 trunclbn = (length + blksize - 1) / blksize;
402
403 s = splbio();
404restart:
405 anyfreed = 1;
406 for (;anyfreed;) {
407 anyfreed = 0;
408 for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
409 nbp = TAILQ_NEXT(bp, b_vnbufs);
410 if (bp->b_lblkno >= trunclbn) {
411 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
412 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
413 goto restart;
414 } else {
415 bremfree(bp);
416 bp->b_flags |= (B_INVAL | B_RELBUF);
417 bp->b_flags &= ~B_ASYNC;
418 brelse(bp);
419 anyfreed = 1;
420 }
421 if (nbp &&
422 (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
423 (nbp->b_vp != vp) ||
424 (nbp->b_flags & B_DELWRI))) {
425 goto restart;
426 }
427 }
428 }
429
430 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
431 nbp = TAILQ_NEXT(bp, b_vnbufs);
432 if (bp->b_lblkno >= trunclbn) {
433 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
434 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
435 goto restart;
436 } else {
437 bremfree(bp);
438 bp->b_flags |= (B_INVAL | B_RELBUF);
439 bp->b_flags &= ~B_ASYNC;
440 brelse(bp);
441 anyfreed = 1;
442 }
443 if (nbp &&
444 (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
445 (nbp->b_vp != vp) ||
446 (nbp->b_flags & B_DELWRI) == 0)) {
447 goto restart;
448 }
449 }
450 }
451 }
452
453 if (length > 0) {
454restartsync:
455 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
456 nbp = TAILQ_NEXT(bp, b_vnbufs);
457 if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
458 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
459 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
460 goto restart;
461 } else {
462 bremfree(bp);
463 if (bp->b_vp == vp) {
464 bp->b_flags |= B_ASYNC;
465 } else {
466 bp->b_flags &= ~B_ASYNC;
467 }
468 VOP_BWRITE(bp->b_vp, bp);
469 }
470 goto restartsync;
471 }
472
473 }
474 }
475
476 while (vp->v_numoutput > 0) {
477 vp->v_flag |= VBWAIT;
478 tsleep(&vp->v_numoutput, 0, "vbtrunc", 0);
479 }
480
481 splx(s);
482
483 vnode_pager_setsize(vp, length);
484
485 return (0);
486}
487
488/*
489 * Associate a buffer with a vnode.
490 */
491void
492bgetvp(struct vnode *vp, struct buf *bp)
493{
494 KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
495
496 vhold(vp);
497 bp->b_vp = vp;
498 bp->b_dev = vn_todev(vp);
499 /*
500 * Insert onto list for new vnode.
501 */
502 crit_enter();
503 bp->b_xflags |= BX_VNCLEAN;
504 bp->b_xflags &= ~BX_VNDIRTY;
505 TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
506 crit_exit();
507}
508
509/*
510 * Disassociate a buffer from a vnode.
511 */
512void
513brelvp(struct buf *bp)
514{
515 struct vnode *vp;
516 struct buflists *listheadp;
517
518 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
519
520 /*
521 * Delete from old vnode list, if on one.
522 */
523 vp = bp->b_vp;
524 crit_enter();
525 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
526 if (bp->b_xflags & BX_VNDIRTY)
527 listheadp = &vp->v_dirtyblkhd;
528 else
529 listheadp = &vp->v_cleanblkhd;
530 TAILQ_REMOVE(listheadp, bp, b_vnbufs);
531 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
532 }
533 if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
534 vp->v_flag &= ~VONWORKLST;
535 LIST_REMOVE(vp, v_synclist);
536 }
537 crit_exit();
538 bp->b_vp = NULL;
539 vdrop(vp);
540}
541
542/*
543 * Associate a p-buffer with a vnode.
544 *
545 * Also sets B_PAGING flag to indicate that vnode is not fully associated
546 * with the buffer. i.e. the bp has not been linked into the vnode or
547 * ref-counted.
548 */
549void
550pbgetvp(struct vnode *vp, struct buf *bp)
551{
552 KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
553
554 bp->b_vp = vp;
555 bp->b_flags |= B_PAGING;
556 bp->b_dev = vn_todev(vp);
557}
558
559/*
560 * Disassociate a p-buffer from a vnode.
561 */
562void
563pbrelvp(struct buf *bp)
564{
565 KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
566
567 /* XXX REMOVE ME */
568 if (TAILQ_NEXT(bp, b_vnbufs) != NULL) {
569 panic(
570 "relpbuf(): b_vp was probably reassignbuf()d %p %x",
571 bp,
572 (int)bp->b_flags
573 );
574 }
575 bp->b_vp = (struct vnode *) 0;
576 bp->b_flags &= ~B_PAGING;
577}
578
579void
580pbreassignbuf(struct buf *bp, struct vnode *newvp)
581{
582 if ((bp->b_flags & B_PAGING) == 0) {
583 panic(
584 "pbreassignbuf() on non phys bp %p",
585 bp
586 );
587 }
588 bp->b_vp = newvp;
589}
590
591/*
592 * Reassign a buffer from one vnode to another.
593 * Used to assign file specific control information
594 * (indirect blocks) to the vnode to which they belong.
595 */
596void
597reassignbuf(struct buf *bp, struct vnode *newvp)
598{
599 struct buflists *listheadp;
600 int delay;
601
602 if (newvp == NULL) {
603 printf("reassignbuf: NULL");
604 return;
605 }
606 ++reassignbufcalls;
607
608 /*
609 * B_PAGING flagged buffers cannot be reassigned because their vp
610 * is not fully linked in.
