bge: Add missing bit of commit f47afe1
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2001 Wind River Systems
3 * Copyright (c) 1997, 1998, 1999, 2001
4 * Bill Paul <wpaul@windriver.com>. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 *
33 * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34 */
35
36/*
37 * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Engineer, Wind River Systems
41 */
42
43/*
44 * The Broadcom BCM5700 is based on technology originally developed by
45 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46 * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49 * frames, highly configurable RX filtering, and 16 RX and TX queues
50 * (which, along with RX filter rules, can be used for QOS applications).
51 * Other features, such as TCP segmentation, may be available as part
52 * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53 * firmware images can be stored in hardware and need not be compiled
54 * into the driver.
55 *
56 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58 *
59 * The BCM5701 is a single-chip solution incorporating both the BCM5700
60 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
61 * does not support external SSRAM.
62 *
63 * Broadcom also produces a variation of the BCM5700 under the "Altima"
64 * brand name, which is functionally similar but lacks PCI-X support.
65 *
66 * Without external SSRAM, you can only have at most 4 TX rings,
67 * and the use of the mini RX ring is disabled. This seems to imply
68 * that these features are simply not available on the BCM5701. As a
69 * result, this driver does not implement any support for the mini RX
70 * ring.
71 */
72
73#include "opt_polling.h"
74
75#include <sys/param.h>
76#include <sys/bus.h>
77#include <sys/endian.h>
78#include <sys/kernel.h>
79#include <sys/ktr.h>
80#include <sys/interrupt.h>
81#include <sys/mbuf.h>
82#include <sys/malloc.h>
83#include <sys/queue.h>
84#include <sys/rman.h>
85#include <sys/serialize.h>
86#include <sys/socket.h>
87#include <sys/sockio.h>
88#include <sys/sysctl.h>
89
90#include <net/bpf.h>
91#include <net/ethernet.h>
92#include <net/if.h>
93#include <net/if_arp.h>
94#include <net/if_dl.h>
95#include <net/if_media.h>
96#include <net/if_types.h>
97#include <net/ifq_var.h>
98#include <net/vlan/if_vlan_var.h>
99#include <net/vlan/if_vlan_ether.h>
100
101#include <dev/netif/mii_layer/mii.h>
102#include <dev/netif/mii_layer/miivar.h>
103#include <dev/netif/mii_layer/brgphyreg.h>
104
105#include <bus/pci/pcidevs.h>
106#include <bus/pci/pcireg.h>
107#include <bus/pci/pcivar.h>
108
109#include <dev/netif/bge/if_bgereg.h>
110
111/* "device miibus" required. See GENERIC if you get errors here. */
112#include "miibus_if.h"
113
114#define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
115#define BGE_MIN_FRAME 60
116
117static const struct bge_type bge_devs[] = {
118 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
119 "3COM 3C996 Gigabit Ethernet" },
120
121 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
122 "Alteon BCM5700 Gigabit Ethernet" },
123 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
124 "Alteon BCM5701 Gigabit Ethernet" },
125
126 { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
127 "Altima AC1000 Gigabit Ethernet" },
128 { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
129 "Altima AC1002 Gigabit Ethernet" },
130 { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
131 "Altima AC9100 Gigabit Ethernet" },
132
133 { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
134 "Apple BCM5701 Gigabit Ethernet" },
135
136 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
137 "Broadcom BCM5700 Gigabit Ethernet" },
138 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
139 "Broadcom BCM5701 Gigabit Ethernet" },
140 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
141 "Broadcom BCM5702 Gigabit Ethernet" },
142 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
143 "Broadcom BCM5702X Gigabit Ethernet" },
144 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
145 "Broadcom BCM5702 Gigabit Ethernet" },
146 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
147 "Broadcom BCM5703 Gigabit Ethernet" },
148 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
149 "Broadcom BCM5703X Gigabit Ethernet" },
150 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
151 "Broadcom BCM5703 Gigabit Ethernet" },
152 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
153 "Broadcom BCM5704C Dual Gigabit Ethernet" },
154 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
155 "Broadcom BCM5704S Dual Gigabit Ethernet" },
156 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
157 "Broadcom BCM5704S Dual Gigabit Ethernet" },
158 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
159 "Broadcom BCM5705 Gigabit Ethernet" },
160 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
161 "Broadcom BCM5705F Gigabit Ethernet" },
162 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
163 "Broadcom BCM5705K Gigabit Ethernet" },
164 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
165 "Broadcom BCM5705M Gigabit Ethernet" },
166 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
167 "Broadcom BCM5705M Gigabit Ethernet" },
168 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
169 "Broadcom BCM5714C Gigabit Ethernet" },
170 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
171 "Broadcom BCM5714S Gigabit Ethernet" },
172 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
173 "Broadcom BCM5715 Gigabit Ethernet" },
174 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
175 "Broadcom BCM5715S Gigabit Ethernet" },
176 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
177 "Broadcom BCM5720 Gigabit Ethernet" },
178 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
179 "Broadcom BCM5721 Gigabit Ethernet" },
180 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
181 "Broadcom BCM5722 Gigabit Ethernet" },
182 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5723,
183 "Broadcom BCM5723 Gigabit Ethernet" },
184 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
185 "Broadcom BCM5750 Gigabit Ethernet" },
186 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
187 "Broadcom BCM5750M Gigabit Ethernet" },
188 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
189 "Broadcom BCM5751 Gigabit Ethernet" },
190 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
191 "Broadcom BCM5751F Gigabit Ethernet" },
192 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
193 "Broadcom BCM5751M Gigabit Ethernet" },
194 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
195 "Broadcom BCM5752 Gigabit Ethernet" },
196 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
197 "Broadcom BCM5752M Gigabit Ethernet" },
198 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
199 "Broadcom BCM5753 Gigabit Ethernet" },
200 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
201 "Broadcom BCM5753F Gigabit Ethernet" },
202 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
203 "Broadcom BCM5753M Gigabit Ethernet" },
204 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
205 "Broadcom BCM5754 Gigabit Ethernet" },
206 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
207 "Broadcom BCM5754M Gigabit Ethernet" },
208 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
209 "Broadcom BCM5755 Gigabit Ethernet" },
210 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
211 "Broadcom BCM5755M Gigabit Ethernet" },
212 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
213 "Broadcom BCM5756 Gigabit Ethernet" },
214 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761,
215 "Broadcom BCM5761 Gigabit Ethernet" },
216 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761E,
217 "Broadcom BCM5761E Gigabit Ethernet" },
218 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761S,
219 "Broadcom BCM5761S Gigabit Ethernet" },
220 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761SE,
221 "Broadcom BCM5761SE Gigabit Ethernet" },
222 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5764,
223 "Broadcom BCM5764 Gigabit Ethernet" },
224 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
225 "Broadcom BCM5780 Gigabit Ethernet" },
226 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
227 "Broadcom BCM5780S Gigabit Ethernet" },
228 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
229 "Broadcom BCM5781 Gigabit Ethernet" },
230 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
231 "Broadcom BCM5782 Gigabit Ethernet" },
232 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5784,
233 "Broadcom BCM5784 Gigabit Ethernet" },
234 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785F,
235 "Broadcom BCM5785F Gigabit Ethernet" },
236 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785G,
237 "Broadcom BCM5785G Gigabit Ethernet" },
238 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
239 "Broadcom BCM5786 Gigabit Ethernet" },
240 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
241 "Broadcom BCM5787 Gigabit Ethernet" },
242 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
243 "Broadcom BCM5787F Gigabit Ethernet" },
244 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
245 "Broadcom BCM5787M Gigabit Ethernet" },
246 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
247 "Broadcom BCM5788 Gigabit Ethernet" },
248 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
249 "Broadcom BCM5789 Gigabit Ethernet" },
250 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
251 "Broadcom BCM5901 Fast Ethernet" },
252 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
253 "Broadcom BCM5901A2 Fast Ethernet" },
254 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
255 "Broadcom BCM5903M Fast Ethernet" },
256 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906,
257 "Broadcom BCM5906 Fast Ethernet"},
258 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M,
259 "Broadcom BCM5906M Fast Ethernet"},
260 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57760,
261 "Broadcom BCM57760 Gigabit Ethernet"},
262 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57780,
263 "Broadcom BCM57780 Gigabit Ethernet"},
264 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57788,
265 "Broadcom BCM57788 Gigabit Ethernet"},
266 { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57790,
267 "Broadcom BCM57790 Gigabit Ethernet"},
268 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
269 "SysKonnect Gigabit Ethernet" },
270
271 { 0, 0, NULL }
272};
273
274#define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_FLAG_JUMBO)
275#define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
276#define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
277#define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
278#define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
279#define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
280
281typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
282
283static int bge_probe(device_t);
284static int bge_attach(device_t);
285static int bge_detach(device_t);
286static void bge_txeof(struct bge_softc *);
287static void bge_rxeof(struct bge_softc *);
288
289static void bge_tick(void *);
290static void bge_stats_update(struct bge_softc *);
291static void bge_stats_update_regs(struct bge_softc *);
292static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
293
294#ifdef DEVICE_POLLING
295static void bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
296#endif
297static void bge_intr(void *);
298static void bge_enable_intr(struct bge_softc *);
299static void bge_disable_intr(struct bge_softc *);
300static void bge_start(struct ifnet *);
301static int bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
302static void bge_init(void *);
303static void bge_stop(struct bge_softc *);
304static void bge_watchdog(struct ifnet *);
305static void bge_shutdown(device_t);
306static int bge_suspend(device_t);
307static int bge_resume(device_t);
308static int bge_ifmedia_upd(struct ifnet *);
309static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
310
311static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
312static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
313
314static uint8_t bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
315static int bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
316
317static void bge_setmulti(struct bge_softc *);
318static void bge_setpromisc(struct bge_softc *);
319
320static int bge_alloc_jumbo_mem(struct bge_softc *);
321static void bge_free_jumbo_mem(struct bge_softc *);
322static struct bge_jslot
323 *bge_jalloc(struct bge_softc *);
324static void bge_jfree(void *);
325static void bge_jref(void *);
326static int bge_newbuf_std(struct bge_softc *, int, int);
327static int bge_newbuf_jumbo(struct bge_softc *, int, int);
328static void bge_setup_rxdesc_std(struct bge_softc *, int);
329static void bge_setup_rxdesc_jumbo(struct bge_softc *, int);
330static int bge_init_rx_ring_std(struct bge_softc *);
331static void bge_free_rx_ring_std(struct bge_softc *);
332static int bge_init_rx_ring_jumbo(struct bge_softc *);
333static void bge_free_rx_ring_jumbo(struct bge_softc *);
334static void bge_free_tx_ring(struct bge_softc *);
335static int bge_init_tx_ring(struct bge_softc *);
336
337static int bge_chipinit(struct bge_softc *);
338static int bge_blockinit(struct bge_softc *);
339
340static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
341static void bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
342#ifdef notdef
343static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
344#endif
345static void bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
346static void bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
347static void bge_writembx(struct bge_softc *, int, int);
348
349static int bge_miibus_readreg(device_t, int, int);
350static int bge_miibus_writereg(device_t, int, int, int);
351static void bge_miibus_statchg(device_t);
352static void bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
353static void bge_tbi_link_upd(struct bge_softc *, uint32_t);
354static void bge_copper_link_upd(struct bge_softc *, uint32_t);
355
356static void bge_reset(struct bge_softc *);
357
358static int bge_dma_alloc(struct bge_softc *);
359static void bge_dma_free(struct bge_softc *);
360static int bge_dma_block_alloc(struct bge_softc *, bus_size_t,
361 bus_dma_tag_t *, bus_dmamap_t *,
362 void **, bus_addr_t *);
363static void bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
364
365static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
366static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
367static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
368static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
369
370static void bge_coal_change(struct bge_softc *);
371static int bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
372static int bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
373static int bge_sysctl_rx_max_coal_bds(SYSCTL_HANDLER_ARGS);
374static int bge_sysctl_tx_max_coal_bds(SYSCTL_HANDLER_ARGS);
375static int bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *, uint32_t);
376
377/*
378 * Set following tunable to 1 for some IBM blade servers with the DNLK
379 * switch module. Auto negotiation is broken for those configurations.
380 */
381static int bge_fake_autoneg = 0;
382TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
383
384/* Interrupt moderation control variables. */
385static int bge_rx_coal_ticks = 100; /* usec */
386static int bge_tx_coal_ticks = 1023; /* usec */
387static int bge_rx_max_coal_bds = 80;
388static int bge_tx_max_coal_bds = 128;
389
390TUNABLE_INT("hw.bge.rx_coal_ticks", &bge_rx_coal_ticks);
391TUNABLE_INT("hw.bge.tx_coal_ticks", &bge_tx_coal_ticks);
392TUNABLE_INT("hw.bge.rx_max_coal_bds", &bge_rx_max_coal_bds);
393TUNABLE_INT("hw.bge.tx_max_coal_bds", &bge_tx_max_coal_bds);
394
395#if !defined(KTR_IF_BGE)
396#define KTR_IF_BGE KTR_ALL
397#endif
398KTR_INFO_MASTER(if_bge);
399KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr");
400KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt");
401KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt");
402#define logif(name) KTR_LOG(if_bge_ ## name)
403
404static device_method_t bge_methods[] = {
405 /* Device interface */
406 DEVMETHOD(device_probe, bge_probe),
407 DEVMETHOD(device_attach, bge_attach),
408 DEVMETHOD(device_detach, bge_detach),
409 DEVMETHOD(device_shutdown, bge_shutdown),
410 DEVMETHOD(device_suspend, bge_suspend),
411 DEVMETHOD(device_resume, bge_resume),
412
413 /* bus interface */
414 DEVMETHOD(bus_print_child, bus_generic_print_child),
415 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
416
417 /* MII interface */
418 DEVMETHOD(miibus_readreg, bge_miibus_readreg),
419 DEVMETHOD(miibus_writereg, bge_miibus_writereg),
420 DEVMETHOD(miibus_statchg, bge_miibus_statchg),
421
422 { 0, 0 }
423};
424
425static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
426static devclass_t bge_devclass;
427
428DECLARE_DUMMY_MODULE(if_bge);
429DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, NULL, NULL);
430DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, NULL, NULL);
431
432static uint32_t
433bge_readmem_ind(struct bge_softc *sc, uint32_t off)
434{
435 device_t dev = sc->bge_dev;
436 uint32_t val;
437
438 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
439 val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
440 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
441 return (val);
442}
443
444static void
445bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
446{
447 device_t dev = sc->bge_dev;
448
449 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
450 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
451 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
452}
453
454#ifdef notdef
455static uint32_t
456bge_readreg_ind(struct bge_softc *sc, uin32_t off)
457{
458 device_t dev = sc->bge_dev;
459
460 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
461 return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
462}
463#endif
464
465static void
466bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
467{
468 device_t dev = sc->bge_dev;
469
470 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
471 pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
472}
473
474static void
475bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
476{
477 CSR_WRITE_4(sc, off, val);
478}
479
480static void
481bge_writembx(struct bge_softc *sc, int off, int val)
482{
483 if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
484 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
485
486 CSR_WRITE_4(sc, off, val);
487}
488
489static uint8_t
490bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
491{
492 uint32_t access, byte = 0;
493 int i;
494
495 /* Lock. */
496 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
497 for (i = 0; i < 8000; i++) {
498 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
499 break;
500 DELAY(20);
501 }
502 if (i == 8000)
503 return (1);
504
505 /* Enable access. */
506 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
507 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
508
509 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
510 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
511 for (i = 0; i < BGE_TIMEOUT * 10; i++) {
512 DELAY(10);
513 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
514 DELAY(10);
515 break;
516 }
517 }
518
519 if (i == BGE_TIMEOUT * 10) {
520 if_printf(&sc->arpcom.ac_if, "nvram read timed out\n");
521 return (1);
522 }
523
524 /* Get result. */
525 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
526
527 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
528
529 /* Disable access. */
530 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
531
532 /* Unlock. */
533 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
534 CSR_READ_4(sc, BGE_NVRAM_SWARB);
535
536 return (0);
537}
538
539/*
540 * Read a sequence of bytes from NVRAM.
