tcp_syncache.cache_limit is a per-cpu limit, reserve enough space for all
[dragonfly.git] / sys / dev / netif / an / if_an.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1997, 1998, 1999
3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: src/sys/dev/an/if_an.c,v 1.2.2.13 2003/02/11 03:32:48 ambrisko Exp $
33 * $DragonFly: src/sys/dev/netif/an/if_an.c,v 1.33 2005/11/22 00:24:14 dillon Exp $
34 */
35
36/*
37 * Aironet 4500/4800 802.11 PCMCIA/ISA/PCI driver for FreeBSD.
38 *
39 * Written by Bill Paul <wpaul@ctr.columbia.edu>
40 * Electrical Engineering Department
41 * Columbia University, New York City
42 */
43
44/*
45 * The Aironet 4500/4800 series cards come in PCMCIA, ISA and PCI form.
46 * This driver supports all three device types (PCI devices are supported
47 * through an extra PCI shim: /sys/dev/an/if_an_pci.c). ISA devices can be
48 * supported either using hard-coded IO port/IRQ settings or via Plug
49 * and Play. The 4500 series devices support 1Mbps and 2Mbps data rates.
50 * The 4800 devices support 1, 2, 5.5 and 11Mbps rates.
51 *
52 * Like the WaveLAN/IEEE cards, the Aironet NICs are all essentially
53 * PCMCIA devices. The ISA and PCI cards are a combination of a PCMCIA
54 * device and a PCMCIA to ISA or PCMCIA to PCI adapter card. There are
55 * a couple of important differences though:
56 *
57 * - Lucent ISA card looks to the host like a PCMCIA controller with
58 * a PCMCIA WaveLAN card inserted. This means that even desktop
59 * machines need to be configured with PCMCIA support in order to
60 * use WaveLAN/IEEE ISA cards. The Aironet cards on the other hand
61 * actually look like normal ISA and PCI devices to the host, so
62 * no PCMCIA controller support is needed
63 *
64 * The latter point results in a small gotcha. The Aironet PCMCIA
65 * cards can be configured for one of two operating modes depending
66 * on how the Vpp1 and Vpp2 programming voltages are set when the
67 * card is activated. In order to put the card in proper PCMCIA
68 * operation (where the CIS table is visible and the interface is
69 * programmed for PCMCIA operation), both Vpp1 and Vpp2 have to be
70 * set to 5 volts. FreeBSD by default doesn't set the Vpp voltages,
71 * which leaves the card in ISA/PCI mode, which prevents it from
72 * being activated as an PCMCIA device.
73 *
74 * Note that some PCMCIA controller software packages for Windows NT
75 * fail to set the voltages as well.
76 *
77 * The Aironet devices can operate in both station mode and access point
78 * mode. Typically, when programmed for station mode, the card can be set
79 * to automatically perform encapsulation/decapsulation of Ethernet II
80 * and 802.3 frames within 802.11 frames so that the host doesn't have
81 * to do it itself. This driver doesn't program the card that way: the
82 * driver handles all of the encapsulation/decapsulation itself.
83 */
84
85#include "opt_inet.h"
86
87#ifdef INET
88#define ANCACHE /* enable signal strength cache */
89#endif
90
91#include <sys/param.h>
92#include <sys/systm.h>
93#include <sys/sockio.h>
94#include <sys/mbuf.h>
95#include <sys/kernel.h>
96#include <sys/proc.h>
97#include <sys/ucred.h>
98#include <sys/socket.h>
99#ifdef ANCACHE
100#include <sys/syslog.h>
101#endif
102#include <sys/sysctl.h>
103#include <sys/thread2.h>
104
105#include <sys/module.h>
106#include <sys/sysctl.h>
107#include <sys/bus.h>
108#include <machine/bus.h>
109#include <sys/rman.h>
110#include <machine/resource.h>
111#include <sys/malloc.h>
112
113#include <net/if.h>
114#include <net/ifq_var.h>
115#include <net/if_arp.h>
116#include <net/ethernet.h>
117#include <net/if_dl.h>
118#include <net/if_types.h>
119#include <net/if_media.h>
120#include <netproto/802_11/ieee80211.h>
121#include <netproto/802_11/ieee80211_ioctl.h>
122
123#ifdef INET
124#include <netinet/in.h>
125#include <netinet/in_systm.h>
126#include <netinet/in_var.h>
127#include <netinet/ip.h>
128#endif
129
130#include <net/bpf.h>
131
132#include <machine/md_var.h>
133
134#include "if_aironet_ieee.h"
135#include "if_anreg.h"
136
137/* These are global because we need them in sys/pci/if_an_p.c. */
138static void an_reset (struct an_softc *);
139static int an_init_mpi350_desc (struct an_softc *);
140static int an_ioctl (struct ifnet *, u_long, caddr_t,
141 struct ucred *);
142static void an_init (void *);
143static int an_init_tx_ring (struct an_softc *);
144static void an_start (struct ifnet *);
145static void an_watchdog (struct ifnet *);
146static void an_rxeof (struct an_softc *);
147static void an_txeof (struct an_softc *, int);
148
149static void an_promisc (struct an_softc *, int);
150static int an_cmd (struct an_softc *, int, int);
151static int an_cmd_struct (struct an_softc *, struct an_command *,
152 struct an_reply *);
153static int an_read_record (struct an_softc *, struct an_ltv_gen *);
154static int an_write_record (struct an_softc *, struct an_ltv_gen *);
155static int an_read_data (struct an_softc *, int,
156 int, caddr_t, int);
157static int an_write_data (struct an_softc *, int,
158 int, caddr_t, int);
159static int an_seek (struct an_softc *, int, int, int);
160static int an_alloc_nicmem (struct an_softc *, int, int *);
161static int an_dma_malloc (struct an_softc *, bus_size_t,
162 struct an_dma_alloc *, int);
163static void an_dma_free (struct an_softc *,
164 struct an_dma_alloc *);
165static void an_dma_malloc_cb (void *, bus_dma_segment_t *, int, int);
166static void an_stats_update (void *);
167static void an_setdef (struct an_softc *, struct an_req *);
168#ifdef ANCACHE
169static void an_cache_store (struct an_softc *, struct mbuf *,
170 uint8_t, uint8_t);
171#endif
172
173/* function definitions for use with the Cisco's Linux configuration
174 utilities
175*/
176
177static int readrids (struct ifnet*, struct aironet_ioctl*);
178static int writerids (struct ifnet*, struct aironet_ioctl*);
179static int flashcard (struct ifnet*, struct aironet_ioctl*);
180
181static int cmdreset (struct ifnet *);
182static int setflashmode (struct ifnet *);
183static int flashgchar (struct ifnet *,int,int);
184static int flashpchar (struct ifnet *,int,int);
185static int flashputbuf (struct ifnet *);
186static int flashrestart (struct ifnet *);
187static int WaitBusy (struct ifnet *, int);
188static int unstickbusy (struct ifnet *);
189
190static void an_dump_record (struct an_softc *,struct an_ltv_gen *,
191 char *);
192
193static int an_media_change (struct ifnet *);
194static void an_media_status (struct ifnet *, struct ifmediareq *);
195
196static int an_dump = 0;
197static int an_cache_mode = 0;
198
199#define DBM 0
200#define PERCENT 1
201#define RAW 2
202
203static char an_conf[256];
204static char an_conf_cache[256];
205
206DECLARE_DUMMY_MODULE(if_an);
207
208/* sysctl vars */
209
210SYSCTL_NODE(_hw, OID_AUTO, an, CTLFLAG_RD, 0, "Wireless driver parameters");
211
212static int
213sysctl_an_dump(SYSCTL_HANDLER_ARGS)
214{
215 int error, r, last;
216 char *s = an_conf;
217
218 last = an_dump;
219
220 switch (an_dump) {
221 case 0:
222 strcpy(an_conf, "off");
223 break;
224 case 1:
225 strcpy(an_conf, "type");
226 break;
227 case 2:
228 strcpy(an_conf, "dump");
229 break;
230 default:
231 snprintf(an_conf, 5, "%x", an_dump);
232 break;
233 }
234
235 error = sysctl_handle_string(oidp, an_conf, sizeof(an_conf), req);
236
237 if (strncmp(an_conf,"off", 3) == 0) {
238 an_dump = 0;
239 }
240 if (strncmp(an_conf,"dump", 4) == 0) {
241 an_dump = 1;
242 }
243 if (strncmp(an_conf,"type", 4) == 0) {
244 an_dump = 2;
245 }
246 if (*s == 'f') {
247 r = 0;
248 for (;;s++) {
249 if ((*s >= '0') && (*s <= '9')) {
250 r = r * 16 + (*s - '0');
251 } else if ((*s >= 'a') && (*s <= 'f')) {
252 r = r * 16 + (*s - 'a' + 10);
253 } else {
254 break;
255 }
256 }
257 an_dump = r;
258 }
259 if (an_dump != last)
260 printf("Sysctl changed for Aironet driver\n");
261
262 return error;
263}
264
265SYSCTL_PROC(_hw_an, OID_AUTO, an_dump, CTLTYPE_STRING | CTLFLAG_RW,
266 0, sizeof(an_conf), sysctl_an_dump, "A", "");
267
268static int
269sysctl_an_cache_mode(SYSCTL_HANDLER_ARGS)
270{
271 int error, last;
272
273 last = an_cache_mode;
274
275 switch (an_cache_mode) {
276 case 1:
277 strcpy(an_conf_cache, "per");
278 break;
279 case 2:
280 strcpy(an_conf_cache, "raw");
281 break;
282 default:
283 strcpy(an_conf_cache, "dbm");
284 break;
285 }
286
287 error = sysctl_handle_string(oidp, an_conf_cache,
288 sizeof(an_conf_cache), req);
289
290 if (strncmp(an_conf_cache,"dbm", 3) == 0) {
291 an_cache_mode = 0;
292 }
293 if (strncmp(an_conf_cache,"per", 3) == 0) {
294 an_cache_mode = 1;
295 }
296 if (strncmp(an_conf_cache,"raw", 3) == 0) {
297 an_cache_mode = 2;
298 }
299
300 return error;
301}
302
303SYSCTL_PROC(_hw_an, OID_AUTO, an_cache_mode, CTLTYPE_STRING | CTLFLAG_RW,
304 0, sizeof(an_conf_cache), sysctl_an_cache_mode, "A", "");
305
306/*
307 * We probe for an Aironet 4500/4800 card by attempting to
308 * read the default SSID list. On reset, the first entry in
309 * the SSID list will contain the name "tsunami." If we don't
310 * find this, then there's no card present.
311 */
312int
313an_probe(dev)
314 device_t dev;
315{
316 struct an_softc *sc = device_get_softc(dev);
317 struct an_ltv_ssidlist_new ssid;
318 int error;
319
320 bzero((char *)&ssid, sizeof(ssid));
321
322 error = an_alloc_port(dev, 0, AN_IOSIZ);
323 if (error)
324 return (error);
325
326 /* can't do autoprobing */
327 if (rman_get_start(sc->port_res) == -1)
328 return(ENXIO);
329
330 /*
331 * We need to fake up a softc structure long enough
332 * to be able to issue commands and call some of the
333 * other routines.
334 */
335 sc->an_bhandle = rman_get_bushandle(sc->port_res);
336 sc->an_btag = rman_get_bustag(sc->port_res);
337
338 ssid.an_len = sizeof(ssid);
339 ssid.an_type = AN_RID_SSIDLIST;
340
341 /* Make sure interrupts are disabled. */
342 sc->mpi350 = 0;
343 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
344 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), 0xFFFF);
345
346 if_initname(&sc->arpcom.ac_if, device_get_name(dev),
347 device_get_unit(dev));
348 an_reset(sc);
349
350 if (an_cmd(sc, AN_CMD_READCFG, 0))
351 return(ENXIO);
352
353 if (an_read_record(sc, (struct an_ltv_gen *)&ssid))
354 return(ENXIO);
355
356 /* See if the ssid matches what we expect ... but doesn't have to */
357 if (strcmp(ssid.an_entry[0].an_ssid, AN_DEF_SSID))
358 return(ENXIO);
359
360 return(0);
361}
362
363/*
364 * Allocate a port resource with the given resource id.
365 */
366int
367an_alloc_port(dev, rid, size)
368 device_t dev;
369 int rid;
370 int size;
371{
372 struct an_softc *sc = device_get_softc(dev);
373 struct resource *res;
374
375 res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
376 0ul, ~0ul, size, RF_ACTIVE);
377 if (res) {
378 sc->port_rid = rid;
379 sc->port_res = res;
380 return (0);
381 } else {
382 return (ENOENT);
383 }
384}
385
386/*
387 * Allocate a memory resource with the given resource id.
388 */
389int an_alloc_memory(device_t dev, int rid, int size)
390{
391 struct an_softc *sc = device_get_softc(dev);
392 struct resource *res;
393
394 res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
395 0ul, ~0ul, size, RF_ACTIVE);
396 if (res) {
397 sc->mem_rid = rid;
398 sc->mem_res = res;
399 sc->mem_used = size;
400 return (0);
401 } else {
402 return (ENOENT);
403 }
404}
405
406/*
407 * Allocate a auxilary memory resource with the given resource id.
408 */
409int an_alloc_aux_memory(device_t dev, int rid, int size)
410{
411 struct an_softc *sc = device_get_softc(dev);
412 struct resource *res;
413
414 res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
415 0ul, ~0ul, size, RF_ACTIVE);
416 if (res) {
417 sc->mem_aux_rid = rid;
418 sc->mem_aux_res = res;
419 sc->mem_aux_used = size;
420 return (0);
421 } else {
422 return (ENOENT);
423 }
424}
425
426/*
427 * Allocate an irq resource with the given resource id.
