Add support for unsigned quads. Use strtoq and %qd / %qu.
[dragonfly.git] / sys / kern / kern_time.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1982, 1986, 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93
34 * $FreeBSD: src/sys/kern/kern_time.c,v 1.68.2.1 2002/10/01 08:00:41 bde Exp $
35 * $DragonFly: src/sys/kern/kern_time.c,v 1.25 2005/04/23 18:46:54 joerg Exp $
36 */
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/buf.h>
41#include <sys/sysproto.h>
42#include <sys/resourcevar.h>
43#include <sys/signalvar.h>
44#include <sys/kernel.h>
45#include <sys/systm.h>
46#include <sys/sysent.h>
47#include <sys/sysunion.h>
48#include <sys/proc.h>
49#include <sys/time.h>
50#include <sys/vnode.h>
51#include <sys/sysctl.h>
52#include <vm/vm.h>
53#include <vm/vm_extern.h>
54#include <sys/msgport2.h>
55#include <sys/thread2.h>
56
57struct timezone tz;
58
59/*
60 * Time of day and interval timer support.
61 *
62 * These routines provide the kernel entry points to get and set
63 * the time-of-day and per-process interval timers. Subroutines
64 * here provide support for adding and subtracting timeval structures
65 * and decrementing interval timers, optionally reloading the interval
66 * timers when they expire.
67 */
68
69static int nanosleep1 (struct timespec *rqt,
70 struct timespec *rmt);
71static int settime (struct timeval *);
72static void timevalfix (struct timeval *);
73static void no_lease_updatetime (int);
74
75static int sleep_hard_us = 100;
76SYSCTL_INT(_kern, OID_AUTO, sleep_hard_us, CTLFLAG_RW, &sleep_hard_us, 0, "")
77
78static void
79no_lease_updatetime(deltat)
80 int deltat;
81{
82}
83
84void (*lease_updatetime) (int) = no_lease_updatetime;
85
86static int
87settime(tv)
88 struct timeval *tv;
89{
90 struct timeval delta, tv1, tv2;
91 static struct timeval maxtime, laststep;
92 struct timespec ts;
93 int origcpu;
94
95 if ((origcpu = mycpu->gd_cpuid) != 0)
96 lwkt_setcpu_self(globaldata_find(0));
97
98 crit_enter();
99 microtime(&tv1);
100 delta = *tv;
101 timevalsub(&delta, &tv1);
102
103 /*
104 * If the system is secure, we do not allow the time to be
105 * set to a value earlier than 1 second less than the highest
106 * time we have yet seen. The worst a miscreant can do in
107 * this circumstance is "freeze" time. He couldn't go
108 * back to the past.
109 *
110 * We similarly do not allow the clock to be stepped more
111 * than one second, nor more than once per second. This allows
112 * a miscreant to make the clock march double-time, but no worse.
113 */
114 if (securelevel > 1) {
115 if (delta.tv_sec < 0 || delta.tv_usec < 0) {
116 /*
117 * Update maxtime to latest time we've seen.