541 */
542static int
543bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
544{
545 int err = 0, i;
546 uint8_t byte = 0;
547
548 if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
549 return (1);
550
551 for (i = 0; i < cnt; i++) {
552 err = bge_nvram_getbyte(sc, off + i, &byte);
553 if (err)
554 break;
555 *(dest + i) = byte;
556 }
557
558 return (err ? 1 : 0);
559}
560
561/*
562 * Read a byte of data stored in the EEPROM at address 'addr.' The
563 * BCM570x supports both the traditional bitbang interface and an
564 * auto access interface for reading the EEPROM. We use the auto
565 * access method.
566 */
567static uint8_t
568bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
569{
570 int i;
571 uint32_t byte = 0;
572
573 /*
574 * Enable use of auto EEPROM access so we can avoid
575 * having to use the bitbang method.
576 */
577 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
578
579 /* Reset the EEPROM, load the clock period. */
580 CSR_WRITE_4(sc, BGE_EE_ADDR,
581 BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
582 DELAY(20);
583
584 /* Issue the read EEPROM command. */
585 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
586
587 /* Wait for completion */
588 for(i = 0; i < BGE_TIMEOUT * 10; i++) {
589 DELAY(10);
590 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
591 break;
592 }
593
594 if (i == BGE_TIMEOUT) {
595 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
596 return(1);
597 }
598
599 /* Get result. */
600 byte = CSR_READ_4(sc, BGE_EE_DATA);
601
602 *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
603
604 return(0);
605}
606
607/*
608 * Read a sequence of bytes from the EEPROM.
609 */
610static int
611bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
612{
613 size_t i;
614 int err;
615 uint8_t byte;
616
617 for (byte = 0, err = 0, i = 0; i < len; i++) {
618 err = bge_eeprom_getbyte(sc, off + i, &byte);
619 if (err)
620 break;
621 *(dest + i) = byte;
622 }
623
624 return(err ? 1 : 0);
625}
626
627static int
628bge_miibus_readreg(device_t dev, int phy, int reg)
629{
630 struct bge_softc *sc = device_get_softc(dev);
631 struct ifnet *ifp = &sc->arpcom.ac_if;
632 uint32_t val, autopoll;
633 int i;
634
635 /*
636 * Broadcom's own driver always assumes the internal
637 * PHY is at GMII address 1. On some chips, the PHY responds
638 * to accesses at all addresses, which could cause us to
639 * bogusly attach the PHY 32 times at probe type. Always
640 * restricting the lookup to address 1 is simpler than
641 * trying to figure out which chips revisions should be
642 * special-cased.
643 */
644 if (phy != 1)
645 return(0);
646
647 /* Reading with autopolling on may trigger PCI errors */
648 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
649 if (autopoll & BGE_MIMODE_AUTOPOLL) {
650 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
651 DELAY(40);
652 }
653
654 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
655 BGE_MIPHY(phy)|BGE_MIREG(reg));
656
657 for (i = 0; i < BGE_TIMEOUT; i++) {
658 DELAY(10);
659 val = CSR_READ_4(sc, BGE_MI_COMM);
660 if (!(val & BGE_MICOMM_BUSY))
661 break;
662 }
663
664 if (i == BGE_TIMEOUT) {
665 if_printf(ifp, "PHY read timed out "
666 "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
667 val = 0;
668 goto done;
669 }
670
671 DELAY(5);
672 val = CSR_READ_4(sc, BGE_MI_COMM);
673
674done:
675 if (autopoll & BGE_MIMODE_AUTOPOLL) {
676 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
677 DELAY(40);
678 }
679
680 if (val & BGE_MICOMM_READFAIL)
681 return(0);
682
683 return(val & 0xFFFF);
684}
685
686static int
687bge_miibus_writereg(device_t dev, int phy, int reg, int val)
688{
689 struct bge_softc *sc = device_get_softc(dev);
690 uint32_t autopoll;
691 int i;
692
693 /*
694 * See the related comment in bge_miibus_readreg()
695 */
696 if (phy != 1)
697 return(0);
698
699 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
700 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
701 return(0);
702
703 /* Reading with autopolling on may trigger PCI errors */
704 autopoll = CSR_READ_4(sc, BGE_MI_MODE);
705 if (autopoll & BGE_MIMODE_AUTOPOLL) {
706 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
707 DELAY(40);
708 }
709
710 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
711 BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
712
713 for (i = 0; i < BGE_TIMEOUT; i++) {
714 DELAY(10);
715 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
716 DELAY(5);
717 CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
718 break;
719 }
720 }
721
722 if (autopoll & BGE_MIMODE_AUTOPOLL) {
723 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
724 DELAY(40);
725 }
726
727 if (i == BGE_TIMEOUT) {
728 if_printf(&sc->arpcom.ac_if, "PHY write timed out "
729 "(phy %d, reg %d, val %d)\n", phy, reg, val);
730 return(0);
731 }
732
733 return(0);
734}
735
736static void
737bge_miibus_statchg(device_t dev)
738{
739 struct bge_softc *sc;
740 struct mii_data *mii;
741
742 sc = device_get_softc(dev);
743 mii = device_get_softc(sc->bge_miibus);
744
745 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
746 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
747 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
748 } else {
749 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
750 }
751
752 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
753 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
754 } else {
755 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
756 }
757}
758
759/*
760 * Memory management for jumbo frames.
761 */
762static int
763bge_alloc_jumbo_mem(struct bge_softc *sc)
764{
765 struct ifnet *ifp = &sc->arpcom.ac_if;
766 struct bge_jslot *entry;
767 uint8_t *ptr;
768 bus_addr_t paddr;
769 int i, error;
770
771 /*
772 * Create tag for jumbo mbufs.
773 * This is really a bit of a kludge. We allocate a special
774 * jumbo buffer pool which (thanks to the way our DMA
775 * memory allocation works) will consist of contiguous
776 * pages. This means that even though a jumbo buffer might
777 * be larger than a page size, we don't really need to
778 * map it into more than one DMA segment. However, the
779 * default mbuf tag will result in multi-segment mappings,
780 * so we have to create a special jumbo mbuf tag that
781 * lets us get away with mapping the jumbo buffers as
782 * a single segment. I think eventually the driver should
783 * be changed so that it uses ordinary mbufs and cluster
784 * buffers, i.e. jumbo frames can span multiple DMA
785 * descriptors. But that's a project for another day.
786 */
787
788 /*
789 * Create DMA stuffs for jumbo RX ring.
790 */
791 error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
792 &sc->bge_cdata.bge_rx_jumbo_ring_tag,
793 &sc->bge_cdata.bge_rx_jumbo_ring_map,
794 (void *)&sc->bge_ldata.bge_rx_jumbo_ring,
795 &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
796 if (error) {
797 if_printf(ifp, "could not create jumbo RX ring\n");
798 return error;
799 }
800
801 /*
802 * Create DMA stuffs for jumbo buffer block.
803 */
804 error = bge_dma_block_alloc(sc, BGE_JMEM,
805 &sc->bge_cdata.bge_jumbo_tag,
806 &sc->bge_cdata.bge_jumbo_map,
807 (void **)&sc->bge_ldata.bge_jumbo_buf,
808 &paddr);
809 if (error) {
810 if_printf(ifp, "could not create jumbo buffer\n");
811 return error;
812 }
813
814 SLIST_INIT(&sc->bge_jfree_listhead);
815
816 /*
817 * Now divide it up into 9K pieces and save the addresses
818 * in an array. Note that we play an evil trick here by using
819 * the first few bytes in the buffer to hold the the address
820 * of the softc structure for this interface. This is because
821 * bge_jfree() needs it, but it is called by the mbuf management
822 * code which will not pass it to us explicitly.
823 */
824 for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
825 entry = &sc->bge_cdata.bge_jslots[i];
826 entry->bge_sc = sc;
827 entry->bge_buf = ptr;
828 entry->bge_paddr = paddr;
829 entry->bge_inuse = 0;
830 entry->bge_slot = i;
831 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
832
833 ptr += BGE_JLEN;
834 paddr += BGE_JLEN;
835 }
836 return 0;
837}
838
839static void
840bge_free_jumbo_mem(struct bge_softc *sc)
841{
842 /* Destroy jumbo RX ring. */
843 bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
844 sc->bge_cdata.bge_rx_jumbo_ring_map,
845 sc->bge_ldata.bge_rx_jumbo_ring);
846
847 /* Destroy jumbo buffer block. */
848 bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
849 sc->bge_cdata.bge_jumbo_map,
850 sc->bge_ldata.bge_jumbo_buf);
851}
852
853/*
854 * Allocate a jumbo buffer.
855 */
856static struct bge_jslot *
857bge_jalloc(struct bge_softc *sc)
858{
859 struct bge_jslot *entry;
860
861 lwkt_serialize_enter(&sc->bge_jslot_serializer);
862 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
863 if (entry) {
864 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
865 entry->bge_inuse = 1;
866 } else {
867 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
868 }
869 lwkt_serialize_exit(&sc->bge_jslot_serializer);
870 return(entry);
871}
872
873/*
874 * Adjust usage count on a jumbo buffer.
875 */
876static void
877bge_jref(void *arg)
878{
879 struct bge_jslot *entry = (struct bge_jslot *)arg;
880 struct bge_softc *sc = entry->bge_sc;
881
882 if (sc == NULL)
883 panic("bge_jref: can't find softc pointer!");
884
885 if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
886 panic("bge_jref: asked to reference buffer "
887 "that we don't manage!");
888 } else if (entry->bge_inuse == 0) {
889 panic("bge_jref: buffer already free!");
890 } else {
891 atomic_add_int(&entry->bge_inuse, 1);
892 }
893}
894
895/*
896 * Release a jumbo buffer.
897 */
898static void
899bge_jfree(void *arg)
900{
901 struct bge_jslot *entry = (struct bge_jslot *)arg;
902 struct bge_softc *sc = entry->bge_sc;
903
904 if (sc == NULL)
905 panic("bge_jfree: can't find softc pointer!");
906
907 if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
908 panic("bge_jfree: asked to free buffer that we don't manage!");
909 } else if (entry->bge_inuse == 0) {
910 panic("bge_jfree: buffer already free!");
911 } else {
912 /*
913 * Possible MP race to 0, use the serializer. The atomic insn
914 * is still needed for races against bge_jref().
915 */
916 lwkt_serialize_enter(&sc->bge_jslot_serializer);
917 atomic_subtract_int(&entry->bge_inuse, 1);
918 if (entry->bge_inuse == 0) {
919 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
920 entry, jslot_link);
921 }
922 lwkt_serialize_exit(&sc->bge_jslot_serializer);
923 }
924}
925
926
927/*
928 * Intialize a standard receive ring descriptor.
929 */
930static int
931bge_newbuf_std(struct bge_softc *sc, int i, int init)
932{
933 struct mbuf *m_new = NULL;
934 bus_dma_segment_t seg;
935 bus_dmamap_t map;
936 int error, nsegs;
937
938 m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
939 if (m_new == NULL)
940 return ENOBUFS;
941 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
942
943 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
944 m_adj(m_new, ETHER_ALIGN);
945
946 error = bus_dmamap_load_mbuf_segment(sc->bge_cdata.bge_rx_mtag,
947 sc->bge_cdata.bge_rx_tmpmap, m_new,
948 &seg, 1, &nsegs, BUS_DMA_NOWAIT);
949 if (error) {
950 m_freem(m_new);
951 return error;
952 }
953
954 if (!init) {
955 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
956 sc->bge_cdata.bge_rx_std_dmamap[i],
957 BUS_DMASYNC_POSTREAD);
958 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
959 sc->bge_cdata.bge_rx_std_dmamap[i]);
960 }
961
962 map = sc->bge_cdata.bge_rx_tmpmap;
963 sc->bge_cdata.bge_rx_tmpmap = sc->bge_cdata.bge_rx_std_dmamap[i];
964 sc->bge_cdata.bge_rx_std_dmamap[i] = map;
965
966 sc->bge_cdata.bge_rx_std_chain[i].bge_mbuf = m_new;
967 sc->bge_cdata.bge_rx_std_chain[i].bge_paddr = seg.ds_addr;
968
969 bge_setup_rxdesc_std(sc, i);
970 return 0;
971}
972
973static void
974bge_setup_rxdesc_std(struct bge_softc *sc, int i)
975{
976 struct bge_rxchain *rc;
977 struct bge_rx_bd *r;
978
979 rc = &sc->bge_cdata.bge_rx_std_chain[i];
980 r = &sc->bge_ldata.bge_rx_std_ring[i];
981
982 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
983 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
984 r->bge_len = rc->bge_mbuf->m_len;
985 r->bge_idx = i;
986 r->bge_flags = BGE_RXBDFLAG_END;
987}
988
989/*
990 * Initialize a jumbo receive ring descriptor. This allocates
991 * a jumbo buffer from the pool managed internally by the driver.