428 */
429int
430an_alloc_irq(dev, rid, flags)
431 device_t dev;
432 int rid;
433 int flags;
434{
435 struct an_softc *sc = device_get_softc(dev);
436 struct resource *res;
437
438 res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
439 (RF_ACTIVE | flags));
440 if (res) {
441 sc->irq_rid = rid;
442 sc->irq_res = res;
443 return (0);
444 } else {
445 return (ENOENT);
446 }
447}
448
449static void
450an_dma_malloc_cb(arg, segs, nseg, error)
451 void *arg;
452 bus_dma_segment_t *segs;
453 int nseg;
454 int error;
455{
456 bus_addr_t *paddr = (bus_addr_t*) arg;
457 *paddr = segs->ds_addr;
458}
459
460/*
461 * Alloc DMA memory and set the pointer to it
462 */
463static int
464an_dma_malloc(sc, size, dma, mapflags)
465 struct an_softc *sc;
466 bus_size_t size;
467 struct an_dma_alloc *dma;
468 int mapflags;
469{
470 int r;
471
472 r = bus_dmamap_create(sc->an_dtag, 0, &dma->an_dma_map);
473 if (r != 0)
474 goto fail_0;
475
476 r = bus_dmamem_alloc(sc->an_dtag, (void**) &dma->an_dma_vaddr,
477 BUS_DMA_WAITOK, &dma->an_dma_map);
478 if (r != 0)
479 goto fail_1;
480
481 r = bus_dmamap_load(sc->an_dtag, dma->an_dma_map, dma->an_dma_vaddr,
482 size,
483 an_dma_malloc_cb,
484 &dma->an_dma_paddr,
485 mapflags);
486 if (r != 0)
487 goto fail_2;
488
489 dma->an_dma_size = size;
490 return (0);
491
492fail_2:
493 bus_dmamap_unload(sc->an_dtag, dma->an_dma_map);
494fail_1:
495 bus_dmamem_free(sc->an_dtag, dma->an_dma_vaddr, dma->an_dma_map);
496fail_0:
497 bus_dmamap_destroy(sc->an_dtag, dma->an_dma_map);
498 dma->an_dma_map = NULL;
499 return (r);
500}
501
502static void
503an_dma_free(sc, dma)
504 struct an_softc *sc;
505 struct an_dma_alloc *dma;
506{
507 bus_dmamap_unload(sc->an_dtag, dma->an_dma_map);
508 bus_dmamem_free(sc->an_dtag, dma->an_dma_vaddr, dma->an_dma_map);
509 dma->an_dma_vaddr = NULL;
510 bus_dmamap_destroy(sc->an_dtag, dma->an_dma_map);
511}
512
513/*
514 * Release all resources
515 */
516void
517an_release_resources(dev)
518 device_t dev;
519{
520 struct an_softc *sc = device_get_softc(dev);
521 int i;
522
523 if (sc->port_res) {
524 bus_release_resource(dev, SYS_RES_IOPORT,
525 sc->port_rid, sc->port_res);
526 sc->port_res = 0;
527 }
528 if (sc->mem_res) {
529 bus_release_resource(dev, SYS_RES_MEMORY,
530 sc->mem_rid, sc->mem_res);
531 sc->mem_res = 0;
532 }
533 if (sc->mem_aux_res) {
534 bus_release_resource(dev, SYS_RES_MEMORY,
535 sc->mem_aux_rid, sc->mem_aux_res);
536 sc->mem_aux_res = 0;
537 }
538 if (sc->irq_res) {
539 bus_release_resource(dev, SYS_RES_IRQ,
540 sc->irq_rid, sc->irq_res);
541 sc->irq_res = 0;
542 }
543 if (sc->an_rid_buffer.an_dma_paddr) {
544 an_dma_free(sc, &sc->an_rid_buffer);
545 }
546 for (i = 0; i < AN_MAX_RX_DESC; i++)
547 if (sc->an_rx_buffer[i].an_dma_paddr) {
548 an_dma_free(sc, &sc->an_rx_buffer[i]);
549 }
550 for (i = 0; i < AN_MAX_TX_DESC; i++)
551 if (sc->an_tx_buffer[i].an_dma_paddr) {
552 an_dma_free(sc, &sc->an_tx_buffer[i]);
553 }
554 if (sc->an_dtag) {
555 bus_dma_tag_destroy(sc->an_dtag);
556 }
557
558}
559
560int
561an_init_mpi350_desc(sc)
562 struct an_softc *sc;
563{
564 struct an_command cmd_struct;
565 struct an_reply reply;
566 struct an_card_rid_desc an_rid_desc;
567 struct an_card_rx_desc an_rx_desc;
568 struct an_card_tx_desc an_tx_desc;
569 int i, desc;
570
571 if(!sc->an_rid_buffer.an_dma_paddr)
572 an_dma_malloc(sc, AN_RID_BUFFER_SIZE,
573 &sc->an_rid_buffer, 0);
574 for (i = 0; i < AN_MAX_RX_DESC; i++)
575 if(!sc->an_rx_buffer[i].an_dma_paddr)
576 an_dma_malloc(sc, AN_RX_BUFFER_SIZE,
577 &sc->an_rx_buffer[i], 0);
578 for (i = 0; i < AN_MAX_TX_DESC; i++)
579 if(!sc->an_tx_buffer[i].an_dma_paddr)
580 an_dma_malloc(sc, AN_TX_BUFFER_SIZE,
581 &sc->an_tx_buffer[i], 0);
582
583 /*
584 * Allocate RX descriptor
585 */
586 bzero(&reply,sizeof(reply));
587 cmd_struct.an_cmd = AN_CMD_ALLOC_DESC;
588 cmd_struct.an_parm0 = AN_DESCRIPTOR_RX;
589 cmd_struct.an_parm1 = AN_RX_DESC_OFFSET;
590 cmd_struct.an_parm2 = AN_MAX_RX_DESC;
591 if (an_cmd_struct(sc, &cmd_struct, &reply)) {
592 if_printf(&sc->arpcom.ac_if,
593 "failed to allocate RX descriptor\n");
594 return(EIO);
595 }
596
597 for (desc = 0; desc < AN_MAX_RX_DESC; desc++) {
598 bzero(&an_rx_desc, sizeof(an_rx_desc));
599 an_rx_desc.an_valid = 1;
600 an_rx_desc.an_len = AN_RX_BUFFER_SIZE;
601 an_rx_desc.an_done = 0;
602 an_rx_desc.an_phys = sc->an_rx_buffer[desc].an_dma_paddr;
603
604 for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
605 CSR_MEM_AUX_WRITE_4(sc, AN_RX_DESC_OFFSET
606 + (desc * sizeof(an_rx_desc))
607 + (i * 4),
608 ((u_int32_t*)&an_rx_desc)[i]);
609 }
610
611 /*
612 * Allocate TX descriptor
613 */
614
615 bzero(&reply,sizeof(reply));
616 cmd_struct.an_cmd = AN_CMD_ALLOC_DESC;
617 cmd_struct.an_parm0 = AN_DESCRIPTOR_TX;
618 cmd_struct.an_parm1 = AN_TX_DESC_OFFSET;
619 cmd_struct.an_parm2 = AN_MAX_TX_DESC;
620 if (an_cmd_struct(sc, &cmd_struct, &reply)) {
621 if_printf(&sc->arpcom.ac_if,
622 "failed to allocate TX descriptor\n");
623 return(EIO);
624 }
625
626 for (desc = 0; desc < AN_MAX_TX_DESC; desc++) {
627 bzero(&an_tx_desc, sizeof(an_tx_desc));
628 an_tx_desc.an_offset = 0;
629 an_tx_desc.an_eoc = 0;
630 an_tx_desc.an_valid = 0;
631 an_tx_desc.an_len = 0;
632 an_tx_desc.an_phys = sc->an_tx_buffer[desc].an_dma_paddr;
633
634 for (i = 0; i < sizeof(an_tx_desc) / 4; i++)
635 CSR_MEM_AUX_WRITE_4(sc, AN_TX_DESC_OFFSET
636 + (desc * sizeof(an_tx_desc))
637 + (i * 4),
638 ((u_int32_t*)&an_tx_desc)[i]);
639 }
640
641 /*
642 * Allocate RID descriptor
643 */
644
645 bzero(&reply,sizeof(reply));
646 cmd_struct.an_cmd = AN_CMD_ALLOC_DESC;
647 cmd_struct.an_parm0 = AN_DESCRIPTOR_HOSTRW;
648 cmd_struct.an_parm1 = AN_HOST_DESC_OFFSET;
649 cmd_struct.an_parm2 = 1;
650 if (an_cmd_struct(sc, &cmd_struct, &reply)) {
651 if_printf(&sc->arpcom.ac_if,
652 "failed to allocate host descriptor\n");
653 return(EIO);
654 }
655
656 bzero(&an_rid_desc, sizeof(an_rid_desc));
657 an_rid_desc.an_valid = 1;
658 an_rid_desc.an_len = AN_RID_BUFFER_SIZE;
659 an_rid_desc.an_rid = 0;
660 an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
661
662 for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
663 CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4,
664 ((u_int32_t*)&an_rid_desc)[i]);
665
666 return(0);
667}
668
669int
670an_attach(sc, dev, flags)
671 struct an_softc *sc;
672 device_t dev;
673 int flags;
674{
675 struct ifnet *ifp = &sc->arpcom.ac_if;
676 int error;
677
678 callout_init(&sc->an_stat_timer);
679 sc->an_associated = 0;
680 sc->an_monitor = 0;
681 sc->an_was_monitor = 0;
682 sc->an_flash_buffer = NULL;
683
684 ifp->if_softc = sc;
685 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
686
687 /* Reset the NIC. */
688 an_reset(sc);
689 if (sc->mpi350) {
690 error = an_init_mpi350_desc(sc);
691 if (error)
692 return(error);
693 }
694
695 /* Load factory config */
696 if (an_cmd(sc, AN_CMD_READCFG, 0)) {
697 device_printf(dev, "failed to load config data\n");
698 return(EIO);
699 }
700
701 /* Read the current configuration */
702 sc->an_config.an_type = AN_RID_GENCONFIG;
703 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
704 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
705 device_printf(dev, "read record failed\n");
706 return(EIO);
707 }
708
709 /* Read the card capabilities */
710 sc->an_caps.an_type = AN_RID_CAPABILITIES;
711 sc->an_caps.an_len = sizeof(struct an_ltv_caps);
712 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_caps)) {
713 device_printf(dev, "read record failed\n");
714 return(EIO);
715 }
716
717 /* Read ssid list */
718 sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
719 sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist_new);
720 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
721 device_printf(dev, "read record failed\n");
722 return(EIO);
723 }
724
725 /* Read AP list */
726 sc->an_aplist.an_type = AN_RID_APLIST;
727 sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
728 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
729 device_printf(dev, "read record failed\n");
730 return(EIO);
731 }
732
733#ifdef ANCACHE
734 /* Read the RSSI <-> dBm map */
735 sc->an_have_rssimap = 0;
736 if (sc->an_caps.an_softcaps & 8) {
737 sc->an_rssimap.an_type = AN_RID_RSSI_MAP;
738 sc->an_rssimap.an_len = sizeof(struct an_ltv_rssi_map);
739 if (an_read_record(sc, (struct an_ltv_gen *)&sc->an_rssimap)) {
740 device_printf(dev, "unable to get RSSI <-> dBM map\n");
741 } else {
742 device_printf(dev, "got RSSI <-> dBM map\n");
743 sc->an_have_rssimap = 1;
744 }
745 } else {
746 device_printf(dev, "no RSSI <-> dBM map\n");
747 }
748#endif
749
750 ifp->if_mtu = ETHERMTU;
751 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
752 ifp->if_ioctl = an_ioctl;
753 ifp->if_start = an_start;
754 ifp->if_watchdog = an_watchdog;
755 ifp->if_init = an_init;
756 ifp->if_baudrate = 10000000;
757 ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
758 ifq_set_ready(&ifp->if_snd);
759
760 bzero(sc->an_config.an_nodename, sizeof(sc->an_config.an_nodename));
761 bcopy(AN_DEFAULT_NODENAME, sc->an_config.an_nodename,
762 sizeof(AN_DEFAULT_NODENAME) - 1);
763
764 bzero(sc->an_ssidlist.an_entry[0].an_ssid,
765 sizeof(sc->an_ssidlist.an_entry[0].an_ssid));
766 bcopy(AN_DEFAULT_NETNAME, sc->an_ssidlist.an_entry[0].an_ssid,
767 sizeof(AN_DEFAULT_NETNAME) - 1);
768 sc->an_ssidlist.an_entry[0].an_len = strlen(AN_DEFAULT_NETNAME);
769
770 sc->an_config.an_opmode =
771 AN_OPMODE_INFRASTRUCTURE_STATION;
772
773 sc->an_tx_rate = 0;
774 bzero((char *)&sc->an_stats, sizeof(sc->an_stats));
775
776 ifmedia_init(&sc->an_ifmedia, 0, an_media_change, an_media_status);
777#define ADD(m, c) ifmedia_add(&sc->an_ifmedia, (m), (c), NULL)
778 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1,
779 IFM_IEEE80211_ADHOC, 0), 0);
780 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS1, 0, 0), 0);
781 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2,
782 IFM_IEEE80211_ADHOC, 0), 0);
783 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS2, 0, 0), 0);
784 if (sc->an_caps.an_rates[2] == AN_RATE_5_5MBPS) {
785 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5,
786 IFM_IEEE80211_ADHOC, 0), 0);
787 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS5, 0, 0), 0);
788 }
789 if (sc->an_caps.an_rates[3] == AN_RATE_11MBPS) {
790 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11,
791 IFM_IEEE80211_ADHOC, 0), 0);
792 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_IEEE80211_DS11, 0, 0), 0);
793 }
794 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
795 IFM_IEEE80211_ADHOC, 0), 0);
796 ADD(IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0), 0);
797#undef ADD
798 ifmedia_set(&sc->an_ifmedia, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO,
799 0, 0));
800
801 /*
802 * Call MI attach routine.