118 */
119 if (tv1.tv_sec > maxtime.tv_sec)
120 maxtime = tv1;
121 tv2 = *tv;
122 timevalsub(&tv2, &maxtime);
123 if (tv2.tv_sec < -1) {
124 tv->tv_sec = maxtime.tv_sec - 1;
125 printf("Time adjustment clamped to -1 second\n");
126 }
127 } else {
128 if (tv1.tv_sec == laststep.tv_sec) {
129 crit_exit();
130 return (EPERM);
131 }
132 if (delta.tv_sec > 1) {
133 tv->tv_sec = tv1.tv_sec + 1;
134 printf("Time adjustment clamped to +1 second\n");
135 }
136 laststep = *tv;
137 }
138 }
139
140 ts.tv_sec = tv->tv_sec;
141 ts.tv_nsec = tv->tv_usec * 1000;
142 set_timeofday(&ts);
143 lease_updatetime(delta.tv_sec);
144 crit_exit();
145
146 if (origcpu != 0)
147 lwkt_setcpu_self(globaldata_find(origcpu));
148
149 resettodr();
150 return (0);
151}
152
153/* ARGSUSED */
154int
155clock_gettime(struct clock_gettime_args *uap)
156{
157 struct timespec ats;
158
159 switch(uap->clock_id) {
160 case CLOCK_REALTIME:
161 nanotime(&ats);
162 return (copyout(&ats, uap->tp, sizeof(ats)));
163 case CLOCK_MONOTONIC:
164 nanouptime(&ats);
165 return (copyout(&ats, uap->tp, sizeof(ats)));
166 default:
167 return (EINVAL);
168 }
169}
170
171/* ARGSUSED */
172int
173clock_settime(struct clock_settime_args *uap)
174{
175 struct thread *td = curthread;
176 struct timeval atv;
177 struct timespec ats;
178 int error;
179
180 if ((error = suser(td)) != 0)
181 return (error);
182 switch(uap->clock_id) {
183 case CLOCK_REALTIME:
184 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
185 return (error);
186 if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000)
187 return (EINVAL);
188 /* XXX Don't convert nsec->usec and back */
189 TIMESPEC_TO_TIMEVAL(&atv, &ats);
190 error = settime(&atv);
191 return (error);
192 default:
193 return (EINVAL);
194 }
195}
196
197int
198clock_getres(struct clock_getres_args *uap)
199{
200 struct timespec ts;
201
202 switch(uap->clock_id) {
203 case CLOCK_REALTIME:
204 case CLOCK_MONOTONIC:
205 /*
206 * Round up the result of the division cheaply
207 * by adding 1. Rounding up is especially important
208 * if rounding down would give 0. Perfect rounding
209 * is unimportant.
210 */
211 ts.tv_sec = 0;
212 ts.tv_nsec = 1000000000 / cputimer_freq + 1;
213 return(copyout(&ts, uap->tp, sizeof(ts)));
214 default:
215 return(EINVAL);
216 }
217}
218
219/*
220 * nanosleep1()
221 *
222 * This is a general helper function for nanosleep() (aka sleep() aka
223 * usleep()).
224 *
225 * If there is less then one tick's worth of time left and
226 * we haven't done a yield, or the remaining microseconds is
227 * ridiculously low, do a yield. This avoids having
228 * to deal with systimer overheads when the system is under
229 * heavy loads. If we have done a yield already then use
230 * a systimer and an uninterruptable thread wait.
231 *
232 * If there is more then a tick's worth of time left,
233 * calculate the baseline ticks and use an interruptable
234 * tsleep, then handle the fine-grained delay on the next
235 * loop. This usually results in two sleeps occuring, a long one
236 * and a short one.
237 */
238static void
239ns1_systimer(systimer_t info)
240{
241 lwkt_schedule(info->data);
242}
243
244static int
245nanosleep1(struct timespec *rqt, struct timespec *rmt)
246{
247 static int nanowait;
248 struct timespec ts, ts2, ts3;
249 struct timeval tv;
250 int error;
251 int tried_yield;
252
253 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
254 return (EINVAL);
255 if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
256 return (0);
257 nanouptime(&ts);
258 timespecadd(&ts, rqt); /* ts = target timestamp compare */
259 TIMESPEC_TO_TIMEVAL(&tv, rqt); /* tv = sleep interval */
260 tried_yield = 0;
261
262 for (;;) {
263 int ticks;
264 struct systimer info;
265
266 ticks = tv.tv_usec / tick; /* approximate */
267
268 if (tv.tv_sec == 0 && ticks == 0) {
269 thread_t td = curthread;
270 if (tried_yield || tv.tv_usec < sleep_hard_us) {
271 tried_yield = 0;
272 uio_yield();
273 } else {
274 crit_enter_quick(td);
275 systimer_init_oneshot(&info, ns1_systimer,
276 td, tv.tv_usec);
277 lwkt_deschedule_self(td);
278 crit_exit_quick(td);
279 lwkt_switch();
280 systimer_del(&info); /* make sure it's gone */
281 }
282 error = iscaught(td->td_proc);
283 } else if (tv.tv_sec == 0) {
284 error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
285 } else {
286 ticks = tvtohz_low(&tv); /* also handles overflow */
287 error = tsleep(&nanowait, PCATCH, "nanslp", ticks);
288 }
289 nanouptime(&ts2);
290 if (error && error != EWOULDBLOCK) {
291 if (error == ERESTART)
292 error = EINTR;
293 if (rmt != NULL) {
294 timespecsub(&ts, &ts2);
295 if (ts.tv_sec < 0)
296 timespecclear(&ts);
297 *rmt = ts;
298 }
299 return (error);
300 }
301 if (timespeccmp(&ts2, &ts, >=))
302 return (0);
303 ts3 = ts;
304 timespecsub(&ts3, &ts2);
305 TIMESPEC_TO_TIMEVAL(&tv, &ts3);
306 }
307}
308
309static void nanosleep_done(void *arg);
310static void nanosleep_copyout(union sysunion *sysun);
311
312/* ARGSUSED */
313int
314nanosleep(struct nanosleep_args *uap)
315{
316 int error;
317 struct sysmsg_sleep *smsleep = &uap->sysmsg.sm.sleep;
318
319 error = copyin(uap->rqtp, &smsleep->rqt, sizeof(smsleep->rqt));
320 if (error)
321 return (error);
322 /*
323 * YYY clean this up to always use the callout, note that an abort
324 * implementation should record the residual in the async case.