992 */
993static int
994bge_newbuf_jumbo(struct bge_softc *sc, int i, int init)
995{
996 struct mbuf *m_new = NULL;
997 struct bge_jslot *buf;
998 bus_addr_t paddr;
999
1000 /* Allocate the mbuf. */
1001 MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1002 if (m_new == NULL)
1003 return ENOBUFS;
1004
1005 /* Allocate the jumbo buffer */
1006 buf = bge_jalloc(sc);
1007 if (buf == NULL) {
1008 m_freem(m_new);
1009 return ENOBUFS;
1010 }
1011
1012 /* Attach the buffer to the mbuf. */
1013 m_new->m_ext.ext_arg = buf;
1014 m_new->m_ext.ext_buf = buf->bge_buf;
1015 m_new->m_ext.ext_free = bge_jfree;
1016 m_new->m_ext.ext_ref = bge_jref;
1017 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1018
1019 m_new->m_flags |= M_EXT;
1020
1021 m_new->m_data = m_new->m_ext.ext_buf;
1022 m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1023
1024 paddr = buf->bge_paddr;
1025 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
1026 m_adj(m_new, ETHER_ALIGN);
1027 paddr += ETHER_ALIGN;
1028 }
1029
1030 /* Save necessary information */
1031 sc->bge_cdata.bge_rx_jumbo_chain[i].bge_mbuf = m_new;
1032 sc->bge_cdata.bge_rx_jumbo_chain[i].bge_paddr = paddr;
1033
1034 /* Set up the descriptor. */
1035 bge_setup_rxdesc_jumbo(sc, i);
1036 return 0;
1037}
1038
1039static void
1040bge_setup_rxdesc_jumbo(struct bge_softc *sc, int i)
1041{
1042 struct bge_rx_bd *r;
1043 struct bge_rxchain *rc;
1044
1045 r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
1046 rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1047
1048 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1049 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1050 r->bge_len = rc->bge_mbuf->m_len;
1051 r->bge_idx = i;
1052 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1053}
1054
1055static int
1056bge_init_rx_ring_std(struct bge_softc *sc)
1057{
1058 int i, error;
1059
1060 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1061 error = bge_newbuf_std(sc, i, 1);
1062 if (error)
1063 return error;
1064 };
1065
1066 sc->bge_std = BGE_STD_RX_RING_CNT - 1;
1067 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1068
1069 return(0);
1070}
1071
1072static void
1073bge_free_rx_ring_std(struct bge_softc *sc)
1074{
1075 int i;
1076
1077 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1078 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_std_chain[i];
1079
1080 if (rc->bge_mbuf != NULL) {
1081 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1082 sc->bge_cdata.bge_rx_std_dmamap[i]);
1083 m_freem(rc->bge_mbuf);
1084 rc->bge_mbuf = NULL;
1085 }
1086 bzero(&sc->bge_ldata.bge_rx_std_ring[i],
1087 sizeof(struct bge_rx_bd));
1088 }
1089}
1090
1091static int
1092bge_init_rx_ring_jumbo(struct bge_softc *sc)
1093{
1094 struct bge_rcb *rcb;
1095 int i, error;
1096
1097 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1098 error = bge_newbuf_jumbo(sc, i, 1);
1099 if (error)
1100 return error;
1101 };
1102
1103 sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
1104
1105 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1106 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
1107 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1108
1109 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1110
1111 return(0);
1112}
1113
1114static void
1115bge_free_rx_ring_jumbo(struct bge_softc *sc)
1116{
1117 int i;
1118
1119 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1120 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1121
1122 if (rc->bge_mbuf != NULL) {
1123 m_freem(rc->bge_mbuf);
1124 rc->bge_mbuf = NULL;
1125 }
1126 bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
1127 sizeof(struct bge_rx_bd));
1128 }
1129}
1130
1131static void
1132bge_free_tx_ring(struct bge_softc *sc)
1133{
1134 int i;
1135
1136 for (i = 0; i < BGE_TX_RING_CNT; i++) {
1137 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1138 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1139 sc->bge_cdata.bge_tx_dmamap[i]);
1140 m_freem(sc->bge_cdata.bge_tx_chain[i]);
1141 sc->bge_cdata.bge_tx_chain[i] = NULL;
1142 }
1143 bzero(&sc->bge_ldata.bge_tx_ring[i],
1144 sizeof(struct bge_tx_bd));
1145 }
1146}
1147
1148static int
1149bge_init_tx_ring(struct bge_softc *sc)
1150{
1151 sc->bge_txcnt = 0;
1152 sc->bge_tx_saved_considx = 0;
1153 sc->bge_tx_prodidx = 0;
1154
1155 /* Initialize transmit producer index for host-memory send ring. */
1156 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1157
1158 /* 5700 b2 errata */
1159 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1160 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1161
1162 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1163 /* 5700 b2 errata */
1164 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1165 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1166
1167 return(0);
1168}
1169
1170static void
1171bge_setmulti(struct bge_softc *sc)
1172{
1173 struct ifnet *ifp;
1174 struct ifmultiaddr *ifma;
1175 uint32_t hashes[4] = { 0, 0, 0, 0 };
1176 int h, i;
1177
1178 ifp = &sc->arpcom.ac_if;
1179
1180 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1181 for (i = 0; i < 4; i++)
1182 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1183 return;
1184 }
1185
1186 /* First, zot all the existing filters. */
1187 for (i = 0; i < 4; i++)
1188 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1189
1190 /* Now program new ones. */
1191 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1192 if (ifma->ifma_addr->sa_family != AF_LINK)
1193 continue;
1194 h = ether_crc32_le(
1195 LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1196 ETHER_ADDR_LEN) & 0x7f;
1197 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1198 }
1199
1200 for (i = 0; i < 4; i++)
1201 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1202}
1203
1204/*
1205 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1206 * self-test results.
1207 */
1208static int
1209bge_chipinit(struct bge_softc *sc)
1210{
1211 int i;
1212 uint32_t dma_rw_ctl;
1213
1214 /* Set endian type before we access any non-PCI registers. */
1215 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
1216
1217 /* Clear the MAC control register */
1218 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1219
1220 /*
1221 * Clear the MAC statistics block in the NIC's
1222 * internal memory.
1223 */
1224 for (i = BGE_STATS_BLOCK;
1225 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1226 BGE_MEMWIN_WRITE(sc, i, 0);
1227
1228 for (i = BGE_STATUS_BLOCK;
1229 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1230 BGE_MEMWIN_WRITE(sc, i, 0);
1231
1232 /* Set up the PCI DMA control register. */
1233 if (sc->bge_flags & BGE_FLAG_PCIE) {
1234 /* PCI Express */
1235 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1236 (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1237 (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1238 } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1239 /* PCI-X bus */
1240 if (BGE_IS_5714_FAMILY(sc)) {
1241 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1242 dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1243 /* XXX magic values, Broadcom-supplied Linux driver */
1244 if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1245 dma_rw_ctl |= (1 << 20) | (1 << 18) |
1246 BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1247 } else {
1248 dma_rw_ctl |= (1 << 20) | (1 << 18) | (1 << 15);
1249 }
1250 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1251 /*
1252 * The 5704 uses a different encoding of read/write
1253 * watermarks.
1254 */
1255 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1256 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1257 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1258 } else {
1259 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1260 (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1261 (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1262 (0x0F);
1263 }
1264
1265 /*
1266 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1267 * for hardware bugs.
1268 */
1269 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1270 sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1271 uint32_t tmp;
1272
1273 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1274 if (tmp == 0x6 || tmp == 0x7)
1275 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1276 }
1277 } else {
1278 /* Conventional PCI bus */
1279 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1280 (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1281 (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1282 (0x0F);
1283 }
1284
1285 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1286 sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1287 sc->bge_asicrev == BGE_ASICREV_BCM5705)
1288 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1289 pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1290
1291 /*
1292 * Set up general mode register.
1293 */
1294 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1295 BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1296 BGE_MODECTL_TX_NO_PHDR_CSUM);
1297
1298 /*
1299 * BCM5701 B5 have a bug causing data corruption when using
1300 * 64-bit DMA reads, which can be terminated early and then
1301 * completed later as 32-bit accesses, in combination with
1302 * certain bridges.
1303 */
1304 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1305 sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1306 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1307
1308 /*
1309 * Disable memory write invalidate. Apparently it is not supported
1310 * properly by these devices.
1311 */
1312 PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1313
1314 /* Set the timer prescaler (always 66Mhz) */
1315 CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1316
1317 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1318 DELAY(40); /* XXX */
1319
1320 /* Put PHY into ready state */
1321 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1322 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1323 DELAY(40);
1324 }
1325
1326 return(0);
1327}
1328
1329static int
1330bge_blockinit(struct bge_softc *sc)
1331{
1332 struct bge_rcb *rcb;
1333 bus_size_t vrcb;
1334 bge_hostaddr taddr;
1335 uint32_t val;
1336 int i;
1337
1338 /*
1339 * Initialize the memory window pointer register so that
1340 * we can access the first 32K of internal NIC RAM. This will
1341 * allow us to set up the TX send ring RCBs and the RX return
1342 * ring RCBs, plus other things which live in NIC memory.
1343 */
1344 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1345
1346 /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1347
1348 if (!BGE_IS_5705_PLUS(sc)) {
1349 /* Configure mbuf memory pool */
1350 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1351 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1352 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1353 else
1354 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1355
1356 /* Configure DMA resource pool */
1357 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1358 BGE_DMA_DESCRIPTORS);
1359 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1360 }
1361
1362 /* Configure mbuf pool watermarks */
1363 if (!BGE_IS_5705_PLUS(sc)) {
1364 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1365 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1366 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1367 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1368 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1369 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1370 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1371 } else {
1372 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1373 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1374 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1375 }
1376
1377 /* Configure DMA resource watermarks */
1378 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1379 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1380
1381 /* Enable buffer manager */
1382 if (!BGE_IS_5705_PLUS(sc)) {
1383 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1384 BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1385
1386 /* Poll for buffer manager start indication */
1387 for (i = 0; i < BGE_TIMEOUT; i++) {
1388 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1389 break;
1390 DELAY(10);
1391 }
1392
1393 if (i == BGE_TIMEOUT) {
1394 if_printf(&sc->arpcom.ac_if,
1395 "buffer manager failed to start\n");
1396 return(ENXIO);
1397 }
1398 }
1399
1400 /* Enable flow-through queues */
1401 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1402 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1403
1404 /* Wait until queue initialization is complete */
1405 for (i = 0; i < BGE_TIMEOUT; i++) {
1406 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1407 break;
1408 DELAY(10);
1409 }
1410
1411 if (i == BGE_TIMEOUT) {
1412 if_printf(&sc->arpcom.ac_if,
1413 "flow-through queue init failed\n");
1414 return(ENXIO);
1415 }
1416
1417 /* Initialize the standard RX ring control block */
1418 rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1419 rcb->bge_hostaddr.bge_addr_lo =
1420 BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1421 rcb->bge_hostaddr.bge_addr_hi =
1422 BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1423 if (BGE_IS_5705_PLUS(sc))
1424 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1425 else
1426 rcb->bge_maxlen_flags =
1427 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1428 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1429 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1430 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1431 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1432 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1433
1434 /*
1435 * Initialize the jumbo RX ring control block
1436 * We set the 'ring disabled' bit in the flags
1437 * field until we're actually ready to start
1438 * using this ring (i.e. once we set the MTU
1439 * high enough to require it).
1440 */
1441 if (BGE_IS_JUMBO_CAPABLE(sc)) {
1442 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1443
1444 rcb->bge_hostaddr.bge_addr_lo =
1445 BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1446 rcb->bge_hostaddr.bge_addr_hi =
1447 BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1448 rcb->bge_maxlen_flags =
1449 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1450 BGE_RCB_FLAG_RING_DISABLED);
1451 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1452 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1453 rcb->bge_hostaddr.bge_addr_hi);
1454 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1455 rcb->bge_hostaddr.bge_addr_lo);
1456 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1457 rcb->bge_maxlen_flags);
1458 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1459
1460 /* Set up dummy disabled mini ring RCB */
1461 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1462 rcb->bge_maxlen_flags =
1463 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1464 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1465 rcb->bge_maxlen_flags);
1466 }
1467
1468 /*
1469 * Set the BD ring replentish thresholds. The recommended
1470 * values are 1/8th the number of descriptors allocated to
1471 * each ring.
1472 */
1473 if (BGE_IS_5705_PLUS(sc))
1474 val = 8;
1475 else
1476 val = BGE_STD_RX_RING_CNT / 8;
1477 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1478 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1479
1480 /*
1481 * Disable all unused send rings by setting the 'ring disabled'
1482 * bit in the flags field of all the TX send ring control blocks.
1483 * These are located in NIC memory.
1484 */
1485 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1486 for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1487 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1488 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1489 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1490 vrcb += sizeof(struct bge_rcb);
1491 }
1492
1493 /* Configure TX RCB 0 (we use only the first ring) */
1494 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1495 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1496 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1497 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1498 RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1499 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1500 if (!BGE_IS_5705_PLUS(sc)) {
1501 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1502 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1503 }
1504
1505 /* Disable all unused RX return rings */
1506 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1507 for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1508 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1509 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1510 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1511 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1512 BGE_RCB_FLAG_RING_DISABLED));
1513 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1514 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1515 (i * (sizeof(uint64_t))), 0);
1516 vrcb += sizeof(struct bge_rcb);
1517 }
1518
1519 /* Initialize RX ring indexes */
1520 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1521 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1522 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1523
1524 /*
1525 * Set up RX return ring 0
1526 * Note that the NIC address for RX return rings is 0x00000000.
1527 * The return rings live entirely within the host, so the
1528 * nicaddr field in the RCB isn't used.
1529 */
1530 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1531 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1532 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1533 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1534 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
1535 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1536 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1537
1538 /* Set random backoff seed for TX */
1539 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1540 sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1541 sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1542 sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1543 BGE_TX_BACKOFF_SEED_MASK);
1544
1545 /* Set inter-packet gap */
1546 CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1547
1548 /*
1549 * Specify which ring to use for packets that don't match
1550 * any RX rules.
1551 */
1552 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1553
1554 /*
1555 * Configure number of RX lists. One interrupt distribution
1556 * list, sixteen active lists, one bad frames class.
1557 */
1558 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1559
1560 /* Inialize RX list placement stats mask. */
1561 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1562 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1563
1564 /* Disable host coalescing until we get it set up */
1565 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1566
1567 /* Poll to make sure it's shut down. */
1568 for (i = 0; i < BGE_TIMEOUT; i++) {
1569 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1570 break;
1571 DELAY(10);
1572 }
1573
1574 if (i == BGE_TIMEOUT) {
1575 if_printf(&sc->arpcom.ac_if,
1576 "host coalescing engine failed to idle\n");
1577 return(ENXIO);
1578 }
1579
1580 /* Set up host coalescing defaults */
1581 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1582 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1583 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1584 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1585 if (!BGE_IS_5705_PLUS(sc)) {
1586 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1587 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1588 }
1589 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1590 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1591
1592 /* Set up address of statistics block */
1593 if (!BGE_IS_5705_PLUS(sc)) {
1594 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1595 BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1596 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1597 BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1598
1599 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1600 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1601 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1602 }
1603
1604 /* Set up address of status block */
1605 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1606 BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1607 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1608 BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1609 sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
1610 sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
1611
1612 /* Turn on host coalescing state machine */
1613 CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1614
1615 /* Turn on RX BD completion state machine and enable attentions */
1616 CSR_WRITE_4(sc, BGE_RBDC_MODE,
1617 BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1618
1619 /* Turn on RX list placement state machine */
1620 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1621
1622 /* Turn on RX list selector state machine. */
1623 if (!BGE_IS_5705_PLUS(sc))
1624 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1625
1626 /* Turn on DMA, clear stats */
1627 CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1628 BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1629 BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1630 BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1631 ((sc->bge_flags & BGE_FLAG_TBI) ?
