rtld: Add a special case in do_dlsym() for TLS stored symbols.
[dragonfly.git] / libexec / rtld-elf / rtld.c
... / ...
CommitLineData
1/*-
2 * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3 * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4 * Copyright 2009, 2010, 2011 Konstantin Belousov <kib@FreeBSD.ORG>.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * $FreeBSD: src/libexec/rtld-elf/rtld.c,v 1.173 2011/02/09 09:20:27 kib Exp $
28 */
29
30/*
31 * Dynamic linker for ELF.
32 *
33 * John Polstra <jdp@polstra.com>.
34 */
35
36#ifndef __GNUC__
37#error "GCC is needed to compile this file"
38#endif
39
40#include <sys/param.h>
41#include <sys/mount.h>
42#include <sys/mman.h>
43#include <sys/stat.h>
44#include <sys/uio.h>
45#include <sys/utsname.h>
46#include <sys/ktrace.h>
47#include <sys/resident.h>
48#include <sys/tls.h>
49
50#include <machine/tls.h>
51
52#include <dlfcn.h>
53#include <err.h>
54#include <errno.h>
55#include <fcntl.h>
56#include <stdarg.h>
57#include <stdio.h>
58#include <stdlib.h>
59#include <string.h>
60#include <unistd.h>
61
62#include "debug.h"
63#include "rtld.h"
64#include "libmap.h"
65
66#define PATH_RTLD "/usr/libexec/ld-elf.so.2"
67#define LD_ARY_CACHE 16
68
69/* Types. */
70typedef void (*func_ptr_type)();
71typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
72
73/*
74 * This structure provides a reentrant way to keep a list of objects and
75 * check which ones have already been processed in some way.
76 */
77typedef struct Struct_DoneList {
78 const Obj_Entry **objs; /* Array of object pointers */
79 unsigned int num_alloc; /* Allocated size of the array */
80 unsigned int num_used; /* Number of array slots used */
81} DoneList;
82
83/*
84 * Function declarations.
85 */
86static const char *_getenv_ld(const char *id);
87static void die(void) __dead2;
88static void digest_dynamic(Obj_Entry *, int);
89static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
90static Obj_Entry *dlcheck(void *);
91static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
92static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
93static bool donelist_check(DoneList *, const Obj_Entry *);
94static void errmsg_restore(char *);
95static char *errmsg_save(void);
96static void *fill_search_info(const char *, size_t, void *);
97static char *find_library(const char *, const Obj_Entry *);
98static const char *gethints(void);
99static void init_dag(Obj_Entry *);
100static void init_dag1(Obj_Entry *, Obj_Entry *, DoneList *);
101static void init_rtld(caddr_t);
102static void initlist_add_neededs(Needed_Entry *, Objlist *);
103static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
104static bool is_exported(const Elf_Sym *);
105static void linkmap_add(Obj_Entry *);
106static void linkmap_delete(Obj_Entry *);
107static int load_needed_objects(Obj_Entry *, int);
108static int load_preload_objects(void);
109static Obj_Entry *load_object(const char *, const Obj_Entry *, int);
110static Obj_Entry *obj_from_addr(const void *);
111static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
112static void objlist_call_init(Objlist *, RtldLockState *);
113static void objlist_clear(Objlist *);
114static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
115static void objlist_init(Objlist *);
116static void objlist_push_head(Objlist *, Obj_Entry *);
117static void objlist_push_tail(Objlist *, Obj_Entry *);
118static void objlist_remove(Objlist *, Obj_Entry *);
119static void *path_enumerate(const char *, path_enum_proc, void *);
120static int relocate_objects(Obj_Entry *, bool, Obj_Entry *);
121static int rtld_dirname(const char *, char *);
122static int rtld_dirname_abs(const char *, char *);
123static void rtld_exit(void);
124static char *search_library_path(const char *, const char *);
125static const void **get_program_var_addr(const char *);
126static void set_program_var(const char *, const void *);
127static const Elf_Sym *symlook_default(const char *, unsigned long,
128 const Obj_Entry *, const Obj_Entry **, const Ver_Entry *, int);
129static const Elf_Sym *symlook_list(const char *, unsigned long, const Objlist *,
130 const Obj_Entry **, const Ver_Entry *, int, DoneList *);
131static const Elf_Sym *symlook_needed(const char *, unsigned long,
132 const Needed_Entry *, const Obj_Entry **, const Ver_Entry *,
133 int, DoneList *);
134static void trace_loaded_objects(Obj_Entry *);
135static void unlink_object(Obj_Entry *);
136static void unload_object(Obj_Entry *);
137static void unref_dag(Obj_Entry *);
138static void ref_dag(Obj_Entry *);
139static int origin_subst_one(char **, const char *, const char *,
140 const char *, char *);
141static char *origin_subst(const char *, const char *);
142static int rtld_verify_versions(const Objlist *);
143static int rtld_verify_object_versions(Obj_Entry *);
144static void object_add_name(Obj_Entry *, const char *);
145static int object_match_name(const Obj_Entry *, const char *);
146static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
147static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
148 struct dl_phdr_info *phdr_info);
149
150void r_debug_state(struct r_debug *, struct link_map *) __noinline;
151
152/*
153 * Data declarations.
154 */
155static char *error_message; /* Message for dlerror(), or NULL */
156struct r_debug r_debug; /* for GDB; */
157static bool libmap_disable; /* Disable libmap */
158static char *libmap_override; /* Maps to use in addition to libmap.conf */
159static bool trust; /* False for setuid and setgid programs */
160static bool dangerous_ld_env; /* True if environment variables have been
161 used to affect the libraries loaded */
162static const char *ld_bind_now; /* Environment variable for immediate binding */
163static const char *ld_debug; /* Environment variable for debugging */
164static const char *ld_library_path; /* Environment variable for search path */
165static char *ld_preload; /* Environment variable for libraries to
166 load first */
167static const char *ld_elf_hints_path; /* Environment variable for alternative hints path */
168static const char *ld_tracing; /* Called from ldd(1) to print libs */
169 /* Optional function call tracing hook */
170static const char *ld_utrace; /* Use utrace() to log events. */
171static int (*rtld_functrace)(const char *caller_obj,
172 const char *callee_obj,
173 const char *callee_func,
174 void *stack);
175static Obj_Entry *rtld_functrace_obj; /* Object thereof */
176static Obj_Entry *obj_list; /* Head of linked list of shared objects */
177static Obj_Entry **obj_tail; /* Link field of last object in list */
178static Obj_Entry **preload_tail;
179static Obj_Entry *obj_main; /* The main program shared object */
180static Obj_Entry obj_rtld; /* The dynamic linker shared object */
181static unsigned int obj_count; /* Number of objects in obj_list */
182static unsigned int obj_loads; /* Number of objects in obj_list */
183
184static int ld_resident; /* Non-zero if resident */
185static const char *ld_ary[LD_ARY_CACHE];
186static int ld_index;
187static Objlist initlist;
188
189static Objlist list_global = /* Objects dlopened with RTLD_GLOBAL */
190 STAILQ_HEAD_INITIALIZER(list_global);
191static Objlist list_main = /* Objects loaded at program startup */
192 STAILQ_HEAD_INITIALIZER(list_main);
193static Objlist list_fini = /* Objects needing fini() calls */
194 STAILQ_HEAD_INITIALIZER(list_fini);
195
196static Elf_Sym sym_zero; /* For resolving undefined weak refs. */
197
198#define GDB_STATE(s,m) r_debug.r_state = s; r_debug_state(&r_debug,m);
199
200extern Elf_Dyn _DYNAMIC;
201#pragma weak _DYNAMIC
202#ifndef RTLD_IS_DYNAMIC
203#define RTLD_IS_DYNAMIC() (&_DYNAMIC != NULL)
204#endif
205
206/*
207 * These are the functions the dynamic linker exports to application
208 * programs. They are the only symbols the dynamic linker is willing
209 * to export from itself.
210 */
211static func_ptr_type exports[] = {
212 (func_ptr_type) &_rtld_error,
213 (func_ptr_type) &dlclose,
214 (func_ptr_type) &dlerror,
215 (func_ptr_type) &dlopen,
216 (func_ptr_type) &dlfunc,
217 (func_ptr_type) &dlsym,
218 (func_ptr_type) &dlvsym,
219 (func_ptr_type) &dladdr,
220 (func_ptr_type) &dlinfo,
221 (func_ptr_type) &dl_iterate_phdr,
222#ifdef __i386__
223 (func_ptr_type) &___tls_get_addr,
224#endif
225 (func_ptr_type) &__tls_get_addr,
226 (func_ptr_type) &__tls_get_addr_tcb,
227 (func_ptr_type) &_rtld_allocate_tls,
228 (func_ptr_type) &_rtld_free_tls,
229 (func_ptr_type) &_rtld_call_init,
230 (func_ptr_type) &_rtld_thread_init,
231 (func_ptr_type) &_rtld_addr_phdr,
232 NULL
233};
234
235/*
236 * Global declarations normally provided by crt1. The dynamic linker is
237 * not built with crt1, so we have to provide them ourselves.
238 */
239char *__progname;
240char **environ;
241
242/*
243 * Globals to control TLS allocation.
244 */
245size_t tls_last_offset; /* Static TLS offset of last module */
246size_t tls_last_size; /* Static TLS size of last module */
247size_t tls_static_space; /* Static TLS space allocated */
248int tls_dtv_generation = 1; /* Used to detect when dtv size changes */
249int tls_max_index = 1; /* Largest module index allocated */
250
251/*
252 * Fill in a DoneList with an allocation large enough to hold all of
253 * the currently-loaded objects. Keep this as a macro since it calls
254 * alloca and we want that to occur within the scope of the caller.
255 */
256#define donelist_init(dlp) \
257 ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]), \
258 assert((dlp)->objs != NULL), \
259 (dlp)->num_alloc = obj_count, \
260 (dlp)->num_used = 0)
261
262#define UTRACE_DLOPEN_START 1
263#define UTRACE_DLOPEN_STOP 2
264#define UTRACE_DLCLOSE_START 3
265#define UTRACE_DLCLOSE_STOP 4
266#define UTRACE_LOAD_OBJECT 5
267#define UTRACE_UNLOAD_OBJECT 6
268#define UTRACE_ADD_RUNDEP 7
269#define UTRACE_PRELOAD_FINISHED 8
270#define UTRACE_INIT_CALL 9
271#define UTRACE_FINI_CALL 10
272
273struct utrace_rtld {
274 char sig[4]; /* 'RTLD' */
275 int event;
276 void *handle;
277 void *mapbase; /* Used for 'parent' and 'init/fini' */
278 size_t mapsize;
279 int refcnt; /* Used for 'mode' */
280 char name[MAXPATHLEN];
281};
282
283#define LD_UTRACE(e, h, mb, ms, r, n) do { \
284 if (ld_utrace != NULL) \
285 ld_utrace_log(e, h, mb, ms, r, n); \
286} while (0)
287
288static void
289ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
290 int refcnt, const char *name)
291{
292 struct utrace_rtld ut;
293
294 ut.sig[0] = 'R';
295 ut.sig[1] = 'T';
296 ut.sig[2] = 'L';
297 ut.sig[3] = 'D';
298 ut.event = event;
299 ut.handle = handle;
300 ut.mapbase = mapbase;
301 ut.mapsize = mapsize;
302 ut.refcnt = refcnt;
303 bzero(ut.name, sizeof(ut.name));
304 if (name)
305 strlcpy(ut.name, name, sizeof(ut.name));
306 utrace(&ut, sizeof(ut));
307}
308
309/*
310 * Main entry point for dynamic linking. The first argument is the
311 * stack pointer. The stack is expected to be laid out as described
312 * in the SVR4 ABI specification, Intel 386 Processor Supplement.
313 * Specifically, the stack pointer points to a word containing
314 * ARGC. Following that in the stack is a null-terminated sequence
315 * of pointers to argument strings. Then comes a null-terminated
316 * sequence of pointers to environment strings. Finally, there is a
317 * sequence of "auxiliary vector" entries.
318 *
319 * The second argument points to a place to store the dynamic linker's
320 * exit procedure pointer and the third to a place to store the main
321 * program's object.
322 *
323 * The return value is the main program's entry point.
324 */
325func_ptr_type
326_rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
327{
328 Elf_Auxinfo *aux_info[AT_COUNT];
329 int i;
330 int argc;
331 char **argv;
332 char **env;
333 Elf_Auxinfo *aux;
334 Elf_Auxinfo *auxp;
335 const char *argv0;
336 Objlist_Entry *entry;
337 Obj_Entry *obj;
338
339 /* marino: DO NOT MOVE THESE VARIABLES TO _rtld
340 Obj_Entry **preload_tail;
341 Objlist initlist;
342 from global to here. It will break the DRAWF2 unwind scheme.
343 The system compilers were unaffected, but not gcc 4.6
344 */
345
346 /*
347 * On entry, the dynamic linker itself has not been relocated yet.
348 * Be very careful not to reference any global data until after
349 * init_rtld has returned. It is OK to reference file-scope statics
350 * and string constants, and to call static and global functions.
351 */
352
353 /* Find the auxiliary vector on the stack. */
354 argc = *sp++;
355 argv = (char **) sp;
356 sp += argc + 1; /* Skip over arguments and NULL terminator */
357 env = (char **) sp;
358
359 /*
360 * If we aren't already resident we have to dig out some more info.
361 * Note that auxinfo does not exist when we are resident.
362 *
363 * I'm not sure about the ld_resident check. It seems to read zero
364 * prior to relocation, which is what we want. When running from a
365 * resident copy everything will be relocated so we are definitely
366 * good there.
367 */
368 if (ld_resident == 0) {
369 while (*sp++ != 0) /* Skip over environment, and NULL terminator */
370 ;
371 aux = (Elf_Auxinfo *) sp;
372
373 /* Digest the auxiliary vector. */
374 for (i = 0; i < AT_COUNT; i++)
375 aux_info[i] = NULL;
376 for (auxp = aux; auxp->a_type != AT_NULL; auxp++) {
377 if (auxp->a_type < AT_COUNT)
378 aux_info[auxp->a_type] = auxp;
379 }
380
381 /* Initialize and relocate ourselves. */
382 assert(aux_info[AT_BASE] != NULL);
383 init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
384 }
385
386 ld_index = 0; /* don't use old env cache in case we are resident */
387 __progname = obj_rtld.path;
388 argv0 = argv[0] != NULL ? argv[0] : "(null)";
389 environ = env;
390
391 trust = !issetugid();
392
393 ld_bind_now = _getenv_ld("LD_BIND_NOW");
394 /*
395 * If the process is tainted, then we un-set the dangerous environment
396 * variables. The process will be marked as tainted until setuid(2)
397 * is called. If any child process calls setuid(2) we do not want any
398 * future processes to honor the potentially un-safe variables.