611 */
612 if (bp->b_flags & B_PAGING)
613 panic("cannot reassign paging buffer");
614
615 crit_enter();
616 /*
617 * Delete from old vnode list, if on one.
618 */
619 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
620 if (bp->b_xflags & BX_VNDIRTY)
621 listheadp = &bp->b_vp->v_dirtyblkhd;
622 else
623 listheadp = &bp->b_vp->v_cleanblkhd;
624 TAILQ_REMOVE(listheadp, bp, b_vnbufs);
625 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
626 if (bp->b_vp != newvp) {
627 vdrop(bp->b_vp);
628 bp->b_vp = NULL; /* for clarification */
629 }
630 }
631 /*
632 * If dirty, put on list of dirty buffers; otherwise insert onto list
633 * of clean buffers.
634 */
635 if (bp->b_flags & B_DELWRI) {
636 struct buf *tbp;
637
638 listheadp = &newvp->v_dirtyblkhd;
639 if ((newvp->v_flag & VONWORKLST) == 0) {
640 switch (newvp->v_type) {
641 case VDIR:
642 delay = dirdelay;
643 break;
644 case VCHR:
645 case VBLK:
646 if (newvp->v_rdev &&
647 newvp->v_rdev->si_mountpoint != NULL) {
648 delay = metadelay;
649 break;
650 }
651 /* fall through */
652 default:
653 delay = filedelay;
654 }
655 vn_syncer_add_to_worklist(newvp, delay);
656 }
657 bp->b_xflags |= BX_VNDIRTY;
658 tbp = TAILQ_FIRST(listheadp);
659 if (tbp == NULL ||
660 bp->b_lblkno == 0 ||
661 (bp->b_lblkno > 0 && tbp->b_lblkno < 0) ||
662 (bp->b_lblkno > 0 && bp->b_lblkno < tbp->b_lblkno)) {
663 TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
664 ++reassignbufsortgood;
665 } else if (bp->b_lblkno < 0) {
666 TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
667 ++reassignbufsortgood;
668 } else if (reassignbufmethod == 1) {
669 /*
670 * New sorting algorithm, only handle sequential case,
671 * otherwise append to end (but before metadata)
672 */
673 if ((tbp = gbincore(newvp, bp->b_lblkno - 1)) != NULL &&
674 (tbp->b_xflags & BX_VNDIRTY)) {
675 /*
676 * Found the best place to insert the buffer
677 */
678 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
679 ++reassignbufsortgood;
680 } else {
681 /*
682 * Missed, append to end, but before meta-data.
683 * We know that the head buffer in the list is
684 * not meta-data due to prior conditionals.
685 *
686 * Indirect effects: NFS second stage write
687 * tends to wind up here, giving maximum
688 * distance between the unstable write and the
689 * commit rpc.
690 */
691 tbp = TAILQ_LAST(listheadp, buflists);
692 while (tbp && tbp->b_lblkno < 0)
693 tbp = TAILQ_PREV(tbp, buflists, b_vnbufs);
694 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
695 ++reassignbufsortbad;
696 }
697 } else {
698 /*
699 * Old sorting algorithm, scan queue and insert
700 */
701 struct buf *ttbp;
702 while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
703 (ttbp->b_lblkno < bp->b_lblkno)) {
704 ++reassignbufloops;
705 tbp = ttbp;
706 }
707 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
708 }
709 } else {
710 bp->b_xflags |= BX_VNCLEAN;
711 TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
712 if ((newvp->v_flag & VONWORKLST) &&
713 TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
714 newvp->v_flag &= ~VONWORKLST;
715 LIST_REMOVE(newvp, v_synclist);
716 }
717 }
718 if (bp->b_vp != newvp) {
719 bp->b_vp = newvp;
720 vhold(bp->b_vp);
721 }
722 crit_exit();
723}
724
725/*
726 * Create a vnode for a block device.
727 * Used for mounting the root file system.
728 */
729int
730bdevvp(dev_t dev, struct vnode **vpp)
731{
732 struct vnode *vp;
733 struct vnode *nvp;
734 int error;
735
736 if (dev == NODEV) {
737 *vpp = NULLVP;
738 return (ENXIO);
739 }
740 error = getspecialvnode(VT_NON, NULL, &spec_vnode_vops, &nvp, 0, 0);
741 if (error) {
742 *vpp = NULLVP;
743 return (error);
744 }
745 vp = nvp;
746 vp->v_type = VCHR;
747 vp->v_udev = dev->si_udev;
748 vx_unlock(vp);
749 *vpp = vp;
750 return (0);
751}
752
753int
754v_associate_rdev(struct vnode *vp, dev_t dev)
755{
756 lwkt_tokref ilock;
757
758 if (dev == NULL || dev == NODEV)
759 return(ENXIO);
760 if (dev_is_good(dev) == 0)
761 return(ENXIO);
762 KKASSERT(vp->v_rdev == NULL);
763 if (dev_ref_debug)
764 printf("Z1");
765 vp->v_rdev = reference_dev(dev);
766 lwkt_gettoken(&ilock, &spechash_token);
767 SLIST_INSERT_HEAD(&dev->si_hlist, vp, v_specnext);
768 lwkt_reltoken(&ilock);
769 return(0);
770}
771
772void
773v_release_rdev(struct vnode *vp)
774{
775 lwkt_tokref ilock;
776 dev_t dev;
777
778 if ((dev = vp->v_rdev) != NULL) {
779 lwkt_gettoken(&ilock, &spechash_token);
780 SLIST_REMOVE(&dev->si_hlist, vp, vnode, v_specnext);
781 if (dev_ref_debug && vp->v_opencount != 0) {
782 printf("releasing rdev with non-0 "
783 "v_opencount(%d) (revoked?)\n",
784 vp->v_opencount);
785 }
786 vp->v_rdev = NULL;
787 vp->v_opencount = 0;
788 release_dev(dev);
789 lwkt_reltoken(&ilock);
790 }
791}
792
793/*
794 * Add a vnode to the alias list hung off the dev_t. We only associate
795 * the device number with the vnode. The actual device is not associated
796 * until the vnode is opened (usually in spec_open()), and will be
797 * disassociated on last close.
