kernel - Add new bufcache/VM consolidated API, fsx fixes for NFS
[dragonfly.git] / sys / kern / vfs_bio.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 * John S. Dyson.
13 *
14 * $FreeBSD: src/sys/kern/vfs_bio.c,v 1.242.2.20 2003/05/28 18:38:10 alc Exp $
15 * $DragonFly: src/sys/kern/vfs_bio.c,v 1.115 2008/08/13 11:02:31 swildner Exp $
16 */
17
18/*
19 * this file contains a new buffer I/O scheme implementing a coherent
20 * VM object and buffer cache scheme. Pains have been taken to make
21 * sure that the performance degradation associated with schemes such
22 * as this is not realized.
23 *
24 * Author: John S. Dyson
25 * Significant help during the development and debugging phases
26 * had been provided by David Greenman, also of the FreeBSD core team.
27 *
28 * see man buf(9) for more info.
29 */
30
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/buf.h>
34#include <sys/conf.h>
35#include <sys/eventhandler.h>
36#include <sys/lock.h>
37#include <sys/malloc.h>
38#include <sys/mount.h>
39#include <sys/kernel.h>
40#include <sys/kthread.h>
41#include <sys/proc.h>
42#include <sys/reboot.h>
43#include <sys/resourcevar.h>
44#include <sys/sysctl.h>
45#include <sys/vmmeter.h>
46#include <sys/vnode.h>
47#include <sys/proc.h>
48#include <vm/vm.h>
49#include <vm/vm_param.h>
50#include <vm/vm_kern.h>
51#include <vm/vm_pageout.h>
52#include <vm/vm_page.h>
53#include <vm/vm_object.h>
54#include <vm/vm_extern.h>
55#include <vm/vm_map.h>
56
57#include <sys/buf2.h>
58#include <sys/thread2.h>
59#include <sys/spinlock2.h>
60#include <sys/mplock2.h>
61#include <vm/vm_page2.h>
62
63#include "opt_ddb.h"
64#ifdef DDB
65#include <ddb/ddb.h>
66#endif
67
68/*
69 * Buffer queues.
70 */
71enum bufq_type {
72 BQUEUE_NONE, /* not on any queue */
73 BQUEUE_LOCKED, /* locked buffers */
74 BQUEUE_CLEAN, /* non-B_DELWRI buffers */
75 BQUEUE_DIRTY, /* B_DELWRI buffers */
76 BQUEUE_DIRTY_HW, /* B_DELWRI buffers - heavy weight */
77 BQUEUE_EMPTYKVA, /* empty buffer headers with KVA assignment */
78 BQUEUE_EMPTY, /* empty buffer headers */
79
80 BUFFER_QUEUES /* number of buffer queues */
81};
82
83typedef enum bufq_type bufq_type_t;
84
85#define BD_WAKE_SIZE 16384
86#define BD_WAKE_MASK (BD_WAKE_SIZE - 1)
87
88TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
89struct spinlock bufspin = SPINLOCK_INITIALIZER(&bufspin);
90
91static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
92
93struct buf *buf; /* buffer header pool */
94
95static void vfs_clean_pages(struct buf *bp);
96static void vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m);
97static void vfs_vmio_release(struct buf *bp);
98static int flushbufqueues(bufq_type_t q);
99static vm_page_t bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit);
100
101static void bd_signal(int totalspace);
102static void buf_daemon(void);
103static void buf_daemon_hw(void);
104
105/*
106 * bogus page -- for I/O to/from partially complete buffers
107 * this is a temporary solution to the problem, but it is not
108 * really that bad. it would be better to split the buffer
109 * for input in the case of buffers partially already in memory,
110 * but the code is intricate enough already.
111 */
112vm_page_t bogus_page;
113
114/*
115 * These are all static, but make the ones we export globals so we do
116 * not need to use compiler magic.
117 */
118int bufspace, maxbufspace,
119 bufmallocspace, maxbufmallocspace, lobufspace, hibufspace;
120static int bufreusecnt, bufdefragcnt, buffreekvacnt;
121static int lorunningspace, hirunningspace, runningbufreq;
122int dirtybufspace, dirtybufspacehw, lodirtybufspace, hidirtybufspace;
123int dirtybufcount, dirtybufcounthw;
124int runningbufspace, runningbufcount;
125static int getnewbufcalls;
126static int getnewbufrestarts;
127static int recoverbufcalls;
128static int needsbuffer; /* locked by needsbuffer_spin */
129static int bd_request; /* locked by needsbuffer_spin */
130static int bd_request_hw; /* locked by needsbuffer_spin */
131static u_int bd_wake_ary[BD_WAKE_SIZE];
132static u_int bd_wake_index;
133static u_int vm_cycle_point = ACT_INIT + ACT_ADVANCE * 6;
134static struct spinlock needsbuffer_spin;
135
136static struct thread *bufdaemon_td;
137static struct thread *bufdaemonhw_td;
138
139
140/*
141 * Sysctls for operational control of the buffer cache.
142 */
143SYSCTL_INT(_vfs, OID_AUTO, lodirtybufspace, CTLFLAG_RW, &lodirtybufspace, 0,
144 "Number of dirty buffers to flush before bufdaemon becomes inactive");
145SYSCTL_INT(_vfs, OID_AUTO, hidirtybufspace, CTLFLAG_RW, &hidirtybufspace, 0,
146 "High watermark used to trigger explicit flushing of dirty buffers");
147SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
148 "Minimum amount of buffer space required for active I/O");
149SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
150 "Maximum amount of buffer space to usable for active I/O");
151SYSCTL_UINT(_vfs, OID_AUTO, vm_cycle_point, CTLFLAG_RW, &vm_cycle_point, 0,
152 "Recycle pages to active or inactive queue transition pt 0-64");
153/*
154 * Sysctls determining current state of the buffer cache.
155 */
156SYSCTL_INT(_vfs, OID_AUTO, nbuf, CTLFLAG_RD, &nbuf, 0,
157 "Total number of buffers in buffer cache");
158SYSCTL_INT(_vfs, OID_AUTO, dirtybufspace, CTLFLAG_RD, &dirtybufspace, 0,
159 "Pending bytes of dirty buffers (all)");
160SYSCTL_INT(_vfs, OID_AUTO, dirtybufspacehw, CTLFLAG_RD, &dirtybufspacehw, 0,
161 "Pending bytes of dirty buffers (heavy weight)");
162SYSCTL_INT(_vfs, OID_AUTO, dirtybufcount, CTLFLAG_RD, &dirtybufcount, 0,
163 "Pending number of dirty buffers");
164SYSCTL_INT(_vfs, OID_AUTO, dirtybufcounthw, CTLFLAG_RD, &dirtybufcounthw, 0,
165 "Pending number of dirty buffers (heavy weight)");
166SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
167 "I/O bytes currently in progress due to asynchronous writes");
168SYSCTL_INT(_vfs, OID_AUTO, runningbufcount, CTLFLAG_RD, &runningbufcount, 0,
169 "I/O buffers currently in progress due to asynchronous writes");
170SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
171 "Hard limit on maximum amount of memory usable for buffer space");
172SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
173 "Soft limit on maximum amount of memory usable for buffer space");
174SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
175 "Minimum amount of memory to reserve for system buffer space");
176SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
177 "Amount of memory available for buffers");
178SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RD, &maxbufmallocspace,
179 0, "Maximum amount of memory reserved for buffers using malloc");
180SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
181 "Amount of memory left for buffers using malloc-scheme");
182SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD, &getnewbufcalls, 0,
183 "New buffer header acquisition requests");
184SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD, &getnewbufrestarts,
185 0, "New buffer header acquisition restarts");
186SYSCTL_INT(_vfs, OID_AUTO, recoverbufcalls, CTLFLAG_RD, &recoverbufcalls, 0,
187 "Recover VM space in an emergency");
188SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RD, &bufdefragcnt, 0,
189 "Buffer acquisition restarts due to fragmented buffer map");
190SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RD, &buffreekvacnt, 0,
191 "Amount of time KVA space was deallocated in an arbitrary buffer");
192SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RD, &bufreusecnt, 0,
193 "Amount of time buffer re-use operations were successful");
194SYSCTL_INT(_debug_sizeof, OID_AUTO, buf, CTLFLAG_RD, 0, sizeof(struct buf),
195 "sizeof(struct buf)");
196
197char *buf_wmesg = BUF_WMESG;
198
199extern int vm_swap_size;
200
201#define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */
202#define VFS_BIO_NEED_UNUSED02 0x02
203#define VFS_BIO_NEED_UNUSED04 0x04
204#define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */
205
206/*
207 * bufspacewakeup:
208 *
209 * Called when buffer space is potentially available for recovery.
210 * getnewbuf() will block on this flag when it is unable to free
211 * sufficient buffer space. Buffer space becomes recoverable when
212 * bp's get placed back in the queues.
213 */
214
215static __inline void
216bufspacewakeup(void)
217{
218 /*
219 * If someone is waiting for BUF space, wake them up. Even
220 * though we haven't freed the kva space yet, the waiting
221 * process will be able to now.
222 */
223 if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
224 spin_lock_wr(&needsbuffer_spin);
225 needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
226 spin_unlock_wr(&needsbuffer_spin);
227 wakeup(&needsbuffer);
228 }
229}
230
231/*
232 * runningbufwakeup:
233 *
234 * Accounting for I/O in progress.
235 *
236 */
237static __inline void
238runningbufwakeup(struct buf *bp)
239{
240 int totalspace;
241 int limit;
242
243 if ((totalspace = bp->b_runningbufspace) != 0) {
244 atomic_subtract_int(&runningbufspace, totalspace);
245 atomic_subtract_int(&runningbufcount, 1);
246 bp->b_runningbufspace = 0;
247
248 /*
249 * see waitrunningbufspace() for limit test.
250 */
251 limit = hirunningspace * 2 / 3;
252 if (runningbufreq && runningbufspace <= limit) {
253 runningbufreq = 0;
254 wakeup(&runningbufreq);
255 }
256 bd_signal(totalspace);
257 }
258}
259
260/*
261 * bufcountwakeup:
262 *
263 * Called when a buffer has been added to one of the free queues to
264 * account for the buffer and to wakeup anyone waiting for free buffers.
265 * This typically occurs when large amounts of metadata are being handled
266 * by the buffer cache ( else buffer space runs out first, usually ).
267 *
268 * MPSAFE
269 */
270static __inline void
271bufcountwakeup(void)
272{
273 if (needsbuffer) {
274 spin_lock_wr(&needsbuffer_spin);
275 needsbuffer &= ~VFS_BIO_NEED_ANY;
276 spin_unlock_wr(&needsbuffer_spin);
277 wakeup(&needsbuffer);
278 }
279}
280
281/*
282 * waitrunningbufspace()
283 *
284 * Wait for the amount of running I/O to drop to hirunningspace * 2 / 3.
285 * This is the point where write bursting stops so we don't want to wait
286 * for the running amount to drop below it (at least if we still want bioq
287 * to burst writes).
288 *
289 * The caller may be using this function to block in a tight loop, we
290 * must block while runningbufspace is greater then or equal to
291 * hirunningspace * 2 / 3.
292 *
293 * And even with that it may not be enough, due to the presence of
294 * B_LOCKED dirty buffers, so also wait for at least one running buffer
295 * to complete.
296 */
297static __inline void
298waitrunningbufspace(void)
299{
300 int limit = hirunningspace * 2 / 3;
301
302 crit_enter();
303 if (runningbufspace > limit) {
304 while (runningbufspace > limit) {
305 ++runningbufreq;
306 tsleep(&runningbufreq, 0, "wdrn1", 0);
307 }
308 } else if (runningbufspace) {
309 ++runningbufreq;
310 tsleep(&runningbufreq, 0, "wdrn2", 1);
311 }
312 crit_exit();
313}
314
315/*
316 * buf_dirty_count_severe:
317 *
318 * Return true if we have too many dirty buffers.
319 */
320int
321buf_dirty_count_severe(void)
322{
323 return (runningbufspace + dirtybufspace >= hidirtybufspace ||
324 dirtybufcount >= nbuf / 2);
325}
326
327/*
328 * Return true if the amount of running I/O is severe and BIOQ should
329 * start bursting.
330 */
331int
332buf_runningbufspace_severe(void)
333{
334 return (runningbufspace >= hirunningspace * 2 / 3);
335}
336
337/*
338 * vfs_buf_test_cache:
339 *
340 * Called when a buffer is extended. This function clears the B_CACHE
341 * bit if the newly extended portion of the buffer does not contain
342 * valid data.
343 *
344 * NOTE! Dirty VM pages are not processed into dirty (B_DELWRI) buffer
345 * cache buffers. The VM pages remain dirty, as someone had mmap()'d
346 * them while a clean buffer was present.
347 */
348static __inline__
349void
350vfs_buf_test_cache(struct buf *bp,
351 vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
352 vm_page_t m)
353{
354 if (bp->b_flags & B_CACHE) {
355 int base = (foff + off) & PAGE_MASK;
356 if (vm_page_is_valid(m, base, size) == 0)
357 bp->b_flags &= ~B_CACHE;
358 }
359}
360
361/*
362 * bd_speedup()
363 *
364 * Spank the buf_daemon[_hw] if the total dirty buffer space exceeds the
365 * low water mark.
366 *
367 * MPSAFE
368 */
369static __inline__
370void
371bd_speedup(void)
372{
373 if (dirtybufspace < lodirtybufspace && dirtybufcount < nbuf / 2)
374 return;
375
376 if (bd_request == 0 &&
377 (dirtybufspace - dirtybufspacehw > lodirtybufspace / 2 ||
378 dirtybufcount - dirtybufcounthw >= nbuf / 2)) {
379 spin_lock_wr(&needsbuffer_spin);
380 bd_request = 1;
381 spin_unlock_wr(&needsbuffer_spin);
382 wakeup(&bd_request);
383 }
384 if (bd_request_hw == 0 &&
385 (dirtybufspacehw > lodirtybufspace / 2 ||
386 dirtybufcounthw >= nbuf / 2)) {
387 spin_lock_wr(&needsbuffer_spin);
388 bd_request_hw = 1;
389 spin_unlock_wr(&needsbuffer_spin);
390 wakeup(&bd_request_hw);
391 }
392}
393
394/*
395 * bd_heatup()
396 *
397 * Get the buf_daemon heated up when the number of running and dirty
398 * buffers exceeds the mid-point.
399 *
400 * Return the total number of dirty bytes past the second mid point
401 * as a measure of how much excess dirty data there is in the system.
402 *
403 * MPSAFE
404 */
405int
406bd_heatup(void)
407{
408 int mid1;
409 int mid2;
410 int totalspace;
411
412 mid1 = lodirtybufspace + (hidirtybufspace - lodirtybufspace) / 2;
413
414 totalspace = runningbufspace + dirtybufspace;
415 if (totalspace >= mid1 || dirtybufcount >= nbuf / 2) {
416 bd_speedup();
417 mid2 = mid1 + (hidirtybufspace - mid1) / 2;
418 if (totalspace >= mid2)
419 return(totalspace - mid2);
420 }
421 return(0);
422}
423
424/*
425 * bd_wait()
426 *
427 * Wait for the buffer cache to flush (totalspace) bytes worth of
428 * buffers, then return.
429 *
430 * Regardless this function blocks while the number of dirty buffers
431 * exceeds hidirtybufspace.
432 *
433 * MPSAFE
434 */
435void
436bd_wait(int totalspace)
437{
438 u_int i;
439 int count;
440
441 if (curthread == bufdaemonhw_td || curthread == bufdaemon_td)
442 return;
443
444 while (totalspace > 0) {
445 bd_heatup();
446 if (totalspace > runningbufspace + dirtybufspace)
447 totalspace = runningbufspace + dirtybufspace;
448 count = totalspace / BKVASIZE;
449 if (count >= BD_WAKE_SIZE)
450 count = BD_WAKE_SIZE - 1;
451
452 spin_lock_wr(&needsbuffer_spin);
453 i = (bd_wake_index + count) & BD_WAKE_MASK;
454 ++bd_wake_ary[i];
455 tsleep_interlock(&bd_wake_ary[i], 0);
456 spin_unlock_wr(&needsbuffer_spin);
457 tsleep(&bd_wake_ary[i], PINTERLOCKED, "flstik", hz);
458
459 totalspace = runningbufspace + dirtybufspace - hidirtybufspace;
460 }
461}
462
463/*
464 * bd_signal()
465 *
466 * This function is called whenever runningbufspace or dirtybufspace
467 * is reduced. Track threads waiting for run+dirty buffer I/O
468 * complete.
469 *
470 * MPSAFE
471 */
472static void
473bd_signal(int totalspace)
474{
475 u_int i;
476
477 if (totalspace > 0) {
478 if (totalspace > BKVASIZE * BD_WAKE_SIZE)
479 totalspace = BKVASIZE * BD_WAKE_SIZE;
480 spin_lock_wr(&needsbuffer_spin);
481 while (totalspace > 0) {
482 i = bd_wake_index++;
483 i &= BD_WAKE_MASK;
484 if (bd_wake_ary[i]) {
485 bd_wake_ary[i] = 0;
486 spin_unlock_wr(&needsbuffer_spin);
487 wakeup(&bd_wake_ary[i]);
488 spin_lock_wr(&needsbuffer_spin);
489 }
490 totalspace -= BKVASIZE;
491 }
492 spin_unlock_wr(&needsbuffer_spin);
493 }
494}
495
496/*
497 * BIO tracking support routines.
498 *
499 * Release a ref on a bio_track. Wakeup requests are atomically released
500 * along with the last reference so bk_active will never wind up set to
501 * only 0x80000000.
502 *
503 * MPSAFE
504 */
505static
506void
507bio_track_rel(struct bio_track *track)
508{
509 int active;
510 int desired;
511
512 /*
513 * Shortcut
514 */
515 active = track->bk_active;
516 if (active == 1 && atomic_cmpset_int(&track->bk_active, 1, 0))
517 return;
518
519 /*
520 * Full-on. Note that the wait flag is only atomically released on
521 * the 1->0 count transition.
522 *
523 * We check for a negative count transition using bit 30 since bit 31
524 * has a different meaning.
525 */
526 for (;;) {
527 desired = (active & 0x7FFFFFFF) - 1;
528 if (desired)
529 desired |= active & 0x80000000;
530 if (atomic_cmpset_int(&track->bk_active, active, desired)) {
531 if (desired & 0x40000000)
532 panic("bio_track_rel: bad count: %p\n", track);
533 if (active & 0x80000000)
534 wakeup(track);
535 break;
536 }
537 active = track->bk_active;
538 }
539}
540
541/*
542 * Wait for the tracking count to reach 0.
543 *
544 * Use atomic ops such that the wait flag is only set atomically when
545 * bk_active is non-zero.
546 *
547 * MPSAFE
548 */
549int
550bio_track_wait(struct bio_track *track, int slp_flags, int slp_timo)
551{
552 int active;
553 int desired;
554 int error;
555
556 /*
557 * Shortcut
558 */
559 if (track->bk_active == 0)
560 return(0);
561
562 /*
563 * Full-on. Note that the wait flag may only be atomically set if
564 * the active count is non-zero.