1632 BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1633
1634 /* Set misc. local control, enable interrupts on attentions */
1635 CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1636
1637#ifdef notdef
1638 /* Assert GPIO pins for PHY reset */
1639 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1640 BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1641 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1642 BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1643#endif
1644
1645 /* Turn on DMA completion state machine */
1646 if (!BGE_IS_5705_PLUS(sc))
1647 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1648
1649 /* Turn on write DMA state machine */
1650 val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1651 if (BGE_IS_5755_PLUS(sc)) {
1652 /* Enable host coalescing bug fix. */
1653 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1654 }
1655 CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1656 DELAY(40);
1657
1658 /* Turn on read DMA state machine */
1659 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1660 if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1661 sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1662 sc->bge_asicrev == BGE_ASICREV_BCM57780)
1663 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1664 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1665 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1666 if (sc->bge_flags & BGE_FLAG_PCIE)
1667 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1668 CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1669 DELAY(40);
1670
1671 /* Turn on RX data completion state machine */
1672 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1673
1674 /* Turn on RX BD initiator state machine */
1675 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1676
1677 /* Turn on RX data and RX BD initiator state machine */
1678 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1679
1680 /* Turn on Mbuf cluster free state machine */
1681 if (!BGE_IS_5705_PLUS(sc))
1682 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1683
1684 /* Turn on send BD completion state machine */
1685 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1686
1687 /* Turn on send data completion state machine */
1688 val = BGE_SDCMODE_ENABLE;
1689 if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1690 val |= BGE_SDCMODE_CDELAY;
1691 CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1692
1693 /* Turn on send data initiator state machine */
1694 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1695
1696 /* Turn on send BD initiator state machine */
1697 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1698
1699 /* Turn on send BD selector state machine */
1700 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1701
1702 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1703 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1704 BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1705
1706 /* ack/clear link change events */
1707 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1708 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1709 BGE_MACSTAT_LINK_CHANGED);
1710 CSR_WRITE_4(sc, BGE_MI_STS, 0);
1711
1712 /* Enable PHY auto polling (for MII/GMII only) */
1713 if (sc->bge_flags & BGE_FLAG_TBI) {
1714 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1715 } else {
1716 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1717 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1718 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1719 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1720 BGE_EVTENB_MI_INTERRUPT);
1721 }
1722 }
1723
1724 /*
1725 * Clear any pending link state attention.
1726 * Otherwise some link state change events may be lost until attention
1727 * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1728 * It's not necessary on newer BCM chips - perhaps enabling link
1729 * state change attentions implies clearing pending attention.
1730 */
1731 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1732 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1733 BGE_MACSTAT_LINK_CHANGED);
1734
1735 /* Enable link state change attentions. */
1736 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1737
1738 return(0);
1739}
1740
1741/*
1742 * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1743 * against our list and return its name if we find a match. Note
1744 * that since the Broadcom controller contains VPD support, we
1745 * can get the device name string from the controller itself instead
1746 * of the compiled-in string. This is a little slow, but it guarantees
1747 * we'll always announce the right product name.
1748 */
1749static int
1750bge_probe(device_t dev)
1751{
1752 const struct bge_type *t;
1753 uint16_t product, vendor;
1754
1755 product = pci_get_device(dev);
1756 vendor = pci_get_vendor(dev);
1757
1758 for (t = bge_devs; t->bge_name != NULL; t++) {
1759 if (vendor == t->bge_vid && product == t->bge_did)
1760 break;
1761 }
1762 if (t->bge_name == NULL)
1763 return(ENXIO);
1764
1765 device_set_desc(dev, t->bge_name);
1766 if (pci_get_subvendor(dev) == PCI_VENDOR_DELL) {
1767 struct bge_softc *sc = device_get_softc(dev);
1768 sc->bge_flags |= BGE_FLAG_NO_3LED;
1769 }
1770 return(0);
1771}
1772
1773static int
1774bge_attach(device_t dev)
1775{
1776 struct ifnet *ifp;
1777 struct bge_softc *sc;
1778 uint32_t hwcfg = 0;
1779 int error = 0, rid;
1780 uint8_t ether_addr[ETHER_ADDR_LEN];
1781
1782 sc = device_get_softc(dev);
1783 sc->bge_dev = dev;
1784 callout_init(&sc->bge_stat_timer);
1785 lwkt_serialize_init(&sc->bge_jslot_serializer);
1786
1787#ifndef BURN_BRIDGES
1788 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1789 uint32_t irq, mem;
1790
1791 irq = pci_read_config(dev, PCIR_INTLINE, 4);
1792 mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
1793
1794 device_printf(dev, "chip is in D%d power mode "
1795 "-- setting to D0\n", pci_get_powerstate(dev));
1796
1797 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1798
1799 pci_write_config(dev, PCIR_INTLINE, irq, 4);
1800 pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
1801 }
1802#endif /* !BURN_BRIDGE */
1803
1804 /*
1805 * Map control/status registers.
1806 */
1807 pci_enable_busmaster(dev);
1808
1809 rid = BGE_PCI_BAR0;
1810 sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1811 RF_ACTIVE);
1812
1813 if (sc->bge_res == NULL) {
1814 device_printf(dev, "couldn't map memory\n");
1815 return ENXIO;
1816 }
1817
1818 sc->bge_btag = rman_get_bustag(sc->bge_res);
1819 sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1820
1821 /* Save various chip information */
1822 sc->bge_chipid =
1823 pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
1824 BGE_PCIMISCCTL_ASICREV_SHIFT;
1825 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG)
1826 sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
1827 sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1828 sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1829
1830 /* Save chipset family. */
1831 switch (sc->bge_asicrev) {
1832 case BGE_ASICREV_BCM5755:
1833 case BGE_ASICREV_BCM5761:
1834 case BGE_ASICREV_BCM5784:
1835 case BGE_ASICREV_BCM5785:
1836 case BGE_ASICREV_BCM5787:
1837 case BGE_ASICREV_BCM57780:
1838 sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
1839 BGE_FLAG_5705_PLUS;
1840 break;
1841
1842 case BGE_ASICREV_BCM5700:
1843 case BGE_ASICREV_BCM5701:
1844 case BGE_ASICREV_BCM5703:
1845 case BGE_ASICREV_BCM5704:
1846 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
1847 break;
1848
1849 case BGE_ASICREV_BCM5714_A0:
1850 case BGE_ASICREV_BCM5780:
1851 case BGE_ASICREV_BCM5714:
1852 sc->bge_flags |= BGE_FLAG_5714_FAMILY;
1853 /* Fall through */
1854
1855 case BGE_ASICREV_BCM5750:
1856 case BGE_ASICREV_BCM5752:
1857 case BGE_ASICREV_BCM5906:
1858 sc->bge_flags |= BGE_FLAG_575X_PLUS;
1859 /* Fall through */
1860
1861 case BGE_ASICREV_BCM5705:
1862 sc->bge_flags |= BGE_FLAG_5705_PLUS;
1863 break;
1864 }
1865
1866 if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
1867 sc->bge_flags |= BGE_FLAG_NO_EEPROM;
1868
1869 /*
1870 * Set various quirk flags.
1871 */
1872
1873 sc->bge_flags |= BGE_FLAG_ETH_WIRESPEED;
1874 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1875 (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
1876 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
1877 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
1878 sc->bge_asicrev == BGE_ASICREV_BCM5906)
1879 sc->bge_flags &= ~BGE_FLAG_ETH_WIRESPEED;
1880
1881 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
1882 sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
1883 sc->bge_flags |= BGE_FLAG_CRC_BUG;
1884
1885 if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
1886 sc->bge_chiprev == BGE_CHIPREV_5704_AX)
1887 sc->bge_flags |= BGE_FLAG_ADC_BUG;
1888
1889 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
1890 sc->bge_flags |= BGE_FLAG_5704_A0_BUG;
1891
1892 if (BGE_IS_5705_PLUS(sc) &&
1893 !(sc->bge_flags & BGE_FLAG_ADJUST_TRIM)) {
1894 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1895 sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
1896 sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1897 sc->bge_asicrev == BGE_ASICREV_BCM5787) {
1898 if (sc->bge_chipid != BGE_CHIPID_BCM5722_A0)
1899 sc->bge_flags |= BGE_FLAG_JITTER_BUG;
1900 } else if (sc->bge_asicrev != BGE_ASICREV_BCM5906) {
1901 sc->bge_flags |= BGE_FLAG_BER_BUG;
1902 }
1903 }
1904
1905 /* Allocate interrupt */
1906 rid = 0;
1907
1908 sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1909 RF_SHAREABLE | RF_ACTIVE);
1910
1911 if (sc->bge_irq == NULL) {
1912 device_printf(dev, "couldn't map interrupt\n");
1913 error = ENXIO;
1914 goto fail;
1915 }
1916
1917 /*
1918 * Check if this is a PCI-X or PCI Express device.
1919 */
1920 if (BGE_IS_5705_PLUS(sc)) {
1921 if (pci_is_pcie(dev)) {
1922 sc->bge_flags |= BGE_FLAG_PCIE;
1923 pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
1924 }
1925 } else {
1926 /*
1927 * Check if the device is in PCI-X Mode.
1928 * (This bit is not valid on PCI Express controllers.)
1929 */
1930 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
1931 BGE_PCISTATE_PCI_BUSMODE) == 0)
1932 sc->bge_flags |= BGE_FLAG_PCIX;
1933 }
1934
1935 device_printf(dev, "CHIP ID 0x%08x; "
1936 "ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
1937 sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
1938 (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X"
1939 : ((sc->bge_flags & BGE_FLAG_PCIE) ?
1940 "PCI-E" : "PCI"));
1941
1942 ifp = &sc->arpcom.ac_if;
1943 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1944
1945 /* Try to reset the chip. */
1946 bge_reset(sc);
1947
1948 if (bge_chipinit(sc)) {
1949 device_printf(dev, "chip initialization failed\n");
1950 error = ENXIO;
1951 goto fail;
1952 }
1953
1954 /*
1955 * Get station address
1956 */
1957 error = bge_get_eaddr(sc, ether_addr);
1958 if (error) {
1959 device_printf(dev, "failed to read station address\n");
1960 goto fail;
1961 }
1962
1963 /* 5705/5750 limits RX return ring to 512 entries. */
1964 if (BGE_IS_5705_PLUS(sc))
1965 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1966 else
1967 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1968
1969 error = bge_dma_alloc(sc);
1970 if (error)
1971 goto fail;
1972
1973 /* Set default tuneable values. */
1974 sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1975 sc->bge_rx_coal_ticks = bge_rx_coal_ticks;
1976 sc->bge_tx_coal_ticks = bge_tx_coal_ticks;
1977 sc->bge_rx_max_coal_bds = bge_rx_max_coal_bds;
1978 sc->bge_tx_max_coal_bds = bge_tx_max_coal_bds;
1979
1980 /* Set up ifnet structure */
1981 ifp->if_softc = sc;
1982 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1983 ifp->if_ioctl = bge_ioctl;
1984 ifp->if_start = bge_start;
1985#ifdef DEVICE_POLLING
1986 ifp->if_poll = bge_poll;
1987#endif
1988 ifp->if_watchdog = bge_watchdog;
1989 ifp->if_init = bge_init;
1990 ifp->if_mtu = ETHERMTU;
1991 ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
1992 ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1993 ifq_set_ready(&ifp->if_snd);
1994
1995 /*
1996 * 5700 B0 chips do not support checksumming correctly due
1997 * to hardware bugs.
1998 */
1999 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
2000 ifp->if_capabilities |= IFCAP_HWCSUM;
2001 ifp->if_hwassist = BGE_CSUM_FEATURES;
2002 }
2003 ifp->if_capenable = ifp->if_capabilities;
2004
2005 /*
2006 * Figure out what sort of media we have by checking the
2007 * hardware config word in the first 32k of NIC internal memory,
2008 * or fall back to examining the EEPROM if necessary.
2009 * Note: on some BCM5700 cards, this value appears to be unset.
2010 * If that's the case, we have to rely on identifying the NIC
2011 * by its PCI subsystem ID, as we do below for the SysKonnect
2012 * SK-9D41.
2013 */
2014 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
2015 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2016 else {
2017 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2018 sizeof(hwcfg))) {
2019 device_printf(dev, "failed to read EEPROM\n");
2020 error = ENXIO;
2021 goto fail;
2022 }
2023 hwcfg = ntohl(hwcfg);
2024 }
2025
2026 if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2027 sc->bge_flags |= BGE_FLAG_TBI;
2028
2029 /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2030 if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
2031 sc->bge_flags |= BGE_FLAG_TBI;
2032
2033 if (sc->bge_flags & BGE_FLAG_TBI) {
2034 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
2035 bge_ifmedia_upd, bge_ifmedia_sts);
2036 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2037 ifmedia_add(&sc->bge_ifmedia,
2038 IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2039 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2040 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2041 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2042 } else {
2043 /*
2044 * Do transceiver setup.
2045 */
2046 if (mii_phy_probe(dev, &sc->bge_miibus,
2047 bge_ifmedia_upd, bge_ifmedia_sts)) {
2048 device_printf(dev, "MII without any PHY!\n");
2049 error = ENXIO;
2050 goto fail;
2051 }
2052 }
2053
2054 /*
2055 * When using the BCM5701 in PCI-X mode, data corruption has
2056 * been observed in the first few bytes of some received packets.
2057 * Aligning the packet buffer in memory eliminates the corruption.
2058 * Unfortunately, this misaligns the packet payloads. On platforms
2059 * which do not support unaligned accesses, we will realign the
2060 * payloads by copying the received packets.
2061 */
2062 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2063 (sc->bge_flags & BGE_FLAG_PCIX))
2064 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2065
2066 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2067 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
2068 sc->bge_link_upd = bge_bcm5700_link_upd;
2069 sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
2070 } else if (sc->bge_flags & BGE_FLAG_TBI) {
2071 sc->bge_link_upd = bge_tbi_link_upd;
2072 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2073 } else {
2074 sc->bge_link_upd = bge_copper_link_upd;
2075 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2076 }
2077
2078 /*
2079 * Create sysctl nodes.