798 */
799void
800addaliasu(struct vnode *nvp, udev_t nvp_udev)
801{
802 if (nvp->v_type != VBLK && nvp->v_type != VCHR)
803 panic("addaliasu on non-special vnode");
804 nvp->v_udev = nvp_udev;
805}
806
807/*
808 * Disassociate a vnode from its underlying filesystem.
809 *
810 * The vnode must be VX locked and refd
811 *
812 * If there are v_usecount references to the vnode other then ours we have
813 * to VOP_CLOSE the vnode before we can deactivate and reclaim it.
814 */
815void
816vclean(struct vnode *vp, int flags, struct thread *td)
817{
818 int active;
819
820 /*
821 * If the vnode has already been reclaimed we have nothing to do.
822 */
823 if (vp->v_flag & VRECLAIMED)
824 return;
825 vp->v_flag |= VRECLAIMED;
826
827 /*
828 * Scrap the vfs cache
829 */
830 cache_inval_vp(vp, 0);
831
832 /*
833 * Check to see if the vnode is in use. If so we have to reference it
834 * before we clean it out so that its count cannot fall to zero and
835 * generate a race against ourselves to recycle it.
836 */
837 active = (vp->v_usecount > 1);
838
839 /*
840 * Clean out any buffers associated with the vnode and destroy its
841 * object, if it has one.
842 */
843 vinvalbuf(vp, V_SAVE, td, 0, 0);
844 VOP_DESTROYVOBJECT(vp);
845
846 /*
847 * If purging an active vnode, it must be closed and
848 * deactivated before being reclaimed. XXX
849 *
850 * Note that neither of these routines unlocks the vnode.
851 */
852 if (active) {
853 if (flags & DOCLOSE)
854 VOP_CLOSE(vp, FNONBLOCK, td);
855 }
856
857 /*
858 * If the vnode has not be deactivated, deactivated it.
859 */
860 if ((vp->v_flag & VINACTIVE) == 0) {
861 vp->v_flag |= VINACTIVE;
862 VOP_INACTIVE(vp, td);
863 }
864
865 /*
866 * Reclaim the vnode.
867 */
868 if (VOP_RECLAIM(vp, td))
869 panic("vclean: cannot reclaim");
870
871 /*
872 * Done with purge, notify sleepers of the grim news.
873 */
874 vp->v_ops = &dead_vnode_vops;
875 vn_pollgone(vp);
876 vp->v_tag = VT_NON;
877}
878
879/*
880 * Eliminate all activity associated with the requested vnode
881 * and with all vnodes aliased to the requested vnode.
882 *
883 * The vnode must be referenced and vx_lock()'d
884 *
885 * revoke { struct vnode *a_vp, int a_flags }
886 */
887int
888vop_stdrevoke(struct vop_revoke_args *ap)
889{
890 struct vnode *vp, *vq;
891 lwkt_tokref ilock;
892 dev_t dev;
893
894 KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
895
896 vp = ap->a_vp;
897
898 /*
899 * If the vnode is already dead don't try to revoke it
900 */
901 if (vp->v_flag & VRECLAIMED)
902 return (0);
903
904 /*
905 * If the vnode has a device association, scrap all vnodes associated
906 * with the device. Don't let the device disappear on us while we
907 * are scrapping the vnodes.
908 *
909 * The passed vp will probably show up in the list, do not VX lock
910 * it twice!
911 */
912 if (vp->v_type != VCHR && vp->v_type != VBLK)
913 return(0);
914 if ((dev = vp->v_rdev) == NULL) {
915 if ((dev = udev2dev(vp->v_udev, vp->v_type == VBLK)) == NODEV)
916 return(0);
917 }
918 reference_dev(dev);
919 lwkt_gettoken(&ilock, &spechash_token);
920 while ((vq = SLIST_FIRST(&dev->si_hlist)) != NULL) {
921 if (vp == vq || vx_get(vq) == 0) {
922 if (vq == SLIST_FIRST(&dev->si_hlist))
923 vgone(vq);
924 if (vp != vq)
925 vx_put(vq);
926 }
927 }
928 lwkt_reltoken(&ilock);
929 release_dev(dev);
930 return (0);
931}
932
933/*
934 * Recycle an unused vnode to the front of the free list.
935 *
936 * Returns 1 if we were successfully able to recycle the vnode,
937 * 0 otherwise.
938 */
939int
940vrecycle(struct vnode *vp, struct thread *td)
941{
942 if (vp->v_usecount == 1) {
943 vgone(vp);
944 return (1);
945 }
946 return (0);
947}
948
949/*
950 * Eliminate all activity associated with a vnode in preparation for reuse.
951 *
952 * The vnode must be VX locked and refd and will remain VX locked and refd
953 * on return. This routine may be called with the vnode in any state, as
954 * long as it is VX locked. The vnode will be cleaned out and marked
955 * VRECLAIMED but will not actually be reused until all existing refs and
956 * holds go away.