399 */
400 if (!trust) {
401 if ( unsetenv("LD_DEBUG")
402 || unsetenv("LD_PRELOAD")
403 || unsetenv("LD_LIBRARY_PATH")
404 || unsetenv("LD_ELF_HINTS_PATH")
405 || unsetenv("LD_LIBMAP")
406 || unsetenv("LD_LIBMAP_DISABLE")
407 ) {
408 _rtld_error("environment corrupt; aborting");
409 die();
410 }
411 }
412 ld_debug = _getenv_ld("LD_DEBUG");
413 ld_library_path = _getenv_ld("LD_LIBRARY_PATH");
414 ld_preload = (char *)_getenv_ld("LD_PRELOAD");
415 ld_elf_hints_path = _getenv_ld("LD_ELF_HINTS_PATH");
416 libmap_override = (char *)_getenv_ld("LD_LIBMAP");
417 libmap_disable = _getenv_ld("LD_LIBMAP_DISABLE") != NULL;
418 dangerous_ld_env = (ld_library_path != NULL)
419 || (ld_preload != NULL)
420 || (ld_elf_hints_path != NULL)
421 || (libmap_override != NULL)
422 || libmap_disable
423 ;
424 ld_tracing = _getenv_ld("LD_TRACE_LOADED_OBJECTS");
425 ld_utrace = _getenv_ld("LD_UTRACE");
426
427 if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
428 ld_elf_hints_path = _PATH_ELF_HINTS;
429
430 if (ld_debug != NULL && *ld_debug != '\0')
431 debug = 1;
432 dbg("%s is initialized, base address = %p", __progname,
433 (caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
434 dbg("RTLD dynamic = %p", obj_rtld.dynamic);
435 dbg("RTLD pltgot = %p", obj_rtld.pltgot);
436
437 dbg("initializing thread locks");
438 lockdflt_init();
439
440 /*
441 * If we are resident we can skip work that we have already done.
442 * Note that the stack is reset and there is no Elf_Auxinfo
443 * when running from a resident image, and the static globals setup
444 * between here and resident_skip will have already been setup.
445 */
446 if (ld_resident)
447 goto resident_skip1;
448
449 /*
450 * Load the main program, or process its program header if it is
451 * already loaded.
452 */
453 if (aux_info[AT_EXECFD] != NULL) { /* Load the main program. */
454 int fd = aux_info[AT_EXECFD]->a_un.a_val;
455 dbg("loading main program");
456 obj_main = map_object(fd, argv0, NULL);
457 close(fd);
458 if (obj_main == NULL)
459 die();
460 } else { /* Main program already loaded. */
461 const Elf_Phdr *phdr;
462 int phnum;
463 caddr_t entry;
464
465 dbg("processing main program's program header");
466 assert(aux_info[AT_PHDR] != NULL);
467 phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
468 assert(aux_info[AT_PHNUM] != NULL);
469 phnum = aux_info[AT_PHNUM]->a_un.a_val;
470 assert(aux_info[AT_PHENT] != NULL);
471 assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
472 assert(aux_info[AT_ENTRY] != NULL);
473 entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
474 if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
475 die();
476 }
477
478 char buf[MAXPATHLEN];
479 if (aux_info[AT_EXECPATH] != 0) {
480 char *kexecpath;
481
482 kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
483 dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
484 if (kexecpath[0] == '/')
485 obj_main->path = kexecpath;
486 else if (getcwd(buf, sizeof(buf)) == NULL ||
487 strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
488 strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
489 obj_main->path = xstrdup(argv0);
490 else
491 obj_main->path = xstrdup(buf);
492 } else {
493 char resolved[MAXPATHLEN];
494 dbg("No AT_EXECPATH");
495 if (argv0[0] == '/') {
496 if (realpath(argv0, resolved) != NULL)
497 obj_main->path = xstrdup(resolved);
498 else
499 obj_main->path = xstrdup(argv0);
500 } else {
501 if (getcwd(buf, sizeof(buf)) != NULL
502 && strlcat(buf, "/", sizeof(buf)) < sizeof(buf)
503 && strlcat(buf, argv0, sizeof (buf)) < sizeof(buf)
504 && access(buf, R_OK) == 0
505 && realpath(buf, resolved) != NULL)
506 obj_main->path = xstrdup(resolved);
507 else
508 obj_main->path = xstrdup(argv0);
509 }
510 }
511 dbg("obj_main path %s", obj_main->path);
512 obj_main->mainprog = true;
513
514 /*
515 * Get the actual dynamic linker pathname from the executable if
516 * possible. (It should always be possible.) That ensures that
517 * gdb will find the right dynamic linker even if a non-standard
518 * one is being used.
519 */
520 if (obj_main->interp != NULL &&
521 strcmp(obj_main->interp, obj_rtld.path) != 0) {
522 free(obj_rtld.path);
523 obj_rtld.path = xstrdup(obj_main->interp);
524 __progname = obj_rtld.path;
525 }
526
527 digest_dynamic(obj_main, 0);
528
529 linkmap_add(obj_main);
530 linkmap_add(&obj_rtld);
531
532 /* Link the main program into the list of objects. */
533 *obj_tail = obj_main;
534 obj_tail = &obj_main->next;
535 obj_count++;
536 obj_loads++;
537 /* Make sure we don't call the main program's init and fini functions. */
538 obj_main->init = obj_main->fini = (Elf_Addr)NULL;
539
540 /* Initialize a fake symbol for resolving undefined weak references. */
541 sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
542 sym_zero.st_shndx = SHN_UNDEF;
543 sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
544
545 if (!libmap_disable)
546 libmap_disable = (bool)lm_init(libmap_override);
547
548 dbg("loading LD_PRELOAD libraries");
549 if (load_preload_objects() == -1)
550 die();
551 preload_tail = obj_tail;
552
553 dbg("loading needed objects");
554 if (load_needed_objects(obj_main, 0) == -1)
555 die();
556
557 /* Make a list of all objects loaded at startup. */
558 for (obj = obj_list; obj != NULL; obj = obj->next) {
559 objlist_push_tail(&list_main, obj);
560 obj->refcount++;
561 }
562
563 dbg("checking for required versions");
564 if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
565 die();
566
567resident_skip1:
568
569 if (ld_tracing) { /* We're done */
570 trace_loaded_objects(obj_main);
571 exit(0);
572 }
573
574 if (ld_resident) /* XXX clean this up! */
575 goto resident_skip2;
576
577 if (_getenv_ld("LD_DUMP_REL_PRE") != NULL) {
578 dump_relocations(obj_main);
579 exit (0);
580 }
581
582 /* setup TLS for main thread */
583 dbg("initializing initial thread local storage");
584 STAILQ_FOREACH(entry, &list_main, link) {
585 /*
586 * Allocate all the initial objects out of the static TLS
587 * block even if they didn't ask for it.
588 */
589 allocate_tls_offset(entry->obj);
590 }
591
592 tls_static_space = tls_last_offset + RTLD_STATIC_TLS_EXTRA;
593
594 /*
595 * Do not try to allocate the TLS here, let libc do it itself.
596 * (crt1 for the program will call _init_tls())
597 */
598
599 if (relocate_objects(obj_main,
600 ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld) == -1)
601 die();
602
603 dbg("doing copy relocations");
604 if (do_copy_relocations(obj_main) == -1)
605 die();
606
607resident_skip2:
608
609 if (_getenv_ld("LD_RESIDENT_UNREGISTER_NOW")) {
610 if (exec_sys_unregister(-1) < 0) {
611 dbg("exec_sys_unregister failed %d\n", errno);
612 exit(errno);
613 }
614 dbg("exec_sys_unregister success\n");
615 exit(0);
616 }
617
618 if (_getenv_ld("LD_DUMP_REL_POST") != NULL) {
619 dump_relocations(obj_main);
620 exit (0);
621 }
622
623 dbg("initializing key program variables");
624 set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
625 set_program_var("environ", env);
626
627 if (_getenv_ld("LD_RESIDENT_REGISTER_NOW")) {
628 extern void resident_start(void);
629 ld_resident = 1;
630 if (exec_sys_register(resident_start) < 0) {
631 dbg("exec_sys_register failed %d\n", errno);
632 exit(errno);
633 }
634 dbg("exec_sys_register success\n");
635 exit(0);
636 }
637
638 /* Make a list of init functions to call. */
639 objlist_init(&initlist);
640 initlist_add_objects(obj_list, preload_tail, &initlist);
641
642 r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
643
644 /*
645 * Do NOT call the initlist here, give libc a chance to set up
646 * the initial TLS segment. crt1 will then call _rtld_call_init().
647 */
648
649 dbg("transferring control to program entry point = %p", obj_main->entry);
650
651 /* Return the exit procedure and the program entry point. */
652 *exit_proc = rtld_exit;
653 *objp = obj_main;
654 return (func_ptr_type) obj_main->entry;
655}
656
657/*
658 * Call the initialization list for dynamically loaded libraries.
659 * (called from crt1.c).
660 */
661void
662_rtld_call_init(void)
663{
664 RtldLockState lockstate;
665
666 wlock_acquire(rtld_bind_lock, &lockstate);
667 objlist_call_init(&initlist, &lockstate);
668 objlist_clear(&initlist);
669 lock_release(rtld_bind_lock, &lockstate);
670}
671
672Elf_Addr
673_rtld_bind(Obj_Entry *obj, Elf_Size reloff, void *stack)
674{
675 const Elf_Rel *rel;
676 const Elf_Sym *def;
677 const Obj_Entry *defobj;
678 Elf_Addr *where;
679 Elf_Addr target;
680 RtldLockState lockstate;
681 int do_reloc = 1;
682
683 rlock_acquire(rtld_bind_lock, &lockstate);
684 if (sigsetjmp(lockstate.env, 0) != 0)
685 lock_upgrade(rtld_bind_lock, &lockstate);
686 if (obj->pltrel)
687 rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
688 else
689 rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
690
691 where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
692 def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL);
693 if (def == NULL)
694 die();
695
696 target = (Elf_Addr)(defobj->relocbase + def->st_value);
697
698 dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
699 defobj->strtab + def->st_name, basename(obj->path),
700 (void *)target, basename(defobj->path));
701
702 /*
703 * If we have a function call tracing hook, and the
704 * hook would like to keep tracing this one function,
705 * prevent the relocation so we will wind up here
706 * the next time again.
707 *
708 * We don't want to functrace calls from the functracer
709 * to avoid recursive loops.
710 */
711 if (rtld_functrace != NULL && obj != rtld_functrace_obj) {
712 if (rtld_functrace(obj->path,
713 defobj->path,
714 defobj->strtab + def->st_name,
715 stack))
716 do_reloc = 0;
717 }
718
719 if (do_reloc)
720 target = reloc_jmpslot(where, target, defobj, obj, rel);
721 lock_release(rtld_bind_lock, &lockstate);
722 return target;
723}
724
725/*
726 * Error reporting function. Use it like printf. If formats the message
727 * into a buffer, and sets things up so that the next call to dlerror()
728 * will return the message.
729 */
730void
731_rtld_error(const char *fmt, ...)
732{
733 static char buf[512];
734 va_list ap;
735
736 va_start(ap, fmt);
737 vsnprintf(buf, sizeof buf, fmt, ap);
738 error_message = buf;
739 va_end(ap);
740}
741
742/*
743 * Return a dynamically-allocated copy of the current error message, if any.
744 */
745static char *
746errmsg_save(void)
747{
748 return error_message == NULL ? NULL : xstrdup(error_message);
749}
750
751/*
752 * Restore the current error message from a copy which was previously saved
753 * by errmsg_save(). The copy is freed.
754 */
755static void
756errmsg_restore(char *saved_msg)
757{
758 if (saved_msg == NULL)
759 error_message = NULL;
760 else {
761 _rtld_error("%s", saved_msg);
762 free(saved_msg);
763 }
764}
765
766const char *
767basename(const char *name)
768{
769 const char *p = strrchr(name, '/');
770 return p != NULL ? p + 1 : name;
771}
772
773static struct utsname uts;
774
775static int
776origin_subst_one(char **res, const char *real, const char *kw, const char *subst,
777 char *may_free)
778{
779 const char *p, *p1;
780 char *res1;
781 int subst_len;
782 int kw_len;
783
784 res1 = *res = NULL;
785 p = real;
786 subst_len = kw_len = 0;
787 for (;;) {
788 p1 = strstr(p, kw);
789 if (p1 != NULL) {
790 if (subst_len == 0) {
791 subst_len = strlen(subst);
792 kw_len = strlen(kw);
793 }
794 if (*res == NULL) {
795 *res = xmalloc(PATH_MAX);
796 res1 = *res;
797 }
798 if ((res1 - *res) + subst_len + (p1 - p) >= PATH_MAX) {
799 _rtld_error("Substitution of %s in %s cannot be performed",
800 kw, real);
801 if (may_free != NULL)
802 free(may_free);
803 free(res);
804 return (false);
805 }
806 memcpy(res1, p, p1 - p);
807 res1 += p1 - p;
808 memcpy(res1, subst, subst_len);
809 res1 += subst_len;
810 p = p1 + kw_len;
811 } else {
812 if (*res == NULL) {
813 if (may_free != NULL)
814 *res = may_free;
815 else
816 *res = xstrdup(real);
817 return (true);
818 }
819 *res1 = '\0';
820 if (may_free != NULL)
821 free(may_free);
822 if (strlcat(res1, p, PATH_MAX - (res1 - *res)) >= PATH_MAX) {
823 free(res);
824 return (false);
825 }
826 return (true);
827 }
828 }
829}
830
831static char *
832origin_subst(const char *real, const char *origin_path)
833{
834 char *res1, *res2, *res3, *res4;
835
836 if (uts.sysname[0] == '\0') {
837 if (uname(&uts) != 0) {
838 _rtld_error("utsname failed: %d", errno);
839 return (NULL);
840 }
841 }
842 if (!origin_subst_one(&res1, real, "$ORIGIN", origin_path, NULL) ||
843 !origin_subst_one(&res2, res1, "$OSNAME", uts.sysname, res1) ||
844 !origin_subst_one(&res3, res2, "$OSREL", uts.release, res2) ||
845 !origin_subst_one(&res4, res3, "$PLATFORM", uts.machine, res3))
846 return (NULL);
847 return (res4);
848}
849
850static void
851die(void)
852{
853 const char *msg = dlerror();
854
855 if (msg == NULL)
856 msg = "Fatal error";
857 errx(1, "%s", msg);
858}
859
860/*
861 * Process a shared object's DYNAMIC section, and save the important
862 * information in its Obj_Entry structure.