2080 */
2081 sysctl_ctx_init(&sc->bge_sysctl_ctx);
2082 sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
2083 SYSCTL_STATIC_CHILDREN(_hw),
2084 OID_AUTO,
2085 device_get_nameunit(dev),
2086 CTLFLAG_RD, 0, "");
2087 if (sc->bge_sysctl_tree == NULL) {
2088 device_printf(dev, "can't add sysctl node\n");
2089 error = ENXIO;
2090 goto fail;
2091 }
2092
2093 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2094 SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2095 OID_AUTO, "rx_coal_ticks",
2096 CTLTYPE_INT | CTLFLAG_RW,
2097 sc, 0, bge_sysctl_rx_coal_ticks, "I",
2098 "Receive coalescing ticks (usec).");
2099 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2100 SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2101 OID_AUTO, "tx_coal_ticks",
2102 CTLTYPE_INT | CTLFLAG_RW,
2103 sc, 0, bge_sysctl_tx_coal_ticks, "I",
2104 "Transmit coalescing ticks (usec).");
2105 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2106 SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2107 OID_AUTO, "rx_max_coal_bds",
2108 CTLTYPE_INT | CTLFLAG_RW,
2109 sc, 0, bge_sysctl_rx_max_coal_bds, "I",
2110 "Receive max coalesced BD count.");
2111 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2112 SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2113 OID_AUTO, "tx_max_coal_bds",
2114 CTLTYPE_INT | CTLFLAG_RW,
2115 sc, 0, bge_sysctl_tx_max_coal_bds, "I",
2116 "Transmit max coalesced BD count.");
2117
2118 /*
2119 * Call MI attach routine.
2120 */
2121 ether_ifattach(ifp, ether_addr, NULL);
2122
2123 error = bus_setup_intr(dev, sc->bge_irq, INTR_MPSAFE,
2124 bge_intr, sc, &sc->bge_intrhand,
2125 ifp->if_serializer);
2126 if (error) {
2127 ether_ifdetach(ifp);
2128 device_printf(dev, "couldn't set up irq\n");
2129 goto fail;
2130 }
2131
2132 ifp->if_cpuid = rman_get_cpuid(sc->bge_irq);
2133 KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
2134
2135 return(0);
2136fail:
2137 bge_detach(dev);
2138 return(error);
2139}
2140
2141static int
2142bge_detach(device_t dev)
2143{
2144 struct bge_softc *sc = device_get_softc(dev);
2145
2146 if (device_is_attached(dev)) {
2147 struct ifnet *ifp = &sc->arpcom.ac_if;
2148
2149 lwkt_serialize_enter(ifp->if_serializer);
2150 bge_stop(sc);
2151 bge_reset(sc);
2152 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2153 lwkt_serialize_exit(ifp->if_serializer);
2154
2155 ether_ifdetach(ifp);
2156 }
2157
2158 if (sc->bge_flags & BGE_FLAG_TBI)
2159 ifmedia_removeall(&sc->bge_ifmedia);
2160 if (sc->bge_miibus)
2161 device_delete_child(dev, sc->bge_miibus);
2162 bus_generic_detach(dev);
2163
2164 if (sc->bge_irq != NULL)
2165 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
2166
2167 if (sc->bge_res != NULL)
2168 bus_release_resource(dev, SYS_RES_MEMORY,
2169 BGE_PCI_BAR0, sc->bge_res);
2170
2171 if (sc->bge_sysctl_tree != NULL)
2172 sysctl_ctx_free(&sc->bge_sysctl_ctx);
2173
2174 bge_dma_free(sc);
2175
2176 return 0;
2177}
2178
2179static void
2180bge_reset(struct bge_softc *sc)
2181{
2182 device_t dev;
2183 uint32_t cachesize, command, pcistate, reset;
2184 void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2185 int i, val = 0;
2186
2187 dev = sc->bge_dev;
2188
2189 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
2190 sc->bge_asicrev != BGE_ASICREV_BCM5906) {
2191 if (sc->bge_flags & BGE_FLAG_PCIE)
2192 write_op = bge_writemem_direct;
2193 else
2194 write_op = bge_writemem_ind;
2195 } else {
2196 write_op = bge_writereg_ind;
2197 }
2198
2199 /* Save some important PCI state. */
2200 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2201 command = pci_read_config(dev, BGE_PCI_CMD, 4);
2202 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2203
2204 pci_write_config(dev, BGE_PCI_MISC_CTL,
2205 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2206 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
2207
2208 /* Disable fastboot on controllers that support it. */
2209 if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2210 BGE_IS_5755_PLUS(sc)) {
2211 if (bootverbose)
2212 if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2213 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2214 }
2215
2216 /*
2217 * Write the magic number to SRAM at offset 0xB50.
2218 * When firmware finishes its initialization it will
2219 * write ~BGE_MAGIC_NUMBER to the same location.
2220 */
2221 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2222
2223 reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2224
2225 /* XXX: Broadcom Linux driver. */
2226 if (sc->bge_flags & BGE_FLAG_PCIE) {
2227 if (CSR_READ_4(sc, 0x7e2c) == 0x60) /* PCIE 1.0 */
2228 CSR_WRITE_4(sc, 0x7e2c, 0x20);
2229 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2230 /* Prevent PCIE link training during global reset */
2231 CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2232 reset |= (1<<29);
2233 }
2234 }
2235
2236 /*
2237 * Set GPHY Power Down Override to leave GPHY
2238 * powered up in D0 uninitialized.
2239 */
2240 if (BGE_IS_5705_PLUS(sc))
2241 reset |= 0x04000000;
2242
2243 /* Issue global reset */
2244 write_op(sc, BGE_MISC_CFG, reset);
2245
2246 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2247 uint32_t status, ctrl;
2248
2249 status = CSR_READ_4(sc, BGE_VCPU_STATUS);
2250 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2251 status | BGE_VCPU_STATUS_DRV_RESET);
2252 ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2253 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2254 ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2255 }
2256
2257 DELAY(1000);
2258
2259 /* XXX: Broadcom Linux driver. */
2260 if (sc->bge_flags & BGE_FLAG_PCIE) {
2261 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2262 uint32_t v;
2263
2264 DELAY(500000); /* wait for link training to complete */
2265 v = pci_read_config(dev, 0xc4, 4);
2266 pci_write_config(dev, 0xc4, v | (1<<15), 4);
2267 }
2268 /*
2269 * Set PCIE max payload size to 128 bytes and
2270 * clear error status.
2271 */
2272 pci_write_config(dev, 0xd8, 0xf5000, 4);
2273 }
2274
2275 /* Reset some of the PCI state that got zapped by reset */
2276 pci_write_config(dev, BGE_PCI_MISC_CTL,
2277 BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2278 BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW, 4);
2279 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2280 pci_write_config(dev, BGE_PCI_CMD, command, 4);
2281 write_op(sc, BGE_MISC_CFG, (65 << 1));
2282
2283 /* Enable memory arbiter. */
2284 if (BGE_IS_5714_FAMILY(sc)) {
2285 uint32_t val;
2286
2287 val = CSR_READ_4(sc, BGE_MARB_MODE);
2288 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2289 } else {
2290 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2291 }
2292
2293 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2294 for (i = 0; i < BGE_TIMEOUT; i++) {
2295 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2296 if (val & BGE_VCPU_STATUS_INIT_DONE)
2297 break;
2298 DELAY(100);
2299 }
2300 if (i == BGE_TIMEOUT) {
2301 if_printf(&sc->arpcom.ac_if, "reset timed out\n");
2302 return;
2303 }
2304 } else {
2305 /*
2306 * Poll until we see the 1's complement of the magic number.
2307 * This indicates that the firmware initialization
2308 * is complete.
2309 */
2310 for (i = 0; i < BGE_FIRMWARE_TIMEOUT; i++) {
2311 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2312 if (val == ~BGE_MAGIC_NUMBER)
2313 break;
2314 DELAY(10);
2315 }
2316 if (i == BGE_FIRMWARE_TIMEOUT) {
2317 if_printf(&sc->arpcom.ac_if, "firmware handshake "
2318 "timed out, found 0x%08x\n", val);
2319 return;
2320 }
2321 }
2322
2323 /*
2324 * XXX Wait for the value of the PCISTATE register to
2325 * return to its original pre-reset state. This is a
2326 * fairly good indicator of reset completion. If we don't
2327 * wait for the reset to fully complete, trying to read
2328 * from the device's non-PCI registers may yield garbage
2329 * results.
2330 */
2331 for (i = 0; i < BGE_TIMEOUT; i++) {
2332 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2333 break;
2334 DELAY(10);
2335 }
2336
2337 if (sc->bge_flags & BGE_FLAG_PCIE) {
2338 reset = bge_readmem_ind(sc, 0x7c00);
2339 bge_writemem_ind(sc, 0x7c00, reset | (1 << 25));
2340 }
2341
2342 /* Fix up byte swapping */
2343 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2344 BGE_MODECTL_BYTESWAP_DATA);
2345
2346 CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2347
2348 /*
2349 * The 5704 in TBI mode apparently needs some special
2350 * adjustment to insure the SERDES drive level is set
2351 * to 1.2V.
2352 */
2353 if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2354 (sc->bge_flags & BGE_FLAG_TBI)) {
2355 uint32_t serdescfg;
2356
2357 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2358 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2359 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2360 }
2361
2362 /* XXX: Broadcom Linux driver. */
2363 if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2364 sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2365 uint32_t v;
2366
2367 v = CSR_READ_4(sc, 0x7c00);
2368 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
2369 }
2370
2371 DELAY(10000);
2372}
2373
2374/*
2375 * Frame reception handling. This is called if there's a frame
2376 * on the receive return list.
2377 *
2378 * Note: we have to be able to handle two possibilities here:
2379 * 1) the frame is from the jumbo recieve ring
2380 * 2) the frame is from the standard receive ring
2381 */
2382
2383static void
2384bge_rxeof(struct bge_softc *sc)
2385{
2386 struct ifnet *ifp;
2387 int stdcnt = 0, jumbocnt = 0;
2388
2389 if (sc->bge_rx_saved_considx ==
2390 sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx)
2391 return;
2392
2393 ifp = &sc->arpcom.ac_if;
2394
2395 while (sc->bge_rx_saved_considx !=
2396 sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx) {
2397 struct bge_rx_bd *cur_rx;
2398 uint32_t rxidx;
2399 struct mbuf *m = NULL;
2400 uint16_t vlan_tag = 0;
2401 int have_tag = 0;
2402
2403 cur_rx =
2404 &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
2405
2406 rxidx = cur_rx->bge_idx;
2407 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2408 logif(rx_pkt);
2409
2410 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2411 have_tag = 1;
2412 vlan_tag = cur_rx->bge_vlan_tag;
2413 }
2414
2415 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2416 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2417 jumbocnt++;
2418
2419 if (rxidx != sc->bge_jumbo) {
2420 ifp->if_ierrors++;
2421 if_printf(ifp, "sw jumbo index(%d) "
2422 "and hw jumbo index(%d) mismatch, drop!\n",
2423 sc->bge_jumbo, rxidx);
2424 bge_setup_rxdesc_jumbo(sc, rxidx);
2425 continue;
2426 }
2427
2428 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx].bge_mbuf;
2429 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2430 ifp->if_ierrors++;
2431 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
2432 continue;
2433 }
2434 if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 0)) {
2435 ifp->if_ierrors++;
2436 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
2437 continue;
2438 }
2439 } else {
2440 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2441 stdcnt++;
2442
2443 if (rxidx != sc->bge_std) {
2444 ifp->if_ierrors++;
2445 if_printf(ifp, "sw std index(%d) "
2446 "and hw std index(%d) mismatch, drop!\n",
2447 sc->bge_std, rxidx);
2448 bge_setup_rxdesc_std(sc, rxidx);
2449 continue;
2450 }
2451
2452 m = sc->bge_cdata.bge_rx_std_chain[rxidx].bge_mbuf;
2453 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2454 ifp->if_ierrors++;
2455 bge_setup_rxdesc_std(sc, sc->bge_std);
2456 continue;
2457 }
2458 if (bge_newbuf_std(sc, sc->bge_std, 0)) {
2459 ifp->if_ierrors++;
2460 bge_setup_rxdesc_std(sc, sc->bge_std);
2461 continue;
2462 }
2463 }
2464
2465 ifp->if_ipackets++;
2466#ifndef __i386__
2467 /*
2468 * The i386 allows unaligned accesses, but for other
2469 * platforms we must make sure the payload is aligned.
2470 */
2471 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
2472 bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2473 cur_rx->bge_len);
2474 m->m_data += ETHER_ALIGN;
2475 }
2476#endif
2477 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2478 m->m_pkthdr.rcvif = ifp;
2479
2480 if (ifp->if_capenable & IFCAP_RXCSUM) {
2481 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
2482 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2483 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2484 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2485 }
2486 if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
2487 m->m_pkthdr.len >= BGE_MIN_FRAME) {
2488 m->m_pkthdr.csum_data =
2489 cur_rx->bge_tcp_udp_csum;
2490 m->m_pkthdr.csum_flags |=
2491 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2492 }
2493 }
2494
2495 /*
2496 * If we received a packet with a vlan tag, pass it
2497 * to vlan_input() instead of ether_input().
2498 */
2499 if (have_tag) {
2500 m->m_flags |= M_VLANTAG;
2501 m->m_pkthdr.ether_vlantag = vlan_tag;
2502 have_tag = vlan_tag = 0;
2503 }
2504 ifp->if_input(ifp, m);
2505 }
2506
2507 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2508 if (stdcnt)
2509 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2510 if (jumbocnt)
2511 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2512}
2513
2514static void
2515bge_txeof(struct bge_softc *sc)
2516{
2517 struct bge_tx_bd *cur_tx = NULL;
2518 struct ifnet *ifp;
2519
2520 if (sc->bge_tx_saved_considx ==
2521 sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx)
2522 return;
2523
2524 ifp = &sc->arpcom.ac_if;
2525
2526 /*
2527 * Go through our tx ring and free mbufs for those
2528 * frames that have been sent.
2529 */
2530 while (sc->bge_tx_saved_considx !=
2531 sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) {
2532 uint32_t idx = 0;
2533
2534 idx = sc->bge_tx_saved_considx;
2535 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
2536 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2537 ifp->if_opackets++;
2538 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2539 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
2540 sc->bge_cdata.bge_tx_dmamap[idx]);
2541 m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2542 sc->bge_cdata.bge_tx_chain[idx] = NULL;
2543 }
2544 sc->bge_txcnt--;
2545 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2546 logif(tx_pkt);
2547 }
2548
2549 if (cur_tx != NULL &&
2550 (BGE_TX_RING_CNT - sc->bge_txcnt) >=
2551 (BGE_NSEG_RSVD + BGE_NSEG_SPARE))
2552 ifp->if_flags &= ~IFF_OACTIVE;
2553
2554 if (sc->bge_txcnt == 0)
2555 ifp->if_timer = 0;
2556
2557 if (!ifq_is_empty(&ifp->if_snd))
2558 if_devstart(ifp);
2559}
2560
2561#ifdef DEVICE_POLLING
2562
2563static void
2564bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2565{
2566 struct bge_softc *sc = ifp->if_softc;
2567 uint32_t status;
2568
2569 switch(cmd) {
2570 case POLL_REGISTER:
2571 bge_disable_intr(sc);
2572 break;
2573 case POLL_DEREGISTER:
2574 bge_enable_intr(sc);
2575 break;
2576 case POLL_AND_CHECK_STATUS:
2577 /*
2578 * Process link state changes.
