Add missing Makefile.modules (forgot to add it in the last commit)
[dragonfly.git] / sys / kern / vfs_subr.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
39 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
40 * $DragonFly: src/sys/kern/vfs_subr.c,v 1.15 2003/07/26 19:42:11 rob Exp $
41 */
42
43/*
44 * External virtual filesystem routines
45 */
46#include "opt_ddb.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/buf.h>
51#include <sys/conf.h>
52#include <sys/dirent.h>
53#include <sys/domain.h>
54#include <sys/eventhandler.h>
55#include <sys/fcntl.h>
56#include <sys/kernel.h>
57#include <sys/kthread.h>
58#include <sys/malloc.h>
59#include <sys/mbuf.h>
60#include <sys/mount.h>
61#include <sys/proc.h>
62#include <sys/namei.h>
63#include <sys/reboot.h>
64#include <sys/socket.h>
65#include <sys/stat.h>
66#include <sys/sysctl.h>
67#include <sys/syslog.h>
68#include <sys/vmmeter.h>
69#include <sys/vnode.h>
70
71#include <machine/limits.h>
72
73#include <vm/vm.h>
74#include <vm/vm_object.h>
75#include <vm/vm_extern.h>
76#include <vm/pmap.h>
77#include <vm/vm_map.h>
78#include <vm/vm_page.h>
79#include <vm/vm_pager.h>
80#include <vm/vnode_pager.h>
81#include <vm/vm_zone.h>
82
83#include <sys/buf2.h>
84#include <sys/thread2.h>
85
86static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
87
88static void insmntque __P((struct vnode *vp, struct mount *mp));
89static void vclean __P((struct vnode *vp, int flags, struct thread *td));
90static unsigned long numvnodes;
91static void vlruvp(struct vnode *vp);
92SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
93
94enum vtype iftovt_tab[16] = {
95 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
96 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
97};
98int vttoif_tab[9] = {
99 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
100 S_IFSOCK, S_IFIFO, S_IFMT,
101};
102
103static TAILQ_HEAD(freelst, vnode) vnode_free_list; /* vnode free list */
104
105static u_long wantfreevnodes = 25;
106SYSCTL_INT(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
107static u_long freevnodes = 0;
108SYSCTL_INT(_debug, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
109
110static int reassignbufcalls;
111SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
112static int reassignbufloops;
113SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW, &reassignbufloops, 0, "");
114static int reassignbufsortgood;
115SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW, &reassignbufsortgood, 0, "");
116static int reassignbufsortbad;
117SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW, &reassignbufsortbad, 0, "");
118static int reassignbufmethod = 1;
119SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW, &reassignbufmethod, 0, "");
120static int nameileafonly = 0;
121SYSCTL_INT(_vfs, OID_AUTO, nameileafonly, CTLFLAG_RW, &nameileafonly, 0, "");
122
123#ifdef ENABLE_VFS_IOOPT
124int vfs_ioopt = 0;
125SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
126#endif
127
128struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist); /* mounted fs */
129struct lwkt_token mountlist_token;
130struct lwkt_token mntvnode_token;
131int nfs_mount_type = -1;
132static struct lwkt_token mntid_token;
133static struct lwkt_token vnode_free_list_token;
134static struct lwkt_token spechash_token;
135struct nfs_public nfs_pub; /* publicly exported FS */
136static vm_zone_t vnode_zone;
137
138/*
139 * The workitem queue.
140 */
141#define SYNCER_MAXDELAY 32
142static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */
143time_t syncdelay = 30; /* max time to delay syncing data */
144time_t filedelay = 30; /* time to delay syncing files */
145SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
146time_t dirdelay = 29; /* time to delay syncing directories */
147SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
148time_t metadelay = 28; /* time to delay syncing metadata */
149SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
150static int rushjob; /* number of slots to run ASAP */
151static int stat_rush_requests; /* number of times I/O speeded up */
152SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
153
154static int syncer_delayno = 0;
155static long syncer_mask;
156LIST_HEAD(synclist, vnode);
157static struct synclist *syncer_workitem_pending;
158
159int desiredvnodes;
160SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
161 &desiredvnodes, 0, "Maximum number of vnodes");
162static int minvnodes;
163SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
164 &minvnodes, 0, "Minimum number of vnodes");
165static int vnlru_nowhere = 0;
166SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW, &vnlru_nowhere, 0,
167 "Number of times the vnlru process ran without success");
168
169static void vfs_free_addrlist __P((struct netexport *nep));
170static int vfs_free_netcred __P((struct radix_node *rn, void *w));
171static int vfs_hang_addrlist __P((struct mount *mp, struct netexport *nep,
172 struct export_args *argp));
173
174/*
175 * Initialize the vnode management data structures.
176 */
177void
178vntblinit()
179{
180
181 desiredvnodes = maxproc + vmstats.v_page_count / 4;
182 minvnodes = desiredvnodes / 4;
183 lwkt_inittoken(&mntvnode_token);
184 lwkt_inittoken(&mntid_token);
185 lwkt_inittoken(&spechash_token);
186 TAILQ_INIT(&vnode_free_list);
187 lwkt_inittoken(&vnode_free_list_token);
188 vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5);
189 /*
190 * Initialize the filesystem syncer.
191 */
192 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
193 &syncer_mask);
194 syncer_maxdelay = syncer_mask + 1;
195}
196
197/*
198 * Mark a mount point as busy. Used to synchronize access and to delay
199 * unmounting. Interlock is not released on failure.
200 */
201int
202vfs_busy(struct mount *mp, int flags, struct lwkt_token *interlkp,
203 struct thread *td)
204{
205 int lkflags;
206
207 if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
208 if (flags & LK_NOWAIT)
209 return (ENOENT);
210 mp->mnt_kern_flag |= MNTK_MWAIT;
211 if (interlkp) {
212 lwkt_reltoken(interlkp);
213 }
214 /*
215 * Since all busy locks are shared except the exclusive
216 * lock granted when unmounting, the only place that a
217 * wakeup needs to be done is at the release of the
218 * exclusive lock at the end of dounmount.
219 */
220 tsleep((caddr_t)mp, 0, "vfs_busy", 0);
221 if (interlkp) {
222 lwkt_gettoken(interlkp);
223 }
224 return (ENOENT);
225 }
226 lkflags = LK_SHARED | LK_NOPAUSE;
227 if (interlkp)
228 lkflags |= LK_INTERLOCK;
229 if (lockmgr(&mp->mnt_lock, lkflags, interlkp, td))
230 panic("vfs_busy: unexpected lock failure");
231 return (0);
232}
233
234/*
235 * Free a busy filesystem.
236 */
237void
238vfs_unbusy(struct mount *mp, struct thread *td)
239{
240 lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
241}
242
243/*
244 * Lookup a filesystem type, and if found allocate and initialize
245 * a mount structure for it.
246 *
247 * Devname is usually updated by mount(8) after booting.
248 */
249int
250vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
251{
252 struct thread *td = curthread; /* XXX */
253 struct vfsconf *vfsp;
254 struct mount *mp;
255
256 if (fstypename == NULL)
257 return (ENODEV);
258 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
259 if (!strcmp(vfsp->vfc_name, fstypename))
260 break;
261 if (vfsp == NULL)
262 return (ENODEV);
263 mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK);
264 bzero((char *)mp, (u_long)sizeof(struct mount));
265 lockinit(&mp->mnt_lock, 0, "vfslock", VLKTIMEOUT, LK_NOPAUSE);
266 (void)vfs_busy(mp, LK_NOWAIT, 0, td);
267 TAILQ_INIT(&mp->mnt_nvnodelist);
268 TAILQ_INIT(&mp->mnt_reservedvnlist);
269 mp->mnt_nvnodelistsize = 0;
270 mp->mnt_vfc = vfsp;
271 mp->mnt_op = vfsp->vfc_vfsops;
272 mp->mnt_flag = MNT_RDONLY;
273 mp->mnt_vnodecovered = NULLVP;
274 vfsp->vfc_refcount++;
275 mp->mnt_iosize_max = DFLTPHYS;
276 mp->mnt_stat.f_type = vfsp->vfc_typenum;
277 mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
278 strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
279 mp->mnt_stat.f_mntonname[0] = '/';
280 mp->mnt_stat.f_mntonname[1] = 0;
281 (void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
282 *mpp = mp;
283 return (0);
284}
285
286/*
287 * Find an appropriate filesystem to use for the root. If a filesystem
288 * has not been preselected, walk through the list of known filesystems
289 * trying those that have mountroot routines, and try them until one
290 * works or we have tried them all.
291 */
292#ifdef notdef /* XXX JH */
293int
294lite2_vfs_mountroot()
295{
296 struct vfsconf *vfsp;
297 extern int (*lite2_mountroot) __P((void));
298 int error;
299
300 if (lite2_mountroot != NULL)
301 return ((*lite2_mountroot)());
302 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
303 if (vfsp->vfc_mountroot == NULL)
304 continue;
305 if ((error = (*vfsp->vfc_mountroot)()) == 0)
306 return (0);
307 printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error);
308 }
309 return (ENODEV);
310}
311#endif
312
313/*
314 * Lookup a mount point by filesystem identifier.
315 */
316struct mount *
317vfs_getvfs(fsid)
318 fsid_t *fsid;
319{
320 struct mount *mp;
321
322 lwkt_gettoken(&mountlist_token);
323 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
324 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
325 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
326 lwkt_reltoken(&mountlist_token);
327 return (mp);
328 }
329 }
330 lwkt_reltoken(&mountlist_token);
331 return ((struct mount *) 0);
332}
333
334/*
335 * Get a new unique fsid. Try to make its val[0] unique, since this value
336 * will be used to create fake device numbers for stat(). Also try (but
337 * not so hard) make its val[0] unique mod 2^16, since some emulators only
338 * support 16-bit device numbers. We end up with unique val[0]'s for the
339 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
340 *
341 * Keep in mind that several mounts may be running in parallel. Starting
342 * the search one past where the previous search terminated is both a
343 * micro-optimization and a defense against returning the same fsid to
344 * different mounts.
345 */
346void
347vfs_getnewfsid(mp)
348 struct mount *mp;
349{
350 static u_int16_t mntid_base;
351 fsid_t tfsid;
352 int mtype;
353
354 lwkt_gettoken(&mntid_token);
355 mtype = mp->mnt_vfc->vfc_typenum;
356 tfsid.val[1] = mtype;
357 mtype = (mtype & 0xFF) << 24;
358 for (;;) {
359 tfsid.val[0] = makeudev(255,
360 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
361 mntid_base++;
362 if (vfs_getvfs(&tfsid) == NULL)
363 break;
364 }
365 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
366 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
367 lwkt_reltoken(&mntid_token);
368}
369
370/*
371 * Knob to control the precision of file timestamps:
372 *
373 * 0 = seconds only; nanoseconds zeroed.
374 * 1 = seconds and nanoseconds, accurate within 1/HZ.
375 * 2 = seconds and nanoseconds, truncated to microseconds.
376 * >=3 = seconds and nanoseconds, maximum precision.
377 */
378enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
379
380static int timestamp_precision = TSP_SEC;
381SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
382 &timestamp_precision, 0, "");
383
384/*
385 * Get a current timestamp.
386 */
387void
388vfs_timestamp(tsp)
389 struct timespec *tsp;
390{
391 struct timeval tv;
392
393 switch (timestamp_precision) {
394 case TSP_SEC:
395 tsp->tv_sec = time_second;
396 tsp->tv_nsec = 0;
397 break;
398 case TSP_HZ:
399 getnanotime(tsp);
400 break;
401 case TSP_USEC:
402 microtime(&tv);
403 TIMEVAL_TO_TIMESPEC(&tv, tsp);
404 break;
405 case TSP_NSEC:
406 default:
407 nanotime(tsp);
408 break;
409 }
410}
411
412/*
413 * Set vnode attributes to VNOVAL
414 */
415void
416vattr_null(vap)
417 struct vattr *vap;
418{
419
420 vap->va_type = VNON;
421 vap->va_size = VNOVAL;
422 vap->va_bytes = VNOVAL;
423 vap->va_mode = VNOVAL;
424 vap->va_nlink = VNOVAL;
425 vap->va_uid = VNOVAL;
426 vap->va_gid = VNOVAL;
427 vap->va_fsid = VNOVAL;
428 vap->va_fileid = VNOVAL;
429 vap->va_blocksize = VNOVAL;
430 vap->va_rdev = VNOVAL;
431 vap->va_atime.tv_sec = VNOVAL;
432 vap->va_atime.tv_nsec = VNOVAL;
433 vap->va_mtime.tv_sec = VNOVAL;
434 vap->va_mtime.tv_nsec = VNOVAL;
435 vap->va_ctime.tv_sec = VNOVAL;
436 vap->va_ctime.tv_nsec = VNOVAL;
437 vap->va_flags = VNOVAL;
438 vap->va_gen = VNOVAL;
439 vap->va_vaflags = 0;
440}
441
442/*
443 * This routine is called when we have too many vnodes. It attempts
444 * to free <count> vnodes and will potentially free vnodes that still
445 * have VM backing store (VM backing store is typically the cause
446 * of a vnode blowout so we want to do this). Therefore, this operation
447 * is not considered cheap.