863 */
864static void
865digest_dynamic(Obj_Entry *obj, int early)
866{
867 const Elf_Dyn *dynp;
868 Needed_Entry **needed_tail = &obj->needed;
869 const Elf_Dyn *dyn_rpath = NULL;
870 const Elf_Dyn *dyn_soname = NULL;
871 int plttype = DT_REL;
872
873 obj->bind_now = false;
874 for (dynp = obj->dynamic; dynp->d_tag != DT_NULL; dynp++) {
875 switch (dynp->d_tag) {
876
877 case DT_REL:
878 obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
879 break;
880
881 case DT_RELSZ:
882 obj->relsize = dynp->d_un.d_val;
883 break;
884
885 case DT_RELENT:
886 assert(dynp->d_un.d_val == sizeof(Elf_Rel));
887 break;
888
889 case DT_JMPREL:
890 obj->pltrel = (const Elf_Rel *)
891 (obj->relocbase + dynp->d_un.d_ptr);
892 break;
893
894 case DT_PLTRELSZ:
895 obj->pltrelsize = dynp->d_un.d_val;
896 break;
897
898 case DT_RELA:
899 obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
900 break;
901
902 case DT_RELASZ:
903 obj->relasize = dynp->d_un.d_val;
904 break;
905
906 case DT_RELAENT:
907 assert(dynp->d_un.d_val == sizeof(Elf_Rela));
908 break;
909
910 case DT_PLTREL:
911 plttype = dynp->d_un.d_val;
912 assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
913 break;
914
915 case DT_SYMTAB:
916 obj->symtab = (const Elf_Sym *)
917 (obj->relocbase + dynp->d_un.d_ptr);
918 break;
919
920 case DT_SYMENT:
921 assert(dynp->d_un.d_val == sizeof(Elf_Sym));
922 break;
923
924 case DT_STRTAB:
925 obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
926 break;
927
928 case DT_STRSZ:
929 obj->strsize = dynp->d_un.d_val;
930 break;
931
932 case DT_VERNEED:
933 obj->verneed = (const Elf_Verneed *) (obj->relocbase +
934 dynp->d_un.d_val);
935 break;
936
937 case DT_VERNEEDNUM:
938 obj->verneednum = dynp->d_un.d_val;
939 break;
940
941 case DT_VERDEF:
942 obj->verdef = (const Elf_Verdef *) (obj->relocbase +
943 dynp->d_un.d_val);
944 break;
945
946 case DT_VERDEFNUM:
947 obj->verdefnum = dynp->d_un.d_val;
948 break;
949
950 case DT_VERSYM:
951 obj->versyms = (const Elf_Versym *)(obj->relocbase +
952 dynp->d_un.d_val);
953 break;
954
955 case DT_HASH:
956 {
957 const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
958 (obj->relocbase + dynp->d_un.d_ptr);
959 obj->nbuckets = hashtab[0];
960 obj->nchains = hashtab[1];
961 obj->buckets = hashtab + 2;
962 obj->chains = obj->buckets + obj->nbuckets;
963 }
964 break;
965
966 case DT_NEEDED:
967 if (!obj->rtld) {
968 Needed_Entry *nep = NEW(Needed_Entry);
969 nep->name = dynp->d_un.d_val;
970 nep->obj = NULL;
971 nep->next = NULL;
972
973 *needed_tail = nep;
974 needed_tail = &nep->next;
975 }
976 break;
977
978 case DT_PLTGOT:
979 obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
980 break;
981
982 case DT_TEXTREL:
983 obj->textrel = true;
984 break;
985
986 case DT_SYMBOLIC:
987 obj->symbolic = true;
988 break;
989
990 case DT_RPATH:
991 case DT_RUNPATH: /* XXX: process separately */
992 /*
993 * We have to wait until later to process this, because we
994 * might not have gotten the address of the string table yet.
995 */
996 dyn_rpath = dynp;
997 break;
998
999 case DT_SONAME:
1000 dyn_soname = dynp;
1001 break;
1002
1003 case DT_INIT:
1004 obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1005 break;
1006
1007 case DT_FINI:
1008 obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1009 break;
1010
1011 case DT_DEBUG:
1012 /* XXX - not implemented yet */
1013 if (!early)
1014 dbg("Filling in DT_DEBUG entry");
1015 ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1016 break;
1017
1018 case DT_FLAGS:
1019 if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1020 obj->z_origin = true;
1021 if (dynp->d_un.d_val & DF_SYMBOLIC)
1022 obj->symbolic = true;
1023 if (dynp->d_un.d_val & DF_TEXTREL)
1024 obj->textrel = true;
1025 if (dynp->d_un.d_val & DF_BIND_NOW)
1026 obj->bind_now = true;
1027 /*if (dynp->d_un.d_val & DF_STATIC_TLS)
1028 ;*/
1029 break;
1030
1031 case DT_FLAGS_1:
1032 if (dynp->d_un.d_val & DF_1_NOOPEN)
1033 obj->z_noopen = true;
1034 if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1035 obj->z_origin = true;
1036 /*if (dynp->d_un.d_val & DF_1_GLOBAL)
1037 XXX ;*/
1038 if (dynp->d_un.d_val & DF_1_BIND_NOW)
1039 obj->bind_now = true;
1040 if (dynp->d_un.d_val & DF_1_NODELETE)
1041 obj->z_nodelete = true;
1042 break;
1043
1044 default:
1045 if (!early) {
1046 dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1047 (long)dynp->d_tag);
1048 }
1049 break;
1050 }
1051 }
1052
1053 obj->traced = false;
1054
1055 if (plttype == DT_RELA) {
1056 obj->pltrela = (const Elf_Rela *) obj->pltrel;
1057 obj->pltrel = NULL;
1058 obj->pltrelasize = obj->pltrelsize;
1059 obj->pltrelsize = 0;
1060 }
1061
1062 if (obj->z_origin && obj->origin_path == NULL) {
1063 obj->origin_path = xmalloc(PATH_MAX);
1064 if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1065 die();
1066 }
1067
1068 if (dyn_rpath != NULL) {
1069 obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1070 if (obj->z_origin)
1071 obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1072 }
1073
1074 if (dyn_soname != NULL)
1075 object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1076}
1077
1078/*
1079 * Process a shared object's program header. This is used only for the
1080 * main program, when the kernel has already loaded the main program
1081 * into memory before calling the dynamic linker. It creates and
1082 * returns an Obj_Entry structure.
1083 */
1084static Obj_Entry *
1085digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1086{
1087 Obj_Entry *obj;
1088 const Elf_Phdr *phlimit = phdr + phnum;
1089 const Elf_Phdr *ph;
1090 int nsegs = 0;
1091
1092 obj = obj_new();
1093 for (ph = phdr; ph < phlimit; ph++) {
1094 if (ph->p_type != PT_PHDR)
1095 continue;
1096
1097 obj->phdr = phdr;
1098 obj->phsize = ph->p_memsz;
1099 obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1100 break;
1101 }
1102
1103 for (ph = phdr; ph < phlimit; ph++) {
1104 switch (ph->p_type) {
1105
1106 case PT_INTERP:
1107 obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1108 break;
1109
1110 case PT_LOAD:
1111 if (nsegs == 0) { /* First load segment */
1112 obj->vaddrbase = trunc_page(ph->p_vaddr);
1113 obj->mapbase = obj->vaddrbase + obj->relocbase;
1114 obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1115 obj->vaddrbase;
1116 } else { /* Last load segment */
1117 obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1118 obj->vaddrbase;
1119 }
1120 nsegs++;
1121 break;
1122
1123 case PT_DYNAMIC:
1124 obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1125 break;
1126
1127 case PT_TLS:
1128 obj->tlsindex = 1;
1129 obj->tlssize = ph->p_memsz;
1130 obj->tlsalign = ph->p_align;
1131 obj->tlsinitsize = ph->p_filesz;
1132 obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1133 break;
1134
1135 case PT_GNU_RELRO:
1136 obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1137 obj->relro_size = round_page(ph->p_memsz);
1138 break;
1139 }
1140 }
1141 if (nsegs < 1) {
1142 _rtld_error("%s: too few PT_LOAD segments", path);
1143 return NULL;
1144 }
1145
1146 obj->entry = entry;
1147 return obj;
1148}
1149
1150static Obj_Entry *
1151dlcheck(void *handle)
1152{
1153 Obj_Entry *obj;
1154
1155 for (obj = obj_list; obj != NULL; obj = obj->next)
1156 if (obj == (Obj_Entry *) handle)
1157 break;
1158
1159 if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1160 _rtld_error("Invalid shared object handle %p", handle);
1161 return NULL;
1162 }
1163 return obj;
1164}
1165
1166/*
1167 * If the given object is already in the donelist, return true. Otherwise
1168 * add the object to the list and return false.
1169 */
1170static bool
1171donelist_check(DoneList *dlp, const Obj_Entry *obj)
1172{
1173 unsigned int i;
1174
1175 for (i = 0; i < dlp->num_used; i++)
1176 if (dlp->objs[i] == obj)
1177 return true;
1178 /*
1179 * Our donelist allocation should always be sufficient. But if
1180 * our threads locking isn't working properly, more shared objects
1181 * could have been loaded since we allocated the list. That should
1182 * never happen, but we'll handle it properly just in case it does.
1183 */
1184 if (dlp->num_used < dlp->num_alloc)
1185 dlp->objs[dlp->num_used++] = obj;
1186 return false;
1187}
1188
1189/*
1190 * Hash function for symbol table lookup. Don't even think about changing
1191 * this. It is specified by the System V ABI.
1192 */
1193unsigned long
1194elf_hash(const char *name)
1195{
1196 const unsigned char *p = (const unsigned char *) name;
1197 unsigned long h = 0;
1198 unsigned long g;
1199
1200 while (*p != '\0') {
1201 h = (h << 4) + *p++;
1202 if ((g = h & 0xf0000000) != 0)
1203 h ^= g >> 24;
1204 h &= ~g;
1205 }
1206 return h;
1207}
1208
1209/*
1210 * Find the library with the given name, and return its full pathname.
1211 * The returned string is dynamically allocated. Generates an error
1212 * message and returns NULL if the library cannot be found.
1213 *
1214 * If the second argument is non-NULL, then it refers to an already-
1215 * loaded shared object, whose library search path will be searched.
1216 *
1217 * The search order is:
1218 * LD_LIBRARY_PATH
1219 * rpath in the referencing file
1220 * ldconfig hints
1221 * /usr/lib
1222 */
1223static char *
1224find_library(const char *xname, const Obj_Entry *refobj)
1225{
1226 char *pathname;
1227 char *name;
1228
1229 if (strchr(xname, '/') != NULL) { /* Hard coded pathname */
1230 if (xname[0] != '/' && !trust) {
1231 _rtld_error("Absolute pathname required for shared object \"%s\"",
1232 xname);
1233 return NULL;
1234 }
1235 if (refobj != NULL && refobj->z_origin)
1236 return origin_subst(xname, refobj->origin_path);
1237 else
1238 return xstrdup(xname);
1239 }
1240
1241 if (libmap_disable || (refobj == NULL) ||
1242 (name = lm_find(refobj->path, xname)) == NULL)
1243 name = (char *)xname;
1244
1245 dbg(" Searching for \"%s\"", name);
1246
1247 if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1248 (refobj != NULL &&
1249 (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1250 (pathname = search_library_path(name, gethints())) != NULL ||
1251 (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1252 return pathname;
1253
1254 if(refobj != NULL && refobj->path != NULL) {
1255 _rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1256 name, basename(refobj->path));
1257 } else {
1258 _rtld_error("Shared object \"%s\" not found", name);
1259 }
1260 return NULL;
1261}
1262
1263/*
1264 * Given a symbol number in a referencing object, find the corresponding
1265 * definition of the symbol. Returns a pointer to the symbol, or NULL if
1266 * no definition was found. Returns a pointer to the Obj_Entry of the
1267 * defining object via the reference parameter DEFOBJ_OUT.
1268 */
1269const Elf_Sym *
1270find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1271 const Obj_Entry **defobj_out, int flags, SymCache *cache)
1272{
1273 const Elf_Sym *ref;
1274 const Elf_Sym *def;
1275 const Obj_Entry *defobj;
1276 const Ver_Entry *ventry;
1277 const char *name;
1278 unsigned long hash;
1279
1280 /*
1281 * If we have already found this symbol, get the information from
1282 * the cache.
1283 */
1284 if (symnum >= refobj->nchains)
1285 return NULL; /* Bad object */
1286 if (cache != NULL && cache[symnum].sym != NULL) {
1287 *defobj_out = cache[symnum].obj;
1288 return cache[symnum].sym;
1289 }
1290
1291 ref = refobj->symtab + symnum;
1292 name = refobj->strtab + ref->st_name;
1293 defobj = NULL;
1294
1295 /*
1296 * We don't have to do a full scale lookup if the symbol is local.
1297 * We know it will bind to the instance in this load module; to
1298 * which we already have a pointer (ie ref). By not doing a lookup,
1299 * we not only improve performance, but it also avoids unresolvable
1300 * symbols when local symbols are not in the hash table.
1301 *
1302 * This might occur for TLS module relocations, which simply use
1303 * symbol 0.
1304 */
1305 if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1306 if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1307 _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1308 symnum);
1309 }
1310 ventry = fetch_ventry(refobj, symnum);
1311 hash = elf_hash(name);
1312 def = symlook_default(name, hash, refobj, &defobj, ventry, flags);
1313 } else {
1314 def = ref;
1315 defobj = refobj;
1316 }
1317
1318 /*
1319 * If we found no definition and the reference is weak, treat the
1320 * symbol as having the value zero.
1321 */
1322 if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1323 def = &sym_zero;
1324 defobj = obj_main;
1325 }
1326
1327 if (def != NULL) {
1328 *defobj_out = defobj;
1329 /* Record the information in the cache to avoid subsequent lookups. */
1330 if (cache != NULL) {
1331 cache[symnum].sym = def;
1332 cache[symnum].obj = defobj;
1333 }
1334 } else {
1335 if (refobj != &obj_rtld)
1336 _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1337 }
1338 return def;
1339}
1340
1341/*
1342 * Return the search path from the ldconfig hints file, reading it if
1343 * necessary. Returns NULL if there are problems with the hints file,
1344 * or if the search path there is empty.
1345 */
1346static const char *
1347gethints(void)
1348{
1349 static char *hints;
1350
1351 if (hints == NULL) {
1352 int fd;
1353 struct elfhints_hdr hdr;
1354 char *p;
1355
1356 /* Keep from trying again in case the hints file is bad. */
1357 hints = "";
1358
1359 if ((fd = open(ld_elf_hints_path, O_RDONLY)) == -1)
1360 return NULL;
1361 if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1362 hdr.magic != ELFHINTS_MAGIC ||
1363 hdr.version != 1) {
1364 close(fd);
1365 return NULL;
1366 }
1367 p = xmalloc(hdr.dirlistlen + 1);
1368 if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1369 read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1370 free(p);
1371 close(fd);
1372 return NULL;
1373 }
1374 hints = p;
1375 close(fd);
1376 }
1377 return hints[0] != '\0' ? hints : NULL;
1378}
1379
1380static void
1381init_dag(Obj_Entry *root)
1382{
1383 DoneList donelist;
1384
1385 if (root->dag_inited)
1386 return;
1387 donelist_init(&donelist);
1388 init_dag1(root, root, &donelist);
1389}
1390
1391static void
1392init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *dlp)
1393{
1394 const Needed_Entry *needed;
1395
1396 if (donelist_check(dlp, obj))
1397 return;
1398
1399 objlist_push_tail(&obj->dldags, root);
1400 objlist_push_tail(&root->dagmembers, obj);
1401 for (needed = obj->needed; needed != NULL; needed = needed->next)
1402 if (needed->obj != NULL)
1403 init_dag1(root, needed->obj, dlp);
1404 root->dag_inited = true;
1405}
1406
1407/*
1408 * Initialize the dynamic linker. The argument is the address at which
1409 * the dynamic linker has been mapped into memory. The primary task of
1410 * this function is to relocate the dynamic linker.