325 */
326 if (uap->sysmsg.lmsg.ms_flags & MSGF_ASYNC) {
327 quad_t ticks;
328
329 ticks = (quad_t)smsleep->rqt.tv_nsec * hz / 1000000000LL;
330 if (smsleep->rqt.tv_sec)
331 ticks += (quad_t)smsleep->rqt.tv_sec * hz;
332 if (ticks <= 0) {
333 if (ticks == 0)
334 error = 0;
335 else
336 error = EINVAL;
337 } else {
338 uap->sysmsg.copyout = nanosleep_copyout;
339 uap->sysmsg.lmsg.ms_flags &= ~MSGF_DONE;
340 callout_init(&smsleep->timer);
341 callout_reset(&smsleep->timer, ticks, nanosleep_done, uap);
342 error = EASYNC;
343 }
344 } else {
345 /*
346 * Old synchronous sleep code, copyout the residual if
347 * nanosleep was interrupted.
348 */
349 error = nanosleep1(&smsleep->rqt, &smsleep->rmt);
350 if (error && uap->rmtp)
351 error = copyout(&smsleep->rmt, uap->rmtp, sizeof(smsleep->rmt));
352 }
353 return (error);
354}
355
356/*
357 * Asynch completion for the nanosleep() syscall. This function may be
358 * called from any context and cannot legally access the originating
359 * thread, proc, or its user space.
360 *
361 * YYY change the callout interface API so we can simply assign the replymsg
362 * function to it directly.
363 */
364static void
365nanosleep_done(void *arg)
366{
367 struct nanosleep_args *uap = arg;
368 lwkt_msg_t msg = &uap->sysmsg.lmsg;
369
370 lwkt_replymsg(msg, 0);
371}
372
373/*
374 * Asynch return for the nanosleep() syscall, called in the context of the
375 * originating thread when it pulls the message off the reply port. This
376 * function is responsible for any copyouts to userland. Kernel threads
377 * which do their own internal system calls will not usually call the return
378 * function.
379 */
380static void
381nanosleep_copyout(union sysunion *sysun)
382{
383 struct nanosleep_args *uap = &sysun->nanosleep;
384 struct sysmsg_sleep *smsleep = &uap->sysmsg.sm.sleep;
385
386 if (sysun->lmsg.ms_error && uap->rmtp) {
387 sysun->lmsg.ms_error =
388 copyout(&smsleep->rmt, uap->rmtp, sizeof(smsleep->rmt));
389 }
390}
391
392/* ARGSUSED */
393int
394gettimeofday(struct gettimeofday_args *uap)
395{
396 struct timeval atv;
397 int error = 0;
398
399 if (uap->tp) {
400 microtime(&atv);
401 if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
402 sizeof (atv))))
403 return (error);
404 }
405 if (uap->tzp)
406 error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
407 sizeof (tz));
408 return (error);
409}
410
411/* ARGSUSED */
412int
413settimeofday(struct settimeofday_args *uap)
414{
415 struct thread *td = curthread;
416 struct timeval atv;
417 struct timezone atz;
418 int error;
419
420 if ((error = suser(td)))
421 return (error);
422 /* Verify all parameters before changing time. */
423 if (uap->tv) {
424 if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
425 sizeof(atv))))
426 return (error);