565 */
566 error = 0;
567 while ((active = track->bk_active) != 0) {
568 desired = active | 0x80000000;
569 tsleep_interlock(track, slp_flags);
570 if (active == desired ||
571 atomic_cmpset_int(&track->bk_active, active, desired)) {
572 error = tsleep(track, slp_flags | PINTERLOCKED,
573 "iowait", slp_timo);
574 if (error)
575 break;
576 }
577 }
578 return (error);
579}
580
581/*
582 * bufinit:
583 *
584 * Load time initialisation of the buffer cache, called from machine
585 * dependant initialization code.
586 */
587void
588bufinit(void)
589{
590 struct buf *bp;
591 vm_offset_t bogus_offset;
592 int i;
593
594 spin_init(&needsbuffer_spin);
595
596 /* next, make a null set of free lists */
597 for (i = 0; i < BUFFER_QUEUES; i++)
598 TAILQ_INIT(&bufqueues[i]);
599
600 /* finally, initialize each buffer header and stick on empty q */
601 for (i = 0; i < nbuf; i++) {
602 bp = &buf[i];
603 bzero(bp, sizeof *bp);
604 bp->b_flags = B_INVAL; /* we're just an empty header */
605 bp->b_cmd = BUF_CMD_DONE;
606 bp->b_qindex = BQUEUE_EMPTY;
607 initbufbio(bp);
608 xio_init(&bp->b_xio);
609 buf_dep_init(bp);
610 BUF_LOCKINIT(bp);
611 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_EMPTY], bp, b_freelist);
612 }
613
614 /*
615 * maxbufspace is the absolute maximum amount of buffer space we are
616 * allowed to reserve in KVM and in real terms. The absolute maximum
617 * is nominally used by buf_daemon. hibufspace is the nominal maximum
618 * used by most other processes. The differential is required to
619 * ensure that buf_daemon is able to run when other processes might
620 * be blocked waiting for buffer space.
621 *
622 * maxbufspace is based on BKVASIZE. Allocating buffers larger then
623 * this may result in KVM fragmentation which is not handled optimally
624 * by the system.
625 */
626 maxbufspace = nbuf * BKVASIZE;
627 hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
628 lobufspace = hibufspace - MAXBSIZE;
629
630 lorunningspace = 512 * 1024;
631 /* hirunningspace -- see below */
632
633 /*
634 * Limit the amount of malloc memory since it is wired permanently
635 * into the kernel space. Even though this is accounted for in
636 * the buffer allocation, we don't want the malloced region to grow
637 * uncontrolled. The malloc scheme improves memory utilization
638 * significantly on average (small) directories.
639 */
640 maxbufmallocspace = hibufspace / 20;
641
642 /*
643 * Reduce the chance of a deadlock occuring by limiting the number
644 * of delayed-write dirty buffers we allow to stack up.
645 *
646 * We don't want too much actually queued to the device at once
647 * (XXX this needs to be per-mount!), because the buffers will
648 * wind up locked for a very long period of time while the I/O
649 * drains.
650 */
651 hidirtybufspace = hibufspace / 2; /* dirty + running */
652 hirunningspace = hibufspace / 16; /* locked & queued to device */
653 if (hirunningspace < 1024 * 1024)
654 hirunningspace = 1024 * 1024;
655
656 dirtybufspace = 0;
657 dirtybufspacehw = 0;
658
659 lodirtybufspace = hidirtybufspace / 2;
660
661 /*
662 * Maximum number of async ops initiated per buf_daemon loop. This is
663 * somewhat of a hack at the moment, we really need to limit ourselves
664 * based on the number of bytes of I/O in-transit that were initiated
665 * from buf_daemon.
666 */
667
668 bogus_offset = kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
669 bogus_page = vm_page_alloc(&kernel_object,
670 (bogus_offset >> PAGE_SHIFT),
671 VM_ALLOC_NORMAL);
672 vmstats.v_wire_count++;
673
674}
675
676/*
677 * Initialize the embedded bio structures
678 */
679void
680initbufbio(struct buf *bp)
681{
682 bp->b_bio1.bio_buf = bp;
683 bp->b_bio1.bio_prev = NULL;
684 bp->b_bio1.bio_offset = NOOFFSET;
685 bp->b_bio1.bio_next = &bp->b_bio2;
686 bp->b_bio1.bio_done = NULL;
687 bp->b_bio1.bio_flags = 0;
688
689 bp->b_bio2.bio_buf = bp;
690 bp->b_bio2.bio_prev = &bp->b_bio1;
691 bp->b_bio2.bio_offset = NOOFFSET;
692 bp->b_bio2.bio_next = NULL;
693 bp->b_bio2.bio_done = NULL;
694 bp->b_bio2.bio_flags = 0;
695}
696
697/*
698 * Reinitialize the embedded bio structures as well as any additional
699 * translation cache layers.
700 */
701void
702reinitbufbio(struct buf *bp)
703{
704 struct bio *bio;
705
706 for (bio = &bp->b_bio1; bio; bio = bio->bio_next) {
707 bio->bio_done = NULL;
708 bio->bio_offset = NOOFFSET;
709 }
710}
711
712/*
713 * Push another BIO layer onto an existing BIO and return it. The new
714 * BIO layer may already exist, holding cached translation data.
715 */
716struct bio *
717push_bio(struct bio *bio)
718{
719 struct bio *nbio;
720
721 if ((nbio = bio->bio_next) == NULL) {
722 int index = bio - &bio->bio_buf->b_bio_array[0];
723 if (index >= NBUF_BIO - 1) {
724 panic("push_bio: too many layers bp %p\n",
725 bio->bio_buf);
726 }
727 nbio = &bio->bio_buf->b_bio_array[index + 1];
728 bio->bio_next = nbio;
729 nbio->bio_prev = bio;
730 nbio->bio_buf = bio->bio_buf;
731 nbio->bio_offset = NOOFFSET;
732 nbio->bio_done = NULL;
733 nbio->bio_next = NULL;
734 }
735 KKASSERT(nbio->bio_done == NULL);
736 return(nbio);
737}
738
739/*
740 * Pop a BIO translation layer, returning the previous layer. The
741 * must have been previously pushed.
742 */
743struct bio *
744pop_bio(struct bio *bio)
745{
746 return(bio->bio_prev);
747}
748
749void
750clearbiocache(struct bio *bio)
751{
752 while (bio) {
753 bio->bio_offset = NOOFFSET;
754 bio = bio->bio_next;
755 }
756}
757
758/*
759 * bfreekva:
760 *
761 * Free the KVA allocation for buffer 'bp'.
762 *
763 * Must be called from a critical section as this is the only locking for
764 * buffer_map.
765 *
766 * Since this call frees up buffer space, we call bufspacewakeup().
767 *
768 * MPALMOSTSAFE
769 */
770static void
771bfreekva(struct buf *bp)
772{
773 int count;
774
775 if (bp->b_kvasize) {
776 get_mplock();
777 ++buffreekvacnt;
778 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
779 vm_map_lock(&buffer_map);
780 bufspace -= bp->b_kvasize;
781 vm_map_delete(&buffer_map,
782 (vm_offset_t) bp->b_kvabase,
783 (vm_offset_t) bp->b_kvabase + bp->b_kvasize,
784 &count
785 );
786 vm_map_unlock(&buffer_map);
787 vm_map_entry_release(count);
788 bp->b_kvasize = 0;
789 bufspacewakeup();
790 rel_mplock();
791 }
792}
793
794/*
795 * bremfree:
796 *
797 * Remove the buffer from the appropriate free list.
798 */
799static __inline void
800_bremfree(struct buf *bp)
801{
802 if (bp->b_qindex != BQUEUE_NONE) {
803 KASSERT(BUF_REFCNTNB(bp) == 1,
804 ("bremfree: bp %p not locked",bp));
805 TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
806 bp->b_qindex = BQUEUE_NONE;
807 } else {
808 if (BUF_REFCNTNB(bp) <= 1)
809 panic("bremfree: removing a buffer not on a queue");
810 }
811}
812
813void
814bremfree(struct buf *bp)
815{
816 spin_lock_wr(&bufspin);
817 _bremfree(bp);
818 spin_unlock_wr(&bufspin);
819}
820
821static void
822bremfree_locked(struct buf *bp)
823{
824 _bremfree(bp);
825}
826
827/*
828 * bread:
829 *
830 * Get a buffer with the specified data. Look in the cache first. We
831 * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE
832 * is set, the buffer is valid and we do not have to do anything ( see
833 * getblk() ).
834 *
835 * MPALMOSTSAFE
836 */
837int
838bread(struct vnode *vp, off_t loffset, int size, struct buf **bpp)
839{
840 struct buf *bp;
841
842 bp = getblk(vp, loffset, size, 0, 0);
843 *bpp = bp;
844
845 /* if not found in cache, do some I/O */
846 if ((bp->b_flags & B_CACHE) == 0) {
847 get_mplock();
848 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
849 bp->b_cmd = BUF_CMD_READ;
850 bp->b_bio1.bio_done = biodone_sync;
851 bp->b_bio1.bio_flags |= BIO_SYNC;
852 vfs_busy_pages(vp, bp);
853 vn_strategy(vp, &bp->b_bio1);
854 rel_mplock();
855 return (biowait(&bp->b_bio1, "biord"));
856 }
857 return (0);
858}
859
860/*
861 * breadn:
862 *
863 * Operates like bread, but also starts asynchronous I/O on
864 * read-ahead blocks. We must clear B_ERROR and B_INVAL prior
865 * to initiating I/O . If B_CACHE is set, the buffer is valid
866 * and we do not have to do anything.
867 *
868 * MPALMOSTSAFE
869 */
870int
871breadn(struct vnode *vp, off_t loffset, int size, off_t *raoffset,
872 int *rabsize, int cnt, struct buf **bpp)
873{
874 struct buf *bp, *rabp;
875 int i;
876 int rv = 0, readwait = 0;
877
878 *bpp = bp = getblk(vp, loffset, size, 0, 0);
879
880 /* if not found in cache, do some I/O */
881 if ((bp->b_flags & B_CACHE) == 0) {
882 get_mplock();
883 bp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
884 bp->b_cmd = BUF_CMD_READ;
885 bp->b_bio1.bio_done = biodone_sync;
886 bp->b_bio1.bio_flags |= BIO_SYNC;
887 vfs_busy_pages(vp, bp);
888 vn_strategy(vp, &bp->b_bio1);
889 ++readwait;
890 rel_mplock();
891 }
892
893 for (i = 0; i < cnt; i++, raoffset++, rabsize++) {
894 if (inmem(vp, *raoffset))
895 continue;
896 rabp = getblk(vp, *raoffset, *rabsize, 0, 0);
897
898 if ((rabp->b_flags & B_CACHE) == 0) {
899 get_mplock();
900 rabp->b_flags &= ~(B_ERROR | B_EINTR | B_INVAL);
901 rabp->b_cmd = BUF_CMD_READ;
902 vfs_busy_pages(vp, rabp);
903 BUF_KERNPROC(rabp);
904 vn_strategy(vp, &rabp->b_bio1);
905 rel_mplock();
906 } else {
907 brelse(rabp);
908 }
909 }
910 if (readwait)
911 rv = biowait(&bp->b_bio1, "biord");
912 return (rv);
913}
914
915/*
916 * bwrite:
917 *
918 * Synchronous write, waits for completion.
919 *
920 * Write, release buffer on completion. (Done by iodone
921 * if async). Do not bother writing anything if the buffer
922 * is invalid.
923 *
924 * Note that we set B_CACHE here, indicating that buffer is
925 * fully valid and thus cacheable. This is true even of NFS
926 * now so we set it generally. This could be set either here
927 * or in biodone() since the I/O is synchronous. We put it
928 * here.
929 */
930int
931bwrite(struct buf *bp)
932{
933 int error;
934
935 if (bp->b_flags & B_INVAL) {
936 brelse(bp);
937 return (0);
938 }
939 if (BUF_REFCNTNB(bp) == 0)
940 panic("bwrite: buffer is not busy???");
941
942 /* Mark the buffer clean */
943 bundirty(bp);
944
945 bp->b_flags &= ~(B_ERROR | B_EINTR);
946 bp->b_flags |= B_CACHE;
947 bp->b_cmd = BUF_CMD_WRITE;
948 bp->b_bio1.bio_done = biodone_sync;
949 bp->b_bio1.bio_flags |= BIO_SYNC;
950 vfs_busy_pages(bp->b_vp, bp);
951
952 /*
953 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
954 * valid for vnode-backed buffers.
955 */
956 bp->b_runningbufspace = bp->b_bufsize;
957 if (bp->b_runningbufspace) {
958 runningbufspace += bp->b_runningbufspace;
959 ++runningbufcount;
960 }
961
962 vn_strategy(bp->b_vp, &bp->b_bio1);
963 error = biowait(&bp->b_bio1, "biows");
964 brelse(bp);
965 return (error);
966}
967
968/*
969 * bawrite:
970 *
971 * Asynchronous write. Start output on a buffer, but do not wait for
972 * it to complete. The buffer is released when the output completes.
973 *
974 * bwrite() ( or the VOP routine anyway ) is responsible for handling
975 * B_INVAL buffers. Not us.
976 */
977void
978bawrite(struct buf *bp)
979{
980 if (bp->b_flags & B_INVAL) {
981 brelse(bp);
982 return;
983 }
984 if (BUF_REFCNTNB(bp) == 0)
985 panic("bwrite: buffer is not busy???");
986
987 /* Mark the buffer clean */
988 bundirty(bp);
989
990 bp->b_flags &= ~(B_ERROR | B_EINTR);
991 bp->b_flags |= B_CACHE;
992 bp->b_cmd = BUF_CMD_WRITE;
993 KKASSERT(bp->b_bio1.bio_done == NULL);
994 vfs_busy_pages(bp->b_vp, bp);
995
996 /*
997 * Normal bwrites pipeline writes. NOTE: b_bufsize is only
998 * valid for vnode-backed buffers.
999 */
1000 bp->b_runningbufspace = bp->b_bufsize;
1001 if (bp->b_runningbufspace) {
1002 runningbufspace += bp->b_runningbufspace;
1003 ++runningbufcount;
1004 }
1005
1006 BUF_KERNPROC(bp);
1007 vn_strategy(bp->b_vp, &bp->b_bio1);
1008}
1009
1010/*
1011 * bowrite:
1012 *
1013 * Ordered write. Start output on a buffer, and flag it so that the
1014 * device will write it in the order it was queued. The buffer is
1015 * released when the output completes. bwrite() ( or the VOP routine
1016 * anyway ) is responsible for handling B_INVAL buffers.
1017 */
1018int
1019bowrite(struct buf *bp)
1020{
1021 bp->b_flags |= B_ORDERED;
1022 bawrite(bp);
1023 return (0);
1024}
1025
1026/*
1027 * bdwrite:
1028 *
1029 * Delayed write. (Buffer is marked dirty). Do not bother writing
1030 * anything if the buffer is marked invalid.
1031 *
1032 * Note that since the buffer must be completely valid, we can safely
1033 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
1034 * biodone() in order to prevent getblk from writing the buffer
1035 * out synchronously.
1036 */
1037void
1038bdwrite(struct buf *bp)
1039{
1040 if (BUF_REFCNTNB(bp) == 0)
1041 panic("bdwrite: buffer is not busy");
1042
1043 if (bp->b_flags & B_INVAL) {
1044 brelse(bp);
1045 return;
1046 }
1047 bdirty(bp);
1048
1049 /*
1050 * Set B_CACHE, indicating that the buffer is fully valid. This is
1051 * true even of NFS now.
1052 */
1053 bp->b_flags |= B_CACHE;
1054
1055 /*
1056 * This bmap keeps the system from needing to do the bmap later,
1057 * perhaps when the system is attempting to do a sync. Since it
1058 * is likely that the indirect block -- or whatever other datastructure
1059 * that the filesystem needs is still in memory now, it is a good
1060 * thing to do this. Note also, that if the pageout daemon is
1061 * requesting a sync -- there might not be enough memory to do
1062 * the bmap then... So, this is important to do.
1063 */
1064 if (bp->b_bio2.bio_offset == NOOFFSET) {
1065 VOP_BMAP(bp->b_vp, bp->b_loffset, &bp->b_bio2.bio_offset,
1066 NULL, NULL, BUF_CMD_WRITE);
1067 }
1068
1069 /*
1070 * Because the underlying pages may still be mapped and
1071 * writable trying to set the dirty buffer (b_dirtyoff/end)
1072 * range here will be inaccurate.
1073 *
1074 * However, we must still clean the pages to satisfy the
1075 * vnode_pager and pageout daemon, so theythink the pages
1076 * have been "cleaned". What has really occured is that
1077 * they've been earmarked for later writing by the buffer
1078 * cache.
1079 *
1080 * So we get the b_dirtyoff/end update but will not actually
1081 * depend on it (NFS that is) until the pages are busied for
1082 * writing later on.
1083 */
1084 vfs_clean_pages(bp);
1085 bqrelse(bp);
1086
1087 /*
1088 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1089 * due to the softdep code.
1090 */
1091}
1092
1093/*
1094 * bdirty:
1095 *
1096 * Turn buffer into delayed write request by marking it B_DELWRI.
1097 * B_RELBUF and B_NOCACHE must be cleared.
1098 *
1099 * We reassign the buffer to itself to properly update it in the
1100 * dirty/clean lists.
1101 *
1102 * Must be called from a critical section.
1103 * The buffer must be on BQUEUE_NONE.
1104 */
1105void
1106bdirty(struct buf *bp)
1107{
1108 KASSERT(bp->b_qindex == BQUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1109 if (bp->b_flags & B_NOCACHE) {
1110 kprintf("bdirty: clearing B_NOCACHE on buf %p\n", bp);
1111 bp->b_flags &= ~B_NOCACHE;
1112 }
1113 if (bp->b_flags & B_INVAL) {
1114 kprintf("bdirty: warning, dirtying invalid buffer %p\n", bp);
1115 }
1116 bp->b_flags &= ~B_RELBUF;
1117
1118 if ((bp->b_flags & B_DELWRI) == 0) {
1119 bp->b_flags |= B_DELWRI;
1120 reassignbuf(bp);
1121 atomic_add_int(&dirtybufcount, 1);
1122 dirtybufspace += bp->b_bufsize;
1123 if (bp->b_flags & B_HEAVY) {
1124 atomic_add_int(&dirtybufcounthw, 1);
1125 atomic_add_int(&dirtybufspacehw, bp->b_bufsize);
1126 }
1127 bd_heatup();
1128 }
1129}
1130
1131/*
1132 * Set B_HEAVY, indicating that this is a heavy-weight buffer that
1133 * needs to be flushed with a different buf_daemon thread to avoid
1134 * deadlocks. B_HEAVY also imposes restrictions in getnewbuf().