803 */
804 ether_ifattach(ifp, sc->an_caps.an_oemaddr);
805
806 return(0);
807}
808
809int
810an_detach(device_t dev)
811{
812 struct an_softc *sc = device_get_softc(dev);
813 struct ifnet *ifp = &sc->arpcom.ac_if;
814
815 crit_enter();
816 an_stop(sc);
817 ifmedia_removeall(&sc->an_ifmedia);
818 ether_ifdetach(ifp);
819 bus_teardown_intr(dev, sc->irq_res, sc->irq_handle);
820 crit_exit();
821
822 an_release_resources(dev);
823 return 0;
824}
825
826static void
827an_rxeof(sc)
828 struct an_softc *sc;
829{
830 struct ifnet *ifp;
831 struct ether_header *eh;
832 struct ieee80211_frame *ih;
833 struct an_rxframe rx_frame;
834 struct an_rxframe_802_3 rx_frame_802_3;
835 struct mbuf *m;
836 int len, id, error = 0, i, count = 0;
837 int ieee80211_header_len;
838 u_char *bpf_buf;
839 u_short fc1;
840 struct an_card_rx_desc an_rx_desc;
841 u_int8_t *buf;
842
843 ifp = &sc->arpcom.ac_if;
844
845 if (!sc->mpi350) {
846 id = CSR_READ_2(sc, AN_RX_FID);
847
848 if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) {
849 /* read raw 802.11 packet */
850 bpf_buf = sc->buf_802_11;
851
852 /* read header */
853 if (an_read_data(sc, id, 0x0, (caddr_t)&rx_frame,
854 sizeof(rx_frame))) {
855 ifp->if_ierrors++;
856 return;
857 }
858
859 /*
860 * skip beacon by default since this increases the
861 * system load a lot
862 */
863
864 if (!(sc->an_monitor & AN_MONITOR_INCLUDE_BEACON) &&
865 (rx_frame.an_frame_ctl &
866 IEEE80211_FC0_SUBTYPE_BEACON)) {
867 return;
868 }
869
870 if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) {
871 len = rx_frame.an_rx_payload_len
872 + sizeof(rx_frame);
873 /* Check for insane frame length */
874 if (len > sizeof(sc->buf_802_11)) {
875 if_printf(ifp,
876 "oversized packet received "
877 "(%d, %d)\n", len, MCLBYTES);
878 ifp->if_ierrors++;
879 return;
880 }
881
882 bcopy((char *)&rx_frame,
883 bpf_buf, sizeof(rx_frame));
884
885 error = an_read_data(sc, id, sizeof(rx_frame),
886 (caddr_t)bpf_buf+sizeof(rx_frame),
887 rx_frame.an_rx_payload_len);
888 } else {
889 fc1=rx_frame.an_frame_ctl >> 8;
890 ieee80211_header_len =
891 sizeof(struct ieee80211_frame);
892 if ((fc1 & IEEE80211_FC1_DIR_TODS) &&
893 (fc1 & IEEE80211_FC1_DIR_FROMDS)) {
894 ieee80211_header_len += ETHER_ADDR_LEN;
895 }
896
897 len = rx_frame.an_rx_payload_len
898 + ieee80211_header_len;
899 /* Check for insane frame length */
900 if (len > sizeof(sc->buf_802_11)) {
901 if_printf(ifp,
902 "oversized packet received "
903 "(%d, %d)\n", len, MCLBYTES);
904 ifp->if_ierrors++;
905 return;
906 }
907
908 ih = (struct ieee80211_frame *)bpf_buf;
909
910 bcopy((char *)&rx_frame.an_frame_ctl,
911 (char *)ih, ieee80211_header_len);
912
913 error = an_read_data(sc, id, sizeof(rx_frame) +
914 rx_frame.an_gaplen,
915 (caddr_t)ih +ieee80211_header_len,
916 rx_frame.an_rx_payload_len);
917 }
918 BPF_TAP(ifp, bpf_buf, len);
919 } else {
920 m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
921 if (m == NULL) {
922 ifp->if_ierrors++;
923 return;
924 }
925 m->m_pkthdr.rcvif = ifp;
926 /* Read Ethernet encapsulated packet */
927
928#ifdef ANCACHE
929 /* Read NIC frame header */
930 if (an_read_data(sc, id, 0, (caddr_t)&rx_frame,
931 sizeof(rx_frame))) {
932 ifp->if_ierrors++;
933 return;
934 }
935#endif
936 /* Read in the 802_3 frame header */
937 if (an_read_data(sc, id, 0x34,
938 (caddr_t)&rx_frame_802_3,
939 sizeof(rx_frame_802_3))) {
940 ifp->if_ierrors++;
941 return;
942 }
943 if (rx_frame_802_3.an_rx_802_3_status != 0) {
944 ifp->if_ierrors++;
945 return;
946 }
947 /* Check for insane frame length */
948 len = rx_frame_802_3.an_rx_802_3_payload_len;
949 if (len > sizeof(sc->buf_802_11)) {
950 if_printf(ifp,
951 "oversized packet received (%d, %d)\n",
952 len, MCLBYTES);
953 ifp->if_ierrors++;
954 return;
955 }
956 m->m_pkthdr.len = m->m_len =
957 rx_frame_802_3.an_rx_802_3_payload_len + 12;
958
959 eh = mtod(m, struct ether_header *);
960
961 bcopy((char *)&rx_frame_802_3.an_rx_dst_addr,
962 (char *)&eh->ether_dhost, ETHER_ADDR_LEN);
963 bcopy((char *)&rx_frame_802_3.an_rx_src_addr,
964 (char *)&eh->ether_shost, ETHER_ADDR_LEN);
965
966 /* in mbuf header type is just before payload */
967 error = an_read_data(sc, id, 0x44,
968 (caddr_t)&(eh->ether_type),
969 rx_frame_802_3.an_rx_802_3_payload_len);
970
971 if (error) {
972 m_freem(m);
973 ifp->if_ierrors++;
974 return;
975 }
976 ifp->if_ipackets++;
977
978#ifdef ANCACHE
979 an_cache_store(sc, m,
980 rx_frame.an_rx_signal_strength,
981 rx_frame.an_rsvd0);
982#endif
983 (*ifp->if_input)(ifp, m);
984 }
985
986 } else { /* MPI-350 */
987 for (count = 0; count < AN_MAX_RX_DESC; count++){
988 for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
989 ((u_int32_t*)&an_rx_desc)[i]
990 = CSR_MEM_AUX_READ_4(sc,
991 AN_RX_DESC_OFFSET
992 + (count * sizeof(an_rx_desc))
993 + (i * 4));
994
995 if (an_rx_desc.an_done && !an_rx_desc.an_valid) {
996 buf = sc->an_rx_buffer[count].an_dma_vaddr;
997
998 m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
999 if (m == NULL) {
1000 ifp->if_ierrors++;
1001 return;
1002 }
1003 m->m_pkthdr.rcvif = ifp;
1004 /* Read Ethernet encapsulated packet */
1005
1006 /*
1007 * No ANCACHE support since we just get back
1008 * an Ethernet packet no 802.11 info
1009 */
1010#if 0
1011#ifdef ANCACHE
1012 /* Read NIC frame header */
1013 bcopy(buf, (caddr_t)&rx_frame,
1014 sizeof(rx_frame));
1015#endif
1016#endif
1017 /* Check for insane frame length */
1018 len = an_rx_desc.an_len + 12;
1019 if (len > MCLBYTES) {
1020 if_printf(ifp,
1021 "oversized packet received "
1022 "(%d, %d)\n", len, MCLBYTES);
1023 ifp->if_ierrors++;
1024 return;
1025 }
1026
1027 m->m_pkthdr.len = m->m_len =
1028 an_rx_desc.an_len + 12;
1029
1030 eh = mtod(m, struct ether_header *);
1031
1032 bcopy(buf, (char *)eh,
1033 m->m_pkthdr.len);
1034
1035 ifp->if_ipackets++;
1036
1037#if 0
1038#ifdef ANCACHE
1039 an_cache_store(sc, m,
1040 rx_frame.an_rx_signal_strength,
1041 rx_frame.an_rsvd0);
1042#endif
1043#endif
1044 (*ifp->if_input)(ifp, m);
1045
1046 an_rx_desc.an_valid = 1;
1047 an_rx_desc.an_len = AN_RX_BUFFER_SIZE;
1048 an_rx_desc.an_done = 0;
1049 an_rx_desc.an_phys =
1050 sc->an_rx_buffer[count].an_dma_paddr;
1051
1052 for (i = 0; i < sizeof(an_rx_desc) / 4; i++)
1053 CSR_MEM_AUX_WRITE_4(sc,
1054 AN_RX_DESC_OFFSET
1055 + (count * sizeof(an_rx_desc))
1056 + (i * 4),
1057 ((u_int32_t*)&an_rx_desc)[i]);
1058
1059 } else {
1060 if_printf(ifp, "Didn't get valid RX packet "
1061 "%x %x %d\n",
1062 an_rx_desc.an_done,
1063 an_rx_desc.an_valid,
1064 an_rx_desc.an_len);
1065 }
1066 }
1067 }
1068}
1069
1070static void
1071an_txeof(sc, status)
1072 struct an_softc *sc;
1073 int status;
1074{
1075 struct ifnet *ifp;
1076 int id, i;
1077
1078 ifp = &sc->arpcom.ac_if;
1079
1080 ifp->if_timer = 0;
1081 ifp->if_flags &= ~IFF_OACTIVE;
1082
1083 if (!sc->mpi350) {
1084 id = CSR_READ_2(sc, AN_TX_CMP_FID(sc->mpi350));
1085
1086 if (status & AN_EV_TX_EXC) {
1087 ifp->if_oerrors++;
1088 } else
1089 ifp->if_opackets++;
1090
1091 for (i = 0; i < AN_TX_RING_CNT; i++) {
1092 if (id == sc->an_rdata.an_tx_ring[i]) {
1093 sc->an_rdata.an_tx_ring[i] = 0;
1094 break;
1095 }
1096 }
1097
1098 AN_INC(sc->an_rdata.an_tx_cons, AN_TX_RING_CNT);
1099 } else { /* MPI 350 */
1100 id = CSR_READ_2(sc, AN_TX_CMP_FID(sc->mpi350));
1101 if (!sc->an_rdata.an_tx_empty){
1102 if (status & AN_EV_TX_EXC) {
1103 ifp->if_oerrors++;
1104 } else
1105 ifp->if_opackets++;
1106 AN_INC(sc->an_rdata.an_tx_cons, AN_MAX_TX_DESC);
1107 if (sc->an_rdata.an_tx_prod ==
1108 sc->an_rdata.an_tx_cons)
1109 sc->an_rdata.an_tx_empty = 1;
1110 }
1111 }
1112}
1113
1114/*
1115 * We abuse the stats updater to check the current NIC status. This
1116 * is important because we don't want to allow transmissions until
1117 * the NIC has synchronized to the current cell (either as the master
1118 * in an ad-hoc group, or as a station connected to an access point).
1119 */
1120static void
1121an_stats_update(xsc)
1122 void *xsc;
1123{
1124 struct an_softc *sc;
1125 struct ifnet *ifp;
1126
1127 sc = xsc;
1128 ifp = &sc->arpcom.ac_if;
1129
1130 crit_enter();
1131
1132 sc->an_status.an_type = AN_RID_STATUS;
1133 sc->an_status.an_len = sizeof(struct an_ltv_status);
1134 an_read_record(sc, (struct an_ltv_gen *)&sc->an_status);
1135
1136 if (sc->an_status.an_opmode & AN_STATUS_OPMODE_IN_SYNC)
1137 sc->an_associated = 1;
1138 else
1139 sc->an_associated = 0;
1140
1141 /* Don't do this while we're not transmitting */
1142 if ((ifp->if_flags & IFF_OACTIVE) == 0) {
1143 sc->an_stats.an_len = sizeof(struct an_ltv_stats);
1144 sc->an_stats.an_type = AN_RID_32BITS_CUM;
1145 an_read_record(sc, (struct an_ltv_gen *)&sc->an_stats.an_len);
1146 }
1147
1148 callout_reset(&sc->an_stat_timer, hz, an_stats_update, sc);
1149
1150 crit_exit();
1151}
1152
1153void
1154an_intr(xsc)
1155 void *xsc;
1156{
1157 struct an_softc *sc;
1158 struct ifnet *ifp;
1159 u_int16_t status;
1160
1161 sc = (struct an_softc*)xsc;
1162
1163 ifp = &sc->arpcom.ac_if;
1164
1165 /* Disable interrupts. */
1166 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
1167
1168 status = CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350));
1169 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), ~AN_INTRS(sc->mpi350));
1170
1171 if (status & AN_EV_MIC)
1172 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_MIC);
1173
1174 if (status & AN_EV_LINKSTAT) {
1175 if (CSR_READ_2(sc, AN_LINKSTAT(sc->mpi350))
1176 == AN_LINKSTAT_ASSOCIATED)
1177 sc->an_associated = 1;
1178 else
1179 sc->an_associated = 0;
1180 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_LINKSTAT);
1181 }
1182
1183 if (status & AN_EV_RX) {
1184 an_rxeof(sc);
1185 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_RX);
1186 }
1187
1188 if (sc->mpi350 && status & AN_EV_TX_CPY) {
1189 an_txeof(sc, status);
1190 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX_CPY);
1191 }
1192
1193 if (status & AN_EV_TX) {
1194 an_txeof(sc, status);
1195 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX);
1196 }
1197
1198 if (status & AN_EV_TX_EXC) {
1199 an_txeof(sc, status);
1200 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_TX_EXC);
1201 }
1202
1203 if (status & AN_EV_ALLOC)
1204 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
1205
1206 /* Re-enable interrupts. */
1207 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS(sc->mpi350));
1208
1209 if ((ifp->if_flags & IFF_UP) && !ifq_is_empty(&ifp->if_snd))
1210 an_start(ifp);
1211
1212 return;
1213}
1214
1215static int
1216an_cmd_struct(sc, cmd, reply)
1217 struct an_softc *sc;
1218 struct an_command *cmd;
1219 struct an_reply *reply;
1220{
1221 int i;
1222
1223 for (i = 0; i != AN_TIMEOUT; i++) {
1224 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) {
1225 DELAY(1000);
1226 } else
1227 break;
1228 }
1229 if( i == AN_TIMEOUT) {
1230 printf("BUSY\n");
1231 return(ETIMEDOUT);
1232 }
1233
1234 CSR_WRITE_2(sc, AN_PARAM0(sc->mpi350), cmd->an_parm0);
1235 CSR_WRITE_2(sc, AN_PARAM1(sc->mpi350), cmd->an_parm1);
1236 CSR_WRITE_2(sc, AN_PARAM2(sc->mpi350), cmd->an_parm2);
1237 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd->an_cmd);
1238
1239 for (i = 0; i < AN_TIMEOUT; i++) {
1240 if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_CMD)
1241 break;
1242 DELAY(1000);
1243 }
1244
1245 reply->an_resp0 = CSR_READ_2(sc, AN_RESP0(sc->mpi350));
1246 reply->an_resp1 = CSR_READ_2(sc, AN_RESP1(sc->mpi350));
1247 reply->an_resp2 = CSR_READ_2(sc, AN_RESP2(sc->mpi350));
1248 reply->an_status = CSR_READ_2(sc, AN_STATUS(sc->mpi350));
1249
1250 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY)
1251 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CLR_STUCK_BUSY);
1252
1253 /* Ack the command */
1254 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CMD);
1255
1256 if (i == AN_TIMEOUT)
1257 return(ETIMEDOUT);
1258
1259 return(0);
1260}
1261
1262static int
1263an_cmd(sc, cmd, val)
1264 struct an_softc *sc;
1265 int cmd;
1266 int val;
1267{
1268 int i, s = 0;
1269
1270 CSR_WRITE_2(sc, AN_PARAM0(sc->mpi350), val);
1271 CSR_WRITE_2(sc, AN_PARAM1(sc->mpi350), 0);
1272 CSR_WRITE_2(sc, AN_PARAM2(sc->mpi350), 0);
1273 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd);
1274
1275 for (i = 0; i < AN_TIMEOUT; i++) {
1276 if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_CMD)
1277 break;
1278 else {
1279 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) == cmd)
1280 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), cmd);
1281 }
1282 }
1283
1284 for (i = 0; i < AN_TIMEOUT; i++) {
1285 CSR_READ_2(sc, AN_RESP0(sc->mpi350));
1286 CSR_READ_2(sc, AN_RESP1(sc->mpi350));
1287 CSR_READ_2(sc, AN_RESP2(sc->mpi350));
1288 s = CSR_READ_2(sc, AN_STATUS(sc->mpi350));
1289 if ((s & AN_STAT_CMD_CODE) == (cmd & AN_STAT_CMD_CODE))
1290 break;
1291 }
1292
1293 /* Ack the command */
1294 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CMD);
1295
1296 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY)
1297 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_CLR_STUCK_BUSY);
1298
1299 if (i == AN_TIMEOUT)
1300 return(ETIMEDOUT);
1301
1302 return(0);
1303}
1304
1305/*
1306 * This reset sequence may look a little strange, but this is the
1307 * most reliable method I've found to really kick the NIC in the
1308 * head and force it to reboot correctly.
1309 */
1310static void
1311an_reset(sc)
1312 struct an_softc *sc;
1313{
1314 an_cmd(sc, AN_CMD_ENABLE, 0);
1315 an_cmd(sc, AN_CMD_FW_RESTART, 0);
1316 an_cmd(sc, AN_CMD_NOOP2, 0);
1317
1318 if (an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0) == ETIMEDOUT)
1319 if_printf(&sc->arpcom.ac_if, "reset failed\n");
1320
1321 an_cmd(sc, AN_CMD_DISABLE, 0);
1322
1323 return;
1324}
1325
1326/*
1327 * Read an LTV record from the NIC.
1328 */
1329static int
1330an_read_record(sc, ltv)
1331 struct an_softc *sc;
1332 struct an_ltv_gen *ltv;
1333{
1334 struct an_ltv_gen *an_ltv;
1335 struct an_card_rid_desc an_rid_desc;
1336 struct an_command cmd;
1337 struct an_reply reply;
1338 u_int16_t *ptr;
1339 u_int8_t *ptr2;
1340 int i, len;
1341
1342 if (ltv->an_len < 4 || ltv->an_type == 0)
1343 return(EINVAL);
1344
1345 if (!sc->mpi350){
1346 /* Tell the NIC to enter record read mode. */
1347 if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type)) {
1348 if_printf(&sc->arpcom.ac_if, "RID access failed\n");
1349 return(EIO);
1350 }
1351
1352 /* Seek to the record. */
1353 if (an_seek(sc, ltv->an_type, 0, AN_BAP1)) {
1354 if_printf(&sc->arpcom.ac_if, "seek to record failed\n");
1355 return(EIO);
1356 }
1357
1358 /*
1359 * Read the length and record type and make sure they
1360 * match what we expect (this verifies that we have enough
1361 * room to hold all of the returned data).
1362 * Length includes type but not length.
1363 */
1364 len = CSR_READ_2(sc, AN_DATA1);
1365 if (len > (ltv->an_len - 2)) {
1366 if_printf(&sc->arpcom.ac_if,
1367 "record length mismatch -- expected %d, "
1368 "got %d for Rid %x\n",
1369 ltv->an_len - 2, len, ltv->an_type);
1370 len = ltv->an_len - 2;
1371 } else {
1372 ltv->an_len = len + 2;
1373 }
1374
1375 /* Now read the data. */
1376 len -= 2; /* skip the type */
1377 ptr = &ltv->an_val;
1378 for (i = len; i > 1; i -= 2)
1379 *ptr++ = CSR_READ_2(sc, AN_DATA1);
1380 if (i) {
1381 ptr2 = (u_int8_t *)ptr;
1382 *ptr2 = CSR_READ_1(sc, AN_DATA1);
1383 }
1384 } else { /* MPI-350 */
1385 if (sc->an_rid_buffer.an_dma_vaddr == NULL)
1386 return(EIO);
1387 an_rid_desc.an_valid = 1;
1388 an_rid_desc.an_len = AN_RID_BUFFER_SIZE;
1389 an_rid_desc.an_rid = 0;
1390 an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
1391 bzero(sc->an_rid_buffer.an_dma_vaddr, AN_RID_BUFFER_SIZE);
1392
1393 bzero(&cmd, sizeof(cmd));
1394 bzero(&reply, sizeof(reply));
1395 cmd.an_cmd = AN_CMD_ACCESS|AN_ACCESS_READ;
1396 cmd.an_parm0 = ltv->an_type;
1397
1398 for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
1399 CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4,
1400 ((u_int32_t*)&an_rid_desc)[i]);
1401
1402 if (an_cmd_struct(sc, &cmd, &reply)
1403 || reply.an_status & AN_CMD_QUAL_MASK) {
1404 if_printf(&sc->arpcom.ac_if,
1405 "failed to read RID %x %x %x %x %x, %d\n",
1406 ltv->an_type,
1407 reply.an_status,
1408 reply.an_resp0,
1409 reply.an_resp1,
1410 reply.an_resp2,
1411 i);
1412 return(EIO);
1413 }
1414
1415 an_ltv = (struct an_ltv_gen *)sc->an_rid_buffer.an_dma_vaddr;
1416 if (an_ltv->an_len + 2 < an_rid_desc.an_len) {
1417 an_rid_desc.an_len = an_ltv->an_len;
1418 }
1419
1420 len = an_rid_desc.an_len;
1421 if (len > (ltv->an_len - 2)) {
1422 if_printf(&sc->arpcom.ac_if,
1423 "record length mismatch -- expected %d, "
1424 "got %d for Rid %x\n",
1425 ltv->an_len - 2, len, ltv->an_type);
1426 len = ltv->an_len - 2;
1427 } else {
1428 ltv->an_len = len + 2;
1429 }
1430 bcopy(&an_ltv->an_type, &ltv->an_val, len);
1431 }
1432
1433 if (an_dump)
1434 an_dump_record(sc, ltv, "Read");
1435
1436 return(0);
1437}
1438
1439/*
1440 * Same as read, except we inject data instead of reading it.
