Initial import from FreeBSD RELENG_4:
[dragonfly.git] / sys / vfs / ufs / ffs_softdep.c
... / ...
CommitLineData
1/*
2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved.
3 *
4 * The soft updates code is derived from the appendix of a University
5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
6 * "Soft Updates: A Solution to the Metadata Update Problem in File
7 * Systems", CSE-TR-254-95, August 1995).
8 *
9 * Further information about soft updates can be obtained from:
10 *
11 * Marshall Kirk McKusick http://www.mckusick.com/softdep/
12 * 1614 Oxford Street mckusick@mckusick.com
13 * Berkeley, CA 94709-1608 +1-510-843-9542
14 * USA
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 *
20 * 1. Redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer.
22 * 2. Redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution.
25 *
26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29 * DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00
39 * $FreeBSD: src/sys/ufs/ffs/ffs_softdep.c,v 1.57.2.11 2002/02/05 18:46:53 dillon Exp $
40 */
41
42/*
43 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide.
44 */
45#ifndef DIAGNOSTIC
46#define DIAGNOSTIC
47#endif
48#ifndef DEBUG
49#define DEBUG
50#endif
51
52#include <sys/param.h>
53#include <sys/kernel.h>
54#include <sys/systm.h>
55#include <sys/buf.h>
56#include <sys/malloc.h>
57#include <sys/mount.h>
58#include <sys/proc.h>
59#include <sys/syslog.h>
60#include <sys/vnode.h>
61#include <sys/conf.h>
62#include <ufs/ufs/dir.h>
63#include <ufs/ufs/quota.h>
64#include <ufs/ufs/inode.h>
65#include <ufs/ufs/ufsmount.h>
66#include <ufs/ffs/fs.h>
67#include <ufs/ffs/softdep.h>
68#include <ufs/ffs/ffs_extern.h>
69#include <ufs/ufs/ufs_extern.h>
70
71/*
72 * These definitions need to be adapted to the system to which
73 * this file is being ported.
74 */
75/*
76 * malloc types defined for the softdep system.
77 */
78MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies");
79MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies");
80MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation");
81MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map");
82MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode");
83MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies");
84MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block");
85MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode");
86MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode");
87MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated");
88MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry");
89MALLOC_DEFINE(M_MKDIR, "mkdir","New directory");
90MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted");
91
92#define M_SOFTDEP_FLAGS (M_WAITOK | M_USE_RESERVE)
93
94#define D_PAGEDEP 0
95#define D_INODEDEP 1
96#define D_NEWBLK 2
97#define D_BMSAFEMAP 3
98#define D_ALLOCDIRECT 4
99#define D_INDIRDEP 5
100#define D_ALLOCINDIR 6
101#define D_FREEFRAG 7
102#define D_FREEBLKS 8
103#define D_FREEFILE 9
104#define D_DIRADD 10
105#define D_MKDIR 11
106#define D_DIRREM 12
107#define D_LAST D_DIRREM
108
109/*
110 * translate from workitem type to memory type
111 * MUST match the defines above, such that memtype[D_XXX] == M_XXX
112 */
113static struct malloc_type *memtype[] = {
114 M_PAGEDEP,
115 M_INODEDEP,
116 M_NEWBLK,
117 M_BMSAFEMAP,
118 M_ALLOCDIRECT,
119 M_INDIRDEP,
120 M_ALLOCINDIR,
121 M_FREEFRAG,
122 M_FREEBLKS,
123 M_FREEFILE,
124 M_DIRADD,
125 M_MKDIR,
126 M_DIRREM
127};
128
129#define DtoM(type) (memtype[type])
130
131/*
132 * Names of malloc types.
133 */
134#define TYPENAME(type) \
135 ((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???")
136#define CURPROC curproc
137/*
138 * End system adaptaion definitions.
139 */
140
141/*
142 * Internal function prototypes.
143 */
144static void softdep_error __P((char *, int));
145static void drain_output __P((struct vnode *, int));
146static int getdirtybuf __P((struct buf **, int));
147static void clear_remove __P((struct proc *));
148static void clear_inodedeps __P((struct proc *));
149static int flush_pagedep_deps __P((struct vnode *, struct mount *,
150 struct diraddhd *));
151static int flush_inodedep_deps __P((struct fs *, ino_t));
152static int handle_written_filepage __P((struct pagedep *, struct buf *));
153static void diradd_inode_written __P((struct diradd *, struct inodedep *));
154static int handle_written_inodeblock __P((struct inodedep *, struct buf *));
155static void handle_allocdirect_partdone __P((struct allocdirect *));
156static void handle_allocindir_partdone __P((struct allocindir *));
157static void initiate_write_filepage __P((struct pagedep *, struct buf *));
158static void handle_written_mkdir __P((struct mkdir *, int));
159static void initiate_write_inodeblock __P((struct inodedep *, struct buf *));
160static void handle_workitem_freefile __P((struct freefile *));
161static void handle_workitem_remove __P((struct dirrem *));
162static struct dirrem *newdirrem __P((struct buf *, struct inode *,
163 struct inode *, int, struct dirrem **));
164static void free_diradd __P((struct diradd *));
165static void free_allocindir __P((struct allocindir *, struct inodedep *));
166static int indir_trunc __P((struct inode *, ufs_daddr_t, int, ufs_lbn_t,
167 long *));
168static void deallocate_dependencies __P((struct buf *, struct inodedep *));
169static void free_allocdirect __P((struct allocdirectlst *,
170 struct allocdirect *, int));
171static int check_inode_unwritten __P((struct inodedep *));
172static int free_inodedep __P((struct inodedep *));
173static void handle_workitem_freeblocks __P((struct freeblks *));
174static void merge_inode_lists __P((struct inodedep *));
175static void setup_allocindir_phase2 __P((struct buf *, struct inode *,
176 struct allocindir *));
177static struct allocindir *newallocindir __P((struct inode *, int, ufs_daddr_t,
178 ufs_daddr_t));
179static void handle_workitem_freefrag __P((struct freefrag *));
180static struct freefrag *newfreefrag __P((struct inode *, ufs_daddr_t, long));
181static void allocdirect_merge __P((struct allocdirectlst *,
182 struct allocdirect *, struct allocdirect *));
183static struct bmsafemap *bmsafemap_lookup __P((struct buf *));
184static int newblk_lookup __P((struct fs *, ufs_daddr_t, int,
185 struct newblk **));
186static int inodedep_lookup __P((struct fs *, ino_t, int, struct inodedep **));
187static int pagedep_lookup __P((struct inode *, ufs_lbn_t, int,
188 struct pagedep **));
189static void pause_timer __P((void *));
190static int request_cleanup __P((int, int));
191static int process_worklist_item __P((struct mount *, int));
192static void add_to_worklist __P((struct worklist *));
193
194/*
195 * Exported softdep operations.
196 */
197static void softdep_disk_io_initiation __P((struct buf *));
198static void softdep_disk_write_complete __P((struct buf *));
199static void softdep_deallocate_dependencies __P((struct buf *));
200static int softdep_fsync __P((struct vnode *));
201static int softdep_process_worklist __P((struct mount *));
202static void softdep_move_dependencies __P((struct buf *, struct buf *));
203static int softdep_count_dependencies __P((struct buf *bp, int));
204
205struct bio_ops bioops = {
206 softdep_disk_io_initiation, /* io_start */
207 softdep_disk_write_complete, /* io_complete */
208 softdep_deallocate_dependencies, /* io_deallocate */
209 softdep_fsync, /* io_fsync */
210 softdep_process_worklist, /* io_sync */
211 softdep_move_dependencies, /* io_movedeps */
212 softdep_count_dependencies, /* io_countdeps */
213};
214
215/*
216 * Locking primitives.
217 *
218 * For a uniprocessor, all we need to do is protect against disk
219 * interrupts. For a multiprocessor, this lock would have to be
220 * a mutex. A single mutex is used throughout this file, though
221 * finer grain locking could be used if contention warranted it.
222 *
223 * For a multiprocessor, the sleep call would accept a lock and
224 * release it after the sleep processing was complete. In a uniprocessor
225 * implementation there is no such interlock, so we simple mark
226 * the places where it needs to be done with the `interlocked' form
227 * of the lock calls. Since the uniprocessor sleep already interlocks
228 * the spl, there is nothing that really needs to be done.
229 */
230#ifndef /* NOT */ DEBUG
231static struct lockit {
232 int lkt_spl;
233} lk = { 0 };
234#define ACQUIRE_LOCK(lk) (lk)->lkt_spl = splbio()
235#define FREE_LOCK(lk) splx((lk)->lkt_spl)
236
237#else /* DEBUG */
238static struct lockit {
239 int lkt_spl;
240 pid_t lkt_held;
241} lk = { 0, -1 };
242static int lockcnt;
243
244static void acquire_lock __P((struct lockit *));
245static void free_lock __P((struct lockit *));
246void softdep_panic __P((char *));
247
248#define ACQUIRE_LOCK(lk) acquire_lock(lk)
249#define FREE_LOCK(lk) free_lock(lk)
250
251static void
252acquire_lock(lk)
253 struct lockit *lk;
254{
255 pid_t holder;
256
257 if (lk->lkt_held != -1) {
258 holder = lk->lkt_held;
259 FREE_LOCK(lk);
260 if (holder == CURPROC->p_pid)
261 panic("softdep_lock: locking against myself");
262 else
263 panic("softdep_lock: lock held by %d", holder);
264 }
265 lk->lkt_spl = splbio();
266 lk->lkt_held = CURPROC->p_pid;
267 lockcnt++;
268}
269
270static void
271free_lock(lk)
272 struct lockit *lk;
273{
274
275 if (lk->lkt_held == -1)
276 panic("softdep_unlock: lock not held");
277 lk->lkt_held = -1;
278 splx(lk->lkt_spl);
279}
280
281/*
282 * Function to release soft updates lock and panic.
283 */
284void
285softdep_panic(msg)
286 char *msg;
287{
288
289 if (lk.lkt_held != -1)
290 FREE_LOCK(&lk);
291 panic(msg);
292}
293#endif /* DEBUG */
294
295static int interlocked_sleep __P((struct lockit *, int, void *, int,
296 const char *, int));
297
298/*
299 * When going to sleep, we must save our SPL so that it does
300 * not get lost if some other process uses the lock while we
301 * are sleeping. We restore it after we have slept. This routine
302 * wraps the interlocking with functions that sleep. The list
303 * below enumerates the available set of operations.
304 */
305#define UNKNOWN 0
306#define SLEEP 1
307#define LOCKBUF 2
308
309static int
310interlocked_sleep(lk, op, ident, flags, wmesg, timo)
311 struct lockit *lk;
312 int op;
313 void *ident;
314 int flags;
315 const char *wmesg;
316 int timo;
317{
318 pid_t holder;
319 int s, retval;
320
321 s = lk->lkt_spl;
322# ifdef DEBUG
323 if (lk->lkt_held == -1)
324 panic("interlocked_sleep: lock not held");
325 lk->lkt_held = -1;
326# endif /* DEBUG */
327 switch (op) {
328 case SLEEP:
329 retval = tsleep(ident, flags, wmesg, timo);
330 break;
331 case LOCKBUF:
332 retval = BUF_LOCK((struct buf *)ident, flags);
333 break;
334 default:
335 panic("interlocked_sleep: unknown operation");
336 }
337# ifdef DEBUG
338 if (lk->lkt_held != -1) {
339 holder = lk->lkt_held;
340 FREE_LOCK(lk);
341 if (holder == CURPROC->p_pid)
342 panic("interlocked_sleep: locking against self");
343 else
344 panic("interlocked_sleep: lock held by %d", holder);
345 }
346 lk->lkt_held = CURPROC->p_pid;
347 lockcnt++;
348# endif /* DEBUG */
349 lk->lkt_spl = s;
350 return (retval);
351}
352
353/*
354 * Place holder for real semaphores.
355 */
356struct sema {
357 int value;
358 pid_t holder;
359 char *name;
360 int prio;
361 int timo;
362};
363static void sema_init __P((struct sema *, char *, int, int));
364static int sema_get __P((struct sema *, struct lockit *));
365static void sema_release __P((struct sema *));
366
367static void
368sema_init(semap, name, prio, timo)
369 struct sema *semap;
370 char *name;
371 int prio, timo;
372{
373
374 semap->holder = -1;
375 semap->value = 0;
376 semap->name = name;
377 semap->prio = prio;
378 semap->timo = timo;
379}
380
381static int
382sema_get(semap, interlock)
383 struct sema *semap;
384 struct lockit *interlock;
385{
386
387 if (semap->value++ > 0) {
388 if (interlock != NULL) {
389 interlocked_sleep(interlock, SLEEP, (caddr_t)semap,
390 semap->prio, semap->name, semap->timo);
391 FREE_LOCK(interlock);
392 } else {
393 tsleep((caddr_t)semap, semap->prio, semap->name,
394 semap->timo);
395 }
396 return (0);
397 }
398 semap->holder = CURPROC->p_pid;
399 if (interlock != NULL)
400 FREE_LOCK(interlock);
401 return (1);
402}
403
404static void
405sema_release(semap)
406 struct sema *semap;
407{
408
409 if (semap->value <= 0 || semap->holder != CURPROC->p_pid) {
410 if (lk.lkt_held != -1)
411 FREE_LOCK(&lk);
412 panic("sema_release: not held");
413 }
414 if (--semap->value > 0) {
415 semap->value = 0;
416 wakeup(semap);
417 }
418 semap->holder = -1;
419}
420
421/*
422 * Worklist queue management.
423 * These routines require that the lock be held.
424 */
425#ifndef /* NOT */ DEBUG
426#define WORKLIST_INSERT(head, item) do { \
427 (item)->wk_state |= ONWORKLIST; \
428 LIST_INSERT_HEAD(head, item, wk_list); \
429} while (0)
430#define WORKLIST_REMOVE(item) do { \
431 (item)->wk_state &= ~ONWORKLIST; \
432 LIST_REMOVE(item, wk_list); \
433} while (0)
434#define WORKITEM_FREE(item, type) FREE(item, DtoM(type))
435
436#else /* DEBUG */
437static void worklist_insert __P((struct workhead *, struct worklist *));
438static void worklist_remove __P((struct worklist *));
439static void workitem_free __P((struct worklist *, int));
440
441#define WORKLIST_INSERT(head, item) worklist_insert(head, item)
442#define WORKLIST_REMOVE(item) worklist_remove(item)
443#define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type)
444
445static void
446worklist_insert(head, item)
447 struct workhead *head;
448 struct worklist *item;
449{
450
451 if (lk.lkt_held == -1)
452 panic("worklist_insert: lock not held");
453 if (item->wk_state & ONWORKLIST) {
454 FREE_LOCK(&lk);
455 panic("worklist_insert: already on list");
456 }
457 item->wk_state |= ONWORKLIST;
458 LIST_INSERT_HEAD(head, item, wk_list);
459}
460
461static void
462worklist_remove(item)
463 struct worklist *item;
464{
465
466 if (lk.lkt_held == -1)
467 panic("worklist_remove: lock not held");
468 if ((item->wk_state & ONWORKLIST) == 0) {
469 FREE_LOCK(&lk);
470 panic("worklist_remove: not on list");
471 }
472 item->wk_state &= ~ONWORKLIST;
473 LIST_REMOVE(item, wk_list);
474}
475
476static void
477workitem_free(item, type)
478 struct worklist *item;
479 int type;
480{
481
482 if (item->wk_state & ONWORKLIST) {
483 if (lk.lkt_held != -1)
484 FREE_LOCK(&lk);
485 panic("workitem_free: still on list");
486 }
487 if (item->wk_type != type) {
488 if (lk.lkt_held != -1)
489 FREE_LOCK(&lk);
490 panic("workitem_free: type mismatch");
491 }
492 FREE(item, DtoM(type));
493}
494#endif /* DEBUG */
495
496/*
497 * Workitem queue management
498 */
499static struct workhead softdep_workitem_pending;
500static int num_on_worklist; /* number of worklist items to be processed */
501static int softdep_worklist_busy; /* 1 => trying to do unmount */
502static int softdep_worklist_req; /* serialized waiters */
503static int max_softdeps; /* maximum number of structs before slowdown */
504static int tickdelay = 2; /* number of ticks to pause during slowdown */
505static int *stat_countp; /* statistic to count in proc_waiting timeout */
506static int proc_waiting; /* tracks whether we have a timeout posted */
507static struct callout_handle handle; /* handle on posted proc_waiting timeout */
508static struct proc *filesys_syncer; /* proc of filesystem syncer process */
509static int req_clear_inodedeps; /* syncer process flush some inodedeps */
510#define FLUSH_INODES 1
511static int req_clear_remove; /* syncer process flush some freeblks */
512#define FLUSH_REMOVE 2
513/*
514 * runtime statistics
515 */
516static int stat_worklist_push; /* number of worklist cleanups */
517static int stat_blk_limit_push; /* number of times block limit neared */
518static int stat_ino_limit_push; /* number of times inode limit neared */
519static int stat_blk_limit_hit; /* number of times block slowdown imposed */
520static int stat_ino_limit_hit; /* number of times inode slowdown imposed */
521static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */
522static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */
523static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */
524static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
525static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */
526#ifdef DEBUG
527#include <vm/vm.h>
528#include <sys/sysctl.h>
529SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, "");
530SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, "");
531SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,"");
532SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,"");
533SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,"");
534SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, "");
535SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, "");
536SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, "");
537SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, "");
538SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, "");
539SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, "");
540SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, "");
541#endif /* DEBUG */
542
543/*
544 * Add an item to the end of the work queue.
545 * This routine requires that the lock be held.
546 * This is the only routine that adds items to the list.
547 * The following routine is the only one that removes items
548 * and does so in order from first to last.
549 */
550static void
551add_to_worklist(wk)
552 struct worklist *wk;
553{
554 static struct worklist *worklist_tail;
555
556 if (wk->wk_state & ONWORKLIST) {
557 if (lk.lkt_held != -1)
558 FREE_LOCK(&lk);
559 panic("add_to_worklist: already on list");
560 }
561 wk->wk_state |= ONWORKLIST;
562 if (LIST_FIRST(&softdep_workitem_pending) == NULL)
563 LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list);
564 else
565 LIST_INSERT_AFTER(worklist_tail, wk, wk_list);
566 worklist_tail = wk;
567 num_on_worklist += 1;
568}
569
570/*
571 * Process that runs once per second to handle items in the background queue.
572 *
573 * Note that we ensure that everything is done in the order in which they
574 * appear in the queue. The code below depends on this property to ensure
575 * that blocks of a file are freed before the inode itself is freed. This
576 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
577 * until all the old ones have been purged from the dependency lists.
578 */
579static int
580softdep_process_worklist(matchmnt)
581 struct mount *matchmnt;
582{
583 struct proc *p = CURPROC;
584 int matchcnt, loopcount;
585 long starttime;
586
587 /*
588 * Record the process identifier of our caller so that we can give
589 * this process preferential treatment in request_cleanup below.
590 */
591 filesys_syncer = p;
592 matchcnt = 0;
593
594 /*
595 * There is no danger of having multiple processes run this
596 * code, but we have to single-thread it when softdep_flushfiles()
597 * is in operation to get an accurate count of the number of items
598 * related to its mount point that are in the list.
599 */
600 if (matchmnt == NULL) {
601 if (softdep_worklist_busy < 0)
602 return(-1);
603 softdep_worklist_busy += 1;
604 }
605
606 /*
607 * If requested, try removing inode or removal dependencies.
608 */
609 if (req_clear_inodedeps) {
610 clear_inodedeps(p);
611 req_clear_inodedeps -= 1;
612 wakeup_one(&proc_waiting);
613 }
614 if (req_clear_remove) {
615 clear_remove(p);
616 req_clear_remove -= 1;
617 wakeup_one(&proc_waiting);
618 }
619 loopcount = 1;
620 starttime = time_second;
621 while (num_on_worklist > 0) {
622 matchcnt += process_worklist_item(matchmnt, 0);
623
624 /*
625 * If a umount operation wants to run the worklist
626 * accurately, abort.
627 */
628 if (softdep_worklist_req && matchmnt == NULL) {
629 matchcnt = -1;
630 break;
631 }
632
633 /*
634 * If requested, try removing inode or removal dependencies.
635 */
636 if (req_clear_inodedeps) {
637 clear_inodedeps(p);
638 req_clear_inodedeps -= 1;
639 wakeup_one(&proc_waiting);
640 }
641 if (req_clear_remove) {
642 clear_remove(p);
643 req_clear_remove -= 1;
644 wakeup_one(&proc_waiting);
645 }
646 /*
647 * We do not generally want to stop for buffer space, but if
648 * we are really being a buffer hog, we will stop and wait.
649 */
650 if (loopcount++ % 128 == 0)
651 bwillwrite();
652 /*
653 * Never allow processing to run for more than one
654 * second. Otherwise the other syncer tasks may get
655 * excessively backlogged.
656 */
657 if (starttime != time_second && matchmnt == NULL) {
658 matchcnt = -1;
659 break;
660 }
661 }
662 if (matchmnt == NULL) {
663 --softdep_worklist_busy;
664 if (softdep_worklist_req && softdep_worklist_busy == 0)
665 wakeup(&softdep_worklist_req);
666 }
667 return (matchcnt);
668}
669
670/*
671 * Process one item on the worklist.
672 */
673static int
674process_worklist_item(matchmnt, flags)
675 struct mount *matchmnt;
676 int flags;
677{
678 struct worklist *wk;
679 struct dirrem *dirrem;
680 struct fs *matchfs;
681 struct vnode *vp;
682 int matchcnt = 0;
683
684 matchfs = NULL;
685 if (matchmnt != NULL)
686 matchfs = VFSTOUFS(matchmnt)->um_fs;
687 ACQUIRE_LOCK(&lk);
688 /*
689 * Normally we just process each item on the worklist in order.
690 * However, if we are in a situation where we cannot lock any
691 * inodes, we have to skip over any dirrem requests whose
692 * vnodes are resident and locked.