1135 */
1136void
1137bheavy(struct buf *bp)
1138{
1139 if ((bp->b_flags & B_HEAVY) == 0) {
1140 bp->b_flags |= B_HEAVY;
1141 if (bp->b_flags & B_DELWRI) {
1142 atomic_add_int(&dirtybufcounthw, 1);
1143 atomic_add_int(&dirtybufspacehw, bp->b_bufsize);
1144 }
1145 }
1146}
1147
1148/*
1149 * bundirty:
1150 *
1151 * Clear B_DELWRI for buffer.
1152 *
1153 * Must be called from a critical section.
1154 *
1155 * The buffer is typically on BQUEUE_NONE but there is one case in
1156 * brelse() that calls this function after placing the buffer on
1157 * a different queue.
1158 *
1159 * MPSAFE
1160 */
1161void
1162bundirty(struct buf *bp)
1163{
1164 if (bp->b_flags & B_DELWRI) {
1165 bp->b_flags &= ~B_DELWRI;
1166 reassignbuf(bp);
1167 atomic_subtract_int(&dirtybufcount, 1);
1168 atomic_subtract_int(&dirtybufspace, bp->b_bufsize);
1169 if (bp->b_flags & B_HEAVY) {
1170 atomic_subtract_int(&dirtybufcounthw, 1);
1171 atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize);
1172 }
1173 bd_signal(bp->b_bufsize);
1174 }
1175 /*
1176 * Since it is now being written, we can clear its deferred write flag.
1177 */
1178 bp->b_flags &= ~B_DEFERRED;
1179}
1180
1181/*
1182 * brelse:
1183 *
1184 * Release a busy buffer and, if requested, free its resources. The
1185 * buffer will be stashed in the appropriate bufqueue[] allowing it
1186 * to be accessed later as a cache entity or reused for other purposes.
1187 *
1188 * MPALMOSTSAFE
1189 */
1190void
1191brelse(struct buf *bp)
1192{
1193#ifdef INVARIANTS
1194 int saved_flags = bp->b_flags;
1195#endif
1196
1197 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1198
1199 /*
1200 * If B_NOCACHE is set we are being asked to destroy the buffer and
1201 * its backing store. Clear B_DELWRI.
1202 *
1203 * B_NOCACHE is set in two cases: (1) when the caller really wants
1204 * to destroy the buffer and backing store and (2) when the caller
1205 * wants to destroy the buffer and backing store after a write
1206 * completes.
1207 */
1208 if ((bp->b_flags & (B_NOCACHE|B_DELWRI)) == (B_NOCACHE|B_DELWRI)) {
1209 bundirty(bp);
1210 }
1211
1212 if ((bp->b_flags & (B_INVAL | B_DELWRI)) == B_DELWRI) {
1213 /*
1214 * A re-dirtied buffer is only subject to destruction
1215 * by B_INVAL. B_ERROR and B_NOCACHE are ignored.
1216 */
1217 /* leave buffer intact */
1218 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
1219 (bp->b_bufsize <= 0)) {
1220 /*
1221 * Either a failed read or we were asked to free or not
1222 * cache the buffer. This path is reached with B_DELWRI
1223 * set only if B_INVAL is already set. B_NOCACHE governs
1224 * backing store destruction.
1225 *
1226 * NOTE: HAMMER will set B_LOCKED in buf_deallocate if the
1227 * buffer cannot be immediately freed.
1228 */
1229 bp->b_flags |= B_INVAL;
1230 if (LIST_FIRST(&bp->b_dep) != NULL) {
1231 get_mplock();
1232 buf_deallocate(bp);
1233 rel_mplock();
1234 }
1235 if (bp->b_flags & B_DELWRI) {
1236 atomic_subtract_int(&dirtybufcount, 1);
1237 atomic_subtract_int(&dirtybufspace, bp->b_bufsize);
1238 if (bp->b_flags & B_HEAVY) {
1239 atomic_subtract_int(&dirtybufcounthw, 1);
1240 atomic_subtract_int(&dirtybufspacehw, bp->b_bufsize);
1241 }
1242 bd_signal(bp->b_bufsize);
1243 }
1244 bp->b_flags &= ~(B_DELWRI | B_CACHE);
1245 }
1246
1247 /*
1248 * We must clear B_RELBUF if B_DELWRI or B_LOCKED is set.
1249 * If vfs_vmio_release() is called with either bit set, the
1250 * underlying pages may wind up getting freed causing a previous
1251 * write (bdwrite()) to get 'lost' because pages associated with
1252 * a B_DELWRI bp are marked clean. Pages associated with a
1253 * B_LOCKED buffer may be mapped by the filesystem.
1254 *
1255 * If we want to release the buffer ourselves (rather then the
1256 * originator asking us to release it), give the originator a
1257 * chance to countermand the release by setting B_LOCKED.
1258 *
1259 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1260 * if B_DELWRI is set.
1261 *
1262 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1263 * on pages to return pages to the VM page queues.
1264 */
1265 if (bp->b_flags & (B_DELWRI | B_LOCKED)) {
1266 bp->b_flags &= ~B_RELBUF;
1267 } else if (vm_page_count_severe()) {
1268 if (LIST_FIRST(&bp->b_dep) != NULL) {
1269 get_mplock();
1270 buf_deallocate(bp); /* can set B_LOCKED */
1271 rel_mplock();
1272 }
1273 if (bp->b_flags & (B_DELWRI | B_LOCKED))
1274 bp->b_flags &= ~B_RELBUF;
1275 else
1276 bp->b_flags |= B_RELBUF;
1277 }
1278
1279 /*
1280 * Make sure b_cmd is clear. It may have already been cleared by
1281 * biodone().
1282 *
1283 * At this point destroying the buffer is governed by the B_INVAL
1284 * or B_RELBUF flags.
1285 */
1286 bp->b_cmd = BUF_CMD_DONE;
1287
1288 /*
1289 * VMIO buffer rundown. Make sure the VM page array is restored
1290 * after an I/O may have replaces some of the pages with bogus pages
1291 * in order to not destroy dirty pages in a fill-in read.
1292 *
1293 * Note that due to the code above, if a buffer is marked B_DELWRI
1294 * then the B_RELBUF and B_NOCACHE bits will always be clear.
1295 * B_INVAL may still be set, however.
1296 *
1297 * For clean buffers, B_INVAL or B_RELBUF will destroy the buffer
1298 * but not the backing store. B_NOCACHE will destroy the backing
1299 * store.
1300 *
1301 * Note that dirty NFS buffers contain byte-granular write ranges
1302 * and should not be destroyed w/ B_INVAL even if the backing store
1303 * is left intact.
1304 */
1305 if (bp->b_flags & B_VMIO) {
1306 /*
1307 * Rundown for VMIO buffers which are not dirty NFS buffers.
1308 */
1309 int i, j, resid;
1310 vm_page_t m;
1311 off_t foff;
1312 vm_pindex_t poff;
1313 vm_object_t obj;
1314 struct vnode *vp;
1315
1316 vp = bp->b_vp;
1317
1318 /*
1319 * Get the base offset and length of the buffer. Note that
1320 * in the VMIO case if the buffer block size is not
1321 * page-aligned then b_data pointer may not be page-aligned.
1322 * But our b_xio.xio_pages array *IS* page aligned.
1323 *
1324 * block sizes less then DEV_BSIZE (usually 512) are not
1325 * supported due to the page granularity bits (m->valid,
1326 * m->dirty, etc...).
1327 *
1328 * See man buf(9) for more information
1329 */
1330
1331 resid = bp->b_bufsize;
1332 foff = bp->b_loffset;
1333
1334 get_mplock();
1335 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1336 m = bp->b_xio.xio_pages[i];
1337 vm_page_flag_clear(m, PG_ZERO);
1338 /*
1339 * If we hit a bogus page, fixup *all* of them
1340 * now. Note that we left these pages wired
1341 * when we removed them so they had better exist,
1342 * and they cannot be ripped out from under us so
1343 * no critical section protection is necessary.
1344 */
1345 if (m == bogus_page) {
1346 obj = vp->v_object;
1347 poff = OFF_TO_IDX(bp->b_loffset);
1348
1349 for (j = i; j < bp->b_xio.xio_npages; j++) {
1350 vm_page_t mtmp;
1351
1352 mtmp = bp->b_xio.xio_pages[j];
1353 if (mtmp == bogus_page) {
1354 mtmp = vm_page_lookup(obj, poff + j);
1355 if (!mtmp) {
1356 panic("brelse: page missing");
1357 }
1358 bp->b_xio.xio_pages[j] = mtmp;
1359 }
1360 }
1361
1362 if ((bp->b_flags & B_INVAL) == 0) {
1363 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
1364 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
1365 }
1366 m = bp->b_xio.xio_pages[i];
1367 }
1368
1369 /*
1370 * Invalidate the backing store if B_NOCACHE is set
1371 * (e.g. used with vinvalbuf()). If this is NFS
1372 * we impose a requirement that the block size be
1373 * a multiple of PAGE_SIZE and create a temporary
1374 * hack to basically invalidate the whole page. The
1375 * problem is that NFS uses really odd buffer sizes
1376 * especially when tracking piecemeal writes and
1377 * it also vinvalbuf()'s a lot, which would result
1378 * in only partial page validation and invalidation
1379 * here. If the file page is mmap()'d, however,
1380 * all the valid bits get set so after we invalidate
1381 * here we would end up with weird m->valid values
1382 * like 0xfc. nfs_getpages() can't handle this so
1383 * we clear all the valid bits for the NFS case
1384 * instead of just some of them.
1385 *
1386 * The real bug is the VM system having to set m->valid
1387 * to VM_PAGE_BITS_ALL for faulted-in pages, which
1388 * itself is an artifact of the whole 512-byte
1389 * granular mess that exists to support odd block
1390 * sizes and UFS meta-data block sizes (e.g. 6144).
1391 * A complete rewrite is required.
1392 *
1393 * XXX
1394 */
1395 if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
1396 int poffset = foff & PAGE_MASK;
1397 int presid;
1398
1399 presid = PAGE_SIZE - poffset;
1400 if (bp->b_vp->v_tag == VT_NFS &&
1401 bp->b_vp->v_type == VREG) {
1402 ; /* entire page */
1403 } else if (presid > resid) {
1404 presid = resid;
1405 }
1406 KASSERT(presid >= 0, ("brelse: extra page"));
1407 vm_page_set_invalid(m, poffset, presid);
1408 }
1409 resid -= PAGE_SIZE - (foff & PAGE_MASK);
1410 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1411 }
1412 if (bp->b_flags & (B_INVAL | B_RELBUF))
1413 vfs_vmio_release(bp);
1414 rel_mplock();
1415 } else {
1416 /*
1417 * Rundown for non-VMIO buffers.
1418 */
1419 if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1420 get_mplock();
1421 if (bp->b_bufsize)
1422 allocbuf(bp, 0);
1423 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1424 if (bp->b_vp)
1425 brelvp(bp);
1426 rel_mplock();
1427 }
1428 }
1429
1430 if (bp->b_qindex != BQUEUE_NONE)
1431 panic("brelse: free buffer onto another queue???");
1432 if (BUF_REFCNTNB(bp) > 1) {
1433 /* Temporary panic to verify exclusive locking */
1434 /* This panic goes away when we allow shared refs */
1435 panic("brelse: multiple refs");
1436 /* NOT REACHED */
1437 return;
1438 }
1439
1440 /*
1441 * Figure out the correct queue to place the cleaned up buffer on.
1442 * Buffers placed in the EMPTY or EMPTYKVA had better already be
1443 * disassociated from their vnode.
1444 */
1445 spin_lock_wr(&bufspin);
1446 if (bp->b_flags & B_LOCKED) {
1447 /*
1448 * Buffers that are locked are placed in the locked queue
1449 * immediately, regardless of their state.
1450 */
1451 bp->b_qindex = BQUEUE_LOCKED;
1452 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1453 } else if (bp->b_bufsize == 0) {
1454 /*
1455 * Buffers with no memory. Due to conditionals near the top
1456 * of brelse() such buffers should probably already be
1457 * marked B_INVAL and disassociated from their vnode.
1458 */
1459 bp->b_flags |= B_INVAL;
1460 KASSERT(bp->b_vp == NULL, ("bp1 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1461 KKASSERT((bp->b_flags & B_HASHED) == 0);
1462 if (bp->b_kvasize) {
1463 bp->b_qindex = BQUEUE_EMPTYKVA;
1464 } else {
1465 bp->b_qindex = BQUEUE_EMPTY;
1466 }
1467 TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1468 } else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) {
1469 /*
1470 * Buffers with junk contents. Again these buffers had better
1471 * already be disassociated from their vnode.
1472 */
1473 KASSERT(bp->b_vp == NULL, ("bp2 %p flags %08x/%08x vnode %p unexpectededly still associated!", bp, saved_flags, bp->b_flags, bp->b_vp));
1474 KKASSERT((bp->b_flags & B_HASHED) == 0);
1475 bp->b_flags |= B_INVAL;
1476 bp->b_qindex = BQUEUE_CLEAN;
1477 TAILQ_INSERT_HEAD(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1478 } else {
1479 /*
1480 * Remaining buffers. These buffers are still associated with
1481 * their vnode.
1482 */
1483 switch(bp->b_flags & (B_DELWRI|B_HEAVY)) {
1484 case B_DELWRI:
1485 bp->b_qindex = BQUEUE_DIRTY;
1486 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY], bp, b_freelist);
1487 break;
1488 case B_DELWRI | B_HEAVY:
1489 bp->b_qindex = BQUEUE_DIRTY_HW;
1490 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_DIRTY_HW], bp,
1491 b_freelist);
1492 break;
1493 default:
1494 /*
1495 * NOTE: Buffers are always placed at the end of the
1496 * queue. If B_AGE is not set the buffer will cycle
1497 * through the queue twice.
1498 */
1499 bp->b_qindex = BQUEUE_CLEAN;
1500 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1501 break;
1502 }
1503 }
1504 spin_unlock_wr(&bufspin);
1505
1506 /*
1507 * If B_INVAL, clear B_DELWRI. We've already placed the buffer
1508 * on the correct queue.
1509 */
1510 if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI))
1511 bundirty(bp);
1512
1513 /*
1514 * The bp is on an appropriate queue unless locked. If it is not
1515 * locked or dirty we can wakeup threads waiting for buffer space.
1516 *
1517 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1518 * if B_INVAL is set ).
1519 */
1520 if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0)
1521 bufcountwakeup();
1522
1523 /*
1524 * Something we can maybe free or reuse
1525 */
1526 if (bp->b_bufsize || bp->b_kvasize)
1527 bufspacewakeup();
1528
1529 /*
1530 * Clean up temporary flags and unlock the buffer.
1531 */
1532 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF | B_DIRECT);
1533 BUF_UNLOCK(bp);
1534}
1535
1536/*
1537 * bqrelse:
1538 *
1539 * Release a buffer back to the appropriate queue but do not try to free
1540 * it. The buffer is expected to be used again soon.
1541 *
1542 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1543 * biodone() to requeue an async I/O on completion. It is also used when
1544 * known good buffers need to be requeued but we think we may need the data
1545 * again soon.
1546 *
1547 * XXX we should be able to leave the B_RELBUF hint set on completion.
1548 *
1549 * MPSAFE
1550 */
1551void
1552bqrelse(struct buf *bp)
1553{
1554 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1555
1556 if (bp->b_qindex != BQUEUE_NONE)
1557 panic("bqrelse: free buffer onto another queue???");
1558 if (BUF_REFCNTNB(bp) > 1) {
1559 /* do not release to free list */
1560 panic("bqrelse: multiple refs");
1561 return;
1562 }
1563
1564 buf_act_advance(bp);
1565
1566 spin_lock_wr(&bufspin);
1567 if (bp->b_flags & B_LOCKED) {
1568 /*
1569 * Locked buffers are released to the locked queue. However,
1570 * if the buffer is dirty it will first go into the dirty
1571 * queue and later on after the I/O completes successfully it
1572 * will be released to the locked queue.
1573 */
1574 bp->b_qindex = BQUEUE_LOCKED;
1575 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_LOCKED], bp, b_freelist);
1576 } else if (bp->b_flags & B_DELWRI) {
1577 bp->b_qindex = (bp->b_flags & B_HEAVY) ?
1578 BQUEUE_DIRTY_HW : BQUEUE_DIRTY;
1579 TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1580 } else if (vm_page_count_severe()) {
1581 /*
1582 * We are too low on memory, we have to try to free the
1583 * buffer (most importantly: the wired pages making up its
1584 * backing store) *now*.
1585 */
1586 spin_unlock_wr(&bufspin);
1587 brelse(bp);
1588 return;
1589 } else {
1590 bp->b_qindex = BQUEUE_CLEAN;
1591 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
1592 }
1593 spin_unlock_wr(&bufspin);
1594
1595 if ((bp->b_flags & B_LOCKED) == 0 &&
1596 ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)) {
1597 bufcountwakeup();
1598 }
1599
1600 /*
1601 * Something we can maybe free or reuse.
1602 */
1603 if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1604 bufspacewakeup();
1605
1606 /*
1607 * Final cleanup and unlock. Clear bits that are only used while a
1608 * buffer is actively locked.
1609 */
1610 bp->b_flags &= ~(B_ORDERED | B_NOCACHE | B_RELBUF);
1611 BUF_UNLOCK(bp);
1612}
1613
1614/*
1615 * vfs_vmio_release:
1616 *
1617 * Return backing pages held by the buffer 'bp' back to the VM system
1618 * if possible. The pages are freed if they are no longer valid or
1619 * attempt to free if it was used for direct I/O otherwise they are
1620 * sent to the page cache.
1621 *
1622 * Pages that were marked busy are left alone and skipped.
1623 *
1624 * The KVA mapping (b_data) for the underlying pages is removed by
1625 * this function.
1626 */
1627static void
1628vfs_vmio_release(struct buf *bp)
1629{
1630 int i;
1631 vm_page_t m;
1632
1633 crit_enter();
1634 for (i = 0; i < bp->b_xio.xio_npages; i++) {
1635 m = bp->b_xio.xio_pages[i];
1636 bp->b_xio.xio_pages[i] = NULL;
1637
1638 /*
1639 * This is a very important bit of code. We try to track
1640 * VM page use whether the pages are wired into the buffer
1641 * cache or not. While wired into the buffer cache the
1642 * bp tracks the act_count.
1643 *
1644 * We can choose to place unwired pages on the inactive
1645 * queue (0) or active queue (1). If we place too many
1646 * on the active queue the queue will cycle the act_count
1647 * on pages we'd like to keep, just from single-use pages
1648 * (such as when doing a tar-up or file scan).
1649 */
1650 if (bp->b_act_count < vm_cycle_point)
1651 vm_page_unwire(m, 0);
1652 else
1653 vm_page_unwire(m, 1);
1654
1655 /*
1656 * We don't mess with busy pages, it is
1657 * the responsibility of the process that
1658 * busied the pages to deal with them.