448 *
449 * A number of conditions may prevent a vnode from being reclaimed.
450 * the buffer cache may have references on the vnode, a directory
451 * vnode may still have references due to the namei cache representing
452 * underlying files, or the vnode may be in active use. It is not
453 * desireable to reuse such vnodes. These conditions may cause the
454 * number of vnodes to reach some minimum value regardless of what
455 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low.
456 */
457static int
458vlrureclaim(struct mount *mp)
459{
460 struct vnode *vp;
461 int done;
462 int trigger;
463 int usevnodes;
464 int count;
465 int gen;
466
467 /*
468 * Calculate the trigger point, don't allow user
469 * screwups to blow us up. This prevents us from
470 * recycling vnodes with lots of resident pages. We
471 * aren't trying to free memory, we are trying to
472 * free vnodes.
473 */
474 usevnodes = desiredvnodes;
475 if (usevnodes <= 0)
476 usevnodes = 1;
477 trigger = vmstats.v_page_count * 2 / usevnodes;
478
479 done = 0;
480 gen = lwkt_gettoken(&mntvnode_token);
481 count = mp->mnt_nvnodelistsize / 10 + 1;
482 while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
483 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
484 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
485
486 if (vp->v_type != VNON &&
487 vp->v_type != VBAD &&
488 VMIGHTFREE(vp) && /* critical path opt */
489 (vp->v_object == NULL || vp->v_object->resident_page_count < trigger)
490 ) {
491 lwkt_gettoken(&vp->v_interlock);
492 if (lwkt_gentoken(&mntvnode_token, &gen) == 0) {
493 if (VMIGHTFREE(vp)) {
494 vgonel(vp, curthread);
495 done++;
496 } else {
497 lwkt_reltoken(&vp->v_interlock);
498 }
499 } else {
500 lwkt_reltoken(&vp->v_interlock);
501 }
502 }
503 --count;
504 }
505 lwkt_reltoken(&mntvnode_token);
506 return done;
507}
508
509/*
510 * Attempt to recycle vnodes in a context that is always safe to block.
511 * Calling vlrurecycle() from the bowels of file system code has some
512 * interesting deadlock problems.
513 */
514static struct thread *vnlruthread;
515static int vnlruproc_sig;
516
517static void
518vnlru_proc(void)
519{
520 struct mount *mp, *nmp;
521 int s;
522 int done;
523 struct thread *td = curthread;
524
525 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
526 SHUTDOWN_PRI_FIRST);
527
528 s = splbio();
529 for (;;) {
530 kproc_suspend_loop();
531 if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
532 vnlruproc_sig = 0;
533 wakeup(&vnlruproc_sig);
534 tsleep(td, 0, "vlruwt", hz);
535 continue;
536 }
537 done = 0;
538 lwkt_gettoken(&mountlist_token);
539 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
540 if (vfs_busy(mp, LK_NOWAIT, &mountlist_token, td)) {
541 nmp = TAILQ_NEXT(mp, mnt_list);
542 continue;
543 }
544 done += vlrureclaim(mp);
545 lwkt_gettoken(&mountlist_token);
546 nmp = TAILQ_NEXT(mp, mnt_list);
547 vfs_unbusy(mp, td);
548 }
549 lwkt_reltoken(&mountlist_token);
550 if (done == 0) {
551 vnlru_nowhere++;
552 tsleep(td, 0, "vlrup", hz * 3);
553 }
554 }
555 splx(s);
556}
557
558static struct kproc_desc vnlru_kp = {
559 "vnlru",
560 vnlru_proc,
561 &vnlruthread
562};
563SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
564
565/*
566 * Routines having to do with the management of the vnode table.
567 */
568extern vop_t **dead_vnodeop_p;
569
570/*
571 * Return the next vnode from the free list.
572 */
573int
574getnewvnode(tag, mp, vops, vpp)
575 enum vtagtype tag;
576 struct mount *mp;
577 vop_t **vops;
578 struct vnode **vpp;
579{
580 int s;
581 int gen;
582 int vgen;
583 struct thread *td = curthread; /* XXX */
584 struct vnode *vp = NULL;
585 vm_object_t object;
586
587 s = splbio();
588
589 /*
590 * Try to reuse vnodes if we hit the max. This situation only
591 * occurs in certain large-memory (2G+) situations. We cannot
592 * attempt to directly reclaim vnodes due to nasty recursion
593 * problems.
594 */
595 while (numvnodes - freevnodes > desiredvnodes) {
596 if (vnlruproc_sig == 0) {
597 vnlruproc_sig = 1; /* avoid unnecessary wakeups */
598 wakeup(vnlruthread);
599 }
600 tsleep(&vnlruproc_sig, 0, "vlruwk", hz);
601 }
602
603
604 /*
605 * Attempt to reuse a vnode already on the free list, allocating
606 * a new vnode if we can't find one or if we have not reached a
607 * good minimum for good LRU performance.
608 */
609 gen = lwkt_gettoken(&vnode_free_list_token);
610 if (freevnodes >= wantfreevnodes && numvnodes >= minvnodes) {
611 int count;
612
613 for (count = 0; count < freevnodes; count++) {
614 vp = TAILQ_FIRST(&vnode_free_list);
615 if (vp == NULL || vp->v_usecount)
616 panic("getnewvnode: free vnode isn't");
617
618 /*
619 * Get the vnode's interlock, then re-obtain
620 * vnode_free_list_token in case we lost it. If we
621 * did lose it while getting the vnode interlock,
622 * even if we got it back again, then retry.
623 */
624 vgen = lwkt_gettoken(&vp->v_interlock);
625 if (lwkt_gentoken(&vnode_free_list_token, &gen) != 0) {
626 --count;
627 lwkt_reltoken(&vp->v_interlock);
628 vp = NULL;
629 continue;
630 }
631
632 /*
633 * Whew! We have both tokens. Since we didn't lose
634 * the free list VFREE had better still be set. But
635 * we aren't out of the woods yet. We have to get
636 * the object (may block). If the vnode is not
637 * suitable then move it to the end of the list
638 * if we can. If we can't move it to the end of the
639 * list retry again.
640 */
641 if ((VOP_GETVOBJECT(vp, &object) == 0 &&
642 (object->resident_page_count || object->ref_count))
643 ) {
644 if (lwkt_gentoken(&vp->v_interlock, &vgen) == 0 &&
645 lwkt_gentoken(&vnode_free_list_token, &gen) == 0
646 ) {
647 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
648 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
649 } else {
650 --count;
651 }
652 lwkt_reltoken(&vp->v_interlock);
653 vp = NULL;
654 continue;
655 }
656
657 /*
658 * Still not out of the woods. VOBJECT might have
659 * blocked, if we did not retain our tokens we have
660 * to retry.
661 */
662 if (lwkt_gentoken(&vp->v_interlock, &vgen) != 0 ||
663 lwkt_gentoken(&vnode_free_list_token, &gen) != 0) {
664 --count;
665 vp = NULL;
666 continue;
667 }
668 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
669 KKASSERT(vp->v_flag & VFREE);
670
671 if (LIST_FIRST(&vp->v_cache_src)) {
672 /*
673 * note: nameileafonly sysctl is temporary,
674 * for debugging only, and will eventually be
675 * removed.
676 */
677 if (nameileafonly > 0) {
678 /*
679 * Do not reuse namei-cached directory
680 * vnodes that have cached
681 * subdirectories.
682 */
683 if (cache_leaf_test(vp) < 0) {
684 lwkt_reltoken(&vp->v_interlock);
685 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
686 vp = NULL;
687 continue;
688 }
689 } else if (nameileafonly < 0 ||
690 vmiodirenable == 0) {
691 /*
692 * Do not reuse namei-cached directory
693 * vnodes if nameileafonly is -1 or
694 * if VMIO backing for directories is
695 * turned off (otherwise we reuse them
696 * too quickly).
697 */
698 lwkt_reltoken(&vp->v_interlock);
699 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
700 vp = NULL;
701 continue;
702 }
703 }
704 break;
705 }
706 }
707
708 if (vp) {
709 vp->v_flag |= VDOOMED;
710 vp->v_flag &= ~VFREE;
711 freevnodes--;
712 lwkt_reltoken(&vnode_free_list_token);
713 cache_purge(vp); /* YYY may block */
714 vp->v_lease = NULL;
715 if (vp->v_type != VBAD) {
716 vgonel(vp, td);
717 } else {
718 lwkt_reltoken(&vp->v_interlock);
719 }
720
721#ifdef INVARIANTS
722 {
723 int s;
724
725 if (vp->v_data)
726 panic("cleaned vnode isn't");
727 s = splbio();
728 if (vp->v_numoutput)
729 panic("Clean vnode has pending I/O's");
730 splx(s);
731 }
732#endif
733 vp->v_flag = 0;
734 vp->v_lastw = 0;
735 vp->v_lasta = 0;
736 vp->v_cstart = 0;
737 vp->v_clen = 0;
738 vp->v_socket = 0;
739 vp->v_writecount = 0; /* XXX */
740 } else {
741 lwkt_reltoken(&vnode_free_list_token);
742 vp = (struct vnode *) zalloc(vnode_zone);
743 bzero((char *) vp, sizeof *vp);
744 lwkt_inittoken(&vp->v_interlock);
745 vp->v_dd = vp;
746 cache_purge(vp);
747 LIST_INIT(&vp->v_cache_src);
748 TAILQ_INIT(&vp->v_cache_dst);
749 numvnodes++;
750 }
751
752 TAILQ_INIT(&vp->v_cleanblkhd);
753 TAILQ_INIT(&vp->v_dirtyblkhd);
754 vp->v_type = VNON;
755 vp->v_tag = tag;
756 vp->v_op = vops;
757 insmntque(vp, mp);
758 *vpp = vp;
759 vp->v_usecount = 1;
760 vp->v_data = 0;
761 splx(s);
762
763 vfs_object_create(vp, td);
764 return (0);
765}
766
767/*
768 * Move a vnode from one mount queue to another.
769 */
770static void
771insmntque(vp, mp)
772 struct vnode *vp;
773 struct mount *mp;
774{
775
776 lwkt_gettoken(&mntvnode_token);
777 /*
778 * Delete from old mount point vnode list, if on one.
779 */
780 if (vp->v_mount != NULL) {
781 KASSERT(vp->v_mount->mnt_nvnodelistsize > 0,
782 ("bad mount point vnode list size"));
783 TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
784 vp->v_mount->mnt_nvnodelistsize--;
785 }
786 /*
787 * Insert into list of vnodes for the new mount point, if available.
788 */
789 if ((vp->v_mount = mp) == NULL) {
790 lwkt_reltoken(&mntvnode_token);
791 return;
792 }
793 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
794 mp->mnt_nvnodelistsize++;
795 lwkt_reltoken(&mntvnode_token);
796}
797
798/*
799 * Update outstanding I/O count and do wakeup if requested.
800 */
801void
802vwakeup(bp)
803 struct buf *bp;
804{
805 struct vnode *vp;
806
807 bp->b_flags &= ~B_WRITEINPROG;
808 if ((vp = bp->b_vp)) {
809 vp->v_numoutput--;
810 if (vp->v_numoutput < 0)
811 panic("vwakeup: neg numoutput");
812 if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
813 vp->v_flag &= ~VBWAIT;
814 wakeup((caddr_t) &vp->v_numoutput);
815 }
816 }
817}
818
819/*
820 * Flush out and invalidate all buffers associated with a vnode.
821 * Called with the underlying object locked.