693 */
694 LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) {
695 if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
696 break;
697 dirrem = WK_DIRREM(wk);
698 vp = ufs_ihashlookup(VFSTOUFS(dirrem->dm_mnt)->um_dev,
699 dirrem->dm_oldinum);
700 if (vp == NULL || !VOP_ISLOCKED(vp, CURPROC))
701 break;
702 }
703 if (wk == 0) {
704 FREE_LOCK(&lk);
705 return (0);
706 }
707 WORKLIST_REMOVE(wk);
708 num_on_worklist -= 1;
709 FREE_LOCK(&lk);
710 switch (wk->wk_type) {
711
712 case D_DIRREM:
713 /* removal of a directory entry */
714 if (WK_DIRREM(wk)->dm_mnt == matchmnt)
715 matchcnt += 1;
716 handle_workitem_remove(WK_DIRREM(wk));
717 break;
718
719 case D_FREEBLKS:
720 /* releasing blocks and/or fragments from a file */
721 if (WK_FREEBLKS(wk)->fb_fs == matchfs)
722 matchcnt += 1;
723 handle_workitem_freeblocks(WK_FREEBLKS(wk));
724 break;
725
726 case D_FREEFRAG:
727 /* releasing a fragment when replaced as a file grows */
728 if (WK_FREEFRAG(wk)->ff_fs == matchfs)
729 matchcnt += 1;
730 handle_workitem_freefrag(WK_FREEFRAG(wk));
731 break;
732
733 case D_FREEFILE:
734 /* releasing an inode when its link count drops to 0 */
735 if (WK_FREEFILE(wk)->fx_fs == matchfs)
736 matchcnt += 1;
737 handle_workitem_freefile(WK_FREEFILE(wk));
738 break;
739
740 default:
741 panic("%s_process_worklist: Unknown type %s",
742 "softdep", TYPENAME(wk->wk_type));
743 /* NOTREACHED */
744 }
745 return (matchcnt);
746}
747
748/*
749 * Move dependencies from one buffer to another.
750 */
751static void
752softdep_move_dependencies(oldbp, newbp)
753 struct buf *oldbp;
754 struct buf *newbp;
755{
756 struct worklist *wk, *wktail;
757
758 if (LIST_FIRST(&newbp->b_dep) != NULL)
759 panic("softdep_move_dependencies: need merge code");
760 wktail = 0;
761 ACQUIRE_LOCK(&lk);
762 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
763 LIST_REMOVE(wk, wk_list);
764 if (wktail == 0)
765 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
766 else
767 LIST_INSERT_AFTER(wktail, wk, wk_list);
768 wktail = wk;
769 }
770 FREE_LOCK(&lk);
771}
772
773/*
774 * Purge the work list of all items associated with a particular mount point.
775 */
776int
777softdep_flushfiles(oldmnt, flags, p)
778 struct mount *oldmnt;
779 int flags;
780 struct proc *p;
781{
782 struct vnode *devvp;
783 int error, loopcnt;
784
785 /*
786 * Await our turn to clear out the queue, then serialize access.
787 */
788 while (softdep_worklist_busy != 0) {
789 softdep_worklist_req += 1;
790 tsleep(&softdep_worklist_req, PRIBIO, "softflush", 0);
791 softdep_worklist_req -= 1;
792 }
793 softdep_worklist_busy = -1;
794
795 if ((error = ffs_flushfiles(oldmnt, flags, p)) != 0) {
796 softdep_worklist_busy = 0;
797 if (softdep_worklist_req)
798 wakeup(&softdep_worklist_req);
799 return (error);
800 }
801 /*
802 * Alternately flush the block device associated with the mount
803 * point and process any dependencies that the flushing
804 * creates. In theory, this loop can happen at most twice,
805 * but we give it a few extra just to be sure.
806 */
807 devvp = VFSTOUFS(oldmnt)->um_devvp;
808 for (loopcnt = 10; loopcnt > 0; ) {
809 if (softdep_process_worklist(oldmnt) == 0) {
810 loopcnt--;
811 /*
812 * Do another flush in case any vnodes were brought in
813 * as part of the cleanup operations.
814 */
815 if ((error = ffs_flushfiles(oldmnt, flags, p)) != 0)
816 break;
817 /*
818 * If we still found nothing to do, we are really done.
819 */
820 if (softdep_process_worklist(oldmnt) == 0)
821 break;
822 }
823 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, p);
824 error = VOP_FSYNC(devvp, p->p_ucred, MNT_WAIT, p);
825 VOP_UNLOCK(devvp, 0, p);
826 if (error)
827 break;
828 }
829 softdep_worklist_busy = 0;
830 if (softdep_worklist_req)
831 wakeup(&softdep_worklist_req);
832
833 /*
834 * If we are unmounting then it is an error to fail. If we
835 * are simply trying to downgrade to read-only, then filesystem
836 * activity can keep us busy forever, so we just fail with EBUSY.
837 */
838 if (loopcnt == 0) {
839 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
840 panic("softdep_flushfiles: looping");
841 error = EBUSY;
842 }
843 return (error);
844}
845
846/*
847 * Structure hashing.
848 *
849 * There are three types of structures that can be looked up:
850 * 1) pagedep structures identified by mount point, inode number,
851 * and logical block.
852 * 2) inodedep structures identified by mount point and inode number.
853 * 3) newblk structures identified by mount point and
854 * physical block number.
855 *
856 * The "pagedep" and "inodedep" dependency structures are hashed
857 * separately from the file blocks and inodes to which they correspond.
858 * This separation helps when the in-memory copy of an inode or
859 * file block must be replaced. It also obviates the need to access
860 * an inode or file page when simply updating (or de-allocating)
861 * dependency structures. Lookup of newblk structures is needed to
862 * find newly allocated blocks when trying to associate them with
863 * their allocdirect or allocindir structure.
864 *
865 * The lookup routines optionally create and hash a new instance when
866 * an existing entry is not found.
867 */
868#define DEPALLOC 0x0001 /* allocate structure if lookup fails */
869#define NODELAY 0x0002 /* cannot do background work */
870
871/*
872 * Structures and routines associated with pagedep caching.
873 */
874LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
875u_long pagedep_hash; /* size of hash table - 1 */
876#define PAGEDEP_HASH(mp, inum, lbn) \
877 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
878 pagedep_hash])
879static struct sema pagedep_in_progress;
880
881/*
882 * Look up a pagedep. Return 1 if found, 0 if not found.
883 * If not found, allocate if DEPALLOC flag is passed.
884 * Found or allocated entry is returned in pagedeppp.
885 * This routine must be called with splbio interrupts blocked.
886 */
887static int
888pagedep_lookup(ip, lbn, flags, pagedeppp)
889 struct inode *ip;
890 ufs_lbn_t lbn;
891 int flags;
892 struct pagedep **pagedeppp;
893{
894 struct pagedep *pagedep;
895 struct pagedep_hashhead *pagedephd;
896 struct mount *mp;
897 int i;
898
899#ifdef DEBUG
900 if (lk.lkt_held == -1)
901 panic("pagedep_lookup: lock not held");
902#endif
903 mp = ITOV(ip)->v_mount;
904 pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn);
905top:
906 LIST_FOREACH(pagedep, pagedephd, pd_hash)
907 if (ip->i_number == pagedep->pd_ino &&
908 lbn == pagedep->pd_lbn &&
909 mp == pagedep->pd_mnt)
910 break;
911 if (pagedep) {
912 *pagedeppp = pagedep;
913 return (1);
914 }
915 if ((flags & DEPALLOC) == 0) {
916 *pagedeppp = NULL;
917 return (0);
918 }
919 if (sema_get(&pagedep_in_progress, &lk) == 0) {
920 ACQUIRE_LOCK(&lk);
921 goto top;
922 }
923 MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), M_PAGEDEP,
924 M_SOFTDEP_FLAGS);
925 bzero(pagedep, sizeof(struct pagedep));
926 pagedep->pd_list.wk_type = D_PAGEDEP;
927 pagedep->pd_mnt = mp;
928 pagedep->pd_ino = ip->i_number;
929 pagedep->pd_lbn = lbn;
930 LIST_INIT(&pagedep->pd_dirremhd);
931 LIST_INIT(&pagedep->pd_pendinghd);
932 for (i = 0; i < DAHASHSZ; i++)
933 LIST_INIT(&pagedep->pd_diraddhd[i]);
934 ACQUIRE_LOCK(&lk);
935 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
936 sema_release(&pagedep_in_progress);
937 *pagedeppp = pagedep;
938 return (0);
939}
940
941/*
942 * Structures and routines associated with inodedep caching.
943 */
944LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
945static u_long inodedep_hash; /* size of hash table - 1 */
946static long num_inodedep; /* number of inodedep allocated */
947#define INODEDEP_HASH(fs, inum) \
948 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
949static struct sema inodedep_in_progress;
950
951/*
952 * Look up a inodedep. Return 1 if found, 0 if not found.
953 * If not found, allocate if DEPALLOC flag is passed.
954 * Found or allocated entry is returned in inodedeppp.
955 * This routine must be called with splbio interrupts blocked.
956 */
957static int
958inodedep_lookup(fs, inum, flags, inodedeppp)
959 struct fs *fs;
960 ino_t inum;
961 int flags;
962 struct inodedep **inodedeppp;
963{
964 struct inodedep *inodedep;
965 struct inodedep_hashhead *inodedephd;
966 int firsttry;
967
968#ifdef DEBUG
969 if (lk.lkt_held == -1)
970 panic("inodedep_lookup: lock not held");
971#endif
972 firsttry = 1;
973 inodedephd = INODEDEP_HASH(fs, inum);
974top:
975 LIST_FOREACH(inodedep, inodedephd, id_hash)
976 if (inum == inodedep->id_ino && fs == inodedep->id_fs)
977 break;
978 if (inodedep) {
979 *inodedeppp = inodedep;
980 return (1);
981 }
982 if ((flags & DEPALLOC) == 0) {
983 *inodedeppp = NULL;
984 return (0);
985 }
986 /*
987 * If we are over our limit, try to improve the situation.
988 */
989 if (num_inodedep > max_softdeps && firsttry &&
990 speedup_syncer() == 0 && (flags & NODELAY) == 0 &&
991 request_cleanup(FLUSH_INODES, 1)) {
992 firsttry = 0;
993 goto top;
994 }
995 if (sema_get(&inodedep_in_progress, &lk) == 0) {
996 ACQUIRE_LOCK(&lk);
997 goto top;
998 }
999 num_inodedep += 1;
1000 MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep),
1001 M_INODEDEP, M_SOFTDEP_FLAGS);
1002 inodedep->id_list.wk_type = D_INODEDEP;
1003 inodedep->id_fs = fs;
1004 inodedep->id_ino = inum;
1005 inodedep->id_state = ALLCOMPLETE;
1006 inodedep->id_nlinkdelta = 0;
1007 inodedep->id_savedino = NULL;
1008 inodedep->id_savedsize = -1;
1009 inodedep->id_buf = NULL;
1010 LIST_INIT(&inodedep->id_pendinghd);
1011 LIST_INIT(&inodedep->id_inowait);
1012 LIST_INIT(&inodedep->id_bufwait);
1013 TAILQ_INIT(&inodedep->id_inoupdt);
1014 TAILQ_INIT(&inodedep->id_newinoupdt);
1015 ACQUIRE_LOCK(&lk);
1016 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
1017 sema_release(&inodedep_in_progress);
1018 *inodedeppp = inodedep;
1019 return (0);
1020}
1021
1022/*
1023 * Structures and routines associated with newblk caching.
1024 */
1025LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
1026u_long newblk_hash; /* size of hash table - 1 */
1027#define NEWBLK_HASH(fs, inum) \
1028 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
1029static struct sema newblk_in_progress;
1030
1031/*
1032 * Look up a newblk. Return 1 if found, 0 if not found.
1033 * If not found, allocate if DEPALLOC flag is passed.
1034 * Found or allocated entry is returned in newblkpp.
1035 */
1036static int
1037newblk_lookup(fs, newblkno, flags, newblkpp)
1038 struct fs *fs;
1039 ufs_daddr_t newblkno;
1040 int flags;
1041 struct newblk **newblkpp;
1042{
1043 struct newblk *newblk;
1044 struct newblk_hashhead *newblkhd;
1045
1046 newblkhd = NEWBLK_HASH(fs, newblkno);
1047top:
1048 LIST_FOREACH(newblk, newblkhd, nb_hash)
1049 if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
1050 break;
1051 if (newblk) {
1052 *newblkpp = newblk;
1053 return (1);
1054 }
1055 if ((flags & DEPALLOC) == 0) {
1056 *newblkpp = NULL;
1057 return (0);
1058 }
1059 if (sema_get(&newblk_in_progress, 0) == 0)
1060 goto top;
1061 MALLOC(newblk, struct newblk *, sizeof(struct newblk),
1062 M_NEWBLK, M_SOFTDEP_FLAGS);
1063 newblk->nb_state = 0;
1064 newblk->nb_fs = fs;
1065 newblk->nb_newblkno = newblkno;
1066 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
1067 sema_release(&newblk_in_progress);
1068 *newblkpp = newblk;
1069 return (0);
1070}
1071
1072/*
1073 * Executed during filesystem system initialization before
1074 * mounting any file systems.
1075 */
1076void
1077softdep_initialize()
1078{
1079
1080 LIST_INIT(&mkdirlisthd);
1081 LIST_INIT(&softdep_workitem_pending);
1082 max_softdeps = min(desiredvnodes * 8,
1083 M_INODEDEP->ks_limit / (2 * sizeof(struct inodedep)));
1084 pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
1085 &pagedep_hash);
1086 sema_init(&pagedep_in_progress, "pagedep", PRIBIO, 0);
1087 inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
1088 sema_init(&inodedep_in_progress, "inodedep", PRIBIO, 0);
1089 newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash);
1090 sema_init(&newblk_in_progress, "newblk", PRIBIO, 0);
1091}
1092
1093/*
1094 * Called at mount time to notify the dependency code that a
1095 * filesystem wishes to use it.
1096 */
1097int
1098softdep_mount(devvp, mp, fs, cred)
1099 struct vnode *devvp;
1100 struct mount *mp;
1101 struct fs *fs;
1102 struct ucred *cred;
1103{
1104 struct csum cstotal;
1105 struct cg *cgp;
1106 struct buf *bp;
1107 int error, cyl;
1108
1109 mp->mnt_flag &= ~MNT_ASYNC;
1110 mp->mnt_flag |= MNT_SOFTDEP;
1111 /*
1112 * When doing soft updates, the counters in the
1113 * superblock may have gotten out of sync, so we have
1114 * to scan the cylinder groups and recalculate them.
1115 */
1116 if (fs->fs_clean != 0)
1117 return (0);
1118 bzero(&cstotal, sizeof cstotal);
1119 for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
1120 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
1121 fs->fs_cgsize, cred, &bp)) != 0) {
1122 brelse(bp);
1123 return (error);
1124 }
1125 cgp = (struct cg *)bp->b_data;
1126 cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
1127 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
1128 cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
1129 cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
1130 fs->fs_cs(fs, cyl) = cgp->cg_cs;
1131 brelse(bp);
1132 }
1133#ifdef DEBUG
1134 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
1135 printf("ffs_mountfs: superblock updated for soft updates\n");
1136#endif
1137 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
1138 return (0);
1139}
1140
1141/*
1142 * Protecting the freemaps (or bitmaps).
1143 *
1144 * To eliminate the need to execute fsck before mounting a file system
1145 * after a power failure, one must (conservatively) guarantee that the
1146 * on-disk copy of the bitmaps never indicate that a live inode or block is
1147 * free. So, when a block or inode is allocated, the bitmap should be
1148 * updated (on disk) before any new pointers. When a block or inode is
1149 * freed, the bitmap should not be updated until all pointers have been
1150 * reset. The latter dependency is handled by the delayed de-allocation
1151 * approach described below for block and inode de-allocation. The former
1152 * dependency is handled by calling the following procedure when a block or
1153 * inode is allocated. When an inode is allocated an "inodedep" is created
1154 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
1155 * Each "inodedep" is also inserted into the hash indexing structure so
1156 * that any additional link additions can be made dependent on the inode
1157 * allocation.
1158 *
1159 * The ufs file system maintains a number of free block counts (e.g., per
1160 * cylinder group, per cylinder and per <cylinder, rotational position> pair)
1161 * in addition to the bitmaps. These counts are used to improve efficiency
1162 * during allocation and therefore must be consistent with the bitmaps.
1163 * There is no convenient way to guarantee post-crash consistency of these
1164 * counts with simple update ordering, for two main reasons: (1) The counts
1165 * and bitmaps for a single cylinder group block are not in the same disk
1166 * sector. If a disk write is interrupted (e.g., by power failure), one may
1167 * be written and the other not. (2) Some of the counts are located in the
1168 * superblock rather than the cylinder group block. So, we focus our soft
1169 * updates implementation on protecting the bitmaps. When mounting a
1170 * filesystem, we recompute the auxiliary counts from the bitmaps.
1171 */
1172
1173/*
1174 * Called just after updating the cylinder group block to allocate an inode.
1175 */
1176void
1177softdep_setup_inomapdep(bp, ip, newinum)
1178 struct buf *bp; /* buffer for cylgroup block with inode map */
1179 struct inode *ip; /* inode related to allocation */
1180 ino_t newinum; /* new inode number being allocated */
1181{
1182 struct inodedep *inodedep;
1183 struct bmsafemap *bmsafemap;
1184
1185 /*
1186 * Create a dependency for the newly allocated inode.
1187 * Panic if it already exists as something is seriously wrong.
1188 * Otherwise add it to the dependency list for the buffer holding
1189 * the cylinder group map from which it was allocated.
1190 */
1191 ACQUIRE_LOCK(&lk);
1192 if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) {
1193 FREE_LOCK(&lk);
1194 panic("softdep_setup_inomapdep: found inode");
1195 }
1196 inodedep->id_buf = bp;
1197 inodedep->id_state &= ~DEPCOMPLETE;
1198 bmsafemap = bmsafemap_lookup(bp);
1199 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
1200 FREE_LOCK(&lk);
1201}
1202
1203/*
1204 * Called just after updating the cylinder group block to
1205 * allocate block or fragment.
1206 */
1207void
1208softdep_setup_blkmapdep(bp, fs, newblkno)
1209 struct buf *bp; /* buffer for cylgroup block with block map */
1210 struct fs *fs; /* filesystem doing allocation */
1211 ufs_daddr_t newblkno; /* number of newly allocated block */
1212{
1213 struct newblk *newblk;
1214 struct bmsafemap *bmsafemap;
1215
1216 /*
1217 * Create a dependency for the newly allocated block.
1218 * Add it to the dependency list for the buffer holding
1219 * the cylinder group map from which it was allocated.
1220 */
1221 if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
1222 panic("softdep_setup_blkmapdep: found block");
1223 ACQUIRE_LOCK(&lk);
1224 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp);
1225 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
1226 FREE_LOCK(&lk);
1227}
1228
1229/*
1230 * Find the bmsafemap associated with a cylinder group buffer.
1231 * If none exists, create one. The buffer must be locked when
1232 * this routine is called and this routine must be called with
1233 * splbio interrupts blocked.
1234 */
1235static struct bmsafemap *
1236bmsafemap_lookup(bp)
1237 struct buf *bp;
1238{
1239 struct bmsafemap *bmsafemap;
1240 struct worklist *wk;
1241
1242#ifdef DEBUG
1243 if (lk.lkt_held == -1)
1244 panic("bmsafemap_lookup: lock not held");
1245#endif
1246 LIST_FOREACH(wk, &bp->b_dep, wk_list)
1247 if (wk->wk_type == D_BMSAFEMAP)
1248 return (WK_BMSAFEMAP(wk));
1249 FREE_LOCK(&lk);
1250 MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap),
1251 M_BMSAFEMAP, M_SOFTDEP_FLAGS);
1252 bmsafemap->sm_list.wk_type = D_BMSAFEMAP;
1253 bmsafemap->sm_list.wk_state = 0;
1254 bmsafemap->sm_buf = bp;
1255 LIST_INIT(&bmsafemap->sm_allocdirecthd);
1256 LIST_INIT(&bmsafemap->sm_allocindirhd);
1257 LIST_INIT(&bmsafemap->sm_inodedephd);
1258 LIST_INIT(&bmsafemap->sm_newblkhd);
1259 ACQUIRE_LOCK(&lk);
1260 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
1261 return (bmsafemap);
1262}
1263
1264/*
1265 * Direct block allocation dependencies.
1266 *
1267 * When a new block is allocated, the corresponding disk locations must be
1268 * initialized (with zeros or new data) before the on-disk inode points to
1269 * them. Also, the freemap from which the block was allocated must be
1270 * updated (on disk) before the inode's pointer. These two dependencies are
1271 * independent of each other and are needed for all file blocks and indirect
1272 * blocks that are pointed to directly by the inode. Just before the
1273 * "in-core" version of the inode is updated with a newly allocated block
1274 * number, a procedure (below) is called to setup allocation dependency
1275 * structures. These structures are removed when the corresponding
1276 * dependencies are satisfied or when the block allocation becomes obsolete
1277 * (i.e., the file is deleted, the block is de-allocated, or the block is a
1278 * fragment that gets upgraded). All of these cases are handled in
1279 * procedures described later.
1280 *
1281 * When a file extension causes a fragment to be upgraded, either to a larger
1282 * fragment or to a full block, the on-disk location may change (if the
1283 * previous fragment could not simply be extended). In this case, the old
1284 * fragment must be de-allocated, but not until after the inode's pointer has
1285 * been updated. In most cases, this is handled by later procedures, which
1286 * will construct a "freefrag" structure to be added to the workitem queue
1287 * when the inode update is complete (or obsolete). The main exception to
1288 * this is when an allocation occurs while a pending allocation dependency
1289 * (for the same block pointer) remains. This case is handled in the main
1290 * allocation dependency setup procedure by immediately freeing the
1291 * unreferenced fragments.