1441 */
1442static int
1443an_write_record(sc, ltv)
1444 struct an_softc *sc;
1445 struct an_ltv_gen *ltv;
1446{
1447 struct an_card_rid_desc an_rid_desc;
1448 struct an_command cmd;
1449 struct an_reply reply;
1450 char *buf;
1451 u_int16_t *ptr;
1452 u_int8_t *ptr2;
1453 int i, len;
1454
1455 if (an_dump)
1456 an_dump_record(sc, ltv, "Write");
1457
1458 if (!sc->mpi350){
1459 if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_READ, ltv->an_type))
1460 return(EIO);
1461
1462 if (an_seek(sc, ltv->an_type, 0, AN_BAP1))
1463 return(EIO);
1464
1465 /*
1466 * Length includes type but not length.
1467 */
1468 len = ltv->an_len - 2;
1469 CSR_WRITE_2(sc, AN_DATA1, len);
1470
1471 len -= 2; /* skip the type */
1472 ptr = &ltv->an_val;
1473 for (i = len; i > 1; i -= 2)
1474 CSR_WRITE_2(sc, AN_DATA1, *ptr++);
1475 if (i) {
1476 ptr2 = (u_int8_t *)ptr;
1477 CSR_WRITE_1(sc, AN_DATA0, *ptr2);
1478 }
1479
1480 if (an_cmd(sc, AN_CMD_ACCESS|AN_ACCESS_WRITE, ltv->an_type))
1481 return(EIO);
1482 } else {
1483 /* MPI-350 */
1484
1485 for (i = 0; i != AN_TIMEOUT; i++) {
1486 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350))
1487 & AN_CMD_BUSY) {
1488 DELAY(10);
1489 } else
1490 break;
1491 }
1492 if (i == AN_TIMEOUT) {
1493 printf("BUSY\n");
1494 }
1495
1496 an_rid_desc.an_valid = 1;
1497 an_rid_desc.an_len = ltv->an_len - 2;
1498 an_rid_desc.an_rid = ltv->an_type;
1499 an_rid_desc.an_phys = sc->an_rid_buffer.an_dma_paddr;
1500
1501 bcopy(&ltv->an_type, sc->an_rid_buffer.an_dma_vaddr,
1502 an_rid_desc.an_len);
1503
1504 bzero(&cmd,sizeof(cmd));
1505 bzero(&reply,sizeof(reply));
1506 cmd.an_cmd = AN_CMD_ACCESS|AN_ACCESS_WRITE;
1507 cmd.an_parm0 = ltv->an_type;
1508
1509 for (i = 0; i < sizeof(an_rid_desc) / 4; i++)
1510 CSR_MEM_AUX_WRITE_4(sc, AN_HOST_DESC_OFFSET + i * 4,
1511 ((u_int32_t*)&an_rid_desc)[i]);
1512
1513 if ((i = an_cmd_struct(sc, &cmd, &reply))) {
1514 if_printf(&sc->arpcom.ac_if,
1515 "failed to write RID 1 %x %x %x %x %x, %d\n",
1516 ltv->an_type,
1517 reply.an_status,
1518 reply.an_resp0,
1519 reply.an_resp1,
1520 reply.an_resp2,
1521 i);
1522 return(EIO);
1523 }
1524
1525 ptr = (u_int16_t *)buf;
1526
1527 if (reply.an_status & AN_CMD_QUAL_MASK) {
1528 if_printf(&sc->arpcom.ac_if,
1529 "failed to write RID 2 %x %x %x %x %x, %d\n",
1530 ltv->an_type,
1531 reply.an_status,
1532 reply.an_resp0,
1533 reply.an_resp1,
1534 reply.an_resp2,
1535 i);
1536 return(EIO);
1537 }
1538 }
1539
1540 return(0);
1541}
1542
1543static void
1544an_dump_record(sc, ltv, string)
1545 struct an_softc *sc;
1546 struct an_ltv_gen *ltv;
1547 char *string;
1548{
1549 u_int8_t *ptr2;
1550 int len;
1551 int i;
1552 int count = 0;
1553 char buf[17], temp;
1554
1555 len = ltv->an_len - 4;
1556 if_printf(&sc->arpcom.ac_if, "RID %4x, Length %4d, Mode %s\n",
1557 ltv->an_type, ltv->an_len - 4, string);
1558
1559 if (an_dump == 1 || (an_dump == ltv->an_type)) {
1560 if_printf(&sc->arpcom.ac_if, "\t");
1561 bzero(buf,sizeof(buf));
1562
1563 ptr2 = (u_int8_t *)&ltv->an_val;
1564 for (i = len; i > 0; i--) {
1565 printf("%02x ", *ptr2);
1566
1567 temp = *ptr2++;
1568 if (temp >= ' ' && temp <= '~')
1569 buf[count] = temp;
1570 else if (temp >= 'A' && temp <= 'Z')
1571 buf[count] = temp;
1572 else
1573 buf[count] = '.';
1574 if (++count == 16) {
1575 count = 0;
1576 printf("%s\n",buf);
1577 if_printf(&sc->arpcom.ac_if, "\t");
1578 bzero(buf,sizeof(buf));
1579 }
1580 }
1581 for (; count != 16; count++) {
1582 printf(" ");
1583 }
1584 printf(" %s\n",buf);
1585 }
1586}
1587
1588static int
1589an_seek(sc, id, off, chan)
1590 struct an_softc *sc;
1591 int id, off, chan;
1592{
1593 int i;
1594 int selreg, offreg;
1595
1596 switch (chan) {
1597 case AN_BAP0:
1598 selreg = AN_SEL0;
1599 offreg = AN_OFF0;
1600 break;
1601 case AN_BAP1:
1602 selreg = AN_SEL1;
1603 offreg = AN_OFF1;
1604 break;
1605 default:
1606 if_printf(&sc->arpcom.ac_if, "invalid data path: %x\n", chan);
1607 return(EIO);
1608 }
1609
1610 CSR_WRITE_2(sc, selreg, id);
1611 CSR_WRITE_2(sc, offreg, off);
1612
1613 for (i = 0; i < AN_TIMEOUT; i++) {
1614 if (!(CSR_READ_2(sc, offreg) & (AN_OFF_BUSY|AN_OFF_ERR)))
1615 break;
1616 }
1617
1618 if (i == AN_TIMEOUT)
1619 return(ETIMEDOUT);
1620
1621 return(0);
1622}
1623
1624static int
1625an_read_data(sc, id, off, buf, len)
1626 struct an_softc *sc;
1627 int id, off;
1628 caddr_t buf;
1629 int len;
1630{
1631 int i;
1632 u_int16_t *ptr;
1633 u_int8_t *ptr2;
1634
1635 if (off != -1) {
1636 if (an_seek(sc, id, off, AN_BAP1))
1637 return(EIO);
1638 }
1639
1640 ptr = (u_int16_t *)buf;
1641 for (i = len; i > 1; i -= 2)
1642 *ptr++ = CSR_READ_2(sc, AN_DATA1);
1643 if (i) {
1644 ptr2 = (u_int8_t *)ptr;
1645 *ptr2 = CSR_READ_1(sc, AN_DATA1);
1646 }
1647
1648 return(0);
1649}
1650
1651static int
1652an_write_data(sc, id, off, buf, len)
1653 struct an_softc *sc;
1654 int id, off;
1655 caddr_t buf;
1656 int len;
1657{
1658 int i;
1659 u_int16_t *ptr;
1660 u_int8_t *ptr2;
1661
1662 if (off != -1) {
1663 if (an_seek(sc, id, off, AN_BAP0))
1664 return(EIO);
1665 }
1666
1667 ptr = (u_int16_t *)buf;
1668 for (i = len; i > 1; i -= 2)
1669 CSR_WRITE_2(sc, AN_DATA0, *ptr++);
1670 if (i) {
1671 ptr2 = (u_int8_t *)ptr;
1672 CSR_WRITE_1(sc, AN_DATA0, *ptr2);
1673 }
1674
1675 return(0);
1676}
1677
1678/*
1679 * Allocate a region of memory inside the NIC and zero
1680 * it out.
1681 */
1682static int
1683an_alloc_nicmem(sc, len, id)
1684 struct an_softc *sc;
1685 int len;
1686 int *id;
1687{
1688 int i;
1689
1690 if (an_cmd(sc, AN_CMD_ALLOC_MEM, len)) {
1691 if_printf(&sc->arpcom.ac_if,
1692 "failed to allocate %d bytes on NIC\n", len);
1693 return(ENOMEM);
1694 }
1695
1696 for (i = 0; i < AN_TIMEOUT; i++) {
1697 if (CSR_READ_2(sc, AN_EVENT_STAT(sc->mpi350)) & AN_EV_ALLOC)
1698 break;
1699 }
1700
1701 if (i == AN_TIMEOUT)
1702 return(ETIMEDOUT);
1703
1704 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
1705 *id = CSR_READ_2(sc, AN_ALLOC_FID);
1706
1707 if (an_seek(sc, *id, 0, AN_BAP0))
1708 return(EIO);
1709
1710 for (i = 0; i < len / 2; i++)
1711 CSR_WRITE_2(sc, AN_DATA0, 0);
1712
1713 return(0);
1714}
1715
1716static void
1717an_setdef(sc, areq)
1718 struct an_softc *sc;
1719 struct an_req *areq;
1720{
1721 struct ifnet *ifp;
1722 struct an_ltv_genconfig *cfg;
1723 struct an_ltv_ssidlist_new *ssid;
1724 struct an_ltv_aplist *ap;
1725 struct an_ltv_gen *sp;
1726
1727 ifp = &sc->arpcom.ac_if;
1728
1729 switch (areq->an_type) {
1730 case AN_RID_GENCONFIG:
1731 cfg = (struct an_ltv_genconfig *)areq;
1732
1733 bcopy((char *)&cfg->an_macaddr, (char *)&sc->arpcom.ac_enaddr,
1734 ETHER_ADDR_LEN);
1735 bcopy((char *)&cfg->an_macaddr, IF_LLADDR(ifp), ETHER_ADDR_LEN);
1736
1737 bcopy((char *)cfg, (char *)&sc->an_config,
1738 sizeof(struct an_ltv_genconfig));
1739 break;
1740 case AN_RID_SSIDLIST:
1741 ssid = (struct an_ltv_ssidlist_new *)areq;
1742 bcopy((char *)ssid, (char *)&sc->an_ssidlist,
1743 sizeof(struct an_ltv_ssidlist_new));
1744 break;
1745 case AN_RID_APLIST:
1746 ap = (struct an_ltv_aplist *)areq;
1747 bcopy((char *)ap, (char *)&sc->an_aplist,
1748 sizeof(struct an_ltv_aplist));
1749 break;
1750 case AN_RID_TX_SPEED:
1751 sp = (struct an_ltv_gen *)areq;
1752 sc->an_tx_rate = sp->an_val;
1753
1754 /* Read the current configuration */
1755 sc->an_config.an_type = AN_RID_GENCONFIG;
1756 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
1757 an_read_record(sc, (struct an_ltv_gen *)&sc->an_config);
1758 cfg = &sc->an_config;
1759
1760 /* clear other rates and set the only one we want */
1761 bzero(cfg->an_rates, sizeof(cfg->an_rates));
1762 cfg->an_rates[0] = sc->an_tx_rate;
1763
1764 /* Save the new rate */
1765 sc->an_config.an_type = AN_RID_GENCONFIG;
1766 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
1767 break;
1768 case AN_RID_WEP_TEMP:
1769 /* Cache the temp keys */
1770 bcopy(areq,
1771 &sc->an_temp_keys[((struct an_ltv_key *)areq)->kindex],
1772 sizeof(struct an_ltv_key));
1773 case AN_RID_WEP_PERM:
1774 case AN_RID_LEAPUSERNAME:
1775 case AN_RID_LEAPPASSWORD:
1776 an_init(sc);
1777
1778 /* Disable the MAC. */
1779 an_cmd(sc, AN_CMD_DISABLE, 0);
1780
1781 /* Write the key */
1782 an_write_record(sc, (struct an_ltv_gen *)areq);
1783
1784 /* Turn the MAC back on. */
1785 an_cmd(sc, AN_CMD_ENABLE, 0);
1786
1787 break;
1788 case AN_RID_MONITOR_MODE:
1789 cfg = (struct an_ltv_genconfig *)areq;
1790 bpfdetach(ifp);
1791 if (ng_ether_detach_p != NULL)
1792 (*ng_ether_detach_p) (ifp);
1793 sc->an_monitor = cfg->an_len;
1794
1795 if (sc->an_monitor & AN_MONITOR) {
1796 if (sc->an_monitor & AN_MONITOR_AIRONET_HEADER) {
1797 bpfattach(ifp, DLT_AIRONET_HEADER,
1798 sizeof(struct ether_header));
1799 } else {
1800 bpfattach(ifp, DLT_IEEE802_11,
1801 sizeof(struct ether_header));
1802 }
1803 } else {
1804 bpfattach(ifp, DLT_EN10MB,
1805 sizeof(struct ether_header));
1806 if (ng_ether_attach_p != NULL)
1807 (*ng_ether_attach_p) (ifp);
1808 }
1809 break;
1810 default:
1811 if_printf(ifp, "unknown RID: %x\n", areq->an_type);
1812 return;
1813 }
1814
1815
1816 /* Reinitialize the card. */
1817 if (ifp->if_flags)
1818 an_init(sc);
1819
1820 return;
1821}
1822
1823/*
1824 * Derived from Linux driver to enable promiscious mode.