822 */
823int
824vinvalbuf(struct vnode *vp, int flags, struct thread *td,
825 int slpflag, int slptimeo)
826{
827 struct buf *bp;
828 struct buf *nbp, *blist;
829 int s, error;
830 vm_object_t object;
831
832 if (flags & V_SAVE) {
833 s = splbio();
834 while (vp->v_numoutput) {
835 vp->v_flag |= VBWAIT;
836 error = tsleep((caddr_t)&vp->v_numoutput,
837 slpflag, "vinvlbuf", slptimeo);
838 if (error) {
839 splx(s);
840 return (error);
841 }
842 }
843 if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
844 splx(s);
845 if ((error = VOP_FSYNC(vp, MNT_WAIT, td)) != 0)
846 return (error);
847 s = splbio();
848 if (vp->v_numoutput > 0 ||
849 !TAILQ_EMPTY(&vp->v_dirtyblkhd))
850 panic("vinvalbuf: dirty bufs");
851 }
852 splx(s);
853 }
854 s = splbio();
855 for (;;) {
856 blist = TAILQ_FIRST(&vp->v_cleanblkhd);
857 if (!blist)
858 blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
859 if (!blist)
860 break;
861
862 for (bp = blist; bp; bp = nbp) {
863 nbp = TAILQ_NEXT(bp, b_vnbufs);
864 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
865 error = BUF_TIMELOCK(bp,
866 LK_EXCLUSIVE | LK_SLEEPFAIL,
867 "vinvalbuf", slpflag, slptimeo);
868 if (error == ENOLCK)
869 break;
870 splx(s);
871 return (error);
872 }
873 /*
874 * XXX Since there are no node locks for NFS, I
875 * believe there is a slight chance that a delayed
876 * write will occur while sleeping just above, so
877 * check for it. Note that vfs_bio_awrite expects
878 * buffers to reside on a queue, while VOP_BWRITE and
879 * brelse do not.
880 */
881 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
882 (flags & V_SAVE)) {
883
884 if (bp->b_vp == vp) {
885 if (bp->b_flags & B_CLUSTEROK) {
886 BUF_UNLOCK(bp);
887 vfs_bio_awrite(bp);
888 } else {
889 bremfree(bp);
890 bp->b_flags |= B_ASYNC;
891 VOP_BWRITE(bp->b_vp, bp);
892 }
893 } else {
894 bremfree(bp);
895 (void) VOP_BWRITE(bp->b_vp, bp);
896 }
897 break;
898 }
899 bremfree(bp);
900 bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
901 bp->b_flags &= ~B_ASYNC;
902 brelse(bp);
903 }
904 }
905
906 /*
907 * Wait for I/O to complete. XXX needs cleaning up. The vnode can
908 * have write I/O in-progress but if there is a VM object then the
909 * VM object can also have read-I/O in-progress.
910 */
911 do {
912 while (vp->v_numoutput > 0) {
913 vp->v_flag |= VBWAIT;
914 tsleep(&vp->v_numoutput, 0, "vnvlbv", 0);
915 }
916 if (VOP_GETVOBJECT(vp, &object) == 0) {
917 while (object->paging_in_progress)
918 vm_object_pip_sleep(object, "vnvlbx");
919 }
920 } while (vp->v_numoutput > 0);
921
922 splx(s);
923
924 /*
925 * Destroy the copy in the VM cache, too.
926 */
927 lwkt_gettoken(&vp->v_interlock);
928 if (VOP_GETVOBJECT(vp, &object) == 0) {
929 vm_object_page_remove(object, 0, 0,
930 (flags & V_SAVE) ? TRUE : FALSE);
931 }
932 lwkt_reltoken(&vp->v_interlock);
933
934 if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
935 panic("vinvalbuf: flush failed");
936 return (0);
937}
938
939/*
940 * Truncate a file's buffer and pages to a specified length. This
941 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
942 * sync activity.
943 */
944int
945vtruncbuf(struct vnode *vp, struct thread *td, off_t length, int blksize)
946{
947 struct buf *bp;
948 struct buf *nbp;
949 int s, anyfreed;
950 int trunclbn;
951
952 /*
953 * Round up to the *next* lbn.
954 */
955 trunclbn = (length + blksize - 1) / blksize;
956
957 s = splbio();
958restart:
959 anyfreed = 1;
960 for (;anyfreed;) {
961 anyfreed = 0;
962 for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
963 nbp = TAILQ_NEXT(bp, b_vnbufs);
964 if (bp->b_lblkno >= trunclbn) {
965 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
966 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
967 goto restart;
968 } else {
969 bremfree(bp);
970 bp->b_flags |= (B_INVAL | B_RELBUF);
971 bp->b_flags &= ~B_ASYNC;
972 brelse(bp);
973 anyfreed = 1;
974 }
975 if (nbp &&
976 (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
977 (nbp->b_vp != vp) ||
978 (nbp->b_flags & B_DELWRI))) {
979 goto restart;
980 }
981 }
982 }
983
984 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
985 nbp = TAILQ_NEXT(bp, b_vnbufs);
986 if (bp->b_lblkno >= trunclbn) {
987 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
988 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
989 goto restart;
990 } else {
991 bremfree(bp);
992 bp->b_flags |= (B_INVAL | B_RELBUF);
993 bp->b_flags &= ~B_ASYNC;
994 brelse(bp);
995 anyfreed = 1;
996 }
997 if (nbp &&
998 (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
999 (nbp->b_vp != vp) ||
1000 (nbp->b_flags & B_DELWRI) == 0)) {
1001 goto restart;
1002 }
1003 }
1004 }
1005 }
1006
1007 if (length > 0) {
1008restartsync:
1009 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1010 nbp = TAILQ_NEXT(bp, b_vnbufs);
1011 if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
1012 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1013 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1014 goto restart;
1015 } else {
1016 bremfree(bp);
1017 if (bp->b_vp == vp) {
1018 bp->b_flags |= B_ASYNC;
1019 } else {
1020 bp->b_flags &= ~B_ASYNC;
1021 }
1022 VOP_BWRITE(bp->b_vp, bp);
1023 }
1024 goto restartsync;
1025 }
1026
1027 }
1028 }
1029
1030 while (vp->v_numoutput > 0) {
1031 vp->v_flag |= VBWAIT;
1032 tsleep(&vp->v_numoutput, 0, "vbtrunc", 0);
1033 }
1034
1035 splx(s);
1036
1037 vnode_pager_setsize(vp, length);
1038
1039 return (0);
1040}
1041
1042/*
1043 * Associate a buffer with a vnode.
1044 */
1045void
1046bgetvp(vp, bp)
1047 struct vnode *vp;
1048 struct buf *bp;
1049{
1050 int s;
1051
1052 KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
1053
1054 vhold(vp);
1055 bp->b_vp = vp;
1056 bp->b_dev = vn_todev(vp);
1057 /*
1058 * Insert onto list for new vnode.
1059 */
1060 s = splbio();
1061 bp->b_xflags |= BX_VNCLEAN;
1062 bp->b_xflags &= ~BX_VNDIRTY;
1063 TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
1064 splx(s);
1065}
1066
1067/*
1068 * Disassociate a buffer from a vnode.
1069 */
1070void
1071brelvp(bp)
1072 struct buf *bp;
1073{
1074 struct vnode *vp;
1075 struct buflists *listheadp;
1076 int s;
1077
1078 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1079
1080 /*
1081 * Delete from old vnode list, if on one.
1082 */
1083 vp = bp->b_vp;
1084 s = splbio();
1085 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1086 if (bp->b_xflags & BX_VNDIRTY)
1087 listheadp = &vp->v_dirtyblkhd;
1088 else
1089 listheadp = &vp->v_cleanblkhd;
1090 TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1091 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1092 }
1093 if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
1094 vp->v_flag &= ~VONWORKLST;
1095 LIST_REMOVE(vp, v_synclist);
1096 }
1097 splx(s);
1098 bp->b_vp = (struct vnode *) 0;
1099 vdrop(vp);
1100}
1101
1102/*
1103 * The workitem queue.
1104 *
1105 * It is useful to delay writes of file data and filesystem metadata
1106 * for tens of seconds so that quickly created and deleted files need
1107 * not waste disk bandwidth being created and removed. To realize this,
1108 * we append vnodes to a "workitem" queue. When running with a soft
1109 * updates implementation, most pending metadata dependencies should
1110 * not wait for more than a few seconds. Thus, mounted on block devices
1111 * are delayed only about a half the time that file data is delayed.
1112 * Similarly, directory updates are more critical, so are only delayed
1113 * about a third the time that file data is delayed. Thus, there are
1114 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
1115 * one each second (driven off the filesystem syncer process). The
1116 * syncer_delayno variable indicates the next queue that is to be processed.
1117 * Items that need to be processed soon are placed in this queue:
1118 *
1119 * syncer_workitem_pending[syncer_delayno]
1120 *
1121 * A delay of fifteen seconds is done by placing the request fifteen
1122 * entries later in the queue:
1123 *
1124 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
1125 *
1126 */
1127
1128/*
1129 * Add an item to the syncer work queue.
1130 */
1131static void
1132vn_syncer_add_to_worklist(struct vnode *vp, int delay)
1133{
1134 int s, slot;
1135
1136 s = splbio();
1137
1138 if (vp->v_flag & VONWORKLST) {
1139 LIST_REMOVE(vp, v_synclist);
1140 }
1141
1142 if (delay > syncer_maxdelay - 2)
1143 delay = syncer_maxdelay - 2;
1144 slot = (syncer_delayno + delay) & syncer_mask;
1145
1146 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
1147 vp->v_flag |= VONWORKLST;
1148 splx(s);
1149}
1150
1151struct thread *updatethread;
1152static void sched_sync __P((void));
1153static struct kproc_desc up_kp = {
1154 "syncer",
1155 sched_sync,
1156 &updatethread
1157};
1158SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1159
1160/*
1161 * System filesystem synchronizer daemon.
1162 */
1163void
1164sched_sync(void)
1165{
1166 struct synclist *slp;
1167 struct vnode *vp;
1168 long starttime;
1169 int s;
1170 struct thread *td = curthread;
1171
1172 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
1173 SHUTDOWN_PRI_LAST);
1174
1175 for (;;) {
1176 kproc_suspend_loop();
1177
1178 starttime = time_second;
1179
1180 /*
1181 * Push files whose dirty time has expired. Be careful
1182 * of interrupt race on slp queue.
1183 */
1184 s = splbio();
1185 slp = &syncer_workitem_pending[syncer_delayno];
1186 syncer_delayno += 1;
1187 if (syncer_delayno == syncer_maxdelay)
1188 syncer_delayno = 0;
1189 splx(s);
1190
1191 while ((vp = LIST_FIRST(slp)) != NULL) {
1192 if (VOP_ISLOCKED(vp, NULL) == 0) {
1193 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
1194 (void) VOP_FSYNC(vp, MNT_LAZY, td);
1195 VOP_UNLOCK(vp, 0, td);
1196 }
1197 s = splbio();
1198 if (LIST_FIRST(slp) == vp) {
1199 /*
1200 * Note: v_tag VT_VFS vps can remain on the
1201 * worklist too with no dirty blocks, but
1202 * since sync_fsync() moves it to a different
1203 * slot we are safe.
1204 */
1205 if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
1206 !vn_isdisk(vp, NULL))
1207 panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
1208 /*
1209 * Put us back on the worklist. The worklist
1210 * routine will remove us from our current
1211 * position and then add us back in at a later
1212 * position.
1213 */
1214 vn_syncer_add_to_worklist(vp, syncdelay);
1215 }
1216 splx(s);
1217 }
1218
1219 /*
1220 * Do soft update processing.
1221 */
1222 if (bioops.io_sync)
1223 (*bioops.io_sync)(NULL);
1224
1225 /*
1226 * The variable rushjob allows the kernel to speed up the
1227 * processing of the filesystem syncer process. A rushjob
1228 * value of N tells the filesystem syncer to process the next
1229 * N seconds worth of work on its queue ASAP. Currently rushjob
1230 * is used by the soft update code to speed up the filesystem
1231 * syncer process when the incore state is getting so far
1232 * ahead of the disk that the kernel memory pool is being
1233 * threatened with exhaustion.
1234 */
1235 if (rushjob > 0) {
1236 rushjob -= 1;
1237 continue;
1238 }
1239 /*
1240 * If it has taken us less than a second to process the
1241 * current work, then wait. Otherwise start right over
1242 * again. We can still lose time if any single round
1243 * takes more than two seconds, but it does not really
1244 * matter as we are just trying to generally pace the
1245 * filesystem activity.