427 if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
428 return (EINVAL);
429 }
430 if (uap->tzp &&
431 (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
432 return (error);
433 if (uap->tv && (error = settime(&atv)))
434 return (error);
435 if (uap->tzp)
436 tz = atz;
437 return (0);
438}
439
440static void
441kern_adjtime_common(void)
442{
443 if ((ntp_delta >= 0 && ntp_delta < ntp_default_tick_delta) ||
444 (ntp_delta < 0 && ntp_delta > ntp_default_tick_delta))
445 ntp_tick_delta = ntp_delta;
446 else if (ntp_delta > ntp_big_delta)
447 ntp_tick_delta = 10 * ntp_default_tick_delta;
448 else if (ntp_delta < -ntp_big_delta)
449 ntp_tick_delta = -10 * ntp_default_tick_delta;
450 else if (ntp_delta > 0)
451 ntp_tick_delta = ntp_default_tick_delta;
452 else
453 ntp_tick_delta = -ntp_default_tick_delta;
454}
455
456void
457kern_adjtime(int64_t delta, int64_t *odelta)
458{
459 int origcpu;
460
461 if ((origcpu = mycpu->gd_cpuid) != 0)
462 lwkt_setcpu_self(globaldata_find(0));
463
464 crit_enter();
465 *odelta = ntp_delta;
466 ntp_delta += delta;
467 kern_adjtime_common();
468 crit_exit();
469
470 if (origcpu != 0)
471 lwkt_setcpu_self(globaldata_find(origcpu));
472}
473
474static void
475kern_get_ntp_delta(int64_t *delta)
476{
477 int origcpu;
478
479 if ((origcpu = mycpu->gd_cpuid) != 0)
480 lwkt_setcpu_self(globaldata_find(0));
481
482 crit_enter();
483 *delta = ntp_delta;
484 crit_exit();
485
486 if (origcpu != 0)
487 lwkt_setcpu_self(globaldata_find(origcpu));
488}
489
490void
491kern_reladjtime(int64_t delta)
492{
493 int origcpu;
494
495 if ((origcpu = mycpu->gd_cpuid) != 0)
496 lwkt_setcpu_self(globaldata_find(0));
497
498 crit_enter();
499 ntp_delta += delta;
500 kern_adjtime_common();
501 crit_exit();
502
503 if (origcpu != 0)
504 lwkt_setcpu_self(globaldata_find(origcpu));
505}
506
507static void
508kern_adjfreq(int64_t rate)
509{
510 int origcpu;
511
512 if ((origcpu = mycpu->gd_cpuid) != 0)
513 lwkt_setcpu_self(globaldata_find(0));
514
515 crit_enter();
516 ntp_tick_permanent = rate;
517 crit_exit();
518
519 if (origcpu != 0)
520 lwkt_setcpu_self(globaldata_find(origcpu));
521}
522
523/* ARGSUSED */
524int
525adjtime(struct adjtime_args *uap)
526{
527 struct thread *td = curthread;
528 struct timeval atv;
529 int64_t ndelta, odelta;
530 int error;
531
532 if ((error = suser(td)))
533 return (error);
534 if ((error =
535 copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval))))
536 return (error);
537
538 /*
539 * Compute the total correction and the rate at which to apply it.
540 * Round the adjustment down to a whole multiple of the per-tick
541 * delta, so that after some number of incremental changes in
542 * hardclock(), tickdelta will become zero, lest the correction
543 * overshoot and start taking us away from the desired final time.