1292 */
1293void
1294softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
1295 struct inode *ip; /* inode to which block is being added */
1296 ufs_lbn_t lbn; /* block pointer within inode */
1297 ufs_daddr_t newblkno; /* disk block number being added */
1298 ufs_daddr_t oldblkno; /* previous block number, 0 unless frag */
1299 long newsize; /* size of new block */
1300 long oldsize; /* size of new block */
1301 struct buf *bp; /* bp for allocated block */
1302{
1303 struct allocdirect *adp, *oldadp;
1304 struct allocdirectlst *adphead;
1305 struct bmsafemap *bmsafemap;
1306 struct inodedep *inodedep;
1307 struct pagedep *pagedep;
1308 struct newblk *newblk;
1309
1310 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect),
1311 M_ALLOCDIRECT, M_SOFTDEP_FLAGS);
1312 bzero(adp, sizeof(struct allocdirect));
1313 adp->ad_list.wk_type = D_ALLOCDIRECT;
1314 adp->ad_lbn = lbn;
1315 adp->ad_newblkno = newblkno;
1316 adp->ad_oldblkno = oldblkno;
1317 adp->ad_newsize = newsize;
1318 adp->ad_oldsize = oldsize;
1319 adp->ad_state = ATTACHED;
1320 if (newblkno == oldblkno)
1321 adp->ad_freefrag = NULL;
1322 else
1323 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1324
1325 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1326 panic("softdep_setup_allocdirect: lost block");
1327
1328 ACQUIRE_LOCK(&lk);
1329 inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1330 adp->ad_inodedep = inodedep;
1331
1332 if (newblk->nb_state == DEPCOMPLETE) {
1333 adp->ad_state |= DEPCOMPLETE;
1334 adp->ad_buf = NULL;
1335 } else {
1336 bmsafemap = newblk->nb_bmsafemap;
1337 adp->ad_buf = bmsafemap->sm_buf;
1338 LIST_REMOVE(newblk, nb_deps);
1339 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1340 }
1341 LIST_REMOVE(newblk, nb_hash);
1342 FREE(newblk, M_NEWBLK);
1343
1344 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list);
1345 if (lbn >= NDADDR) {
1346 /* allocating an indirect block */
1347 if (oldblkno != 0) {
1348 FREE_LOCK(&lk);
1349 panic("softdep_setup_allocdirect: non-zero indir");
1350 }
1351 } else {
1352 /*
1353 * Allocating a direct block.
1354 *
1355 * If we are allocating a directory block, then we must
1356 * allocate an associated pagedep to track additions and
1357 * deletions.
1358 */
1359 if ((ip->i_mode & IFMT) == IFDIR &&
1360 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1361 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
1362 }
1363 /*
1364 * The list of allocdirects must be kept in sorted and ascending
1365 * order so that the rollback routines can quickly determine the
1366 * first uncommitted block (the size of the file stored on disk
1367 * ends at the end of the lowest committed fragment, or if there
1368 * are no fragments, at the end of the highest committed block).
1369 * Since files generally grow, the typical case is that the new
1370 * block is to be added at the end of the list. We speed this
1371 * special case by checking against the last allocdirect in the
1372 * list before laboriously traversing the list looking for the
1373 * insertion point.
1374 */
1375 adphead = &inodedep->id_newinoupdt;
1376 oldadp = TAILQ_LAST(adphead, allocdirectlst);
1377 if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1378 /* insert at end of list */
1379 TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1380 if (oldadp != NULL && oldadp->ad_lbn == lbn)
1381 allocdirect_merge(adphead, adp, oldadp);
1382 FREE_LOCK(&lk);
1383 return;
1384 }
1385 TAILQ_FOREACH(oldadp, adphead, ad_next) {
1386 if (oldadp->ad_lbn >= lbn)
1387 break;
1388 }
1389 if (oldadp == NULL) {
1390 FREE_LOCK(&lk);
1391 panic("softdep_setup_allocdirect: lost entry");
1392 }
1393 /* insert in middle of list */
1394 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1395 if (oldadp->ad_lbn == lbn)
1396 allocdirect_merge(adphead, adp, oldadp);
1397 FREE_LOCK(&lk);
1398}
1399
1400/*
1401 * Replace an old allocdirect dependency with a newer one.
1402 * This routine must be called with splbio interrupts blocked.
1403 */
1404static void
1405allocdirect_merge(adphead, newadp, oldadp)
1406 struct allocdirectlst *adphead; /* head of list holding allocdirects */
1407 struct allocdirect *newadp; /* allocdirect being added */
1408 struct allocdirect *oldadp; /* existing allocdirect being checked */
1409{
1410 struct freefrag *freefrag;
1411
1412#ifdef DEBUG
1413 if (lk.lkt_held == -1)
1414 panic("allocdirect_merge: lock not held");
1415#endif
1416 if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
1417 newadp->ad_oldsize != oldadp->ad_newsize ||
1418 newadp->ad_lbn >= NDADDR) {
1419 FREE_LOCK(&lk);
1420 panic("allocdirect_check: old %d != new %d || lbn %ld >= %d",
1421 newadp->ad_oldblkno, oldadp->ad_newblkno, newadp->ad_lbn,
1422 NDADDR);
1423 }
1424 newadp->ad_oldblkno = oldadp->ad_oldblkno;
1425 newadp->ad_oldsize = oldadp->ad_oldsize;
1426 /*
1427 * If the old dependency had a fragment to free or had never
1428 * previously had a block allocated, then the new dependency
1429 * can immediately post its freefrag and adopt the old freefrag.
1430 * This action is done by swapping the freefrag dependencies.
1431 * The new dependency gains the old one's freefrag, and the
1432 * old one gets the new one and then immediately puts it on
1433 * the worklist when it is freed by free_allocdirect. It is
1434 * not possible to do this swap when the old dependency had a
1435 * non-zero size but no previous fragment to free. This condition
1436 * arises when the new block is an extension of the old block.
1437 * Here, the first part of the fragment allocated to the new
1438 * dependency is part of the block currently claimed on disk by
1439 * the old dependency, so cannot legitimately be freed until the
1440 * conditions for the new dependency are fulfilled.
1441 */
1442 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
1443 freefrag = newadp->ad_freefrag;
1444 newadp->ad_freefrag = oldadp->ad_freefrag;
1445 oldadp->ad_freefrag = freefrag;
1446 }
1447 free_allocdirect(adphead, oldadp, 0);
1448}
1449
1450/*
1451 * Allocate a new freefrag structure if needed.
1452 */
1453static struct freefrag *
1454newfreefrag(ip, blkno, size)
1455 struct inode *ip;
1456 ufs_daddr_t blkno;
1457 long size;
1458{
1459 struct freefrag *freefrag;
1460 struct fs *fs;
1461
1462 if (blkno == 0)
1463 return (NULL);
1464 fs = ip->i_fs;
1465 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
1466 panic("newfreefrag: frag size");
1467 MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag),
1468 M_FREEFRAG, M_SOFTDEP_FLAGS);
1469 freefrag->ff_list.wk_type = D_FREEFRAG;
1470 freefrag->ff_state = ip->i_uid & ~ONWORKLIST; /* XXX - used below */
1471 freefrag->ff_inum = ip->i_number;
1472 freefrag->ff_fs = fs;
1473 freefrag->ff_devvp = ip->i_devvp;
1474 freefrag->ff_blkno = blkno;
1475 freefrag->ff_fragsize = size;
1476 return (freefrag);
1477}
1478
1479/*
1480 * This workitem de-allocates fragments that were replaced during
1481 * file block allocation.
1482 */
1483static void
1484handle_workitem_freefrag(freefrag)
1485 struct freefrag *freefrag;
1486{
1487 struct inode tip;
1488
1489 tip.i_fs = freefrag->ff_fs;
1490 tip.i_devvp = freefrag->ff_devvp;
1491 tip.i_dev = freefrag->ff_devvp->v_rdev;
1492 tip.i_number = freefrag->ff_inum;
1493 tip.i_uid = freefrag->ff_state & ~ONWORKLIST; /* XXX - set above */
1494 ffs_blkfree(&tip, freefrag->ff_blkno, freefrag->ff_fragsize);
1495 FREE(freefrag, M_FREEFRAG);
1496}
1497
1498/*
1499 * Indirect block allocation dependencies.
1500 *
1501 * The same dependencies that exist for a direct block also exist when
1502 * a new block is allocated and pointed to by an entry in a block of
1503 * indirect pointers. The undo/redo states described above are also
1504 * used here. Because an indirect block contains many pointers that
1505 * may have dependencies, a second copy of the entire in-memory indirect
1506 * block is kept. The buffer cache copy is always completely up-to-date.
1507 * The second copy, which is used only as a source for disk writes,
1508 * contains only the safe pointers (i.e., those that have no remaining
1509 * update dependencies). The second copy is freed when all pointers
1510 * are safe. The cache is not allowed to replace indirect blocks with
1511 * pending update dependencies. If a buffer containing an indirect
1512 * block with dependencies is written, these routines will mark it
1513 * dirty again. It can only be successfully written once all the
1514 * dependencies are removed. The ffs_fsync routine in conjunction with
1515 * softdep_sync_metadata work together to get all the dependencies
1516 * removed so that a file can be successfully written to disk. Three
1517 * procedures are used when setting up indirect block pointer
1518 * dependencies. The division is necessary because of the organization
1519 * of the "balloc" routine and because of the distinction between file
1520 * pages and file metadata blocks.
1521 */
1522
1523/*
1524 * Allocate a new allocindir structure.
1525 */
1526static struct allocindir *
1527newallocindir(ip, ptrno, newblkno, oldblkno)
1528 struct inode *ip; /* inode for file being extended */
1529 int ptrno; /* offset of pointer in indirect block */
1530 ufs_daddr_t newblkno; /* disk block number being added */
1531 ufs_daddr_t oldblkno; /* previous block number, 0 if none */
1532{
1533 struct allocindir *aip;
1534
1535 MALLOC(aip, struct allocindir *, sizeof(struct allocindir),
1536 M_ALLOCINDIR, M_SOFTDEP_FLAGS);
1537 bzero(aip, sizeof(struct allocindir));
1538 aip->ai_list.wk_type = D_ALLOCINDIR;
1539 aip->ai_state = ATTACHED;
1540 aip->ai_offset = ptrno;
1541 aip->ai_newblkno = newblkno;
1542 aip->ai_oldblkno = oldblkno;
1543 aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
1544 return (aip);
1545}
1546
1547/*
1548 * Called just before setting an indirect block pointer
1549 * to a newly allocated file page.
1550 */
1551void
1552softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
1553 struct inode *ip; /* inode for file being extended */
1554 ufs_lbn_t lbn; /* allocated block number within file */
1555 struct buf *bp; /* buffer with indirect blk referencing page */
1556 int ptrno; /* offset of pointer in indirect block */
1557 ufs_daddr_t newblkno; /* disk block number being added */
1558 ufs_daddr_t oldblkno; /* previous block number, 0 if none */
1559 struct buf *nbp; /* buffer holding allocated page */
1560{
1561 struct allocindir *aip;
1562 struct pagedep *pagedep;
1563
1564 aip = newallocindir(ip, ptrno, newblkno, oldblkno);
1565 ACQUIRE_LOCK(&lk);
1566 /*
1567 * If we are allocating a directory page, then we must
1568 * allocate an associated pagedep to track additions and
1569 * deletions.
1570 */
1571 if ((ip->i_mode & IFMT) == IFDIR &&
1572 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1573 WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list);
1574 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
1575 FREE_LOCK(&lk);
1576 setup_allocindir_phase2(bp, ip, aip);
1577}
1578
1579/*
1580 * Called just before setting an indirect block pointer to a
1581 * newly allocated indirect block.
1582 */
1583void
1584softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
1585 struct buf *nbp; /* newly allocated indirect block */
1586 struct inode *ip; /* inode for file being extended */
1587 struct buf *bp; /* indirect block referencing allocated block */
1588 int ptrno; /* offset of pointer in indirect block */
1589 ufs_daddr_t newblkno; /* disk block number being added */
1590{
1591 struct allocindir *aip;
1592
1593 aip = newallocindir(ip, ptrno, newblkno, 0);
1594 ACQUIRE_LOCK(&lk);
1595 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
1596 FREE_LOCK(&lk);
1597 setup_allocindir_phase2(bp, ip, aip);
1598}
1599
1600/*
1601 * Called to finish the allocation of the "aip" allocated
1602 * by one of the two routines above.
1603 */
1604static void
1605setup_allocindir_phase2(bp, ip, aip)
1606 struct buf *bp; /* in-memory copy of the indirect block */
1607 struct inode *ip; /* inode for file being extended */
1608 struct allocindir *aip; /* allocindir allocated by the above routines */
1609{
1610 struct worklist *wk;
1611 struct indirdep *indirdep, *newindirdep;
1612 struct bmsafemap *bmsafemap;
1613 struct allocindir *oldaip;
1614 struct freefrag *freefrag;
1615 struct newblk *newblk;
1616
1617 if (bp->b_lblkno >= 0)
1618 panic("setup_allocindir_phase2: not indir blk");
1619 for (indirdep = NULL, newindirdep = NULL; ; ) {
1620 ACQUIRE_LOCK(&lk);
1621 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1622 if (wk->wk_type != D_INDIRDEP)
1623 continue;
1624 indirdep = WK_INDIRDEP(wk);
1625 break;
1626 }
1627 if (indirdep == NULL && newindirdep) {
1628 indirdep = newindirdep;
1629 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
1630 newindirdep = NULL;
1631 }
1632 FREE_LOCK(&lk);
1633 if (indirdep) {
1634 if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
1635 &newblk) == 0)
1636 panic("setup_allocindir: lost block");
1637 ACQUIRE_LOCK(&lk);
1638 if (newblk->nb_state == DEPCOMPLETE) {
1639 aip->ai_state |= DEPCOMPLETE;
1640 aip->ai_buf = NULL;
1641 } else {
1642 bmsafemap = newblk->nb_bmsafemap;
1643 aip->ai_buf = bmsafemap->sm_buf;
1644 LIST_REMOVE(newblk, nb_deps);
1645 LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
1646 aip, ai_deps);
1647 }
1648 LIST_REMOVE(newblk, nb_hash);
1649 FREE(newblk, M_NEWBLK);
1650 aip->ai_indirdep = indirdep;
1651 /*
1652 * Check to see if there is an existing dependency
1653 * for this block. If there is, merge the old
1654 * dependency into the new one.
1655 */
1656 if (aip->ai_oldblkno == 0)
1657 oldaip = NULL;
1658 else
1659
1660 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next)
1661 if (oldaip->ai_offset == aip->ai_offset)
1662 break;
1663 if (oldaip != NULL) {
1664 if (oldaip->ai_newblkno != aip->ai_oldblkno) {
1665 FREE_LOCK(&lk);
1666 panic("setup_allocindir_phase2: blkno");
1667 }
1668 aip->ai_oldblkno = oldaip->ai_oldblkno;
1669 freefrag = oldaip->ai_freefrag;
1670 oldaip->ai_freefrag = aip->ai_freefrag;
1671 aip->ai_freefrag = freefrag;
1672 free_allocindir(oldaip, NULL);
1673 }
1674 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
1675 ((ufs_daddr_t *)indirdep->ir_savebp->b_data)
1676 [aip->ai_offset] = aip->ai_oldblkno;
1677 FREE_LOCK(&lk);
1678 }
1679 if (newindirdep) {
1680 if (indirdep->ir_savebp != NULL)
1681 brelse(newindirdep->ir_savebp);
1682 WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
1683 }
1684 if (indirdep)
1685 break;
1686 MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep),
1687 M_INDIRDEP, M_SOFTDEP_FLAGS);
1688 newindirdep->ir_list.wk_type = D_INDIRDEP;
1689 newindirdep->ir_state = ATTACHED;
1690 LIST_INIT(&newindirdep->ir_deplisthd);
1691 LIST_INIT(&newindirdep->ir_donehd);
1692 if (bp->b_blkno == bp->b_lblkno) {
1693 VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno,
1694 NULL, NULL);
1695 }
1696 newindirdep->ir_savebp =
1697 getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0);
1698 BUF_KERNPROC(newindirdep->ir_savebp);
1699 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
1700 }
1701}
1702
1703/*
1704 * Block de-allocation dependencies.
1705 *
1706 * When blocks are de-allocated, the on-disk pointers must be nullified before
1707 * the blocks are made available for use by other files. (The true
1708 * requirement is that old pointers must be nullified before new on-disk
1709 * pointers are set. We chose this slightly more stringent requirement to
1710 * reduce complexity.) Our implementation handles this dependency by updating
1711 * the inode (or indirect block) appropriately but delaying the actual block
1712 * de-allocation (i.e., freemap and free space count manipulation) until
1713 * after the updated versions reach stable storage. After the disk is
1714 * updated, the blocks can be safely de-allocated whenever it is convenient.
1715 * This implementation handles only the common case of reducing a file's
1716 * length to zero. Other cases are handled by the conventional synchronous
1717 * write approach.
1718 *
1719 * The ffs implementation with which we worked double-checks
1720 * the state of the block pointers and file size as it reduces
1721 * a file's length. Some of this code is replicated here in our
1722 * soft updates implementation. The freeblks->fb_chkcnt field is
1723 * used to transfer a part of this information to the procedure
1724 * that eventually de-allocates the blocks.
1725 *
1726 * This routine should be called from the routine that shortens
1727 * a file's length, before the inode's size or block pointers
1728 * are modified. It will save the block pointer information for
1729 * later release and zero the inode so that the calling routine
1730 * can release it.
1731 */
1732void
1733softdep_setup_freeblocks(ip, length)
1734 struct inode *ip; /* The inode whose length is to be reduced */
1735 off_t length; /* The new length for the file */
1736{
1737 struct freeblks *freeblks;
1738 struct inodedep *inodedep;
1739 struct allocdirect *adp;
1740 struct vnode *vp;
1741 struct buf *bp;
1742 struct fs *fs;
1743 int i, error, delay;
1744
1745 fs = ip->i_fs;
1746 if (length != 0)
1747 panic("softde_setup_freeblocks: non-zero length");
1748 MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks),
1749 M_FREEBLKS, M_SOFTDEP_FLAGS);
1750 bzero(freeblks, sizeof(struct freeblks));
1751 freeblks->fb_list.wk_type = D_FREEBLKS;
1752 freeblks->fb_uid = ip->i_uid;
1753 freeblks->fb_previousinum = ip->i_number;
1754 freeblks->fb_devvp = ip->i_devvp;
1755 freeblks->fb_fs = fs;
1756 freeblks->fb_oldsize = ip->i_size;
1757 freeblks->fb_newsize = length;
1758 freeblks->fb_chkcnt = ip->i_blocks;
1759 for (i = 0; i < NDADDR; i++) {
1760 freeblks->fb_dblks[i] = ip->i_db[i];
1761 ip->i_db[i] = 0;
1762 }
1763 for (i = 0; i < NIADDR; i++) {
1764 freeblks->fb_iblks[i] = ip->i_ib[i];
1765 ip->i_ib[i] = 0;
1766 }
1767 ip->i_blocks = 0;
1768 ip->i_size = 0;
1769 /*
1770 * Push the zero'ed inode to to its disk buffer so that we are free
1771 * to delete its dependencies below. Once the dependencies are gone
1772 * the buffer can be safely released.
1773 */
1774 if ((error = bread(ip->i_devvp,
1775 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
1776 (int)fs->fs_bsize, NOCRED, &bp)) != 0)
1777 softdep_error("softdep_setup_freeblocks", error);
1778 *((struct dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) =
1779 ip->i_din;
1780 /*
1781 * Find and eliminate any inode dependencies.
1782 */
1783 ACQUIRE_LOCK(&lk);
1784 (void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep);
1785 if ((inodedep->id_state & IOSTARTED) != 0) {
1786 FREE_LOCK(&lk);
1787 panic("softdep_setup_freeblocks: inode busy");
1788 }
1789 /*
1790 * Add the freeblks structure to the list of operations that
1791 * must await the zero'ed inode being written to disk. If we
1792 * still have a bitmap dependency (delay == 0), then the inode
1793 * has never been written to disk, so we can process the
1794 * freeblks below once we have deleted the dependencies.
1795 */
1796 delay = (inodedep->id_state & DEPCOMPLETE);
1797 if (delay)
1798 WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
1799 /*
1800 * Because the file length has been truncated to zero, any
1801 * pending block allocation dependency structures associated
1802 * with this inode are obsolete and can simply be de-allocated.
1803 * We must first merge the two dependency lists to get rid of
1804 * any duplicate freefrag structures, then purge the merged list.
1805 */
1806 merge_inode_lists(inodedep);
1807 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
1808 free_allocdirect(&inodedep->id_inoupdt, adp, 1);
1809 FREE_LOCK(&lk);
1810 bdwrite(bp);
1811 /*
1812 * We must wait for any I/O in progress to finish so that
1813 * all potential buffers on the dirty list will be visible.
1814 * Once they are all there, walk the list and get rid of
1815 * any dependencies.
1816 */
1817 vp = ITOV(ip);
1818 ACQUIRE_LOCK(&lk);
1819 drain_output(vp, 1);
1820 while (getdirtybuf(&TAILQ_FIRST(&vp->v_dirtyblkhd), MNT_WAIT)) {
1821 bp = TAILQ_FIRST(&vp->v_dirtyblkhd);
1822 (void) inodedep_lookup(fs, ip->i_number, 0, &inodedep);
1823 deallocate_dependencies(bp, inodedep);
1824 bp->b_flags |= B_INVAL | B_NOCACHE;
1825 FREE_LOCK(&lk);
1826 brelse(bp);
1827 ACQUIRE_LOCK(&lk);
1828 }
1829 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0)
1830 (void)free_inodedep(inodedep);
1831 FREE_LOCK(&lk);
1832 /*
1833 * If the inode has never been written to disk (delay == 0),
1834 * then we can process the freeblks now that we have deleted
1835 * the dependencies.
1836 */
1837 if (!delay)
1838 handle_workitem_freeblocks(freeblks);
1839}
1840
1841/*
1842 * Reclaim any dependency structures from a buffer that is about to
1843 * be reallocated to a new vnode. The buffer must be locked, thus,
1844 * no I/O completion operations can occur while we are manipulating
1845 * its associated dependencies. The mutex is held so that other I/O's
1846 * associated with related dependencies do not occur.