1246 */
1247 if (time_second == starttime)
1248 tsleep(&lbolt, 0, "syncer", 0);
1249 }
1250}
1251
1252/*
1253 * Request the syncer daemon to speed up its work.
1254 * We never push it to speed up more than half of its
1255 * normal turn time, otherwise it could take over the cpu.
1256 *
1257 * YYY wchan field protected by the BGL.
1258 */
1259int
1260speedup_syncer()
1261{
1262 crit_enter();
1263 if (updatethread->td_wchan == &lbolt) { /* YYY */
1264 unsleep(updatethread);
1265 lwkt_schedule(updatethread);
1266 }
1267 crit_exit();
1268 if (rushjob < syncdelay / 2) {
1269 rushjob += 1;
1270 stat_rush_requests += 1;
1271 return (1);
1272 }
1273 return(0);
1274}
1275
1276/*
1277 * Associate a p-buffer with a vnode.
1278 *
1279 * Also sets B_PAGING flag to indicate that vnode is not fully associated
1280 * with the buffer. i.e. the bp has not been linked into the vnode or
1281 * ref-counted.
1282 */
1283void
1284pbgetvp(vp, bp)
1285 struct vnode *vp;
1286 struct buf *bp;
1287{
1288
1289 KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1290
1291 bp->b_vp = vp;
1292 bp->b_flags |= B_PAGING;
1293 bp->b_dev = vn_todev(vp);
1294}
1295
1296/*
1297 * Disassociate a p-buffer from a vnode.
1298 */
1299void
1300pbrelvp(bp)
1301 struct buf *bp;
1302{
1303
1304 KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1305
1306 /* XXX REMOVE ME */
1307 if (TAILQ_NEXT(bp, b_vnbufs) != NULL) {
1308 panic(
1309 "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1310 bp,
1311 (int)bp->b_flags
1312 );
1313 }
1314 bp->b_vp = (struct vnode *) 0;
1315 bp->b_flags &= ~B_PAGING;
1316}
1317
1318void
1319pbreassignbuf(bp, newvp)
1320 struct buf *bp;
1321 struct vnode *newvp;
1322{
1323 if ((bp->b_flags & B_PAGING) == 0) {
1324 panic(
1325 "pbreassignbuf() on non phys bp %p",
1326 bp
1327 );
1328 }
1329 bp->b_vp = newvp;
1330}
1331
1332/*
1333 * Reassign a buffer from one vnode to another.
1334 * Used to assign file specific control information
1335 * (indirect blocks) to the vnode to which they belong.
1336 */
1337void
1338reassignbuf(bp, newvp)
1339 struct buf *bp;
1340 struct vnode *newvp;
1341{
1342 struct buflists *listheadp;
1343 int delay;
1344 int s;
1345
1346 if (newvp == NULL) {
1347 printf("reassignbuf: NULL");
1348 return;
1349 }
1350 ++reassignbufcalls;
1351
1352 /*
1353 * B_PAGING flagged buffers cannot be reassigned because their vp
1354 * is not fully linked in.
1355 */
1356 if (bp->b_flags & B_PAGING)
1357 panic("cannot reassign paging buffer");
1358
1359 s = splbio();
1360 /*
1361 * Delete from old vnode list, if on one.
1362 */
1363 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1364 if (bp->b_xflags & BX_VNDIRTY)
1365 listheadp = &bp->b_vp->v_dirtyblkhd;
1366 else
1367 listheadp = &bp->b_vp->v_cleanblkhd;
1368 TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1369 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1370 if (bp->b_vp != newvp) {
1371 vdrop(bp->b_vp);
1372 bp->b_vp = NULL; /* for clarification */
1373 }
1374 }
1375 /*
1376 * If dirty, put on list of dirty buffers; otherwise insert onto list
1377 * of clean buffers.
1378 */
1379 if (bp->b_flags & B_DELWRI) {
1380 struct buf *tbp;
1381
1382 listheadp = &newvp->v_dirtyblkhd;
1383 if ((newvp->v_flag & VONWORKLST) == 0) {
1384 switch (newvp->v_type) {
1385 case VDIR:
1386 delay = dirdelay;
1387 break;
1388 case VCHR:
1389 case VBLK:
1390 if (newvp->v_specmountpoint != NULL) {
1391 delay = metadelay;
1392 break;
1393 }
1394 /* fall through */
1395 default:
1396 delay = filedelay;
1397 }
1398 vn_syncer_add_to_worklist(newvp, delay);
1399 }
1400 bp->b_xflags |= BX_VNDIRTY;
1401 tbp = TAILQ_FIRST(listheadp);
1402 if (tbp == NULL ||
1403 bp->b_lblkno == 0 ||
1404 (bp->b_lblkno > 0 && tbp->b_lblkno < 0) ||
1405 (bp->b_lblkno > 0 && bp->b_lblkno < tbp->b_lblkno)) {
1406 TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1407 ++reassignbufsortgood;
1408 } else if (bp->b_lblkno < 0) {
1409 TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
1410 ++reassignbufsortgood;
1411 } else if (reassignbufmethod == 1) {
1412 /*
1413 * New sorting algorithm, only handle sequential case,
1414 * otherwise append to end (but before metadata)
1415 */
1416 if ((tbp = gbincore(newvp, bp->b_lblkno - 1)) != NULL &&
1417 (tbp->b_xflags & BX_VNDIRTY)) {
1418 /*
1419 * Found the best place to insert the buffer
1420 */
1421 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1422 ++reassignbufsortgood;
1423 } else {
1424 /*
1425 * Missed, append to end, but before meta-data.
1426 * We know that the head buffer in the list is
1427 * not meta-data due to prior conditionals.
1428 *
1429 * Indirect effects: NFS second stage write
1430 * tends to wind up here, giving maximum
1431 * distance between the unstable write and the
1432 * commit rpc.
1433 */
1434 tbp = TAILQ_LAST(listheadp, buflists);
1435 while (tbp && tbp->b_lblkno < 0)
1436 tbp = TAILQ_PREV(tbp, buflists, b_vnbufs);
1437 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1438 ++reassignbufsortbad;
1439 }
1440 } else {
1441 /*
1442 * Old sorting algorithm, scan queue and insert
1443 */
1444 struct buf *ttbp;
1445 while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
1446 (ttbp->b_lblkno < bp->b_lblkno)) {
1447 ++reassignbufloops;
1448 tbp = ttbp;
1449 }
1450 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1451 }
1452 } else {
1453 bp->b_xflags |= BX_VNCLEAN;
1454 TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
1455 if ((newvp->v_flag & VONWORKLST) &&
1456 TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1457 newvp->v_flag &= ~VONWORKLST;
1458 LIST_REMOVE(newvp, v_synclist);
1459 }
1460 }
1461 if (bp->b_vp != newvp) {
1462 bp->b_vp = newvp;
1463 vhold(bp->b_vp);
1464 }
1465 splx(s);
1466}
1467
1468/*
1469 * Create a vnode for a block device.
1470 * Used for mounting the root file system.
1471 */
1472int
1473bdevvp(dev, vpp)
1474 dev_t dev;
1475 struct vnode **vpp;
1476{
1477 struct vnode *vp;
1478 struct vnode *nvp;
1479 int error;
1480
1481 if (dev == NODEV) {
1482 *vpp = NULLVP;
1483 return (ENXIO);
1484 }
1485 error = getnewvnode(VT_NON, (struct mount *)0, spec_vnodeop_p, &nvp);
1486 if (error) {
1487 *vpp = NULLVP;
1488 return (error);
1489 }
1490 vp = nvp;
1491 vp->v_type = VBLK;
1492 addalias(vp, dev);
1493 *vpp = vp;
1494 return (0);
1495}
1496
1497/*
1498 * Add vnode to the alias list hung off the dev_t.
1499 *
1500 * The reason for this gunk is that multiple vnodes can reference
1501 * the same physical device, so checking vp->v_usecount to see
1502 * how many users there are is inadequate; the v_usecount for
1503 * the vnodes need to be accumulated. vcount() does that.
1504 */
1505void
1506addaliasu(nvp, nvp_rdev)
1507 struct vnode *nvp;
1508 udev_t nvp_rdev;
1509{
1510
1511 if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1512 panic("addaliasu on non-special vnode");
1513 addalias(nvp, udev2dev(nvp_rdev, nvp->v_type == VBLK ? 1 : 0));
1514}
1515
1516void
1517addalias(nvp, dev)
1518 struct vnode *nvp;
1519 dev_t dev;
1520{
1521
1522 if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1523 panic("addalias on non-special vnode");
1524
1525 nvp->v_rdev = dev;
1526 lwkt_gettoken(&spechash_token);
1527 SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
1528 lwkt_reltoken(&spechash_token);
1529}
1530
1531/*
1532 * Grab a particular vnode from the free list, increment its
1533 * reference count and lock it. The vnode lock bit is set if the
1534 * vnode is being eliminated in vgone. The process is awakened
1535 * when the transition is completed, and an error returned to
1536 * indicate that the vnode is no longer usable (possibly having
1537 * been changed to a new file system type).
1538 */
1539int
1540vget(vp, flags, td)
1541 struct vnode *vp;
1542 int flags;
1543 struct thread *td;
1544{
1545 int error;
1546
1547 /*
1548 * If the vnode is in the process of being cleaned out for
1549 * another use, we wait for the cleaning to finish and then
1550 * return failure. Cleaning is determined by checking that
1551 * the VXLOCK flag is set.
1552 */
1553 if ((flags & LK_INTERLOCK) == 0) {
1554 lwkt_gettoken(&vp->v_interlock);
1555 }
1556 if (vp->v_flag & VXLOCK) {
1557 if (vp->v_vxproc == curproc) {
1558#if 0
1559 /* this can now occur in normal operation */
1560 log(LOG_INFO, "VXLOCK interlock avoided\n");
1561#endif
1562 } else {
1563 vp->v_flag |= VXWANT;
1564 lwkt_reltoken(&vp->v_interlock);
1565 tsleep((caddr_t)vp, 0, "vget", 0);
1566 return (ENOENT);
1567 }
1568 }
1569
1570 vp->v_usecount++;
1571
1572 if (VSHOULDBUSY(vp))
1573 vbusy(vp);
1574 if (flags & LK_TYPE_MASK) {
1575 if ((error = vn_lock(vp, flags | LK_INTERLOCK, td)) != 0) {
1576 /*
1577 * must expand vrele here because we do not want
1578 * to call VOP_INACTIVE if the reference count
1579 * drops back to zero since it was never really
1580 * active. We must remove it from the free list
1581 * before sleeping so that multiple processes do
1582 * not try to recycle it.
1583 */
1584 lwkt_gettoken(&vp->v_interlock);
1585 vp->v_usecount--;
1586 if (VSHOULDFREE(vp))
1587 vfree(vp);
1588 else
1589 vlruvp(vp);
1590 lwkt_reltoken(&vp->v_interlock);
1591 }
1592 return (error);
1593 }
1594 lwkt_reltoken(&vp->v_interlock);
1595 return (0);
1596}
1597
1598void
1599vref(struct vnode *vp)
1600{
1601 lwkt_gettoken(&vp->v_interlock);
1602 vp->v_usecount++;
1603 lwkt_reltoken(&vp->v_interlock);
1604}
1605
1606/*
1607 * Vnode put/release.
1608 * If count drops to zero, call inactive routine and return to freelist.
1609 */
1610void
1611vrele(struct vnode *vp)
1612{
1613 struct thread *td = curthread; /* XXX */
1614
1615 KASSERT(vp != NULL, ("vrele: null vp"));
1616
1617 lwkt_gettoken(&vp->v_interlock);
1618
1619 if (vp->v_usecount > 1) {
1620
1621 vp->v_usecount--;
1622 lwkt_reltoken(&vp->v_interlock);
1623
1624 return;
1625 }
1626
1627 if (vp->v_usecount == 1) {
1628 vp->v_usecount--;
1629 /*
1630 * We must call VOP_INACTIVE with the node locked.