544 */
545 ndelta = atv.tv_sec * 1000000000 + atv.tv_usec * 1000;
546 kern_adjtime(ndelta, &odelta);
547
548 if (uap->olddelta) {
549 atv.tv_sec = odelta / 1000000000;
550 atv.tv_usec = odelta % 1000000 / 1000;
551 (void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
552 sizeof(struct timeval));
553 }
554 return (0);
555}
556
557static int
558sysctl_adjtime(SYSCTL_HANDLER_ARGS)
559{
560 int64_t delta;
561 int error;
562
563 if (req->oldptr != NULL) {
564 delta = 0;
565 error = SYSCTL_OUT(req, &delta, sizeof(delta));
566 if (error)
567 return (error);
568 }
569 if (req->newptr != NULL) {
570 if (suser(curthread))
571 return (EPERM);
572 error = SYSCTL_IN(req, &delta, sizeof(delta));
573 if (error)
574 return (error);
575 kern_reladjtime(delta);
576 }
577 return (0);
578}
579
580static int
581sysctl_delta(SYSCTL_HANDLER_ARGS)
582{
583 int64_t delta, old_delta;
584 int error;
585
586 if (req->newptr != NULL) {
587 if (suser(curthread))
588 return (EPERM);
589 error = SYSCTL_IN(req, &delta, sizeof(delta));
590 if (error)
591 return (error);
592 kern_adjtime(delta, &old_delta);
593 /* Fall through for writing old_delta */
594 } else if (req->oldptr != NULL) {
595 kern_get_ntp_delta(&old_delta);
596 }
597
598 if (req->oldptr != NULL) {
599 error = SYSCTL_OUT(req, &old_delta, sizeof(old_delta));
600 if (error)
601 return (error);
602 }
603
604 return (0);
605}
606
607static int
608sysctl_adjfreq(SYSCTL_HANDLER_ARGS)
609{
610 int64_t freqdelta;
611 int error;
612
613 if (req->oldptr != NULL) {
614 freqdelta = ntp_tick_permanent * hz;
615 error = SYSCTL_OUT(req, &freqdelta, sizeof(freqdelta));
616 if (error)
617 return (error);
618 }
619 if (req->newptr != NULL) {
620 if (suser(curthread))
621 return (EPERM);
622 error = SYSCTL_IN(req, &freqdelta, sizeof(freqdelta));
623 if (error)
624 return (error);
625
626 freqdelta /= hz;
627 kern_adjfreq(freqdelta);
628 }
629 return (0);
630}
631
632SYSCTL_NODE(_kern, OID_AUTO, ntp, CTLFLAG_RW, 0, "NTP related controls");
633SYSCTL_PROC(_kern_ntp, OID_AUTO, permanent,
634 CTLFLAG_RW, 0, 0,
635 sysctl_adjfreq, "LU", "permanent correction per second");
636SYSCTL_PROC(_kern_ntp, OID_AUTO, delta,
637 CTLFLAG_RW, 0, 0,
638 sysctl_delta, "LU", "one-time delta");
639SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, big_delta, CTLFLAG_RD,
640 &ntp_big_delta, sizeof(ntp_big_delta), "LU",
641 "threshold for fast adjustment");
642SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, tick_delta, CTLFLAG_RD,
643 &ntp_tick_delta, sizeof(ntp_tick_delta), "LU",
644 "per-tick adjustment");
645SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, default_tick_delta, CTLFLAG_RD,
646 &ntp_default_tick_delta, sizeof(ntp_default_tick_delta), "LU",
647 "default per-tick adjustment");
648SYSCTL_OPAQUE(_kern_ntp, OID_AUTO, next_leap_second, CTLFLAG_RW,
649 &ntp_leap_second, sizeof(ntp_leap_second), "LU",
650 "next leap second");
651SYSCTL_INT(_kern_ntp, OID_AUTO, insert_leap_second, CTLFLAG_RW,
652 &ntp_leap_insert, 0, "insert or remove leap second");
653SYSCTL_PROC(_kern_ntp, OID_AUTO, adjust,
654 CTLFLAG_RW, 0, 0,
655 sysctl_adjtime, "", "relative adjust for delta");
656
657/*
658 * Get value of an interval timer. The process virtual and
659 * profiling virtual time timers are kept in the p_stats area, since
660 * they can be swapped out. These are kept internally in the
661 * way they are specified externally: in time until they expire.
662 *
663 * The real time interval timer is kept in the process table slot
664 * for the process, and its value (it_value) is kept as an
665 * absolute time rather than as a delta, so that it is easy to keep
666 * periodic real-time signals from drifting.
667 *
668 * Virtual time timers are processed in the hardclock() routine of
669 * kern_clock.c. The real time timer is processed by a timeout
670 * routine, called from the softclock() routine. Since a callout
671 * may be delayed in real time due to interrupt processing in the system,
672 * it is possible for the real time timeout routine (realitexpire, given below),
673 * to be delayed in real time past when it is supposed to occur. It
674 * does not suffice, therefore, to reload the real timer .it_value from the
675 * real time timers .it_interval. Rather, we compute the next time in
676 * absolute time the timer should go off.