1825 */
1826
1827static void
1828an_promisc(sc, promisc)
1829 struct an_softc *sc;
1830 int promisc;
1831{
1832 if (sc->an_was_monitor)
1833 an_reset(sc);
1834 if (sc->mpi350)
1835 an_init_mpi350_desc(sc);
1836 if (sc->an_monitor || sc->an_was_monitor)
1837 an_init(sc);
1838
1839 sc->an_was_monitor = sc->an_monitor;
1840 an_cmd(sc, AN_CMD_SET_MODE, promisc ? 0xffff : 0);
1841
1842 return;
1843}
1844
1845static int
1846an_ioctl(ifp, command, data, cr)
1847 struct ifnet *ifp;
1848 u_long command;
1849 caddr_t data;
1850 struct ucred *cr;
1851{
1852 int error = 0;
1853 int len;
1854 int i, max;
1855 struct an_softc *sc;
1856 struct ifreq *ifr;
1857 struct ieee80211req *ireq;
1858 u_int8_t tmpstr[IEEE80211_NWID_LEN*2];
1859 u_int8_t *tmpptr;
1860 struct an_ltv_genconfig *config;
1861 struct an_ltv_key *key;
1862 struct an_ltv_status *status;
1863 struct an_ltv_ssidlist_new *ssids;
1864 int mode;
1865 struct aironet_ioctl l_ioctl;
1866
1867 sc = ifp->if_softc;
1868 ifr = (struct ifreq *)data;
1869 ireq = (struct ieee80211req *)data;
1870
1871 crit_enter();
1872
1873 config = (struct an_ltv_genconfig *)&sc->areq;
1874 key = (struct an_ltv_key *)&sc->areq;
1875 status = (struct an_ltv_status *)&sc->areq;
1876 ssids = (struct an_ltv_ssidlist_new *)&sc->areq;
1877
1878 switch (command) {
1879 case SIOCSIFFLAGS:
1880 if (ifp->if_flags & IFF_UP) {
1881 if (ifp->if_flags & IFF_RUNNING &&
1882 ifp->if_flags & IFF_PROMISC &&
1883 !(sc->an_if_flags & IFF_PROMISC)) {
1884 an_promisc(sc, 1);
1885 } else if (ifp->if_flags & IFF_RUNNING &&
1886 !(ifp->if_flags & IFF_PROMISC) &&
1887 sc->an_if_flags & IFF_PROMISC) {
1888 an_promisc(sc, 0);
1889 } else
1890 an_init(sc);
1891 } else {
1892 if (ifp->if_flags & IFF_RUNNING)
1893 an_stop(sc);
1894 }
1895 sc->an_if_flags = ifp->if_flags;
1896 error = 0;
1897 break;
1898 case SIOCSIFMEDIA:
1899 case SIOCGIFMEDIA:
1900 error = ifmedia_ioctl(ifp, ifr, &sc->an_ifmedia, command);
1901 break;
1902 case SIOCADDMULTI:
1903 case SIOCDELMULTI:
1904 /* The Aironet has no multicast filter. */
1905 error = 0;
1906 break;
1907 case SIOCGAIRONET:
1908 error = copyin(ifr->ifr_data, &sc->areq, sizeof(sc->areq));
1909 if (error != 0)
1910 break;
1911#ifdef ANCACHE
1912 if (sc->areq.an_type == AN_RID_ZERO_CACHE) {
1913 error = suser_cred(cr, NULL_CRED_OKAY);
1914 if (error)
1915 break;
1916 sc->an_sigitems = sc->an_nextitem = 0;
1917 break;
1918 } else if (sc->areq.an_type == AN_RID_READ_CACHE) {
1919 char *pt = (char *)&sc->areq.an_val;
1920 bcopy((char *)&sc->an_sigitems, (char *)pt,
1921 sizeof(int));
1922 pt += sizeof(int);
1923 sc->areq.an_len = sizeof(int) / 2;
1924 bcopy((char *)&sc->an_sigcache, (char *)pt,
1925 sizeof(struct an_sigcache) * sc->an_sigitems);
1926 sc->areq.an_len += ((sizeof(struct an_sigcache) *
1927 sc->an_sigitems) / 2) + 1;
1928 } else
1929#endif
1930 if (an_read_record(sc, (struct an_ltv_gen *)&sc->areq)) {
1931 error = EINVAL;
1932 break;
1933 }
1934 error = copyout(&sc->areq, ifr->ifr_data, sizeof(sc->areq));
1935 break;
1936 case SIOCSAIRONET:
1937 if ((error = suser_cred(cr, NULL_CRED_OKAY)))
1938 break;
1939 error = copyin(ifr->ifr_data, &sc->areq, sizeof(sc->areq));
1940 if (error != 0)
1941 break;
1942 an_setdef(sc, &sc->areq);
1943 break;
1944 case SIOCGPRIVATE_0: /* used by Cisco client utility */
1945 if ((error = suser_cred(cr, NULL_CRED_OKAY)))
1946 break;
1947 copyin(ifr->ifr_data, &l_ioctl, sizeof(l_ioctl));
1948 mode = l_ioctl.command;
1949
1950 if (mode >= AIROGCAP && mode <= AIROGSTATSD32) {
1951 error = readrids(ifp, &l_ioctl);
1952 } else if (mode >= AIROPCAP && mode <= AIROPLEAPUSR) {
1953 error = writerids(ifp, &l_ioctl);
1954 } else if (mode >= AIROFLSHRST && mode <= AIRORESTART) {
1955 error = flashcard(ifp, &l_ioctl);
1956 } else {
1957 error =-1;
1958 }
1959
1960 /* copy out the updated command info */
1961 copyout(&l_ioctl, ifr->ifr_data, sizeof(l_ioctl));
1962
1963 break;
1964 case SIOCGPRIVATE_1: /* used by Cisco client utility */
1965 if ((error = suser_cred(cr, NULL_CRED_OKAY)))
1966 break;
1967 copyin(ifr->ifr_data, &l_ioctl, sizeof(l_ioctl));
1968 l_ioctl.command = 0;
1969 error = AIROMAGIC;
1970 copyout(&error, l_ioctl.data, sizeof(error));
1971 error = 0;
1972 break;
1973 case SIOCG80211:
1974 sc->areq.an_len = sizeof(sc->areq);
1975 /* was that a good idea DJA we are doing a short-cut */
1976 switch (ireq->i_type) {
1977 case IEEE80211_IOC_SSID:
1978 if (ireq->i_val == -1) {
1979 sc->areq.an_type = AN_RID_STATUS;
1980 if (an_read_record(sc,
1981 (struct an_ltv_gen *)&sc->areq)) {
1982 error = EINVAL;
1983 break;
1984 }
1985 len = status->an_ssidlen;
1986 tmpptr = status->an_ssid;
1987 } else if (ireq->i_val >= 0) {
1988 sc->areq.an_type = AN_RID_SSIDLIST;
1989 if (an_read_record(sc,
1990 (struct an_ltv_gen *)&sc->areq)) {
1991 error = EINVAL;
1992 break;
1993 }
1994 max = (sc->areq.an_len - 4)
1995 / sizeof(struct an_ltv_ssid_entry);
1996 if ( max > MAX_SSIDS ) {
1997 printf("To many SSIDs only using "
1998 "%d of %d\n",
1999 MAX_SSIDS, max);
2000 max = MAX_SSIDS;
2001 }
2002 if (ireq->i_val > max) {
2003 error = EINVAL;
2004 break;
2005 } else {
2006 len = ssids->an_entry[ireq->i_val].an_len;
2007 tmpptr = ssids->an_entry[ireq->i_val].an_ssid;
2008 }
2009 } else {
2010 error = EINVAL;
2011 break;
2012 }
2013 if (len > IEEE80211_NWID_LEN) {
2014 error = EINVAL;
2015 break;
2016 }
2017 ireq->i_len = len;
2018 bzero(tmpstr, IEEE80211_NWID_LEN);
2019 bcopy(tmpptr, tmpstr, len);
2020 error = copyout(tmpstr, ireq->i_data,
2021 IEEE80211_NWID_LEN);
2022 break;
2023 case IEEE80211_IOC_NUMSSIDS:
2024 sc->areq.an_len = sizeof(sc->areq);
2025 sc->areq.an_type = AN_RID_SSIDLIST;
2026 if (an_read_record(sc,
2027 (struct an_ltv_gen *)&sc->areq)) {
2028 error = EINVAL;
2029 break;
2030 }
2031 max = (sc->areq.an_len - 4)
2032 / sizeof(struct an_ltv_ssid_entry);
2033 if (max > MAX_SSIDS) {
2034 printf("To many SSIDs only using "
2035 "%d of %d\n",
2036 MAX_SSIDS, max);
2037 max = MAX_SSIDS;
2038 }
2039 ireq->i_val = max;
2040 break;
2041 case IEEE80211_IOC_WEP:
2042 sc->areq.an_type = AN_RID_ACTUALCFG;
2043 if (an_read_record(sc,
2044 (struct an_ltv_gen *)&sc->areq)) {
2045 error = EINVAL;
2046 break;
2047 }
2048 if (config->an_authtype & AN_AUTHTYPE_PRIVACY_IN_USE) {
2049 if (config->an_authtype &
2050 AN_AUTHTYPE_ALLOW_UNENCRYPTED)
2051 ireq->i_val = IEEE80211_WEP_MIXED;
2052 else
2053 ireq->i_val = IEEE80211_WEP_ON;
2054 } else {
2055 ireq->i_val = IEEE80211_WEP_OFF;
2056 }
2057 break;
2058 case IEEE80211_IOC_WEPKEY:
2059 /*
2060 * XXX: I'm not entierly convinced this is
2061 * correct, but it's what is implemented in
2062 * ancontrol so it will have to do until we get
2063 * access to actual Cisco code.
2064 */
2065 if (ireq->i_val < 0 || ireq->i_val > 8) {
2066 error = EINVAL;
2067 break;
2068 }
2069 len = 0;
2070 if (ireq->i_val < 5) {
2071 sc->areq.an_type = AN_RID_WEP_TEMP;
2072 for (i = 0; i < 5; i++) {
2073 if (an_read_record(sc,
2074 (struct an_ltv_gen *)&sc->areq)) {
2075 error = EINVAL;
2076 break;
2077 }
2078 if (key->kindex == 0xffff)
2079 break;
2080 if (key->kindex == ireq->i_val)
2081 len = key->klen;
2082 /* Required to get next entry */
2083 sc->areq.an_type = AN_RID_WEP_PERM;
2084 }
2085 if (error != 0)
2086 break;
2087 }
2088 /* We aren't allowed to read the value of the
2089 * key from the card so we just output zeros
2090 * like we would if we could read the card, but
2091 * denied the user access.
2092 */
2093 bzero(tmpstr, len);
2094 ireq->i_len = len;
2095 error = copyout(tmpstr, ireq->i_data, len);
2096 break;
2097 case IEEE80211_IOC_NUMWEPKEYS:
2098 ireq->i_val = 9; /* include home key */
2099 break;
2100 case IEEE80211_IOC_WEPTXKEY:
2101 /*
2102 * For some strange reason, you have to read all
2103 * keys before you can read the txkey.
2104 */
2105 sc->areq.an_type = AN_RID_WEP_TEMP;
2106 for (i = 0; i < 5; i++) {
2107 if (an_read_record(sc,
2108 (struct an_ltv_gen *) &sc->areq)) {
2109 error = EINVAL;
2110 break;
2111 }
2112 if (key->kindex == 0xffff)
2113 break;
2114 /* Required to get next entry */
2115 sc->areq.an_type = AN_RID_WEP_PERM;
2116 }
2117 if (error != 0)
2118 break;
2119
2120 sc->areq.an_type = AN_RID_WEP_PERM;
2121 key->kindex = 0xffff;
2122 if (an_read_record(sc,
2123 (struct an_ltv_gen *)&sc->areq)) {
2124 error = EINVAL;
2125 break;
2126 }
2127 ireq->i_val = key->mac[0];
2128 /*
2129 * Check for home mode. Map home mode into
2130 * 5th key since that is how it is stored on
2131 * the card
2132 */
2133 sc->areq.an_len = sizeof(struct an_ltv_genconfig);
2134 sc->areq.an_type = AN_RID_GENCONFIG;
2135 if (an_read_record(sc,
2136 (struct an_ltv_gen *)&sc->areq)) {
2137 error = EINVAL;
2138 break;
2139 }
2140 if (config->an_home_product & AN_HOME_NETWORK)
2141 ireq->i_val = 4;
2142 break;
2143 case IEEE80211_IOC_AUTHMODE:
2144 sc->areq.an_type = AN_RID_ACTUALCFG;
2145 if (an_read_record(sc,
2146 (struct an_ltv_gen *)&sc->areq)) {
2147 error = EINVAL;
2148 break;
2149 }
2150 if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2151 AN_AUTHTYPE_NONE) {
2152 ireq->i_val = IEEE80211_AUTH_NONE;
2153 } else if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2154 AN_AUTHTYPE_OPEN) {
2155 ireq->i_val = IEEE80211_AUTH_OPEN;
2156 } else if ((config->an_authtype & AN_AUTHTYPE_MASK) ==
2157 AN_AUTHTYPE_SHAREDKEY) {
2158 ireq->i_val = IEEE80211_AUTH_SHARED;
2159 } else
2160 error = EINVAL;
2161 break;
2162 case IEEE80211_IOC_STATIONNAME:
2163 sc->areq.an_type = AN_RID_ACTUALCFG;
2164 if (an_read_record(sc,
2165 (struct an_ltv_gen *)&sc->areq)) {
2166 error = EINVAL;
2167 break;
2168 }
2169 ireq->i_len = sizeof(config->an_nodename);
2170 tmpptr = config->an_nodename;
2171 bzero(tmpstr, IEEE80211_NWID_LEN);
2172 bcopy(tmpptr, tmpstr, ireq->i_len);
2173 error = copyout(tmpstr, ireq->i_data,
2174 IEEE80211_NWID_LEN);
2175 break;
2176 case IEEE80211_IOC_CHANNEL:
2177 sc->areq.an_type = AN_RID_STATUS;
2178 if (an_read_record(sc,
2179 (struct an_ltv_gen *)&sc->areq)) {
2180 error = EINVAL;
2181 break;
2182 }
2183 ireq->i_val = status->an_cur_channel;
2184 break;
2185 case IEEE80211_IOC_POWERSAVE:
2186 sc->areq.an_type = AN_RID_ACTUALCFG;
2187 if (an_read_record(sc,
2188 (struct an_ltv_gen *)&sc->areq)) {
2189 error = EINVAL;
2190 break;
2191 }
2192 if (config->an_psave_mode == AN_PSAVE_NONE) {
2193 ireq->i_val = IEEE80211_POWERSAVE_OFF;
2194 } else if (config->an_psave_mode == AN_PSAVE_CAM) {
2195 ireq->i_val = IEEE80211_POWERSAVE_CAM;
2196 } else if (config->an_psave_mode == AN_PSAVE_PSP) {
2197 ireq->i_val = IEEE80211_POWERSAVE_PSP;
2198 } else if (config->an_psave_mode == AN_PSAVE_PSP_CAM) {
2199 ireq->i_val = IEEE80211_POWERSAVE_PSP_CAM;
2200 } else
2201 error = EINVAL;
2202 break;
2203 case IEEE80211_IOC_POWERSAVESLEEP:
2204 sc->areq.an_type = AN_RID_ACTUALCFG;
2205 if (an_read_record(sc,
2206 (struct an_ltv_gen *)&sc->areq)) {
2207 error = EINVAL;
2208 break;
2209 }
2210 ireq->i_val = config->an_listen_interval;
2211 break;
2212 }
2213 break;
2214 case SIOCS80211:
2215 if ((error = suser_cred(cr, NULL_CRED_OKAY)))
2216 break;
2217 sc->areq.an_len = sizeof(sc->areq);
2218 /*
2219 * We need a config structure for everything but the WEP
2220 * key management and SSIDs so we get it now so avoid
2221 * duplicating this code every time.