1631 * If we are doing a vpu, the node is already locked,
1632 * but, in the case of vrele, we must explicitly lock
1633 * the vnode before calling VOP_INACTIVE
1634 */
1635
1636 if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, td) == 0)
1637 VOP_INACTIVE(vp, td);
1638 if (VSHOULDFREE(vp))
1639 vfree(vp);
1640 else
1641 vlruvp(vp);
1642 } else {
1643#ifdef DIAGNOSTIC
1644 vprint("vrele: negative ref count", vp);
1645 lwkt_reltoken(&vp->v_interlock);
1646#endif
1647 panic("vrele: negative ref cnt");
1648 }
1649}
1650
1651void
1652vput(struct vnode *vp)
1653{
1654 struct thread *td = curthread; /* XXX */
1655
1656 KASSERT(vp != NULL, ("vput: null vp"));
1657
1658 lwkt_gettoken(&vp->v_interlock);
1659
1660 if (vp->v_usecount > 1) {
1661 vp->v_usecount--;
1662 VOP_UNLOCK(vp, LK_INTERLOCK, td);
1663 return;
1664 }
1665
1666 if (vp->v_usecount == 1) {
1667 vp->v_usecount--;
1668 /*
1669 * We must call VOP_INACTIVE with the node locked.
1670 * If we are doing a vpu, the node is already locked,
1671 * so we just need to release the vnode mutex.
1672 */
1673 lwkt_reltoken(&vp->v_interlock);
1674 VOP_INACTIVE(vp, td);
1675 if (VSHOULDFREE(vp))
1676 vfree(vp);
1677 else
1678 vlruvp(vp);
1679 } else {
1680#ifdef DIAGNOSTIC
1681 vprint("vput: negative ref count", vp);
1682#endif
1683 panic("vput: negative ref cnt");
1684 }
1685}
1686
1687/*
1688 * Somebody doesn't want the vnode recycled.
1689 */
1690void
1691vhold(vp)
1692 struct vnode *vp;
1693{
1694 int s;
1695
1696 s = splbio();
1697 vp->v_holdcnt++;
1698 if (VSHOULDBUSY(vp))
1699 vbusy(vp);
1700 splx(s);
1701}
1702
1703/*
1704 * One less who cares about this vnode.
1705 */
1706void
1707vdrop(vp)
1708 struct vnode *vp;
1709{
1710 int s;
1711
1712 s = splbio();
1713 if (vp->v_holdcnt <= 0)
1714 panic("vdrop: holdcnt");
1715 vp->v_holdcnt--;
1716 if (VSHOULDFREE(vp))
1717 vfree(vp);
1718 splx(s);
1719}
1720
1721/*
1722 * Remove any vnodes in the vnode table belonging to mount point mp.
1723 *
1724 * If FORCECLOSE is not specified, there should not be any active ones,
1725 * return error if any are found (nb: this is a user error, not a
1726 * system error). If FORCECLOSE is specified, detach any active vnodes
1727 * that are found.
1728 *
1729 * If WRITECLOSE is set, only flush out regular file vnodes open for
1730 * writing.
1731 *
1732 * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1733 *
1734 * `rootrefs' specifies the base reference count for the root vnode
1735 * of this filesystem. The root vnode is considered busy if its
1736 * v_usecount exceeds this value. On a successful return, vflush()
1737 * will call vrele() on the root vnode exactly rootrefs times.
1738 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1739 * be zero.
1740 */
1741#ifdef DIAGNOSTIC
1742static int busyprt = 0; /* print out busy vnodes */
1743SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1744#endif
1745
1746int
1747vflush(mp, rootrefs, flags)
1748 struct mount *mp;
1749 int rootrefs;
1750 int flags;
1751{
1752 struct thread *td = curthread; /* XXX */
1753 struct vnode *vp, *nvp, *rootvp = NULL;
1754 struct vattr vattr;
1755 int busy = 0, error;
1756
1757 if (rootrefs > 0) {
1758 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1759 ("vflush: bad args"));
1760 /*
1761 * Get the filesystem root vnode. We can vput() it
1762 * immediately, since with rootrefs > 0, it won't go away.
1763 */
1764 if ((error = VFS_ROOT(mp, &rootvp)) != 0)
1765 return (error);
1766 vput(rootvp);
1767 }
1768 lwkt_gettoken(&mntvnode_token);
1769loop:
1770 for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp; vp = nvp) {
1771 /*
1772 * Make sure this vnode wasn't reclaimed in getnewvnode().
1773 * Start over if it has (it won't be on the list anymore).
1774 */
1775 if (vp->v_mount != mp)
1776 goto loop;
1777 nvp = TAILQ_NEXT(vp, v_nmntvnodes);
1778
1779 lwkt_gettoken(&vp->v_interlock);
1780 /*
1781 * Skip over a vnodes marked VSYSTEM.
1782 */
1783 if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1784 lwkt_reltoken(&vp->v_interlock);
1785 continue;
1786 }
1787 /*
1788 * If WRITECLOSE is set, flush out unlinked but still open
1789 * files (even if open only for reading) and regular file
1790 * vnodes open for writing.
1791 */
1792 if ((flags & WRITECLOSE) &&
1793 (vp->v_type == VNON ||
1794 (VOP_GETATTR(vp, &vattr, td) == 0 &&
1795 vattr.va_nlink > 0)) &&
1796 (vp->v_writecount == 0 || vp->v_type != VREG)) {
1797 lwkt_reltoken(&vp->v_interlock);
1798 continue;
1799 }
1800
1801 /*
1802 * With v_usecount == 0, all we need to do is clear out the
1803 * vnode data structures and we are done.
1804 */
1805 if (vp->v_usecount == 0) {
1806 lwkt_reltoken(&mntvnode_token);
1807 vgonel(vp, td);
1808 lwkt_gettoken(&mntvnode_token);
1809 continue;
1810 }
1811
1812 /*
1813 * If FORCECLOSE is set, forcibly close the vnode. For block
1814 * or character devices, revert to an anonymous device. For
1815 * all other files, just kill them.
1816 */
1817 if (flags & FORCECLOSE) {
1818 lwkt_reltoken(&mntvnode_token);
1819 if (vp->v_type != VBLK && vp->v_type != VCHR) {
1820 vgonel(vp, td);
1821 } else {
1822 vclean(vp, 0, td);
1823 vp->v_op = spec_vnodeop_p;
1824 insmntque(vp, (struct mount *) 0);
1825 }
1826 lwkt_gettoken(&mntvnode_token);
1827 continue;
1828 }
1829#ifdef DIAGNOSTIC
1830 if (busyprt)
1831 vprint("vflush: busy vnode", vp);
1832#endif
1833 lwkt_reltoken(&vp->v_interlock);
1834 busy++;
1835 }
1836 lwkt_reltoken(&mntvnode_token);
1837 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1838 /*
1839 * If just the root vnode is busy, and if its refcount
1840 * is equal to `rootrefs', then go ahead and kill it.
1841 */
1842 lwkt_gettoken(&rootvp->v_interlock);
1843 KASSERT(busy > 0, ("vflush: not busy"));
1844 KASSERT(rootvp->v_usecount >= rootrefs, ("vflush: rootrefs"));
1845 if (busy == 1 && rootvp->v_usecount == rootrefs) {
1846 vgonel(rootvp, td);
1847 busy = 0;
1848 } else
1849 lwkt_reltoken(&rootvp->v_interlock);
1850 }
1851 if (busy)
1852 return (EBUSY);
1853 for (; rootrefs > 0; rootrefs--)
1854 vrele(rootvp);
1855 return (0);
1856}
1857
1858/*
1859 * We do not want to recycle the vnode too quickly.
1860 *
1861 * XXX we can't move vp's around the nvnodelist without really screwing
1862 * up the efficiency of filesystem SYNC and friends. This code is
1863 * disabled until we fix the syncing code's scanning algorithm.
1864 */
1865static void
1866vlruvp(struct vnode *vp)
1867{
1868#if 0
1869 struct mount *mp;
1870
1871 if ((mp = vp->v_mount) != NULL) {
1872 lwkt_gettoken(&mntvnode_token);
1873 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1874 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1875 lwkt_reltoken(&mntvnode_token);
1876 }
1877#endif
1878}
1879
1880/*
1881 * Disassociate the underlying file system from a vnode.
1882 */
1883static void
1884vclean(struct vnode *vp, int flags, struct thread *td)
1885{
1886 int active;
1887
1888 /*
1889 * Check to see if the vnode is in use. If so we have to reference it
1890 * before we clean it out so that its count cannot fall to zero and
1891 * generate a race against ourselves to recycle it.
1892 */
1893 if ((active = vp->v_usecount))
1894 vp->v_usecount++;
1895
1896 /*
1897 * Prevent the vnode from being recycled or brought into use while we
1898 * clean it out.
1899 */
1900 if (vp->v_flag & VXLOCK)
1901 panic("vclean: deadlock");
1902 vp->v_flag |= VXLOCK;
1903 vp->v_vxproc = curproc;
1904 /*
1905 * Even if the count is zero, the VOP_INACTIVE routine may still
1906 * have the object locked while it cleans it out. The VOP_LOCK
1907 * ensures that the VOP_INACTIVE routine is done with its work.
1908 * For active vnodes, it ensures that no other activity can
1909 * occur while the underlying object is being cleaned out.
1910 */
1911 VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
1912
1913 /*
1914 * Clean out any buffers associated with the vnode.
1915 */
1916 vinvalbuf(vp, V_SAVE, td, 0, 0);
1917
1918 VOP_DESTROYVOBJECT(vp);
1919
1920 /*
1921 * If purging an active vnode, it must be closed and
1922 * deactivated before being reclaimed. Note that the
1923 * VOP_INACTIVE will unlock the vnode.
1924 */
1925 if (active) {
1926 if (flags & DOCLOSE)
1927 VOP_CLOSE(vp, FNONBLOCK, td);
1928 VOP_INACTIVE(vp, td);
1929 } else {
1930 /*
1931 * Any other processes trying to obtain this lock must first
1932 * wait for VXLOCK to clear, then call the new lock operation.
1933 */
1934 VOP_UNLOCK(vp, 0, td);
1935 }
1936 /*
1937 * Reclaim the vnode.
1938 */
1939 if (VOP_RECLAIM(vp, td))
1940 panic("vclean: cannot reclaim");
1941
1942 if (active) {
1943 /*
1944 * Inline copy of vrele() since VOP_INACTIVE
1945 * has already been called.
1946 */
1947 lwkt_gettoken(&vp->v_interlock);
1948 if (--vp->v_usecount <= 0) {
1949#ifdef DIAGNOSTIC
1950 if (vp->v_usecount < 0 || vp->v_writecount != 0) {
1951 vprint("vclean: bad ref count", vp);
1952 panic("vclean: ref cnt");
1953 }
1954#endif
1955 vfree(vp);
1956 }
1957 lwkt_reltoken(&vp->v_interlock);
1958 }
1959
1960 cache_purge(vp);
1961 vp->v_vnlock = NULL;
1962
1963 if (VSHOULDFREE(vp))
1964 vfree(vp);
1965
1966 /*
1967 * Done with purge, notify sleepers of the grim news.
1968 */
1969 vp->v_op = dead_vnodeop_p;
1970 vn_pollgone(vp);
1971 vp->v_tag = VT_NON;
1972 vp->v_flag &= ~VXLOCK;
1973 vp->v_vxproc = NULL;
1974 if (vp->v_flag & VXWANT) {
1975 vp->v_flag &= ~VXWANT;
1976 wakeup((caddr_t) vp);
1977 }
1978}
1979
1980/*
1981 * Eliminate all activity associated with the requested vnode
1982 * and with all vnodes aliased to the requested vnode.
1983 */
1984int
1985vop_revoke(ap)
1986 struct vop_revoke_args /* {
1987 struct vnode *a_vp;
1988 int a_flags;
1989 } */ *ap;
1990{
1991 struct vnode *vp, *vq;
1992 dev_t dev;
1993
1994 KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1995
1996 vp = ap->a_vp;
1997 /*
1998 * If a vgone (or vclean) is already in progress,
1999 * wait until it is done and return.
2000 */
2001 if (vp->v_flag & VXLOCK) {
2002 vp->v_flag |= VXWANT;
2003 lwkt_reltoken(&vp->v_interlock);
2004 tsleep((caddr_t)vp, 0, "vop_revokeall", 0);
2005 return (0);
2006 }
2007 dev = vp->v_rdev;
2008 for (;;) {
2009 lwkt_gettoken(&spechash_token);
2010 vq = SLIST_FIRST(&dev->si_hlist);
2011 lwkt_reltoken(&spechash_token);
2012 if (!vq)
2013 break;
2014 vgone(vq);
2015 }
2016 return (0);
2017}
2018
2019/*
2020 * Recycle an unused vnode to the front of the free list.