1659 */
1660 if ((m->flags & PG_BUSY) || (m->busy != 0))
1661 continue;
1662
1663 if (m->wire_count == 0) {
1664 vm_page_flag_clear(m, PG_ZERO);
1665 /*
1666 * Might as well free the page if we can and it has
1667 * no valid data. We also free the page if the
1668 * buffer was used for direct I/O.
1669 */
1670#if 0
1671 if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1672 m->hold_count == 0) {
1673 vm_page_busy(m);
1674 vm_page_protect(m, VM_PROT_NONE);
1675 vm_page_free(m);
1676 } else
1677#endif
1678 if (bp->b_flags & B_DIRECT) {
1679 vm_page_try_to_free(m);
1680 } else if (vm_page_count_severe()) {
1681 m->act_count = bp->b_act_count;
1682 vm_page_try_to_cache(m);
1683 } else {
1684 m->act_count = bp->b_act_count;
1685 }
1686 }
1687 }
1688 crit_exit();
1689 pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_xio.xio_npages);
1690 if (bp->b_bufsize) {
1691 bufspacewakeup();
1692 bp->b_bufsize = 0;
1693 }
1694 bp->b_xio.xio_npages = 0;
1695 bp->b_flags &= ~B_VMIO;
1696 KKASSERT (LIST_FIRST(&bp->b_dep) == NULL);
1697 if (bp->b_vp) {
1698 get_mplock();
1699 brelvp(bp);
1700 rel_mplock();
1701 }
1702}
1703
1704/*
1705 * vfs_bio_awrite:
1706 *
1707 * Implement clustered async writes for clearing out B_DELWRI buffers.
1708 * This is much better then the old way of writing only one buffer at
1709 * a time. Note that we may not be presented with the buffers in the
1710 * correct order, so we search for the cluster in both directions.
1711 *
1712 * The buffer is locked on call.
1713 */
1714int
1715vfs_bio_awrite(struct buf *bp)
1716{
1717 int i;
1718 int j;
1719 off_t loffset = bp->b_loffset;
1720 struct vnode *vp = bp->b_vp;
1721 int nbytes;
1722 struct buf *bpa;
1723 int nwritten;
1724 int size;
1725
1726 /*
1727 * right now we support clustered writing only to regular files. If
1728 * we find a clusterable block we could be in the middle of a cluster
1729 * rather then at the beginning.
1730 *
1731 * NOTE: b_bio1 contains the logical loffset and is aliased
1732 * to b_loffset. b_bio2 contains the translated block number.
1733 */
1734 if ((vp->v_type == VREG) &&
1735 (vp->v_mount != 0) && /* Only on nodes that have the size info */
1736 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1737
1738 size = vp->v_mount->mnt_stat.f_iosize;
1739
1740 for (i = size; i < MAXPHYS; i += size) {
1741 if ((bpa = findblk(vp, loffset + i, FINDBLK_TEST)) &&
1742 BUF_REFCNT(bpa) == 0 &&
1743 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1744 (B_DELWRI | B_CLUSTEROK)) &&
1745 (bpa->b_bufsize == size)) {
1746 if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1747 (bpa->b_bio2.bio_offset !=
1748 bp->b_bio2.bio_offset + i))
1749 break;
1750 } else {
1751 break;
1752 }
1753 }
1754 for (j = size; i + j <= MAXPHYS && j <= loffset; j += size) {
1755 if ((bpa = findblk(vp, loffset - j, FINDBLK_TEST)) &&
1756 BUF_REFCNT(bpa) == 0 &&
1757 ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1758 (B_DELWRI | B_CLUSTEROK)) &&
1759 (bpa->b_bufsize == size)) {
1760 if ((bpa->b_bio2.bio_offset == NOOFFSET) ||
1761 (bpa->b_bio2.bio_offset !=
1762 bp->b_bio2.bio_offset - j))
1763 break;
1764 } else {
1765 break;
1766 }
1767 }
1768 j -= size;
1769 nbytes = (i + j);
1770
1771 /*
1772 * this is a possible cluster write
1773 */
1774 if (nbytes != size) {
1775 BUF_UNLOCK(bp);
1776 nwritten = cluster_wbuild(vp, size,
1777 loffset - j, nbytes);
1778 return nwritten;
1779 }
1780 }
1781
1782 /*
1783 * default (old) behavior, writing out only one block
1784 *
1785 * XXX returns b_bufsize instead of b_bcount for nwritten?
1786 */
1787 nwritten = bp->b_bufsize;
1788 bremfree(bp);
1789 bawrite(bp);
1790
1791 return nwritten;
1792}
1793
1794/*
1795 * getnewbuf:
1796 *
1797 * Find and initialize a new buffer header, freeing up existing buffers
1798 * in the bufqueues as necessary. The new buffer is returned locked.
1799 *
1800 * Important: B_INVAL is not set. If the caller wishes to throw the
1801 * buffer away, the caller must set B_INVAL prior to calling brelse().
1802 *
1803 * We block if:
1804 * We have insufficient buffer headers
1805 * We have insufficient buffer space
1806 * buffer_map is too fragmented ( space reservation fails )
1807 * If we have to flush dirty buffers ( but we try to avoid this )
1808 *
1809 * To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1810 * Instead we ask the buf daemon to do it for us. We attempt to
1811 * avoid piecemeal wakeups of the pageout daemon.
1812 *
1813 * MPALMOSTSAFE
1814 */
1815static struct buf *
1816getnewbuf(int blkflags, int slptimeo, int size, int maxsize)
1817{
1818 struct buf *bp;
1819 struct buf *nbp;
1820 int defrag = 0;
1821 int nqindex;
1822 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
1823 static int flushingbufs;
1824
1825 /*
1826 * We can't afford to block since we might be holding a vnode lock,
1827 * which may prevent system daemons from running. We deal with
1828 * low-memory situations by proactively returning memory and running
1829 * async I/O rather then sync I/O.
1830 */
1831
1832 ++getnewbufcalls;
1833 --getnewbufrestarts;
1834restart:
1835 ++getnewbufrestarts;
1836
1837 /*
1838 * Setup for scan. If we do not have enough free buffers,
1839 * we setup a degenerate case that immediately fails. Note
1840 * that if we are specially marked process, we are allowed to
1841 * dip into our reserves.
1842 *
1843 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
1844 *
1845 * We start with EMPTYKVA. If the list is empty we backup to EMPTY.
1846 * However, there are a number of cases (defragging, reusing, ...)
1847 * where we cannot backup.
1848 */
1849 nqindex = BQUEUE_EMPTYKVA;
1850 spin_lock_wr(&bufspin);
1851 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA]);
1852
1853 if (nbp == NULL) {
1854 /*
1855 * If no EMPTYKVA buffers and we are either
1856 * defragging or reusing, locate a CLEAN buffer
1857 * to free or reuse. If bufspace useage is low
1858 * skip this step so we can allocate a new buffer.
1859 */
1860 if (defrag || bufspace >= lobufspace) {
1861 nqindex = BQUEUE_CLEAN;
1862 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
1863 }
1864
1865 /*
1866 * If we could not find or were not allowed to reuse a
1867 * CLEAN buffer, check to see if it is ok to use an EMPTY
1868 * buffer. We can only use an EMPTY buffer if allocating
1869 * its KVA would not otherwise run us out of buffer space.
1870 */
1871 if (nbp == NULL && defrag == 0 &&
1872 bufspace + maxsize < hibufspace) {
1873 nqindex = BQUEUE_EMPTY;
1874 nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTY]);
1875 }
1876 }
1877
1878 /*
1879 * Run scan, possibly freeing data and/or kva mappings on the fly
1880 * depending.
1881 *
1882 * WARNING! bufspin is held!
1883 */
1884 while ((bp = nbp) != NULL) {
1885 int qindex = nqindex;
1886
1887 nbp = TAILQ_NEXT(bp, b_freelist);
1888
1889 /*
1890 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
1891 * cycles through the queue twice before being selected.
1892 */
1893 if (qindex == BQUEUE_CLEAN &&
1894 (bp->b_flags & B_AGE) == 0 && nbp) {
1895 bp->b_flags |= B_AGE;
1896 TAILQ_REMOVE(&bufqueues[qindex], bp, b_freelist);
1897 TAILQ_INSERT_TAIL(&bufqueues[qindex], bp, b_freelist);
1898 continue;
1899 }
1900
1901 /*
1902 * Calculate next bp ( we can only use it if we do not block
1903 * or do other fancy things ).
1904 */
1905 if (nbp == NULL) {
1906 switch(qindex) {
1907 case BQUEUE_EMPTY:
1908 nqindex = BQUEUE_EMPTYKVA;
1909 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_EMPTYKVA])))
1910 break;
1911 /* fall through */
1912 case BQUEUE_EMPTYKVA:
1913 nqindex = BQUEUE_CLEAN;
1914 if ((nbp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN])))
1915 break;
1916 /* fall through */
1917 case BQUEUE_CLEAN:
1918 /*
1919 * nbp is NULL.
1920 */
1921 break;
1922 }
1923 }
1924
1925 /*
1926 * Sanity Checks
1927 */
1928 KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
1929
1930 /*
1931 * Note: we no longer distinguish between VMIO and non-VMIO
1932 * buffers.
1933 */
1934
1935 KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1936
1937 /*
1938 * If we are defragging then we need a buffer with
1939 * b_kvasize != 0. XXX this situation should no longer
1940 * occur, if defrag is non-zero the buffer's b_kvasize
1941 * should also be non-zero at this point. XXX
1942 */
1943 if (defrag && bp->b_kvasize == 0) {
1944 kprintf("Warning: defrag empty buffer %p\n", bp);
1945 continue;
1946 }
1947
1948 /*
1949 * Start freeing the bp. This is somewhat involved. nbp
1950 * remains valid only for BQUEUE_EMPTY[KVA] bp's. Buffers
1951 * on the clean list must be disassociated from their
1952 * current vnode. Buffers on the empty[kva] lists have
1953 * already been disassociated.
1954 */
1955
1956 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1957 spin_unlock_wr(&bufspin);
1958 kprintf("getnewbuf: warning, locked buf %p, race corrected\n", bp);
1959 tsleep(&bd_request, 0, "gnbxxx", hz / 100);
1960 goto restart;
1961 }
1962 if (bp->b_qindex != qindex) {
1963 spin_unlock_wr(&bufspin);
1964 kprintf("getnewbuf: warning, BUF_LOCK blocked unexpectedly on buf %p index %d->%d, race corrected\n", bp, qindex, bp->b_qindex);
1965 BUF_UNLOCK(bp);
1966 goto restart;
1967 }
1968 bremfree_locked(bp);
1969 spin_unlock_wr(&bufspin);
1970
1971 /*
1972 * Dependancies must be handled before we disassociate the
1973 * vnode.
1974 *
1975 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
1976 * be immediately disassociated. HAMMER then becomes
1977 * responsible for releasing the buffer.
1978 *
1979 * NOTE: bufspin is UNLOCKED now.
1980 */
1981 if (LIST_FIRST(&bp->b_dep) != NULL) {
1982 get_mplock();
1983 buf_deallocate(bp);
1984 rel_mplock();
1985 if (bp->b_flags & B_LOCKED) {
1986 bqrelse(bp);
1987 goto restart;
1988 }
1989 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
1990 }
1991
1992 if (qindex == BQUEUE_CLEAN) {
1993 get_mplock();
1994 if (bp->b_flags & B_VMIO) {
1995 get_mplock();
1996 vfs_vmio_release(bp);
1997 rel_mplock();
1998 }
1999 if (bp->b_vp)
2000 brelvp(bp);
2001 rel_mplock();
2002 }
2003
2004 /*
2005 * NOTE: nbp is now entirely invalid. We can only restart
2006 * the scan from this point on.
2007 *
2008 * Get the rest of the buffer freed up. b_kva* is still
2009 * valid after this operation.
2010 */
2011
2012 KASSERT(bp->b_vp == NULL, ("bp3 %p flags %08x vnode %p qindex %d unexpectededly still associated!", bp, bp->b_flags, bp->b_vp, qindex));
2013 KKASSERT((bp->b_flags & B_HASHED) == 0);
2014
2015 /*
2016 * critical section protection is not required when
2017 * scrapping a buffer's contents because it is already
2018 * wired.
2019 */
2020 if (bp->b_bufsize) {
2021 get_mplock();
2022 allocbuf(bp, 0);
2023 rel_mplock();
2024 }
2025
2026 bp->b_flags = B_BNOCLIP;
2027 bp->b_cmd = BUF_CMD_DONE;
2028 bp->b_vp = NULL;
2029 bp->b_error = 0;
2030 bp->b_resid = 0;
2031 bp->b_bcount = 0;
2032 bp->b_xio.xio_npages = 0;
2033 bp->b_dirtyoff = bp->b_dirtyend = 0;
2034 bp->b_act_count = ACT_INIT;
2035 reinitbufbio(bp);
2036 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2037 buf_dep_init(bp);
2038 if (blkflags & GETBLK_BHEAVY)
2039 bp->b_flags |= B_HEAVY;
2040
2041 /*
2042 * If we are defragging then free the buffer.
2043 */
2044 if (defrag) {
2045 bp->b_flags |= B_INVAL;
2046 bfreekva(bp);
2047 brelse(bp);
2048 defrag = 0;
2049 goto restart;
2050 }
2051
2052 /*
2053 * If we are overcomitted then recover the buffer and its
2054 * KVM space. This occurs in rare situations when multiple
2055 * processes are blocked in getnewbuf() or allocbuf().
2056 */
2057 if (bufspace >= hibufspace)
2058 flushingbufs = 1;
2059 if (flushingbufs && bp->b_kvasize != 0) {
2060 bp->b_flags |= B_INVAL;
2061 bfreekva(bp);
2062 brelse(bp);
2063 goto restart;
2064 }
2065 if (bufspace < lobufspace)
2066 flushingbufs = 0;
2067 break;
2068 /* NOT REACHED, bufspin not held */
2069 }
2070
2071 /*
2072 * If we exhausted our list, sleep as appropriate. We may have to
2073 * wakeup various daemons and write out some dirty buffers.
2074 *
2075 * Generally we are sleeping due to insufficient buffer space.
2076 *
2077 * NOTE: bufspin is held if bp is NULL, else it is not held.
2078 */
2079 if (bp == NULL) {
2080 int flags;
2081 char *waitmsg;
2082
2083 spin_unlock_wr(&bufspin);
2084 if (defrag) {
2085 flags = VFS_BIO_NEED_BUFSPACE;
2086 waitmsg = "nbufkv";
2087 } else if (bufspace >= hibufspace) {
2088 waitmsg = "nbufbs";
2089 flags = VFS_BIO_NEED_BUFSPACE;
2090 } else {
2091 waitmsg = "newbuf";
2092 flags = VFS_BIO_NEED_ANY;
2093 }
2094
2095 needsbuffer |= flags;
2096 bd_speedup(); /* heeeelp */
2097 while (needsbuffer & flags) {
2098 if (tsleep(&needsbuffer, slpflags, waitmsg, slptimeo))
2099 return (NULL);
2100 }
2101 } else {
2102 /*
2103 * We finally have a valid bp. We aren't quite out of the
2104 * woods, we still have to reserve kva space. In order
2105 * to keep fragmentation sane we only allocate kva in
2106 * BKVASIZE chunks.
2107 *
2108 * (bufspin is not held)
2109 */
2110 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2111
2112 if (maxsize != bp->b_kvasize) {
2113 vm_offset_t addr = 0;
2114 int count;
2115
2116 bfreekva(bp);
2117
2118 get_mplock();
2119 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2120 vm_map_lock(&buffer_map);
2121
2122 if (vm_map_findspace(&buffer_map,
2123 vm_map_min(&buffer_map), maxsize,
2124 maxsize, 0, &addr)) {
2125 /*
2126 * Uh oh. Buffer map is too fragmented. We
2127 * must defragment the map.
2128 */
2129 vm_map_unlock(&buffer_map);
2130 vm_map_entry_release(count);
2131 ++bufdefragcnt;
2132 defrag = 1;
2133 bp->b_flags |= B_INVAL;
2134 rel_mplock();
2135 brelse(bp);
2136 goto restart;
2137 }
2138 if (addr) {
2139 vm_map_insert(&buffer_map, &count,
2140 NULL, 0,
2141 addr, addr + maxsize,
2142 VM_MAPTYPE_NORMAL,
2143 VM_PROT_ALL, VM_PROT_ALL,
2144 MAP_NOFAULT);
2145
2146 bp->b_kvabase = (caddr_t) addr;
2147 bp->b_kvasize = maxsize;
2148 bufspace += bp->b_kvasize;
2149 ++bufreusecnt;
2150 }
2151 vm_map_unlock(&buffer_map);
2152 vm_map_entry_release(count);
2153 rel_mplock();
2154 }
2155 bp->b_data = bp->b_kvabase;
2156 }
2157 return(bp);
2158}
2159
2160/*
2161 * This routine is called in an emergency to recover VM pages from the
2162 * buffer cache by cashing in clean buffers. The idea is to recover
2163 * enough pages to be able to satisfy a stuck bio_page_alloc().
2164 */
2165static int
2166recoverbufpages(void)
2167{
2168 struct buf *bp;
2169 int bytes = 0;
2170
2171 ++recoverbufcalls;
2172
2173 spin_lock_wr(&bufspin);
2174 while (bytes < MAXBSIZE) {
2175 bp = TAILQ_FIRST(&bufqueues[BQUEUE_CLEAN]);
2176 if (bp == NULL)
2177 break;
2178
2179 /*
2180 * BQUEUE_CLEAN - B_AGE special case. If not set the bp
2181 * cycles through the queue twice before being selected.
2182 */
2183 if ((bp->b_flags & B_AGE) == 0 && TAILQ_NEXT(bp, b_freelist)) {
2184 bp->b_flags |= B_AGE;
2185 TAILQ_REMOVE(&bufqueues[BQUEUE_CLEAN], bp, b_freelist);
2186 TAILQ_INSERT_TAIL(&bufqueues[BQUEUE_CLEAN],
2187 bp, b_freelist);
2188 continue;
2189 }
2190
2191 /*
2192 * Sanity Checks
2193 */
2194 KKASSERT(bp->b_qindex == BQUEUE_CLEAN);
2195 KKASSERT((bp->b_flags & B_DELWRI) == 0);
2196
2197 /*
2198 * Start freeing the bp. This is somewhat involved.
2199 *
2200 * Buffers on the clean list must be disassociated from
2201 * their current vnode
2202 */
2203
2204 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
2205 kprintf("recoverbufpages: warning, locked buf %p, race corrected\n", bp);
2206 tsleep(&bd_request, 0, "gnbxxx", hz / 100);
2207 continue;
2208 }
2209 if (bp->b_qindex != BQUEUE_CLEAN) {
2210 kprintf("recoverbufpages: warning, BUF_LOCK blocked unexpectedly on buf %p index %d, race corrected\n", bp, bp->b_qindex);
2211 BUF_UNLOCK(bp);
2212 continue;
2213 }
2214 bremfree_locked(bp);
2215 spin_unlock_wr(&bufspin);
2216
2217 /*
2218 * Dependancies must be handled before we disassociate the
2219 * vnode.