1847 */
1848static void
1849deallocate_dependencies(bp, inodedep)
1850 struct buf *bp;
1851 struct inodedep *inodedep;
1852{
1853 struct worklist *wk;
1854 struct indirdep *indirdep;
1855 struct allocindir *aip;
1856 struct pagedep *pagedep;
1857 struct dirrem *dirrem;
1858 struct diradd *dap;
1859 int i;
1860
1861 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
1862 switch (wk->wk_type) {
1863
1864 case D_INDIRDEP:
1865 indirdep = WK_INDIRDEP(wk);
1866 /*
1867 * None of the indirect pointers will ever be visible,
1868 * so they can simply be tossed. GOINGAWAY ensures
1869 * that allocated pointers will be saved in the buffer
1870 * cache until they are freed. Note that they will
1871 * only be able to be found by their physical address
1872 * since the inode mapping the logical address will
1873 * be gone. The save buffer used for the safe copy
1874 * was allocated in setup_allocindir_phase2 using
1875 * the physical address so it could be used for this
1876 * purpose. Hence we swap the safe copy with the real
1877 * copy, allowing the safe copy to be freed and holding
1878 * on to the real copy for later use in indir_trunc.
1879 */
1880 if (indirdep->ir_state & GOINGAWAY) {
1881 FREE_LOCK(&lk);
1882 panic("deallocate_dependencies: already gone");
1883 }
1884 indirdep->ir_state |= GOINGAWAY;
1885 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
1886 free_allocindir(aip, inodedep);
1887 if (bp->b_lblkno >= 0 ||
1888 bp->b_blkno != indirdep->ir_savebp->b_lblkno) {
1889 FREE_LOCK(&lk);
1890 panic("deallocate_dependencies: not indir");
1891 }
1892 bcopy(bp->b_data, indirdep->ir_savebp->b_data,
1893 bp->b_bcount);
1894 WORKLIST_REMOVE(wk);
1895 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk);
1896 continue;
1897
1898 case D_PAGEDEP:
1899 pagedep = WK_PAGEDEP(wk);
1900 /*
1901 * None of the directory additions will ever be
1902 * visible, so they can simply be tossed.
1903 */
1904 for (i = 0; i < DAHASHSZ; i++)
1905 while ((dap =
1906 LIST_FIRST(&pagedep->pd_diraddhd[i])))
1907 free_diradd(dap);
1908 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0)
1909 free_diradd(dap);
1910 /*
1911 * Copy any directory remove dependencies to the list
1912 * to be processed after the zero'ed inode is written.
1913 * If the inode has already been written, then they
1914 * can be dumped directly onto the work list.
1915 */
1916 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
1917 LIST_REMOVE(dirrem, dm_next);
1918 dirrem->dm_dirinum = pagedep->pd_ino;
1919 if (inodedep == NULL ||
1920 (inodedep->id_state & ALLCOMPLETE) ==
1921 ALLCOMPLETE)
1922 add_to_worklist(&dirrem->dm_list);
1923 else
1924 WORKLIST_INSERT(&inodedep->id_bufwait,
1925 &dirrem->dm_list);
1926 }
1927 WORKLIST_REMOVE(&pagedep->pd_list);
1928 LIST_REMOVE(pagedep, pd_hash);
1929 WORKITEM_FREE(pagedep, D_PAGEDEP);
1930 continue;
1931
1932 case D_ALLOCINDIR:
1933 free_allocindir(WK_ALLOCINDIR(wk), inodedep);
1934 continue;
1935
1936 case D_ALLOCDIRECT:
1937 case D_INODEDEP:
1938 FREE_LOCK(&lk);
1939 panic("deallocate_dependencies: Unexpected type %s",
1940 TYPENAME(wk->wk_type));
1941 /* NOTREACHED */
1942
1943 default:
1944 FREE_LOCK(&lk);
1945 panic("deallocate_dependencies: Unknown type %s",
1946 TYPENAME(wk->wk_type));
1947 /* NOTREACHED */
1948 }
1949 }
1950}
1951
1952/*
1953 * Free an allocdirect. Generate a new freefrag work request if appropriate.
1954 * This routine must be called with splbio interrupts blocked.
1955 */
1956static void
1957free_allocdirect(adphead, adp, delay)
1958 struct allocdirectlst *adphead;
1959 struct allocdirect *adp;
1960 int delay;
1961{
1962
1963#ifdef DEBUG
1964 if (lk.lkt_held == -1)
1965 panic("free_allocdirect: lock not held");
1966#endif
1967 if ((adp->ad_state & DEPCOMPLETE) == 0)
1968 LIST_REMOVE(adp, ad_deps);
1969 TAILQ_REMOVE(adphead, adp, ad_next);
1970 if ((adp->ad_state & COMPLETE) == 0)
1971 WORKLIST_REMOVE(&adp->ad_list);
1972 if (adp->ad_freefrag != NULL) {
1973 if (delay)
1974 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
1975 &adp->ad_freefrag->ff_list);
1976 else
1977 add_to_worklist(&adp->ad_freefrag->ff_list);
1978 }
1979 WORKITEM_FREE(adp, D_ALLOCDIRECT);
1980}
1981
1982/*
1983 * Prepare an inode to be freed. The actual free operation is not
1984 * done until the zero'ed inode has been written to disk.
1985 */
1986void
1987softdep_freefile(pvp, ino, mode)
1988 struct vnode *pvp;
1989 ino_t ino;
1990 int mode;
1991{
1992 struct inode *ip = VTOI(pvp);
1993 struct inodedep *inodedep;
1994 struct freefile *freefile;
1995
1996 /*
1997 * This sets up the inode de-allocation dependency.
1998 */
1999 MALLOC(freefile, struct freefile *, sizeof(struct freefile),
2000 M_FREEFILE, M_SOFTDEP_FLAGS);
2001 freefile->fx_list.wk_type = D_FREEFILE;
2002 freefile->fx_list.wk_state = 0;
2003 freefile->fx_mode = mode;
2004 freefile->fx_oldinum = ino;
2005 freefile->fx_devvp = ip->i_devvp;
2006 freefile->fx_fs = ip->i_fs;
2007
2008 /*
2009 * If the inodedep does not exist, then the zero'ed inode has
2010 * been written to disk. If the allocated inode has never been
2011 * written to disk, then the on-disk inode is zero'ed. In either
2012 * case we can free the file immediately.
2013 */
2014 ACQUIRE_LOCK(&lk);
2015 if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 ||
2016 check_inode_unwritten(inodedep)) {
2017 FREE_LOCK(&lk);
2018 handle_workitem_freefile(freefile);
2019 return;
2020 }
2021 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
2022 FREE_LOCK(&lk);
2023}
2024
2025/*
2026 * Check to see if an inode has never been written to disk. If
2027 * so free the inodedep and return success, otherwise return failure.
2028 * This routine must be called with splbio interrupts blocked.
2029 *
2030 * If we still have a bitmap dependency, then the inode has never
2031 * been written to disk. Drop the dependency as it is no longer
2032 * necessary since the inode is being deallocated. We set the
2033 * ALLCOMPLETE flags since the bitmap now properly shows that the
2034 * inode is not allocated. Even if the inode is actively being
2035 * written, it has been rolled back to its zero'ed state, so we
2036 * are ensured that a zero inode is what is on the disk. For short
2037 * lived files, this change will usually result in removing all the
2038 * dependencies from the inode so that it can be freed immediately.
2039 */
2040static int
2041check_inode_unwritten(inodedep)
2042 struct inodedep *inodedep;
2043{
2044
2045 if ((inodedep->id_state & DEPCOMPLETE) != 0 ||
2046 LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2047 LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2048 LIST_FIRST(&inodedep->id_inowait) != NULL ||
2049 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2050 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2051 inodedep->id_nlinkdelta != 0)
2052 return (0);
2053 inodedep->id_state |= ALLCOMPLETE;
2054 LIST_REMOVE(inodedep, id_deps);
2055 inodedep->id_buf = NULL;
2056 if (inodedep->id_state & ONWORKLIST)
2057 WORKLIST_REMOVE(&inodedep->id_list);
2058 if (inodedep->id_savedino != NULL) {
2059 FREE(inodedep->id_savedino, M_INODEDEP);
2060 inodedep->id_savedino = NULL;
2061 }
2062 if (free_inodedep(inodedep) == 0) {
2063 FREE_LOCK(&lk);
2064 panic("check_inode_unwritten: busy inode");
2065 }
2066 return (1);
2067}
2068
2069/*
2070 * Try to free an inodedep structure. Return 1 if it could be freed.
2071 */
2072static int
2073free_inodedep(inodedep)
2074 struct inodedep *inodedep;
2075{
2076
2077 if ((inodedep->id_state & ONWORKLIST) != 0 ||
2078 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
2079 LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2080 LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2081 LIST_FIRST(&inodedep->id_inowait) != NULL ||
2082 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2083 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2084 inodedep->id_nlinkdelta != 0 || inodedep->id_savedino != NULL)
2085 return (0);
2086 LIST_REMOVE(inodedep, id_hash);
2087 WORKITEM_FREE(inodedep, D_INODEDEP);
2088 num_inodedep -= 1;
2089 return (1);
2090}
2091
2092/*
2093 * This workitem routine performs the block de-allocation.
2094 * The workitem is added to the pending list after the updated
2095 * inode block has been written to disk. As mentioned above,
2096 * checks regarding the number of blocks de-allocated (compared
2097 * to the number of blocks allocated for the file) are also
2098 * performed in this function.
2099 */
2100static void
2101handle_workitem_freeblocks(freeblks)
2102 struct freeblks *freeblks;
2103{
2104 struct inode tip;
2105 ufs_daddr_t bn;
2106 struct fs *fs;
2107 int i, level, bsize;
2108 long nblocks, blocksreleased = 0;
2109 int error, allerror = 0;
2110 ufs_lbn_t baselbns[NIADDR], tmpval;
2111
2112 tip.i_number = freeblks->fb_previousinum;
2113 tip.i_devvp = freeblks->fb_devvp;
2114 tip.i_dev = freeblks->fb_devvp->v_rdev;
2115 tip.i_fs = freeblks->fb_fs;
2116 tip.i_size = freeblks->fb_oldsize;
2117 tip.i_uid = freeblks->fb_uid;
2118 fs = freeblks->fb_fs;
2119 tmpval = 1;
2120 baselbns[0] = NDADDR;
2121 for (i = 1; i < NIADDR; i++) {
2122 tmpval *= NINDIR(fs);
2123 baselbns[i] = baselbns[i - 1] + tmpval;
2124 }
2125 nblocks = btodb(fs->fs_bsize);
2126 blocksreleased = 0;
2127 /*
2128 * Indirect blocks first.
2129 */
2130 for (level = (NIADDR - 1); level >= 0; level--) {
2131 if ((bn = freeblks->fb_iblks[level]) == 0)
2132 continue;
2133 if ((error = indir_trunc(&tip, fsbtodb(fs, bn), level,
2134 baselbns[level], &blocksreleased)) == 0)
2135 allerror = error;
2136 ffs_blkfree(&tip, bn, fs->fs_bsize);
2137 blocksreleased += nblocks;
2138 }
2139 /*
2140 * All direct blocks or frags.
2141 */
2142 for (i = (NDADDR - 1); i >= 0; i--) {
2143 if ((bn = freeblks->fb_dblks[i]) == 0)
2144 continue;
2145 bsize = blksize(fs, &tip, i);
2146 ffs_blkfree(&tip, bn, bsize);
2147 blocksreleased += btodb(bsize);
2148 }
2149
2150#ifdef DIAGNOSTIC
2151 if (freeblks->fb_chkcnt != blocksreleased)
2152 printf("handle_workitem_freeblocks: block count\n");
2153 if (allerror)
2154 softdep_error("handle_workitem_freeblks", allerror);
2155#endif /* DIAGNOSTIC */
2156 WORKITEM_FREE(freeblks, D_FREEBLKS);
2157}
2158
2159/*
2160 * Release blocks associated with the inode ip and stored in the indirect
2161 * block dbn. If level is greater than SINGLE, the block is an indirect block
2162 * and recursive calls to indirtrunc must be used to cleanse other indirect
2163 * blocks.
2164 */
2165static int
2166indir_trunc(ip, dbn, level, lbn, countp)
2167 struct inode *ip;
2168 ufs_daddr_t dbn;
2169 int level;
2170 ufs_lbn_t lbn;
2171 long *countp;
2172{
2173 struct buf *bp;
2174 ufs_daddr_t *bap;
2175 ufs_daddr_t nb;
2176 struct fs *fs;
2177 struct worklist *wk;
2178 struct indirdep *indirdep;
2179 int i, lbnadd, nblocks;
2180 int error, allerror = 0;
2181
2182 fs = ip->i_fs;
2183 lbnadd = 1;
2184 for (i = level; i > 0; i--)
2185 lbnadd *= NINDIR(fs);
2186 /*
2187 * Get buffer of block pointers to be freed. This routine is not
2188 * called until the zero'ed inode has been written, so it is safe
2189 * to free blocks as they are encountered. Because the inode has
2190 * been zero'ed, calls to bmap on these blocks will fail. So, we
2191 * have to use the on-disk address and the block device for the
2192 * filesystem to look them up. If the file was deleted before its
2193 * indirect blocks were all written to disk, the routine that set
2194 * us up (deallocate_dependencies) will have arranged to leave
2195 * a complete copy of the indirect block in memory for our use.
2196 * Otherwise we have to read the blocks in from the disk.
2197 */
2198 ACQUIRE_LOCK(&lk);
2199 if ((bp = incore(ip->i_devvp, dbn)) != NULL &&
2200 (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2201 if (wk->wk_type != D_INDIRDEP ||
2202 (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
2203 (indirdep->ir_state & GOINGAWAY) == 0) {
2204 FREE_LOCK(&lk);
2205 panic("indir_trunc: lost indirdep");
2206 }
2207 WORKLIST_REMOVE(wk);
2208 WORKITEM_FREE(indirdep, D_INDIRDEP);
2209 if (LIST_FIRST(&bp->b_dep) != NULL) {
2210 FREE_LOCK(&lk);
2211 panic("indir_trunc: dangling dep");
2212 }
2213 FREE_LOCK(&lk);
2214 } else {
2215 FREE_LOCK(&lk);
2216 error = bread(ip->i_devvp, dbn, (int)fs->fs_bsize, NOCRED, &bp);
2217 if (error)
2218 return (error);
2219 }
2220 /*
2221 * Recursively free indirect blocks.
2222 */
2223 bap = (ufs_daddr_t *)bp->b_data;
2224 nblocks = btodb(fs->fs_bsize);
2225 for (i = NINDIR(fs) - 1; i >= 0; i--) {
2226 if ((nb = bap[i]) == 0)
2227 continue;
2228 if (level != 0) {
2229 if ((error = indir_trunc(ip, fsbtodb(fs, nb),
2230 level - 1, lbn + (i * lbnadd), countp)) != 0)
2231 allerror = error;
2232 }
2233 ffs_blkfree(ip, nb, fs->fs_bsize);
2234 *countp += nblocks;
2235 }
2236 bp->b_flags |= B_INVAL | B_NOCACHE;
2237 brelse(bp);
2238 return (allerror);
2239}
2240
2241/*
2242 * Free an allocindir.
2243 * This routine must be called with splbio interrupts blocked.
2244 */
2245static void
2246free_allocindir(aip, inodedep)
2247 struct allocindir *aip;
2248 struct inodedep *inodedep;
2249{
2250 struct freefrag *freefrag;
2251
2252#ifdef DEBUG
2253 if (lk.lkt_held == -1)
2254 panic("free_allocindir: lock not held");
2255#endif
2256 if ((aip->ai_state & DEPCOMPLETE) == 0)
2257 LIST_REMOVE(aip, ai_deps);
2258 if (aip->ai_state & ONWORKLIST)
2259 WORKLIST_REMOVE(&aip->ai_list);
2260 LIST_REMOVE(aip, ai_next);
2261 if ((freefrag = aip->ai_freefrag) != NULL) {
2262 if (inodedep == NULL)
2263 add_to_worklist(&freefrag->ff_list);
2264 else
2265 WORKLIST_INSERT(&inodedep->id_bufwait,
2266 &freefrag->ff_list);
2267 }
2268 WORKITEM_FREE(aip, D_ALLOCINDIR);
2269}
2270
2271/*
2272 * Directory entry addition dependencies.
2273 *
2274 * When adding a new directory entry, the inode (with its incremented link
2275 * count) must be written to disk before the directory entry's pointer to it.
2276 * Also, if the inode is newly allocated, the corresponding freemap must be
2277 * updated (on disk) before the directory entry's pointer. These requirements
2278 * are met via undo/redo on the directory entry's pointer, which consists
2279 * simply of the inode number.
2280 *
2281 * As directory entries are added and deleted, the free space within a
2282 * directory block can become fragmented. The ufs file system will compact
2283 * a fragmented directory block to make space for a new entry. When this
2284 * occurs, the offsets of previously added entries change. Any "diradd"
2285 * dependency structures corresponding to these entries must be updated with
2286 * the new offsets.
2287 */
2288
2289/*
2290 * This routine is called after the in-memory inode's link
2291 * count has been incremented, but before the directory entry's
2292 * pointer to the inode has been set.
2293 */
2294void
2295softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp)
2296 struct buf *bp; /* buffer containing directory block */
2297 struct inode *dp; /* inode for directory */
2298 off_t diroffset; /* offset of new entry in directory */
2299 long newinum; /* inode referenced by new directory entry */
2300 struct buf *newdirbp; /* non-NULL => contents of new mkdir */
2301{
2302 int offset; /* offset of new entry within directory block */
2303 ufs_lbn_t lbn; /* block in directory containing new entry */
2304 struct fs *fs;
2305 struct diradd *dap;
2306 struct pagedep *pagedep;
2307 struct inodedep *inodedep;
2308 struct mkdir *mkdir1, *mkdir2;
2309
2310 /*
2311 * Whiteouts have no dependencies.
2312 */
2313 if (newinum == WINO) {
2314 if (newdirbp != NULL)
2315 bdwrite(newdirbp);
2316 return;
2317 }
2318
2319 fs = dp->i_fs;
2320 lbn = lblkno(fs, diroffset);
2321 offset = blkoff(fs, diroffset);
2322 MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD,
2323 M_SOFTDEP_FLAGS);
2324 bzero(dap, sizeof(struct diradd));
2325 dap->da_list.wk_type = D_DIRADD;
2326 dap->da_offset = offset;
2327 dap->da_newinum = newinum;
2328 dap->da_state = ATTACHED;
2329 if (newdirbp == NULL) {
2330 dap->da_state |= DEPCOMPLETE;
2331 ACQUIRE_LOCK(&lk);
2332 } else {
2333 dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
2334 MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2335 M_SOFTDEP_FLAGS);
2336 mkdir1->md_list.wk_type = D_MKDIR;
2337 mkdir1->md_state = MKDIR_BODY;
2338 mkdir1->md_diradd = dap;
2339 MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2340 M_SOFTDEP_FLAGS);
2341 mkdir2->md_list.wk_type = D_MKDIR;
2342 mkdir2->md_state = MKDIR_PARENT;
2343 mkdir2->md_diradd = dap;
2344 /*
2345 * Dependency on "." and ".." being written to disk.
2346 */
2347 mkdir1->md_buf = newdirbp;
2348 ACQUIRE_LOCK(&lk);
2349 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
2350 WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list);
2351 FREE_LOCK(&lk);
2352 bdwrite(newdirbp);
2353 /*
2354 * Dependency on link count increase for parent directory
2355 */
2356 ACQUIRE_LOCK(&lk);
2357 if (inodedep_lookup(dp->i_fs, dp->i_number, 0, &inodedep) == 0
2358 || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2359 dap->da_state &= ~MKDIR_PARENT;
2360 WORKITEM_FREE(mkdir2, D_MKDIR);
2361 } else {
2362 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
2363 WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
2364 }
2365 }
2366 /*
2367 * Link into parent directory pagedep to await its being written.
2368 */
2369 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2370 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2371 dap->da_pagedep = pagedep;
2372 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
2373 da_pdlist);
2374 /*
2375 * Link into its inodedep. Put it on the id_bufwait list if the inode
2376 * is not yet written. If it is written, do the post-inode write
2377 * processing to put it on the id_pendinghd list.
2378 */
2379 (void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep);
2380 if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
2381 diradd_inode_written(dap, inodedep);
2382 else
2383 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2384 FREE_LOCK(&lk);
2385}
2386
2387/*
2388 * This procedure is called to change the offset of a directory
2389 * entry when compacting a directory block which must be owned
2390 * exclusively by the caller. Note that the actual entry movement
2391 * must be done in this procedure to ensure that no I/O completions
2392 * occur while the move is in progress.
2393 */
2394void
2395softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize)
2396 struct inode *dp; /* inode for directory */
2397 caddr_t base; /* address of dp->i_offset */
2398 caddr_t oldloc; /* address of old directory location */
2399 caddr_t newloc; /* address of new directory location */
2400 int entrysize; /* size of directory entry */
2401{
2402 int offset, oldoffset, newoffset;
2403 struct pagedep *pagedep;
2404 struct diradd *dap;
2405 ufs_lbn_t lbn;
2406
2407 ACQUIRE_LOCK(&lk);
2408 lbn = lblkno(dp->i_fs, dp->i_offset);
2409 offset = blkoff(dp->i_fs, dp->i_offset);
2410 if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
2411 goto done;
2412 oldoffset = offset + (oldloc - base);
2413 newoffset = offset + (newloc - base);
2414
2415 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) {
2416 if (dap->da_offset != oldoffset)
2417 continue;
2418 dap->da_offset = newoffset;
2419 if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
2420 break;
2421 LIST_REMOVE(dap, da_pdlist);
2422 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
2423 dap, da_pdlist);
2424 break;
2425 }
2426 if (dap == NULL) {
2427
2428 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) {
2429 if (dap->da_offset == oldoffset) {
2430 dap->da_offset = newoffset;
2431 break;
2432 }
2433 }
2434 }
2435done:
2436 bcopy(oldloc, newloc, entrysize);
2437 FREE_LOCK(&lk);
2438}
2439
2440/*
2441 * Free a diradd dependency structure. This routine must be called
2442 * with splbio interrupts blocked.