957 *
958 * NOTE: This routine may be called on a vnode which has not yet been
959 * already been deactivated (VOP_INACTIVE), or on a vnode which has
960 * already been reclaimed.
961 *
962 * This routine is not responsible for placing us back on the freelist.
963 * Instead, it happens automatically when the caller releases the VX lock
964 * (assuming there aren't any other references).
965 */
966void
967vgone(struct vnode *vp)
968{
969 /*
970 * assert that the VX lock is held. This is an absolute requirement
971 * now for vgone() to be called.
972 */
973 KKASSERT(vp->v_lock.lk_exclusivecount == 1);
974
975 /*
976 * Clean out the filesystem specific data and set the VRECLAIMED
977 * bit. Also deactivate the vnode if necessary.
978 */
979 vclean(vp, DOCLOSE, curthread);
980
981 /*
982 * Delete from old mount point vnode list, if on one.
983 */
984 if (vp->v_mount != NULL)
985 insmntque(vp, NULL);
986
987 /*
988 * If special device, remove it from special device alias list
989 * if it is on one. This should normally only occur if a vnode is
990 * being revoked as the device should otherwise have been released
991 * naturally.
992 */
993 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
994 v_release_rdev(vp);
995 }
996
997 /*
998 * Set us to VBAD
999 */
1000 vp->v_type = VBAD;
1001}
1002
1003/*
1004 * Lookup a vnode by device number.
1005 */
1006int
1007vfinddev(dev_t dev, enum vtype type, struct vnode **vpp)
1008{
1009 lwkt_tokref ilock;
1010 struct vnode *vp;
1011
1012 lwkt_gettoken(&ilock, &spechash_token);
1013 SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
1014 if (type == vp->v_type) {
1015 *vpp = vp;
1016 lwkt_reltoken(&ilock);
1017 return (1);
1018 }
1019 }
1020 lwkt_reltoken(&ilock);
1021 return (0);
1022}
1023
1024/*
1025 * Calculate the total number of references to a special device. This
1026 * routine may only be called for VBLK and VCHR vnodes since v_rdev is
1027 * an overloaded field. Since udev2dev can now return NODEV, we have
1028 * to check for a NULL v_rdev.
1029 */
1030int
1031count_dev(dev_t dev)
1032{
1033 lwkt_tokref ilock;
1034 struct vnode *vp;
1035 int count = 0;
1036
1037 if (SLIST_FIRST(&dev->si_hlist)) {
1038 lwkt_gettoken(&ilock, &spechash_token);
1039 SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
1040 count += vp->v_usecount;
1041 }
1042 lwkt_reltoken(&ilock);
1043 }
1044 return(count);
1045}
1046
1047int
1048count_udev(udev_t udev)
1049{
1050 dev_t dev;
1051
1052 if ((dev = udev2dev(udev, 0)) == NODEV)
1053 return(0);
1054 return(count_dev(dev));
1055}
1056
1057int
1058vcount(struct vnode *vp)
1059{
1060 if (vp->v_rdev == NULL)
1061 return(0);
1062 return(count_dev(vp->v_rdev));
1063}
1064
1065/*
1066 * Print out a description of a vnode.
1067 */
1068static char *typename[] =
1069{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1070
1071void
1072vprint(char *label, struct vnode *vp)
1073{
1074 char buf[96];
1075
1076 if (label != NULL)
1077 printf("%s: %p: ", label, (void *)vp);
1078 else
1079 printf("%p: ", (void *)vp);
1080 printf("type %s, usecount %d, writecount %d, refcount %d,",
1081 typename[vp->v_type], vp->v_usecount, vp->v_writecount,
1082 vp->v_holdcnt);
1083 buf[0] = '\0';
1084 if (vp->v_flag & VROOT)
1085 strcat(buf, "|VROOT");
1086 if (vp->v_flag & VTEXT)
1087 strcat(buf, "|VTEXT");
1088 if (vp->v_flag & VSYSTEM)
1089 strcat(buf, "|VSYSTEM");
1090 if (vp->v_flag & VBWAIT)
1091 strcat(buf, "|VBWAIT");
1092 if (vp->v_flag & VFREE)
1093 strcat(buf, "|VFREE");
1094 if (vp->v_flag & VOBJBUF)
1095 strcat(buf, "|VOBJBUF");
1096 if (buf[0] != '\0')
1097 printf(" flags (%s)", &buf[1]);
1098 if (vp->v_data == NULL) {
1099 printf("\n");
1100 } else {
1101 printf("\n\t");
1102 VOP_PRINT(vp);
1103 }
1104}
1105
1106#ifdef DDB
1107#include <ddb/ddb.h>
1108/*
1109 * List all of the locked vnodes in the system.
1110 * Called when debugging the kernel.
1111 */
1112DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1113{
1114 struct thread *td = curthread; /* XXX */
1115 lwkt_tokref ilock;
1116 struct mount *mp, *nmp;
1117 struct vnode *vp;
1118
1119 printf("Locked vnodes\n");
1120 lwkt_gettoken(&ilock, &mountlist_token);
1121 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
1122 if (vfs_busy(mp, LK_NOWAIT, &ilock, td)) {
1123 nmp = TAILQ_NEXT(mp, mnt_list);
1124 continue;
1125 }
1126 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
1127 if (VOP_ISLOCKED(vp, NULL))
1128 vprint((char *)0, vp);
1129 }
1130 lwkt_gettokref(&ilock);
1131 nmp = TAILQ_NEXT(mp, mnt_list);
1132 vfs_unbusy(mp, td);
1133 }
1134 lwkt_reltoken(&ilock);
1135}
1136#endif
1137
1138/*
1139 * Top level filesystem related information gathering.