2579 */
2580 status = CSR_READ_4(sc, BGE_MAC_STS);
2581 if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
2582 sc->bge_link_evt = 0;
2583 sc->bge_link_upd(sc, status);
2584 }
2585 /* fall through */
2586 case POLL_ONLY:
2587 if (ifp->if_flags & IFF_RUNNING) {
2588 bge_rxeof(sc);
2589 bge_txeof(sc);
2590 }
2591 break;
2592 }
2593}
2594
2595#endif
2596
2597static void
2598bge_intr(void *xsc)
2599{
2600 struct bge_softc *sc = xsc;
2601 struct ifnet *ifp = &sc->arpcom.ac_if;
2602 uint32_t status;
2603
2604 logif(intr);
2605
2606 /*
2607 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO. Don't
2608 * disable interrupts by writing nonzero like we used to, since with
2609 * our current organization this just gives complications and
2610 * pessimizations for re-enabling interrupts. We used to have races
2611 * instead of the necessary complications. Disabling interrupts
2612 * would just reduce the chance of a status update while we are
2613 * running (by switching to the interrupt-mode coalescence
2614 * parameters), but this chance is already very low so it is more
2615 * efficient to get another interrupt than prevent it.
2616 *
2617 * We do the ack first to ensure another interrupt if there is a
2618 * status update after the ack. We don't check for the status
2619 * changing later because it is more efficient to get another
2620 * interrupt than prevent it, not quite as above (not checking is
2621 * a smaller optimization than not toggling the interrupt enable,
2622 * since checking doesn't involve PCI accesses and toggling require
2623 * the status check). So toggling would probably be a pessimization
2624 * even with MSI. It would only be needed for using a task queue.
2625 */
2626 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
2627
2628 /*
2629 * Process link state changes.
2630 */
2631 status = CSR_READ_4(sc, BGE_MAC_STS);
2632 if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
2633 sc->bge_link_evt = 0;
2634 sc->bge_link_upd(sc, status);
2635 }
2636
2637 if (ifp->if_flags & IFF_RUNNING) {
2638 /* Check RX return ring producer/consumer */
2639 bge_rxeof(sc);
2640
2641 /* Check TX ring producer/consumer */
2642 bge_txeof(sc);
2643 }
2644
2645 if (sc->bge_coal_chg)
2646 bge_coal_change(sc);
2647}
2648
2649static void
2650bge_tick(void *xsc)
2651{
2652 struct bge_softc *sc = xsc;
2653 struct ifnet *ifp = &sc->arpcom.ac_if;
2654
2655 lwkt_serialize_enter(ifp->if_serializer);
2656
2657 if (BGE_IS_5705_PLUS(sc))
2658 bge_stats_update_regs(sc);
2659 else
2660 bge_stats_update(sc);
2661
2662 if (sc->bge_flags & BGE_FLAG_TBI) {
2663 /*
2664 * Since in TBI mode auto-polling can't be used we should poll
2665 * link status manually. Here we register pending link event
2666 * and trigger interrupt.
2667 */
2668 sc->bge_link_evt++;
2669 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
2670 } else if (!sc->bge_link) {
2671 mii_tick(device_get_softc(sc->bge_miibus));
2672 }
2673
2674 callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2675
2676 lwkt_serialize_exit(ifp->if_serializer);
2677}
2678
2679static void
2680bge_stats_update_regs(struct bge_softc *sc)
2681{
2682 struct ifnet *ifp = &sc->arpcom.ac_if;
2683 struct bge_mac_stats_regs stats;
2684 uint32_t *s;
2685 int i;
2686
2687 s = (uint32_t *)&stats;
2688 for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2689 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
2690 s++;
2691 }
2692
2693 ifp->if_collisions +=
2694 (stats.dot3StatsSingleCollisionFrames +
2695 stats.dot3StatsMultipleCollisionFrames +
2696 stats.dot3StatsExcessiveCollisions +
2697 stats.dot3StatsLateCollisions) -
2698 ifp->if_collisions;
2699}
2700
2701static void
2702bge_stats_update(struct bge_softc *sc)
2703{
2704 struct ifnet *ifp = &sc->arpcom.ac_if;
2705 bus_size_t stats;
2706
2707 stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2708
2709#define READ_STAT(sc, stats, stat) \
2710 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2711
2712 ifp->if_collisions +=
2713 (READ_STAT(sc, stats,
2714 txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
2715 READ_STAT(sc, stats,
2716 txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2717 READ_STAT(sc, stats,
2718 txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
2719 READ_STAT(sc, stats,
2720 txstats.dot3StatsLateCollisions.bge_addr_lo)) -
2721 ifp->if_collisions;
2722
2723#undef READ_STAT
2724
2725#ifdef notdef
2726 ifp->if_collisions +=
2727 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2728 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2729 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2730 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2731 ifp->if_collisions;
2732#endif
2733}
2734
2735/*
2736 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2737 * pointers to descriptors.
2738 */
2739static int
2740bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx)
2741{
2742 struct bge_tx_bd *d = NULL;
2743 uint16_t csum_flags = 0;
2744 bus_dma_segment_t segs[BGE_NSEG_NEW];
2745 bus_dmamap_t map;
2746 int error, maxsegs, nsegs, idx, i;
2747 struct mbuf *m_head = *m_head0;
2748
2749 if (m_head->m_pkthdr.csum_flags) {
2750 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2751 csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2752 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2753 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2754 if (m_head->m_flags & M_LASTFRAG)
2755 csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2756 else if (m_head->m_flags & M_FRAG)
2757 csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2758 }
2759
2760 idx = *txidx;
2761 map = sc->bge_cdata.bge_tx_dmamap[idx];
2762
2763 maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - BGE_NSEG_RSVD;
2764 KASSERT(maxsegs >= BGE_NSEG_SPARE,
2765 ("not enough segments %d", maxsegs));
2766
2767 if (maxsegs > BGE_NSEG_NEW)
2768 maxsegs = BGE_NSEG_NEW;
2769
2770 /*
2771 * Pad outbound frame to BGE_MIN_FRAME for an unusual reason.
2772 * The bge hardware will pad out Tx runts to BGE_MIN_FRAME,
2773 * but when such padded frames employ the bge IP/TCP checksum
2774 * offload, the hardware checksum assist gives incorrect results
2775 * (possibly from incorporating its own padding into the UDP/TCP
2776 * checksum; who knows). If we pad such runts with zeros, the
2777 * onboard checksum comes out correct.
2778 */
2779 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
2780 m_head->m_pkthdr.len < BGE_MIN_FRAME) {
2781 error = m_devpad(m_head, BGE_MIN_FRAME);
2782 if (error)
2783 goto back;
2784 }
2785
2786 error = bus_dmamap_load_mbuf_defrag(sc->bge_cdata.bge_tx_mtag, map,
2787 m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2788 if (error)
2789 goto back;
2790
2791 m_head = *m_head0;
2792 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
2793
2794 for (i = 0; ; i++) {
2795 d = &sc->bge_ldata.bge_tx_ring[idx];
2796
2797 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
2798 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
2799 d->bge_len = segs[i].ds_len;
2800 d->bge_flags = csum_flags;
2801
2802 if (i == nsegs - 1)
2803 break;
2804 BGE_INC(idx, BGE_TX_RING_CNT);
2805 }
2806 /* Mark the last segment as end of packet... */
2807 d->bge_flags |= BGE_TXBDFLAG_END;
2808
2809 /* Set vlan tag to the first segment of the packet. */
2810 d = &sc->bge_ldata.bge_tx_ring[*txidx];
2811 if (m_head->m_flags & M_VLANTAG) {
2812 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2813 d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
2814 } else {
2815 d->bge_vlan_tag = 0;
2816 }
2817
2818 /*
2819 * Insure that the map for this transmission is placed at
2820 * the array index of the last descriptor in this chain.
2821 */
2822 sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
2823 sc->bge_cdata.bge_tx_dmamap[idx] = map;
2824 sc->bge_cdata.bge_tx_chain[idx] = m_head;
2825 sc->bge_txcnt += nsegs;
2826
2827 BGE_INC(idx, BGE_TX_RING_CNT);
2828 *txidx = idx;
2829back:
2830 if (error) {
2831 m_freem(*m_head0);
2832 *m_head0 = NULL;
2833 }
2834 return error;
2835}
2836
2837/*
2838 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2839 * to the mbuf data regions directly in the transmit descriptors.
2840 */
2841static void
2842bge_start(struct ifnet *ifp)
2843{
2844 struct bge_softc *sc = ifp->if_softc;
2845 struct mbuf *m_head = NULL;
2846 uint32_t prodidx;
2847 int need_trans;
2848
2849 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2850 return;
2851
2852 prodidx = sc->bge_tx_prodidx;
2853
2854 need_trans = 0;
2855 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2856 m_head = ifq_dequeue(&ifp->if_snd, NULL);
2857 if (m_head == NULL)
2858 break;
2859
2860 /*
2861 * XXX
2862 * The code inside the if() block is never reached since we
2863 * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
2864 * requests to checksum TCP/UDP in a fragmented packet.
2865 *
2866 * XXX
2867 * safety overkill. If this is a fragmented packet chain
2868 * with delayed TCP/UDP checksums, then only encapsulate
2869 * it if we have enough descriptors to handle the entire
2870 * chain at once.
2871 * (paranoia -- may not actually be needed)
2872 */
2873 if ((m_head->m_flags & M_FIRSTFRAG) &&
2874 (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
2875 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2876 m_head->m_pkthdr.csum_data + BGE_NSEG_RSVD) {
2877 ifp->if_flags |= IFF_OACTIVE;
2878 ifq_prepend(&ifp->if_snd, m_head);
2879 break;
2880 }
2881 }
2882
2883 /*
2884 * Sanity check: avoid coming within BGE_NSEG_RSVD
2885 * descriptors of the end of the ring. Also make
2886 * sure there are BGE_NSEG_SPARE descriptors for
2887 * jumbo buffers' defragmentation.
2888 */
2889 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2890 (BGE_NSEG_RSVD + BGE_NSEG_SPARE)) {
2891 ifp->if_flags |= IFF_OACTIVE;
2892 ifq_prepend(&ifp->if_snd, m_head);
2893 break;
2894 }
2895
2896 /*
2897 * Pack the data into the transmit ring. If we
2898 * don't have room, set the OACTIVE flag and wait
2899 * for the NIC to drain the ring.
2900 */
2901 if (bge_encap(sc, &m_head, &prodidx)) {
2902 ifp->if_flags |= IFF_OACTIVE;
2903 ifp->if_oerrors++;
2904 break;
2905 }
2906 need_trans = 1;
2907
2908 ETHER_BPF_MTAP(ifp, m_head);
2909 }
2910
2911 if (!need_trans)
2912 return;
2913
2914 /* Transmit */
2915 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2916 /* 5700 b2 errata */
2917 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2918 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2919
2920 sc->bge_tx_prodidx = prodidx;
2921
2922 /*
2923 * Set a timeout in case the chip goes out to lunch.
2924 */
2925 ifp->if_timer = 5;
2926}
2927
2928static void
2929bge_init(void *xsc)
2930{
2931 struct bge_softc *sc = xsc;
2932 struct ifnet *ifp = &sc->arpcom.ac_if;
2933 uint16_t *m;
2934
2935 ASSERT_SERIALIZED(ifp->if_serializer);
2936
2937 if (ifp->if_flags & IFF_RUNNING)
2938 return;
2939
2940 /* Cancel pending I/O and flush buffers. */
2941 bge_stop(sc);
2942 bge_reset(sc);
2943 bge_chipinit(sc);
2944
2945 /*
2946 * Init the various state machines, ring
2947 * control blocks and firmware.
2948 */
2949 if (bge_blockinit(sc)) {
2950 if_printf(ifp, "initialization failure\n");
2951 bge_stop(sc);
2952 return;
2953 }
2954
2955 /* Specify MTU. */
2956 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2957 ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
2958
2959 /* Load our MAC address. */
2960 m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2961 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2962 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2963
2964 /* Enable or disable promiscuous mode as needed. */
2965 bge_setpromisc(sc);
2966
2967 /* Program multicast filter. */
2968 bge_setmulti(sc);
2969
2970 /* Init RX ring. */
2971 if (bge_init_rx_ring_std(sc)) {
2972 if_printf(ifp, "RX ring initialization failed\n");
2973 bge_stop(sc);
2974 return;
2975 }
2976
2977 /*
2978 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2979 * memory to insure that the chip has in fact read the first
2980 * entry of the ring.
2981 */
2982 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2983 uint32_t v, i;
2984 for (i = 0; i < 10; i++) {
2985 DELAY(20);
2986 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2987 if (v == (MCLBYTES - ETHER_ALIGN))
2988 break;
2989 }
2990 if (i == 10)
2991 if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
2992 }
2993
2994 /* Init jumbo RX ring. */
2995 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
2996 if (bge_init_rx_ring_jumbo(sc)) {
2997 if_printf(ifp, "Jumbo RX ring initialization failed\n");
2998 bge_stop(sc);
2999 return;
3000 }
3001 }
3002
3003 /* Init our RX return ring index */
3004 sc->bge_rx_saved_considx = 0;
3005
3006 /* Init TX ring. */
3007 bge_init_tx_ring(sc);
3008
3009 /* Turn on transmitter */
3010 BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3011
3012 /* Turn on receiver */
3013 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3014
3015 /* Tell firmware we're alive. */
3016 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3017
3018 /* Enable host interrupts if polling(4) is not enabled. */
3019 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3020#ifdef DEVICE_POLLING
3021 if (ifp->if_flags & IFF_POLLING)
3022 bge_disable_intr(sc);
3023 else
3024#endif
3025 bge_enable_intr(sc);
3026
3027 bge_ifmedia_upd(ifp);
3028
3029 ifp->if_flags |= IFF_RUNNING;
3030 ifp->if_flags &= ~IFF_OACTIVE;
3031
3032 callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3033}
3034
3035/*
3036 * Set media options.