2021 * Release the passed interlock if the vnode will be recycled.
2022 */
2023int
2024vrecycle(struct vnode *vp, struct lwkt_token *inter_lkp, struct thread *td)
2025{
2026 lwkt_gettoken(&vp->v_interlock);
2027 if (vp->v_usecount == 0) {
2028 if (inter_lkp) {
2029 lwkt_reltoken(inter_lkp);
2030 }
2031 vgonel(vp, td);
2032 return (1);
2033 }
2034 lwkt_reltoken(&vp->v_interlock);
2035 return (0);
2036}
2037
2038/*
2039 * Eliminate all activity associated with a vnode
2040 * in preparation for reuse.
2041 */
2042void
2043vgone(struct vnode *vp)
2044{
2045 struct thread *td = curthread; /* XXX */
2046
2047 lwkt_gettoken(&vp->v_interlock);
2048 vgonel(vp, td);
2049}
2050
2051/*
2052 * vgone, with the vp interlock held.
2053 */
2054void
2055vgonel(struct vnode *vp, struct thread *td)
2056{
2057 int s;
2058
2059 /*
2060 * If a vgone (or vclean) is already in progress,
2061 * wait until it is done and return.
2062 */
2063 if (vp->v_flag & VXLOCK) {
2064 vp->v_flag |= VXWANT;
2065 lwkt_reltoken(&vp->v_interlock);
2066 tsleep((caddr_t)vp, 0, "vgone", 0);
2067 return;
2068 }
2069
2070 /*
2071 * Clean out the filesystem specific data.
2072 */
2073 vclean(vp, DOCLOSE, td);
2074 lwkt_gettoken(&vp->v_interlock);
2075
2076 /*
2077 * Delete from old mount point vnode list, if on one.
2078 */
2079 if (vp->v_mount != NULL)
2080 insmntque(vp, (struct mount *)0);
2081 /*
2082 * If special device, remove it from special device alias list
2083 * if it is on one.
2084 */
2085 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
2086 lwkt_gettoken(&spechash_token);
2087 SLIST_REMOVE(&vp->v_hashchain, vp, vnode, v_specnext);
2088 freedev(vp->v_rdev);
2089 lwkt_reltoken(&spechash_token);
2090 vp->v_rdev = NULL;
2091 }
2092
2093 /*
2094 * If it is on the freelist and not already at the head,
2095 * move it to the head of the list. The test of the
2096 * VDOOMED flag and the reference count of zero is because
2097 * it will be removed from the free list by getnewvnode,
2098 * but will not have its reference count incremented until
2099 * after calling vgone. If the reference count were
2100 * incremented first, vgone would (incorrectly) try to
2101 * close the previous instance of the underlying object.
2102 */
2103 if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
2104 s = splbio();
2105 lwkt_gettoken(&vnode_free_list_token);
2106 if (vp->v_flag & VFREE)
2107 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2108 else
2109 freevnodes++;
2110 vp->v_flag |= VFREE;
2111 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2112 lwkt_reltoken(&vnode_free_list_token);
2113 splx(s);
2114 }
2115
2116 vp->v_type = VBAD;
2117 lwkt_reltoken(&vp->v_interlock);
2118}
2119
2120/*
2121 * Lookup a vnode by device number.
2122 */
2123int
2124vfinddev(dev, type, vpp)
2125 dev_t dev;
2126 enum vtype type;
2127 struct vnode **vpp;
2128{
2129 struct vnode *vp;
2130
2131 lwkt_gettoken(&spechash_token);
2132 SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2133 if (type == vp->v_type) {
2134 *vpp = vp;
2135 lwkt_reltoken(&spechash_token);
2136 return (1);
2137 }
2138 }
2139 lwkt_reltoken(&spechash_token);
2140 return (0);
2141}
2142
2143/*
2144 * Calculate the total number of references to a special device.
2145 */
2146int
2147vcount(vp)
2148 struct vnode *vp;
2149{
2150 struct vnode *vq;
2151 int count;
2152
2153 count = 0;
2154 lwkt_gettoken(&spechash_token);
2155 SLIST_FOREACH(vq, &vp->v_hashchain, v_specnext)
2156 count += vq->v_usecount;
2157 lwkt_reltoken(&spechash_token);
2158 return (count);
2159}
2160
2161/*
2162 * Same as above, but using the dev_t as argument
2163 */
2164
2165int
2166count_dev(dev)
2167 dev_t dev;
2168{
2169 struct vnode *vp;
2170
2171 vp = SLIST_FIRST(&dev->si_hlist);
2172 if (vp == NULL)
2173 return (0);
2174 return(vcount(vp));
2175}
2176
2177/*
2178 * Print out a description of a vnode.
2179 */
2180static char *typename[] =
2181{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2182
2183void
2184vprint(label, vp)
2185 char *label;
2186 struct vnode *vp;
2187{
2188 char buf[96];
2189
2190 if (label != NULL)
2191 printf("%s: %p: ", label, (void *)vp);
2192 else
2193 printf("%p: ", (void *)vp);
2194 printf("type %s, usecount %d, writecount %d, refcount %d,",
2195 typename[vp->v_type], vp->v_usecount, vp->v_writecount,
2196 vp->v_holdcnt);
2197 buf[0] = '\0';
2198 if (vp->v_flag & VROOT)
2199 strcat(buf, "|VROOT");
2200 if (vp->v_flag & VTEXT)
2201 strcat(buf, "|VTEXT");
2202 if (vp->v_flag & VSYSTEM)
2203 strcat(buf, "|VSYSTEM");
2204 if (vp->v_flag & VXLOCK)
2205 strcat(buf, "|VXLOCK");
2206 if (vp->v_flag & VXWANT)
2207 strcat(buf, "|VXWANT");
2208 if (vp->v_flag & VBWAIT)
2209 strcat(buf, "|VBWAIT");
2210 if (vp->v_flag & VDOOMED)
2211 strcat(buf, "|VDOOMED");
2212 if (vp->v_flag & VFREE)
2213 strcat(buf, "|VFREE");
2214 if (vp->v_flag & VOBJBUF)
2215 strcat(buf, "|VOBJBUF");
2216 if (buf[0] != '\0')
2217 printf(" flags (%s)", &buf[1]);
2218 if (vp->v_data == NULL) {
2219 printf("\n");
2220 } else {
2221 printf("\n\t");
2222 VOP_PRINT(vp);
2223 }
2224}
2225
2226#ifdef DDB
2227#include <ddb/ddb.h>
2228/*
2229 * List all of the locked vnodes in the system.
2230 * Called when debugging the kernel.
2231 */
2232DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
2233{
2234 struct thread *td = curthread; /* XXX */
2235 struct mount *mp, *nmp;
2236 struct vnode *vp;
2237
2238 printf("Locked vnodes\n");
2239 lwkt_gettoken(&mountlist_token);
2240 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2241 if (vfs_busy(mp, LK_NOWAIT, &mountlist_token, td)) {
2242 nmp = TAILQ_NEXT(mp, mnt_list);
2243 continue;
2244 }
2245 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2246 if (VOP_ISLOCKED(vp, NULL))
2247 vprint((char *)0, vp);
2248 }
2249 lwkt_gettoken(&mountlist_token);
2250 nmp = TAILQ_NEXT(mp, mnt_list);
2251 vfs_unbusy(mp, td);
2252 }
2253 lwkt_reltoken(&mountlist_token);
2254}
2255#endif
2256
2257/*
2258 * Top level filesystem related information gathering.
2259 */
2260static int sysctl_ovfs_conf __P((SYSCTL_HANDLER_ARGS));
2261
2262static int
2263vfs_sysctl(SYSCTL_HANDLER_ARGS)
2264{
2265 int *name = (int *)arg1 - 1; /* XXX */
2266 u_int namelen = arg2 + 1; /* XXX */
2267 struct vfsconf *vfsp;
2268
2269#if 1 || defined(COMPAT_PRELITE2)
2270 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2271 if (namelen == 1)
2272 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2273#endif
2274
2275#ifdef notyet
2276 /* all sysctl names at this level are at least name and field */
2277 if (namelen < 2)
2278 return (ENOTDIR); /* overloaded */
2279 if (name[0] != VFS_GENERIC) {
2280 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2281 if (vfsp->vfc_typenum == name[0])
2282 break;
2283 if (vfsp == NULL)
2284 return (EOPNOTSUPP);
2285 return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
2286 oldp, oldlenp, newp, newlen, p));
2287 }
2288#endif
2289 switch (name[1]) {
2290 case VFS_MAXTYPENUM:
2291 if (namelen != 2)
2292 return (ENOTDIR);
2293 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2294 case VFS_CONF:
2295 if (namelen != 3)
2296 return (ENOTDIR); /* overloaded */
2297 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2298 if (vfsp->vfc_typenum == name[2])
2299 break;
2300 if (vfsp == NULL)
2301 return (EOPNOTSUPP);
2302 return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
2303 }
2304 return (EOPNOTSUPP);
2305}
2306
2307SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
2308 "Generic filesystem");
2309
2310#if 1 || defined(COMPAT_PRELITE2)
2311
2312static int
2313sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2314{
2315 int error;
2316 struct vfsconf *vfsp;
2317 struct ovfsconf ovfs;
2318
2319 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2320 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
2321 strcpy(ovfs.vfc_name, vfsp->vfc_name);
2322 ovfs.vfc_index = vfsp->vfc_typenum;
2323 ovfs.vfc_refcount = vfsp->vfc_refcount;
2324 ovfs.vfc_flags = vfsp->vfc_flags;
2325 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2326 if (error)
2327 return error;
2328 }
2329 return 0;
2330}
2331
2332#endif /* 1 || COMPAT_PRELITE2 */
2333
2334#if 0
2335#define KINFO_VNODESLOP 10
2336/*
2337 * Dump vnode list (via sysctl).
2338 * Copyout address of vnode followed by vnode.
2339 */
2340/* ARGSUSED */
2341static int
2342sysctl_vnode(SYSCTL_HANDLER_ARGS)
2343{
2344 struct proc *p = curproc; /* XXX */
2345 struct mount *mp, *nmp;
2346 struct vnode *nvp, *vp;
2347 int error;
2348
2349#define VPTRSZ sizeof (struct vnode *)
2350#define VNODESZ sizeof (struct vnode)
2351
2352 req->lock = 0;
2353 if (!req->oldptr) /* Make an estimate */
2354 return (SYSCTL_OUT(req, 0,
2355 (numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
2356
2357 lwkt_gettoken(&mountlist_token);
2358 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2359 if (vfs_busy(mp, LK_NOWAIT, &mountlist_token, p)) {
2360 nmp = TAILQ_NEXT(mp, mnt_list);
2361 continue;
2362 }
2363again:
2364 lwkt_gettoken(&mntvnode_token);
2365 for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
2366 vp != NULL;
2367 vp = nvp) {
2368 /*
2369 * Check that the vp is still associated with
2370 * this filesystem. RACE: could have been
2371 * recycled onto the same filesystem.
2372 */
2373 if (vp->v_mount != mp) {
2374 lwkt_reltoken(&mntvnode_token);
2375 goto again;
2376 }
2377 nvp = TAILQ_NEXT(vp, v_nmntvnodes);
2378 lwkt_reltoken(&mntvnode_token);
2379 if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
2380 (error = SYSCTL_OUT(req, vp, VNODESZ)))
2381 return (error);
2382 lwkt_gettoken(&mntvnode_token);
2383 }
2384 lwkt_reltoken(&mntvnode_token);
2385 lwkt_gettoken(&mountlist_token);
2386 nmp = TAILQ_NEXT(mp, mnt_list);
2387 vfs_unbusy(mp, p);
2388 }
2389 lwkt_reltoken(&mountlist_token);
2390
2391 return (0);
2392}
2393#endif
2394
2395/*
2396 * XXX
2397 * Exporting the vnode list on large systems causes them to crash.
2398 * Exporting the vnode list on medium systems causes sysctl to coredump.
2399 */
2400#if 0
2401SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2402 0, 0, sysctl_vnode, "S,vnode", "");
2403#endif
2404
2405/*
2406 * Check to see if a filesystem is mounted on a block device.