1140 */
1141static int sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
1142
1143static int
1144vfs_sysctl(SYSCTL_HANDLER_ARGS)
1145{
1146 int *name = (int *)arg1 - 1; /* XXX */
1147 u_int namelen = arg2 + 1; /* XXX */
1148 struct vfsconf *vfsp;
1149
1150#if 1 || defined(COMPAT_PRELITE2)
1151 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
1152 if (namelen == 1)
1153 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
1154#endif
1155
1156#ifdef notyet
1157 /* all sysctl names at this level are at least name and field */
1158 if (namelen < 2)
1159 return (ENOTDIR); /* overloaded */
1160 if (name[0] != VFS_GENERIC) {
1161 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
1162 if (vfsp->vfc_typenum == name[0])
1163 break;
1164 if (vfsp == NULL)
1165 return (EOPNOTSUPP);
1166 return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
1167 oldp, oldlenp, newp, newlen, p));
1168 }
1169#endif
1170 switch (name[1]) {
1171 case VFS_MAXTYPENUM:
1172 if (namelen != 2)
1173 return (ENOTDIR);
1174 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
1175 case VFS_CONF:
1176 if (namelen != 3)
1177 return (ENOTDIR); /* overloaded */
1178 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
1179 if (vfsp->vfc_typenum == name[2])
1180 break;
1181 if (vfsp == NULL)
1182 return (EOPNOTSUPP);
1183 return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
1184 }
1185 return (EOPNOTSUPP);
1186}
1187
1188SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
1189 "Generic filesystem");
1190
1191#if 1 || defined(COMPAT_PRELITE2)
1192
1193static int
1194sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
1195{
1196 int error;
1197 struct vfsconf *vfsp;
1198 struct ovfsconf ovfs;
1199
1200 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
1201 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
1202 strcpy(ovfs.vfc_name, vfsp->vfc_name);
1203 ovfs.vfc_index = vfsp->vfc_typenum;
1204 ovfs.vfc_refcount = vfsp->vfc_refcount;
1205 ovfs.vfc_flags = vfsp->vfc_flags;
1206 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
1207 if (error)
1208 return error;
1209 }
1210 return 0;
1211}
1212
1213#endif /* 1 || COMPAT_PRELITE2 */
1214
1215#if 0
1216#define KINFO_VNODESLOP 10
1217/*
1218 * Dump vnode list (via sysctl).
1219 * Copyout address of vnode followed by vnode.
1220 */
1221/* ARGSUSED */
1222static int
1223sysctl_vnode(SYSCTL_HANDLER_ARGS)
1224{
1225 struct proc *p = curproc; /* XXX */
1226 struct mount *mp, *nmp;
1227 struct vnode *nvp, *vp;
1228 lwkt_tokref ilock;
1229 lwkt_tokref jlock;
1230 int error;
1231
1232#define VPTRSZ sizeof (struct vnode *)
1233#define VNODESZ sizeof (struct vnode)
1234
1235 req->lock = 0;
1236 if (!req->oldptr) /* Make an estimate */
1237 return (SYSCTL_OUT(req, 0,
1238 (numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
1239
1240 lwkt_gettoken(&ilock, &mountlist_token);
1241 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
1242 if (vfs_busy(mp, LK_NOWAIT, &ilock, p)) {
1243 nmp = TAILQ_NEXT(mp, mnt_list);
1244 continue;
1245 }
1246 lwkt_gettoken(&jlock, &mntvnode_token);
1247again:
1248 for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
1249 vp != NULL;
1250 vp = nvp) {
1251 /*
1252 * Check that the vp is still associated with
1253 * this filesystem. RACE: could have been
1254 * recycled onto the same filesystem.
1255 */
1256 if (vp->v_mount != mp)
1257 goto again;
1258 nvp = TAILQ_NEXT(vp, v_nmntvnodes);
1259 if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
1260 (error = SYSCTL_OUT(req, vp, VNODESZ))) {
1261 lwkt_reltoken(&jlock);
1262 return (error);
1263 }
1264 }
1265 lwkt_reltoken(&jlock);
1266 lwkt_gettokref(&ilock);
1267 nmp = TAILQ_NEXT(mp, mnt_list); /* ZZZ */
1268 vfs_unbusy(mp, p);
1269 }
1270 lwkt_reltoken(&ilock);
1271
1272 return (0);
1273}
1274#endif
1275
1276/*
1277 * XXX
1278 * Exporting the vnode list on large systems causes them to crash.
1279 * Exporting the vnode list on medium systems causes sysctl to coredump.
1280 */
1281#if 0
1282SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
1283 0, 0, sysctl_vnode, "S,vnode", "");
1284#endif
1285
1286/*
1287 * Check to see if a filesystem is mounted on a block device.
1288 */
1289int
1290vfs_mountedon(struct vnode *vp)
1291{
1292 dev_t dev;
1293
1294 if ((dev = vp->v_rdev) == NULL)
1295 dev = udev2dev(vp->v_udev, (vp->v_type == VBLK));
1296 if (dev != NODEV && dev->si_mountpoint)
1297 return (EBUSY);
1298 return (0);
1299}
1300
1301/*
1302 * Unmount all filesystems. The list is traversed in reverse order
1303 * of mounting to avoid dependencies.