677 */
678/* ARGSUSED */
679int
680getitimer(struct getitimer_args *uap)
681{
682 struct proc *p = curproc;
683 struct timeval ctv;
684 struct itimerval aitv;
685
686 if (uap->which > ITIMER_PROF)
687 return (EINVAL);
688 crit_enter();
689 if (uap->which == ITIMER_REAL) {
690 /*
691 * Convert from absolute to relative time in .it_value
692 * part of real time timer. If time for real time timer
693 * has passed return 0, else return difference between
694 * current time and time for the timer to go off.
695 */
696 aitv = p->p_realtimer;
697 if (timevalisset(&aitv.it_value)) {
698 getmicrouptime(&ctv);
699 if (timevalcmp(&aitv.it_value, &ctv, <))
700 timevalclear(&aitv.it_value);
701 else
702 timevalsub(&aitv.it_value, &ctv);
703 }
704 } else {
705 aitv = p->p_stats->p_timer[uap->which];
706 }
707 crit_exit();
708 return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
709 sizeof (struct itimerval)));
710}
711
712/* ARGSUSED */
713int
714setitimer(struct setitimer_args *uap)
715{
716 struct itimerval aitv;
717 struct timeval ctv;
718 struct itimerval *itvp;
719 struct proc *p = curproc;
720 int error;
721
722 if (uap->which > ITIMER_PROF)
723 return (EINVAL);
724 itvp = uap->itv;
725 if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
726 sizeof(struct itimerval))))
727 return (error);
728 if ((uap->itv = uap->oitv) &&
729 (error = getitimer((struct getitimer_args *)uap)))
730 return (error);
731 if (itvp == 0)
732 return (0);
733 if (itimerfix(&aitv.it_value))
734 return (EINVAL);
735 if (!timevalisset(&aitv.it_value))
736 timevalclear(&aitv.it_interval);
737 else if (itimerfix(&aitv.it_interval))
738 return (EINVAL);
739 crit_enter();
740 if (uap->which == ITIMER_REAL) {
741 if (timevalisset(&p->p_realtimer.it_value))
742 callout_stop(&p->p_ithandle);
743 if (timevalisset(&aitv.it_value))
744 callout_reset(&p->p_ithandle,
745 tvtohz_high(&aitv.it_value), realitexpire, p);
746 getmicrouptime(&ctv);
747 timevaladd(&aitv.it_value, &ctv);
748 p->p_realtimer = aitv;
749 } else {
750 p->p_stats->p_timer[uap->which] = aitv;
751 }
752 crit_exit();
753 return (0);
754}
755
756/*
757 * Real interval timer expired:
758 * send process whose timer expired an alarm signal.
759 * If time is not set up to reload, then just return.
760 * Else compute next time timer should go off which is > current time.
761 * This is where delay in processing this timeout causes multiple
762 * SIGALRM calls to be compressed into one.
763 * tvtohz_high() always adds 1 to allow for the time until the next clock
764 * interrupt being strictly less than 1 clock tick, but we don't want
765 * that here since we want to appear to be in sync with the clock
766 * interrupt even when we're delayed.
767 */
768void
769realitexpire(arg)
770 void *arg;
771{
772 struct proc *p;
773 struct timeval ctv, ntv;
774
775 p = (struct proc *)arg;
776 psignal(p, SIGALRM);
777 if (!timevalisset(&p->p_realtimer.it_interval)) {
778 timevalclear(&p->p_realtimer.it_value);
779 return;
780 }
781 for (;;) {
782 crit_enter();
783 timevaladd(&p->p_realtimer.it_value,
784 &p->p_realtimer.it_interval);
785 getmicrouptime(&ctv);
786 if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
787 ntv = p->p_realtimer.it_value;
788 timevalsub(&ntv, &ctv);
789 callout_reset(&p->p_ithandle, tvtohz_low(&ntv),
790 realitexpire, p);
791 crit_exit();
792 return;
793 }
794 crit_exit();
795 }
796}
797
798/*
799 * Check that a proposed value to load into the .it_value or
800 * .it_interval part of an interval timer is acceptable, and
801 * fix it to have at least minimal value (i.e. if it is less
802 * than the resolution of the clock, round it up.)