2220 *
2221 * NOTE: HAMMER will set B_LOCKED if the buffer cannot
2222 * be immediately disassociated. HAMMER then becomes
2223 * responsible for releasing the buffer.
2224 */
2225 if (LIST_FIRST(&bp->b_dep) != NULL) {
2226 buf_deallocate(bp);
2227 if (bp->b_flags & B_LOCKED) {
2228 bqrelse(bp);
2229 spin_lock_wr(&bufspin);
2230 continue;
2231 }
2232 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2233 }
2234
2235 bytes += bp->b_bufsize;
2236
2237 get_mplock();
2238 if (bp->b_flags & B_VMIO) {
2239 bp->b_flags |= B_DIRECT; /* try to free pages */
2240 vfs_vmio_release(bp);
2241 }
2242 if (bp->b_vp)
2243 brelvp(bp);
2244
2245 KKASSERT(bp->b_vp == NULL);
2246 KKASSERT((bp->b_flags & B_HASHED) == 0);
2247
2248 /*
2249 * critical section protection is not required when
2250 * scrapping a buffer's contents because it is already
2251 * wired.
2252 */
2253 if (bp->b_bufsize)
2254 allocbuf(bp, 0);
2255 rel_mplock();
2256
2257 bp->b_flags = B_BNOCLIP;
2258 bp->b_cmd = BUF_CMD_DONE;
2259 bp->b_vp = NULL;
2260 bp->b_error = 0;
2261 bp->b_resid = 0;
2262 bp->b_bcount = 0;
2263 bp->b_xio.xio_npages = 0;
2264 bp->b_dirtyoff = bp->b_dirtyend = 0;
2265 reinitbufbio(bp);
2266 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
2267 buf_dep_init(bp);
2268 bp->b_flags |= B_INVAL;
2269 /* bfreekva(bp); */
2270 brelse(bp);
2271 spin_lock_wr(&bufspin);
2272 }
2273 spin_unlock_wr(&bufspin);
2274 return(bytes);
2275}
2276
2277/*
2278 * buf_daemon:
2279 *
2280 * Buffer flushing daemon. Buffers are normally flushed by the
2281 * update daemon but if it cannot keep up this process starts to
2282 * take the load in an attempt to prevent getnewbuf() from blocking.
2283 *
2284 * Once a flush is initiated it does not stop until the number
2285 * of buffers falls below lodirtybuffers, but we will wake up anyone
2286 * waiting at the mid-point.
2287 */
2288
2289static struct kproc_desc buf_kp = {
2290 "bufdaemon",
2291 buf_daemon,
2292 &bufdaemon_td
2293};
2294SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2295 kproc_start, &buf_kp)
2296
2297static struct kproc_desc bufhw_kp = {
2298 "bufdaemon_hw",
2299 buf_daemon_hw,
2300 &bufdaemonhw_td
2301};
2302SYSINIT(bufdaemon_hw, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST,
2303 kproc_start, &bufhw_kp)
2304
2305static void
2306buf_daemon(void)
2307{
2308 int limit;
2309
2310 /*
2311 * This process needs to be suspended prior to shutdown sync.
2312 */
2313 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2314 bufdaemon_td, SHUTDOWN_PRI_LAST);
2315 curthread->td_flags |= TDF_SYSTHREAD;
2316
2317 /*
2318 * This process is allowed to take the buffer cache to the limit
2319 */
2320 crit_enter();
2321
2322 for (;;) {
2323 kproc_suspend_loop();
2324
2325 /*
2326 * Do the flush as long as the number of dirty buffers
2327 * (including those running) exceeds lodirtybufspace.
2328 *
2329 * When flushing limit running I/O to hirunningspace
2330 * Do the flush. Limit the amount of in-transit I/O we
2331 * allow to build up, otherwise we would completely saturate
2332 * the I/O system. Wakeup any waiting processes before we
2333 * normally would so they can run in parallel with our drain.
2334 *
2335 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2336 * but because we split the operation into two threads we
2337 * have to cut it in half for each thread.
2338 */
2339 waitrunningbufspace();
2340 limit = lodirtybufspace / 2;
2341 while (runningbufspace + dirtybufspace > limit ||
2342 dirtybufcount - dirtybufcounthw >= nbuf / 2) {
2343 if (flushbufqueues(BQUEUE_DIRTY) == 0)
2344 break;
2345 if (runningbufspace < hirunningspace)
2346 continue;
2347 waitrunningbufspace();
2348 }
2349
2350 /*
2351 * We reached our low water mark, reset the
2352 * request and sleep until we are needed again.
2353 * The sleep is just so the suspend code works.
2354 */
2355 spin_lock_wr(&needsbuffer_spin);
2356 if (bd_request == 0) {
2357 ssleep(&bd_request, &needsbuffer_spin, 0,
2358 "psleep", hz);
2359 }
2360 bd_request = 0;
2361 spin_unlock_wr(&needsbuffer_spin);
2362 }
2363}
2364
2365static void
2366buf_daemon_hw(void)
2367{
2368 int limit;
2369
2370 /*
2371 * This process needs to be suspended prior to shutdown sync.
2372 */
2373 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
2374 bufdaemonhw_td, SHUTDOWN_PRI_LAST);
2375 curthread->td_flags |= TDF_SYSTHREAD;
2376
2377 /*
2378 * This process is allowed to take the buffer cache to the limit
2379 */
2380 crit_enter();
2381
2382 for (;;) {
2383 kproc_suspend_loop();
2384
2385 /*
2386 * Do the flush. Limit the amount of in-transit I/O we
2387 * allow to build up, otherwise we would completely saturate
2388 * the I/O system. Wakeup any waiting processes before we
2389 * normally would so they can run in parallel with our drain.
2390 *
2391 * Once we decide to flush push the queued I/O up to
2392 * hirunningspace in order to trigger bursting by the bioq
2393 * subsystem.
2394 *
2395 * Our aggregate normal+HW lo water mark is lodirtybufspace,
2396 * but because we split the operation into two threads we
2397 * have to cut it in half for each thread.
2398 */
2399 waitrunningbufspace();
2400 limit = lodirtybufspace / 2;
2401 while (runningbufspace + dirtybufspacehw > limit ||
2402 dirtybufcounthw >= nbuf / 2) {
2403 if (flushbufqueues(BQUEUE_DIRTY_HW) == 0)
2404 break;
2405 if (runningbufspace < hirunningspace)
2406 continue;
2407 waitrunningbufspace();
2408 }
2409
2410 /*
2411 * We reached our low water mark, reset the
2412 * request and sleep until we are needed again.
2413 * The sleep is just so the suspend code works.
2414 */
2415 spin_lock_wr(&needsbuffer_spin);
2416 if (bd_request_hw == 0) {
2417 ssleep(&bd_request_hw, &needsbuffer_spin, 0,
2418 "psleep", hz);
2419 }
2420 bd_request_hw = 0;
2421 spin_unlock_wr(&needsbuffer_spin);
2422 }
2423}
2424
2425/*
2426 * flushbufqueues:
2427 *
2428 * Try to flush a buffer in the dirty queue. We must be careful to
2429 * free up B_INVAL buffers instead of write them, which NFS is
2430 * particularly sensitive to.
2431 *
2432 * B_RELBUF may only be set by VFSs. We do set B_AGE to indicate
2433 * that we really want to try to get the buffer out and reuse it
2434 * due to the write load on the machine.
2435 */
2436static int
2437flushbufqueues(bufq_type_t q)
2438{
2439 struct buf *bp;
2440 int r = 0;
2441 int spun;
2442
2443 spin_lock_wr(&bufspin);
2444 spun = 1;
2445
2446 bp = TAILQ_FIRST(&bufqueues[q]);
2447 while (bp) {
2448 KASSERT((bp->b_flags & B_DELWRI),
2449 ("unexpected clean buffer %p", bp));
2450
2451 if (bp->b_flags & B_DELWRI) {
2452 if (bp->b_flags & B_INVAL) {
2453 spin_unlock_wr(&bufspin);
2454 spun = 0;
2455 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
2456 panic("flushbufqueues: locked buf");
2457 bremfree(bp);
2458 brelse(bp);
2459 ++r;
2460 break;
2461 }
2462 if (LIST_FIRST(&bp->b_dep) != NULL &&
2463 (bp->b_flags & B_DEFERRED) == 0 &&
2464 buf_countdeps(bp, 0)) {
2465 TAILQ_REMOVE(&bufqueues[q], bp, b_freelist);
2466 TAILQ_INSERT_TAIL(&bufqueues[q], bp,
2467 b_freelist);
2468 bp->b_flags |= B_DEFERRED;
2469 bp = TAILQ_FIRST(&bufqueues[q]);
2470 continue;
2471 }
2472
2473 /*
2474 * Only write it out if we can successfully lock
2475 * it. If the buffer has a dependancy,
2476 * buf_checkwrite must also return 0 for us to
2477 * be able to initate the write.
2478 *
2479 * If the buffer is flagged B_ERROR it may be
2480 * requeued over and over again, we try to
2481 * avoid a live lock.
2482 */
2483 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
2484 spin_unlock_wr(&bufspin);
2485 spun = 0;
2486 if (LIST_FIRST(&bp->b_dep) != NULL &&
2487 buf_checkwrite(bp)) {
2488 bremfree(bp);
2489 brelse(bp);
2490 } else if (bp->b_flags & B_ERROR) {
2491 tsleep(bp, 0, "bioer", 1);
2492 bp->b_flags &= ~B_AGE;
2493 vfs_bio_awrite(bp);
2494 } else {
2495 bp->b_flags |= B_AGE;
2496 vfs_bio_awrite(bp);
2497 }
2498 ++r;
2499 break;
2500 }
2501 }
2502 bp = TAILQ_NEXT(bp, b_freelist);
2503 }
2504 if (spun)
2505 spin_unlock_wr(&bufspin);
2506 return (r);
2507}
2508
2509/*
2510 * inmem:
2511 *
2512 * Returns true if no I/O is needed to access the associated VM object.
2513 * This is like findblk except it also hunts around in the VM system for
2514 * the data.
2515 *
2516 * Note that we ignore vm_page_free() races from interrupts against our
2517 * lookup, since if the caller is not protected our return value will not
2518 * be any more valid then otherwise once we exit the critical section.
2519 */
2520int
2521inmem(struct vnode *vp, off_t loffset)
2522{
2523 vm_object_t obj;
2524 vm_offset_t toff, tinc, size;
2525 vm_page_t m;
2526
2527 if (findblk(vp, loffset, FINDBLK_TEST))
2528 return 1;
2529 if (vp->v_mount == NULL)
2530 return 0;
2531 if ((obj = vp->v_object) == NULL)
2532 return 0;
2533
2534 size = PAGE_SIZE;
2535 if (size > vp->v_mount->mnt_stat.f_iosize)
2536 size = vp->v_mount->mnt_stat.f_iosize;
2537
2538 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2539 m = vm_page_lookup(obj, OFF_TO_IDX(loffset + toff));
2540 if (m == NULL)
2541 return 0;
2542 tinc = size;
2543 if (tinc > PAGE_SIZE - ((toff + loffset) & PAGE_MASK))
2544 tinc = PAGE_SIZE - ((toff + loffset) & PAGE_MASK);
2545 if (vm_page_is_valid(m,
2546 (vm_offset_t) ((toff + loffset) & PAGE_MASK), tinc) == 0)
2547 return 0;
2548 }
2549 return 1;
2550}
2551
2552/*
2553 * findblk:
2554 *
2555 * Locate and return the specified buffer. Unless flagged otherwise,
2556 * a locked buffer will be returned if it exists or NULL if it does not.
2557 *
2558 * findblk()'d buffers are still on the bufqueues and if you intend
2559 * to use your (locked NON-TEST) buffer you need to bremfree(bp)
2560 * and possibly do other stuff to it.
2561 *
2562 * FINDBLK_TEST - Do not lock the buffer. The caller is responsible
2563 * for locking the buffer and ensuring that it remains
2564 * the desired buffer after locking.
2565 *
2566 * FINDBLK_NBLOCK - Lock the buffer non-blocking. If we are unable
2567 * to acquire the lock we return NULL, even if the
2568 * buffer exists.
2569 *
2570 * (0) - Lock the buffer blocking.
2571 *
2572 * MPSAFE
2573 */
2574struct buf *
2575findblk(struct vnode *vp, off_t loffset, int flags)
2576{
2577 lwkt_tokref vlock;
2578 struct buf *bp;
2579 int lkflags;
2580
2581 lkflags = LK_EXCLUSIVE;
2582 if (flags & FINDBLK_NBLOCK)
2583 lkflags |= LK_NOWAIT;
2584
2585 for (;;) {
2586 lwkt_gettoken(&vlock, &vp->v_token);
2587 bp = buf_rb_hash_RB_LOOKUP(&vp->v_rbhash_tree, loffset);
2588 lwkt_reltoken(&vlock);
2589 if (bp == NULL || (flags & FINDBLK_TEST))
2590 break;
2591 if (BUF_LOCK(bp, lkflags)) {
2592 bp = NULL;
2593 break;
2594 }
2595 if (bp->b_vp == vp && bp->b_loffset == loffset)
2596 break;
2597 BUF_UNLOCK(bp);
2598 }
2599 return(bp);
2600}
2601
2602/*
2603 * getcacheblk:
2604 *
2605 * Similar to getblk() except only returns the buffer if it is
2606 * B_CACHE and requires no other manipulation. Otherwise NULL
2607 * is returned.
2608 *
2609 * If B_RAM is set the buffer might be just fine, but we return
2610 * NULL anyway because we want the code to fall through to the
2611 * cluster read. Otherwise read-ahead breaks.
2612 */
2613struct buf *
2614getcacheblk(struct vnode *vp, off_t loffset)
2615{
2616 struct buf *bp;
2617
2618 bp = findblk(vp, loffset, 0);
2619 if (bp) {
2620 if ((bp->b_flags & (B_INVAL | B_CACHE | B_RAM)) == B_CACHE) {
2621 bp->b_flags &= ~B_AGE;
2622 bremfree(bp);
2623 } else {
2624 BUF_UNLOCK(bp);
2625 bp = NULL;
2626 }
2627 }
2628 return (bp);
2629}
2630
2631/*
2632 * getblk:
2633 *
2634 * Get a block given a specified block and offset into a file/device.
2635 * B_INVAL may or may not be set on return. The caller should clear
2636 * B_INVAL prior to initiating a READ.
2637 *
2638 * IT IS IMPORTANT TO UNDERSTAND THAT IF YOU CALL GETBLK() AND B_CACHE
2639 * IS NOT SET, YOU MUST INITIALIZE THE RETURNED BUFFER, ISSUE A READ,
2640 * OR SET B_INVAL BEFORE RETIRING IT. If you retire a getblk'd buffer
2641 * without doing any of those things the system will likely believe
2642 * the buffer to be valid (especially if it is not B_VMIO), and the
2643 * next getblk() will return the buffer with B_CACHE set.
2644 *
2645 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2646 * an existing buffer.
2647 *
2648 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
2649 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2650 * and then cleared based on the backing VM. If the previous buffer is
2651 * non-0-sized but invalid, B_CACHE will be cleared.
2652 *
2653 * If getblk() must create a new buffer, the new buffer is returned with
2654 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2655 * case it is returned with B_INVAL clear and B_CACHE set based on the
2656 * backing VM.
2657 *
2658 * getblk() also forces a bwrite() for any B_DELWRI buffer whos
2659 * B_CACHE bit is clear.
2660 *
2661 * What this means, basically, is that the caller should use B_CACHE to
2662 * determine whether the buffer is fully valid or not and should clear
2663 * B_INVAL prior to issuing a read. If the caller intends to validate
2664 * the buffer by loading its data area with something, the caller needs
2665 * to clear B_INVAL. If the caller does this without issuing an I/O,
2666 * the caller should set B_CACHE ( as an optimization ), else the caller
2667 * should issue the I/O and biodone() will set B_CACHE if the I/O was
2668 * a write attempt or if it was a successfull read. If the caller
2669 * intends to issue a READ, the caller must clear B_INVAL and B_ERROR
2670 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
2671 *
2672 * getblk flags:
2673 *
2674 * GETBLK_PCATCH - catch signal if blocked, can cause NULL return
2675 * GETBLK_BHEAVY - heavy-weight buffer cache buffer
2676 *
2677 * MPALMOSTSAFE
2678 */
2679struct buf *
2680getblk(struct vnode *vp, off_t loffset, int size, int blkflags, int slptimeo)
2681{
2682 struct buf *bp;
2683 int slpflags = (blkflags & GETBLK_PCATCH) ? PCATCH : 0;
2684 int error;
2685 int lkflags;
2686
2687 if (size > MAXBSIZE)
2688 panic("getblk: size(%d) > MAXBSIZE(%d)", size, MAXBSIZE);
2689 if (vp->v_object == NULL)
2690 panic("getblk: vnode %p has no object!", vp);
2691
2692loop:
2693 if ((bp = findblk(vp, loffset, FINDBLK_TEST)) != NULL) {
2694 /*
2695 * The buffer was found in the cache, but we need to lock it.
2696 * Even with LK_NOWAIT the lockmgr may break our critical
2697 * section, so double-check the validity of the buffer
2698 * once the lock has been obtained.
2699 */
2700 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2701 if (blkflags & GETBLK_NOWAIT)
2702 return(NULL);
2703 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
2704 if (blkflags & GETBLK_PCATCH)
2705 lkflags |= LK_PCATCH;
2706 error = BUF_TIMELOCK(bp, lkflags, "getblk", slptimeo);
2707 if (error) {
2708 if (error == ENOLCK)
2709 goto loop;
2710 return (NULL);
2711 }
2712 /* buffer may have changed on us */
2713 }
2714
2715 /*
2716 * Once the buffer has been locked, make sure we didn't race
2717 * a buffer recyclement. Buffers that are no longer hashed
2718 * will have b_vp == NULL, so this takes care of that check
2719 * as well.
2720 */
2721 if (bp->b_vp != vp || bp->b_loffset != loffset) {
2722 kprintf("Warning buffer %p (vp %p loffset %lld) "
2723 "was recycled\n",
2724 bp, vp, (long long)loffset);
2725 BUF_UNLOCK(bp);
2726 goto loop;
2727 }
2728
2729 /*
2730 * If SZMATCH any pre-existing buffer must be of the requested
2731 * size or NULL is returned. The caller absolutely does not
2732 * want getblk() to bwrite() the buffer on a size mismatch.
2733 */
2734 if ((blkflags & GETBLK_SZMATCH) && size != bp->b_bcount) {
2735 BUF_UNLOCK(bp);
2736 return(NULL);
2737 }
2738
2739 /*
2740 * All vnode-based buffers must be backed by a VM object.
2741 */
2742 KKASSERT(bp->b_flags & B_VMIO);
2743 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2744 bp->b_flags &= ~B_AGE;
2745
2746 /*
2747 * Make sure that B_INVAL buffers do not have a cached
2748 * block number translation.
