kernel - Add additional safety assertions in the pmap path
[dragonfly.git] / sys / platform / pc64 / x86_64 / pmap.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1991 Regents of the University of California.
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1994 David Greenman
5 * Copyright (c) 2003 Peter Wemm
6 * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
7 * Copyright (c) 2008, 2009 The DragonFly Project.
8 * Copyright (c) 2008, 2009 Jordan Gordeev.
9 * Copyright (c) 2011 Matthew Dillon
10 * All rights reserved.
11 *
12 * This code is derived from software contributed to Berkeley by
13 * the Systems Programming Group of the University of Utah Computer
14 * Science Department and William Jolitz of UUNET Technologies Inc.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 */
44/*
45 * Manage physical address maps for x86-64 systems.
46 */
47
48#if JG
49#include "opt_disable_pse.h"
50#include "opt_pmap.h"
51#endif
52#include "opt_msgbuf.h"
53
54#include <sys/param.h>
55#include <sys/systm.h>
56#include <sys/kernel.h>
57#include <sys/proc.h>
58#include <sys/msgbuf.h>
59#include <sys/vmmeter.h>
60#include <sys/mman.h>
61
62#include <vm/vm.h>
63#include <vm/vm_param.h>
64#include <sys/sysctl.h>
65#include <sys/lock.h>
66#include <vm/vm_kern.h>
67#include <vm/vm_page.h>
68#include <vm/vm_map.h>
69#include <vm/vm_object.h>
70#include <vm/vm_extern.h>
71#include <vm/vm_pageout.h>
72#include <vm/vm_pager.h>
73#include <vm/vm_zone.h>
74
75#include <sys/user.h>
76#include <sys/thread2.h>
77#include <sys/sysref2.h>
78#include <sys/spinlock2.h>
79#include <vm/vm_page2.h>
80
81#include <machine/cputypes.h>
82#include <machine/md_var.h>
83#include <machine/specialreg.h>
84#include <machine/smp.h>
85#include <machine_base/apic/apicreg.h>
86#include <machine/globaldata.h>
87#include <machine/pmap.h>
88#include <machine/pmap_inval.h>
89#include <machine/inttypes.h>
90
91#include <ddb/ddb.h>
92
93#define PMAP_KEEP_PDIRS
94#ifndef PMAP_SHPGPERPROC
95#define PMAP_SHPGPERPROC 2000
96#endif
97
98#if defined(DIAGNOSTIC)
99#define PMAP_DIAGNOSTIC
100#endif
101
102#define MINPV 2048
103
104/*
105 * pmap debugging will report who owns a pv lock when blocking.
106 */
107#ifdef PMAP_DEBUG
108
109#define PMAP_DEBUG_DECL ,const char *func, int lineno
110#define PMAP_DEBUG_ARGS , __func__, __LINE__
111#define PMAP_DEBUG_COPY , func, lineno
112
113#define pv_get(pmap, pindex) _pv_get(pmap, pindex \
114 PMAP_DEBUG_ARGS)
115#define pv_lock(pv) _pv_lock(pv \
116 PMAP_DEBUG_ARGS)
117#define pv_hold_try(pv) _pv_hold_try(pv \
118 PMAP_DEBUG_ARGS)
119#define pv_alloc(pmap, pindex, isnewp) _pv_alloc(pmap, pindex, isnewp \
120 PMAP_DEBUG_ARGS)
121
122#else
123
124#define PMAP_DEBUG_DECL
125#define PMAP_DEBUG_ARGS
126#define PMAP_DEBUG_COPY
127
128#define pv_get(pmap, pindex) _pv_get(pmap, pindex)
129#define pv_lock(pv) _pv_lock(pv)
130#define pv_hold_try(pv) _pv_hold_try(pv)
131#define pv_alloc(pmap, pindex, isnewp) _pv_alloc(pmap, pindex, isnewp)
132
133#endif
134
135/*
136 * Get PDEs and PTEs for user/kernel address space
137 */
138#define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
139
140#define pmap_pde_v(pte) ((*(pd_entry_t *)pte & PG_V) != 0)
141#define pmap_pte_w(pte) ((*(pt_entry_t *)pte & PG_W) != 0)
142#define pmap_pte_m(pte) ((*(pt_entry_t *)pte & PG_M) != 0)
143#define pmap_pte_u(pte) ((*(pt_entry_t *)pte & PG_A) != 0)
144#define pmap_pte_v(pte) ((*(pt_entry_t *)pte & PG_V) != 0)
145
146/*
147 * Given a map and a machine independent protection code,
148 * convert to a vax protection code.