2222 */
2223 if (ireq->i_type != IEEE80211_IOC_SSID &&
2224 ireq->i_type != IEEE80211_IOC_WEPKEY &&
2225 ireq->i_type != IEEE80211_IOC_WEPTXKEY) {
2226 sc->areq.an_type = AN_RID_GENCONFIG;
2227 if (an_read_record(sc,
2228 (struct an_ltv_gen *)&sc->areq)) {
2229 error = EINVAL;
2230 break;
2231 }
2232 }
2233 switch (ireq->i_type) {
2234 case IEEE80211_IOC_SSID:
2235 sc->areq.an_len = sizeof(sc->areq);
2236 sc->areq.an_type = AN_RID_SSIDLIST;
2237 if (an_read_record(sc,
2238 (struct an_ltv_gen *)&sc->areq)) {
2239 error = EINVAL;
2240 break;
2241 }
2242 if (ireq->i_len > IEEE80211_NWID_LEN) {
2243 error = EINVAL;
2244 break;
2245 }
2246 max = (sc->areq.an_len - 4)
2247 / sizeof(struct an_ltv_ssid_entry);
2248 if (max > MAX_SSIDS) {
2249 printf("To many SSIDs only using "
2250 "%d of %d\n",
2251 MAX_SSIDS, max);
2252 max = MAX_SSIDS;
2253 }
2254 if (ireq->i_val > max) {
2255 error = EINVAL;
2256 break;
2257 } else {
2258 error = copyin(ireq->i_data,
2259 ssids->an_entry[ireq->i_val].an_ssid,
2260 ireq->i_len);
2261 ssids->an_entry[ireq->i_val].an_len
2262 = ireq->i_len;
2263 break;
2264 }
2265 break;
2266 case IEEE80211_IOC_WEP:
2267 switch (ireq->i_val) {
2268 case IEEE80211_WEP_OFF:
2269 config->an_authtype &=
2270 ~(AN_AUTHTYPE_PRIVACY_IN_USE |
2271 AN_AUTHTYPE_ALLOW_UNENCRYPTED);
2272 break;
2273 case IEEE80211_WEP_ON:
2274 config->an_authtype |=
2275 AN_AUTHTYPE_PRIVACY_IN_USE;
2276 config->an_authtype &=
2277 ~AN_AUTHTYPE_ALLOW_UNENCRYPTED;
2278 break;
2279 case IEEE80211_WEP_MIXED:
2280 config->an_authtype |=
2281 AN_AUTHTYPE_PRIVACY_IN_USE |
2282 AN_AUTHTYPE_ALLOW_UNENCRYPTED;
2283 break;
2284 default:
2285 error = EINVAL;
2286 break;
2287 }
2288 break;
2289 case IEEE80211_IOC_WEPKEY:
2290 if (ireq->i_val < 0 || ireq->i_val > 8 ||
2291 ireq->i_len > 13) {
2292 error = EINVAL;
2293 break;
2294 }
2295 error = copyin(ireq->i_data, tmpstr, 13);
2296 if (error != 0)
2297 break;
2298 /*
2299 * Map the 9th key into the home mode
2300 * since that is how it is stored on
2301 * the card
2302 */
2303 bzero(&sc->areq, sizeof(struct an_ltv_key));
2304 sc->areq.an_len = sizeof(struct an_ltv_key);
2305 key->mac[0] = 1; /* The others are 0. */
2306 if (ireq->i_val < 4) {
2307 sc->areq.an_type = AN_RID_WEP_TEMP;
2308 key->kindex = ireq->i_val;
2309 } else {
2310 sc->areq.an_type = AN_RID_WEP_PERM;
2311 key->kindex = ireq->i_val - 4;
2312 }
2313 key->klen = ireq->i_len;
2314 bcopy(tmpstr, key->key, key->klen);
2315 break;
2316 case IEEE80211_IOC_WEPTXKEY:
2317 if (ireq->i_val < 0 || ireq->i_val > 4) {
2318 error = EINVAL;
2319 break;
2320 }
2321
2322 /*
2323 * Map the 5th key into the home mode
2324 * since that is how it is stored on
2325 * the card
2326 */
2327 sc->areq.an_len = sizeof(struct an_ltv_genconfig);
2328 sc->areq.an_type = AN_RID_ACTUALCFG;
2329 if (an_read_record(sc,
2330 (struct an_ltv_gen *)&sc->areq)) {
2331 error = EINVAL;
2332 break;
2333 }
2334 if (ireq->i_val == 4) {
2335 config->an_home_product |= AN_HOME_NETWORK;
2336 ireq->i_val = 0;
2337 } else {
2338 config->an_home_product &= ~AN_HOME_NETWORK;
2339 }
2340
2341 sc->an_config.an_home_product
2342 = config->an_home_product;
2343
2344 /* update configuration */
2345 an_init(sc);
2346
2347 bzero(&sc->areq, sizeof(struct an_ltv_key));
2348 sc->areq.an_len = sizeof(struct an_ltv_key);
2349 sc->areq.an_type = AN_RID_WEP_PERM;
2350 key->kindex = 0xffff;
2351 key->mac[0] = ireq->i_val;
2352 break;
2353 case IEEE80211_IOC_AUTHMODE:
2354 switch (ireq->i_val) {
2355 case IEEE80211_AUTH_NONE:
2356 config->an_authtype = AN_AUTHTYPE_NONE |
2357 (config->an_authtype & ~AN_AUTHTYPE_MASK);
2358 break;
2359 case IEEE80211_AUTH_OPEN:
2360 config->an_authtype = AN_AUTHTYPE_OPEN |
2361 (config->an_authtype & ~AN_AUTHTYPE_MASK);
2362 break;
2363 case IEEE80211_AUTH_SHARED:
2364 config->an_authtype = AN_AUTHTYPE_SHAREDKEY |
2365 (config->an_authtype & ~AN_AUTHTYPE_MASK);
2366 break;
2367 default:
2368 error = EINVAL;
2369 }
2370 break;
2371 case IEEE80211_IOC_STATIONNAME:
2372 if (ireq->i_len > 16) {
2373 error = EINVAL;
2374 break;
2375 }
2376 bzero(config->an_nodename, 16);
2377 error = copyin(ireq->i_data,
2378 config->an_nodename, ireq->i_len);
2379 break;
2380 case IEEE80211_IOC_CHANNEL:
2381 /*
2382 * The actual range is 1-14, but if you set it
2383 * to 0 you get the default so we let that work
2384 * too.
2385 */
2386 if (ireq->i_val < 0 || ireq->i_val >14) {
2387 error = EINVAL;
2388 break;
2389 }
2390 config->an_ds_channel = ireq->i_val;
2391 break;
2392 case IEEE80211_IOC_POWERSAVE:
2393 switch (ireq->i_val) {
2394 case IEEE80211_POWERSAVE_OFF:
2395 config->an_psave_mode = AN_PSAVE_NONE;
2396 break;
2397 case IEEE80211_POWERSAVE_CAM:
2398 config->an_psave_mode = AN_PSAVE_CAM;
2399 break;
2400 case IEEE80211_POWERSAVE_PSP:
2401 config->an_psave_mode = AN_PSAVE_PSP;
2402 break;
2403 case IEEE80211_POWERSAVE_PSP_CAM:
2404 config->an_psave_mode = AN_PSAVE_PSP_CAM;
2405 break;
2406 default:
2407 error = EINVAL;
2408 break;
2409 }
2410 break;
2411 case IEEE80211_IOC_POWERSAVESLEEP:
2412 config->an_listen_interval = ireq->i_val;
2413 break;
2414 }
2415
2416 if (!error)
2417 an_setdef(sc, &sc->areq);
2418 break;
2419 default:
2420 error = ether_ioctl(ifp, command, data);
2421 break;
2422 }
2423
2424 crit_exit();
2425
2426 return(error != 0);
2427}
2428
2429static int
2430an_init_tx_ring(sc)
2431 struct an_softc *sc;
2432{
2433 int i;
2434 int id;
2435
2436 if (!sc->mpi350) {
2437 for (i = 0; i < AN_TX_RING_CNT; i++) {
2438 if (an_alloc_nicmem(sc, 1518 +
2439 0x44, &id))
2440 return(ENOMEM);
2441 sc->an_rdata.an_tx_fids[i] = id;
2442 sc->an_rdata.an_tx_ring[i] = 0;
2443 }
2444 }
2445
2446 sc->an_rdata.an_tx_prod = 0;
2447 sc->an_rdata.an_tx_cons = 0;
2448 sc->an_rdata.an_tx_empty = 1;
2449
2450 return(0);
2451}
2452
2453static void
2454an_init(xsc)
2455 void *xsc;
2456{
2457 struct an_softc *sc = xsc;
2458 struct ifnet *ifp = &sc->arpcom.ac_if;
2459
2460 crit_enter();
2461 if (ifp->if_flags & IFF_RUNNING)
2462 an_stop(sc);
2463
2464 sc->an_associated = 0;
2465
2466 /* Allocate the TX buffers */
2467 if (an_init_tx_ring(sc)) {
2468 an_reset(sc);
2469 if (sc->mpi350)
2470 an_init_mpi350_desc(sc);
2471 if (an_init_tx_ring(sc)) {
2472 crit_exit();
2473 if_printf(ifp, "tx buffer allocation failed\n");
2474 return;
2475 }
2476 }
2477
2478 /* Set our MAC address. */
2479 bcopy((char *)&sc->arpcom.ac_enaddr,
2480 (char *)&sc->an_config.an_macaddr, ETHER_ADDR_LEN);
2481
2482 if (ifp->if_flags & IFF_BROADCAST)
2483 sc->an_config.an_rxmode = AN_RXMODE_BC_ADDR;
2484 else
2485 sc->an_config.an_rxmode = AN_RXMODE_ADDR;
2486
2487 if (ifp->if_flags & IFF_MULTICAST)
2488 sc->an_config.an_rxmode = AN_RXMODE_BC_MC_ADDR;
2489
2490 if (ifp->if_flags & IFF_PROMISC) {
2491 if (sc->an_monitor & AN_MONITOR) {
2492 if (sc->an_monitor & AN_MONITOR_ANY_BSS) {
2493 sc->an_config.an_rxmode |=
2494 AN_RXMODE_80211_MONITOR_ANYBSS |
2495 AN_RXMODE_NO_8023_HEADER;
2496 } else {
2497 sc->an_config.an_rxmode |=
2498 AN_RXMODE_80211_MONITOR_CURBSS |
2499 AN_RXMODE_NO_8023_HEADER;
2500 }
2501 }
2502 }
2503
2504 if (sc->an_have_rssimap)
2505 sc->an_config.an_rxmode |= AN_RXMODE_NORMALIZED_RSSI;
2506
2507 /* Set the ssid list */
2508 sc->an_ssidlist.an_type = AN_RID_SSIDLIST;
2509 sc->an_ssidlist.an_len = sizeof(struct an_ltv_ssidlist_new);
2510 if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_ssidlist)) {
2511 crit_exit();
2512 if_printf(ifp, "failed to set ssid list\n");
2513 return;
2514 }
2515
2516 /* Set the AP list */
2517 sc->an_aplist.an_type = AN_RID_APLIST;
2518 sc->an_aplist.an_len = sizeof(struct an_ltv_aplist);
2519 if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_aplist)) {
2520 crit_exit();
2521 if_printf(ifp, "failed to set AP list\n");
2522 return;
2523 }
2524
2525 /* Set the configuration in the NIC */
2526 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
2527 sc->an_config.an_type = AN_RID_GENCONFIG;
2528 if (an_write_record(sc, (struct an_ltv_gen *)&sc->an_config)) {
2529 crit_exit();
2530 if_printf(ifp, "failed to set configuration\n");
2531 return;
2532 }
2533
2534 /* Enable the MAC */
2535 if (an_cmd(sc, AN_CMD_ENABLE, 0)) {
2536 crit_exit();
2537 if_printf(ifp, "failed to enable MAC\n");
2538 return;
2539 }
2540
2541 if (ifp->if_flags & IFF_PROMISC)
2542 an_cmd(sc, AN_CMD_SET_MODE, 0xffff);
2543
2544 /* enable interrupts */
2545 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS(sc->mpi350));
2546
2547 ifp->if_flags |= IFF_RUNNING;
2548 ifp->if_flags &= ~IFF_OACTIVE;
2549
2550 callout_reset(&sc->an_stat_timer, hz, an_stats_update, sc);
2551
2552 crit_exit();
2553}
2554
2555static void
2556an_start(ifp)
2557 struct ifnet *ifp;
2558{
2559 struct an_softc *sc;
2560 struct mbuf *m0 = NULL;
2561 struct an_txframe_802_3 tx_frame_802_3;
2562 struct ether_header *eh;
2563 int id, idx, i;
2564 unsigned char txcontrol;
2565 struct an_card_tx_desc an_tx_desc;
2566 u_int8_t *buf;
2567
2568 sc = ifp->if_softc;
2569
2570 if (ifp->if_flags & IFF_OACTIVE)
2571 return;
2572
2573 if (!sc->an_associated)
2574 return;
2575
2576 /* We can't send in monitor mode so toss any attempts. */
2577 if (sc->an_monitor && (ifp->if_flags & IFF_PROMISC)) {
2578 ifq_purge(&ifp->if_snd);
2579 return;
2580 }
2581
2582 idx = sc->an_rdata.an_tx_prod;
2583
2584 if (!sc->mpi350) {
2585 bzero((char *)&tx_frame_802_3, sizeof(tx_frame_802_3));
2586
2587 while (sc->an_rdata.an_tx_ring[idx] == 0) {
2588 m0 = ifq_dequeue(&ifp->if_snd, NULL);
2589 if (m0 == NULL)
2590 break;
2591
2592 id = sc->an_rdata.an_tx_fids[idx];
2593 eh = mtod(m0, struct ether_header *);
2594
2595 bcopy((char *)&eh->ether_dhost,
2596 (char *)&tx_frame_802_3.an_tx_dst_addr,
2597 ETHER_ADDR_LEN);
2598 bcopy((char *)&eh->ether_shost,
2599 (char *)&tx_frame_802_3.an_tx_src_addr,
2600 ETHER_ADDR_LEN);
2601
2602 /* minus src/dest mac & type */
2603 tx_frame_802_3.an_tx_802_3_payload_len =
2604 m0->m_pkthdr.len - 12;
2605
2606 m_copydata(m0, sizeof(struct ether_header) - 2 ,
2607 tx_frame_802_3.an_tx_802_3_payload_len,
2608 (caddr_t)&sc->an_txbuf);
2609
2610 txcontrol = AN_TXCTL_8023;
2611 /* write the txcontrol only */
2612 an_write_data(sc, id, 0x08, (caddr_t)&txcontrol,
2613 sizeof(txcontrol));
2614
2615 /* 802_3 header */
2616 an_write_data(sc, id, 0x34, (caddr_t)&tx_frame_802_3,
2617 sizeof(struct an_txframe_802_3));
2618
2619 /* in mbuf header type is just before payload */
2620 an_write_data(sc, id, 0x44, (caddr_t)&sc->an_txbuf,
2621 tx_frame_802_3.an_tx_802_3_payload_len);
2622
2623 BPF_MTAP(ifp, m0);
2624
2625 m_freem(m0);
2626 m0 = NULL;
2627
2628 sc->an_rdata.an_tx_ring[idx] = id;
2629 if (an_cmd(sc, AN_CMD_TX, id))
2630 if_printf(ifp, "xmit failed\n");
2631
2632 AN_INC(idx, AN_TX_RING_CNT);
2633
2634 /*
2635 * Set a timeout in case the chip goes out to lunch.
2636 */
2637 ifp->if_timer = 5;
2638 }
2639 } else { /* MPI-350 */
2640 /* Disable interrupts. */
2641 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
2642
2643 while (sc->an_rdata.an_tx_empty ||
2644 idx != sc->an_rdata.an_tx_cons) {
2645 m0 = ifq_dequeue(&ifp->if_snd, NULL);
2646 if (m0 == NULL) {
2647 break;
2648 }
2649 buf = sc->an_tx_buffer[idx].an_dma_vaddr;
2650
2651 eh = mtod(m0, struct ether_header *);
2652
2653 /* DJA optimize this to limit bcopy */
2654 bcopy((char *)&eh->ether_dhost,
2655 (char *)&tx_frame_802_3.an_tx_dst_addr,
2656 ETHER_ADDR_LEN);
2657 bcopy((char *)&eh->ether_shost,
2658 (char *)&tx_frame_802_3.an_tx_src_addr,
2659 ETHER_ADDR_LEN);
2660
2661 /* minus src/dest mac & type */
2662 tx_frame_802_3.an_tx_802_3_payload_len =
2663 m0->m_pkthdr.len - 12;
2664
2665 m_copydata(m0, sizeof(struct ether_header) - 2 ,
2666 tx_frame_802_3.an_tx_802_3_payload_len,
2667 (caddr_t)&sc->an_txbuf);
2668
2669 txcontrol = AN_TXCTL_8023;
2670 /* write the txcontrol only */
2671 bcopy((caddr_t)&txcontrol, &buf[0x08],
2672 sizeof(txcontrol));
2673
2674 /* 802_3 header */
2675 bcopy((caddr_t)&tx_frame_802_3, &buf[0x34],
2676 sizeof(struct an_txframe_802_3));
2677
2678 /* in mbuf header type is just before payload */
2679 bcopy((caddr_t)&sc->an_txbuf, &buf[0x44],
2680 tx_frame_802_3.an_tx_802_3_payload_len);
2681
2682
2683 bzero(&an_tx_desc, sizeof(an_tx_desc));
2684 an_tx_desc.an_offset = 0;
2685 an_tx_desc.an_eoc = 1;
2686 an_tx_desc.an_valid = 1;
2687 an_tx_desc.an_len = 0x44 +
2688 tx_frame_802_3.an_tx_802_3_payload_len;
2689 an_tx_desc.an_phys = sc->an_tx_buffer[idx].an_dma_paddr;
2690 for (i = 0; i < sizeof(an_tx_desc) / 4 ; i++) {
2691 CSR_MEM_AUX_WRITE_4(sc, AN_TX_DESC_OFFSET
2692 /* zero for now */
2693 + (0 * sizeof(an_tx_desc))
2694 + (i * 4),
2695 ((u_int32_t*)&an_tx_desc)[i]);
2696 }
2697
2698 BPF_MTAP(ifp, m0);
2699
2700 m_freem(m0);
2701 m0 = NULL;
2702
2703 AN_INC(idx, AN_MAX_TX_DESC);
2704 sc->an_rdata.an_tx_empty = 0;
2705
2706 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350), AN_EV_ALLOC);
2707
2708 /*
2709 * Set a timeout in case the chip goes out to lunch.