2749 */
2750 if ((bp->b_flags & B_INVAL) && (bp->b_bio2.bio_offset != NOOFFSET)) {
2751 kprintf("Warning invalid buffer %p (vp %p loffset %lld)"
2752 " did not have cleared bio_offset cache\n",
2753 bp, vp, (long long)loffset);
2754 clearbiocache(&bp->b_bio2);
2755 }
2756
2757 /*
2758 * The buffer is locked. B_CACHE is cleared if the buffer is
2759 * invalid.
2760 */
2761 if (bp->b_flags & B_INVAL)
2762 bp->b_flags &= ~B_CACHE;
2763 bremfree(bp);
2764
2765 /*
2766 * Any size inconsistancy with a dirty buffer or a buffer
2767 * with a softupdates dependancy must be resolved. Resizing
2768 * the buffer in such circumstances can lead to problems.
2769 *
2770 * Dirty or dependant buffers are written synchronously.
2771 * Other types of buffers are simply released and
2772 * reconstituted as they may be backed by valid, dirty VM
2773 * pages (but not marked B_DELWRI).
2774 *
2775 * NFS NOTE: NFS buffers which straddle EOF are oddly-sized
2776 * and may be left over from a prior truncation (and thus
2777 * no longer represent the actual EOF point), so we
2778 * definitely do not want to B_NOCACHE the backing store.
2779 */
2780 if (size != bp->b_bcount) {
2781 get_mplock();
2782 if (bp->b_flags & B_DELWRI) {
2783 bp->b_flags |= B_RELBUF;
2784 bwrite(bp);
2785 } else if (LIST_FIRST(&bp->b_dep)) {
2786 bp->b_flags |= B_RELBUF;
2787 bwrite(bp);
2788 } else {
2789 bp->b_flags |= B_RELBUF;
2790 brelse(bp);
2791 }
2792 rel_mplock();
2793 goto loop;
2794 }
2795 KKASSERT(size <= bp->b_kvasize);
2796 KASSERT(bp->b_loffset != NOOFFSET,
2797 ("getblk: no buffer offset"));
2798
2799 /*
2800 * A buffer with B_DELWRI set and B_CACHE clear must
2801 * be committed before we can return the buffer in
2802 * order to prevent the caller from issuing a read
2803 * ( due to B_CACHE not being set ) and overwriting
2804 * it.
2805 *
2806 * Most callers, including NFS and FFS, need this to
2807 * operate properly either because they assume they
2808 * can issue a read if B_CACHE is not set, or because
2809 * ( for example ) an uncached B_DELWRI might loop due
2810 * to softupdates re-dirtying the buffer. In the latter
2811 * case, B_CACHE is set after the first write completes,
2812 * preventing further loops.
2813 *
2814 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
2815 * above while extending the buffer, we cannot allow the
2816 * buffer to remain with B_CACHE set after the write
2817 * completes or it will represent a corrupt state. To
2818 * deal with this we set B_NOCACHE to scrap the buffer
2819 * after the write.
2820 *
2821 * XXX Should this be B_RELBUF instead of B_NOCACHE?
2822 * I'm not even sure this state is still possible
2823 * now that getblk() writes out any dirty buffers
2824 * on size changes.
2825 *
2826 * We might be able to do something fancy, like setting
2827 * B_CACHE in bwrite() except if B_DELWRI is already set,
2828 * so the below call doesn't set B_CACHE, but that gets real
2829 * confusing. This is much easier.
2830 */
2831
2832 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2833 get_mplock();
2834 kprintf("getblk: Warning, bp %p loff=%jx DELWRI set "
2835 "and CACHE clear, b_flags %08x\n",
2836 bp, (intmax_t)bp->b_loffset, bp->b_flags);
2837 bp->b_flags |= B_NOCACHE;
2838 bwrite(bp);
2839 rel_mplock();
2840 goto loop;
2841 }
2842 } else {
2843 /*
2844 * Buffer is not in-core, create new buffer. The buffer
2845 * returned by getnewbuf() is locked. Note that the returned
2846 * buffer is also considered valid (not marked B_INVAL).
2847 *
2848 * Calculating the offset for the I/O requires figuring out
2849 * the block size. We use DEV_BSIZE for VBLK or VCHR and
2850 * the mount's f_iosize otherwise. If the vnode does not
2851 * have an associated mount we assume that the passed size is
2852 * the block size.
2853 *
2854 * Note that vn_isdisk() cannot be used here since it may
2855 * return a failure for numerous reasons. Note that the
2856 * buffer size may be larger then the block size (the caller
2857 * will use block numbers with the proper multiple). Beware
2858 * of using any v_* fields which are part of unions. In
2859 * particular, in DragonFly the mount point overloading
2860 * mechanism uses the namecache only and the underlying
2861 * directory vnode is not a special case.
2862 */
2863 int bsize, maxsize;
2864
2865 if (vp->v_type == VBLK || vp->v_type == VCHR)
2866 bsize = DEV_BSIZE;
2867 else if (vp->v_mount)
2868 bsize = vp->v_mount->mnt_stat.f_iosize;
2869 else
2870 bsize = size;
2871
2872 maxsize = size + (loffset & PAGE_MASK);
2873 maxsize = imax(maxsize, bsize);
2874
2875 bp = getnewbuf(blkflags, slptimeo, size, maxsize);
2876 if (bp == NULL) {
2877 if (slpflags || slptimeo)
2878 return NULL;
2879 goto loop;
2880 }
2881
2882 /*
2883 * Atomically insert the buffer into the hash, so that it can
2884 * be found by findblk().
2885 *
2886 * If bgetvp() returns non-zero a collision occured, and the
2887 * bp will not be associated with the vnode.
2888 *
2889 * Make sure the translation layer has been cleared.
2890 */
2891 bp->b_loffset = loffset;
2892 bp->b_bio2.bio_offset = NOOFFSET;
2893 /* bp->b_bio2.bio_next = NULL; */
2894
2895 if (bgetvp(vp, bp)) {
2896 bp->b_flags |= B_INVAL;
2897 brelse(bp);
2898 goto loop;
2899 }
2900
2901 /*
2902 * All vnode-based buffers must be backed by a VM object.
2903 */
2904 KKASSERT(vp->v_object != NULL);
2905 bp->b_flags |= B_VMIO;
2906 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
2907
2908 get_mplock();
2909 allocbuf(bp, size);
2910 rel_mplock();
2911 }
2912 return (bp);
2913}
2914
2915/*
2916 * regetblk(bp)
2917 *
2918 * Reacquire a buffer that was previously released to the locked queue,
2919 * or reacquire a buffer which is interlocked by having bioops->io_deallocate
2920 * set B_LOCKED (which handles the acquisition race).
2921 *
2922 * To this end, either B_LOCKED must be set or the dependancy list must be
2923 * non-empty.
2924 *
2925 * MPSAFE
2926 */
2927void
2928regetblk(struct buf *bp)
2929{
2930 KKASSERT((bp->b_flags & B_LOCKED) || LIST_FIRST(&bp->b_dep) != NULL);
2931 BUF_LOCK(bp, LK_EXCLUSIVE | LK_RETRY);
2932 bremfree(bp);
2933}
2934
2935/*
2936 * geteblk:
2937 *
2938 * Get an empty, disassociated buffer of given size. The buffer is
2939 * initially set to B_INVAL.
2940 *
2941 * critical section protection is not required for the allocbuf()
2942 * call because races are impossible here.
2943 *
2944 * MPALMOSTSAFE
2945 */
2946struct buf *
2947geteblk(int size)
2948{
2949 struct buf *bp;
2950 int maxsize;
2951
2952 maxsize = (size + BKVAMASK) & ~BKVAMASK;
2953
2954 while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2955 ;
2956 get_mplock();
2957 allocbuf(bp, size);
2958 rel_mplock();
2959 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
2960 return (bp);
2961}
2962
2963
2964/*
2965 * allocbuf:
2966 *
2967 * This code constitutes the buffer memory from either anonymous system
2968 * memory (in the case of non-VMIO operations) or from an associated
2969 * VM object (in the case of VMIO operations). This code is able to
2970 * resize a buffer up or down.
2971 *
2972 * Note that this code is tricky, and has many complications to resolve
2973 * deadlock or inconsistant data situations. Tread lightly!!!
2974 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2975 * the caller. Calling this code willy nilly can result in the loss of data.
2976 *
2977 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
2978 * B_CACHE for the non-VMIO case.
2979 *
2980 * This routine does not need to be called from a critical section but you
2981 * must own the buffer.
2982 *
2983 * NOTMPSAFE
2984 */
2985int
2986allocbuf(struct buf *bp, int size)
2987{
2988 int newbsize, mbsize;
2989 int i;
2990
2991 if (BUF_REFCNT(bp) == 0)
2992 panic("allocbuf: buffer not busy");
2993
2994 if (bp->b_kvasize < size)
2995 panic("allocbuf: buffer too small");
2996
2997 if ((bp->b_flags & B_VMIO) == 0) {
2998 caddr_t origbuf;
2999 int origbufsize;
3000 /*
3001 * Just get anonymous memory from the kernel. Don't
3002 * mess with B_CACHE.
3003 */
3004 mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3005 if (bp->b_flags & B_MALLOC)
3006 newbsize = mbsize;
3007 else
3008 newbsize = round_page(size);
3009
3010 if (newbsize < bp->b_bufsize) {
3011 /*
3012 * Malloced buffers are not shrunk
3013 */
3014 if (bp->b_flags & B_MALLOC) {
3015 if (newbsize) {
3016 bp->b_bcount = size;
3017 } else {
3018 kfree(bp->b_data, M_BIOBUF);
3019 if (bp->b_bufsize) {
3020 bufmallocspace -= bp->b_bufsize;
3021 bufspacewakeup();
3022 bp->b_bufsize = 0;
3023 }
3024 bp->b_data = bp->b_kvabase;
3025 bp->b_bcount = 0;
3026 bp->b_flags &= ~B_MALLOC;
3027 }
3028 return 1;
3029 }
3030 vm_hold_free_pages(
3031 bp,
3032 (vm_offset_t) bp->b_data + newbsize,
3033 (vm_offset_t) bp->b_data + bp->b_bufsize);
3034 } else if (newbsize > bp->b_bufsize) {
3035 /*
3036 * We only use malloced memory on the first allocation.
3037 * and revert to page-allocated memory when the buffer
3038 * grows.
3039 */
3040 if ((bufmallocspace < maxbufmallocspace) &&
3041 (bp->b_bufsize == 0) &&
3042 (mbsize <= PAGE_SIZE/2)) {
3043
3044 bp->b_data = kmalloc(mbsize, M_BIOBUF, M_WAITOK);
3045 bp->b_bufsize = mbsize;
3046 bp->b_bcount = size;
3047 bp->b_flags |= B_MALLOC;
3048 bufmallocspace += mbsize;
3049 return 1;
3050 }
3051 origbuf = NULL;
3052 origbufsize = 0;
3053 /*
3054 * If the buffer is growing on its other-than-first
3055 * allocation, then we revert to the page-allocation
3056 * scheme.
3057 */
3058 if (bp->b_flags & B_MALLOC) {
3059 origbuf = bp->b_data;
3060 origbufsize = bp->b_bufsize;
3061 bp->b_data = bp->b_kvabase;
3062 if (bp->b_bufsize) {
3063 bufmallocspace -= bp->b_bufsize;
3064 bufspacewakeup();
3065 bp->b_bufsize = 0;
3066 }
3067 bp->b_flags &= ~B_MALLOC;
3068 newbsize = round_page(newbsize);
3069 }
3070 vm_hold_load_pages(
3071 bp,
3072 (vm_offset_t) bp->b_data + bp->b_bufsize,
3073 (vm_offset_t) bp->b_data + newbsize);
3074 if (origbuf) {
3075 bcopy(origbuf, bp->b_data, origbufsize);
3076 kfree(origbuf, M_BIOBUF);
3077 }
3078 }
3079 } else {
3080 vm_page_t m;
3081 int desiredpages;
3082
3083 newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3084 desiredpages = ((int)(bp->b_loffset & PAGE_MASK) +
3085 newbsize + PAGE_MASK) >> PAGE_SHIFT;
3086 KKASSERT(desiredpages <= XIO_INTERNAL_PAGES);
3087
3088 if (bp->b_flags & B_MALLOC)
3089 panic("allocbuf: VMIO buffer can't be malloced");
3090 /*
3091 * Set B_CACHE initially if buffer is 0 length or will become
3092 * 0-length.
3093 */
3094 if (size == 0 || bp->b_bufsize == 0)
3095 bp->b_flags |= B_CACHE;
3096
3097 if (newbsize < bp->b_bufsize) {
3098 /*
3099 * DEV_BSIZE aligned new buffer size is less then the
3100 * DEV_BSIZE aligned existing buffer size. Figure out
3101 * if we have to remove any pages.
3102 */
3103 if (desiredpages < bp->b_xio.xio_npages) {
3104 for (i = desiredpages; i < bp->b_xio.xio_npages; i++) {
3105 /*
3106 * the page is not freed here -- it
3107 * is the responsibility of
3108 * vnode_pager_setsize
3109 */
3110 m = bp->b_xio.xio_pages[i];
3111 KASSERT(m != bogus_page,
3112 ("allocbuf: bogus page found"));
3113 while (vm_page_sleep_busy(m, TRUE, "biodep"))
3114 ;
3115
3116 bp->b_xio.xio_pages[i] = NULL;
3117 vm_page_unwire(m, 0);
3118 }
3119 pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
3120 (desiredpages << PAGE_SHIFT), (bp->b_xio.xio_npages - desiredpages));
3121 bp->b_xio.xio_npages = desiredpages;
3122 }
3123 } else if (size > bp->b_bcount) {
3124 /*
3125 * We are growing the buffer, possibly in a
3126 * byte-granular fashion.
3127 */
3128 struct vnode *vp;
3129 vm_object_t obj;
3130 vm_offset_t toff;
3131 vm_offset_t tinc;
3132
3133 /*
3134 * Step 1, bring in the VM pages from the object,
3135 * allocating them if necessary. We must clear
3136 * B_CACHE if these pages are not valid for the
3137 * range covered by the buffer.
3138 *
3139 * critical section protection is required to protect
3140 * against interrupts unbusying and freeing pages
3141 * between our vm_page_lookup() and our
3142 * busycheck/wiring call.
3143 */
3144 vp = bp->b_vp;
3145 obj = vp->v_object;
3146
3147 crit_enter();
3148 while (bp->b_xio.xio_npages < desiredpages) {
3149 vm_page_t m;
3150 vm_pindex_t pi;
3151
3152 pi = OFF_TO_IDX(bp->b_loffset) + bp->b_xio.xio_npages;
3153 if ((m = vm_page_lookup(obj, pi)) == NULL) {
3154 /*
3155 * note: must allocate system pages
3156 * since blocking here could intefere
3157 * with paging I/O, no matter which
3158 * process we are.
3159 */
3160 m = bio_page_alloc(obj, pi, desiredpages - bp->b_xio.xio_npages);
3161 if (m) {
3162 vm_page_wire(m);
3163 vm_page_wakeup(m);
3164 bp->b_flags &= ~B_CACHE;
3165 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3166 ++bp->b_xio.xio_npages;
3167 }
3168 continue;
3169 }
3170
3171 /*
3172 * We found a page. If we have to sleep on it,
3173 * retry because it might have gotten freed out
3174 * from under us.
3175 *
3176 * We can only test PG_BUSY here. Blocking on
3177 * m->busy might lead to a deadlock:
3178 *
3179 * vm_fault->getpages->cluster_read->allocbuf
3180 *
3181 */
3182
3183 if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
3184 continue;
3185 vm_page_flag_clear(m, PG_ZERO);
3186 vm_page_wire(m);
3187 bp->b_xio.xio_pages[bp->b_xio.xio_npages] = m;
3188 ++bp->b_xio.xio_npages;
3189 if (bp->b_act_count < m->act_count)
3190 bp->b_act_count = m->act_count;
3191 }
3192 crit_exit();
3193
3194 /*
3195 * Step 2. We've loaded the pages into the buffer,
3196 * we have to figure out if we can still have B_CACHE
3197 * set. Note that B_CACHE is set according to the
3198 * byte-granular range ( bcount and size ), not the
3199 * aligned range ( newbsize ).
3200 *
3201 * The VM test is against m->valid, which is DEV_BSIZE
3202 * aligned. Needless to say, the validity of the data
3203 * needs to also be DEV_BSIZE aligned. Note that this
3204 * fails with NFS if the server or some other client
3205 * extends the file's EOF. If our buffer is resized,
3206 * B_CACHE may remain set! XXX
3207 */
3208
3209 toff = bp->b_bcount;
3210 tinc = PAGE_SIZE - ((bp->b_loffset + toff) & PAGE_MASK);
3211
3212 while ((bp->b_flags & B_CACHE) && toff < size) {
3213 vm_pindex_t pi;
3214
3215 if (tinc > (size - toff))
3216 tinc = size - toff;
3217
3218 pi = ((bp->b_loffset & PAGE_MASK) + toff) >>
3219 PAGE_SHIFT;
3220
3221 vfs_buf_test_cache(
3222 bp,
3223 bp->b_loffset,
3224 toff,
3225 tinc,
3226 bp->b_xio.xio_pages[pi]
3227 );
3228 toff += tinc;
3229 tinc = PAGE_SIZE;
3230 }
3231
3232 /*
3233 * Step 3, fixup the KVM pmap. Remember that
3234 * bp->b_data is relative to bp->b_loffset, but
3235 * bp->b_loffset may be offset into the first page.
3236 */
3237
3238 bp->b_data = (caddr_t)
3239 trunc_page((vm_offset_t)bp->b_data);
3240 pmap_qenter(
3241 (vm_offset_t)bp->b_data,
3242 bp->b_xio.xio_pages,
3243 bp->b_xio.xio_npages
3244 );
3245 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3246 (vm_offset_t)(bp->b_loffset & PAGE_MASK));
3247 }
3248 }
3249
3250 /* adjust space use on already-dirty buffer */
3251 if (bp->b_flags & B_DELWRI) {
3252 dirtybufspace += newbsize - bp->b_bufsize;
3253 if (bp->b_flags & B_HEAVY)
3254 dirtybufspacehw += newbsize - bp->b_bufsize;
3255 }
3256 if (newbsize < bp->b_bufsize)
3257 bufspacewakeup();
3258 bp->b_bufsize = newbsize; /* actual buffer allocation */
3259 bp->b_bcount = size; /* requested buffer size */
3260 return 1;
3261}
3262
3263/*
3264 * biowait:
3265 *
3266 * Wait for buffer I/O completion, returning error status. B_EINTR
3267 * is converted into an EINTR error but not cleared (since a chain
3268 * of biowait() calls may occur).
3269 *
3270 * On return bpdone() will have been called but the buffer will remain
3271 * locked and will not have been brelse()'d.
3272 *
3273 * NOTE! If a timeout is specified and ETIMEDOUT occurs the I/O is
3274 * likely still in progress on return.
3275 *
3276 * NOTE! This operation is on a BIO, not a BUF.