1304 */
1305void
1306vfs_unmountall(void)
1307{
1308 struct mount *mp;
1309 struct thread *td = curthread;
1310 int error;
1311
1312 if (td->td_proc == NULL)
1313 td = initproc->p_thread; /* XXX XXX use proc0 instead? */
1314
1315 /*
1316 * Since this only runs when rebooting, it is not interlocked.
1317 */
1318 while(!TAILQ_EMPTY(&mountlist)) {
1319 mp = TAILQ_LAST(&mountlist, mntlist);
1320 error = dounmount(mp, MNT_FORCE, td);
1321 if (error) {
1322 TAILQ_REMOVE(&mountlist, mp, mnt_list);
1323 printf("unmount of %s failed (",
1324 mp->mnt_stat.f_mntonname);
1325 if (error == EBUSY)
1326 printf("BUSY)\n");
1327 else
1328 printf("%d)\n", error);
1329 } else {
1330 /* The unmount has removed mp from the mountlist */
1331 }
1332 }
1333}
1334
1335/*
1336 * Build hash lists of net addresses and hang them off the mount point.
1337 * Called by ufs_mount() to set up the lists of export addresses.
1338 */
1339static int
1340vfs_hang_addrlist(struct mount *mp, struct netexport *nep,
1341 struct export_args *argp)
1342{
1343 struct netcred *np;
1344 struct radix_node_head *rnh;
1345 int i;
1346 struct radix_node *rn;
1347 struct sockaddr *saddr, *smask = 0;
1348 struct domain *dom;
1349 int error;
1350
1351 if (argp->ex_addrlen == 0) {
1352 if (mp->mnt_flag & MNT_DEFEXPORTED)
1353 return (EPERM);
1354 np = &nep->ne_defexported;
1355 np->netc_exflags = argp->ex_flags;
1356 np->netc_anon = argp->ex_anon;
1357 np->netc_anon.cr_ref = 1;
1358 mp->mnt_flag |= MNT_DEFEXPORTED;
1359 return (0);
1360 }
1361
1362 if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
1363 return (EINVAL);
1364 if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
1365 return (EINVAL);
1366
1367 i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
1368 np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
1369 bzero((caddr_t) np, i);
1370 saddr = (struct sockaddr *) (np + 1);
1371 if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
1372 goto out;
1373 if (saddr->sa_len > argp->ex_addrlen)
1374 saddr->sa_len = argp->ex_addrlen;
1375 if (argp->ex_masklen) {
1376 smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
1377 error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
1378 if (error)
1379 goto out;
1380 if (smask->sa_len > argp->ex_masklen)
1381 smask->sa_len = argp->ex_masklen;
1382 }
1383 i = saddr->sa_family;
1384 if ((rnh = nep->ne_rtable[i]) == 0) {
1385 /*
1386 * Seems silly to initialize every AF when most are not used,
1387 * do so on demand here
1388 */
1389 for (dom = domains; dom; dom = dom->dom_next)
1390 if (dom->dom_family == i && dom->dom_rtattach) {
1391 dom->dom_rtattach((void **) &nep->ne_rtable[i],
1392 dom->dom_rtoffset);
1393 break;
1394 }
1395 if ((rnh = nep->ne_rtable[i]) == 0) {
1396 error = ENOBUFS;
1397 goto out;
1398 }
1399 }
1400 rn = (*rnh->rnh_addaddr) ((char *) saddr, (char *) smask, rnh,
1401 np->netc_rnodes);
1402 if (rn == 0 || np != (struct netcred *) rn) { /* already exists */
1403 error = EPERM;
1404 goto out;
1405 }
1406 np->netc_exflags = argp->ex_flags;
1407 np->netc_anon = argp->ex_anon;
1408 np->netc_anon.cr_ref = 1;
1409 return (0);
1410out:
1411 free(np, M_NETADDR);
1412 return (error);
1413}
1414
1415/* ARGSUSED */
1416static int
1417vfs_free_netcred(struct radix_node *rn, void *w)
1418{
1419 struct radix_node_head *rnh = (struct radix_node_head *) w;
1420
1421 (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
1422 free((caddr_t) rn, M_NETADDR);
1423 return (0);
1424}
1425
1426/*
1427 * Free the net address hash lists that are hanging off the mount points.
1428 */
1429static void
1430vfs_free_addrlist(struct netexport *nep)
1431{
1432 int i;
1433 struct radix_node_head *rnh;
1434
1435 for (i = 0; i <= AF_MAX; i++)
1436 if ((rnh = nep->ne_rtable[i])) {
1437 (*rnh->rnh_walktree) (rnh, vfs_free_netcred,
1438 (caddr_t) rnh);
1439 free((caddr_t) rnh, M_RTABLE);
1440 nep->ne_rtable[i] = 0;
1441 }
1442}
1443
1444int
1445vfs_export(struct mount *mp, struct netexport *nep, struct export_args *argp)
1446{
1447 int error;
1448
1449 if (argp->ex_flags & MNT_DELEXPORT) {
1450 if (mp->mnt_flag & MNT_EXPUBLIC) {
1451 vfs_setpublicfs(NULL, NULL, NULL);
1452 mp->mnt_flag &= ~MNT_EXPUBLIC;
1453 }
1454 vfs_free_addrlist(nep);
1455 mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
1456 }
1457 if (argp->ex_flags & MNT_EXPORTED) {
1458 if (argp->ex_flags & MNT_EXPUBLIC) {
1459 if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
1460 return (error);
1461 mp->mnt_flag |= MNT_EXPUBLIC;
1462 }
1463 if ((error = vfs_hang_addrlist(mp, nep, argp)))
1464 return (error);
1465 mp->mnt_flag |= MNT_EXPORTED;
1466 }
1467 return (0);
1468}
1469
1470
1471/*
1472 * Set the publicly exported filesystem (WebNFS). Currently, only
1473 * one public filesystem is possible in the spec (RFC 2054 and 2055)
1474 */
1475int
1476vfs_setpublicfs(struct mount *mp, struct netexport *nep,
1477 struct export_args *argp)
1478{
1479 int error;
1480 struct vnode *rvp;
1481 char *cp;
1482
1483 /*
1484 * mp == NULL -> invalidate the current info, the FS is
1485 * no longer exported. May be called from either vfs_export
1486 * or unmount, so check if it hasn't already been done.