2710 */
2711 ifp->if_timer = 5;
2712 }
2713
2714 /* Re-enable interrupts. */
2715 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), AN_INTRS(sc->mpi350));
2716 }
2717
2718 if (m0 != NULL)
2719 ifp->if_flags |= IFF_OACTIVE;
2720
2721 sc->an_rdata.an_tx_prod = idx;
2722}
2723
2724void
2725an_stop(sc)
2726 struct an_softc *sc;
2727{
2728 struct ifnet *ifp;
2729 int i;
2730
2731 ifp = &sc->arpcom.ac_if;
2732
2733 crit_enter();
2734
2735 an_cmd(sc, AN_CMD_FORCE_SYNCLOSS, 0);
2736 CSR_WRITE_2(sc, AN_INT_EN(sc->mpi350), 0);
2737 an_cmd(sc, AN_CMD_DISABLE, 0);
2738
2739 for (i = 0; i < AN_TX_RING_CNT; i++)
2740 an_cmd(sc, AN_CMD_DEALLOC_MEM, sc->an_rdata.an_tx_fids[i]);
2741
2742 callout_stop(&sc->an_stat_timer);
2743
2744 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2745
2746 if (sc->an_flash_buffer) {
2747 free(sc->an_flash_buffer, M_DEVBUF);
2748 sc->an_flash_buffer = NULL;
2749 }
2750
2751 crit_exit();
2752}
2753
2754static void
2755an_watchdog(ifp)
2756 struct ifnet *ifp;
2757{
2758 struct an_softc *sc;
2759
2760 sc = ifp->if_softc;
2761
2762 crit_enter();
2763 an_reset(sc);
2764 if (sc->mpi350)
2765 an_init_mpi350_desc(sc);
2766 an_init(sc);
2767
2768 ifp->if_oerrors++;
2769 crit_exit();
2770
2771 if_printf(ifp, "device timeout\n");
2772}
2773
2774void
2775an_shutdown(dev)
2776 device_t dev;
2777{
2778 struct an_softc *sc;
2779
2780 sc = device_get_softc(dev);
2781 an_stop(sc);
2782
2783 return;
2784}
2785
2786void
2787an_resume(dev)
2788 device_t dev;
2789{
2790 struct an_softc *sc;
2791 struct ifnet *ifp;
2792 int i;
2793
2794 sc = device_get_softc(dev);
2795 ifp = &sc->arpcom.ac_if;
2796
2797 an_reset(sc);
2798 if (sc->mpi350)
2799 an_init_mpi350_desc(sc);
2800 an_init(sc);
2801
2802 /* Recovery temporary keys */
2803 for (i = 0; i < 4; i++) {
2804 sc->areq.an_type = AN_RID_WEP_TEMP;
2805 sc->areq.an_len = sizeof(struct an_ltv_key);
2806 bcopy(&sc->an_temp_keys[i],
2807 &sc->areq, sizeof(struct an_ltv_key));
2808 an_setdef(sc, &sc->areq);
2809 }
2810
2811 if (ifp->if_flags & IFF_UP)
2812 an_start(ifp);
2813
2814 return;
2815}
2816
2817#ifdef ANCACHE
2818/* Aironet signal strength cache code.
2819 * store signal/noise/quality on per MAC src basis in
2820 * a small fixed cache. The cache wraps if > MAX slots
2821 * used. The cache may be zeroed out to start over.
2822 * Two simple filters exist to reduce computation:
2823 * 1. ip only (literally 0x800, ETHERTYPE_IP) which may be used
2824 * to ignore some packets. It defaults to ip only.
2825 * it could be used to focus on broadcast, non-IP 802.11 beacons.
2826 * 2. multicast/broadcast only. This may be used to
2827 * ignore unicast packets and only cache signal strength
2828 * for multicast/broadcast packets (beacons); e.g., Mobile-IP
2829 * beacons and not unicast traffic.
2830 *
2831 * The cache stores (MAC src(index), IP src (major clue), signal,
2832 * quality, noise)
2833 *
2834 * No apologies for storing IP src here. It's easy and saves much
2835 * trouble elsewhere. The cache is assumed to be INET dependent,
2836 * although it need not be.
2837 *
2838 * Note: the Aironet only has a single byte of signal strength value
2839 * in the rx frame header, and it's not scaled to anything sensible.
2840 * This is kind of lame, but it's all we've got.
2841 */
2842
2843#ifdef documentation
2844
2845int an_sigitems; /* number of cached entries */
2846struct an_sigcache an_sigcache[MAXANCACHE]; /* array of cache entries */
2847int an_nextitem; /* index/# of entries */
2848
2849
2850#endif
2851
2852/* control variables for cache filtering. Basic idea is
2853 * to reduce cost (e.g., to only Mobile-IP agent beacons
2854 * which are broadcast or multicast). Still you might
2855 * want to measure signal strength anth unicast ping packets
2856 * on a pt. to pt. ant. setup.
2857 */
2858/* set true if you want to limit cache items to broadcast/mcast
2859 * only packets (not unicast). Useful for mobile-ip beacons which
2860 * are broadcast/multicast at network layer. Default is all packets
2861 * so ping/unicast anll work say anth pt. to pt. antennae setup.
2862 */
2863static int an_cache_mcastonly = 0;
2864SYSCTL_INT(_hw_an, OID_AUTO, an_cache_mcastonly, CTLFLAG_RW,
2865 &an_cache_mcastonly, 0, "");
2866
2867/* set true if you want to limit cache items to IP packets only
2868*/
2869static int an_cache_iponly = 1;
2870SYSCTL_INT(_hw_an, OID_AUTO, an_cache_iponly, CTLFLAG_RW,
2871 &an_cache_iponly, 0, "");
2872
2873/*
2874 * an_cache_store, per rx packet store signal
2875 * strength in MAC (src) indexed cache.
2876 */
2877static void
2878an_cache_store (sc, m, rx_rssi, rx_quality)
2879 struct an_softc *sc;
2880 struct mbuf *m;
2881 u_int8_t rx_rssi;
2882 u_int8_t rx_quality;
2883{
2884 struct ether_header *eh = mtod(m, struct ether_header *);
2885 struct ip *ip = NULL;
2886 int i;
2887 static int cache_slot = 0; /* use this cache entry */
2888 static int wrapindex = 0; /* next "free" cache entry */
2889
2890 /* filters:
2891 * 1. ip only
2892 * 2. configurable filter to throw out unicast packets,
2893 * keep multicast only.
2894 */
2895
2896 if ((ntohs(eh->ether_type) == ETHERTYPE_IP))
2897 ip = (struct ip *)(mtod(m, uint8_t *) + ETHER_HDR_LEN);
2898 else if (an_cache_iponly)
2899 return;
2900
2901 /* filter for broadcast/multicast only
2902 */
2903 if (an_cache_mcastonly && ((eh->ether_dhost[0] & 1) == 0)) {
2904 return;
2905 }
2906
2907#ifdef SIGDEBUG
2908 if_printf(&sc->arpcom.ac_if, "q value %x (MSB=0x%x, LSB=0x%x)\n",
2909 rx_rssi & 0xffff, rx_rssi >> 8, rx_rssi & 0xff);
2910#endif
2911
2912 /* do a linear search for a matching MAC address
2913 * in the cache table
2914 * . MAC address is 6 bytes,
2915 * . var w_nextitem holds total number of entries already cached
2916 */
2917 for (i = 0; i < sc->an_nextitem; i++) {
2918 if (! bcmp(eh->ether_shost , sc->an_sigcache[i].macsrc, 6 )) {
2919 /* Match!,
2920 * so we already have this entry,
2921 * update the data
2922 */
2923 break;
2924 }
2925 }
2926
2927 /* did we find a matching mac address?
2928 * if yes, then overwrite a previously existing cache entry
2929 */
2930 if (i < sc->an_nextitem ) {
2931 cache_slot = i;
2932 }
2933 /* else, have a new address entry,so
2934 * add this new entry,
2935 * if table full, then we need to replace LRU entry
2936 */
2937 else {
2938
2939 /* check for space in cache table
2940 * note: an_nextitem also holds number of entries
2941 * added in the cache table
2942 */
2943 if ( sc->an_nextitem < MAXANCACHE ) {
2944 cache_slot = sc->an_nextitem;
2945 sc->an_nextitem++;
2946 sc->an_sigitems = sc->an_nextitem;
2947 }
2948 /* no space found, so simply wrap anth wrap index
2949 * and "zap" the next entry
2950 */
2951 else {
2952 if (wrapindex == MAXANCACHE) {
2953 wrapindex = 0;
2954 }
2955 cache_slot = wrapindex++;
2956 }
2957 }
2958
2959 /* invariant: cache_slot now points at some slot
2960 * in cache.
2961 */
2962 if (cache_slot < 0 || cache_slot >= MAXANCACHE) {
2963 log(LOG_ERR, "an_cache_store, bad index: %d of "
2964 "[0..%d], gross cache error\n",
2965 cache_slot, MAXANCACHE);
2966 return;
2967 }
2968
2969 /* store items in cache
2970 * .ip source address
2971 * .mac src
2972 * .signal, etc.
2973 */
2974 if (ip != NULL) {
2975 sc->an_sigcache[cache_slot].ipsrc = ip->ip_src.s_addr;
2976 }
2977 bcopy( eh->ether_shost, sc->an_sigcache[cache_slot].macsrc, 6);
2978
2979
2980 switch (an_cache_mode) {
2981 case DBM:
2982 if (sc->an_have_rssimap) {
2983 sc->an_sigcache[cache_slot].signal =
2984 - sc->an_rssimap.an_entries[rx_rssi].an_rss_dbm;
2985 sc->an_sigcache[cache_slot].quality =
2986 - sc->an_rssimap.an_entries[rx_quality].an_rss_dbm;
2987 } else {
2988 sc->an_sigcache[cache_slot].signal = rx_rssi - 100;
2989 sc->an_sigcache[cache_slot].quality = rx_quality - 100;
2990 }
2991 break;
2992 case PERCENT:
2993 if (sc->an_have_rssimap) {
2994 sc->an_sigcache[cache_slot].signal =
2995 sc->an_rssimap.an_entries[rx_rssi].an_rss_pct;
2996 sc->an_sigcache[cache_slot].quality =
2997 sc->an_rssimap.an_entries[rx_quality].an_rss_pct;
2998 } else {
2999 if (rx_rssi > 100)
3000 rx_rssi = 100;
3001 if (rx_quality > 100)
3002 rx_quality = 100;
3003 sc->an_sigcache[cache_slot].signal = rx_rssi;
3004 sc->an_sigcache[cache_slot].quality = rx_quality;
3005 }
3006 break;
3007 case RAW:
3008 sc->an_sigcache[cache_slot].signal = rx_rssi;
3009 sc->an_sigcache[cache_slot].quality = rx_quality;
3010 break;
3011 }
3012
3013 sc->an_sigcache[cache_slot].noise = 0;
3014
3015 return;
3016}
3017#endif
3018
3019static int
3020an_media_change(ifp)
3021 struct ifnet *ifp;
3022{
3023 struct an_softc *sc = ifp->if_softc;
3024 struct an_ltv_genconfig *cfg;
3025 int otype = sc->an_config.an_opmode;
3026 int orate = sc->an_tx_rate;
3027
3028 switch (IFM_SUBTYPE(sc->an_ifmedia.ifm_cur->ifm_media)) {
3029 case IFM_IEEE80211_DS1:
3030 sc->an_tx_rate = AN_RATE_1MBPS;
3031 break;
3032 case IFM_IEEE80211_DS2:
3033 sc->an_tx_rate = AN_RATE_2MBPS;
3034 break;
3035 case IFM_IEEE80211_DS5:
3036 sc->an_tx_rate = AN_RATE_5_5MBPS;
3037 break;
3038 case IFM_IEEE80211_DS11:
3039 sc->an_tx_rate = AN_RATE_11MBPS;
3040 break;
3041 case IFM_AUTO:
3042 sc->an_tx_rate = 0;
3043 break;
3044 }
3045
3046 if (orate != sc->an_tx_rate) {
3047 /* Read the current configuration */
3048 sc->an_config.an_type = AN_RID_GENCONFIG;
3049 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
3050 an_read_record(sc, (struct an_ltv_gen *)&sc->an_config);
3051 cfg = &sc->an_config;
3052
3053 /* clear other rates and set the only one we want */
3054 bzero(cfg->an_rates, sizeof(cfg->an_rates));
3055 cfg->an_rates[0] = sc->an_tx_rate;
3056
3057 /* Save the new rate */
3058 sc->an_config.an_type = AN_RID_GENCONFIG;
3059 sc->an_config.an_len = sizeof(struct an_ltv_genconfig);
3060 }
3061
3062 if ((sc->an_ifmedia.ifm_cur->ifm_media & IFM_IEEE80211_ADHOC) != 0)
3063 sc->an_config.an_opmode &= ~AN_OPMODE_INFRASTRUCTURE_STATION;
3064 else
3065 sc->an_config.an_opmode |= AN_OPMODE_INFRASTRUCTURE_STATION;
3066
3067 if (otype != sc->an_config.an_opmode ||
3068 orate != sc->an_tx_rate)
3069 an_init(sc);
3070
3071 return(0);
3072}
3073
3074static void
3075an_media_status(ifp, imr)
3076 struct ifnet *ifp;
3077 struct ifmediareq *imr;
3078{
3079 struct an_ltv_status status;
3080 struct an_softc *sc = ifp->if_softc;
3081
3082 status.an_len = sizeof(status);
3083 status.an_type = AN_RID_STATUS;
3084 if (an_read_record(sc, (struct an_ltv_gen *)&status)) {
3085 /* If the status read fails, just lie. */
3086 imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media;
3087 imr->ifm_status = IFM_AVALID|IFM_ACTIVE;
3088 }
3089
3090 if (sc->an_tx_rate == 0) {
3091 imr->ifm_active = IFM_IEEE80211|IFM_AUTO;
3092 if (sc->an_config.an_opmode == AN_OPMODE_IBSS_ADHOC)
3093 imr->ifm_active |= IFM_IEEE80211_ADHOC;
3094 switch (status.an_current_tx_rate) {
3095 case AN_RATE_1MBPS:
3096 imr->ifm_active |= IFM_IEEE80211_DS1;
3097 break;
3098 case AN_RATE_2MBPS:
3099 imr->ifm_active |= IFM_IEEE80211_DS2;
3100 break;
3101 case AN_RATE_5_5MBPS:
3102 imr->ifm_active |= IFM_IEEE80211_DS5;
3103 break;
3104 case AN_RATE_11MBPS:
3105 imr->ifm_active |= IFM_IEEE80211_DS11;
3106 break;
3107 }
3108 } else {
3109 imr->ifm_active = sc->an_ifmedia.ifm_cur->ifm_media;
3110 }
3111
3112 imr->ifm_status = IFM_AVALID;
3113 if (status.an_opmode & AN_STATUS_OPMODE_ASSOCIATED)
3114 imr->ifm_status |= IFM_ACTIVE;
3115}
3116
3117/********************** Cisco utility support routines *************/
3118
3119/*
3120 * ReadRids & WriteRids derived from Cisco driver additions to Ben Reed's
3121 * Linux driver
3122 */
3123
3124static int
3125readrids(ifp, l_ioctl)
3126 struct ifnet *ifp;
3127 struct aironet_ioctl *l_ioctl;
3128{
3129 unsigned short rid;
3130 struct an_softc *sc;
3131
3132 switch (l_ioctl->command) {
3133 case AIROGCAP:
3134 rid = AN_RID_CAPABILITIES;
3135 break;
3136 case AIROGCFG:
3137 rid = AN_RID_GENCONFIG;
3138 break;
3139 case AIROGSLIST:
3140 rid = AN_RID_SSIDLIST;
3141 break;
3142 case AIROGVLIST:
3143 rid = AN_RID_APLIST;
3144 break;
3145 case AIROGDRVNAM:
3146 rid = AN_RID_DRVNAME;
3147 break;
3148 case AIROGEHTENC:
3149 rid = AN_RID_ENCAPPROTO;
3150 break;
3151 case AIROGWEPKTMP:
3152 rid = AN_RID_WEP_TEMP;
3153 break;
3154 case AIROGWEPKNV:
3155 rid = AN_RID_WEP_PERM;
3156 break;
3157 case AIROGSTAT:
3158 rid = AN_RID_STATUS;
3159 break;
3160 case AIROGSTATSD32:
3161 rid = AN_RID_32BITS_DELTA;
3162 break;
3163 case AIROGSTATSC32:
3164 rid = AN_RID_32BITS_CUM;
3165 break;
3166 default:
3167 rid = 999;
3168 break;
3169 }
3170
3171 if (rid == 999) /* Is bad command */
3172 return -EINVAL;
3173
3174 sc = ifp->if_softc;
3175 sc->areq.an_len = AN_MAX_DATALEN;
3176 sc->areq.an_type = rid;
3177
3178 an_read_record(sc, (struct an_ltv_gen *)&sc->areq);
3179
3180 l_ioctl->len = sc->areq.an_len - 4; /* just data */
3181
3182 /* the data contains the length at first */
3183 if (copyout(&(sc->areq.an_len), l_ioctl->data,
3184 sizeof(sc->areq.an_len))) {
3185 return -EFAULT;
3186 }
3187 /* Just copy the data back */
3188 if (copyout(&(sc->areq.an_val), l_ioctl->data + 2,
3189 l_ioctl->len)) {
3190 return -EFAULT;
3191 }
3192 return 0;
3193}
3194
3195static int
3196writerids(ifp, l_ioctl)
3197 struct ifnet *ifp;
3198 struct aironet_ioctl *l_ioctl;
3199{
3200 struct an_softc *sc;
3201 int rid, command;
3202
3203 sc = ifp->if_softc;
3204 rid = 0;
3205 command = l_ioctl->command;
3206
3207 switch (command) {
3208 case AIROPSIDS:
3209 rid = AN_RID_SSIDLIST;
3210 break;
3211 case AIROPCAP:
3212 rid = AN_RID_CAPABILITIES;
3213 break;
3214 case AIROPAPLIST:
3215 rid = AN_RID_APLIST;
3216 break;
3217 case AIROPCFG:
3218 rid = AN_RID_GENCONFIG;
3219 break;
3220 case AIROPMACON:
3221 an_cmd(sc, AN_CMD_ENABLE, 0);
3222 return 0;
3223 break;
3224 case AIROPMACOFF:
3225 an_cmd(sc, AN_CMD_DISABLE, 0);
3226 return 0;
3227 break;
3228 case AIROPSTCLR:
3229 /*
3230 * This command merely clears the counts does not actually
3231 * store any data only reads rid. But as it changes the cards
3232 * state, I put it in the writerid routines.