3277 *
3278 * NOTE! BIO_DONE is cleared by vn_strategy()
3279 *
3280 * MPSAFE
3281 */
3282static __inline int
3283_biowait(struct bio *bio, const char *wmesg, int to)
3284{
3285 struct buf *bp = bio->bio_buf;
3286 u_int32_t flags;
3287 u_int32_t nflags;
3288 int error;
3289
3290 KKASSERT(bio == &bp->b_bio1);
3291 for (;;) {
3292 flags = bio->bio_flags;
3293 if (flags & BIO_DONE)
3294 break;
3295 tsleep_interlock(bio, 0);
3296 nflags = flags | BIO_WANT;
3297 tsleep_interlock(bio, 0);
3298 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3299 if (wmesg)
3300 error = tsleep(bio, PINTERLOCKED, wmesg, to);
3301 else if (bp->b_cmd == BUF_CMD_READ)
3302 error = tsleep(bio, PINTERLOCKED, "biord", to);
3303 else
3304 error = tsleep(bio, PINTERLOCKED, "biowr", to);
3305 if (error) {
3306 kprintf("tsleep error biowait %d\n", error);
3307 return (error);
3308 }
3309 break;
3310 }
3311 }
3312
3313 /*
3314 * Finish up.
3315 */
3316 KKASSERT(bp->b_cmd == BUF_CMD_DONE);
3317 bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
3318 if (bp->b_flags & B_EINTR)
3319 return (EINTR);
3320 if (bp->b_flags & B_ERROR)
3321 return (bp->b_error ? bp->b_error : EIO);
3322 return (0);
3323}
3324
3325int
3326biowait(struct bio *bio, const char *wmesg)
3327{
3328 return(_biowait(bio, wmesg, 0));
3329}
3330
3331int
3332biowait_timeout(struct bio *bio, const char *wmesg, int to)
3333{
3334 return(_biowait(bio, wmesg, to));
3335}
3336
3337/*
3338 * This associates a tracking count with an I/O. vn_strategy() and
3339 * dev_dstrategy() do this automatically but there are a few cases
3340 * where a vnode or device layer is bypassed when a block translation
3341 * is cached. In such cases bio_start_transaction() may be called on
3342 * the bypassed layers so the system gets an I/O in progress indication
3343 * for those higher layers.
3344 */
3345void
3346bio_start_transaction(struct bio *bio, struct bio_track *track)
3347{
3348 bio->bio_track = track;
3349 bio_track_ref(track);
3350}
3351
3352/*
3353 * Initiate I/O on a vnode.
3354 */
3355void
3356vn_strategy(struct vnode *vp, struct bio *bio)
3357{
3358 struct bio_track *track;
3359
3360 KKASSERT(bio->bio_buf->b_cmd != BUF_CMD_DONE);
3361 if (bio->bio_buf->b_cmd == BUF_CMD_READ)
3362 track = &vp->v_track_read;
3363 else
3364 track = &vp->v_track_write;
3365 KKASSERT((bio->bio_flags & BIO_DONE) == 0);
3366 bio->bio_track = track;
3367 bio_track_ref(track);
3368 vop_strategy(*vp->v_ops, vp, bio);
3369}
3370
3371/*
3372 * bpdone:
3373 *
3374 * Finish I/O on a buffer after all BIOs have been processed.
3375 * Called when the bio chain is exhausted or by biowait. If called
3376 * by biowait, elseit is typically 0.
3377 *
3378 * bpdone is also responsible for setting B_CACHE in a B_VMIO bp.
3379 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
3380 * assuming B_INVAL is clear.
3381 *
3382 * For the VMIO case, we set B_CACHE if the op was a read and no
3383 * read error occured, or if the op was a write. B_CACHE is never
3384 * set if the buffer is invalid or otherwise uncacheable.
3385 *
3386 * bpdone does not mess with B_INVAL, allowing the I/O routine or the
3387 * initiator to leave B_INVAL set to brelse the buffer out of existance
3388 * in the biodone routine.
3389 */
3390void
3391bpdone(struct buf *bp, int elseit)
3392{
3393 buf_cmd_t cmd;
3394
3395 KASSERT(BUF_REFCNTNB(bp) > 0,
3396 ("biodone: bp %p not busy %d", bp, BUF_REFCNTNB(bp)));
3397 KASSERT(bp->b_cmd != BUF_CMD_DONE,
3398 ("biodone: bp %p already done!", bp));
3399
3400 /*
3401 * No more BIOs are left. All completion functions have been dealt
3402 * with, now we clean up the buffer.
3403 */
3404 cmd = bp->b_cmd;
3405 bp->b_cmd = BUF_CMD_DONE;
3406
3407 /*
3408 * Only reads and writes are processed past this point.
3409 */
3410 if (cmd != BUF_CMD_READ && cmd != BUF_CMD_WRITE) {
3411 if (cmd == BUF_CMD_FREEBLKS)
3412 bp->b_flags |= B_NOCACHE;
3413 if (elseit)
3414 brelse(bp);
3415 return;
3416 }
3417
3418 /*
3419 * Warning: softupdates may re-dirty the buffer, and HAMMER can do
3420 * a lot worse. XXX - move this above the clearing of b_cmd
3421 */
3422 if (LIST_FIRST(&bp->b_dep) != NULL)
3423 buf_complete(bp);
3424
3425 /*
3426 * A failed write must re-dirty the buffer unless B_INVAL
3427 * was set. Only applicable to normal buffers (with VPs).
3428 * vinum buffers may not have a vp.
3429 */
3430 if (cmd == BUF_CMD_WRITE &&
3431 (bp->b_flags & (B_ERROR | B_INVAL)) == B_ERROR) {
3432 bp->b_flags &= ~B_NOCACHE;
3433 if (bp->b_vp)
3434 bdirty(bp);
3435 }
3436
3437 if (bp->b_flags & B_VMIO) {
3438 int i;
3439 vm_ooffset_t foff;
3440 vm_page_t m;
3441 vm_object_t obj;
3442 int iosize;
3443 struct vnode *vp = bp->b_vp;
3444
3445 obj = vp->v_object;
3446
3447#if defined(VFS_BIO_DEBUG)
3448 if (vp->v_auxrefs == 0)
3449 panic("biodone: zero vnode hold count");
3450 if ((vp->v_flag & VOBJBUF) == 0)
3451 panic("biodone: vnode is not setup for merged cache");
3452#endif
3453
3454 foff = bp->b_loffset;
3455 KASSERT(foff != NOOFFSET, ("biodone: no buffer offset"));
3456 KASSERT(obj != NULL, ("biodone: missing VM object"));
3457
3458#if defined(VFS_BIO_DEBUG)
3459 if (obj->paging_in_progress < bp->b_xio.xio_npages) {
3460 kprintf("biodone: paging in progress(%d) < bp->b_xio.xio_npages(%d)\n",
3461 obj->paging_in_progress, bp->b_xio.xio_npages);
3462 }
3463#endif
3464
3465 /*
3466 * Set B_CACHE if the op was a normal read and no error
3467 * occured. B_CACHE is set for writes in the b*write()
3468 * routines.
3469 */
3470 iosize = bp->b_bcount - bp->b_resid;
3471 if (cmd == BUF_CMD_READ &&
3472 (bp->b_flags & (B_INVAL|B_NOCACHE|B_ERROR)) == 0) {
3473 bp->b_flags |= B_CACHE;
3474 }
3475
3476 crit_enter();
3477 get_mplock();
3478 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3479 int bogusflag = 0;
3480 int resid;
3481
3482 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3483 if (resid > iosize)
3484 resid = iosize;
3485
3486 /*
3487 * cleanup bogus pages, restoring the originals. Since
3488 * the originals should still be wired, we don't have
3489 * to worry about interrupt/freeing races destroying
3490 * the VM object association.
3491 */
3492 m = bp->b_xio.xio_pages[i];
3493 if (m == bogus_page) {
3494 bogusflag = 1;
3495 m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3496 if (m == NULL)
3497 panic("biodone: page disappeared");
3498 bp->b_xio.xio_pages[i] = m;
3499 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3500 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3501 }
3502#if defined(VFS_BIO_DEBUG)
3503 if (OFF_TO_IDX(foff) != m->pindex) {
3504 kprintf("biodone: foff(%lu)/m->pindex(%ld) "
3505 "mismatch\n",
3506 (unsigned long)foff, (long)m->pindex);
3507 }
3508#endif
3509
3510 /*
3511 * In the write case, the valid and clean bits are
3512 * already changed correctly (see bdwrite()), so we
3513 * only need to do this here in the read case.
3514 */
3515 if (cmd == BUF_CMD_READ && !bogusflag && resid > 0) {
3516 vfs_clean_one_page(bp, i, m);
3517 }
3518 vm_page_flag_clear(m, PG_ZERO);
3519
3520 /*
3521 * when debugging new filesystems or buffer I/O
3522 * methods, this is the most common error that pops
3523 * up. if you see this, you have not set the page
3524 * busy flag correctly!!!
3525 */
3526 if (m->busy == 0) {
3527 kprintf("biodone: page busy < 0, "
3528 "pindex: %d, foff: 0x(%x,%x), "
3529 "resid: %d, index: %d\n",
3530 (int) m->pindex, (int)(foff >> 32),
3531 (int) foff & 0xffffffff, resid, i);
3532 if (!vn_isdisk(vp, NULL))
3533 kprintf(" iosize: %ld, loffset: %lld, "
3534 "flags: 0x%08x, npages: %d\n",
3535 bp->b_vp->v_mount->mnt_stat.f_iosize,
3536 (long long)bp->b_loffset,
3537 bp->b_flags, bp->b_xio.xio_npages);
3538 else
3539 kprintf(" VDEV, loffset: %lld, flags: 0x%08x, npages: %d\n",
3540 (long long)bp->b_loffset,
3541 bp->b_flags, bp->b_xio.xio_npages);
3542 kprintf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
3543 m->valid, m->dirty, m->wire_count);
3544 panic("biodone: page busy < 0");
3545 }
3546 vm_page_io_finish(m);
3547 vm_object_pip_subtract(obj, 1);
3548 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3549 iosize -= resid;
3550 }
3551 if (obj)
3552 vm_object_pip_wakeupn(obj, 0);
3553 rel_mplock();
3554 crit_exit();
3555 }
3556
3557 /*
3558 * Finish up by releasing the buffer. There are no more synchronous
3559 * or asynchronous completions, those were handled by bio_done
3560 * callbacks.
3561 */
3562 if (elseit) {
3563 if (bp->b_flags & (B_NOCACHE|B_INVAL|B_ERROR|B_RELBUF))
3564 brelse(bp);
3565 else
3566 bqrelse(bp);
3567 }
3568}
3569
3570/*
3571 * Normal biodone.
3572 */
3573void
3574biodone(struct bio *bio)
3575{
3576 struct buf *bp = bio->bio_buf;
3577
3578 runningbufwakeup(bp);
3579
3580 /*
3581 * Run up the chain of BIO's. Leave b_cmd intact for the duration.
3582 */
3583 while (bio) {
3584 biodone_t *done_func;
3585 struct bio_track *track;
3586
3587 /*
3588 * BIO tracking. Most but not all BIOs are tracked.
3589 */
3590 if ((track = bio->bio_track) != NULL) {
3591 bio_track_rel(track);
3592 bio->bio_track = NULL;
3593 }
3594
3595 /*
3596 * A bio_done function terminates the loop. The function
3597 * will be responsible for any further chaining and/or
3598 * buffer management.
3599 *
3600 * WARNING! The done function can deallocate the buffer!
3601 */
3602 if ((done_func = bio->bio_done) != NULL) {
3603 bio->bio_done = NULL;
3604 done_func(bio);
3605 return;
3606 }
3607 bio = bio->bio_prev;
3608 }
3609
3610 /*
3611 * If we've run out of bio's do normal [a]synchronous completion.
3612 */
3613 bpdone(bp, 1);
3614}
3615
3616/*
3617 * Synchronous biodone - this terminates a synchronous BIO.
3618 *
3619 * bpdone() is called with elseit=FALSE, leaving the buffer completed
3620 * but still locked. The caller must brelse() the buffer after waiting
3621 * for completion.
3622 */
3623void
3624biodone_sync(struct bio *bio)
3625{
3626 struct buf *bp = bio->bio_buf;
3627 int flags;
3628 int nflags;
3629
3630 KKASSERT(bio == &bp->b_bio1);
3631 bpdone(bp, 0);
3632
3633 for (;;) {
3634 flags = bio->bio_flags;
3635 nflags = (flags | BIO_DONE) & ~BIO_WANT;
3636
3637 if (atomic_cmpset_int(&bio->bio_flags, flags, nflags)) {
3638 if (flags & BIO_WANT)
3639 wakeup(bio);
3640 break;
3641 }
3642 }
3643}
3644
3645/*
3646 * vfs_unbusy_pages:
3647 *
3648 * This routine is called in lieu of iodone in the case of
3649 * incomplete I/O. This keeps the busy status for pages
3650 * consistant.
3651 */
3652void
3653vfs_unbusy_pages(struct buf *bp)
3654{
3655 int i;
3656
3657 runningbufwakeup(bp);
3658 if (bp->b_flags & B_VMIO) {
3659 struct vnode *vp = bp->b_vp;
3660 vm_object_t obj;
3661
3662 obj = vp->v_object;
3663
3664 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3665 vm_page_t m = bp->b_xio.xio_pages[i];
3666
3667 /*
3668 * When restoring bogus changes the original pages
3669 * should still be wired, so we are in no danger of
3670 * losing the object association and do not need
3671 * critical section protection particularly.
3672 */
3673 if (m == bogus_page) {
3674 m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_loffset) + i);
3675 if (!m) {
3676 panic("vfs_unbusy_pages: page missing");
3677 }
3678 bp->b_xio.xio_pages[i] = m;
3679 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3680 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3681 }
3682 vm_object_pip_subtract(obj, 1);
3683 vm_page_flag_clear(m, PG_ZERO);
3684 vm_page_io_finish(m);
3685 }
3686 vm_object_pip_wakeupn(obj, 0);
3687 }
3688}
3689
3690/*
3691 * vfs_busy_pages:
3692 *
3693 * This routine is called before a device strategy routine.
3694 * It is used to tell the VM system that paging I/O is in
3695 * progress, and treat the pages associated with the buffer
3696 * almost as being PG_BUSY. Also the object 'paging_in_progress'
3697 * flag is handled to make sure that the object doesn't become
3698 * inconsistant.
3699 *
3700 * Since I/O has not been initiated yet, certain buffer flags
3701 * such as B_ERROR or B_INVAL may be in an inconsistant state
3702 * and should be ignored.
3703 */
3704void
3705vfs_busy_pages(struct vnode *vp, struct buf *bp)
3706{
3707 int i, bogus;
3708 struct lwp *lp = curthread->td_lwp;
3709
3710 /*
3711 * The buffer's I/O command must already be set. If reading,
3712 * B_CACHE must be 0 (double check against callers only doing
3713 * I/O when B_CACHE is 0).
3714 */
3715 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
3716 KKASSERT(bp->b_cmd == BUF_CMD_WRITE || (bp->b_flags & B_CACHE) == 0);
3717
3718 if (bp->b_flags & B_VMIO) {
3719 vm_object_t obj;
3720
3721 obj = vp->v_object;
3722 KASSERT(bp->b_loffset != NOOFFSET,
3723 ("vfs_busy_pages: no buffer offset"));
3724
3725 /*
3726 * Loop until none of the pages are busy.
3727 */
3728retry:
3729 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3730 vm_page_t m = bp->b_xio.xio_pages[i];
3731
3732 if (vm_page_sleep_busy(m, FALSE, "vbpage"))
3733 goto retry;
3734 }
3735
3736 /*
3737 * Setup for I/O, soft-busy the page right now because
3738 * the next loop may block.
3739 */
3740 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3741 vm_page_t m = bp->b_xio.xio_pages[i];
3742
3743 vm_page_flag_clear(m, PG_ZERO);
3744 if ((bp->b_flags & B_CLUSTER) == 0) {
3745 vm_object_pip_add(obj, 1);
3746 vm_page_io_start(m);
3747 }
3748 }
3749
3750 /*
3751 * Adjust protections for I/O and do bogus-page mapping.
3752 * Assume that vm_page_protect() can block (it can block
3753 * if VM_PROT_NONE, don't take any chances regardless).
3754 *
3755 * In particularly note that for writes we must incorporate
3756 * page dirtyness from the VM system into the buffer's
3757 * dirty range.
3758 *
3759 * For reads we theoretically must incorporate page dirtyness
3760 * from the VM system to determine if the page needs bogus
3761 * replacement, but we shortcut the test by simply checking
3762 * that all m->valid bits are set, indicating that the page
3763 * is fully valid and does not need to be re-read. For any
3764 * VM system dirtyness the page will also be fully valid
3765 * since it was mapped at one point.
3766 */
3767 bogus = 0;
3768 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3769 vm_page_t m = bp->b_xio.xio_pages[i];
3770
3771 vm_page_flag_clear(m, PG_ZERO); /* XXX */
3772 if (bp->b_cmd == BUF_CMD_WRITE) {
3773 /*
3774 * When readying a vnode-backed buffer for
3775 * a write we must zero-fill any invalid
3776 * portions of the backing VM pages, mark
3777 * it valid and clear related dirty bits.
3778 *
3779 * vfs_clean_one_page() incorporates any
3780 * VM dirtyness and updates the b_dirtyoff
3781 * range (after we've made the page RO).
3782 *
3783 * It is also expected that the pmap modified
3784 * bit has already been cleared by the
3785 * vm_page_protect(). We may not be able
3786 * to clear all dirty bits for a page if it
3787 * was also memory mapped (NFS).
3788 */
3789 vm_page_protect(m, VM_PROT_READ);
3790 vfs_clean_one_page(bp, i, m);
3791 } else if (m->valid == VM_PAGE_BITS_ALL) {
3792 /*
3793 * When readying a vnode-backed buffer for
3794 * read we must replace any dirty pages with
3795 * a bogus page so dirty data is not destroyed
3796 * when filling gaps.
3797 *
3798 * To avoid testing whether the page is
3799 * dirty we instead test that the page was
3800 * at some point mapped (m->valid fully
3801 * valid) with the understanding that
3802 * this also covers the dirty case.
3803 */
3804 bp->b_xio.xio_pages[i] = bogus_page;
3805 bogus++;
3806 } else if (m->valid & m->dirty) {
3807 /*
3808 * This case should not occur as partial
3809 * dirtyment can only happen if the buffer
3810 * is B_CACHE, and this code is not entered
3811 * if the buffer is B_CACHE.
3812 */
3813 kprintf("Warning: vfs_busy_pages - page not "
3814 "fully valid! loff=%jx bpf=%08x "
3815 "idx=%d val=%02x dir=%02x\n",
3816 (intmax_t)bp->b_loffset, bp->b_flags,
3817 i, m->valid, m->dirty);
3818 vm_page_protect(m, VM_PROT_NONE);
3819 } else {
3820 /*
3821 * The page is not valid and can be made
3822 * part of the read.