3037 */
3038static int
3039bge_ifmedia_upd(struct ifnet *ifp)
3040{
3041 struct bge_softc *sc = ifp->if_softc;
3042
3043 /* If this is a 1000baseX NIC, enable the TBI port. */
3044 if (sc->bge_flags & BGE_FLAG_TBI) {
3045 struct ifmedia *ifm = &sc->bge_ifmedia;
3046
3047 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3048 return(EINVAL);
3049
3050 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3051 case IFM_AUTO:
3052 /*
3053 * The BCM5704 ASIC appears to have a special
3054 * mechanism for programming the autoneg
3055 * advertisement registers in TBI mode.
3056 */
3057 if (!bge_fake_autoneg &&
3058 sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3059 uint32_t sgdig;
3060
3061 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3062 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3063 sgdig |= BGE_SGDIGCFG_AUTO |
3064 BGE_SGDIGCFG_PAUSE_CAP |
3065 BGE_SGDIGCFG_ASYM_PAUSE;
3066 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3067 sgdig | BGE_SGDIGCFG_SEND);
3068 DELAY(5);
3069 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3070 }
3071 break;
3072 case IFM_1000_SX:
3073 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3074 BGE_CLRBIT(sc, BGE_MAC_MODE,
3075 BGE_MACMODE_HALF_DUPLEX);
3076 } else {
3077 BGE_SETBIT(sc, BGE_MAC_MODE,
3078 BGE_MACMODE_HALF_DUPLEX);
3079 }
3080 break;
3081 default:
3082 return(EINVAL);
3083 }
3084 } else {
3085 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3086
3087 sc->bge_link_evt++;
3088 sc->bge_link = 0;
3089 if (mii->mii_instance) {
3090 struct mii_softc *miisc;
3091
3092 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3093 mii_phy_reset(miisc);
3094 }
3095 mii_mediachg(mii);
3096 }
3097 return(0);
3098}
3099
3100/*
3101 * Report current media status.
3102 */
3103static void
3104bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3105{
3106 struct bge_softc *sc = ifp->if_softc;
3107
3108 if (sc->bge_flags & BGE_FLAG_TBI) {
3109 ifmr->ifm_status = IFM_AVALID;
3110 ifmr->ifm_active = IFM_ETHER;
3111 if (CSR_READ_4(sc, BGE_MAC_STS) &
3112 BGE_MACSTAT_TBI_PCS_SYNCHED) {
3113 ifmr->ifm_status |= IFM_ACTIVE;
3114 } else {
3115 ifmr->ifm_active |= IFM_NONE;
3116 return;
3117 }
3118
3119 ifmr->ifm_active |= IFM_1000_SX;
3120 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3121 ifmr->ifm_active |= IFM_HDX;
3122 else
3123 ifmr->ifm_active |= IFM_FDX;
3124 } else {
3125 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3126
3127 mii_pollstat(mii);
3128 ifmr->ifm_active = mii->mii_media_active;
3129 ifmr->ifm_status = mii->mii_media_status;
3130 }
3131}
3132
3133static int
3134bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3135{
3136 struct bge_softc *sc = ifp->if_softc;
3137 struct ifreq *ifr = (struct ifreq *)data;
3138 int mask, error = 0;
3139
3140 ASSERT_SERIALIZED(ifp->if_serializer);
3141
3142 switch (command) {
3143 case SIOCSIFMTU:
3144 if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3145 (BGE_IS_JUMBO_CAPABLE(sc) &&
3146 ifr->ifr_mtu > BGE_JUMBO_MTU)) {
3147 error = EINVAL;
3148 } else if (ifp->if_mtu != ifr->ifr_mtu) {
3149 ifp->if_mtu = ifr->ifr_mtu;
3150 ifp->if_flags &= ~IFF_RUNNING;
3151 bge_init(sc);
3152 }
3153 break;
3154 case SIOCSIFFLAGS:
3155 if (ifp->if_flags & IFF_UP) {
3156 if (ifp->if_flags & IFF_RUNNING) {
3157 mask = ifp->if_flags ^ sc->bge_if_flags;
3158
3159 /*
3160 * If only the state of the PROMISC flag
3161 * changed, then just use the 'set promisc
3162 * mode' command instead of reinitializing
3163 * the entire NIC. Doing a full re-init
3164 * means reloading the firmware and waiting
3165 * for it to start up, which may take a
3166 * second or two. Similarly for ALLMULTI.
3167 */
3168 if (mask & IFF_PROMISC)
3169 bge_setpromisc(sc);
3170 if (mask & IFF_ALLMULTI)
3171 bge_setmulti(sc);
3172 } else {
3173 bge_init(sc);
3174 }
3175 } else {
3176 if (ifp->if_flags & IFF_RUNNING)
3177 bge_stop(sc);
3178 }
3179 sc->bge_if_flags = ifp->if_flags;
3180 break;
3181 case SIOCADDMULTI:
3182 case SIOCDELMULTI:
3183 if (ifp->if_flags & IFF_RUNNING)
3184 bge_setmulti(sc);
3185 break;
3186 case SIOCSIFMEDIA:
3187 case SIOCGIFMEDIA:
3188 if (sc->bge_flags & BGE_FLAG_TBI) {
3189 error = ifmedia_ioctl(ifp, ifr,
3190 &sc->bge_ifmedia, command);
3191 } else {
3192 struct mii_data *mii;
3193
3194 mii = device_get_softc(sc->bge_miibus);
3195 error = ifmedia_ioctl(ifp, ifr,
3196 &mii->mii_media, command);
3197 }
3198 break;
3199 case SIOCSIFCAP:
3200 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3201 if (mask & IFCAP_HWCSUM) {
3202 ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
3203 if (IFCAP_HWCSUM & ifp->if_capenable)
3204 ifp->if_hwassist = BGE_CSUM_FEATURES;
3205 else
3206 ifp->if_hwassist = 0;
3207 }
3208 break;
3209 default:
3210 error = ether_ioctl(ifp, command, data);
3211 break;
3212 }
3213 return error;
3214}
3215
3216static void
3217bge_watchdog(struct ifnet *ifp)
3218{
3219 struct bge_softc *sc = ifp->if_softc;
3220
3221 if_printf(ifp, "watchdog timeout -- resetting\n");
3222
3223 ifp->if_flags &= ~IFF_RUNNING;
3224 bge_init(sc);
3225
3226 ifp->if_oerrors++;
3227
3228 if (!ifq_is_empty(&ifp->if_snd))
3229 if_devstart(ifp);
3230}
3231
3232/*
3233 * Stop the adapter and free any mbufs allocated to the
3234 * RX and TX lists.
3235 */
3236static void
3237bge_stop(struct bge_softc *sc)
3238{
3239 struct ifnet *ifp = &sc->arpcom.ac_if;
3240 struct ifmedia_entry *ifm;
3241 struct mii_data *mii = NULL;
3242 int mtmp, itmp;
3243
3244 ASSERT_SERIALIZED(ifp->if_serializer);
3245
3246 if ((sc->bge_flags & BGE_FLAG_TBI) == 0)
3247 mii = device_get_softc(sc->bge_miibus);
3248
3249 callout_stop(&sc->bge_stat_timer);
3250
3251 /*
3252 * Disable all of the receiver blocks
3253 */
3254 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3255 BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3256 BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3257 if (!BGE_IS_5705_PLUS(sc))
3258 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3259 BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3260 BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3261 BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3262
3263 /*
3264 * Disable all of the transmit blocks
3265 */
3266 BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3267 BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3268 BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3269 BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3270 BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3271 if (!BGE_IS_5705_PLUS(sc))
3272 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3273 BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3274
3275 /*
3276 * Shut down all of the memory managers and related
3277 * state machines.
3278 */
3279 BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3280 BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3281 if (!BGE_IS_5705_PLUS(sc))
3282 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3283 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3284 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3285 if (!BGE_IS_5705_PLUS(sc)) {
3286 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3287 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3288 }
3289
3290 /* Disable host interrupts. */
3291 bge_disable_intr(sc);
3292
3293 /*
3294 * Tell firmware we're shutting down.
3295 */
3296 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3297
3298 /* Free the RX lists. */
3299 bge_free_rx_ring_std(sc);
3300
3301 /* Free jumbo RX list. */
3302 if (BGE_IS_JUMBO_CAPABLE(sc))
3303 bge_free_rx_ring_jumbo(sc);
3304
3305 /* Free TX buffers. */
3306 bge_free_tx_ring(sc);
3307
3308 /*
3309 * Isolate/power down the PHY, but leave the media selection
3310 * unchanged so that things will be put back to normal when
3311 * we bring the interface back up.
3312 *
3313 * 'mii' may be NULL in the following cases:
3314 * - The device uses TBI.
3315 * - bge_stop() is called by bge_detach().
3316 */
3317 if (mii != NULL) {
3318 itmp = ifp->if_flags;
3319 ifp->if_flags |= IFF_UP;
3320 ifm = mii->mii_media.ifm_cur;
3321 mtmp = ifm->ifm_media;
3322 ifm->ifm_media = IFM_ETHER|IFM_NONE;
3323 mii_mediachg(mii);
3324 ifm->ifm_media = mtmp;
3325 ifp->if_flags = itmp;
3326 }
3327
3328 sc->bge_link = 0;
3329 sc->bge_coal_chg = 0;
3330
3331 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3332
3333 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3334 ifp->if_timer = 0;
3335}
3336
3337/*
3338 * Stop all chip I/O so that the kernel's probe routines don't
3339 * get confused by errant DMAs when rebooting.
3340 */
3341static void
3342bge_shutdown(device_t dev)
3343{
3344 struct bge_softc *sc = device_get_softc(dev);
3345 struct ifnet *ifp = &sc->arpcom.ac_if;
3346
3347 lwkt_serialize_enter(ifp->if_serializer);
3348 bge_stop(sc);
3349 bge_reset(sc);
3350 lwkt_serialize_exit(ifp->if_serializer);
3351}
3352
3353static int
3354bge_suspend(device_t dev)
3355{
3356 struct bge_softc *sc = device_get_softc(dev);
3357 struct ifnet *ifp = &sc->arpcom.ac_if;
3358
3359 lwkt_serialize_enter(ifp->if_serializer);
3360 bge_stop(sc);
3361 lwkt_serialize_exit(ifp->if_serializer);
3362
3363 return 0;
3364}
3365
3366static int
3367bge_resume(device_t dev)
3368{
3369 struct bge_softc *sc = device_get_softc(dev);
3370 struct ifnet *ifp = &sc->arpcom.ac_if;
3371
3372 lwkt_serialize_enter(ifp->if_serializer);
3373
3374 if (ifp->if_flags & IFF_UP) {
3375 bge_init(sc);
3376
3377 if (!ifq_is_empty(&ifp->if_snd))
3378 if_devstart(ifp);
3379 }
3380
3381 lwkt_serialize_exit(ifp->if_serializer);
3382
3383 return 0;
3384}
3385
3386static void
3387bge_setpromisc(struct bge_softc *sc)
3388{
3389 struct ifnet *ifp = &sc->arpcom.ac_if;
3390
3391 if (ifp->if_flags & IFF_PROMISC)
3392 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3393 else
3394 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3395}
3396
3397static void
3398bge_dma_free(struct bge_softc *sc)
3399{
3400 int i;
3401
3402 /* Destroy RX mbuf DMA stuffs. */
3403 if (sc->bge_cdata.bge_rx_mtag != NULL) {
3404 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3405 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
3406 sc->bge_cdata.bge_rx_std_dmamap[i]);
3407 }
3408 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
3409 sc->bge_cdata.bge_rx_tmpmap);
3410 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
3411 }
3412
3413 /* Destroy TX mbuf DMA stuffs. */
3414 if (sc->bge_cdata.bge_tx_mtag != NULL) {
3415 for (i = 0; i < BGE_TX_RING_CNT; i++) {
3416 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
3417 sc->bge_cdata.bge_tx_dmamap[i]);
3418 }
3419 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
3420 }
3421
3422 /* Destroy standard RX ring */
3423 bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
3424 sc->bge_cdata.bge_rx_std_ring_map,
3425 sc->bge_ldata.bge_rx_std_ring);
3426
3427 if (BGE_IS_JUMBO_CAPABLE(sc))
3428 bge_free_jumbo_mem(sc);
3429
3430 /* Destroy RX return ring */
3431 bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
3432 sc->bge_cdata.bge_rx_return_ring_map,
3433 sc->bge_ldata.bge_rx_return_ring);
3434
3435 /* Destroy TX ring */
3436 bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
3437 sc->bge_cdata.bge_tx_ring_map,
3438 sc->bge_ldata.bge_tx_ring);
3439
3440 /* Destroy status block */
3441 bge_dma_block_free(sc->bge_cdata.bge_status_tag,
3442 sc->bge_cdata.bge_status_map,
3443 sc->bge_ldata.bge_status_block);
3444
3445 /* Destroy statistics block */
3446 bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
3447 sc->bge_cdata.bge_stats_map,
3448 sc->bge_ldata.bge_stats);
3449
3450 /* Destroy the parent tag */
3451 if (sc->bge_cdata.bge_parent_tag != NULL)
3452 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
3453}
3454
3455static int
3456bge_dma_alloc(struct bge_softc *sc)
3457{
3458 struct ifnet *ifp = &sc->arpcom.ac_if;
3459 int i, error;
3460
3461 /*
3462 * Allocate the parent bus DMA tag appropriate for PCI.
3463 */
3464 error = bus_dma_tag_create(NULL, 1, 0,
3465 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3466 NULL, NULL,
3467 BUS_SPACE_MAXSIZE_32BIT, 0,
3468 BUS_SPACE_MAXSIZE_32BIT,
3469 0, &sc->bge_cdata.bge_parent_tag);
3470 if (error) {
3471 if_printf(ifp, "could not allocate parent dma tag\n");
3472 return error;
3473 }
3474
3475 /*
3476 * Create DMA tag and maps for RX mbufs.
3477 */
3478 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
3479 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3480 NULL, NULL, MCLBYTES, 1, MCLBYTES,
3481 BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
3482 &sc->bge_cdata.bge_rx_mtag);
3483 if (error) {
3484 if_printf(ifp, "could not allocate RX mbuf dma tag\n");
3485 return error;
3486 }
3487
3488 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
3489 BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_tmpmap);
3490 if (error) {
3491 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
3492 sc->bge_cdata.bge_rx_mtag = NULL;
3493 return error;
3494 }
3495
3496 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3497 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
3498 BUS_DMA_WAITOK,
3499 &sc->bge_cdata.bge_rx_std_dmamap[i]);
3500 if (error) {
3501 int j;
3502
3503 for (j = 0; j < i; ++j) {
3504 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
3505 sc->bge_cdata.bge_rx_std_dmamap[j]);
3506 }
3507 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
3508 sc->bge_cdata.bge_rx_mtag = NULL;
3509
3510 if_printf(ifp, "could not create DMA map for RX\n");
3511 return error;
3512 }
3513 }
3514
3515 /*
3516 * Create DMA tag and maps for TX mbufs.