2443 */
2444static void
2445free_diradd(dap)
2446 struct diradd *dap;
2447{
2448 struct dirrem *dirrem;
2449 struct pagedep *pagedep;
2450 struct inodedep *inodedep;
2451 struct mkdir *mkdir, *nextmd;
2452
2453#ifdef DEBUG
2454 if (lk.lkt_held == -1)
2455 panic("free_diradd: lock not held");
2456#endif
2457 WORKLIST_REMOVE(&dap->da_list);
2458 LIST_REMOVE(dap, da_pdlist);
2459 if ((dap->da_state & DIRCHG) == 0) {
2460 pagedep = dap->da_pagedep;
2461 } else {
2462 dirrem = dap->da_previous;
2463 pagedep = dirrem->dm_pagedep;
2464 dirrem->dm_dirinum = pagedep->pd_ino;
2465 add_to_worklist(&dirrem->dm_list);
2466 }
2467 if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum,
2468 0, &inodedep) != 0)
2469 (void) free_inodedep(inodedep);
2470 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2471 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
2472 nextmd = LIST_NEXT(mkdir, md_mkdirs);
2473 if (mkdir->md_diradd != dap)
2474 continue;
2475 dap->da_state &= ~mkdir->md_state;
2476 WORKLIST_REMOVE(&mkdir->md_list);
2477 LIST_REMOVE(mkdir, md_mkdirs);
2478 WORKITEM_FREE(mkdir, D_MKDIR);
2479 }
2480 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2481 FREE_LOCK(&lk);
2482 panic("free_diradd: unfound ref");
2483 }
2484 }
2485 WORKITEM_FREE(dap, D_DIRADD);
2486}
2487
2488/*
2489 * Directory entry removal dependencies.
2490 *
2491 * When removing a directory entry, the entry's inode pointer must be
2492 * zero'ed on disk before the corresponding inode's link count is decremented
2493 * (possibly freeing the inode for re-use). This dependency is handled by
2494 * updating the directory entry but delaying the inode count reduction until
2495 * after the directory block has been written to disk. After this point, the
2496 * inode count can be decremented whenever it is convenient.
2497 */
2498
2499/*
2500 * This routine should be called immediately after removing
2501 * a directory entry. The inode's link count should not be
2502 * decremented by the calling procedure -- the soft updates
2503 * code will do this task when it is safe.
2504 */
2505void
2506softdep_setup_remove(bp, dp, ip, isrmdir)
2507 struct buf *bp; /* buffer containing directory block */
2508 struct inode *dp; /* inode for the directory being modified */
2509 struct inode *ip; /* inode for directory entry being removed */
2510 int isrmdir; /* indicates if doing RMDIR */
2511{
2512 struct dirrem *dirrem, *prevdirrem;
2513
2514 /*
2515 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
2516 */
2517 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2518
2519 /*
2520 * If the COMPLETE flag is clear, then there were no active
2521 * entries and we want to roll back to a zeroed entry until
2522 * the new inode is committed to disk. If the COMPLETE flag is
2523 * set then we have deleted an entry that never made it to
2524 * disk. If the entry we deleted resulted from a name change,
2525 * then the old name still resides on disk. We cannot delete
2526 * its inode (returned to us in prevdirrem) until the zeroed
2527 * directory entry gets to disk. The new inode has never been
2528 * referenced on the disk, so can be deleted immediately.
2529 */
2530 if ((dirrem->dm_state & COMPLETE) == 0) {
2531 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
2532 dm_next);
2533 FREE_LOCK(&lk);
2534 } else {
2535 if (prevdirrem != NULL)
2536 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
2537 prevdirrem, dm_next);
2538 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
2539 FREE_LOCK(&lk);
2540 handle_workitem_remove(dirrem);
2541 }
2542}
2543
2544/*
2545 * Allocate a new dirrem if appropriate and return it along with
2546 * its associated pagedep. Called without a lock, returns with lock.
2547 */
2548static long num_dirrem; /* number of dirrem allocated */
2549static struct dirrem *
2550newdirrem(bp, dp, ip, isrmdir, prevdirremp)
2551 struct buf *bp; /* buffer containing directory block */
2552 struct inode *dp; /* inode for the directory being modified */
2553 struct inode *ip; /* inode for directory entry being removed */
2554 int isrmdir; /* indicates if doing RMDIR */
2555 struct dirrem **prevdirremp; /* previously referenced inode, if any */
2556{
2557 int offset;
2558 ufs_lbn_t lbn;
2559 struct diradd *dap;
2560 struct dirrem *dirrem;
2561 struct pagedep *pagedep;
2562
2563 /*
2564 * Whiteouts have no deletion dependencies.
2565 */
2566 if (ip == NULL)
2567 panic("newdirrem: whiteout");
2568 /*
2569 * If we are over our limit, try to improve the situation.
2570 * Limiting the number of dirrem structures will also limit
2571 * the number of freefile and freeblks structures.
2572 */
2573 if (num_dirrem > max_softdeps / 2 && speedup_syncer() == 0)
2574 (void) request_cleanup(FLUSH_REMOVE, 0);
2575 num_dirrem += 1;
2576 MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem),
2577 M_DIRREM, M_SOFTDEP_FLAGS);
2578 bzero(dirrem, sizeof(struct dirrem));
2579 dirrem->dm_list.wk_type = D_DIRREM;
2580 dirrem->dm_state = isrmdir ? RMDIR : 0;
2581 dirrem->dm_mnt = ITOV(ip)->v_mount;
2582 dirrem->dm_oldinum = ip->i_number;
2583 *prevdirremp = NULL;
2584
2585 ACQUIRE_LOCK(&lk);
2586 lbn = lblkno(dp->i_fs, dp->i_offset);
2587 offset = blkoff(dp->i_fs, dp->i_offset);
2588 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2589 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2590 dirrem->dm_pagedep = pagedep;
2591 /*
2592 * Check for a diradd dependency for the same directory entry.
2593 * If present, then both dependencies become obsolete and can
2594 * be de-allocated. Check for an entry on both the pd_dirraddhd
2595 * list and the pd_pendinghd list.
2596 */
2597
2598 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
2599 if (dap->da_offset == offset)
2600 break;
2601 if (dap == NULL) {
2602
2603 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
2604 if (dap->da_offset == offset)
2605 break;
2606 if (dap == NULL)
2607 return (dirrem);
2608 }
2609 /*
2610 * Must be ATTACHED at this point.
2611 */
2612 if ((dap->da_state & ATTACHED) == 0) {
2613 FREE_LOCK(&lk);
2614 panic("newdirrem: not ATTACHED");
2615 }
2616 if (dap->da_newinum != ip->i_number) {
2617 FREE_LOCK(&lk);
2618 panic("newdirrem: inum %d should be %d",
2619 ip->i_number, dap->da_newinum);
2620 }
2621 /*
2622 * If we are deleting a changed name that never made it to disk,
2623 * then return the dirrem describing the previous inode (which
2624 * represents the inode currently referenced from this entry on disk).
2625 */
2626 if ((dap->da_state & DIRCHG) != 0) {
2627 *prevdirremp = dap->da_previous;
2628 dap->da_state &= ~DIRCHG;
2629 dap->da_pagedep = pagedep;
2630 }
2631 /*
2632 * We are deleting an entry that never made it to disk.
2633 * Mark it COMPLETE so we can delete its inode immediately.
2634 */
2635 dirrem->dm_state |= COMPLETE;
2636 free_diradd(dap);
2637 return (dirrem);
2638}
2639
2640/*
2641 * Directory entry change dependencies.
2642 *
2643 * Changing an existing directory entry requires that an add operation
2644 * be completed first followed by a deletion. The semantics for the addition
2645 * are identical to the description of adding a new entry above except
2646 * that the rollback is to the old inode number rather than zero. Once
2647 * the addition dependency is completed, the removal is done as described
2648 * in the removal routine above.
2649 */
2650
2651/*
2652 * This routine should be called immediately after changing
2653 * a directory entry. The inode's link count should not be
2654 * decremented by the calling procedure -- the soft updates
2655 * code will perform this task when it is safe.
2656 */
2657void
2658softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
2659 struct buf *bp; /* buffer containing directory block */
2660 struct inode *dp; /* inode for the directory being modified */
2661 struct inode *ip; /* inode for directory entry being removed */
2662 long newinum; /* new inode number for changed entry */
2663 int isrmdir; /* indicates if doing RMDIR */
2664{
2665 int offset;
2666 struct diradd *dap = NULL;
2667 struct dirrem *dirrem, *prevdirrem;
2668 struct pagedep *pagedep;
2669 struct inodedep *inodedep;
2670
2671 offset = blkoff(dp->i_fs, dp->i_offset);
2672
2673 /*
2674 * Whiteouts do not need diradd dependencies.
2675 */
2676 if (newinum != WINO) {
2677 MALLOC(dap, struct diradd *, sizeof(struct diradd),
2678 M_DIRADD, M_SOFTDEP_FLAGS);
2679 bzero(dap, sizeof(struct diradd));
2680 dap->da_list.wk_type = D_DIRADD;
2681 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
2682 dap->da_offset = offset;
2683 dap->da_newinum = newinum;
2684 }
2685
2686 /*
2687 * Allocate a new dirrem and ACQUIRE_LOCK.
2688 */
2689 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2690 pagedep = dirrem->dm_pagedep;
2691 /*
2692 * The possible values for isrmdir:
2693 * 0 - non-directory file rename
2694 * 1 - directory rename within same directory
2695 * inum - directory rename to new directory of given inode number
2696 * When renaming to a new directory, we are both deleting and
2697 * creating a new directory entry, so the link count on the new
2698 * directory should not change. Thus we do not need the followup
2699 * dirrem which is usually done in handle_workitem_remove. We set
2700 * the DIRCHG flag to tell handle_workitem_remove to skip the
2701 * followup dirrem.
2702 */
2703 if (isrmdir > 1)
2704 dirrem->dm_state |= DIRCHG;
2705
2706 /*
2707 * Whiteouts have no additional dependencies,
2708 * so just put the dirrem on the correct list.
2709 */
2710 if (newinum == WINO) {
2711 if ((dirrem->dm_state & COMPLETE) == 0) {
2712 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
2713 dm_next);
2714 } else {
2715 dirrem->dm_dirinum = pagedep->pd_ino;
2716 add_to_worklist(&dirrem->dm_list);
2717 }
2718 FREE_LOCK(&lk);
2719 return;
2720 }
2721
2722 /*
2723 * If the COMPLETE flag is clear, then there were no active
2724 * entries and we want to roll back to the previous inode until
2725 * the new inode is committed to disk. If the COMPLETE flag is
2726 * set, then we have deleted an entry that never made it to disk.
2727 * If the entry we deleted resulted from a name change, then the old
2728 * inode reference still resides on disk. Any rollback that we do
2729 * needs to be to that old inode (returned to us in prevdirrem). If
2730 * the entry we deleted resulted from a create, then there is
2731 * no entry on the disk, so we want to roll back to zero rather
2732 * than the uncommitted inode. In either of the COMPLETE cases we
2733 * want to immediately free the unwritten and unreferenced inode.
2734 */
2735 if ((dirrem->dm_state & COMPLETE) == 0) {
2736 dap->da_previous = dirrem;
2737 } else {
2738 if (prevdirrem != NULL) {
2739 dap->da_previous = prevdirrem;
2740 } else {
2741 dap->da_state &= ~DIRCHG;
2742 dap->da_pagedep = pagedep;
2743 }
2744 dirrem->dm_dirinum = pagedep->pd_ino;
2745 add_to_worklist(&dirrem->dm_list);
2746 }
2747 /*
2748 * Link into its inodedep. Put it on the id_bufwait list if the inode
2749 * is not yet written. If it is written, do the post-inode write
2750 * processing to put it on the id_pendinghd list.
2751 */
2752 if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 ||
2753 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2754 dap->da_state |= COMPLETE;
2755 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
2756 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
2757 } else {
2758 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
2759 dap, da_pdlist);
2760 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2761 }
2762 FREE_LOCK(&lk);
2763}
2764
2765/*
2766 * Called whenever the link count on an inode is changed.
2767 * It creates an inode dependency so that the new reference(s)
2768 * to the inode cannot be committed to disk until the updated
2769 * inode has been written.
2770 */
2771void
2772softdep_change_linkcnt(ip)
2773 struct inode *ip; /* the inode with the increased link count */
2774{
2775 struct inodedep *inodedep;
2776
2777 ACQUIRE_LOCK(&lk);
2778 (void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep);
2779 if (ip->i_nlink < ip->i_effnlink) {
2780 FREE_LOCK(&lk);
2781 panic("softdep_change_linkcnt: bad delta");
2782 }
2783 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2784 FREE_LOCK(&lk);
2785}
2786
2787/*
2788 * This workitem decrements the inode's link count.
2789 * If the link count reaches zero, the file is removed.
2790 */
2791static void
2792handle_workitem_remove(dirrem)
2793 struct dirrem *dirrem;
2794{
2795 struct proc *p = CURPROC; /* XXX */
2796 struct inodedep *inodedep;
2797 struct vnode *vp;
2798 struct inode *ip;
2799 ino_t oldinum;
2800 int error;
2801
2802 if ((error = VFS_VGET(dirrem->dm_mnt, dirrem->dm_oldinum, &vp)) != 0) {
2803 softdep_error("handle_workitem_remove: vget", error);
2804 return;
2805 }
2806 ip = VTOI(vp);
2807 ACQUIRE_LOCK(&lk);
2808 if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0){
2809 FREE_LOCK(&lk);
2810 panic("handle_workitem_remove: lost inodedep");
2811 }
2812 /*
2813 * Normal file deletion.
2814 */
2815 if ((dirrem->dm_state & RMDIR) == 0) {
2816 ip->i_nlink--;
2817 ip->i_flag |= IN_CHANGE;
2818 if (ip->i_nlink < ip->i_effnlink) {
2819 FREE_LOCK(&lk);
2820 panic("handle_workitem_remove: bad file delta");
2821 }
2822 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2823 FREE_LOCK(&lk);
2824 vput(vp);
2825 num_dirrem -= 1;
2826 WORKITEM_FREE(dirrem, D_DIRREM);
2827 return;
2828 }
2829 /*
2830 * Directory deletion. Decrement reference count for both the
2831 * just deleted parent directory entry and the reference for ".".
2832 * Next truncate the directory to length zero. When the
2833 * truncation completes, arrange to have the reference count on
2834 * the parent decremented to account for the loss of "..".
2835 */
2836 ip->i_nlink -= 2;
2837 ip->i_flag |= IN_CHANGE;
2838 if (ip->i_nlink < ip->i_effnlink) {
2839 FREE_LOCK(&lk);
2840 panic("handle_workitem_remove: bad dir delta");
2841 }
2842 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2843 FREE_LOCK(&lk);
2844 if ((error = UFS_TRUNCATE(vp, (off_t)0, 0, p->p_ucred, p)) != 0)
2845 softdep_error("handle_workitem_remove: truncate", error);
2846 /*
2847 * Rename a directory to a new parent. Since, we are both deleting
2848 * and creating a new directory entry, the link count on the new
2849 * directory should not change. Thus we skip the followup dirrem.
2850 */
2851 if (dirrem->dm_state & DIRCHG) {
2852 vput(vp);
2853 num_dirrem -= 1;
2854 WORKITEM_FREE(dirrem, D_DIRREM);
2855 return;
2856 }
2857 /*
2858 * If the inodedep does not exist, then the zero'ed inode has
2859 * been written to disk. If the allocated inode has never been
2860 * written to disk, then the on-disk inode is zero'ed. In either
2861 * case we can remove the file immediately.
2862 */
2863 ACQUIRE_LOCK(&lk);
2864 dirrem->dm_state = 0;
2865 oldinum = dirrem->dm_oldinum;
2866 dirrem->dm_oldinum = dirrem->dm_dirinum;
2867 if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 ||
2868 check_inode_unwritten(inodedep)) {
2869 FREE_LOCK(&lk);
2870 vput(vp);
2871 handle_workitem_remove(dirrem);
2872 return;
2873 }
2874 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
2875 FREE_LOCK(&lk);
2876 vput(vp);
2877}
2878
2879/*
2880 * Inode de-allocation dependencies.
2881 *
2882 * When an inode's link count is reduced to zero, it can be de-allocated. We
2883 * found it convenient to postpone de-allocation until after the inode is
2884 * written to disk with its new link count (zero). At this point, all of the
2885 * on-disk inode's block pointers are nullified and, with careful dependency
2886 * list ordering, all dependencies related to the inode will be satisfied and
2887 * the corresponding dependency structures de-allocated. So, if/when the
2888 * inode is reused, there will be no mixing of old dependencies with new
2889 * ones. This artificial dependency is set up by the block de-allocation
2890 * procedure above (softdep_setup_freeblocks) and completed by the
2891 * following procedure.
2892 */
2893static void
2894handle_workitem_freefile(freefile)
2895 struct freefile *freefile;
2896{
2897 struct vnode vp;
2898 struct inode tip;
2899 struct inodedep *idp;
2900 int error;
2901
2902#ifdef DEBUG
2903 ACQUIRE_LOCK(&lk);
2904 error = inodedep_lookup(freefile->fx_fs, freefile->fx_oldinum, 0, &idp);
2905 FREE_LOCK(&lk);
2906 if (error)
2907 panic("handle_workitem_freefile: inodedep survived");
2908#endif
2909 tip.i_devvp = freefile->fx_devvp;
2910 tip.i_dev = freefile->fx_devvp->v_rdev;
2911 tip.i_fs = freefile->fx_fs;
2912 vp.v_data = &tip;
2913 if ((error = ffs_freefile(&vp, freefile->fx_oldinum, freefile->fx_mode)) != 0)
2914 softdep_error("handle_workitem_freefile", error);
2915 WORKITEM_FREE(freefile, D_FREEFILE);
2916}
2917
2918/*
2919 * Disk writes.
2920 *
2921 * The dependency structures constructed above are most actively used when file
2922 * system blocks are written to disk. No constraints are placed on when a
2923 * block can be written, but unsatisfied update dependencies are made safe by
2924 * modifying (or replacing) the source memory for the duration of the disk
2925 * write. When the disk write completes, the memory block is again brought
2926 * up-to-date.
2927 *
2928 * In-core inode structure reclamation.
2929 *
2930 * Because there are a finite number of "in-core" inode structures, they are
2931 * reused regularly. By transferring all inode-related dependencies to the
2932 * in-memory inode block and indexing them separately (via "inodedep"s), we
2933 * can allow "in-core" inode structures to be reused at any time and avoid
2934 * any increase in contention.
2935 *
2936 * Called just before entering the device driver to initiate a new disk I/O.
2937 * The buffer must be locked, thus, no I/O completion operations can occur
2938 * while we are manipulating its associated dependencies.
2939 */
2940static void
2941softdep_disk_io_initiation(bp)
2942 struct buf *bp; /* structure describing disk write to occur */
2943{
2944 struct worklist *wk, *nextwk;
2945 struct indirdep *indirdep;
2946
2947 /*
2948 * We only care about write operations. There should never
2949 * be dependencies for reads.
2950 */
2951 if (bp->b_flags & B_READ)
2952 panic("softdep_disk_io_initiation: read");
2953 /*
2954 * Do any necessary pre-I/O processing.
2955 */
2956 for (wk = LIST_FIRST(&bp->b_dep); wk; wk = nextwk) {
2957 nextwk = LIST_NEXT(wk, wk_list);
2958 switch (wk->wk_type) {
2959
2960 case D_PAGEDEP:
2961 initiate_write_filepage(WK_PAGEDEP(wk), bp);
2962 continue;
2963
2964 case D_INODEDEP:
2965 initiate_write_inodeblock(WK_INODEDEP(wk), bp);
2966 continue;
2967
2968 case D_INDIRDEP:
2969 indirdep = WK_INDIRDEP(wk);
2970 if (indirdep->ir_state & GOINGAWAY)
2971 panic("disk_io_initiation: indirdep gone");
2972 /*
2973 * If there are no remaining dependencies, this
2974 * will be writing the real pointers, so the
2975 * dependency can be freed.
2976 */
2977 if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) {
2978 indirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
2979 brelse(indirdep->ir_savebp);
2980 /* inline expand WORKLIST_REMOVE(wk); */
2981 wk->wk_state &= ~ONWORKLIST;
2982 LIST_REMOVE(wk, wk_list);
2983 WORKITEM_FREE(indirdep, D_INDIRDEP);
2984 continue;
2985 }
2986 /*
2987 * Replace up-to-date version with safe version.
2988 */
2989 MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount,
2990 M_INDIRDEP, M_SOFTDEP_FLAGS);
2991 ACQUIRE_LOCK(&lk);
2992 indirdep->ir_state &= ~ATTACHED;
2993 indirdep->ir_state |= UNDONE;
2994 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
2995 bcopy(indirdep->ir_savebp->b_data, bp->b_data,
2996 bp->b_bcount);
2997 FREE_LOCK(&lk);
2998 continue;
2999
3000 case D_MKDIR:
3001 case D_BMSAFEMAP:
3002 case D_ALLOCDIRECT:
3003 case D_ALLOCINDIR:
3004 continue;
3005
3006 default:
3007 panic("handle_disk_io_initiation: Unexpected type %s",
3008 TYPENAME(wk->wk_type));
3009 /* NOTREACHED */
3010 }
3011 }
3012}
3013
3014/*
3015 * Called from within the procedure above to deal with unsatisfied
3016 * allocation dependencies in a directory. The buffer must be locked,
3017 * thus, no I/O completion operations can occur while we are
3018 * manipulating its associated dependencies.
3019 */
3020static void
3021initiate_write_filepage(pagedep, bp)
3022 struct pagedep *pagedep;
3023 struct buf *bp;
3024{
3025 struct diradd *dap;
3026 struct direct *ep;
3027 int i;
3028
3029 if (pagedep->pd_state & IOSTARTED) {
3030 /*
3031 * This can only happen if there is a driver that does not
3032 * understand chaining. Here biodone will reissue the call
3033 * to strategy for the incomplete buffers.