3823 */
3824 vm_page_protect(m, VM_PROT_NONE);
3825 }
3826 }
3827 if (bogus) {
3828 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3829 bp->b_xio.xio_pages, bp->b_xio.xio_npages);
3830 }
3831 }
3832
3833 /*
3834 * This is the easiest place to put the process accounting for the I/O
3835 * for now.
3836 */
3837 if (lp != NULL) {
3838 if (bp->b_cmd == BUF_CMD_READ)
3839 lp->lwp_ru.ru_inblock++;
3840 else
3841 lp->lwp_ru.ru_oublock++;
3842 }
3843}
3844
3845/*
3846 * vfs_clean_pages:
3847 *
3848 * Tell the VM system that the pages associated with this buffer
3849 * are clean. This is used for delayed writes where the data is
3850 * going to go to disk eventually without additional VM intevention.
3851 *
3852 * Note that while we only really need to clean through to b_bcount, we
3853 * just go ahead and clean through to b_bufsize.
3854 */
3855static void
3856vfs_clean_pages(struct buf *bp)
3857{
3858 vm_page_t m;
3859 int i;
3860
3861 if ((bp->b_flags & B_VMIO) == 0)
3862 return;
3863
3864 KASSERT(bp->b_loffset != NOOFFSET,
3865 ("vfs_clean_pages: no buffer offset"));
3866
3867 for (i = 0; i < bp->b_xio.xio_npages; i++) {
3868 m = bp->b_xio.xio_pages[i];
3869 vfs_clean_one_page(bp, i, m);
3870 }
3871}
3872
3873/*
3874 * vfs_clean_one_page:
3875 *
3876 * Set the valid bits and clear the dirty bits in a page within a
3877 * buffer. The range is restricted to the buffer's size and the
3878 * buffer's logical offset might index into the first page.
3879 *
3880 * The caller has busied or soft-busied the page and it is not mapped,
3881 * test and incorporate the dirty bits into b_dirtyoff/end before
3882 * clearing them. Note that we need to clear the pmap modified bits
3883 * after determining the the page was dirty, vm_page_set_validclean()
3884 * does not do it for us.
3885 *
3886 * This routine is typically called after a read completes (dirty should
3887 * be zero in that case as we are not called on bogus-replace pages),
3888 * or before a write is initiated.
3889 */
3890static void
3891vfs_clean_one_page(struct buf *bp, int pageno, vm_page_t m)
3892{
3893 int bcount;
3894 int xoff;
3895 int soff;
3896 int eoff;
3897
3898 /*
3899 * Calculate offset range within the page but relative to buffer's
3900 * loffset. loffset might be offset into the first page.
3901 */
3902 xoff = (int)bp->b_loffset & PAGE_MASK; /* loffset offset into pg 0 */
3903 bcount = bp->b_bcount + xoff; /* offset adjusted */
3904
3905 if (pageno == 0) {
3906 soff = xoff;
3907 eoff = PAGE_SIZE;
3908 } else {
3909 soff = (pageno << PAGE_SHIFT);
3910 eoff = soff + PAGE_SIZE;
3911 }
3912 if (eoff > bcount)
3913 eoff = bcount;
3914 if (soff >= eoff)
3915 return;
3916
3917 /*
3918 * Test dirty bits and adjust b_dirtyoff/end.
3919 *
3920 * If dirty pages are incorporated into the bp any prior
3921 * B_NEEDCOMMIT state (NFS) must be cleared because the
3922 * caller has not taken into account the new dirty data.
3923 *
3924 * If the page was memory mapped the dirty bits might go beyond the
3925 * end of the buffer, but we can't really make the assumption that
3926 * a file EOF straddles the buffer (even though this is the case for
3927 * NFS if B_NEEDCOMMIT is also set). So for the purposes of clearing
3928 * B_NEEDCOMMIT we only test the dirty bits covered by the buffer.
3929 * This also saves some console spam.
3930 *
3931 * When clearing B_NEEDCOMMIT we must also clear B_CLUSTEROK,
3932 * NFS can handle huge commits but not huge writes.
3933 */
3934 vm_page_test_dirty(m);
3935 if (m->dirty) {
3936 pmap_clear_modify(m);
3937 if ((bp->b_flags & B_NEEDCOMMIT) &&
3938 (m->dirty & vm_page_bits(soff & PAGE_MASK, eoff - soff))) {
3939 kprintf("Warning: vfs_clean_one_page: bp %p "
3940 "loff=%jx,%d flgs=%08x clr B_NEEDCOMMIT\n",
3941 bp, (intmax_t)bp->b_loffset, bp->b_bcount,
3942 bp->b_flags);
3943 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3944 }
3945 if (bp->b_dirtyoff > soff - xoff)
3946 bp->b_dirtyoff = soff - xoff;
3947 if (bp->b_dirtyend < eoff - xoff)
3948 bp->b_dirtyend = eoff - xoff;
3949 }
3950
3951 /*
3952 * Set related valid bits, clear related dirty bits.
3953 * Does not mess with the pmap modified bit.
3954 *
3955 * WARNING! We cannot just clear all of m->dirty here as the
3956 * buffer cache buffers may use a DEV_BSIZE'd aligned
3957 * block size, or have an odd size (e.g. NFS at file EOF).
3958 * The putpages code can clear m->dirty to 0.
3959 *
3960 * If a VOP_WRITE generates a buffer cache buffer which
3961 * covers the same space as mapped writable pages the
3962 * buffer flush might not be able to clear all the dirty
3963 * bits and still require a putpages from the VM system
3964 * to finish it off.
3965 */
3966 vm_page_set_validclean(m, soff & PAGE_MASK, eoff - soff);
3967}
3968
3969/*
3970 * vfs_bio_clrbuf:
3971 *
3972 * Clear a buffer. This routine essentially fakes an I/O, so we need
3973 * to clear B_ERROR and B_INVAL.
3974 *
3975 * Note that while we only theoretically need to clear through b_bcount,
3976 * we go ahead and clear through b_bufsize.
3977 */
3978
3979void
3980vfs_bio_clrbuf(struct buf *bp)
3981{
3982 int i, mask = 0;
3983 caddr_t sa, ea;
3984 if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3985 bp->b_flags &= ~(B_INVAL | B_EINTR | B_ERROR);
3986 if ((bp->b_xio.xio_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3987 (bp->b_loffset & PAGE_MASK) == 0) {
3988 mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3989 if ((bp->b_xio.xio_pages[0]->valid & mask) == mask) {
3990 bp->b_resid = 0;
3991 return;
3992 }
3993 if (((bp->b_xio.xio_pages[0]->flags & PG_ZERO) == 0) &&
3994 ((bp->b_xio.xio_pages[0]->valid & mask) == 0)) {
3995 bzero(bp->b_data, bp->b_bufsize);
3996 bp->b_xio.xio_pages[0]->valid |= mask;
3997 bp->b_resid = 0;
3998 return;
3999 }
4000 }
4001 sa = bp->b_data;
4002 for(i=0;i<bp->b_xio.xio_npages;i++,sa=ea) {
4003 int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
4004 ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
4005 ea = (caddr_t)(vm_offset_t)ulmin(
4006 (u_long)(vm_offset_t)ea,
4007 (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
4008 mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4009 if ((bp->b_xio.xio_pages[i]->valid & mask) == mask)
4010 continue;
4011 if ((bp->b_xio.xio_pages[i]->valid & mask) == 0) {
4012 if ((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) {
4013 bzero(sa, ea - sa);
4014 }
4015 } else {
4016 for (; sa < ea; sa += DEV_BSIZE, j++) {
4017 if (((bp->b_xio.xio_pages[i]->flags & PG_ZERO) == 0) &&
4018 (bp->b_xio.xio_pages[i]->valid & (1<<j)) == 0)
4019 bzero(sa, DEV_BSIZE);
4020 }
4021 }
4022 bp->b_xio.xio_pages[i]->valid |= mask;
4023 vm_page_flag_clear(bp->b_xio.xio_pages[i], PG_ZERO);
4024 }
4025 bp->b_resid = 0;
4026 } else {
4027 clrbuf(bp);
4028 }
4029}
4030
4031/*
4032 * vm_hold_load_pages:
4033 *
4034 * Load pages into the buffer's address space. The pages are
4035 * allocated from the kernel object in order to reduce interference
4036 * with the any VM paging I/O activity. The range of loaded
4037 * pages will be wired.
4038 *
4039 * If a page cannot be allocated, the 'pagedaemon' is woken up to
4040 * retrieve the full range (to - from) of pages.
4041 *
4042 */
4043void
4044vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4045{
4046 vm_offset_t pg;
4047 vm_page_t p;
4048 int index;
4049
4050 to = round_page(to);
4051 from = round_page(from);
4052 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4053
4054 pg = from;
4055 while (pg < to) {
4056 /*
4057 * Note: must allocate system pages since blocking here
4058 * could intefere with paging I/O, no matter which
4059 * process we are.
4060 */
4061 p = bio_page_alloc(&kernel_object, pg >> PAGE_SHIFT,
4062 (vm_pindex_t)((to - pg) >> PAGE_SHIFT));
4063 if (p) {
4064 vm_page_wire(p);
4065 p->valid = VM_PAGE_BITS_ALL;
4066 vm_page_flag_clear(p, PG_ZERO);
4067 pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
4068 bp->b_xio.xio_pages[index] = p;
4069 vm_page_wakeup(p);
4070
4071 pg += PAGE_SIZE;
4072 ++index;
4073 }
4074 }
4075 bp->b_xio.xio_npages = index;
4076}
4077
4078/*
4079 * Allocate pages for a buffer cache buffer.
4080 *
4081 * Under extremely severe memory conditions even allocating out of the
4082 * system reserve can fail. If this occurs we must allocate out of the
4083 * interrupt reserve to avoid a deadlock with the pageout daemon.
4084 *
4085 * The pageout daemon can run (putpages -> VOP_WRITE -> getblk -> allocbuf).
4086 * If the buffer cache's vm_page_alloc() fails a vm_wait() can deadlock
4087 * against the pageout daemon if pages are not freed from other sources.
4088 */
4089static
4090vm_page_t
4091bio_page_alloc(vm_object_t obj, vm_pindex_t pg, int deficit)
4092{
4093 vm_page_t p;
4094
4095 /*
4096 * Try a normal allocation, allow use of system reserve.
4097 */
4098 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM);
4099 if (p)
4100 return(p);
4101
4102 /*
4103 * The normal allocation failed and we clearly have a page
4104 * deficit. Try to reclaim some clean VM pages directly
4105 * from the buffer cache.
4106 */
4107 vm_pageout_deficit += deficit;
4108 recoverbufpages();
4109
4110 /*
4111 * We may have blocked, the caller will know what to do if the
4112 * page now exists.
4113 */
4114 if (vm_page_lookup(obj, pg))
4115 return(NULL);
4116
4117 /*
4118 * Allocate and allow use of the interrupt reserve.
4119 *
4120 * If after all that we still can't allocate a VM page we are
4121 * in real trouble, but we slog on anyway hoping that the system
4122 * won't deadlock.
4123 */
4124 p = vm_page_alloc(obj, pg, VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
4125 VM_ALLOC_INTERRUPT);
4126 if (p) {
4127 if (vm_page_count_severe()) {
4128 kprintf("bio_page_alloc: WARNING emergency page "
4129 "allocation\n");
4130 vm_wait(hz / 20);
4131 }
4132 } else {
4133 kprintf("bio_page_alloc: WARNING emergency page "
4134 "allocation failed\n");
4135 vm_wait(hz * 5);
4136 }
4137 return(p);
4138}
4139
4140/*
4141 * vm_hold_free_pages:
4142 *
4143 * Return pages associated with the buffer back to the VM system.
4144 *
4145 * The range of pages underlying the buffer's address space will
4146 * be unmapped and un-wired.
4147 */
4148void
4149vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4150{
4151 vm_offset_t pg;
4152 vm_page_t p;
4153 int index, newnpages;
4154
4155 from = round_page(from);
4156 to = round_page(to);
4157 newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4158
4159 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4160 p = bp->b_xio.xio_pages[index];
4161 if (p && (index < bp->b_xio.xio_npages)) {
4162 if (p->busy) {
4163 kprintf("vm_hold_free_pages: doffset: %lld, "
4164 "loffset: %lld\n",
4165 (long long)bp->b_bio2.bio_offset,
4166 (long long)bp->b_loffset);
4167 }
4168 bp->b_xio.xio_pages[index] = NULL;
4169 pmap_kremove(pg);
4170 vm_page_busy(p);
4171 vm_page_unwire(p, 0);
4172 vm_page_free(p);
4173 }
4174 }
4175 bp->b_xio.xio_npages = newnpages;
4176}
4177
4178/*
4179 * vmapbuf:
4180 *
4181 * Map a user buffer into KVM via a pbuf. On return the buffer's
4182 * b_data, b_bufsize, and b_bcount will be set, and its XIO page array
4183 * initialized.
4184 */
4185int
4186vmapbuf(struct buf *bp, caddr_t udata, int bytes)
4187{
4188 caddr_t addr;
4189 vm_offset_t va;
4190 vm_page_t m;
4191 int vmprot;
4192 int error;
4193 int pidx;
4194 int i;
4195
4196 /*
4197 * bp had better have a command and it better be a pbuf.
4198 */
4199 KKASSERT(bp->b_cmd != BUF_CMD_DONE);
4200 KKASSERT(bp->b_flags & B_PAGING);
4201
4202 if (bytes < 0)
4203 return (-1);
4204
4205 /*
4206 * Map the user data into KVM. Mappings have to be page-aligned.
4207 */
4208 addr = (caddr_t)trunc_page((vm_offset_t)udata);
4209 pidx = 0;
4210
4211 vmprot = VM_PROT_READ;
4212 if (bp->b_cmd == BUF_CMD_READ)
4213 vmprot |= VM_PROT_WRITE;
4214
4215 while (addr < udata + bytes) {
4216 /*
4217 * Do the vm_fault if needed; do the copy-on-write thing
4218 * when reading stuff off device into memory.
4219 *
4220 * vm_fault_page*() returns a held VM page.
4221 */
4222 va = (addr >= udata) ? (vm_offset_t)addr : (vm_offset_t)udata;
4223 va = trunc_page(va);
4224
4225 m = vm_fault_page_quick(va, vmprot, &error);
4226 if (m == NULL) {
4227 for (i = 0; i < pidx; ++i) {
4228 vm_page_unhold(bp->b_xio.xio_pages[i]);
4229 bp->b_xio.xio_pages[i] = NULL;
4230 }
4231 return(-1);
4232 }
4233 bp->b_xio.xio_pages[pidx] = m;
4234 addr += PAGE_SIZE;
4235 ++pidx;
4236 }
4237
4238 /*
4239 * Map the page array and set the buffer fields to point to
4240 * the mapped data buffer.
4241 */
4242 if (pidx > btoc(MAXPHYS))
4243 panic("vmapbuf: mapped more than MAXPHYS");
4244 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_xio.xio_pages, pidx);
4245
4246 bp->b_xio.xio_npages = pidx;
4247 bp->b_data = bp->b_kvabase + ((int)(intptr_t)udata & PAGE_MASK);
4248 bp->b_bcount = bytes;
4249 bp->b_bufsize = bytes;
4250 return(0);
4251}
4252
4253/*
4254 * vunmapbuf:
4255 *
4256 * Free the io map PTEs associated with this IO operation.
4257 * We also invalidate the TLB entries and restore the original b_addr.
4258 */
4259void
4260vunmapbuf(struct buf *bp)
4261{
4262 int pidx;
4263 int npages;
4264
4265 KKASSERT(bp->b_flags & B_PAGING);
4266
4267 npages = bp->b_xio.xio_npages;
4268 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4269 for (pidx = 0; pidx < npages; ++pidx) {
4270 vm_page_unhold(bp->b_xio.xio_pages[pidx]);
4271 bp->b_xio.xio_pages[pidx] = NULL;
4272 }
4273 bp->b_xio.xio_npages = 0;
4274 bp->b_data = bp->b_kvabase;
4275}
4276
4277/*
4278 * Scan all buffers in the system and issue the callback.
4279 */
4280int
4281scan_all_buffers(int (*callback)(struct buf *, void *), void *info)
4282{
4283 int count = 0;
4284 int error;
4285 int n;
4286
4287 for (n = 0; n < nbuf; ++n) {
4288 if ((error = callback(&buf[n], info)) < 0) {
4289 count = error;
4290 break;
4291 }
4292 count += error;
4293 }
4294 return (count);
4295}
4296
4297/*
4298 * print out statistics from the current status of the buffer pool
4299 * this can be toggeled by the system control option debug.syncprt
4300 */
4301#ifdef DEBUG
4302void
4303vfs_bufstats(void)
4304{
4305 int i, j, count;
4306 struct buf *bp;
4307 struct bqueues *dp;
4308 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
4309 static char *bname[3] = { "LOCKED", "LRU", "AGE" };
4310
4311 for (dp = bufqueues, i = 0; dp < &bufqueues[3]; dp++, i++) {
4312 count = 0;
4313 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4314 counts[j] = 0;
4315 crit_enter();
4316 TAILQ_FOREACH(bp, dp, b_freelist) {
4317 counts[bp->b_bufsize/PAGE_SIZE]++;
4318 count++;
4319 }
4320 crit_exit();
4321 kprintf("%s: total-%d", bname[i], count);
4322 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
4323 if (counts[j] != 0)
4324 kprintf(", %d-%d", j * PAGE_SIZE, counts[j]);
4325 kprintf("\n");
4326 }
4327}
4328#endif
4329
4330#ifdef DDB
4331
4332DB_SHOW_COMMAND(buffer, db_show_buffer)
4333{
4334 /* get args */
4335 struct buf *bp = (struct buf *)addr;
4336
4337 if (!have_addr) {
4338 db_printf("usage: show buffer <addr>\n");
4339 return;
4340 }
4341
4342 db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4343 db_printf("b_cmd = %d\n", bp->b_cmd);
4344 db_printf("b_error = %d, b_bufsize = %d, b_bcount = %d, "
4345 "b_resid = %d\n, b_data = %p, "
4346 "bio_offset(disk) = %lld, bio_offset(phys) = %lld\n",
4347 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4348 bp->b_data,
4349 (long long)bp->b_bio2.bio_offset,
4350 (long long)(bp->b_bio2.bio_next ?
4351 bp->b_bio2.bio_next->bio_offset : (off_t)-1));
4352 if (bp->b_xio.xio_npages) {
4353 int i;
4354 db_printf("b_xio.xio_npages = %d, pages(OBJ, IDX, PA): ",
4355 bp->b_xio.xio_npages);
4356 for (i = 0; i < bp->b_xio.xio_npages; i++) {
4357 vm_page_t m;
4358 m = bp->b_xio.xio_pages[i];
4359 db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4360 (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4361 if ((i + 1) < bp->b_xio.xio_npages)
4362 db_printf(",");
4363 }
4364 db_printf("\n");
4365 }
4366}
4367#endif /* DDB */