803 */
804int
805itimerfix(tv)
806 struct timeval *tv;
807{
808
809 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
810 tv->tv_usec < 0 || tv->tv_usec >= 1000000)
811 return (EINVAL);
812 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
813 tv->tv_usec = tick;
814 return (0);
815}
816
817/*
818 * Decrement an interval timer by a specified number
819 * of microseconds, which must be less than a second,
820 * i.e. < 1000000. If the timer expires, then reload
821 * it. In this case, carry over (usec - old value) to
822 * reduce the value reloaded into the timer so that
823 * the timer does not drift. This routine assumes
824 * that it is called in a context where the timers
825 * on which it is operating cannot change in value.
826 */
827int
828itimerdecr(itp, usec)
829 struct itimerval *itp;
830 int usec;
831{
832
833 if (itp->it_value.tv_usec < usec) {
834 if (itp->it_value.tv_sec == 0) {
835 /* expired, and already in next interval */
836 usec -= itp->it_value.tv_usec;
837 goto expire;
838 }
839 itp->it_value.tv_usec += 1000000;
840 itp->it_value.tv_sec--;
841 }
842 itp->it_value.tv_usec -= usec;
843 usec = 0;
844 if (timevalisset(&itp->it_value))
845 return (1);
846 /* expired, exactly at end of interval */
847expire:
848 if (timevalisset(&itp->it_interval)) {
849 itp->it_value = itp->it_interval;
850 itp->it_value.tv_usec -= usec;
851 if (itp->it_value.tv_usec < 0) {
852 itp->it_value.tv_usec += 1000000;
853 itp->it_value.tv_sec--;
854 }
855 } else
856 itp->it_value.tv_usec = 0; /* sec is already 0 */
857 return (0);
858}
859
860/*
861 * Add and subtract routines for timevals.
862 * N.B.: subtract routine doesn't deal with
863 * results which are before the beginning,
864 * it just gets very confused in this case.
865 * Caveat emptor.
866 */
867void
868timevaladd(t1, t2)
869 struct timeval *t1, *t2;
870{
871
872 t1->tv_sec += t2->tv_sec;
873 t1->tv_usec += t2->tv_usec;
874 timevalfix(t1);
875}
876
877void
878timevalsub(t1, t2)
879 struct timeval *t1, *t2;
880{
881
882 t1->tv_sec -= t2->tv_sec;
883 t1->tv_usec -= t2->tv_usec;
884 timevalfix(t1);
885}
886
887static void
888timevalfix(t1)
889 struct timeval *t1;
890{
891
892 if (t1->tv_usec < 0) {
893 t1->tv_sec--;
894 t1->tv_usec += 1000000;
895 }
896 if (t1->tv_usec >= 1000000) {
897 t1->tv_sec++;
898 t1->tv_usec -= 1000000;
899 }
900}
901
902/*
903 * ratecheck(): simple time-based rate-limit checking.
904 */
905int
906ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
907{
908 struct timeval tv, delta;
909 int rv = 0;
910
911 getmicrouptime(&tv); /* NB: 10ms precision */
912 delta = tv;
913 timevalsub(&delta, lasttime);
914
915 /*
916 * check for 0,0 is so that the message will be seen at least once,
917 * even if interval is huge.
918 */
919 if (timevalcmp(&delta, mininterval, >=) ||
920 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
921 *lasttime = tv;
922 rv = 1;
923 }
924
925 return (rv);
926}
927
928/*
929 * ppsratecheck(): packets (or events) per second limitation.
930 *
931 * Return 0 if the limit is to be enforced (e.g. the caller
932 * should drop a packet because of the rate limitation).
933 *
934 * maxpps of 0 always causes zero to be returned. maxpps of -1
935 * always causes 1 to be returned; this effectively defeats rate
936 * limiting.
937 *
938 * Note that we maintain the struct timeval for compatibility
939 * with other bsd systems. We reuse the storage and just monitor
940 * clock ticks for minimal overhead.
941 */
942int
943ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
944{
945 int now;
946
947 /*
948 * Reset the last time and counter if this is the first call
949 * or more than a second has passed since the last update of
950 * lasttime.
951 */
952 now = ticks;
953 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
954 lasttime->tv_sec = now;
955 *curpps = 1;
956 return (maxpps != 0);
957 } else {
958 (*curpps)++; /* NB: ignore potential overflow */
959 return (maxpps < 0 || *curpps < maxpps);
960 }
961}
962