1411 */
1412static void
1413init_rtld(caddr_t mapbase)
1414{
1415 Obj_Entry objtmp; /* Temporary rtld object */
1416
1417 /*
1418 * Conjure up an Obj_Entry structure for the dynamic linker.
1419 *
1420 * The "path" member can't be initialized yet because string constants
1421 * cannot yet be accessed. Below we will set it correctly.
1422 */
1423 memset(&objtmp, 0, sizeof(objtmp));
1424 objtmp.path = NULL;
1425 objtmp.rtld = true;
1426 objtmp.mapbase = mapbase;
1427#ifdef PIC
1428 objtmp.relocbase = mapbase;
1429#endif
1430 if (RTLD_IS_DYNAMIC()) {
1431 objtmp.dynamic = rtld_dynamic(&objtmp);
1432 digest_dynamic(&objtmp, 1);
1433 assert(objtmp.needed == NULL);
1434 assert(!objtmp.textrel);
1435
1436 /*
1437 * Temporarily put the dynamic linker entry into the object list, so
1438 * that symbols can be found.
1439 */
1440
1441 relocate_objects(&objtmp, true, &objtmp);
1442 }
1443
1444 /* Initialize the object list. */
1445 obj_tail = &obj_list;
1446
1447 /* Now that non-local variables can be accesses, copy out obj_rtld. */
1448 memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1449
1450 /* Replace the path with a dynamically allocated copy. */
1451 obj_rtld.path = xstrdup(PATH_RTLD);
1452
1453 r_debug.r_brk = r_debug_state;
1454 r_debug.r_state = RT_CONSISTENT;
1455}
1456
1457/*
1458 * Add the init functions from a needed object list (and its recursive
1459 * needed objects) to "list". This is not used directly; it is a helper
1460 * function for initlist_add_objects(). The write lock must be held
1461 * when this function is called.
1462 */
1463static void
1464initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1465{
1466 /* Recursively process the successor needed objects. */
1467 if (needed->next != NULL)
1468 initlist_add_neededs(needed->next, list);
1469
1470 /* Process the current needed object. */
1471 if (needed->obj != NULL)
1472 initlist_add_objects(needed->obj, &needed->obj->next, list);
1473}
1474
1475/*
1476 * Scan all of the DAGs rooted in the range of objects from "obj" to
1477 * "tail" and add their init functions to "list". This recurses over
1478 * the DAGs and ensure the proper init ordering such that each object's
1479 * needed libraries are initialized before the object itself. At the
1480 * same time, this function adds the objects to the global finalization
1481 * list "list_fini" in the opposite order. The write lock must be
1482 * held when this function is called.
1483 */
1484static void
1485initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1486{
1487 if (obj->init_scanned || obj->init_done)
1488 return;
1489 obj->init_scanned = true;
1490
1491 /* Recursively process the successor objects. */
1492 if (&obj->next != tail)
1493 initlist_add_objects(obj->next, tail, list);
1494
1495 /* Recursively process the needed objects. */
1496 if (obj->needed != NULL)
1497 initlist_add_neededs(obj->needed, list);
1498
1499 /* Add the object to the init list. */
1500 if (obj->init != (Elf_Addr)NULL)
1501 objlist_push_tail(list, obj);
1502
1503 /* Add the object to the global fini list in the reverse order. */
1504 if (obj->fini != (Elf_Addr)NULL && !obj->on_fini_list) {
1505 objlist_push_head(&list_fini, obj);
1506 obj->on_fini_list = true;
1507 }
1508}
1509
1510#ifndef FPTR_TARGET
1511#define FPTR_TARGET(f) ((Elf_Addr) (f))
1512#endif
1513
1514static bool
1515is_exported(const Elf_Sym *def)
1516{
1517 Elf_Addr value;
1518 const func_ptr_type *p;
1519
1520 value = (Elf_Addr)(obj_rtld.relocbase + def->st_value);
1521 for (p = exports; *p != NULL; p++)
1522 if (FPTR_TARGET(*p) == value)
1523 return true;
1524 return false;
1525}
1526
1527/*
1528 * Given a shared object, traverse its list of needed objects, and load
1529 * each of them. Returns 0 on success. Generates an error message and
1530 * returns -1 on failure.
1531 */
1532static int
1533load_needed_objects(Obj_Entry *first, int flags)
1534{
1535 Obj_Entry *obj, *obj1;
1536
1537 for (obj = first; obj != NULL; obj = obj->next) {
1538 Needed_Entry *needed;
1539
1540 for (needed = obj->needed; needed != NULL; needed = needed->next) {
1541 obj1 = needed->obj = load_object(obj->strtab + needed->name, obj,
1542 flags & ~RTLD_LO_NOLOAD);
1543 if (obj1 == NULL && !ld_tracing)
1544 return -1;
1545 if (obj1 != NULL && obj1->z_nodelete && !obj1->ref_nodel) {
1546 dbg("obj %s nodelete", obj1->path);
1547 init_dag(obj1);
1548 ref_dag(obj1);
1549 obj1->ref_nodel = true;
1550 }
1551 }
1552 }
1553 return (0);
1554}
1555
1556#define RTLD_FUNCTRACE "_rtld_functrace"
1557
1558static int
1559load_preload_objects(void)
1560{
1561 char *p = ld_preload;
1562 static const char delim[] = " \t:;";
1563
1564 if (p == NULL)
1565 return 0;
1566
1567 p += strspn(p, delim);
1568 while (*p != '\0') {
1569 size_t len = strcspn(p, delim);
1570 char savech;
1571 Obj_Entry *obj;
1572 const Elf_Sym *sym;
1573
1574 savech = p[len];
1575 p[len] = '\0';
1576 obj = load_object(p, NULL, 0);
1577 if (obj == NULL)
1578 return -1; /* XXX - cleanup */
1579 p[len] = savech;
1580 p += len;
1581 p += strspn(p, delim);
1582
1583 /* Check for the magic tracing function */
1584 sym = symlook_obj(RTLD_FUNCTRACE, elf_hash(RTLD_FUNCTRACE), obj, NULL, 1);
1585 if (sym != NULL) {
1586 rtld_functrace = (void *)(obj->relocbase + sym->st_value);
1587 rtld_functrace_obj = obj;
1588 }
1589 }
1590 LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
1591 return 0;
1592}
1593
1594/*
1595 * Load a shared object into memory, if it is not already loaded.
1596 *
1597 * Returns a pointer to the Obj_Entry for the object. Returns NULL
1598 * on failure.
1599 */
1600static Obj_Entry *
1601load_object(const char *name, const Obj_Entry *refobj, int flags)
1602{
1603 Obj_Entry *obj;
1604 int fd = -1;
1605 struct stat sb;
1606 char *path;
1607
1608 for (obj = obj_list->next; obj != NULL; obj = obj->next)
1609 if (object_match_name(obj, name))
1610 return obj;
1611
1612 path = find_library(name, refobj);
1613 if (path == NULL)
1614 return NULL;
1615
1616 /*
1617 * If we didn't find a match by pathname, open the file and check
1618 * again by device and inode. This avoids false mismatches caused
1619 * by multiple links or ".." in pathnames.
1620 *
1621 * To avoid a race, we open the file and use fstat() rather than
1622 * using stat().
1623 */
1624 if ((fd = open(path, O_RDONLY)) == -1) {
1625 _rtld_error("Cannot open \"%s\"", path);
1626 free(path);
1627 return NULL;
1628 }
1629 if (fstat(fd, &sb) == -1) {
1630 _rtld_error("Cannot fstat \"%s\"", path);
1631 close(fd);
1632 free(path);
1633 return NULL;
1634 }
1635 for (obj = obj_list->next; obj != NULL; obj = obj->next)
1636 if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
1637 break;
1638 if (obj != NULL) {
1639 object_add_name(obj, name);
1640 free(path);
1641 close(fd);
1642 return obj;
1643 }
1644 if (flags & RTLD_LO_NOLOAD) {
1645 free(path);
1646 close(fd);
1647 return (NULL);
1648 }
1649
1650 /* First use of this object, so we must map it in */
1651 obj = do_load_object(fd, name, path, &sb, flags);
1652 if (obj == NULL)
1653 free(path);
1654 close(fd);
1655
1656 return obj;
1657}
1658
1659static Obj_Entry *
1660do_load_object(int fd, const char *name, char *path, struct stat *sbp,
1661 int flags)
1662{
1663 Obj_Entry *obj;
1664 struct statfs fs;
1665
1666 /*
1667 * but first, make sure that environment variables haven't been
1668 * used to circumvent the noexec flag on a filesystem.
1669 */
1670 if (dangerous_ld_env) {
1671 if (fstatfs(fd, &fs) != 0) {
1672 _rtld_error("Cannot fstatfs \"%s\"", path);
1673 return NULL;
1674 }
1675 if (fs.f_flags & MNT_NOEXEC) {
1676 _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
1677 return NULL;
1678 }
1679 }
1680 dbg("loading \"%s\"", path);
1681 obj = map_object(fd, path, sbp);
1682 if (obj == NULL)
1683 return NULL;
1684
1685 object_add_name(obj, name);
1686 obj->path = path;
1687 digest_dynamic(obj, 0);
1688 if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
1689 RTLD_LO_DLOPEN) {
1690 dbg("refusing to load non-loadable \"%s\"", obj->path);
1691 _rtld_error("Cannot dlopen non-loadable %s", obj->path);
1692 munmap(obj->mapbase, obj->mapsize);
1693 obj_free(obj);
1694 return (NULL);
1695 }
1696
1697 *obj_tail = obj;
1698 obj_tail = &obj->next;
1699 obj_count++;
1700 obj_loads++;
1701 linkmap_add(obj); /* for GDB & dlinfo() */
1702
1703 dbg(" %p .. %p: %s", obj->mapbase,
1704 obj->mapbase + obj->mapsize - 1, obj->path);
1705 if (obj->textrel)
1706 dbg(" WARNING: %s has impure text", obj->path);
1707 LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
1708 obj->path);
1709
1710 return obj;
1711}
1712
1713static Obj_Entry *
1714obj_from_addr(const void *addr)
1715{
1716 Obj_Entry *obj;
1717
1718 for (obj = obj_list; obj != NULL; obj = obj->next) {
1719 if (addr < (void *) obj->mapbase)
1720 continue;
1721 if (addr < (void *) (obj->mapbase + obj->mapsize))
1722 return obj;
1723 }
1724 return NULL;
1725}
1726
1727/*
1728 * Call the finalization functions for each of the objects in "list"
1729 * belonging to the DAG of "root" and referenced once. If NULL "root"
1730 * is specified, every finalization function will be called regardless
1731 * of the reference count and the list elements won't be freed. All of
1732 * the objects are expected to have non-NULL fini functions.
1733 */
1734static void
1735objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
1736{
1737 Objlist_Entry *elm;
1738 char *saved_msg;
1739
1740 assert(root == NULL || root->refcount == 1);
1741
1742 /*
1743 * Preserve the current error message since a fini function might
1744 * call into the dynamic linker and overwrite it.
1745 */
1746 saved_msg = errmsg_save();
1747 do {
1748 STAILQ_FOREACH(elm, list, link) {
1749 if (root != NULL && (elm->obj->refcount != 1 ||
1750 objlist_find(&root->dagmembers, elm->obj) == NULL))
1751 continue;
1752 dbg("calling fini function for %s at %p", elm->obj->path,
1753 (void *)elm->obj->fini);
1754 LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini, 0, 0,
1755 elm->obj->path);
1756 /* Remove object from fini list to prevent recursive invocation. */
1757 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1758 /*
1759 * XXX: If a dlopen() call references an object while the
1760 * fini function is in progress, we might end up trying to
1761 * unload the referenced object in dlclose() or the object
1762 * won't be unloaded although its fini function has been
1763 * called.
1764 */
1765 lock_release(rtld_bind_lock, lockstate);
1766 call_initfini_pointer(elm->obj, elm->obj->fini);
1767 wlock_acquire(rtld_bind_lock, lockstate);
1768 /* No need to free anything if process is going down. */
1769 if (root != NULL)
1770 free(elm);
1771 /*
1772 * We must restart the list traversal after every fini call
1773 * because a dlclose() call from the fini function or from
1774 * another thread might have modified the reference counts.
1775 */
1776 break;
1777 }
1778 } while (elm != NULL);
1779 errmsg_restore(saved_msg);
1780}
1781
1782/*
1783 * Call the initialization functions for each of the objects in
1784 * "list". All of the objects are expected to have non-NULL init
1785 * functions.
1786 */
1787static void
1788objlist_call_init(Objlist *list, RtldLockState *lockstate)
1789{
1790 Objlist_Entry *elm;
1791 Obj_Entry *obj;
1792 char *saved_msg;
1793
1794 /*
1795 * Clean init_scanned flag so that objects can be rechecked and
1796 * possibly initialized earlier if any of vectors called below
1797 * cause the change by using dlopen.
1798 */
1799 for (obj = obj_list; obj != NULL; obj = obj->next)
1800 obj->init_scanned = false;
1801
1802 /*
1803 * Preserve the current error message since an init function might
1804 * call into the dynamic linker and overwrite it.
1805 */
1806 saved_msg = errmsg_save();
1807 STAILQ_FOREACH(elm, list, link) {
1808 if (elm->obj->init_done) /* Initialized early. */
1809 continue;
1810 dbg("calling init function for %s at %p", elm->obj->path,
1811 (void *)elm->obj->init);
1812 LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init, 0, 0,
1813 elm->obj->path);
1814 /*
1815 * Race: other thread might try to use this object before current
1816 * one completes the initilization. Not much can be done here
1817 * without better locking.