3034 */
3035 printf("initiate_write_filepage: already started\n");
3036 return;
3037 }
3038 pagedep->pd_state |= IOSTARTED;
3039 ACQUIRE_LOCK(&lk);
3040 for (i = 0; i < DAHASHSZ; i++) {
3041 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
3042 ep = (struct direct *)
3043 ((char *)bp->b_data + dap->da_offset);
3044 if (ep->d_ino != dap->da_newinum) {
3045 FREE_LOCK(&lk);
3046 panic("%s: dir inum %d != new %d",
3047 "initiate_write_filepage",
3048 ep->d_ino, dap->da_newinum);
3049 }
3050 if (dap->da_state & DIRCHG)
3051 ep->d_ino = dap->da_previous->dm_oldinum;
3052 else
3053 ep->d_ino = 0;
3054 dap->da_state &= ~ATTACHED;
3055 dap->da_state |= UNDONE;
3056 }
3057 }
3058 FREE_LOCK(&lk);
3059}
3060
3061/*
3062 * Called from within the procedure above to deal with unsatisfied
3063 * allocation dependencies in an inodeblock. The buffer must be
3064 * locked, thus, no I/O completion operations can occur while we
3065 * are manipulating its associated dependencies.
3066 */
3067static void
3068initiate_write_inodeblock(inodedep, bp)
3069 struct inodedep *inodedep;
3070 struct buf *bp; /* The inode block */
3071{
3072 struct allocdirect *adp, *lastadp;
3073 struct dinode *dp;
3074 struct fs *fs;
3075 ufs_lbn_t prevlbn = 0;
3076 int i, deplist;
3077
3078 if (inodedep->id_state & IOSTARTED)
3079 panic("initiate_write_inodeblock: already started");
3080 inodedep->id_state |= IOSTARTED;
3081 fs = inodedep->id_fs;
3082 dp = (struct dinode *)bp->b_data +
3083 ino_to_fsbo(fs, inodedep->id_ino);
3084 /*
3085 * If the bitmap is not yet written, then the allocated
3086 * inode cannot be written to disk.
3087 */
3088 if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3089 if (inodedep->id_savedino != NULL)
3090 panic("initiate_write_inodeblock: already doing I/O");
3091 MALLOC(inodedep->id_savedino, struct dinode *,
3092 sizeof(struct dinode), M_INODEDEP, M_SOFTDEP_FLAGS);
3093 *inodedep->id_savedino = *dp;
3094 bzero((caddr_t)dp, sizeof(struct dinode));
3095 return;
3096 }
3097 /*
3098 * If no dependencies, then there is nothing to roll back.
3099 */
3100 inodedep->id_savedsize = dp->di_size;
3101 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3102 return;
3103 /*
3104 * Set the dependencies to busy.
3105 */
3106 ACQUIRE_LOCK(&lk);
3107 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3108 adp = TAILQ_NEXT(adp, ad_next)) {
3109#ifdef DIAGNOSTIC
3110 if (deplist != 0 && prevlbn >= adp->ad_lbn) {
3111 FREE_LOCK(&lk);
3112 panic("softdep_write_inodeblock: lbn order");
3113 }
3114 prevlbn = adp->ad_lbn;
3115 if (adp->ad_lbn < NDADDR &&
3116 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) {
3117 FREE_LOCK(&lk);
3118 panic("%s: direct pointer #%ld mismatch %d != %d",
3119 "softdep_write_inodeblock", adp->ad_lbn,
3120 dp->di_db[adp->ad_lbn], adp->ad_newblkno);
3121 }
3122 if (adp->ad_lbn >= NDADDR &&
3123 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) {
3124 FREE_LOCK(&lk);
3125 panic("%s: indirect pointer #%ld mismatch %d != %d",
3126 "softdep_write_inodeblock", adp->ad_lbn - NDADDR,
3127 dp->di_ib[adp->ad_lbn - NDADDR], adp->ad_newblkno);
3128 }
3129 deplist |= 1 << adp->ad_lbn;
3130 if ((adp->ad_state & ATTACHED) == 0) {
3131 FREE_LOCK(&lk);
3132 panic("softdep_write_inodeblock: Unknown state 0x%x",
3133 adp->ad_state);
3134 }
3135#endif /* DIAGNOSTIC */
3136 adp->ad_state &= ~ATTACHED;
3137 adp->ad_state |= UNDONE;
3138 }
3139 /*
3140 * The on-disk inode cannot claim to be any larger than the last
3141 * fragment that has been written. Otherwise, the on-disk inode
3142 * might have fragments that were not the last block in the file
3143 * which would corrupt the filesystem.
3144 */
3145 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3146 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3147 if (adp->ad_lbn >= NDADDR)
3148 break;
3149 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3150 /* keep going until hitting a rollback to a frag */
3151 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3152 continue;
3153 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3154 for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3155#ifdef DIAGNOSTIC
3156 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) {
3157 FREE_LOCK(&lk);
3158 panic("softdep_write_inodeblock: lost dep1");
3159 }
3160#endif /* DIAGNOSTIC */
3161 dp->di_db[i] = 0;
3162 }
3163 for (i = 0; i < NIADDR; i++) {
3164#ifdef DIAGNOSTIC
3165 if (dp->di_ib[i] != 0 &&
3166 (deplist & ((1 << NDADDR) << i)) == 0) {
3167 FREE_LOCK(&lk);
3168 panic("softdep_write_inodeblock: lost dep2");
3169 }
3170#endif /* DIAGNOSTIC */
3171 dp->di_ib[i] = 0;
3172 }
3173 FREE_LOCK(&lk);
3174 return;
3175 }
3176 /*
3177 * If we have zero'ed out the last allocated block of the file,
3178 * roll back the size to the last currently allocated block.
3179 * We know that this last allocated block is a full-sized as
3180 * we already checked for fragments in the loop above.
3181 */
3182 if (lastadp != NULL &&
3183 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3184 for (i = lastadp->ad_lbn; i >= 0; i--)
3185 if (dp->di_db[i] != 0)
3186 break;
3187 dp->di_size = (i + 1) * fs->fs_bsize;
3188 }
3189 /*
3190 * The only dependencies are for indirect blocks.
3191 *
3192 * The file size for indirect block additions is not guaranteed.
3193 * Such a guarantee would be non-trivial to achieve. The conventional
3194 * synchronous write implementation also does not make this guarantee.
3195 * Fsck should catch and fix discrepancies. Arguably, the file size
3196 * can be over-estimated without destroying integrity when the file
3197 * moves into the indirect blocks (i.e., is large). If we want to
3198 * postpone fsck, we are stuck with this argument.
3199 */
3200 for (; adp; adp = TAILQ_NEXT(adp, ad_next))
3201 dp->di_ib[adp->ad_lbn - NDADDR] = 0;
3202 FREE_LOCK(&lk);
3203}
3204
3205/*
3206 * This routine is called during the completion interrupt
3207 * service routine for a disk write (from the procedure called
3208 * by the device driver to inform the file system caches of
3209 * a request completion). It should be called early in this
3210 * procedure, before the block is made available to other
3211 * processes or other routines are called.
3212 */
3213static void
3214softdep_disk_write_complete(bp)
3215 struct buf *bp; /* describes the completed disk write */
3216{
3217 struct worklist *wk;
3218 struct workhead reattach;
3219 struct newblk *newblk;
3220 struct allocindir *aip;
3221 struct allocdirect *adp;
3222 struct indirdep *indirdep;
3223 struct inodedep *inodedep;
3224 struct bmsafemap *bmsafemap;
3225
3226#ifdef DEBUG
3227 if (lk.lkt_held != -1)
3228 panic("softdep_disk_write_complete: lock is held");
3229 lk.lkt_held = -2;
3230#endif
3231 LIST_INIT(&reattach);
3232 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
3233 WORKLIST_REMOVE(wk);
3234 switch (wk->wk_type) {
3235
3236 case D_PAGEDEP:
3237 if (handle_written_filepage(WK_PAGEDEP(wk), bp))
3238 WORKLIST_INSERT(&reattach, wk);
3239 continue;
3240
3241 case D_INODEDEP:
3242 if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
3243 WORKLIST_INSERT(&reattach, wk);
3244 continue;
3245
3246 case D_BMSAFEMAP:
3247 bmsafemap = WK_BMSAFEMAP(wk);
3248 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
3249 newblk->nb_state |= DEPCOMPLETE;
3250 newblk->nb_bmsafemap = NULL;
3251 LIST_REMOVE(newblk, nb_deps);
3252 }
3253 while ((adp =
3254 LIST_FIRST(&bmsafemap->sm_allocdirecthd))) {
3255 adp->ad_state |= DEPCOMPLETE;
3256 adp->ad_buf = NULL;
3257 LIST_REMOVE(adp, ad_deps);
3258 handle_allocdirect_partdone(adp);
3259 }
3260 while ((aip =
3261 LIST_FIRST(&bmsafemap->sm_allocindirhd))) {
3262 aip->ai_state |= DEPCOMPLETE;
3263 aip->ai_buf = NULL;
3264 LIST_REMOVE(aip, ai_deps);
3265 handle_allocindir_partdone(aip);
3266 }
3267 while ((inodedep =
3268 LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
3269 inodedep->id_state |= DEPCOMPLETE;
3270 LIST_REMOVE(inodedep, id_deps);
3271 inodedep->id_buf = NULL;
3272 }
3273 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
3274 continue;
3275
3276 case D_MKDIR:
3277 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
3278 continue;
3279
3280 case D_ALLOCDIRECT:
3281 adp = WK_ALLOCDIRECT(wk);
3282 adp->ad_state |= COMPLETE;
3283 handle_allocdirect_partdone(adp);
3284 continue;
3285
3286 case D_ALLOCINDIR:
3287 aip = WK_ALLOCINDIR(wk);
3288 aip->ai_state |= COMPLETE;
3289 handle_allocindir_partdone(aip);
3290 continue;
3291
3292 case D_INDIRDEP:
3293 indirdep = WK_INDIRDEP(wk);
3294 if (indirdep->ir_state & GOINGAWAY) {
3295 lk.lkt_held = -1;
3296 panic("disk_write_complete: indirdep gone");
3297 }
3298 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
3299 FREE(indirdep->ir_saveddata, M_INDIRDEP);
3300 indirdep->ir_saveddata = 0;
3301 indirdep->ir_state &= ~UNDONE;
3302 indirdep->ir_state |= ATTACHED;
3303 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
3304 handle_allocindir_partdone(aip);
3305 if (aip == LIST_FIRST(&indirdep->ir_donehd)) {
3306 lk.lkt_held = -1;
3307 panic("disk_write_complete: not gone");
3308 }
3309 }
3310 WORKLIST_INSERT(&reattach, wk);
3311 if ((bp->b_flags & B_DELWRI) == 0)
3312 stat_indir_blk_ptrs++;
3313 bdirty(bp);
3314 continue;
3315
3316 default:
3317 lk.lkt_held = -1;
3318 panic("handle_disk_write_complete: Unknown type %s",
3319 TYPENAME(wk->wk_type));
3320 /* NOTREACHED */
3321 }
3322 }
3323 /*
3324 * Reattach any requests that must be redone.
3325 */
3326 while ((wk = LIST_FIRST(&reattach)) != NULL) {
3327 WORKLIST_REMOVE(wk);
3328 WORKLIST_INSERT(&bp->b_dep, wk);
3329 }
3330#ifdef DEBUG
3331 if (lk.lkt_held != -2)
3332 panic("softdep_disk_write_complete: lock lost");
3333 lk.lkt_held = -1;
3334#endif
3335}
3336
3337/*
3338 * Called from within softdep_disk_write_complete above. Note that
3339 * this routine is always called from interrupt level with further
3340 * splbio interrupts blocked.
3341 */
3342static void
3343handle_allocdirect_partdone(adp)
3344 struct allocdirect *adp; /* the completed allocdirect */
3345{
3346 struct allocdirect *listadp;
3347 struct inodedep *inodedep;
3348 long bsize;
3349
3350 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3351 return;
3352 if (adp->ad_buf != NULL) {
3353 lk.lkt_held = -1;
3354 panic("handle_allocdirect_partdone: dangling dep");
3355 }
3356 /*
3357 * The on-disk inode cannot claim to be any larger than the last
3358 * fragment that has been written. Otherwise, the on-disk inode
3359 * might have fragments that were not the last block in the file
3360 * which would corrupt the filesystem. Thus, we cannot free any
3361 * allocdirects after one whose ad_oldblkno claims a fragment as
3362 * these blocks must be rolled back to zero before writing the inode.
3363 * We check the currently active set of allocdirects in id_inoupdt.
3364 */
3365 inodedep = adp->ad_inodedep;
3366 bsize = inodedep->id_fs->fs_bsize;
3367 TAILQ_FOREACH(listadp, &inodedep->id_inoupdt, ad_next) {
3368 /* found our block */
3369 if (listadp == adp)
3370 break;
3371 /* continue if ad_oldlbn is not a fragment */
3372 if (listadp->ad_oldsize == 0 ||
3373 listadp->ad_oldsize == bsize)
3374 continue;
3375 /* hit a fragment */
3376 return;
3377 }
3378 /*
3379 * If we have reached the end of the current list without
3380 * finding the just finished dependency, then it must be
3381 * on the future dependency list. Future dependencies cannot
3382 * be freed until they are moved to the current list.
3383 */
3384 if (listadp == NULL) {
3385#ifdef DEBUG
3386 TAILQ_FOREACH(listadp, &inodedep->id_newinoupdt, ad_next)
3387 /* found our block */
3388 if (listadp == adp)
3389 break;
3390 if (listadp == NULL) {
3391 lk.lkt_held = -1;
3392 panic("handle_allocdirect_partdone: lost dep");
3393 }
3394#endif /* DEBUG */
3395 return;
3396 }
3397 /*
3398 * If we have found the just finished dependency, then free
3399 * it along with anything that follows it that is complete.
3400 */
3401 for (; adp; adp = listadp) {
3402 listadp = TAILQ_NEXT(adp, ad_next);
3403 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3404 return;
3405 free_allocdirect(&inodedep->id_inoupdt, adp, 1);
3406 }
3407}
3408
3409/*
3410 * Called from within softdep_disk_write_complete above. Note that
3411 * this routine is always called from interrupt level with further
3412 * splbio interrupts blocked.
3413 */
3414static void
3415handle_allocindir_partdone(aip)
3416 struct allocindir *aip; /* the completed allocindir */
3417{
3418 struct indirdep *indirdep;
3419
3420 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
3421 return;
3422 if (aip->ai_buf != NULL) {
3423 lk.lkt_held = -1;
3424 panic("handle_allocindir_partdone: dangling dependency");
3425 }
3426 indirdep = aip->ai_indirdep;
3427 if (indirdep->ir_state & UNDONE) {
3428 LIST_REMOVE(aip, ai_next);
3429 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
3430 return;
3431 }
3432 ((ufs_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
3433 aip->ai_newblkno;
3434 LIST_REMOVE(aip, ai_next);
3435 if (aip->ai_freefrag != NULL)
3436 add_to_worklist(&aip->ai_freefrag->ff_list);
3437 WORKITEM_FREE(aip, D_ALLOCINDIR);
3438}
3439
3440/*
3441 * Called from within softdep_disk_write_complete above to restore
3442 * in-memory inode block contents to their most up-to-date state. Note
3443 * that this routine is always called from interrupt level with further
3444 * splbio interrupts blocked.
3445 */
3446static int
3447handle_written_inodeblock(inodedep, bp)
3448 struct inodedep *inodedep;
3449 struct buf *bp; /* buffer containing the inode block */
3450{
3451 struct worklist *wk, *filefree;
3452 struct allocdirect *adp, *nextadp;
3453 struct dinode *dp;
3454 int hadchanges;
3455
3456 if ((inodedep->id_state & IOSTARTED) == 0) {
3457 lk.lkt_held = -1;
3458 panic("handle_written_inodeblock: not started");
3459 }
3460 inodedep->id_state &= ~IOSTARTED;
3461 inodedep->id_state |= COMPLETE;
3462 dp = (struct dinode *)bp->b_data +
3463 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
3464 /*
3465 * If we had to rollback the inode allocation because of
3466 * bitmaps being incomplete, then simply restore it.
3467 * Keep the block dirty so that it will not be reclaimed until
3468 * all associated dependencies have been cleared and the
3469 * corresponding updates written to disk.
3470 */
3471 if (inodedep->id_savedino != NULL) {
3472 *dp = *inodedep->id_savedino;
3473 FREE(inodedep->id_savedino, M_INODEDEP);
3474 inodedep->id_savedino = NULL;
3475 if ((bp->b_flags & B_DELWRI) == 0)
3476 stat_inode_bitmap++;
3477 bdirty(bp);
3478 return (1);
3479 }
3480 /*
3481 * Roll forward anything that had to be rolled back before
3482 * the inode could be updated.
3483 */
3484 hadchanges = 0;
3485 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
3486 nextadp = TAILQ_NEXT(adp, ad_next);
3487 if (adp->ad_state & ATTACHED) {
3488 lk.lkt_held = -1;
3489 panic("handle_written_inodeblock: new entry");
3490 }
3491 if (adp->ad_lbn < NDADDR) {
3492 if (dp->di_db[adp->ad_lbn] != adp->ad_oldblkno) {
3493 lk.lkt_held = -1;
3494 panic("%s: %s #%ld mismatch %d != %d",
3495 "handle_written_inodeblock",
3496 "direct pointer", adp->ad_lbn,
3497 dp->di_db[adp->ad_lbn], adp->ad_oldblkno);
3498 }
3499 dp->di_db[adp->ad_lbn] = adp->ad_newblkno;
3500 } else {
3501 if (dp->di_ib[adp->ad_lbn - NDADDR] != 0) {
3502 lk.lkt_held = -1;
3503 panic("%s: %s #%ld allocated as %d",
3504 "handle_written_inodeblock",
3505 "indirect pointer", adp->ad_lbn - NDADDR,
3506 dp->di_ib[adp->ad_lbn - NDADDR]);
3507 }
3508 dp->di_ib[adp->ad_lbn - NDADDR] = adp->ad_newblkno;
3509 }
3510 adp->ad_state &= ~UNDONE;
3511 adp->ad_state |= ATTACHED;
3512 hadchanges = 1;
3513 }
3514 if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
3515 stat_direct_blk_ptrs++;
3516 /*
3517 * Reset the file size to its most up-to-date value.
3518 */
3519 if (inodedep->id_savedsize == -1) {
3520 lk.lkt_held = -1;
3521 panic("handle_written_inodeblock: bad size");
3522 }
3523 if (dp->di_size != inodedep->id_savedsize) {
3524 dp->di_size = inodedep->id_savedsize;
3525 hadchanges = 1;
3526 }
3527 inodedep->id_savedsize = -1;
3528 /*
3529 * If there were any rollbacks in the inode block, then it must be
3530 * marked dirty so that its will eventually get written back in
3531 * its correct form.
3532 */
3533 if (hadchanges)
3534 bdirty(bp);
3535 /*
3536 * Process any allocdirects that completed during the update.
3537 */
3538 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
3539 handle_allocdirect_partdone(adp);
3540 /*
3541 * Process deallocations that were held pending until the
3542 * inode had been written to disk. Freeing of the inode
3543 * is delayed until after all blocks have been freed to
3544 * avoid creation of new <vfsid, inum, lbn> triples
3545 * before the old ones have been deleted.
3546 */
3547 filefree = NULL;
3548 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
3549 WORKLIST_REMOVE(wk);
3550 switch (wk->wk_type) {
3551
3552 case D_FREEFILE:
3553 /*
3554 * We defer adding filefree to the worklist until
3555 * all other additions have been made to ensure
3556 * that it will be done after all the old blocks
3557 * have been freed.
3558 */
3559 if (filefree != NULL) {
3560 lk.lkt_held = -1;
3561 panic("handle_written_inodeblock: filefree");
3562 }
3563 filefree = wk;
3564 continue;
3565
3566 case D_MKDIR:
3567 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
3568 continue;
3569
3570 case D_DIRADD:
3571 diradd_inode_written(WK_DIRADD(wk), inodedep);
3572 continue;
3573
3574 case D_FREEBLKS:
3575 case D_FREEFRAG:
3576 case D_DIRREM:
3577 add_to_worklist(wk);
3578 continue;
3579
3580 default:
3581 lk.lkt_held = -1;
3582 panic("handle_written_inodeblock: Unknown type %s",
3583 TYPENAME(wk->wk_type));
3584 /* NOTREACHED */
3585 }
3586 }
3587 if (filefree != NULL) {
3588 if (free_inodedep(inodedep) == 0) {
3589 lk.lkt_held = -1;
3590 panic("handle_written_inodeblock: live inodedep");
3591 }
3592 add_to_worklist(filefree);
3593 return (0);
3594 }
3595
3596 /*
3597 * If no outstanding dependencies, free it.
3598 */
3599 if (free_inodedep(inodedep) || TAILQ_FIRST(&inodedep->id_inoupdt) == 0)
3600 return (0);
3601 return (hadchanges);
3602}
3603
3604/*
3605 * Process a diradd entry after its dependent inode has been written.
3606 * This routine must be called with splbio interrupts blocked.
3607 */
3608static void
3609diradd_inode_written(dap, inodedep)
3610 struct diradd *dap;
3611 struct inodedep *inodedep;
3612{
3613 struct pagedep *pagedep;
3614
3615 dap->da_state |= COMPLETE;
3616 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3617 if (dap->da_state & DIRCHG)
3618 pagedep = dap->da_previous->dm_pagedep;
3619 else
3620 pagedep = dap->da_pagedep;
3621 LIST_REMOVE(dap, da_pdlist);
3622 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3623 }
3624 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
3625}
3626
3627/*
3628 * Handle the completion of a mkdir dependency.
3629 */
3630static void
3631handle_written_mkdir(mkdir, type)
3632 struct mkdir *mkdir;
3633 int type;
3634{
3635 struct diradd *dap;
3636 struct pagedep *pagedep;
3637
3638 if (mkdir->md_state != type) {
3639 lk.lkt_held = -1;
3640 panic("handle_written_mkdir: bad type");
3641 }
3642 dap = mkdir->md_diradd;
3643 dap->da_state &= ~type;
3644 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
3645 dap->da_state |= DEPCOMPLETE;
3646 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3647 if (dap->da_state & DIRCHG)
3648 pagedep = dap->da_previous->dm_pagedep;
3649 else
3650 pagedep = dap->da_pagedep;
3651 LIST_REMOVE(dap, da_pdlist);
3652 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3653 }
3654 LIST_REMOVE(mkdir, md_mkdirs);
3655 WORKITEM_FREE(mkdir, D_MKDIR);
3656}
3657
3658/*
3659 * Called from within softdep_disk_write_complete above.