3517 */
3518 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
3519 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3520 NULL, NULL,
3521 BGE_JUMBO_FRAMELEN, BGE_NSEG_NEW, MCLBYTES,
3522 BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
3523 BUS_DMA_ONEBPAGE,
3524 &sc->bge_cdata.bge_tx_mtag);
3525 if (error) {
3526 if_printf(ifp, "could not allocate TX mbuf dma tag\n");
3527 return error;
3528 }
3529
3530 for (i = 0; i < BGE_TX_RING_CNT; i++) {
3531 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag,
3532 BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
3533 &sc->bge_cdata.bge_tx_dmamap[i]);
3534 if (error) {
3535 int j;
3536
3537 for (j = 0; j < i; ++j) {
3538 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
3539 sc->bge_cdata.bge_tx_dmamap[j]);
3540 }
3541 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
3542 sc->bge_cdata.bge_tx_mtag = NULL;
3543
3544 if_printf(ifp, "could not create DMA map for TX\n");
3545 return error;
3546 }
3547 }
3548
3549 /*
3550 * Create DMA stuffs for standard RX ring.
3551 */
3552 error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
3553 &sc->bge_cdata.bge_rx_std_ring_tag,
3554 &sc->bge_cdata.bge_rx_std_ring_map,
3555 (void *)&sc->bge_ldata.bge_rx_std_ring,
3556 &sc->bge_ldata.bge_rx_std_ring_paddr);
3557 if (error) {
3558 if_printf(ifp, "could not create std RX ring\n");
3559 return error;
3560 }
3561
3562 /*
3563 * Create jumbo buffer pool.
3564 */
3565 if (BGE_IS_JUMBO_CAPABLE(sc)) {
3566 error = bge_alloc_jumbo_mem(sc);
3567 if (error) {
3568 if_printf(ifp, "could not create jumbo buffer pool\n");
3569 return error;
3570 }
3571 }
3572
3573 /*
3574 * Create DMA stuffs for RX return ring.
3575 */
3576 error = bge_dma_block_alloc(sc, BGE_RX_RTN_RING_SZ(sc),
3577 &sc->bge_cdata.bge_rx_return_ring_tag,
3578 &sc->bge_cdata.bge_rx_return_ring_map,
3579 (void *)&sc->bge_ldata.bge_rx_return_ring,
3580 &sc->bge_ldata.bge_rx_return_ring_paddr);
3581 if (error) {
3582 if_printf(ifp, "could not create RX ret ring\n");
3583 return error;
3584 }
3585
3586 /*
3587 * Create DMA stuffs for TX ring.
3588 */
3589 error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
3590 &sc->bge_cdata.bge_tx_ring_tag,
3591 &sc->bge_cdata.bge_tx_ring_map,
3592 (void *)&sc->bge_ldata.bge_tx_ring,
3593 &sc->bge_ldata.bge_tx_ring_paddr);
3594 if (error) {
3595 if_printf(ifp, "could not create TX ring\n");
3596 return error;
3597 }
3598
3599 /*
3600 * Create DMA stuffs for status block.
3601 */
3602 error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
3603 &sc->bge_cdata.bge_status_tag,
3604 &sc->bge_cdata.bge_status_map,
3605 (void *)&sc->bge_ldata.bge_status_block,
3606 &sc->bge_ldata.bge_status_block_paddr);
3607 if (error) {
3608 if_printf(ifp, "could not create status block\n");
3609 return error;
3610 }
3611
3612 /*
3613 * Create DMA stuffs for statistics block.
3614 */
3615 error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
3616 &sc->bge_cdata.bge_stats_tag,
3617 &sc->bge_cdata.bge_stats_map,
3618 (void *)&sc->bge_ldata.bge_stats,
3619 &sc->bge_ldata.bge_stats_paddr);
3620 if (error) {
3621 if_printf(ifp, "could not create stats block\n");
3622 return error;
3623 }
3624 return 0;
3625}
3626
3627static int
3628bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
3629 bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
3630{
3631 bus_dmamem_t dmem;
3632 int error;
3633
3634 error = bus_dmamem_coherent(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
3635 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3636 size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
3637 if (error)
3638 return error;
3639
3640 *tag = dmem.dmem_tag;
3641 *map = dmem.dmem_map;
3642 *addr = dmem.dmem_addr;
3643 *paddr = dmem.dmem_busaddr;
3644
3645 return 0;
3646}
3647
3648static void
3649bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
3650{
3651 if (tag != NULL) {
3652 bus_dmamap_unload(tag, map);
3653 bus_dmamem_free(tag, addr, map);
3654 bus_dma_tag_destroy(tag);
3655 }
3656}
3657
3658/*
3659 * Grrr. The link status word in the status block does
3660 * not work correctly on the BCM5700 rev AX and BX chips,
3661 * according to all available information. Hence, we have
3662 * to enable MII interrupts in order to properly obtain
3663 * async link changes. Unfortunately, this also means that
3664 * we have to read the MAC status register to detect link
3665 * changes, thereby adding an additional register access to
3666 * the interrupt handler.
3667 *
3668 * XXX: perhaps link state detection procedure used for
3669 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
3670 */
3671static void
3672bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
3673{
3674 struct ifnet *ifp = &sc->arpcom.ac_if;
3675 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3676
3677 mii_pollstat(mii);
3678
3679 if (!sc->bge_link &&
3680 (mii->mii_media_status & IFM_ACTIVE) &&
3681 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3682 sc->bge_link++;
3683 if (bootverbose)
3684 if_printf(ifp, "link UP\n");
3685 } else if (sc->bge_link &&
3686 (!(mii->mii_media_status & IFM_ACTIVE) ||
3687 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
3688 sc->bge_link = 0;
3689 if (bootverbose)
3690 if_printf(ifp, "link DOWN\n");
3691 }
3692
3693 /* Clear the interrupt. */
3694 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
3695 bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
3696 bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
3697}
3698
3699static void
3700bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
3701{
3702 struct ifnet *ifp = &sc->arpcom.ac_if;
3703
3704#define PCS_ENCODE_ERR (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
3705
3706 /*
3707 * Sometimes PCS encoding errors are detected in
3708 * TBI mode (on fiber NICs), and for some reason
3709 * the chip will signal them as link changes.
3710 * If we get a link change event, but the 'PCS
3711 * encoding error' bit in the MAC status register
3712 * is set, don't bother doing a link check.
3713 * This avoids spurious "gigabit link up" messages
3714 * that sometimes appear on fiber NICs during
3715 * periods of heavy traffic.
3716 */
3717 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
3718 if (!sc->bge_link) {
3719 sc->bge_link++;
3720 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3721 BGE_CLRBIT(sc, BGE_MAC_MODE,
3722 BGE_MACMODE_TBI_SEND_CFGS);
3723 }
3724 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3725
3726 if (bootverbose)
3727 if_printf(ifp, "link UP\n");
3728
3729 ifp->if_link_state = LINK_STATE_UP;
3730 if_link_state_change(ifp);
3731 }
3732 } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
3733 if (sc->bge_link) {
3734 sc->bge_link = 0;
3735
3736 if (bootverbose)
3737 if_printf(ifp, "link DOWN\n");
3738
3739 ifp->if_link_state = LINK_STATE_DOWN;
3740 if_link_state_change(ifp);
3741 }
3742 }
3743
3744#undef PCS_ENCODE_ERR
3745
3746 /* Clear the attention. */
3747 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3748 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3749 BGE_MACSTAT_LINK_CHANGED);
3750}
3751
3752static void
3753bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
3754{
3755 /*
3756 * Check that the AUTOPOLL bit is set before
3757 * processing the event as a real link change.
3758 * Turning AUTOPOLL on and off in the MII read/write
3759 * functions will often trigger a link status
3760 * interrupt for no reason.
3761 */
3762 if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) {
3763 struct ifnet *ifp = &sc->arpcom.ac_if;
3764 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3765
3766 mii_pollstat(mii);
3767
3768 if (!sc->bge_link &&
3769 (mii->mii_media_status & IFM_ACTIVE) &&
3770 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3771 sc->bge_link++;
3772 if (bootverbose)
3773 if_printf(ifp, "link UP\n");
3774 } else if (sc->bge_link &&
3775 (!(mii->mii_media_status & IFM_ACTIVE) ||
3776 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
3777 sc->bge_link = 0;
3778 if (bootverbose)
3779 if_printf(ifp, "link DOWN\n");
3780 }
3781 }
3782
3783 /* Clear the attention. */
3784 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3785 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3786 BGE_MACSTAT_LINK_CHANGED);
3787}
3788
3789static int
3790bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
3791{
3792 struct bge_softc *sc = arg1;
3793
3794 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3795 &sc->bge_rx_coal_ticks,
3796 BGE_RX_COAL_TICKS_CHG);
3797}
3798
3799static int
3800bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
3801{
3802 struct bge_softc *sc = arg1;
3803
3804 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3805 &sc->bge_tx_coal_ticks,
3806 BGE_TX_COAL_TICKS_CHG);
3807}
3808
3809static int
3810bge_sysctl_rx_max_coal_bds(SYSCTL_HANDLER_ARGS)
3811{
3812 struct bge_softc *sc = arg1;
3813
3814 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3815 &sc->bge_rx_max_coal_bds,
3816 BGE_RX_MAX_COAL_BDS_CHG);
3817}
3818
3819static int
3820bge_sysctl_tx_max_coal_bds(SYSCTL_HANDLER_ARGS)
3821{
3822 struct bge_softc *sc = arg1;
3823
3824 return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
3825 &sc->bge_tx_max_coal_bds,
3826 BGE_TX_MAX_COAL_BDS_CHG);
3827}
3828
3829static int
3830bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
3831 uint32_t coal_chg_mask)
3832{
3833 struct bge_softc *sc = arg1;
3834 struct ifnet *ifp = &sc->arpcom.ac_if;
3835 int error = 0, v;
3836
3837 lwkt_serialize_enter(ifp->if_serializer);
3838
3839 v = *coal;
3840 error = sysctl_handle_int(oidp, &v, 0, req);
3841 if (!error && req->newptr != NULL) {
3842 if (v < 0) {
3843 error = EINVAL;
3844 } else {
3845 *coal = v;
3846 sc->bge_coal_chg |= coal_chg_mask;
3847 }
3848 }
3849
3850 lwkt_serialize_exit(ifp->if_serializer);
3851 return error;
3852}
3853
3854static void
3855bge_coal_change(struct bge_softc *sc)
3856{
3857 struct ifnet *ifp = &sc->arpcom.ac_if;
3858 uint32_t val;
3859
3860 ASSERT_SERIALIZED(ifp->if_serializer);
3861
3862 if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
3863 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
3864 sc->bge_rx_coal_ticks);
3865 DELAY(10);
3866 val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3867
3868 if (bootverbose) {
3869 if_printf(ifp, "rx_coal_ticks -> %u\n",
3870 sc->bge_rx_coal_ticks);
3871 }
3872 }
3873
3874 if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
3875 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
3876 sc->bge_tx_coal_ticks);
3877 DELAY(10);
3878 val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
3879
3880 if (bootverbose) {
3881 if_printf(ifp, "tx_coal_ticks -> %u\n",
3882 sc->bge_tx_coal_ticks);
3883 }
3884 }
3885
3886 if (sc->bge_coal_chg & BGE_RX_MAX_COAL_BDS_CHG) {
3887 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
3888 sc->bge_rx_max_coal_bds);
3889 DELAY(10);
3890 val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3891
3892 if (bootverbose) {
3893 if_printf(ifp, "rx_max_coal_bds -> %u\n",
3894 sc->bge_rx_max_coal_bds);
3895 }
3896 }
3897
3898 if (sc->bge_coal_chg & BGE_TX_MAX_COAL_BDS_CHG) {
3899 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
3900 sc->bge_tx_max_coal_bds);
3901 DELAY(10);
3902 val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
3903
3904 if (bootverbose) {
3905 if_printf(ifp, "tx_max_coal_bds -> %u\n",
3906 sc->bge_tx_max_coal_bds);
3907 }
3908 }
3909
3910 sc->bge_coal_chg = 0;
3911}
3912
3913static void
3914bge_enable_intr(struct bge_softc *sc)
3915{
3916 struct ifnet *ifp = &sc->arpcom.ac_if;
3917
3918 lwkt_serialize_handler_enable(ifp->if_serializer);
3919
3920 /*
3921 * Enable interrupt.
3922 */
3923 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3924
3925 /*
3926 * Unmask the interrupt when we stop polling.
3927 */
3928 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3929
3930 /*
3931 * Trigger another interrupt, since above writing
3932 * to interrupt mailbox0 may acknowledge pending
3933 * interrupt.
3934 */
3935 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3936}
3937
3938static void
3939bge_disable_intr(struct bge_softc *sc)
3940{
3941 struct ifnet *ifp = &sc->arpcom.ac_if;
3942
3943 /*
3944 * Mask the interrupt when we start polling.
3945 */
3946 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3947
3948 /*
3949 * Acknowledge possible asserted interrupt.
3950 */
3951 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3952
3953 lwkt_serialize_handler_disable(ifp->if_serializer);
3954}
3955
3956static int
3957bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
3958{
3959 uint32_t mac_addr;
3960 int ret = 1;
3961
3962 mac_addr = bge_readmem_ind(sc, 0x0c14);
3963 if ((mac_addr >> 16) == 0x484b) {
3964 ether_addr[0] = (uint8_t)(mac_addr >> 8);
3965 ether_addr[1] = (uint8_t)mac_addr;
3966 mac_addr = bge_readmem_ind(sc, 0x0c18);
3967 ether_addr[2] = (uint8_t)(mac_addr >> 24);
3968 ether_addr[3] = (uint8_t)(mac_addr >> 16);
3969 ether_addr[4] = (uint8_t)(mac_addr >> 8);
3970 ether_addr[5] = (uint8_t)mac_addr;
3971 ret = 0;
3972 }
3973 return ret;
3974}
3975
3976static int
3977bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
3978{
3979 int mac_offset = BGE_EE_MAC_OFFSET;
3980
3981 if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
3982 mac_offset = BGE_EE_MAC_OFFSET_5906;
3983
3984 return bge_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
3985}
3986
3987static int
3988bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
3989{
3990 if (sc->bge_flags & BGE_FLAG_NO_EEPROM)
3991 return 1;
3992
3993 return bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
3994 ETHER_ADDR_LEN);
3995}
3996
3997static int
3998bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
3999{
4000 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4001 /* NOTE: Order is critical */
4002 bge_get_eaddr_mem,
4003 bge_get_eaddr_nvram,
4004 bge_get_eaddr_eeprom,
4005 NULL
4006 };
4007 const bge_eaddr_fcn_t *func;
4008
4009 for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4010 if ((*func)(sc, eaddr) == 0)
4011 break;
4012 }
4013 return (*func == NULL ? ENXIO : 0);
4014}