1818 */
1819 elm->obj->init_done = true;
1820 lock_release(rtld_bind_lock, lockstate);
1821 call_initfini_pointer(elm->obj, elm->obj->init);
1822 wlock_acquire(rtld_bind_lock, lockstate);
1823 }
1824 errmsg_restore(saved_msg);
1825}
1826
1827static void
1828objlist_clear(Objlist *list)
1829{
1830 Objlist_Entry *elm;
1831
1832 while (!STAILQ_EMPTY(list)) {
1833 elm = STAILQ_FIRST(list);
1834 STAILQ_REMOVE_HEAD(list, link);
1835 free(elm);
1836 }
1837}
1838
1839static Objlist_Entry *
1840objlist_find(Objlist *list, const Obj_Entry *obj)
1841{
1842 Objlist_Entry *elm;
1843
1844 STAILQ_FOREACH(elm, list, link)
1845 if (elm->obj == obj)
1846 return elm;
1847 return NULL;
1848}
1849
1850static void
1851objlist_init(Objlist *list)
1852{
1853 STAILQ_INIT(list);
1854}
1855
1856static void
1857objlist_push_head(Objlist *list, Obj_Entry *obj)
1858{
1859 Objlist_Entry *elm;
1860
1861 elm = NEW(Objlist_Entry);
1862 elm->obj = obj;
1863 STAILQ_INSERT_HEAD(list, elm, link);
1864}
1865
1866static void
1867objlist_push_tail(Objlist *list, Obj_Entry *obj)
1868{
1869 Objlist_Entry *elm;
1870
1871 elm = NEW(Objlist_Entry);
1872 elm->obj = obj;
1873 STAILQ_INSERT_TAIL(list, elm, link);
1874}
1875
1876static void
1877objlist_remove(Objlist *list, Obj_Entry *obj)
1878{
1879 Objlist_Entry *elm;
1880
1881 if ((elm = objlist_find(list, obj)) != NULL) {
1882 STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1883 free(elm);
1884 }
1885}
1886
1887/*
1888 * Relocate newly-loaded shared objects. The argument is a pointer to
1889 * the Obj_Entry for the first such object. All objects from the first
1890 * to the end of the list of objects are relocated. Returns 0 on success,
1891 * or -1 on failure.
1892 */
1893static int
1894relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj)
1895{
1896 Obj_Entry *obj;
1897
1898 for (obj = first; obj != NULL; obj = obj->next) {
1899 if (obj != rtldobj)
1900 dbg("relocating \"%s\"", obj->path);
1901 if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1902 obj->symtab == NULL || obj->strtab == NULL) {
1903 _rtld_error("%s: Shared object has no run-time symbol table",
1904 obj->path);
1905 return -1;
1906 }
1907
1908 if (obj->textrel) {
1909 /* There are relocations to the write-protected text segment. */
1910 if (mprotect(obj->mapbase, obj->textsize,
1911 PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1912 _rtld_error("%s: Cannot write-enable text segment: %s",
1913 obj->path, strerror(errno));
1914 return -1;
1915 }
1916 }
1917
1918 /* Process the non-PLT relocations. */
1919 if (reloc_non_plt(obj, rtldobj))
1920 return -1;
1921
1922 /*
1923 * Reprotect the text segment. Make sure it is included in the
1924 * core dump since we modified it. This unfortunately causes the
1925 * entire text segment to core-out but we don't have much of a
1926 * choice. We could try to only reenable core dumps on pages
1927 * in which relocations occured but that is likely most of the text
1928 * pages anyway, and even that would not work because the rest of
1929 * the text pages would wind up as a read-only OBJT_DEFAULT object
1930 * (created due to our modifications) backed by the original OBJT_VNODE
1931 * object, and the ELF coredump code is currently only able to dump
1932 * vnode records for pure vnode-backed mappings, not vnode backings
1933 * to memory objects.
1934 */
1935 if (obj->textrel) {
1936 madvise(obj->mapbase, obj->textsize, MADV_CORE);
1937 if (mprotect(obj->mapbase, obj->textsize,
1938 PROT_READ|PROT_EXEC) == -1) {
1939 _rtld_error("%s: Cannot write-protect text segment: %s",
1940 obj->path, strerror(errno));
1941 return -1;
1942 }
1943 }
1944
1945 /* Process the PLT relocations. */
1946 if (reloc_plt(obj) == -1)
1947 return -1;
1948 /* Relocate the jump slots if we are doing immediate binding. */
1949 if (obj->bind_now || bind_now)
1950 if (reloc_jmpslots(obj) == -1)
1951 return -1;
1952
1953 /* Set the special PLT or GOT entries. */
1954 init_pltgot(obj);
1955
1956 /*
1957 * Set up the magic number and version in the Obj_Entry. These
1958 * were checked in the crt1.o from the original ElfKit, so we
1959 * set them for backward compatibility.
1960 */
1961 obj->magic = RTLD_MAGIC;
1962 obj->version = RTLD_VERSION;
1963
1964 /*
1965 * Set relocated data to read-only status if protection specified
1966 */
1967
1968 if (obj->relro_size) {
1969 if (mprotect(obj->relro_page, obj->relro_size, PROT_READ) == -1) {
1970 _rtld_error("%s: Cannot enforce relro relocation: %s",
1971 obj->path, strerror(errno));
1972 return -1;
1973 }
1974 }
1975 }
1976
1977 return (0);
1978}
1979
1980/*
1981 * Cleanup procedure. It will be called (by the atexit mechanism) just
1982 * before the process exits.
1983 */
1984static void
1985rtld_exit(void)
1986{
1987 RtldLockState lockstate;
1988
1989 wlock_acquire(rtld_bind_lock, &lockstate);
1990 dbg("rtld_exit()");
1991 objlist_call_fini(&list_fini, NULL, &lockstate);
1992 /* No need to remove the items from the list, since we are exiting. */
1993 if (!libmap_disable)
1994 lm_fini();
1995 lock_release(rtld_bind_lock, &lockstate);
1996}
1997
1998static void *
1999path_enumerate(const char *path, path_enum_proc callback, void *arg)
2000{
2001 if (path == NULL)
2002 return (NULL);
2003
2004 path += strspn(path, ":;");
2005 while (*path != '\0') {
2006 size_t len;
2007 char *res;
2008
2009 len = strcspn(path, ":;");
2010 res = callback(path, len, arg);
2011
2012 if (res != NULL)
2013 return (res);
2014
2015 path += len;
2016 path += strspn(path, ":;");
2017 }
2018
2019 return (NULL);
2020}
2021
2022struct try_library_args {
2023 const char *name;
2024 size_t namelen;
2025 char *buffer;
2026 size_t buflen;
2027};
2028
2029static void *
2030try_library_path(const char *dir, size_t dirlen, void *param)
2031{
2032 struct try_library_args *arg;
2033
2034 arg = param;
2035 if (*dir == '/' || trust) {
2036 char *pathname;
2037
2038 if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2039 return (NULL);
2040
2041 pathname = arg->buffer;
2042 strncpy(pathname, dir, dirlen);
2043 pathname[dirlen] = '/';
2044 strcpy(pathname + dirlen + 1, arg->name);
2045
2046 dbg(" Trying \"%s\"", pathname);
2047 if (access(pathname, F_OK) == 0) { /* We found it */
2048 pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2049 strcpy(pathname, arg->buffer);
2050 return (pathname);
2051 }
2052 }
2053 return (NULL);
2054}
2055
2056static char *
2057search_library_path(const char *name, const char *path)
2058{
2059 char *p;
2060 struct try_library_args arg;
2061
2062 if (path == NULL)
2063 return NULL;
2064
2065 arg.name = name;
2066 arg.namelen = strlen(name);
2067 arg.buffer = xmalloc(PATH_MAX);
2068 arg.buflen = PATH_MAX;
2069
2070 p = path_enumerate(path, try_library_path, &arg);
2071
2072 free(arg.buffer);
2073
2074 return (p);
2075}
2076
2077int
2078dlclose(void *handle)
2079{
2080 Obj_Entry *root;
2081 RtldLockState lockstate;
2082
2083 wlock_acquire(rtld_bind_lock, &lockstate);
2084 root = dlcheck(handle);
2085 if (root == NULL) {
2086 lock_release(rtld_bind_lock, &lockstate);
2087 return -1;
2088 }
2089 LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2090 root->path);
2091
2092 /* Unreference the object and its dependencies. */
2093 root->dl_refcount--;
2094
2095 if (root->refcount == 1) {
2096 /*
2097 * The object will be no longer referenced, so we must unload it.
2098 * First, call the fini functions.
2099 */
2100 objlist_call_fini(&list_fini, root, &lockstate);
2101
2102 unref_dag(root);
2103
2104 /* Finish cleaning up the newly-unreferenced objects. */
2105 GDB_STATE(RT_DELETE,&root->linkmap);
2106 unload_object(root);
2107 GDB_STATE(RT_CONSISTENT,NULL);
2108 } else
2109 unref_dag(root);
2110
2111 LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2112 lock_release(rtld_bind_lock, &lockstate);
2113 return 0;
2114}
2115
2116char *
2117dlerror(void)
2118{
2119 char *msg = error_message;
2120 error_message = NULL;
2121 return msg;
2122}
2123
2124void *
2125dlopen(const char *name, int mode)
2126{
2127 Obj_Entry **old_obj_tail;
2128 Obj_Entry *obj;
2129 Objlist initlist;
2130 RtldLockState lockstate;
2131 int result, lo_flags;
2132
2133 LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2134 ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2135 if (ld_tracing != NULL)
2136 environ = (char **)*get_program_var_addr("environ");
2137 lo_flags = RTLD_LO_DLOPEN;
2138 if (mode & RTLD_NODELETE)
2139 lo_flags |= RTLD_LO_NODELETE;
2140 if (mode & RTLD_NOLOAD)
2141 lo_flags |= RTLD_LO_NOLOAD;
2142 if (ld_tracing != NULL)
2143 lo_flags |= RTLD_LO_TRACE;
2144
2145 objlist_init(&initlist);
2146
2147 wlock_acquire(rtld_bind_lock, &lockstate);
2148 GDB_STATE(RT_ADD,NULL);
2149
2150 old_obj_tail = obj_tail;
2151 obj = NULL;
2152 if (name == NULL) {
2153 obj = obj_main;
2154 obj->refcount++;
2155 } else {
2156 obj = load_object(name, obj_main, lo_flags);
2157 }
2158
2159 if (obj) {
2160 obj->dl_refcount++;
2161 if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2162 objlist_push_tail(&list_global, obj);
2163 mode &= RTLD_MODEMASK;
2164 if (*old_obj_tail != NULL) { /* We loaded something new. */
2165 assert(*old_obj_tail == obj);
2166 result = load_needed_objects(obj, RTLD_LO_DLOPEN);
2167 init_dag(obj);
2168 ref_dag(obj);
2169 if (result != -1)
2170 result = rtld_verify_versions(&obj->dagmembers);
2171 if (result != -1 && ld_tracing)
2172 goto trace;
2173 if (result == -1 ||
2174 (relocate_objects(obj, mode == RTLD_NOW, &obj_rtld)) == -1) {
2175 obj->dl_refcount--;
2176 unref_dag(obj);
2177 if (obj->refcount == 0)
2178 unload_object(obj);
2179 obj = NULL;
2180 } else {
2181 /* Make list of init functions to call. */
2182 initlist_add_objects(obj, &obj->next, &initlist);
2183 }
2184 } else {
2185
2186 /*
2187 * Bump the reference counts for objects on this DAG. If
2188 * this is the first dlopen() call for the object that was
2189 * already loaded as a dependency, initialize the dag
2190 * starting at it.
2191 */
2192 init_dag(obj);
2193 ref_dag(obj);
2194
2195 if ((lo_flags & RTLD_LO_TRACE) != 0)
2196 goto trace;
2197 }
2198 if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2199 obj->z_nodelete) && !obj->ref_nodel) {
2200 dbg("obj %s nodelete", obj->path);
2201 ref_dag(obj);
2202 obj->z_nodelete = obj->ref_nodel = true;
2203 }
2204 }
2205
2206 LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2207 name);
2208 GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2209
2210 /* Call the init functions. */
2211 objlist_call_init(&initlist, &lockstate);
2212 objlist_clear(&initlist);
2213 lock_release(rtld_bind_lock, &lockstate);
2214 return obj;
2215trace:
2216 trace_loaded_objects(obj);
2217 lock_release(rtld_bind_lock, &lockstate);
2218 exit(0);
2219}
2220
2221static void *
2222do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2223 int flags)
2224{
2225 DoneList donelist;
2226 const Obj_Entry *obj, *defobj;
2227 const Elf_Sym *def, *symp;
2228 unsigned long hash;
2229 RtldLockState lockstate;
2230
2231 hash = elf_hash(name);
2232 def = NULL;
2233 defobj = NULL;
2234 flags |= SYMLOOK_IN_PLT;
2235
2236 rlock_acquire(rtld_bind_lock, &lockstate);
2237 if (sigsetjmp(lockstate.env, 0) != 0)
2238 lock_upgrade(rtld_bind_lock, &lockstate);
2239 if (handle == NULL || handle == RTLD_NEXT ||
2240 handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2241
2242 if ((obj = obj_from_addr(retaddr)) == NULL) {
2243 _rtld_error("Cannot determine caller's shared object");
2244 lock_release(rtld_bind_lock, &lockstate);
2245 return NULL;
2246 }
2247 if (handle == NULL) { /* Just the caller's shared object. */
2248 def = symlook_obj(name, hash, obj, ve, flags);
2249 defobj = obj;
2250 } else if (handle == RTLD_NEXT || /* Objects after caller's */
2251 handle == RTLD_SELF) { /* ... caller included */
2252 if (handle == RTLD_NEXT)
2253 obj = obj->next;
2254 for (; obj != NULL; obj = obj->next) {
2255 if ((symp = symlook_obj(name, hash, obj, ve, flags)) != NULL) {
2256 if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
2257 def = symp;
2258 defobj = obj;
2259 if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2260 break;
2261 }
2262 }
2263 }
2264 /*
2265 * Search the dynamic linker itself, and possibly resolve the
2266 * symbol from there. This is how the application links to
2267 * dynamic linker services such as dlopen.
2268 */
2269 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2270 symp = symlook_obj(name, hash, &obj_rtld, ve, flags);
2271 if (symp != NULL) {
2272 def = symp;
2273 defobj = &obj_rtld;
2274 }
2275 }
2276 } else {
2277 assert(handle == RTLD_DEFAULT);
2278 def = symlook_default(name, hash, obj, &defobj, ve, flags);
2279 }
2280 } else {
2281 if ((obj = dlcheck(handle)) == NULL) {
2282 lock_release(rtld_bind_lock, &lockstate);
2283 return NULL;
2284 }
2285
2286 donelist_init(&donelist);
2287 if (obj->mainprog) {
2288 /* Search main program and all libraries loaded by it. */
2289 def = symlook_list(name, hash, &list_main, &defobj, ve, flags,
2290 &donelist);
2291
2292 /*
2293 * We do not distinguish between 'main' object and global scope.
2294 * If symbol is not defined by objects loaded at startup, continue
2295 * search among dynamically loaded objects with RTLD_GLOBAL
2296 * scope.
2297 */
2298 if (def == NULL)
2299 def = symlook_list(name, hash, &list_global, &defobj, ve,
2300 flags, &donelist);
2301 } else {
2302 Needed_Entry fake;
2303
2304 /* Search the whole DAG rooted at the given object. */
2305 fake.next = NULL;
2306 fake.obj = (Obj_Entry *)obj;
2307 fake.name = 0;
2308 def = symlook_needed(name, hash, &fake, &defobj, ve, flags,
2309 &donelist);
2310 }
2311 }
2312
2313 if (def != NULL) {
2314 lock_release(rtld_bind_lock, &lockstate);
2315
2316 /*
2317 * The value required by the caller is derived from the value
2318 * of the symbol. For the ia64 architecture, we need to
2319 * construct a function descriptor which the caller can use to
2320 * call the function with the right 'gp' value. For other
2321 * architectures and for non-functions, the value is simply
2322 * the relocated value of the symbol.