3660 * A write operation was just completed. Removed inodes can
3661 * now be freed and associated block pointers may be committed.
3662 * Note that this routine is always called from interrupt level
3663 * with further splbio interrupts blocked.
3664 */
3665static int
3666handle_written_filepage(pagedep, bp)
3667 struct pagedep *pagedep;
3668 struct buf *bp; /* buffer containing the written page */
3669{
3670 struct dirrem *dirrem;
3671 struct diradd *dap, *nextdap;
3672 struct direct *ep;
3673 int i, chgs;
3674
3675 if ((pagedep->pd_state & IOSTARTED) == 0) {
3676 lk.lkt_held = -1;
3677 panic("handle_written_filepage: not started");
3678 }
3679 pagedep->pd_state &= ~IOSTARTED;
3680 /*
3681 * Process any directory removals that have been committed.
3682 */
3683 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
3684 LIST_REMOVE(dirrem, dm_next);
3685 dirrem->dm_dirinum = pagedep->pd_ino;
3686 add_to_worklist(&dirrem->dm_list);
3687 }
3688 /*
3689 * Free any directory additions that have been committed.
3690 */
3691 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
3692 free_diradd(dap);
3693 /*
3694 * Uncommitted directory entries must be restored.
3695 */
3696 for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
3697 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
3698 dap = nextdap) {
3699 nextdap = LIST_NEXT(dap, da_pdlist);
3700 if (dap->da_state & ATTACHED) {
3701 lk.lkt_held = -1;
3702 panic("handle_written_filepage: attached");
3703 }
3704 ep = (struct direct *)
3705 ((char *)bp->b_data + dap->da_offset);
3706 ep->d_ino = dap->da_newinum;
3707 dap->da_state &= ~UNDONE;
3708 dap->da_state |= ATTACHED;
3709 chgs = 1;
3710 /*
3711 * If the inode referenced by the directory has
3712 * been written out, then the dependency can be
3713 * moved to the pending list.
3714 */
3715 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3716 LIST_REMOVE(dap, da_pdlist);
3717 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
3718 da_pdlist);
3719 }
3720 }
3721 }
3722 /*
3723 * If there were any rollbacks in the directory, then it must be
3724 * marked dirty so that its will eventually get written back in
3725 * its correct form.
3726 */
3727 if (chgs) {
3728 if ((bp->b_flags & B_DELWRI) == 0)
3729 stat_dir_entry++;
3730 bdirty(bp);
3731 }
3732 /*
3733 * If no dependencies remain, the pagedep will be freed.
3734 * Otherwise it will remain to update the page before it
3735 * is written back to disk.
3736 */
3737 if (LIST_FIRST(&pagedep->pd_pendinghd) == 0) {
3738 for (i = 0; i < DAHASHSZ; i++)
3739 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL)
3740 break;
3741 if (i == DAHASHSZ) {
3742 LIST_REMOVE(pagedep, pd_hash);
3743 WORKITEM_FREE(pagedep, D_PAGEDEP);
3744 return (0);
3745 }
3746 }
3747 return (1);
3748}
3749
3750/*
3751 * Writing back in-core inode structures.
3752 *
3753 * The file system only accesses an inode's contents when it occupies an
3754 * "in-core" inode structure. These "in-core" structures are separate from
3755 * the page frames used to cache inode blocks. Only the latter are
3756 * transferred to/from the disk. So, when the updated contents of the
3757 * "in-core" inode structure are copied to the corresponding in-memory inode
3758 * block, the dependencies are also transferred. The following procedure is
3759 * called when copying a dirty "in-core" inode to a cached inode block.
3760 */
3761
3762/*
3763 * Called when an inode is loaded from disk. If the effective link count
3764 * differed from the actual link count when it was last flushed, then we
3765 * need to ensure that the correct effective link count is put back.
3766 */
3767void
3768softdep_load_inodeblock(ip)
3769 struct inode *ip; /* the "in_core" copy of the inode */
3770{
3771 struct inodedep *inodedep;
3772
3773 /*
3774 * Check for alternate nlink count.
3775 */
3776 ip->i_effnlink = ip->i_nlink;
3777 ACQUIRE_LOCK(&lk);
3778 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3779 FREE_LOCK(&lk);
3780 return;
3781 }
3782 ip->i_effnlink -= inodedep->id_nlinkdelta;
3783 FREE_LOCK(&lk);
3784}
3785
3786/*
3787 * This routine is called just before the "in-core" inode
3788 * information is to be copied to the in-memory inode block.
3789 * Recall that an inode block contains several inodes. If
3790 * the force flag is set, then the dependencies will be
3791 * cleared so that the update can always be made. Note that
3792 * the buffer is locked when this routine is called, so we
3793 * will never be in the middle of writing the inode block
3794 * to disk.
3795 */
3796void
3797softdep_update_inodeblock(ip, bp, waitfor)
3798 struct inode *ip; /* the "in_core" copy of the inode */
3799 struct buf *bp; /* the buffer containing the inode block */
3800 int waitfor; /* nonzero => update must be allowed */
3801{
3802 struct inodedep *inodedep;
3803 struct worklist *wk;
3804 int error, gotit;
3805
3806 /*
3807 * If the effective link count is not equal to the actual link
3808 * count, then we must track the difference in an inodedep while
3809 * the inode is (potentially) tossed out of the cache. Otherwise,
3810 * if there is no existing inodedep, then there are no dependencies
3811 * to track.
3812 */
3813 ACQUIRE_LOCK(&lk);
3814 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3815 FREE_LOCK(&lk);
3816 if (ip->i_effnlink != ip->i_nlink)
3817 panic("softdep_update_inodeblock: bad link count");
3818 return;
3819 }
3820 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) {
3821 FREE_LOCK(&lk);
3822 panic("softdep_update_inodeblock: bad delta");
3823 }
3824 /*
3825 * Changes have been initiated. Anything depending on these
3826 * changes cannot occur until this inode has been written.
3827 */
3828 inodedep->id_state &= ~COMPLETE;
3829 if ((inodedep->id_state & ONWORKLIST) == 0)
3830 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
3831 /*
3832 * Any new dependencies associated with the incore inode must
3833 * now be moved to the list associated with the buffer holding
3834 * the in-memory copy of the inode. Once merged process any
3835 * allocdirects that are completed by the merger.
3836 */
3837 merge_inode_lists(inodedep);
3838 if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL)
3839 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
3840 /*
3841 * Now that the inode has been pushed into the buffer, the
3842 * operations dependent on the inode being written to disk
3843 * can be moved to the id_bufwait so that they will be
3844 * processed when the buffer I/O completes.
3845 */
3846 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
3847 WORKLIST_REMOVE(wk);
3848 WORKLIST_INSERT(&inodedep->id_bufwait, wk);
3849 }
3850 /*
3851 * Newly allocated inodes cannot be written until the bitmap
3852 * that allocates them have been written (indicated by
3853 * DEPCOMPLETE being set in id_state). If we are doing a
3854 * forced sync (e.g., an fsync on a file), we force the bitmap
3855 * to be written so that the update can be done.
3856 */
3857 if ((inodedep->id_state & DEPCOMPLETE) != 0 || waitfor == 0) {
3858 FREE_LOCK(&lk);
3859 return;
3860 }
3861 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
3862 FREE_LOCK(&lk);
3863 if (gotit &&
3864 (error = VOP_BWRITE(inodedep->id_buf->b_vp, inodedep->id_buf)) != 0)
3865 softdep_error("softdep_update_inodeblock: bwrite", error);
3866 if ((inodedep->id_state & DEPCOMPLETE) == 0)
3867 panic("softdep_update_inodeblock: update failed");
3868}
3869
3870/*
3871 * Merge the new inode dependency list (id_newinoupdt) into the old
3872 * inode dependency list (id_inoupdt). This routine must be called
3873 * with splbio interrupts blocked.
3874 */
3875static void
3876merge_inode_lists(inodedep)
3877 struct inodedep *inodedep;
3878{
3879 struct allocdirect *listadp, *newadp;
3880
3881 newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
3882 for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp && newadp;) {
3883 if (listadp->ad_lbn < newadp->ad_lbn) {
3884 listadp = TAILQ_NEXT(listadp, ad_next);
3885 continue;
3886 }
3887 TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
3888 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
3889 if (listadp->ad_lbn == newadp->ad_lbn) {
3890 allocdirect_merge(&inodedep->id_inoupdt, newadp,
3891 listadp);
3892 listadp = newadp;
3893 }
3894 newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
3895 }
3896 while ((newadp = TAILQ_FIRST(&inodedep->id_newinoupdt)) != NULL) {
3897 TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
3898 TAILQ_INSERT_TAIL(&inodedep->id_inoupdt, newadp, ad_next);
3899 }
3900}
3901
3902/*
3903 * If we are doing an fsync, then we must ensure that any directory
3904 * entries for the inode have been written after the inode gets to disk.
3905 */
3906static int
3907softdep_fsync(vp)
3908 struct vnode *vp; /* the "in_core" copy of the inode */
3909{
3910 struct inodedep *inodedep;
3911 struct pagedep *pagedep;
3912 struct worklist *wk;
3913 struct diradd *dap;
3914 struct mount *mnt;
3915 struct vnode *pvp;
3916 struct inode *ip;
3917 struct buf *bp;
3918 struct fs *fs;
3919 struct proc *p = CURPROC; /* XXX */
3920 int error, flushparent;
3921 ino_t parentino;
3922 ufs_lbn_t lbn;
3923
3924 ip = VTOI(vp);
3925 fs = ip->i_fs;
3926 ACQUIRE_LOCK(&lk);
3927 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) {
3928 FREE_LOCK(&lk);
3929 return (0);
3930 }
3931 if (LIST_FIRST(&inodedep->id_inowait) != NULL ||
3932 LIST_FIRST(&inodedep->id_bufwait) != NULL ||
3933 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
3934 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) {
3935 FREE_LOCK(&lk);
3936 panic("softdep_fsync: pending ops");
3937 }
3938 for (error = 0, flushparent = 0; ; ) {
3939 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
3940 break;
3941 if (wk->wk_type != D_DIRADD) {
3942 FREE_LOCK(&lk);
3943 panic("softdep_fsync: Unexpected type %s",
3944 TYPENAME(wk->wk_type));
3945 }
3946 dap = WK_DIRADD(wk);
3947 /*
3948 * Flush our parent if this directory entry
3949 * has a MKDIR_PARENT dependency.
3950 */
3951 if (dap->da_state & DIRCHG)
3952 pagedep = dap->da_previous->dm_pagedep;
3953 else
3954 pagedep = dap->da_pagedep;
3955 mnt = pagedep->pd_mnt;
3956 parentino = pagedep->pd_ino;
3957 lbn = pagedep->pd_lbn;
3958 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) {
3959 FREE_LOCK(&lk);
3960 panic("softdep_fsync: dirty");
3961 }
3962 flushparent = dap->da_state & MKDIR_PARENT;
3963 /*
3964 * If we are being fsync'ed as part of vgone'ing this vnode,
3965 * then we will not be able to release and recover the
3966 * vnode below, so we just have to give up on writing its
3967 * directory entry out. It will eventually be written, just
3968 * not now, but then the user was not asking to have it
3969 * written, so we are not breaking any promises.
3970 */
3971 if (vp->v_flag & VXLOCK)
3972 break;
3973 /*
3974 * We prevent deadlock by always fetching inodes from the
3975 * root, moving down the directory tree. Thus, when fetching
3976 * our parent directory, we must unlock ourselves before
3977 * requesting the lock on our parent. See the comment in
3978 * ufs_lookup for details on possible races.
3979 */
3980 FREE_LOCK(&lk);
3981 VOP_UNLOCK(vp, 0, p);
3982 error = VFS_VGET(mnt, parentino, &pvp);
3983 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
3984 if (error != 0)
3985 return (error);
3986 if (flushparent) {
3987 if ((error = UFS_UPDATE(pvp, 1)) != 0) {
3988 vput(pvp);
3989 return (error);
3990 }
3991 }
3992 /*
3993 * Flush directory page containing the inode's name.
3994 */
3995 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), p->p_ucred,
3996 &bp);
3997 if (error == 0)
3998 error = VOP_BWRITE(bp->b_vp, bp);
3999 vput(pvp);
4000 if (error != 0)
4001 return (error);
4002 ACQUIRE_LOCK(&lk);
4003 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0)
4004 break;
4005 }
4006 FREE_LOCK(&lk);
4007 return (0);
4008}
4009
4010/*
4011 * Flush all the dirty bitmaps associated with the block device
4012 * before flushing the rest of the dirty blocks so as to reduce
4013 * the number of dependencies that will have to be rolled back.
4014 */
4015void
4016softdep_fsync_mountdev(vp)
4017 struct vnode *vp;
4018{
4019 struct buf *bp, *nbp;
4020 struct worklist *wk;
4021
4022 if (!vn_isdisk(vp, NULL))
4023 panic("softdep_fsync_mountdev: vnode not a disk");
4024 ACQUIRE_LOCK(&lk);
4025 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
4026 nbp = TAILQ_NEXT(bp, b_vnbufs);
4027 /*
4028 * If it is already scheduled, skip to the next buffer.
4029 */
4030 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
4031 continue;
4032 if ((bp->b_flags & B_DELWRI) == 0) {
4033 FREE_LOCK(&lk);
4034 panic("softdep_fsync_mountdev: not dirty");
4035 }
4036 /*
4037 * We are only interested in bitmaps with outstanding
4038 * dependencies.
4039 */
4040 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
4041 wk->wk_type != D_BMSAFEMAP ||
4042 (bp->b_xflags & BX_BKGRDINPROG)) {
4043 BUF_UNLOCK(bp);
4044 continue;
4045 }
4046 bremfree(bp);
4047 FREE_LOCK(&lk);
4048 (void) bawrite(bp);
4049 ACQUIRE_LOCK(&lk);
4050 /*
4051 * Since we may have slept during the I/O, we need
4052 * to start from a known point.
4053 */
4054 nbp = TAILQ_FIRST(&vp->v_dirtyblkhd);
4055 }
4056 drain_output(vp, 1);
4057 FREE_LOCK(&lk);
4058}
4059
4060/*
4061 * This routine is called when we are trying to synchronously flush a
4062 * file. This routine must eliminate any filesystem metadata dependencies
4063 * so that the syncing routine can succeed by pushing the dirty blocks
4064 * associated with the file. If any I/O errors occur, they are returned.
4065 */
4066int
4067softdep_sync_metadata(ap)
4068 struct vop_fsync_args /* {
4069 struct vnode *a_vp;
4070 struct ucred *a_cred;
4071 int a_waitfor;
4072 struct proc *a_p;
4073 } */ *ap;
4074{
4075 struct vnode *vp = ap->a_vp;
4076 struct pagedep *pagedep;
4077 struct allocdirect *adp;
4078 struct allocindir *aip;
4079 struct buf *bp, *nbp;
4080 struct worklist *wk;
4081 int i, error, waitfor;
4082
4083 /*
4084 * Check whether this vnode is involved in a filesystem
4085 * that is doing soft dependency processing.
4086 */
4087 if (!vn_isdisk(vp, NULL)) {
4088 if (!DOINGSOFTDEP(vp))
4089 return (0);
4090 } else
4091 if (vp->v_specmountpoint == NULL ||
4092 (vp->v_specmountpoint->mnt_flag & MNT_SOFTDEP) == 0)
4093 return (0);
4094 /*
4095 * Ensure that any direct block dependencies have been cleared.
4096 */
4097 ACQUIRE_LOCK(&lk);
4098 if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) {
4099 FREE_LOCK(&lk);
4100 return (error);
4101 }
4102 /*
4103 * For most files, the only metadata dependencies are the
4104 * cylinder group maps that allocate their inode or blocks.
4105 * The block allocation dependencies can be found by traversing
4106 * the dependency lists for any buffers that remain on their
4107 * dirty buffer list. The inode allocation dependency will
4108 * be resolved when the inode is updated with MNT_WAIT.
4109 * This work is done in two passes. The first pass grabs most
4110 * of the buffers and begins asynchronously writing them. The
4111 * only way to wait for these asynchronous writes is to sleep
4112 * on the filesystem vnode which may stay busy for a long time
4113 * if the filesystem is active. So, instead, we make a second
4114 * pass over the dependencies blocking on each write. In the
4115 * usual case we will be blocking against a write that we
4116 * initiated, so when it is done the dependency will have been
4117 * resolved. Thus the second pass is expected to end quickly.
4118 */
4119 waitfor = MNT_NOWAIT;
4120top:
4121 /*
4122 * We must wait for any I/O in progress to finish so that
4123 * all potential buffers on the dirty list will be visible.
4124 */
4125 drain_output(vp, 1);
4126 if (getdirtybuf(&TAILQ_FIRST(&vp->v_dirtyblkhd), MNT_WAIT) == 0) {
4127 FREE_LOCK(&lk);
4128 return (0);
4129 }
4130 bp = TAILQ_FIRST(&vp->v_dirtyblkhd);
4131loop:
4132 /*
4133 * As we hold the buffer locked, none of its dependencies
4134 * will disappear.
4135 */
4136 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4137 switch (wk->wk_type) {
4138
4139 case D_ALLOCDIRECT:
4140 adp = WK_ALLOCDIRECT(wk);
4141 if (adp->ad_state & DEPCOMPLETE)
4142 break;
4143 nbp = adp->ad_buf;
4144 if (getdirtybuf(&nbp, waitfor) == 0)
4145 break;
4146 FREE_LOCK(&lk);
4147 if (waitfor == MNT_NOWAIT) {
4148 bawrite(nbp);
4149 } else if ((error = VOP_BWRITE(nbp->b_vp, nbp)) != 0) {
4150 bawrite(bp);
4151 return (error);
4152 }
4153 ACQUIRE_LOCK(&lk);
4154 break;
4155
4156 case D_ALLOCINDIR:
4157 aip = WK_ALLOCINDIR(wk);
4158 if (aip->ai_state & DEPCOMPLETE)
4159 break;
4160 nbp = aip->ai_buf;
4161 if (getdirtybuf(&nbp, waitfor) == 0)
4162 break;
4163 FREE_LOCK(&lk);
4164 if (waitfor == MNT_NOWAIT) {
4165 bawrite(nbp);
4166 } else if ((error = VOP_BWRITE(nbp->b_vp, nbp)) != 0) {
4167 bawrite(bp);
4168 return (error);
4169 }
4170 ACQUIRE_LOCK(&lk);
4171 break;
4172
4173 case D_INDIRDEP:
4174 restart:
4175
4176 LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
4177 if (aip->ai_state & DEPCOMPLETE)
4178 continue;
4179 nbp = aip->ai_buf;
4180 if (getdirtybuf(&nbp, MNT_WAIT) == 0)
4181 goto restart;
4182 FREE_LOCK(&lk);
4183 if ((error = VOP_BWRITE(nbp->b_vp, nbp)) != 0) {
4184 bawrite(bp);
4185 return (error);
4186 }
4187 ACQUIRE_LOCK(&lk);
4188 goto restart;
4189 }
4190 break;
4191
4192 case D_INODEDEP:
4193 if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs,
4194 WK_INODEDEP(wk)->id_ino)) != 0) {
4195 FREE_LOCK(&lk);
4196 bawrite(bp);
4197 return (error);
4198 }
4199 break;
4200
4201 case D_PAGEDEP:
4202 /*
4203 * We are trying to sync a directory that may
4204 * have dependencies on both its own metadata
4205 * and/or dependencies on the inodes of any
4206 * recently allocated files. We walk its diradd
4207 * lists pushing out the associated inode.
4208 */
4209 pagedep = WK_PAGEDEP(wk);
4210 for (i = 0; i < DAHASHSZ; i++) {
4211 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
4212 continue;
4213 if ((error =
4214 flush_pagedep_deps(vp, pagedep->pd_mnt,
4215 &pagedep->pd_diraddhd[i]))) {
4216 FREE_LOCK(&lk);
4217 bawrite(bp);
4218 return (error);
4219 }
4220 }
4221 break;
4222
4223 case D_MKDIR:
4224 /*
4225 * This case should never happen if the vnode has
4226 * been properly sync'ed. However, if this function
4227 * is used at a place where the vnode has not yet
4228 * been sync'ed, this dependency can show up. So,
4229 * rather than panic, just flush it.
4230 */
4231 nbp = WK_MKDIR(wk)->md_buf;
4232 if (getdirtybuf(&nbp, waitfor) == 0)
4233 break;
4234 FREE_LOCK(&lk);
4235 if (waitfor == MNT_NOWAIT) {
4236 bawrite(nbp);
4237 } else if ((error = VOP_BWRITE(nbp->b_vp, nbp)) != 0) {
4238 bawrite(bp);
4239 return (error);
4240 }
4241 ACQUIRE_LOCK(&lk);
4242 break;
4243
4244 case D_BMSAFEMAP:
4245 /*
4246 * This case should never happen if the vnode has
4247 * been properly sync'ed. However, if this function
4248 * is used at a place where the vnode has not yet
4249 * been sync'ed, this dependency can show up. So,
4250 * rather than panic, just flush it.
4251 */
4252 nbp = WK_BMSAFEMAP(wk)->sm_buf;
4253 if (getdirtybuf(&nbp, waitfor) == 0)
4254 break;
4255 FREE_LOCK(&lk);
4256 if (waitfor == MNT_NOWAIT) {
4257 bawrite(nbp);
4258 } else if ((error = VOP_BWRITE(nbp->b_vp, nbp)) != 0) {
4259 bawrite(bp);
4260 return (error);
4261 }
4262 ACQUIRE_LOCK(&lk);
4263 break;
4264
4265 default:
4266 FREE_LOCK(&lk);
4267 panic("softdep_sync_metadata: Unknown type %s",
4268 TYPENAME(wk->wk_type));
4269 /* NOTREACHED */
4270 }
4271 }
4272 (void) getdirtybuf(&TAILQ_NEXT(bp, b_vnbufs), MNT_WAIT);
4273 nbp = TAILQ_NEXT(bp, b_vnbufs);
4274 FREE_LOCK(&lk);
4275 bawrite(bp);
4276 ACQUIRE_LOCK(&lk);
4277 if (nbp != NULL) {
4278 bp = nbp;
4279 goto loop;
4280 }
4281 /*
4282 * The brief unlock is to allow any pent up dependency
4283 * processing to be done. Then proceed with the second pass.