1487 */
1488 if (mp == NULL) {
1489 if (nfs_pub.np_valid) {
1490 nfs_pub.np_valid = 0;
1491 if (nfs_pub.np_index != NULL) {
1492 FREE(nfs_pub.np_index, M_TEMP);
1493 nfs_pub.np_index = NULL;
1494 }
1495 }
1496 return (0);
1497 }
1498
1499 /*
1500 * Only one allowed at a time.
1501 */
1502 if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
1503 return (EBUSY);
1504
1505 /*
1506 * Get real filehandle for root of exported FS.
1507 */
1508 bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
1509 nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
1510
1511 if ((error = VFS_ROOT(mp, &rvp)))
1512 return (error);
1513
1514 if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
1515 return (error);
1516
1517 vput(rvp);
1518
1519 /*
1520 * If an indexfile was specified, pull it in.
1521 */
1522 if (argp->ex_indexfile != NULL) {
1523 MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
1524 M_WAITOK);
1525 error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
1526 MAXNAMLEN, (size_t *)0);
1527 if (!error) {
1528 /*
1529 * Check for illegal filenames.
1530 */
1531 for (cp = nfs_pub.np_index; *cp; cp++) {
1532 if (*cp == '/') {
1533 error = EINVAL;
1534 break;
1535 }
1536 }
1537 }
1538 if (error) {
1539 FREE(nfs_pub.np_index, M_TEMP);
1540 return (error);
1541 }
1542 }
1543
1544 nfs_pub.np_mount = mp;
1545 nfs_pub.np_valid = 1;
1546 return (0);
1547}
1548
1549struct netcred *
1550vfs_export_lookup(struct mount *mp, struct netexport *nep,
1551 struct sockaddr *nam)
1552{
1553 struct netcred *np;
1554 struct radix_node_head *rnh;
1555 struct sockaddr *saddr;
1556
1557 np = NULL;
1558 if (mp->mnt_flag & MNT_EXPORTED) {
1559 /*
1560 * Lookup in the export list first.
1561 */
1562 if (nam != NULL) {
1563 saddr = nam;
1564 rnh = nep->ne_rtable[saddr->sa_family];
1565 if (rnh != NULL) {
1566 np = (struct netcred *)
1567 (*rnh->rnh_matchaddr)((char *)saddr,
1568 rnh);
1569 if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
1570 np = NULL;
1571 }
1572 }
1573 /*
1574 * If no address match, use the default if it exists.
1575 */
1576 if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
1577 np = &nep->ne_defexported;
1578 }
1579 return (np);
1580}
1581
1582/*
1583 * perform msync on all vnodes under a mount point. The mount point must
1584 * be locked. This code is also responsible for lazy-freeing unreferenced
1585 * vnodes whos VM objects no longer contain pages.
1586 *
1587 * NOTE: MNT_WAIT still skips vnodes in the VXLOCK state.
1588 */
1589static int vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data);
1590static int vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data);
1591
1592void
1593vfs_msync(struct mount *mp, int flags)
1594{
1595 vmntvnodescan(mp, VMSC_REFVP, vfs_msync_scan1, vfs_msync_scan2,
1596 (void *)flags);
1597}
1598
1599/*
1600 * scan1 is a fast pre-check. There could be hundreds of thousands of
1601 * vnodes, we cannot afford to do anything heavy weight until we have a
1602 * fairly good indication that there is work to do.
1603 */
1604static
1605int
1606vfs_msync_scan1(struct mount *mp, struct vnode *vp, void *data)
1607{
1608 int flags = (int)data;
1609
1610 if ((vp->v_flag & VRECLAIMED) == 0) {
1611 if (vshouldfree(vp, 0))
1612 return(0); /* call scan2 */
1613 if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
1614 (vp->v_flag & VOBJDIRTY) &&
1615 (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
1616 return(0); /* call scan2 */
1617 }
1618 }
1619
1620 /*
1621 * do not call scan2, continue the loop
1622 */
1623 return(-1);
1624}
1625
1626static
1627int
1628vfs_msync_scan2(struct mount *mp, struct vnode *vp, void *data)
1629{
1630 vm_object_t obj;
1631 int flags = (int)data;
1632
1633 if (vp->v_flag & VRECLAIMED)
1634 return(0);
1635
1636 if ((mp->mnt_flag & MNT_RDONLY) == 0 &&
1637 (vp->v_flag & VOBJDIRTY) &&
1638 (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
1639 if (VOP_GETVOBJECT(vp, &obj) == 0) {
1640 vm_object_page_clean(obj, 0, 0,
1641 flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
1642 }
1643 }
1644 return(0);
1645}
1646
1647/*
1648 * Create the VM object needed for VMIO and mmap support. This
1649 * is done for all VREG files in the system. Some filesystems might
1650 * afford the additional metadata buffering capability of the
1651 * VMIO code by making the device node be VMIO mode also.