2323 */
2324 if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
2325 return (make_function_pointer(def, defobj));
2326 else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
2327 tls_index ti;
2328 ti.ti_module = defobj->tlsindex;
2329 ti.ti_offset = def->st_value;
2330 return (__tls_get_addr(&ti));
2331 } else
2332 return (defobj->relocbase + def->st_value);
2333 }
2334
2335 _rtld_error("Undefined symbol \"%s\"", name);
2336 lock_release(rtld_bind_lock, &lockstate);
2337 return NULL;
2338}
2339
2340void *
2341dlsym(void *handle, const char *name)
2342{
2343 return do_dlsym(handle, name, __builtin_return_address(0), NULL,
2344 SYMLOOK_DLSYM);
2345}
2346
2347dlfunc_t
2348dlfunc(void *handle, const char *name)
2349{
2350 union {
2351 void *d;
2352 dlfunc_t f;
2353 } rv;
2354
2355 rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
2356 SYMLOOK_DLSYM);
2357 return (rv.f);
2358}
2359
2360void *
2361dlvsym(void *handle, const char *name, const char *version)
2362{
2363 Ver_Entry ventry;
2364
2365 ventry.name = version;
2366 ventry.file = NULL;
2367 ventry.hash = elf_hash(version);
2368 ventry.flags= 0;
2369 return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
2370 SYMLOOK_DLSYM);
2371}
2372
2373int
2374_rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
2375{
2376 const Obj_Entry *obj;
2377 RtldLockState lockstate;
2378
2379 rlock_acquire(rtld_bind_lock, &lockstate);
2380 obj = obj_from_addr(addr);
2381 if (obj == NULL) {
2382 _rtld_error("No shared object contains address");
2383 lock_release(rtld_bind_lock, &lockstate);
2384 return (0);
2385 }
2386 rtld_fill_dl_phdr_info(obj, phdr_info);
2387 lock_release(rtld_bind_lock, &lockstate);
2388 return (1);
2389}
2390
2391int
2392dladdr(const void *addr, Dl_info *info)
2393{
2394 const Obj_Entry *obj;
2395 const Elf_Sym *def;
2396 void *symbol_addr;
2397 unsigned long symoffset;
2398 RtldLockState lockstate;
2399
2400 rlock_acquire(rtld_bind_lock, &lockstate);
2401 obj = obj_from_addr(addr);
2402 if (obj == NULL) {
2403 _rtld_error("No shared object contains address");
2404 lock_release(rtld_bind_lock, &lockstate);
2405 return 0;
2406 }
2407 info->dli_fname = obj->path;
2408 info->dli_fbase = obj->mapbase;
2409 info->dli_saddr = NULL;
2410 info->dli_sname = NULL;
2411
2412 /*
2413 * Walk the symbol list looking for the symbol whose address is
2414 * closest to the address sent in.
2415 */
2416 for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
2417 def = obj->symtab + symoffset;
2418
2419 /*
2420 * For skip the symbol if st_shndx is either SHN_UNDEF or
2421 * SHN_COMMON.
2422 */
2423 if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
2424 continue;
2425
2426 /*
2427 * If the symbol is greater than the specified address, or if it
2428 * is further away from addr than the current nearest symbol,
2429 * then reject it.
2430 */
2431 symbol_addr = obj->relocbase + def->st_value;
2432 if (symbol_addr > addr || symbol_addr < info->dli_saddr)
2433 continue;
2434
2435 /* Update our idea of the nearest symbol. */
2436 info->dli_sname = obj->strtab + def->st_name;
2437 info->dli_saddr = symbol_addr;
2438
2439 /* Exact match? */
2440 if (info->dli_saddr == addr)
2441 break;
2442 }
2443 lock_release(rtld_bind_lock, &lockstate);
2444 return 1;
2445}
2446
2447int
2448dlinfo(void *handle, int request, void *p)
2449{
2450 const Obj_Entry *obj;
2451 RtldLockState lockstate;
2452 int error;
2453
2454 rlock_acquire(rtld_bind_lock, &lockstate);
2455
2456 if (handle == NULL || handle == RTLD_SELF) {
2457 void *retaddr;
2458
2459 retaddr = __builtin_return_address(0); /* __GNUC__ only */
2460 if ((obj = obj_from_addr(retaddr)) == NULL)
2461 _rtld_error("Cannot determine caller's shared object");
2462 } else
2463 obj = dlcheck(handle);
2464
2465 if (obj == NULL) {
2466 lock_release(rtld_bind_lock, &lockstate);
2467 return (-1);
2468 }
2469
2470 error = 0;
2471 switch (request) {
2472 case RTLD_DI_LINKMAP:
2473 *((struct link_map const **)p) = &obj->linkmap;
2474 break;
2475 case RTLD_DI_ORIGIN:
2476 error = rtld_dirname(obj->path, p);
2477 break;
2478
2479 case RTLD_DI_SERINFOSIZE:
2480 case RTLD_DI_SERINFO:
2481 error = do_search_info(obj, request, (struct dl_serinfo *)p);
2482 break;
2483
2484 default:
2485 _rtld_error("Invalid request %d passed to dlinfo()", request);
2486 error = -1;
2487 }
2488
2489 lock_release(rtld_bind_lock, &lockstate);
2490
2491 return (error);
2492}
2493
2494static void
2495rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
2496{
2497
2498 phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
2499 phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
2500 STAILQ_FIRST(&obj->names)->name : obj->path;
2501 phdr_info->dlpi_phdr = obj->phdr;
2502 phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
2503 phdr_info->dlpi_tls_modid = obj->tlsindex;
2504 phdr_info->dlpi_tls_data = obj->tlsinit;
2505 phdr_info->dlpi_adds = obj_loads;
2506 phdr_info->dlpi_subs = obj_loads - obj_count;
2507}
2508
2509int
2510dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
2511{
2512 struct dl_phdr_info phdr_info;
2513 const Obj_Entry *obj;
2514 RtldLockState bind_lockstate, phdr_lockstate;
2515 int error;
2516
2517 wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
2518 rlock_acquire(rtld_bind_lock, &bind_lockstate);
2519
2520 error = 0;
2521
2522 for (obj = obj_list; obj != NULL; obj = obj->next) {
2523 rtld_fill_dl_phdr_info(obj, &phdr_info);
2524 if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
2525 break;
2526
2527 }
2528 lock_release(rtld_bind_lock, &bind_lockstate);
2529 lock_release(rtld_phdr_lock, &phdr_lockstate);
2530
2531 return (error);
2532}
2533
2534struct fill_search_info_args {
2535 int request;
2536 unsigned int flags;
2537 Dl_serinfo *serinfo;
2538 Dl_serpath *serpath;
2539 char *strspace;
2540};
2541
2542static void *
2543fill_search_info(const char *dir, size_t dirlen, void *param)
2544{
2545 struct fill_search_info_args *arg;
2546
2547 arg = param;
2548
2549 if (arg->request == RTLD_DI_SERINFOSIZE) {
2550 arg->serinfo->dls_cnt ++;
2551 arg->serinfo->dls_size += sizeof(Dl_serpath) + dirlen + 1;
2552 } else {
2553 struct dl_serpath *s_entry;
2554
2555 s_entry = arg->serpath;
2556 s_entry->dls_name = arg->strspace;
2557 s_entry->dls_flags = arg->flags;
2558
2559 strncpy(arg->strspace, dir, dirlen);
2560 arg->strspace[dirlen] = '\0';
2561
2562 arg->strspace += dirlen + 1;
2563 arg->serpath++;
2564 }
2565
2566 return (NULL);
2567}
2568
2569static int
2570do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
2571{
2572 struct dl_serinfo _info;
2573 struct fill_search_info_args args;
2574
2575 args.request = RTLD_DI_SERINFOSIZE;
2576 args.serinfo = &_info;
2577
2578 _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2579 _info.dls_cnt = 0;
2580
2581 path_enumerate(ld_library_path, fill_search_info, &args);
2582 path_enumerate(obj->rpath, fill_search_info, &args);
2583 path_enumerate(gethints(), fill_search_info, &args);
2584 path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
2585
2586
2587 if (request == RTLD_DI_SERINFOSIZE) {
2588 info->dls_size = _info.dls_size;
2589 info->dls_cnt = _info.dls_cnt;
2590 return (0);
2591 }
2592
2593 if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
2594 _rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
2595 return (-1);
2596 }
2597
2598 args.request = RTLD_DI_SERINFO;
2599 args.serinfo = info;
2600 args.serpath = &info->dls_serpath[0];
2601 args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
2602
2603 args.flags = LA_SER_LIBPATH;
2604 if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
2605 return (-1);
2606
2607 args.flags = LA_SER_RUNPATH;
2608 if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
2609 return (-1);
2610
2611 args.flags = LA_SER_CONFIG;
2612 if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
2613 return (-1);
2614
2615 args.flags = LA_SER_DEFAULT;
2616 if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
2617 return (-1);
2618 return (0);
2619}
2620
2621static int
2622rtld_dirname(const char *path, char *bname)
2623{
2624 const char *endp;
2625
2626 /* Empty or NULL string gets treated as "." */
2627 if (path == NULL || *path == '\0') {
2628 bname[0] = '.';
2629 bname[1] = '\0';
2630 return (0);
2631 }
2632
2633 /* Strip trailing slashes */
2634 endp = path + strlen(path) - 1;
2635 while (endp > path && *endp == '/')
2636 endp--;
2637
2638 /* Find the start of the dir */
2639 while (endp > path && *endp != '/')
2640 endp--;
2641
2642 /* Either the dir is "/" or there are no slashes */
2643 if (endp == path) {
2644 bname[0] = *endp == '/' ? '/' : '.';
2645 bname[1] = '\0';
2646 return (0);
2647 } else {
2648 do {
2649 endp--;
2650 } while (endp > path && *endp == '/');
2651 }
2652
2653 if (endp - path + 2 > PATH_MAX)
2654 {
2655 _rtld_error("Filename is too long: %s", path);
2656 return(-1);
2657 }
2658
2659 strncpy(bname, path, endp - path + 1);
2660 bname[endp - path + 1] = '\0';
2661 return (0);
2662}
2663
2664static int
2665rtld_dirname_abs(const char *path, char *base)
2666{
2667 char base_rel[PATH_MAX];
2668
2669 if (rtld_dirname(path, base) == -1)
2670 return (-1);
2671 if (base[0] == '/')
2672 return (0);
2673 if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
2674 strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
2675 strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
2676 return (-1);
2677 strcpy(base, base_rel);
2678 return (0);
2679}
2680
2681static void
2682linkmap_add(Obj_Entry *obj)
2683{
2684 struct link_map *l = &obj->linkmap;
2685 struct link_map *prev;
2686
2687 obj->linkmap.l_name = obj->path;
2688 obj->linkmap.l_addr = obj->mapbase;
2689 obj->linkmap.l_ld = obj->dynamic;
2690#ifdef __mips__
2691 /* GDB needs load offset on MIPS to use the symbols */
2692 obj->linkmap.l_offs = obj->relocbase;
2693#endif
2694
2695 if (r_debug.r_map == NULL) {
2696 r_debug.r_map = l;
2697 return;
2698 }
2699
2700 /*
2701 * Scan to the end of the list, but not past the entry for the
2702 * dynamic linker, which we want to keep at the very end.
2703 */
2704 for (prev = r_debug.r_map;
2705 prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
2706 prev = prev->l_next)
2707 ;
2708
2709 /* Link in the new entry. */
2710 l->l_prev = prev;
2711 l->l_next = prev->l_next;
2712 if (l->l_next != NULL)
2713 l->l_next->l_prev = l;
2714 prev->l_next = l;
2715}
2716
2717static void
2718linkmap_delete(Obj_Entry *obj)
2719{
2720 struct link_map *l = &obj->linkmap;
2721
2722 if (l->l_prev == NULL) {
2723 if ((r_debug.r_map = l->l_next) != NULL)
2724 l->l_next->l_prev = NULL;
2725 return;
2726 }
2727
2728 if ((l->l_prev->l_next = l->l_next) != NULL)
2729 l->l_next->l_prev = l->l_prev;
2730}
2731
2732/*
2733 * Function for the debugger to set a breakpoint on to gain control.
2734 *
2735 * The two parameters allow the debugger to easily find and determine
2736 * what the runtime loader is doing and to whom it is doing it.
2737 *
2738 * When the loadhook trap is hit (r_debug_state, set at program
2739 * initialization), the arguments can be found on the stack:
2740 *
2741 * +8 struct link_map *m
2742 * +4 struct r_debug *rd
2743 * +0 RetAddr
2744 */
2745void
2746r_debug_state(struct r_debug* rd, struct link_map *m)
2747{
2748 /*
2749 * The following is a hack to force the compiler to emit calls to
2750 * this function, even when optimizing. If the function is empty,
2751 * the compiler is not obliged to emit any code for calls to it,
2752 * even when marked __noinline. However, gdb depends on those
2753 * calls being made.
2754 */
2755 __asm __volatile("" : : : "memory");
2756}
2757
2758/*
2759 * Get address of the pointer variable in the main program.
2760 */
2761static const void **
2762get_program_var_addr(const char *name)
2763{
2764 const Obj_Entry *obj;
2765 unsigned long hash;
2766
2767 hash = elf_hash(name);
2768 for (obj = obj_main; obj != NULL; obj = obj->next) {
2769 const Elf_Sym *def;
2770
2771 if ((def = symlook_obj(name, hash, obj, NULL, 0)) != NULL) {
2772 const void **addr;
2773
2774 addr = (const void **)(obj->relocbase + def->st_value);
2775 return addr;
2776 }
2777 }
2778 return (NULL);
2779}
2780
2781/*
2782 * Set a pointer variable in the main program to the given value. This
2783 * is used to set key variables such as "environ" before any of the
2784 * init functions are called.
2785 */
2786static void
2787set_program_var(const char *name, const void *value)
2788{
2789 const void **addr;
2790
2791 if ((addr = get_program_var_addr(name)) != NULL) {
2792 dbg("\"%s\": *%p <-- %p", name, addr, value);
2793 *addr = value;
2794 }
2795}
2796
2797/*
2798 * This is a special version of getenv which is far more efficient
2799 * at finding LD_ environment vars.
2800 */
2801static
2802const char *
2803_getenv_ld(const char *id)
2804{
2805 const char *envp;
2806 int i, j;
2807 int idlen = strlen(id);
2808
2809 if (ld_index == LD_ARY_CACHE)
2810 return(getenv(id));
2811 if (ld_index == 0) {
2812 for (i = j = 0; (envp = environ[i]) != NULL && j < LD_ARY_CACHE; ++i) {
2813 if (envp[0] == 'L' && envp[1] == 'D' && envp[2] == '_')
2814 ld_ary[j++] = envp;
2815 }
2816 if (j == 0)
2817 ld_ary[j++] = "";
2818 ld_index = j;
2819 }
2820 for (i = ld_index - 1; i >= 0; --i) {
2821 if (strncmp(ld_ary[i], id, idlen) == 0 && ld_ary[i][idlen] == '=')
2822 return(ld_ary[i] + idlen + 1);
2823 }
2824 return(NULL);
2825}
2826
2827/*
2828 * Given a symbol name in a referencing object, find the corresponding
2829 * definition of the symbol. Returns a pointer to the symbol, or NULL if
2830 * no definition was found. Returns a pointer to the Obj_Entry of the
2831 * defining object via the reference parameter DEFOBJ_OUT.