4284 */
4285 if (waitfor == MNT_NOWAIT) {
4286 waitfor = MNT_WAIT;
4287 FREE_LOCK(&lk);
4288 ACQUIRE_LOCK(&lk);
4289 goto top;
4290 }
4291
4292 /*
4293 * If we have managed to get rid of all the dirty buffers,
4294 * then we are done. For certain directories and block
4295 * devices, we may need to do further work.
4296 */
4297 if (TAILQ_FIRST(&vp->v_dirtyblkhd) == NULL) {
4298 FREE_LOCK(&lk);
4299 return (0);
4300 }
4301
4302 FREE_LOCK(&lk);
4303 /*
4304 * If we are trying to sync a block device, some of its buffers may
4305 * contain metadata that cannot be written until the contents of some
4306 * partially written files have been written to disk. The only easy
4307 * way to accomplish this is to sync the entire filesystem (luckily
4308 * this happens rarely).
4309 *
4310 * We must wait for any I/O in progress to finish so that
4311 * all potential buffers on the dirty list will be visible.
4312 */
4313 drain_output(vp, 1);
4314 if (vn_isdisk(vp, NULL) &&
4315 vp->v_specmountpoint && !VOP_ISLOCKED(vp, NULL) &&
4316 (error = VFS_SYNC(vp->v_specmountpoint, MNT_WAIT, ap->a_cred,
4317 ap->a_p)) != 0)
4318 return (error);
4319 return (0);
4320}
4321
4322/*
4323 * Flush the dependencies associated with an inodedep.
4324 * Called with splbio blocked.
4325 */
4326static int
4327flush_inodedep_deps(fs, ino)
4328 struct fs *fs;
4329 ino_t ino;
4330{
4331 struct inodedep *inodedep;
4332 struct allocdirect *adp;
4333 int error, waitfor;
4334 struct buf *bp;
4335
4336 /*
4337 * This work is done in two passes. The first pass grabs most
4338 * of the buffers and begins asynchronously writing them. The
4339 * only way to wait for these asynchronous writes is to sleep
4340 * on the filesystem vnode which may stay busy for a long time
4341 * if the filesystem is active. So, instead, we make a second
4342 * pass over the dependencies blocking on each write. In the
4343 * usual case we will be blocking against a write that we
4344 * initiated, so when it is done the dependency will have been
4345 * resolved. Thus the second pass is expected to end quickly.
4346 * We give a brief window at the top of the loop to allow
4347 * any pending I/O to complete.
4348 */
4349 for (waitfor = MNT_NOWAIT; ; ) {
4350 FREE_LOCK(&lk);
4351 ACQUIRE_LOCK(&lk);
4352 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4353 return (0);
4354 TAILQ_FOREACH(adp, &inodedep->id_inoupdt, ad_next) {
4355 if (adp->ad_state & DEPCOMPLETE)
4356 continue;
4357 bp = adp->ad_buf;
4358 if (getdirtybuf(&bp, waitfor) == 0) {
4359 if (waitfor == MNT_NOWAIT)
4360 continue;
4361 break;
4362 }
4363 FREE_LOCK(&lk);
4364 if (waitfor == MNT_NOWAIT) {
4365 bawrite(bp);
4366 } else if ((error = VOP_BWRITE(bp->b_vp, bp)) != 0) {
4367 ACQUIRE_LOCK(&lk);
4368 return (error);
4369 }
4370 ACQUIRE_LOCK(&lk);
4371 break;
4372 }
4373 if (adp != NULL)
4374 continue;
4375 TAILQ_FOREACH(adp, &inodedep->id_newinoupdt, ad_next) {
4376 if (adp->ad_state & DEPCOMPLETE)
4377 continue;
4378 bp = adp->ad_buf;
4379 if (getdirtybuf(&bp, waitfor) == 0) {
4380 if (waitfor == MNT_NOWAIT)
4381 continue;
4382 break;
4383 }
4384 FREE_LOCK(&lk);
4385 if (waitfor == MNT_NOWAIT) {
4386 bawrite(bp);
4387 } else if ((error = VOP_BWRITE(bp->b_vp, bp)) != 0) {
4388 ACQUIRE_LOCK(&lk);
4389 return (error);
4390 }
4391 ACQUIRE_LOCK(&lk);
4392 break;
4393 }
4394 if (adp != NULL)
4395 continue;
4396 /*
4397 * If pass2, we are done, otherwise do pass 2.
4398 */
4399 if (waitfor == MNT_WAIT)
4400 break;
4401 waitfor = MNT_WAIT;
4402 }
4403 /*
4404 * Try freeing inodedep in case all dependencies have been removed.
4405 */
4406 if (inodedep_lookup(fs, ino, 0, &inodedep) != 0)
4407 (void) free_inodedep(inodedep);
4408 return (0);
4409}
4410
4411/*
4412 * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
4413 * Called with splbio blocked.
4414 */
4415static int
4416flush_pagedep_deps(pvp, mp, diraddhdp)
4417 struct vnode *pvp;
4418 struct mount *mp;
4419 struct diraddhd *diraddhdp;
4420{
4421 struct proc *p = CURPROC; /* XXX */
4422 struct inodedep *inodedep;
4423 struct ufsmount *ump;
4424 struct diradd *dap;
4425 struct vnode *vp;
4426 int gotit, error = 0;
4427 struct buf *bp;
4428 ino_t inum;
4429
4430 ump = VFSTOUFS(mp);
4431 while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
4432 /*
4433 * Flush ourselves if this directory entry
4434 * has a MKDIR_PARENT dependency.
4435 */
4436 if (dap->da_state & MKDIR_PARENT) {
4437 FREE_LOCK(&lk);
4438 if ((error = UFS_UPDATE(pvp, 1)) != 0)
4439 break;
4440 ACQUIRE_LOCK(&lk);
4441 /*
4442 * If that cleared dependencies, go on to next.
4443 */
4444 if (dap != LIST_FIRST(diraddhdp))
4445 continue;
4446 if (dap->da_state & MKDIR_PARENT) {
4447 FREE_LOCK(&lk);
4448 panic("flush_pagedep_deps: MKDIR_PARENT");
4449 }
4450 }
4451 /*
4452 * A newly allocated directory must have its "." and
4453 * ".." entries written out before its name can be
4454 * committed in its parent. We do not want or need
4455 * the full semantics of a synchronous VOP_FSYNC as
4456 * that may end up here again, once for each directory
4457 * level in the filesystem. Instead, we push the blocks
4458 * and wait for them to clear. We have to fsync twice
4459 * because the first call may choose to defer blocks
4460 * that still have dependencies, but deferral will
4461 * happen at most once.
4462 */
4463 inum = dap->da_newinum;
4464 if (dap->da_state & MKDIR_BODY) {
4465 FREE_LOCK(&lk);
4466 if ((error = VFS_VGET(mp, inum, &vp)) != 0)
4467 break;
4468 if ((error=VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p)) ||
4469 (error=VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p))) {
4470 vput(vp);
4471 break;
4472 }
4473 drain_output(vp, 0);
4474 vput(vp);
4475 ACQUIRE_LOCK(&lk);
4476 /*
4477 * If that cleared dependencies, go on to next.
4478 */
4479 if (dap != LIST_FIRST(diraddhdp))
4480 continue;
4481 if (dap->da_state & MKDIR_BODY) {
4482 FREE_LOCK(&lk);
4483 panic("flush_pagedep_deps: MKDIR_BODY");
4484 }
4485 }
4486 /*
4487 * Flush the inode on which the directory entry depends.
4488 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
4489 * the only remaining dependency is that the updated inode
4490 * count must get pushed to disk. The inode has already
4491 * been pushed into its inode buffer (via VOP_UPDATE) at
4492 * the time of the reference count change. So we need only
4493 * locate that buffer, ensure that there will be no rollback
4494 * caused by a bitmap dependency, then write the inode buffer.
4495 */
4496 if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) {
4497 FREE_LOCK(&lk);
4498 panic("flush_pagedep_deps: lost inode");
4499 }
4500 /*
4501 * If the inode still has bitmap dependencies,
4502 * push them to disk.
4503 */
4504 if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4505 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
4506 FREE_LOCK(&lk);
4507 if (gotit &&
4508 (error = VOP_BWRITE(inodedep->id_buf->b_vp,
4509 inodedep->id_buf)) != 0)
4510 break;
4511 ACQUIRE_LOCK(&lk);
4512 if (dap != LIST_FIRST(diraddhdp))
4513 continue;
4514 }
4515 /*
4516 * If the inode is still sitting in a buffer waiting
4517 * to be written, push it to disk.
4518 */
4519 FREE_LOCK(&lk);
4520 if ((error = bread(ump->um_devvp,
4521 fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
4522 (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0)
4523 break;
4524 if ((error = VOP_BWRITE(bp->b_vp, bp)) != 0)
4525 break;
4526 ACQUIRE_LOCK(&lk);
4527 /*
4528 * If we have failed to get rid of all the dependencies
4529 * then something is seriously wrong.
4530 */
4531 if (dap == LIST_FIRST(diraddhdp)) {
4532 FREE_LOCK(&lk);
4533 panic("flush_pagedep_deps: flush failed");
4534 }
4535 }
4536 if (error)
4537 ACQUIRE_LOCK(&lk);
4538 return (error);
4539}
4540
4541/*
4542 * A large burst of file addition or deletion activity can drive the
4543 * memory load excessively high. First attempt to slow things down
4544 * using the techniques below. If that fails, this routine requests
4545 * the offending operations to fall back to running synchronously
4546 * until the memory load returns to a reasonable level.
4547 */
4548int
4549softdep_slowdown(vp)
4550 struct vnode *vp;
4551{
4552 int max_softdeps_hard;
4553
4554 max_softdeps_hard = max_softdeps * 11 / 10;
4555 if (num_dirrem < max_softdeps_hard / 2 &&
4556 num_inodedep < max_softdeps_hard)
4557 return (0);
4558 stat_sync_limit_hit += 1;
4559 return (1);
4560}
4561
4562/*
4563 * If memory utilization has gotten too high, deliberately slow things
4564 * down and speed up the I/O processing.
4565 */
4566static int
4567request_cleanup(resource, islocked)
4568 int resource;
4569 int islocked;
4570{
4571 struct proc *p = CURPROC;
4572
4573 /*
4574 * We never hold up the filesystem syncer process.
4575 */
4576 if (p == filesys_syncer)
4577 return (0);
4578 /*
4579 * First check to see if the work list has gotten backlogged.
4580 * If it has, co-opt this process to help clean up two entries.
4581 * Because this process may hold inodes locked, we cannot
4582 * handle any remove requests that might block on a locked
4583 * inode as that could lead to deadlock.
4584 */
4585 if (num_on_worklist > max_softdeps / 10) {
4586 if (islocked)
4587 FREE_LOCK(&lk);
4588 process_worklist_item(NULL, LK_NOWAIT);
4589 process_worklist_item(NULL, LK_NOWAIT);
4590 stat_worklist_push += 2;
4591 if (islocked)
4592 ACQUIRE_LOCK(&lk);
4593 return(1);
4594 }
4595
4596 /*
4597 * If we are resource constrained on inode dependencies, try
4598 * flushing some dirty inodes. Otherwise, we are constrained
4599 * by file deletions, so try accelerating flushes of directories
4600 * with removal dependencies. We would like to do the cleanup
4601 * here, but we probably hold an inode locked at this point and
4602 * that might deadlock against one that we try to clean. So,
4603 * the best that we can do is request the syncer daemon to do
4604 * the cleanup for us.
4605 */
4606 switch (resource) {
4607
4608 case FLUSH_INODES:
4609 stat_ino_limit_push += 1;
4610 req_clear_inodedeps += 1;
4611 stat_countp = &stat_ino_limit_hit;
4612 break;
4613
4614 case FLUSH_REMOVE:
4615 stat_blk_limit_push += 1;
4616 req_clear_remove += 1;
4617 stat_countp = &stat_blk_limit_hit;
4618 break;
4619
4620 default:
4621 if (islocked)
4622 FREE_LOCK(&lk);
4623 panic("request_cleanup: unknown type");
4624 }
4625 /*
4626 * Hopefully the syncer daemon will catch up and awaken us.
4627 * We wait at most tickdelay before proceeding in any case.
4628 */
4629 if (islocked == 0)
4630 ACQUIRE_LOCK(&lk);
4631 proc_waiting += 1;
4632 if (handle.callout == NULL)
4633 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2);
4634 interlocked_sleep(&lk, SLEEP, (caddr_t)&proc_waiting, PPAUSE,
4635 "softupdate", 0);
4636 proc_waiting -= 1;
4637 if (islocked == 0)
4638 FREE_LOCK(&lk);
4639 return (1);
4640}
4641
4642/*
4643 * Awaken processes pausing in request_cleanup and clear proc_waiting
4644 * to indicate that there is no longer a timer running.
4645 */
4646void
4647pause_timer(arg)
4648 void *arg;
4649{
4650
4651 *stat_countp += 1;
4652 wakeup_one(&proc_waiting);
4653 if (proc_waiting > 0)
4654 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2);
4655 else
4656 handle.callout = NULL;
4657}
4658
4659/*
4660 * Flush out a directory with at least one removal dependency in an effort to
4661 * reduce the number of dirrem, freefile, and freeblks dependency structures.
4662 */
4663static void
4664clear_remove(p)
4665 struct proc *p;
4666{
4667 struct pagedep_hashhead *pagedephd;
4668 struct pagedep *pagedep;
4669 static int next = 0;
4670 struct mount *mp;
4671 struct vnode *vp;
4672 int error, cnt;
4673 ino_t ino;
4674
4675 ACQUIRE_LOCK(&lk);
4676 for (cnt = 0; cnt < pagedep_hash; cnt++) {
4677 pagedephd = &pagedep_hashtbl[next++];
4678 if (next >= pagedep_hash)
4679 next = 0;
4680 LIST_FOREACH(pagedep, pagedephd, pd_hash) {
4681 if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL)
4682 continue;
4683 mp = pagedep->pd_mnt;
4684 ino = pagedep->pd_ino;
4685 FREE_LOCK(&lk);
4686 if ((error = VFS_VGET(mp, ino, &vp)) != 0) {
4687 softdep_error("clear_remove: vget", error);
4688 return;
4689 }
4690 if ((error = VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p)))
4691 softdep_error("clear_remove: fsync", error);
4692 drain_output(vp, 0);
4693 vput(vp);
4694 return;
4695 }
4696 }
4697 FREE_LOCK(&lk);
4698}
4699
4700/*
4701 * Clear out a block of dirty inodes in an effort to reduce
4702 * the number of inodedep dependency structures.
4703 */
4704static void
4705clear_inodedeps(p)
4706 struct proc *p;
4707{
4708 struct inodedep_hashhead *inodedephd;
4709 struct inodedep *inodedep;
4710 static int next = 0;
4711 struct mount *mp;
4712 struct vnode *vp;
4713 struct fs *fs;
4714 int error, cnt;
4715 ino_t firstino, lastino, ino;
4716
4717 ACQUIRE_LOCK(&lk);
4718 /*
4719 * Pick a random inode dependency to be cleared.
4720 * We will then gather up all the inodes in its block
4721 * that have dependencies and flush them out.
4722 */
4723 for (cnt = 0; cnt < inodedep_hash; cnt++) {
4724 inodedephd = &inodedep_hashtbl[next++];
4725 if (next >= inodedep_hash)
4726 next = 0;
4727 if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
4728 break;
4729 }
4730 if (inodedep == NULL)
4731 return;
4732 /*
4733 * Ugly code to find mount point given pointer to superblock.
4734 */
4735 fs = inodedep->id_fs;
4736 TAILQ_FOREACH(mp, &mountlist, mnt_list)
4737 if ((mp->mnt_flag & MNT_SOFTDEP) && fs == VFSTOUFS(mp)->um_fs)
4738 break;
4739 /*
4740 * Find the last inode in the block with dependencies.
4741 */
4742 firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
4743 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
4744 if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0)
4745 break;
4746 /*
4747 * Asynchronously push all but the last inode with dependencies.
4748 * Synchronously push the last inode with dependencies to ensure
4749 * that the inode block gets written to free up the inodedeps.
4750 */
4751 for (ino = firstino; ino <= lastino; ino++) {
4752 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4753 continue;
4754 FREE_LOCK(&lk);
4755 if ((error = VFS_VGET(mp, ino, &vp)) != 0) {
4756 softdep_error("clear_inodedeps: vget", error);
4757 return;
4758 }
4759 if (ino == lastino) {
4760 if ((error = VOP_FSYNC(vp, p->p_ucred, MNT_WAIT, p)))
4761 softdep_error("clear_inodedeps: fsync1", error);
4762 } else {
4763 if ((error = VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p)))
4764 softdep_error("clear_inodedeps: fsync2", error);
4765 drain_output(vp, 0);
4766 }
4767 vput(vp);
4768 ACQUIRE_LOCK(&lk);
4769 }
4770 FREE_LOCK(&lk);
4771}
4772
4773/*
4774 * Function to determine if the buffer has outstanding dependencies
4775 * that will cause a roll-back if the buffer is written. If wantcount
4776 * is set, return number of dependencies, otherwise just yes or no.
4777 */
4778static int
4779softdep_count_dependencies(bp, wantcount)
4780 struct buf *bp;
4781 int wantcount;
4782{
4783 struct worklist *wk;
4784 struct inodedep *inodedep;
4785 struct indirdep *indirdep;
4786 struct allocindir *aip;
4787 struct pagedep *pagedep;
4788 struct diradd *dap;
4789 int i, retval;
4790
4791 retval = 0;
4792 ACQUIRE_LOCK(&lk);
4793 LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4794 switch (wk->wk_type) {
4795
4796 case D_INODEDEP:
4797 inodedep = WK_INODEDEP(wk);
4798 if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4799 /* bitmap allocation dependency */
4800 retval += 1;
4801 if (!wantcount)
4802 goto out;
4803 }
4804 if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
4805 /* direct block pointer dependency */
4806 retval += 1;
4807 if (!wantcount)
4808 goto out;
4809 }
4810 continue;
4811
4812 case D_INDIRDEP:
4813 indirdep = WK_INDIRDEP(wk);
4814
4815 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
4816 /* indirect block pointer dependency */
4817 retval += 1;
4818 if (!wantcount)
4819 goto out;
4820 }
4821 continue;
4822
4823 case D_PAGEDEP:
4824 pagedep = WK_PAGEDEP(wk);
4825 for (i = 0; i < DAHASHSZ; i++) {
4826
4827 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
4828 /* directory entry dependency */
4829 retval += 1;
4830 if (!wantcount)
4831 goto out;
4832 }
4833 }
4834 continue;
4835
4836 case D_BMSAFEMAP:
4837 case D_ALLOCDIRECT:
4838 case D_ALLOCINDIR:
4839 case D_MKDIR:
4840 /* never a dependency on these blocks */
4841 continue;
4842
4843 default:
4844 FREE_LOCK(&lk);
4845 panic("softdep_check_for_rollback: Unexpected type %s",
4846 TYPENAME(wk->wk_type));
4847 /* NOTREACHED */
4848 }
4849 }
4850out:
4851 FREE_LOCK(&lk);
4852 return retval;
4853}
4854
4855/*
4856 * Acquire exclusive access to a buffer.
4857 * Must be called with splbio blocked.
4858 * Return 1 if buffer was acquired.
4859 */
4860static int
4861getdirtybuf(bpp, waitfor)
4862 struct buf **bpp;
4863 int waitfor;
4864{
4865 struct buf *bp;
4866 int error;
4867
4868 for (;;) {
4869 if ((bp = *bpp) == NULL)
4870 return (0);
4871 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
4872 if ((bp->b_xflags & BX_BKGRDINPROG) == 0)
4873 break;
4874 BUF_UNLOCK(bp);
4875 if (waitfor != MNT_WAIT)
4876 return (0);
4877 bp->b_xflags |= BX_BKGRDWAIT;
4878 interlocked_sleep(&lk, SLEEP, &bp->b_xflags, PRIBIO,
4879 "getbuf", 0);
4880 continue;
4881 }
4882 if (waitfor != MNT_WAIT)
4883 return (0);
4884 error = interlocked_sleep(&lk, LOCKBUF, bp,
4885 LK_EXCLUSIVE | LK_SLEEPFAIL, 0, 0);
4886 if (error != ENOLCK) {
4887 FREE_LOCK(&lk);
4888 panic("getdirtybuf: inconsistent lock");
4889 }
4890 }
4891 if ((bp->b_flags & B_DELWRI) == 0) {
4892 BUF_UNLOCK(bp);
4893 return (0);
4894 }
4895 bremfree(bp);
4896 return (1);
4897}
4898
4899/*
4900 * Wait for pending output on a vnode to complete.
4901 * Must be called with vnode locked.
4902 */
4903static void
4904drain_output(vp, islocked)
4905 struct vnode *vp;
4906 int islocked;
4907{
4908
4909 if (!islocked)
4910 ACQUIRE_LOCK(&lk);
4911 while (vp->v_numoutput) {
4912 vp->v_flag |= VBWAIT;
4913 interlocked_sleep(&lk, SLEEP, (caddr_t)&vp->v_numoutput,
4914 PRIBIO + 1, "drainvp", 0);
4915 }
4916 if (!islocked)
4917 FREE_LOCK(&lk);
4918}
4919
4920/*
4921 * Called whenever a buffer that is being invalidated or reallocated
4922 * contains dependencies. This should only happen if an I/O error has
4923 * occurred. The routine is called with the buffer locked.
4924 */
4925static void
4926softdep_deallocate_dependencies(bp)
4927 struct buf *bp;
4928{
4929
4930 if ((bp->b_flags & B_ERROR) == 0)
4931 panic("softdep_deallocate_dependencies: dangling deps");
4932 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
4933 panic("softdep_deallocate_dependencies: unrecovered I/O error");
4934}
4935
4936/*
4937 * Function to handle asynchronous write errors in the filesystem.
4938 */
4939void
4940softdep_error(func, error)
4941 char *func;
4942 int error;
4943{
4944
4945 /* XXX should do something better! */
4946 printf("%s: got error %d while accessing filesystem\n", func, error);
4947}