3233 */
3234
3235 rid = AN_RID_32BITS_DELTACLR;
3236 sc = ifp->if_softc;
3237 sc->areq.an_len = AN_MAX_DATALEN;
3238 sc->areq.an_type = rid;
3239
3240 an_read_record(sc, (struct an_ltv_gen *)&sc->areq);
3241 l_ioctl->len = sc->areq.an_len - 4; /* just data */
3242
3243 /* the data contains the length at first */
3244 if (copyout(&(sc->areq.an_len), l_ioctl->data,
3245 sizeof(sc->areq.an_len))) {
3246 return -EFAULT;
3247 }
3248 /* Just copy the data */
3249 if (copyout(&(sc->areq.an_val), l_ioctl->data + 2,
3250 l_ioctl->len)) {
3251 return -EFAULT;
3252 }
3253 return 0;
3254 break;
3255 case AIROPWEPKEY:
3256 rid = AN_RID_WEP_TEMP;
3257 break;
3258 case AIROPWEPKEYNV:
3259 rid = AN_RID_WEP_PERM;
3260 break;
3261 case AIROPLEAPUSR:
3262 rid = AN_RID_LEAPUSERNAME;
3263 break;
3264 case AIROPLEAPPWD:
3265 rid = AN_RID_LEAPPASSWORD;
3266 break;
3267 default:
3268 return -EOPNOTSUPP;
3269 }
3270
3271 if (rid) {
3272 if (l_ioctl->len > sizeof(sc->areq.an_val) + 4)
3273 return -EINVAL;
3274 sc->areq.an_len = l_ioctl->len + 4; /* add type & length */
3275 sc->areq.an_type = rid;
3276
3277 /* Just copy the data back */
3278 copyin((l_ioctl->data) + 2, &sc->areq.an_val,
3279 l_ioctl->len);
3280
3281 an_cmd(sc, AN_CMD_DISABLE, 0);
3282 an_write_record(sc, (struct an_ltv_gen *)&sc->areq);
3283 an_cmd(sc, AN_CMD_ENABLE, 0);
3284 return 0;
3285 }
3286 return -EOPNOTSUPP;
3287}
3288
3289/*
3290 * General Flash utilities derived from Cisco driver additions to Ben Reed's
3291 * Linux driver
3292 */
3293
3294#define FLASH_DELAY(x) tsleep(ifp, 0, "flash", ((x) / hz) + 1);
3295#define FLASH_COMMAND 0x7e7e
3296#define FLASH_SIZE 32 * 1024
3297
3298static int
3299unstickbusy(ifp)
3300 struct ifnet *ifp;
3301{
3302 struct an_softc *sc = ifp->if_softc;
3303
3304 if (CSR_READ_2(sc, AN_COMMAND(sc->mpi350)) & AN_CMD_BUSY) {
3305 CSR_WRITE_2(sc, AN_EVENT_ACK(sc->mpi350),
3306 AN_EV_CLR_STUCK_BUSY);
3307 return 1;
3308 }
3309 return 0;
3310}
3311
3312/*
3313 * Wait for busy completion from card wait for delay uSec's Return true for
3314 * success meaning command reg is clear
3315 */
3316
3317static int
3318WaitBusy(ifp, uSec)
3319 struct ifnet *ifp;
3320 int uSec;
3321{
3322 int statword = 0xffff;
3323 int delay = 0;
3324 struct an_softc *sc = ifp->if_softc;
3325
3326 while ((statword & AN_CMD_BUSY) && delay <= (1000 * 100)) {
3327 FLASH_DELAY(10);
3328 delay += 10;
3329 statword = CSR_READ_2(sc, AN_COMMAND(sc->mpi350));
3330
3331 if ((AN_CMD_BUSY & statword) && (delay % 200)) {
3332 unstickbusy(ifp);
3333 }
3334 }
3335
3336 return 0 == (AN_CMD_BUSY & statword);
3337}
3338
3339/*
3340 * STEP 1) Disable MAC and do soft reset on card.
3341 */
3342
3343static int
3344cmdreset(ifp)
3345 struct ifnet *ifp;
3346{
3347 int status;
3348 struct an_softc *sc = ifp->if_softc;
3349
3350 an_stop(sc);
3351
3352 an_cmd(sc, AN_CMD_DISABLE, 0);
3353
3354 if (!(status = WaitBusy(ifp, AN_TIMEOUT))) {
3355 if_printf(ifp, "Waitbusy hang b4 RESET =%d\n", status);
3356 return -EBUSY;
3357 }
3358 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), AN_CMD_FW_RESTART);
3359
3360 FLASH_DELAY(1000); /* WAS 600 12/7/00 */
3361
3362
3363 if (!(status = WaitBusy(ifp, 100))) {
3364 if_printf(ifp, "Waitbusy hang AFTER RESET =%d\n", status);
3365 return -EBUSY;
3366 }
3367 return 0;
3368}
3369
3370/*
3371 * STEP 2) Put the card in legendary flash mode
3372 */
3373
3374static int
3375setflashmode(ifp)
3376 struct ifnet *ifp;
3377{
3378 int status;
3379 struct an_softc *sc = ifp->if_softc;
3380
3381 CSR_WRITE_2(sc, AN_SW0(sc->mpi350), FLASH_COMMAND);
3382 CSR_WRITE_2(sc, AN_SW1(sc->mpi350), FLASH_COMMAND);
3383 CSR_WRITE_2(sc, AN_SW0(sc->mpi350), FLASH_COMMAND);
3384 CSR_WRITE_2(sc, AN_COMMAND(sc->mpi350), FLASH_COMMAND);
3385
3386 /*
3387 * mdelay(500); // 500ms delay
3388 */
3389
3390 FLASH_DELAY(500);
3391
3392 if (!(status = WaitBusy(ifp, AN_TIMEOUT))) {
3393 printf("Waitbusy hang after setflash mode\n");
3394 return -EIO;
3395 }
3396 return 0;
3397}
3398
3399/*
3400 * Get a character from the card matching matchbyte Step 3)
3401 */
3402
3403static int
3404flashgchar(ifp, matchbyte, dwelltime)
3405 struct ifnet *ifp;
3406 int matchbyte;
3407 int dwelltime;
3408{
3409 int rchar;
3410 unsigned char rbyte = 0;
3411 int success = -1;
3412 struct an_softc *sc = ifp->if_softc;
3413
3414
3415 do {
3416 rchar = CSR_READ_2(sc, AN_SW1(sc->mpi350));
3417
3418 if (dwelltime && !(0x8000 & rchar)) {
3419 dwelltime -= 10;
3420 FLASH_DELAY(10);
3421 continue;
3422 }
3423 rbyte = 0xff & rchar;
3424
3425 if ((rbyte == matchbyte) && (0x8000 & rchar)) {
3426 CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3427 success = 1;
3428 break;
3429 }
3430 if (rbyte == 0x81 || rbyte == 0x82 || rbyte == 0x83 || rbyte == 0x1a || 0xffff == rchar)
3431 break;
3432 CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3433
3434 } while (dwelltime > 0);
3435 return success;
3436}
3437
3438/*
3439 * Put character to SWS0 wait for dwelltime x 50us for echo .
3440 */
3441
3442static int
3443flashpchar(ifp, byte, dwelltime)
3444 struct ifnet *ifp;
3445 int byte;
3446 int dwelltime;
3447{
3448 int echo;
3449 int pollbusy, waittime;
3450 struct an_softc *sc = ifp->if_softc;
3451
3452 byte |= 0x8000;
3453
3454 if (dwelltime == 0)
3455 dwelltime = 200;
3456
3457 waittime = dwelltime;
3458
3459 /*
3460 * Wait for busy bit d15 to go false indicating buffer empty
3461 */
3462 do {
3463 pollbusy = CSR_READ_2(sc, AN_SW0(sc->mpi350));
3464
3465 if (pollbusy & 0x8000) {
3466 FLASH_DELAY(50);
3467 waittime -= 50;
3468 continue;
3469 } else
3470 break;
3471 }
3472 while (waittime >= 0);
3473
3474 /* timeout for busy clear wait */
3475
3476 if (waittime <= 0) {
3477 if_printf(ifp, "flash putchar busywait timeout!\n");
3478 return -1;
3479 }
3480 /*
3481 * Port is clear now write byte and wait for it to echo back
3482 */
3483 do {
3484 CSR_WRITE_2(sc, AN_SW0(sc->mpi350), byte);
3485 FLASH_DELAY(50);
3486 dwelltime -= 50;
3487 echo = CSR_READ_2(sc, AN_SW1(sc->mpi350));
3488 } while (dwelltime >= 0 && echo != byte);
3489
3490
3491 CSR_WRITE_2(sc, AN_SW1(sc->mpi350), 0);
3492
3493 return echo == byte;
3494}
3495
3496/*
3497 * Transfer 32k of firmware data from user buffer to our buffer and send to
3498 * the card
3499 */
3500
3501static int
3502flashputbuf(ifp)
3503 struct ifnet *ifp;
3504{
3505 unsigned short *bufp;
3506 int nwords;
3507 struct an_softc *sc = ifp->if_softc;
3508
3509 /* Write stuff */
3510
3511 bufp = sc->an_flash_buffer;
3512
3513 if (!sc->mpi350) {
3514 CSR_WRITE_2(sc, AN_AUX_PAGE, 0x100);
3515 CSR_WRITE_2(sc, AN_AUX_OFFSET, 0);
3516
3517 for (nwords = 0; nwords != FLASH_SIZE / 2; nwords++) {
3518 CSR_WRITE_2(sc, AN_AUX_DATA, bufp[nwords] & 0xffff);
3519 }
3520 } else {
3521 for (nwords = 0; nwords != FLASH_SIZE / 4; nwords++) {
3522 CSR_MEM_AUX_WRITE_4(sc, 0x8000,
3523 ((u_int32_t *)bufp)[nwords] & 0xffff);
3524 }
3525 }
3526
3527 CSR_WRITE_2(sc, AN_SW0(sc->mpi350), 0x8000);
3528
3529 return 0;
3530}
3531
3532/*
3533 * After flashing restart the card.
3534 */
3535
3536static int
3537flashrestart(ifp)
3538 struct ifnet *ifp;
3539{
3540 int status = 0;
3541 struct an_softc *sc = ifp->if_softc;
3542
3543 FLASH_DELAY(1024); /* Added 12/7/00 */
3544
3545 an_init(sc);
3546
3547 FLASH_DELAY(1024); /* Added 12/7/00 */
3548 return status;
3549}
3550
3551/*
3552 * Entry point for flash ioclt.
3553 */
3554
3555static int
3556flashcard(ifp, l_ioctl)
3557 struct ifnet *ifp;
3558 struct aironet_ioctl *l_ioctl;
3559{
3560 int z = 0, status;
3561 struct an_softc *sc;
3562
3563 sc = ifp->if_softc;
3564 if (sc->mpi350) {
3565 if_printf(ifp, "flashing not supported on MPI 350 yet\n");
3566 return(-1);
3567 }
3568 status = l_ioctl->command;
3569
3570 switch (l_ioctl->command) {
3571 case AIROFLSHRST:
3572 return cmdreset(ifp);
3573 break;
3574 case AIROFLSHSTFL:
3575 if (sc->an_flash_buffer) {
3576 free(sc->an_flash_buffer, M_DEVBUF);
3577 sc->an_flash_buffer = NULL;
3578 }
3579 sc->an_flash_buffer = malloc(FLASH_SIZE, M_DEVBUF, 0);
3580 if (sc->an_flash_buffer)
3581 return setflashmode(ifp);
3582 else
3583 return ENOBUFS;
3584 break;
3585 case AIROFLSHGCHR: /* Get char from aux */
3586 copyin(l_ioctl->data, &sc->areq, l_ioctl->len);
3587 z = *(int *)&sc->areq;
3588 if ((status = flashgchar(ifp, z, 8000)) == 1)
3589 return 0;
3590 else
3591 return -1;
3592 break;
3593 case AIROFLSHPCHR: /* Send char to card. */
3594 copyin(l_ioctl->data, &sc->areq, l_ioctl->len);
3595 z = *(int *)&sc->areq;
3596 if ((status = flashpchar(ifp, z, 8000)) == -1)
3597 return -EIO;
3598 else
3599 return 0;
3600 break;
3601 case AIROFLPUTBUF: /* Send 32k to card */
3602 if (l_ioctl->len > FLASH_SIZE) {
3603 if_printf(ifp, "Buffer to big, %x %x\n",
3604 l_ioctl->len, FLASH_SIZE);
3605 return -EINVAL;
3606 }
3607 copyin(l_ioctl->data, sc->an_flash_buffer, l_ioctl->len);
3608
3609 if ((status = flashputbuf(ifp)) != 0)
3610 return -EIO;
3611 else
3612 return 0;
3613 break;
3614 case AIRORESTART:
3615 if ((status = flashrestart(ifp)) != 0) {
3616 if_printf(ifp, "FLASHRESTART returned %d\n", status);
3617 return -EIO;
3618 } else
3619 return 0;
3620
3621 break;
3622 default:
3623 return -EINVAL;
3624 }
3625
3626 return -EINVAL;
3627}