2832 */
2833static const Elf_Sym *
2834symlook_default(const char *name, unsigned long hash, const Obj_Entry *refobj,
2835 const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags)
2836{
2837 DoneList donelist;
2838 const Elf_Sym *def;
2839 const Elf_Sym *symp;
2840 const Obj_Entry *obj;
2841 const Obj_Entry *defobj;
2842 const Objlist_Entry *elm;
2843 def = NULL;
2844 defobj = NULL;
2845 donelist_init(&donelist);
2846
2847 /* Look first in the referencing object if linked symbolically. */
2848 if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
2849 symp = symlook_obj(name, hash, refobj, ventry, flags);
2850 if (symp != NULL) {
2851 def = symp;
2852 defobj = refobj;
2853 }
2854 }
2855
2856 /* Search all objects loaded at program start up. */
2857 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2858 symp = symlook_list(name, hash, &list_main, &obj, ventry, flags,
2859 &donelist);
2860 if (symp != NULL &&
2861 (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2862 def = symp;
2863 defobj = obj;
2864 }
2865 }
2866
2867 /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
2868 STAILQ_FOREACH(elm, &list_global, link) {
2869 if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2870 break;
2871 symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, ventry,
2872 flags, &donelist);
2873 if (symp != NULL &&
2874 (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2875 def = symp;
2876 defobj = obj;
2877 }
2878 }
2879
2880 /* Search all dlopened DAGs containing the referencing object. */
2881 STAILQ_FOREACH(elm, &refobj->dldags, link) {
2882 if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2883 break;
2884 symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, ventry,
2885 flags, &donelist);
2886 if (symp != NULL &&
2887 (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2888 def = symp;
2889 defobj = obj;
2890 }
2891 }
2892
2893 /*
2894 * Search the dynamic linker itself, and possibly resolve the
2895 * symbol from there. This is how the application links to
2896 * dynamic linker services such as dlopen. Only the values listed
2897 * in the "exports" array can be resolved from the dynamic linker.
2898 */
2899 if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2900 symp = symlook_obj(name, hash, &obj_rtld, ventry, flags);
2901 if (symp != NULL && is_exported(symp)) {
2902 def = symp;
2903 defobj = &obj_rtld;
2904 }
2905 }
2906
2907 if (def != NULL)
2908 *defobj_out = defobj;
2909 return def;
2910}
2911
2912static const Elf_Sym *
2913symlook_list(const char *name, unsigned long hash, const Objlist *objlist,
2914 const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags,
2915 DoneList *dlp)
2916{
2917 const Elf_Sym *symp;
2918 const Elf_Sym *def;
2919 const Obj_Entry *defobj;
2920 const Objlist_Entry *elm;
2921
2922 def = NULL;
2923 defobj = NULL;
2924 STAILQ_FOREACH(elm, objlist, link) {
2925 if (donelist_check(dlp, elm->obj))
2926 continue;
2927 if ((symp = symlook_obj(name, hash, elm->obj, ventry, flags)) != NULL) {
2928 if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
2929 def = symp;
2930 defobj = elm->obj;
2931 if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2932 break;
2933 }
2934 }
2935 }
2936 if (def != NULL)
2937 *defobj_out = defobj;
2938 return def;
2939}
2940
2941/*
2942 * Search the symbol table of a shared object and all objects needed
2943 * by it for a symbol of the given name. Search order is
2944 * breadth-first. Returns a pointer to the symbol, or NULL if no
2945 * definition was found.
2946 */
2947static const Elf_Sym *
2948symlook_needed(const char *name, unsigned long hash, const Needed_Entry *needed,
2949 const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags,
2950 DoneList *dlp)
2951{
2952 const Elf_Sym *def, *def_w;
2953 const Needed_Entry *n;
2954 const Obj_Entry *obj, *defobj, *defobj1;
2955
2956 def = def_w = NULL;
2957 defobj = NULL;
2958 for (n = needed; n != NULL; n = n->next) {
2959 if ((obj = n->obj) == NULL ||
2960 donelist_check(dlp, obj) ||
2961 (def = symlook_obj(name, hash, obj, ventry, flags)) == NULL)
2962 continue;
2963 defobj = obj;
2964 if (ELF_ST_BIND(def->st_info) != STB_WEAK) {
2965 *defobj_out = defobj;
2966 return (def);
2967 }
2968 }
2969 /*
2970 * There we come when either symbol definition is not found in
2971 * directly needed objects, or found symbol is weak.
2972 */
2973 for (n = needed; n != NULL; n = n->next) {
2974 if ((obj = n->obj) == NULL)
2975 continue;
2976 def_w = symlook_needed(name, hash, obj->needed, &defobj1,
2977 ventry, flags, dlp);
2978 if (def_w == NULL)
2979 continue;
2980 if (def == NULL || ELF_ST_BIND(def_w->st_info) != STB_WEAK) {
2981 def = def_w;
2982 defobj = defobj1;
2983 }
2984 if (ELF_ST_BIND(def_w->st_info) != STB_WEAK)
2985 break;
2986 }
2987 if (def != NULL)
2988 *defobj_out = defobj;
2989 return (def);
2990}
2991
2992/*
2993 * Search the symbol table of a single shared object for a symbol of
2994 * the given name and version, if requested. Returns a pointer to the
2995 * symbol, or NULL if no definition was found.
2996 *
2997 * The symbol's hash value is passed in for efficiency reasons; that
2998 * eliminates many recomputations of the hash value.
2999 */
3000const Elf_Sym *
3001symlook_obj(const char *name, unsigned long hash, const Obj_Entry *obj,
3002 const Ver_Entry *ventry, int flags)
3003{
3004 unsigned long symnum;
3005 const Elf_Sym *vsymp;
3006 Elf_Versym verndx;
3007 int vcount;
3008
3009 if (obj->buckets == NULL)
3010 return NULL;
3011
3012 vsymp = NULL;
3013 vcount = 0;
3014 symnum = obj->buckets[hash % obj->nbuckets];
3015
3016 for (; symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3017 const Elf_Sym *symp;
3018 const char *strp;
3019
3020 if (symnum >= obj->nchains)
3021 return NULL; /* Bad object */
3022
3023 symp = obj->symtab + symnum;
3024 strp = obj->strtab + symp->st_name;
3025
3026 switch (ELF_ST_TYPE(symp->st_info)) {
3027 case STT_FUNC:
3028 case STT_NOTYPE:
3029 case STT_OBJECT:
3030 if (symp->st_value == 0)
3031 continue;
3032 /* fallthrough */
3033 case STT_TLS:
3034 if (symp->st_shndx != SHN_UNDEF)
3035 break;
3036 else if (((flags & SYMLOOK_IN_PLT) == 0) &&
3037 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3038 break;
3039 /* fallthrough */
3040 default:
3041 continue;
3042 }
3043 if (name[0] != strp[0] || strcmp(name, strp) != 0)
3044 continue;
3045
3046 if (ventry == NULL) {
3047 if (obj->versyms != NULL) {
3048 verndx = VER_NDX(obj->versyms[symnum]);
3049 if (verndx > obj->vernum) {
3050 _rtld_error("%s: symbol %s references wrong version %d",
3051 obj->path, obj->strtab + symnum, verndx);
3052 continue;
3053 }
3054 /*
3055 * If we are not called from dlsym (i.e. this is a normal
3056 * relocation from unversioned binary), accept the symbol
3057 * immediately if it happens to have first version after
3058 * this shared object became versioned. Otherwise, if
3059 * symbol is versioned and not hidden, remember it. If it
3060 * is the only symbol with this name exported by the
3061 * shared object, it will be returned as a match at the
3062 * end of the function. If symbol is global (verndx < 2)
3063 * accept it unconditionally.
3064 */
3065 if ((flags & SYMLOOK_DLSYM) == 0 && verndx == VER_NDX_GIVEN)
3066 return symp;
3067 else if (verndx >= VER_NDX_GIVEN) {
3068 if ((obj->versyms[symnum] & VER_NDX_HIDDEN) == 0) {
3069 if (vsymp == NULL)
3070 vsymp = symp;
3071 vcount ++;
3072 }
3073 continue;
3074 }
3075 }
3076 return symp;
3077 } else {
3078 if (obj->versyms == NULL) {
3079 if (object_match_name(obj, ventry->name)) {
3080 _rtld_error("%s: object %s should provide version %s for "
3081 "symbol %s", obj_rtld.path, obj->path, ventry->name,
3082 obj->strtab + symnum);
3083 continue;
3084 }
3085 } else {
3086 verndx = VER_NDX(obj->versyms[symnum]);
3087 if (verndx > obj->vernum) {
3088 _rtld_error("%s: symbol %s references wrong version %d",
3089 obj->path, obj->strtab + symnum, verndx);
3090 continue;
3091 }
3092 if (obj->vertab[verndx].hash != ventry->hash ||
3093 strcmp(obj->vertab[verndx].name, ventry->name)) {
3094 /*
3095 * Version does not match. Look if this is a global symbol
3096 * and if it is not hidden. If global symbol (verndx < 2)
3097 * is available, use it. Do not return symbol if we are
3098 * called by dlvsym, because dlvsym looks for a specific
3099 * version and default one is not what dlvsym wants.
3100 */
3101 if ((flags & SYMLOOK_DLSYM) ||
3102 (obj->versyms[symnum] & VER_NDX_HIDDEN) ||
3103 (verndx >= VER_NDX_GIVEN))
3104 continue;
3105 }
3106 }
3107 return symp;
3108 }
3109 }
3110 return (vcount == 1) ? vsymp : NULL;
3111}
3112
3113static void
3114trace_loaded_objects(Obj_Entry *obj)
3115{
3116 const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
3117 int c;
3118
3119 if ((main_local = _getenv_ld("LD_TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
3120 main_local = "";
3121
3122 if ((fmt1 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT1")) == NULL)
3123 fmt1 = "\t%o => %p (%x)\n";
3124
3125 if ((fmt2 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT2")) == NULL)
3126 fmt2 = "\t%o (%x)\n";
3127
3128 list_containers = _getenv_ld("LD_TRACE_LOADED_OBJECTS_ALL");
3129
3130 for (; obj; obj = obj->next) {
3131 Needed_Entry *needed;
3132 char *name, *path;
3133 bool is_lib;
3134
3135 if (list_containers && obj->needed != NULL)
3136 printf("%s:\n", obj->path);
3137 for (needed = obj->needed; needed; needed = needed->next) {
3138 if (needed->obj != NULL) {
3139 if (needed->obj->traced && !list_containers)
3140 continue;
3141 needed->obj->traced = true;
3142 path = needed->obj->path;
3143 } else
3144 path = "not found";
3145
3146 name = (char *)obj->strtab + needed->name;
3147 is_lib = strncmp(name, "lib", 3) == 0; /* XXX - bogus */
3148
3149 fmt = is_lib ? fmt1 : fmt2;
3150 while ((c = *fmt++) != '\0') {
3151 switch (c) {
3152 default:
3153 putchar(c);
3154 continue;
3155 case '\\':
3156 switch (c = *fmt) {
3157 case '\0':
3158 continue;
3159 case 'n':
3160 putchar('\n');
3161 break;
3162 case 't':
3163 putchar('\t');
3164 break;
3165 }
3166 break;
3167 case '%':
3168 switch (c = *fmt) {
3169 case '\0':
3170 continue;
3171 case '%':
3172 default:
3173 putchar(c);
3174 break;
3175 case 'A':
3176 printf("%s", main_local);
3177 break;
3178 case 'a':
3179 printf("%s", obj_main->path);
3180 break;
3181 case 'o':
3182 printf("%s", name);
3183 break;
3184 case 'p':
3185 printf("%s", path);
3186 break;
3187 case 'x':
3188 printf("%p", needed->obj ? needed->obj->mapbase : 0);
3189 break;
3190 }
3191 break;
3192 }
3193 ++fmt;
3194 }
3195 }
3196 }
3197}
3198
3199/*
3200 * Unload a dlopened object and its dependencies from memory and from
3201 * our data structures. It is assumed that the DAG rooted in the
3202 * object has already been unreferenced, and that the object has a
3203 * reference count of 0.
3204 */
3205static void
3206unload_object(Obj_Entry *root)
3207{
3208 Obj_Entry *obj;
3209 Obj_Entry **linkp;
3210
3211 assert(root->refcount == 0);
3212
3213 /*
3214 * Pass over the DAG removing unreferenced objects from
3215 * appropriate lists.
3216 */
3217 unlink_object(root);
3218
3219 /* Unmap all objects that are no longer referenced. */
3220 linkp = &obj_list->next;
3221 while ((obj = *linkp) != NULL) {
3222 if (obj->refcount == 0) {
3223 LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
3224 obj->path);
3225 dbg("unloading \"%s\"", obj->path);
3226 munmap(obj->mapbase, obj->mapsize);
3227 linkmap_delete(obj);
3228 *linkp = obj->next;
3229 obj_count--;
3230 obj_free(obj);
3231 } else
3232 linkp = &obj->next;
3233 }
3234 obj_tail = linkp;
3235}
3236
3237static void
3238unlink_object(Obj_Entry *root)
3239{
3240 Objlist_Entry *elm;
3241
3242 if (root->refcount == 0) {
3243 /* Remove the object from the RTLD_GLOBAL list. */
3244 objlist_remove(&list_global, root);
3245
3246 /* Remove the object from all objects' DAG lists. */
3247 STAILQ_FOREACH(elm, &root->dagmembers, link) {
3248 objlist_remove(&elm->obj->dldags, root);
3249 if (elm->obj != root)
3250 unlink_object(elm->obj);
3251 }
3252 }
3253}
3254
3255static void
3256ref_dag(Obj_Entry *root)
3257{
3258 Objlist_Entry *elm;
3259
3260 assert(root->dag_inited);
3261 STAILQ_FOREACH(elm, &root->dagmembers, link)
3262 elm->obj->refcount++;
3263}
3264
3265static void
3266unref_dag(Obj_Entry *root)
3267{
3268 Objlist_Entry *elm;
3269
3270 assert(root->dag_inited);
3271 STAILQ_FOREACH(elm, &root->dagmembers, link)
3272 elm->obj->refcount--;
3273}
3274
3275/*
3276 * Common code for MD __tls_get_addr().