2407 */
2408int
2409vfs_mountedon(vp)
2410 struct vnode *vp;
2411{
2412
2413 if (vp->v_specmountpoint != NULL)
2414 return (EBUSY);
2415 return (0);
2416}
2417
2418/*
2419 * Unmount all filesystems. The list is traversed in reverse order
2420 * of mounting to avoid dependencies.
2421 */
2422void
2423vfs_unmountall()
2424{
2425 struct mount *mp;
2426 struct thread *td = curthread;
2427 int error;
2428
2429 if (td->td_proc == NULL)
2430 td = initproc->p_thread; /* XXX XXX use proc0 instead? */
2431
2432 /*
2433 * Since this only runs when rebooting, it is not interlocked.
2434 */
2435 while(!TAILQ_EMPTY(&mountlist)) {
2436 mp = TAILQ_LAST(&mountlist, mntlist);
2437 error = dounmount(mp, MNT_FORCE, td);
2438 if (error) {
2439 TAILQ_REMOVE(&mountlist, mp, mnt_list);
2440 printf("unmount of %s failed (",
2441 mp->mnt_stat.f_mntonname);
2442 if (error == EBUSY)
2443 printf("BUSY)\n");
2444 else
2445 printf("%d)\n", error);
2446 } else {
2447 /* The unmount has removed mp from the mountlist */
2448 }
2449 }
2450}
2451
2452/*
2453 * Build hash lists of net addresses and hang them off the mount point.
2454 * Called by ufs_mount() to set up the lists of export addresses.
2455 */
2456static int
2457vfs_hang_addrlist(mp, nep, argp)
2458 struct mount *mp;
2459 struct netexport *nep;
2460 struct export_args *argp;
2461{
2462 struct netcred *np;
2463 struct radix_node_head *rnh;
2464 int i;
2465 struct radix_node *rn;
2466 struct sockaddr *saddr, *smask = 0;
2467 struct domain *dom;
2468 int error;
2469
2470 if (argp->ex_addrlen == 0) {
2471 if (mp->mnt_flag & MNT_DEFEXPORTED)
2472 return (EPERM);
2473 np = &nep->ne_defexported;
2474 np->netc_exflags = argp->ex_flags;
2475 np->netc_anon = argp->ex_anon;
2476 np->netc_anon.cr_ref = 1;
2477 mp->mnt_flag |= MNT_DEFEXPORTED;
2478 return (0);
2479 }
2480
2481 if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
2482 return (EINVAL);
2483 if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
2484 return (EINVAL);
2485
2486 i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2487 np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
2488 bzero((caddr_t) np, i);
2489 saddr = (struct sockaddr *) (np + 1);
2490 if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2491 goto out;
2492 if (saddr->sa_len > argp->ex_addrlen)
2493 saddr->sa_len = argp->ex_addrlen;
2494 if (argp->ex_masklen) {
2495 smask = (struct sockaddr *) ((caddr_t) saddr + argp->ex_addrlen);
2496 error = copyin(argp->ex_mask, (caddr_t) smask, argp->ex_masklen);
2497 if (error)
2498 goto out;
2499 if (smask->sa_len > argp->ex_masklen)
2500 smask->sa_len = argp->ex_masklen;
2501 }
2502 i = saddr->sa_family;
2503 if ((rnh = nep->ne_rtable[i]) == 0) {
2504 /*
2505 * Seems silly to initialize every AF when most are not used,
2506 * do so on demand here
2507 */
2508 for (dom = domains; dom; dom = dom->dom_next)
2509 if (dom->dom_family == i && dom->dom_rtattach) {
2510 dom->dom_rtattach((void **) &nep->ne_rtable[i],
2511 dom->dom_rtoffset);
2512 break;
2513 }
2514 if ((rnh = nep->ne_rtable[i]) == 0) {
2515 error = ENOBUFS;
2516 goto out;
2517 }
2518 }
2519 rn = (*rnh->rnh_addaddr) ((caddr_t) saddr, (caddr_t) smask, rnh,
2520 np->netc_rnodes);
2521 if (rn == 0 || np != (struct netcred *) rn) { /* already exists */
2522 error = EPERM;
2523 goto out;
2524 }
2525 np->netc_exflags = argp->ex_flags;
2526 np->netc_anon = argp->ex_anon;
2527 np->netc_anon.cr_ref = 1;
2528 return (0);
2529out:
2530 free(np, M_NETADDR);
2531 return (error);
2532}
2533
2534/* ARGSUSED */
2535static int
2536vfs_free_netcred(rn, w)
2537 struct radix_node *rn;
2538 void *w;
2539{
2540 struct radix_node_head *rnh = (struct radix_node_head *) w;
2541
2542 (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2543 free((caddr_t) rn, M_NETADDR);
2544 return (0);
2545}
2546
2547/*
2548 * Free the net address hash lists that are hanging off the mount points.
2549 */
2550static void
2551vfs_free_addrlist(nep)
2552 struct netexport *nep;
2553{
2554 int i;
2555 struct radix_node_head *rnh;
2556
2557 for (i = 0; i <= AF_MAX; i++)
2558 if ((rnh = nep->ne_rtable[i])) {
2559 (*rnh->rnh_walktree) (rnh, vfs_free_netcred,
2560 (caddr_t) rnh);
2561 free((caddr_t) rnh, M_RTABLE);
2562 nep->ne_rtable[i] = 0;
2563 }
2564}
2565
2566int
2567vfs_export(mp, nep, argp)
2568 struct mount *mp;
2569 struct netexport *nep;
2570 struct export_args *argp;
2571{
2572 int error;
2573
2574 if (argp->ex_flags & MNT_DELEXPORT) {
2575 if (mp->mnt_flag & MNT_EXPUBLIC) {
2576 vfs_setpublicfs(NULL, NULL, NULL);
2577 mp->mnt_flag &= ~MNT_EXPUBLIC;
2578 }
2579 vfs_free_addrlist(nep);
2580 mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2581 }
2582 if (argp->ex_flags & MNT_EXPORTED) {
2583 if (argp->ex_flags & MNT_EXPUBLIC) {
2584 if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2585 return (error);
2586 mp->mnt_flag |= MNT_EXPUBLIC;
2587 }
2588 if ((error = vfs_hang_addrlist(mp, nep, argp)))
2589 return (error);
2590 mp->mnt_flag |= MNT_EXPORTED;
2591 }
2592 return (0);
2593}
2594
2595
2596/*
2597 * Set the publicly exported filesystem (WebNFS). Currently, only
2598 * one public filesystem is possible in the spec (RFC 2054 and 2055)
2599 */
2600int
2601vfs_setpublicfs(mp, nep, argp)
2602 struct mount *mp;
2603 struct netexport *nep;
2604 struct export_args *argp;
2605{
2606 int error;
2607 struct vnode *rvp;
2608 char *cp;
2609
2610 /*
2611 * mp == NULL -> invalidate the current info, the FS is
2612 * no longer exported. May be called from either vfs_export
2613 * or unmount, so check if it hasn't already been done.
2614 */
2615 if (mp == NULL) {
2616 if (nfs_pub.np_valid) {
2617 nfs_pub.np_valid = 0;
2618 if (nfs_pub.np_index != NULL) {
2619 FREE(nfs_pub.np_index, M_TEMP);
2620 nfs_pub.np_index = NULL;
2621 }
2622 }
2623 return (0);
2624 }
2625
2626 /*
2627 * Only one allowed at a time.
2628 */
2629 if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2630 return (EBUSY);
2631
2632 /*
2633 * Get real filehandle for root of exported FS.
2634 */
2635 bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2636 nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2637
2638 if ((error = VFS_ROOT(mp, &rvp)))
2639 return (error);
2640
2641 if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2642 return (error);
2643
2644 vput(rvp);
2645
2646 /*
2647 * If an indexfile was specified, pull it in.
2648 */
2649 if (argp->ex_indexfile != NULL) {
2650 MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
2651 M_WAITOK);
2652 error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2653 MAXNAMLEN, (size_t *)0);
2654 if (!error) {
2655 /*
2656 * Check for illegal filenames.
2657 */
2658 for (cp = nfs_pub.np_index; *cp; cp++) {
2659 if (*cp == '/') {
2660 error = EINVAL;
2661 break;
2662 }
2663 }
2664 }
2665 if (error) {
2666 FREE(nfs_pub.np_index, M_TEMP);
2667 return (error);
2668 }
2669 }
2670
2671 nfs_pub.np_mount = mp;
2672 nfs_pub.np_valid = 1;
2673 return (0);
2674}
2675
2676struct netcred *
2677vfs_export_lookup(mp, nep, nam)
2678 struct mount *mp;
2679 struct netexport *nep;
2680 struct sockaddr *nam;
2681{
2682 struct netcred *np;
2683 struct radix_node_head *rnh;
2684 struct sockaddr *saddr;
2685
2686 np = NULL;
2687 if (mp->mnt_flag & MNT_EXPORTED) {
2688 /*
2689 * Lookup in the export list first.
2690 */
2691 if (nam != NULL) {
2692 saddr = nam;
2693 rnh = nep->ne_rtable[saddr->sa_family];
2694 if (rnh != NULL) {
2695 np = (struct netcred *)
2696 (*rnh->rnh_matchaddr)((caddr_t)saddr,
2697 rnh);
2698 if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2699 np = NULL;
2700 }
2701 }
2702 /*
2703 * If no address match, use the default if it exists.
2704 */
2705 if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2706 np = &nep->ne_defexported;
2707 }
2708 return (np);
2709}
2710
2711/*
2712 * perform msync on all vnodes under a mount point
2713 * the mount point must be locked.
2714 */
2715void
2716vfs_msync(struct mount *mp, int flags)
2717{
2718 struct thread *td = curthread; /* XXX */
2719 struct vnode *vp, *nvp;
2720 struct vm_object *obj;
2721 int tries;
2722
2723 tries = 5;
2724 lwkt_gettoken(&mntvnode_token);
2725loop:
2726 for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp != NULL; vp = nvp) {
2727 if (vp->v_mount != mp) {
2728 if (--tries > 0)
2729 goto loop;
2730 break;
2731 }
2732 nvp = TAILQ_NEXT(vp, v_nmntvnodes);
2733
2734 if (vp->v_flag & VXLOCK) /* XXX: what if MNT_WAIT? */
2735 continue;
2736
2737 /*
2738 * There could be hundreds of thousands of vnodes, we cannot
2739 * afford to do anything heavy-weight until we have a fairly
2740 * good indication that there is something to do.
2741 */
2742 if ((vp->v_flag & VOBJDIRTY) &&
2743 (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
2744 lwkt_reltoken(&mntvnode_token);
2745 if (!vget(vp,
2746 LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ, td)) {
2747 if (VOP_GETVOBJECT(vp, &obj) == 0) {
2748 vm_object_page_clean(obj, 0, 0, flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
2749 }
2750 vput(vp);
2751 }
2752 lwkt_gettoken(&mntvnode_token);
2753 if (TAILQ_NEXT(vp, v_nmntvnodes) != nvp) {
2754 if (--tries > 0)
2755 goto loop;
2756 break;
2757 }
2758 }
2759 }
2760 lwkt_reltoken(&mntvnode_token);
2761}
2762
2763/*
2764 * Create the VM object needed for VMIO and mmap support. This
2765 * is done for all VREG files in the system. Some filesystems might
2766 * afford the additional metadata buffering capability of the
2767 * VMIO code by making the device node be VMIO mode also.
2768 *
2769 * vp must be locked when vfs_object_create is called.
2770 */
2771int
2772vfs_object_create(struct vnode *vp, struct thread *td)
2773{
2774 return (VOP_CREATEVOBJECT(vp, td));
2775}
2776
2777void
2778vfree(vp)
2779 struct vnode *vp;
2780{
2781 int s;
2782
2783 s = splbio();
2784 lwkt_gettoken(&vnode_free_list_token);
2785 KASSERT((vp->v_flag & VFREE) == 0, ("vnode already free"));
2786 if (vp->v_flag & VAGE) {
2787 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2788 } else {
2789 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2790 }
2791 freevnodes++;
2792 lwkt_reltoken(&vnode_free_list_token);
2793 vp->v_flag &= ~VAGE;
2794 vp->v_flag |= VFREE;
2795 splx(s);
2796}
2797
2798void
2799vbusy(vp)
2800 struct vnode *vp;
2801{
2802 int s;
2803
2804 s = splbio();
2805 lwkt_gettoken(&vnode_free_list_token);
2806 KASSERT((vp->v_flag & VFREE) != 0, ("vnode not free"));
2807 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2808 freevnodes--;
2809 lwkt_reltoken(&vnode_free_list_token);
2810 vp->v_flag &= ~(VFREE|VAGE);
2811 splx(s);
2812}
2813
2814/*
2815 * Record a process's interest in events which might happen to
2816 * a vnode. Because poll uses the historic select-style interface
2817 * internally, this routine serves as both the ``check for any
2818 * pending events'' and the ``record my interest in future events''
2819 * functions. (These are done together, while the lock is held,
2820 * to avoid race conditions.)