1652 *
1653 * vp must be locked when vfs_object_create is called.
1654 */
1655int
1656vfs_object_create(struct vnode *vp, struct thread *td)
1657{
1658 return (VOP_CREATEVOBJECT(vp, td));
1659}
1660
1661/*
1662 * Record a process's interest in events which might happen to
1663 * a vnode. Because poll uses the historic select-style interface
1664 * internally, this routine serves as both the ``check for any
1665 * pending events'' and the ``record my interest in future events''
1666 * functions. (These are done together, while the lock is held,
1667 * to avoid race conditions.)
1668 */
1669int
1670vn_pollrecord(struct vnode *vp, struct thread *td, int events)
1671{
1672 lwkt_tokref ilock;
1673
1674 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1675 if (vp->v_pollinfo.vpi_revents & events) {
1676 /*
1677 * This leaves events we are not interested
1678 * in available for the other process which
1679 * which presumably had requested them
1680 * (otherwise they would never have been
1681 * recorded).
1682 */
1683 events &= vp->v_pollinfo.vpi_revents;
1684 vp->v_pollinfo.vpi_revents &= ~events;
1685
1686 lwkt_reltoken(&ilock);
1687 return events;
1688 }
1689 vp->v_pollinfo.vpi_events |= events;
1690 selrecord(td, &vp->v_pollinfo.vpi_selinfo);
1691 lwkt_reltoken(&ilock);
1692 return 0;
1693}
1694
1695/*
1696 * Note the occurrence of an event. If the VN_POLLEVENT macro is used,
1697 * it is possible for us to miss an event due to race conditions, but
1698 * that condition is expected to be rare, so for the moment it is the
1699 * preferred interface.
1700 */
1701void
1702vn_pollevent(struct vnode *vp, int events)
1703{
1704 lwkt_tokref ilock;
1705
1706 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1707 if (vp->v_pollinfo.vpi_events & events) {
1708 /*
1709 * We clear vpi_events so that we don't
1710 * call selwakeup() twice if two events are
1711 * posted before the polling process(es) is
1712 * awakened. This also ensures that we take at
1713 * most one selwakeup() if the polling process
1714 * is no longer interested. However, it does
1715 * mean that only one event can be noticed at
1716 * a time. (Perhaps we should only clear those
1717 * event bits which we note?) XXX
1718 */
1719 vp->v_pollinfo.vpi_events = 0; /* &= ~events ??? */
1720 vp->v_pollinfo.vpi_revents |= events;
1721 selwakeup(&vp->v_pollinfo.vpi_selinfo);
1722 }
1723 lwkt_reltoken(&ilock);
1724}
1725
1726/*
1727 * Wake up anyone polling on vp because it is being revoked.
1728 * This depends on dead_poll() returning POLLHUP for correct
1729 * behavior.
1730 */
1731void
1732vn_pollgone(struct vnode *vp)
1733{
1734 lwkt_tokref ilock;
1735
1736 lwkt_gettoken(&ilock, &vp->v_pollinfo.vpi_token);
1737 if (vp->v_pollinfo.vpi_events) {
1738 vp->v_pollinfo.vpi_events = 0;
1739 selwakeup(&vp->v_pollinfo.vpi_selinfo);
1740 }
1741 lwkt_reltoken(&ilock);
1742}
1743
1744/*
1745 * extract the dev_t from a VBLK or VCHR. The vnode must have been opened
1746 * (or v_rdev might be NULL).
1747 */
1748dev_t
1749vn_todev(struct vnode *vp)
1750{
1751 if (vp->v_type != VBLK && vp->v_type != VCHR)
1752 return (NODEV);
1753 KKASSERT(vp->v_rdev != NULL);
1754 return (vp->v_rdev);
1755}
1756
1757/*
1758 * Check if vnode represents a disk device. The vnode does not need to be
1759 * opened.
1760 */
1761int
1762vn_isdisk(struct vnode *vp, int *errp)
1763{
1764 dev_t dev;
1765
1766 if (vp->v_type != VBLK && vp->v_type != VCHR) {
1767 if (errp != NULL)
1768 *errp = ENOTBLK;
1769 return (0);
1770 }
1771
1772 if ((dev = vp->v_rdev) == NULL)
1773 dev = udev2dev(vp->v_udev, (vp->v_type == VBLK));
1774 if (dev == NULL || dev == NODEV) {
1775 if (errp != NULL)
1776 *errp = ENXIO;
1777 return (0);
1778 }
1779 if (dev_is_good(dev) == 0) {
1780 if (errp != NULL)
1781 *errp = ENXIO;
1782 return (0);
1783 }
1784 if ((dev_dflags(dev) & D_DISK) == 0) {
1785 if (errp != NULL)
1786 *errp = ENOTBLK;
1787 return (0);
1788 }
1789 if (errp != NULL)
1790 *errp = 0;
1791 return (1);
1792}
1793
1794#ifdef DEBUG_VFS_LOCKS
1795
1796void
1797assert_vop_locked(struct vnode *vp, const char *str)
1798{
1799 if (vp && IS_LOCKING_VFS(vp) && !VOP_ISLOCKED(vp, NULL)) {
1800 panic("%s: %p is not locked shared but should be", str, vp);
1801 }
1802}
1803
1804void
1805assert_vop_unlocked(struct vnode *vp, const char *str)
1806{
1807 if (vp && IS_LOCKING_VFS(vp)) {
1808 if (VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE) {
1809 panic("%s: %p is locked but should not be", str, vp);
1810 }
1811 }
1812}
1813
1814#endif