3277 */
3278void *
3279tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
3280{
3281 Elf_Addr* dtv = *dtvp;
3282 RtldLockState lockstate;
3283
3284 /* Check dtv generation in case new modules have arrived */
3285 if (dtv[0] != tls_dtv_generation) {
3286 Elf_Addr* newdtv;
3287 int to_copy;
3288
3289 wlock_acquire(rtld_bind_lock, &lockstate);
3290 newdtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3291 to_copy = dtv[1];
3292 if (to_copy > tls_max_index)
3293 to_copy = tls_max_index;
3294 memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
3295 newdtv[0] = tls_dtv_generation;
3296 newdtv[1] = tls_max_index;
3297 free(dtv);
3298 lock_release(rtld_bind_lock, &lockstate);
3299 dtv = *dtvp = newdtv;
3300 }
3301
3302 /* Dynamically allocate module TLS if necessary */
3303 if (!dtv[index + 1]) {
3304 /* Signal safe, wlock will block out signals. */
3305 wlock_acquire(rtld_bind_lock, &lockstate);
3306 if (!dtv[index + 1])
3307 dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
3308 lock_release(rtld_bind_lock, &lockstate);
3309 }
3310 return (void*) (dtv[index + 1] + offset);
3311}
3312
3313#if defined(RTLD_STATIC_TLS_VARIANT_II)
3314
3315/*
3316 * Allocate the static TLS area. Return a pointer to the TCB. The
3317 * static area is based on negative offsets relative to the tcb.
3318 *
3319 * The TCB contains an errno pointer for the system call layer, but because
3320 * we are the RTLD we really have no idea how the caller was compiled so
3321 * the information has to be passed in. errno can either be:
3322 *
3323 * type 0 errno is a simple non-TLS global pointer.
3324 * (special case for e.g. libc_rtld)
3325 * type 1 errno accessed by GOT entry (dynamically linked programs)
3326 * type 2 errno accessed by %gs:OFFSET (statically linked programs)
3327 */
3328struct tls_tcb *
3329allocate_tls(Obj_Entry *objs)
3330{
3331 Obj_Entry *obj;
3332 size_t data_size;
3333 size_t dtv_size;
3334 struct tls_tcb *tcb;
3335 Elf_Addr *dtv;
3336 Elf_Addr addr;
3337
3338 /*
3339 * Allocate the new TCB. static TLS storage is placed just before the
3340 * TCB to support the %gs:OFFSET (negative offset) model.
3341 */
3342 data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
3343 ~RTLD_STATIC_TLS_ALIGN_MASK;
3344 tcb = malloc(data_size + sizeof(*tcb));
3345 tcb = (void *)((char *)tcb + data_size); /* actual tcb location */
3346
3347 dtv_size = (tls_max_index + 2) * sizeof(Elf_Addr);
3348 dtv = malloc(dtv_size);
3349 bzero(dtv, dtv_size);
3350
3351#ifdef RTLD_TCB_HAS_SELF_POINTER
3352 tcb->tcb_self = tcb;
3353#endif
3354 tcb->tcb_dtv = dtv;
3355 tcb->tcb_pthread = NULL;
3356
3357 dtv[0] = tls_dtv_generation;
3358 dtv[1] = tls_max_index;
3359
3360 for (obj = objs; obj; obj = obj->next) {
3361 if (obj->tlsoffset) {
3362 addr = (Elf_Addr)tcb - obj->tlsoffset;
3363 memset((void *)(addr + obj->tlsinitsize),
3364 0, obj->tlssize - obj->tlsinitsize);
3365 if (obj->tlsinit)
3366 memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3367 dtv[obj->tlsindex + 1] = addr;
3368 }
3369 }
3370 return(tcb);
3371}
3372
3373void
3374free_tls(struct tls_tcb *tcb)
3375{
3376 Elf_Addr *dtv;
3377 int dtv_size, i;
3378 Elf_Addr tls_start, tls_end;
3379 size_t data_size;
3380
3381 data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
3382 ~RTLD_STATIC_TLS_ALIGN_MASK;
3383
3384 dtv = tcb->tcb_dtv;
3385 dtv_size = dtv[1];
3386 tls_end = (Elf_Addr)tcb;
3387 tls_start = (Elf_Addr)tcb - data_size;
3388 for (i = 0; i < dtv_size; i++) {
3389 if (dtv[i+2] != 0 && (dtv[i+2] < tls_start || dtv[i+2] > tls_end)) {
3390 free((void *)dtv[i+2]);
3391 }
3392 }
3393
3394 free((void*) tls_start);
3395}
3396
3397#else
3398#error "Unsupported TLS layout"
3399#endif
3400
3401/*
3402 * Allocate TLS block for module with given index.
3403 */
3404void *
3405allocate_module_tls(int index)
3406{
3407 Obj_Entry* obj;
3408 char* p;
3409
3410 for (obj = obj_list; obj; obj = obj->next) {
3411 if (obj->tlsindex == index)
3412 break;
3413 }
3414 if (!obj) {
3415 _rtld_error("Can't find module with TLS index %d", index);
3416 die();
3417 }
3418
3419 p = malloc(obj->tlssize);
3420 if (p == NULL) {
3421 _rtld_error("Cannot allocate TLS block for index %d", index);
3422 die();
3423 }
3424 memcpy(p, obj->tlsinit, obj->tlsinitsize);
3425 memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
3426
3427 return p;
3428}
3429
3430bool
3431allocate_tls_offset(Obj_Entry *obj)
3432{
3433 size_t off;
3434
3435 if (obj->tls_done)
3436 return true;
3437
3438 if (obj->tlssize == 0) {
3439 obj->tls_done = true;
3440 return true;
3441 }
3442
3443 if (obj->tlsindex == 1)
3444 off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
3445 else
3446 off = calculate_tls_offset(tls_last_offset, tls_last_size,
3447 obj->tlssize, obj->tlsalign);
3448
3449 /*
3450 * If we have already fixed the size of the static TLS block, we
3451 * must stay within that size. When allocating the static TLS, we
3452 * leave a small amount of space spare to be used for dynamically
3453 * loading modules which use static TLS.
3454 */
3455 if (tls_static_space) {
3456 if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
3457 return false;
3458 }
3459
3460 tls_last_offset = obj->tlsoffset = off;
3461 tls_last_size = obj->tlssize;
3462 obj->tls_done = true;
3463
3464 return true;
3465}
3466
3467void
3468free_tls_offset(Obj_Entry *obj)
3469{
3470#ifdef RTLD_STATIC_TLS_VARIANT_II
3471 /*
3472 * If we were the last thing to allocate out of the static TLS
3473 * block, we give our space back to the 'allocator'. This is a
3474 * simplistic workaround to allow libGL.so.1 to be loaded and
3475 * unloaded multiple times. We only handle the Variant II
3476 * mechanism for now - this really needs a proper allocator.
3477 */
3478 if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
3479 == calculate_tls_end(tls_last_offset, tls_last_size)) {
3480 tls_last_offset -= obj->tlssize;
3481 tls_last_size = 0;
3482 }
3483#endif
3484}
3485
3486struct tls_tcb *
3487_rtld_allocate_tls(void)
3488{
3489 struct tls_tcb *new_tcb;
3490 RtldLockState lockstate;
3491
3492 wlock_acquire(rtld_bind_lock, &lockstate);
3493 new_tcb = allocate_tls(obj_list);
3494 lock_release(rtld_bind_lock, &lockstate);
3495 return (new_tcb);
3496}
3497
3498void
3499_rtld_free_tls(struct tls_tcb *tcb)
3500{
3501 RtldLockState lockstate;
3502
3503 wlock_acquire(rtld_bind_lock, &lockstate);
3504 free_tls(tcb);
3505 lock_release(rtld_bind_lock, &lockstate);
3506}
3507
3508static void
3509object_add_name(Obj_Entry *obj, const char *name)
3510{
3511 Name_Entry *entry;
3512 size_t len;
3513
3514 len = strlen(name);
3515 entry = malloc(sizeof(Name_Entry) + len);
3516
3517 if (entry != NULL) {
3518 strcpy(entry->name, name);
3519 STAILQ_INSERT_TAIL(&obj->names, entry, link);
3520 }
3521}
3522
3523static int
3524object_match_name(const Obj_Entry *obj, const char *name)
3525{
3526 Name_Entry *entry;
3527
3528 STAILQ_FOREACH(entry, &obj->names, link) {
3529 if (strcmp(name, entry->name) == 0)
3530 return (1);
3531 }
3532 return (0);
3533}
3534
3535static Obj_Entry *
3536locate_dependency(const Obj_Entry *obj, const char *name)
3537{
3538 const Objlist_Entry *entry;
3539 const Needed_Entry *needed;
3540
3541 STAILQ_FOREACH(entry, &list_main, link) {
3542 if (object_match_name(entry->obj, name))
3543 return entry->obj;
3544 }
3545
3546 for (needed = obj->needed; needed != NULL; needed = needed->next) {
3547 if (strcmp(obj->strtab + needed->name, name) == 0 ||
3548 (needed->obj != NULL && object_match_name(needed->obj, name))) {
3549 /*
3550 * If there is DT_NEEDED for the name we are looking for,
3551 * we are all set. Note that object might not be found if
3552 * dependency was not loaded yet, so the function can
3553 * return NULL here. This is expected and handled
3554 * properly by the caller.
3555 */
3556 return (needed->obj);
3557 }
3558 }
3559 _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
3560 obj->path, name);
3561 die();
3562}
3563
3564static int
3565check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
3566 const Elf_Vernaux *vna)
3567{
3568 const Elf_Verdef *vd;
3569 const char *vername;
3570
3571 vername = refobj->strtab + vna->vna_name;
3572 vd = depobj->verdef;
3573 if (vd == NULL) {
3574 _rtld_error("%s: version %s required by %s not defined",
3575 depobj->path, vername, refobj->path);
3576 return (-1);
3577 }
3578 for (;;) {
3579 if (vd->vd_version != VER_DEF_CURRENT) {
3580 _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3581 depobj->path, vd->vd_version);
3582 return (-1);
3583 }
3584 if (vna->vna_hash == vd->vd_hash) {
3585 const Elf_Verdaux *aux = (const Elf_Verdaux *)
3586 ((char *)vd + vd->vd_aux);
3587 if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
3588 return (0);
3589 }
3590 if (vd->vd_next == 0)
3591 break;
3592 vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3593 }
3594 if (vna->vna_flags & VER_FLG_WEAK)
3595 return (0);
3596 _rtld_error("%s: version %s required by %s not found",
3597 depobj->path, vername, refobj->path);
3598 return (-1);
3599}
3600
3601static int
3602rtld_verify_object_versions(Obj_Entry *obj)
3603{
3604 const Elf_Verneed *vn;
3605 const Elf_Verdef *vd;
3606 const Elf_Verdaux *vda;
3607 const Elf_Vernaux *vna;
3608 const Obj_Entry *depobj;
3609 int maxvernum, vernum;
3610
3611 maxvernum = 0;
3612 /*
3613 * Walk over defined and required version records and figure out
3614 * max index used by any of them. Do very basic sanity checking
3615 * while there.
3616 */
3617 vn = obj->verneed;
3618 while (vn != NULL) {
3619 if (vn->vn_version != VER_NEED_CURRENT) {
3620 _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
3621 obj->path, vn->vn_version);
3622 return (-1);
3623 }
3624 vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3625 for (;;) {
3626 vernum = VER_NEED_IDX(vna->vna_other);
3627 if (vernum > maxvernum)
3628 maxvernum = vernum;
3629 if (vna->vna_next == 0)
3630 break;
3631 vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3632 }
3633 if (vn->vn_next == 0)
3634 break;
3635 vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3636 }
3637
3638 vd = obj->verdef;
3639 while (vd != NULL) {
3640 if (vd->vd_version != VER_DEF_CURRENT) {
3641 _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3642 obj->path, vd->vd_version);
3643 return (-1);
3644 }
3645 vernum = VER_DEF_IDX(vd->vd_ndx);
3646 if (vernum > maxvernum)
3647 maxvernum = vernum;
3648 if (vd->vd_next == 0)
3649 break;
3650 vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3651 }
3652
3653 if (maxvernum == 0)
3654 return (0);
3655
3656 /*
3657 * Store version information in array indexable by version index.
3658 * Verify that object version requirements are satisfied along the
3659 * way.
3660 */
3661 obj->vernum = maxvernum + 1;
3662 obj->vertab = calloc(obj->vernum, sizeof(Ver_Entry));
3663
3664 vd = obj->verdef;
3665 while (vd != NULL) {
3666 if ((vd->vd_flags & VER_FLG_BASE) == 0) {
3667 vernum = VER_DEF_IDX(vd->vd_ndx);
3668 assert(vernum <= maxvernum);
3669 vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
3670 obj->vertab[vernum].hash = vd->vd_hash;
3671 obj->vertab[vernum].name = obj->strtab + vda->vda_name;
3672 obj->vertab[vernum].file = NULL;
3673 obj->vertab[vernum].flags = 0;
3674 }
3675 if (vd->vd_next == 0)
3676 break;
3677 vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3678 }
3679
3680 vn = obj->verneed;
3681 while (vn != NULL) {
3682 depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
3683 if (depobj == NULL)
3684 return (-1);
3685 vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3686 for (;;) {
3687 if (check_object_provided_version(obj, depobj, vna))
3688 return (-1);
3689 vernum = VER_NEED_IDX(vna->vna_other);
3690 assert(vernum <= maxvernum);
3691 obj->vertab[vernum].hash = vna->vna_hash;
3692 obj->vertab[vernum].name = obj->strtab + vna->vna_name;
3693 obj->vertab[vernum].file = obj->strtab + vn->vn_file;
3694 obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
3695 VER_INFO_HIDDEN : 0;
3696 if (vna->vna_next == 0)
3697 break;
3698 vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3699 }
3700 if (vn->vn_next == 0)
3701 break;
3702 vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3703 }
3704 return 0;
3705}
3706
3707static int
3708rtld_verify_versions(const Objlist *objlist)
3709{
3710 Objlist_Entry *entry;
3711 int rc;
3712
3713 rc = 0;
3714 STAILQ_FOREACH(entry, objlist, link) {
3715 /*
3716 * Skip dummy objects or objects that have their version requirements
3717 * already checked.
3718 */
3719 if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
3720 continue;
3721 if (rtld_verify_object_versions(entry->obj) == -1) {
3722 rc = -1;
3723 if (ld_tracing == NULL)
3724 break;
3725 }
3726 }
3727 if (rc == 0 || ld_tracing != NULL)
3728 rc = rtld_verify_object_versions(&obj_rtld);
3729 return rc;
3730}
3731
3732const Ver_Entry *
3733fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
3734{
3735 Elf_Versym vernum;
3736
3737 if (obj->vertab) {
3738 vernum = VER_NDX(obj->versyms[symnum]);
3739 if (vernum >= obj->vernum) {
3740 _rtld_error("%s: symbol %s has wrong verneed value %d",
3741 obj->path, obj->strtab + symnum, vernum);
3742 } else if (obj->vertab[vernum].hash != 0) {
3743 return &obj->vertab[vernum];
3744 }
3745 }
3746 return NULL;
3747}
3748
3749/*
3750 * No unresolved symbols for rtld.
3751 */
3752void
3753__pthread_cxa_finalize(struct dl_phdr_info *a)
3754{
3755}