2821 */
2822int
2823vn_pollrecord(struct vnode *vp, struct thread *td, int events)
2824{
2825 lwkt_gettoken(&vp->v_pollinfo.vpi_token);
2826 if (vp->v_pollinfo.vpi_revents & events) {
2827 /*
2828 * This leaves events we are not interested
2829 * in available for the other process which
2830 * which presumably had requested them
2831 * (otherwise they would never have been
2832 * recorded).
2833 */
2834 events &= vp->v_pollinfo.vpi_revents;
2835 vp->v_pollinfo.vpi_revents &= ~events;
2836
2837 lwkt_reltoken(&vp->v_pollinfo.vpi_token);
2838 return events;
2839 }
2840 vp->v_pollinfo.vpi_events |= events;
2841 selrecord(td, &vp->v_pollinfo.vpi_selinfo);
2842 lwkt_reltoken(&vp->v_pollinfo.vpi_token);
2843 return 0;
2844}
2845
2846/*
2847 * Note the occurrence of an event. If the VN_POLLEVENT macro is used,
2848 * it is possible for us to miss an event due to race conditions, but
2849 * that condition is expected to be rare, so for the moment it is the
2850 * preferred interface.
2851 */
2852void
2853vn_pollevent(vp, events)
2854 struct vnode *vp;
2855 short events;
2856{
2857 lwkt_gettoken(&vp->v_pollinfo.vpi_token);
2858 if (vp->v_pollinfo.vpi_events & events) {
2859 /*
2860 * We clear vpi_events so that we don't
2861 * call selwakeup() twice if two events are
2862 * posted before the polling process(es) is
2863 * awakened. This also ensures that we take at
2864 * most one selwakeup() if the polling process
2865 * is no longer interested. However, it does
2866 * mean that only one event can be noticed at
2867 * a time. (Perhaps we should only clear those
2868 * event bits which we note?) XXX
2869 */
2870 vp->v_pollinfo.vpi_events = 0; /* &= ~events ??? */
2871 vp->v_pollinfo.vpi_revents |= events;
2872 selwakeup(&vp->v_pollinfo.vpi_selinfo);
2873 }
2874 lwkt_reltoken(&vp->v_pollinfo.vpi_token);
2875}
2876
2877/*
2878 * Wake up anyone polling on vp because it is being revoked.
2879 * This depends on dead_poll() returning POLLHUP for correct
2880 * behavior.
2881 */
2882void
2883vn_pollgone(vp)
2884 struct vnode *vp;
2885{
2886 lwkt_gettoken(&vp->v_pollinfo.vpi_token);
2887 if (vp->v_pollinfo.vpi_events) {
2888 vp->v_pollinfo.vpi_events = 0;
2889 selwakeup(&vp->v_pollinfo.vpi_selinfo);
2890 }
2891 lwkt_reltoken(&vp->v_pollinfo.vpi_token);
2892}
2893
2894
2895
2896/*
2897 * Routine to create and manage a filesystem syncer vnode.
2898 */
2899#define sync_close ((int (*) __P((struct vop_close_args *)))nullop)
2900static int sync_fsync __P((struct vop_fsync_args *));
2901static int sync_inactive __P((struct vop_inactive_args *));
2902static int sync_reclaim __P((struct vop_reclaim_args *));
2903#define sync_lock ((int (*) __P((struct vop_lock_args *)))vop_nolock)
2904#define sync_unlock ((int (*) __P((struct vop_unlock_args *)))vop_nounlock)
2905static int sync_print __P((struct vop_print_args *));
2906#define sync_islocked ((int(*) __P((struct vop_islocked_args *)))vop_noislocked)
2907
2908static vop_t **sync_vnodeop_p;
2909static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
2910 { &vop_default_desc, (vop_t *) vop_eopnotsupp },
2911 { &vop_close_desc, (vop_t *) sync_close }, /* close */
2912 { &vop_fsync_desc, (vop_t *) sync_fsync }, /* fsync */
2913 { &vop_inactive_desc, (vop_t *) sync_inactive }, /* inactive */
2914 { &vop_reclaim_desc, (vop_t *) sync_reclaim }, /* reclaim */
2915 { &vop_lock_desc, (vop_t *) sync_lock }, /* lock */
2916 { &vop_unlock_desc, (vop_t *) sync_unlock }, /* unlock */
2917 { &vop_print_desc, (vop_t *) sync_print }, /* print */
2918 { &vop_islocked_desc, (vop_t *) sync_islocked }, /* islocked */
2919 { NULL, NULL }
2920};
2921static struct vnodeopv_desc sync_vnodeop_opv_desc =
2922 { &sync_vnodeop_p, sync_vnodeop_entries };
2923
2924VNODEOP_SET(sync_vnodeop_opv_desc);
2925
2926/*
2927 * Create a new filesystem syncer vnode for the specified mount point.
2928 */
2929int
2930vfs_allocate_syncvnode(mp)
2931 struct mount *mp;
2932{
2933 struct vnode *vp;
2934 static long start, incr, next;
2935 int error;
2936
2937 /* Allocate a new vnode */
2938 if ((error = getnewvnode(VT_VFS, mp, sync_vnodeop_p, &vp)) != 0) {
2939 mp->mnt_syncer = NULL;
2940 return (error);
2941 }
2942 vp->v_type = VNON;
2943 /*
2944 * Place the vnode onto the syncer worklist. We attempt to
2945 * scatter them about on the list so that they will go off
2946 * at evenly distributed times even if all the filesystems
2947 * are mounted at once.
2948 */
2949 next += incr;
2950 if (next == 0 || next > syncer_maxdelay) {
2951 start /= 2;
2952 incr /= 2;
2953 if (start == 0) {
2954 start = syncer_maxdelay / 2;
2955 incr = syncer_maxdelay;
2956 }
2957 next = start;
2958 }
2959 vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
2960 mp->mnt_syncer = vp;
2961 return (0);
2962}
2963
2964/*
2965 * Do a lazy sync of the filesystem.
2966 */
2967static int
2968sync_fsync(ap)
2969 struct vop_fsync_args /* {
2970 struct vnode *a_vp;
2971 struct ucred *a_cred;
2972 int a_waitfor;
2973 struct thread *a_td;
2974 } */ *ap;
2975{
2976 struct vnode *syncvp = ap->a_vp;
2977 struct mount *mp = syncvp->v_mount;
2978 struct thread *td = ap->a_td;
2979 int asyncflag;
2980
2981 /*
2982 * We only need to do something if this is a lazy evaluation.
2983 */
2984 if (ap->a_waitfor != MNT_LAZY)
2985 return (0);
2986
2987 /*
2988 * Move ourselves to the back of the sync list.
2989 */
2990 vn_syncer_add_to_worklist(syncvp, syncdelay);
2991
2992 /*
2993 * Walk the list of vnodes pushing all that are dirty and
2994 * not already on the sync list.
2995 */
2996 lwkt_gettoken(&mountlist_token);
2997 if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_token, td) != 0) {
2998 lwkt_reltoken(&mountlist_token);
2999 return (0);
3000 }
3001 asyncflag = mp->mnt_flag & MNT_ASYNC;
3002 mp->mnt_flag &= ~MNT_ASYNC;
3003 vfs_msync(mp, MNT_NOWAIT);
3004 VFS_SYNC(mp, MNT_LAZY, td);
3005 if (asyncflag)
3006 mp->mnt_flag |= MNT_ASYNC;
3007 vfs_unbusy(mp, td);
3008 return (0);
3009}
3010
3011/*
3012 * The syncer vnode is no referenced.
3013 */
3014static int
3015sync_inactive(ap)
3016 struct vop_inactive_args /* {
3017 struct vnode *a_vp;
3018 struct proc *a_p;
3019 } */ *ap;
3020{
3021
3022 vgone(ap->a_vp);
3023 return (0);
3024}
3025
3026/*
3027 * The syncer vnode is no longer needed and is being decommissioned.
3028 *
3029 * Modifications to the worklist must be protected at splbio().
3030 */
3031static int
3032sync_reclaim(ap)
3033 struct vop_reclaim_args /* {
3034 struct vnode *a_vp;
3035 } */ *ap;
3036{
3037 struct vnode *vp = ap->a_vp;
3038 int s;
3039
3040 s = splbio();
3041 vp->v_mount->mnt_syncer = NULL;
3042 if (vp->v_flag & VONWORKLST) {
3043 LIST_REMOVE(vp, v_synclist);
3044 vp->v_flag &= ~VONWORKLST;
3045 }
3046 splx(s);
3047
3048 return (0);
3049}
3050
3051/*
3052 * Print out a syncer vnode.
3053 */
3054static int
3055sync_print(ap)
3056 struct vop_print_args /* {
3057 struct vnode *a_vp;
3058 } */ *ap;
3059{
3060 struct vnode *vp = ap->a_vp;
3061
3062 printf("syncer vnode");
3063 if (vp->v_vnlock != NULL)
3064 lockmgr_printinfo(vp->v_vnlock);
3065 printf("\n");
3066 return (0);
3067}
3068
3069/*
3070 * extract the dev_t from a VBLK or VCHR
3071 */
3072dev_t
3073vn_todev(vp)
3074 struct vnode *vp;
3075{
3076 if (vp->v_type != VBLK && vp->v_type != VCHR)
3077 return (NODEV);
3078 return (vp->v_rdev);
3079}
3080
3081/*
3082 * Check if vnode represents a disk device
3083 */
3084int
3085vn_isdisk(vp, errp)
3086 struct vnode *vp;
3087 int *errp;
3088{
3089 if (vp->v_type != VBLK && vp->v_type != VCHR) {
3090 if (errp != NULL)
3091 *errp = ENOTBLK;
3092 return (0);
3093 }
3094 if (vp->v_rdev == NULL) {
3095 if (errp != NULL)
3096 *errp = ENXIO;
3097 return (0);
3098 }
3099 if (!dev_dport(vp->v_rdev)) {
3100 if (errp != NULL)
3101 *errp = ENXIO;
3102 return (0);
3103 }
3104 if (!(dev_dflags(vp->v_rdev) & D_DISK)) {
3105 if (errp != NULL)
3106 *errp = ENOTBLK;
3107 return (0);
3108 }
3109 if (errp != NULL)
3110 *errp = 0;
3111 return (1);
3112}
3113
3114void
3115NDFREE(ndp, flags)
3116 struct nameidata *ndp;
3117 const uint flags;
3118{
3119 if (!(flags & NDF_NO_FREE_PNBUF) &&
3120 (ndp->ni_cnd.cn_flags & HASBUF)) {
3121 zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
3122 ndp->ni_cnd.cn_flags &= ~HASBUF;
3123 }
3124 if (!(flags & NDF_NO_DVP_UNLOCK) &&
3125 (ndp->ni_cnd.cn_flags & LOCKPARENT) &&
3126 ndp->ni_dvp != ndp->ni_vp)
3127 VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_td);
3128 if (!(flags & NDF_NO_DVP_RELE) &&
3129 (ndp->ni_cnd.cn_flags & (LOCKPARENT|WANTPARENT))) {
3130 vrele(ndp->ni_dvp);
3131 ndp->ni_dvp = NULL;
3132 }
3133 if (!(flags & NDF_NO_VP_UNLOCK) &&
3134 (ndp->ni_cnd.cn_flags & LOCKLEAF) && ndp->ni_vp)
3135 VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_td);
3136 if (!(flags & NDF_NO_VP_RELE) &&
3137 ndp->ni_vp) {
3138 vrele(ndp->ni_vp);
3139 ndp->ni_vp = NULL;
3140 }
3141 if (!(flags & NDF_NO_STARTDIR_RELE) &&
3142 (ndp->ni_cnd.cn_flags & SAVESTART)) {
3143 vrele(ndp->ni_startdir);
3144 ndp->ni_startdir = NULL;
3145 }
3146}