149 */
150#define pte_prot(m, p) \
151 (protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
152static int protection_codes[8];
153
154struct pmap kernel_pmap;
155static TAILQ_HEAD(,pmap) pmap_list = TAILQ_HEAD_INITIALIZER(pmap_list);
156
157vm_paddr_t avail_start; /* PA of first available physical page */
158vm_paddr_t avail_end; /* PA of last available physical page */
159vm_offset_t virtual2_start; /* cutout free area prior to kernel start */
160vm_offset_t virtual2_end;
161vm_offset_t virtual_start; /* VA of first avail page (after kernel bss) */
162vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
163vm_offset_t KvaStart; /* VA start of KVA space */
164vm_offset_t KvaEnd; /* VA end of KVA space (non-inclusive) */
165vm_offset_t KvaSize; /* max size of kernel virtual address space */
166static boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
167static int pgeflag; /* PG_G or-in */
168static int pseflag; /* PG_PS or-in */
169
170static int ndmpdp;
171static vm_paddr_t dmaplimit;
172static int nkpt;
173vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
174
175static uint64_t KPTbase;
176static uint64_t KPTphys;
177static uint64_t KPDphys; /* phys addr of kernel level 2 */
178static uint64_t KPDbase; /* phys addr of kernel level 2 @ KERNBASE */
179uint64_t KPDPphys; /* phys addr of kernel level 3 */
180uint64_t KPML4phys; /* phys addr of kernel level 4 */
181
182static uint64_t DMPDphys; /* phys addr of direct mapped level 2 */
183static uint64_t DMPDPphys; /* phys addr of direct mapped level 3 */
184
185/*
186 * Data for the pv entry allocation mechanism
187 */
188static vm_zone_t pvzone;
189static struct vm_zone pvzone_store;
190static struct vm_object pvzone_obj;
191static int pv_entry_max=0, pv_entry_high_water=0;
192static int pmap_pagedaemon_waken = 0;
193static struct pv_entry *pvinit;
194
195/*
196 * All those kernel PT submaps that BSD is so fond of
197 */
198pt_entry_t *CMAP1 = 0, *ptmmap;
199caddr_t CADDR1 = 0, ptvmmap = 0;
200static pt_entry_t *msgbufmap;
201struct msgbuf *msgbufp=0;
202
203/*
204 * Crashdump maps.
205 */
206static pt_entry_t *pt_crashdumpmap;
207static caddr_t crashdumpmap;
208
209static int pmap_yield_count = 64;
210SYSCTL_INT(_machdep, OID_AUTO, pmap_yield_count, CTLFLAG_RW,
211 &pmap_yield_count, 0, "Yield during init_pt/release");
212
213#define DISABLE_PSE
214
215static void pv_hold(pv_entry_t pv);
216static int _pv_hold_try(pv_entry_t pv
217 PMAP_DEBUG_DECL);
218static void pv_drop(pv_entry_t pv);
219static void _pv_lock(pv_entry_t pv
220 PMAP_DEBUG_DECL);
221static void pv_unlock(pv_entry_t pv);
222static pv_entry_t _pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew
223 PMAP_DEBUG_DECL);
224static pv_entry_t _pv_get(pmap_t pmap, vm_pindex_t pindex
225 PMAP_DEBUG_DECL);
226static pv_entry_t pv_get_try(pmap_t pmap, vm_pindex_t pindex, int *errorp);
227static pv_entry_t pv_find(pmap_t pmap, vm_pindex_t pindex);
228static void pv_put(pv_entry_t pv);
229static void pv_free(pv_entry_t pv);
230static void *pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex);
231static pv_entry_t pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
232 pv_entry_t *pvpp);
233static void pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp,
234 struct pmap_inval_info *info);
235static vm_page_t pmap_remove_pv_page(pv_entry_t pv);
236
237static void pmap_remove_callback(pmap_t pmap, struct pmap_inval_info *info,
238 pv_entry_t pte_pv, pv_entry_t pt_pv, vm_offset_t va,
239 pt_entry_t *ptep, void *arg __unused);
240static void pmap_protect_callback(pmap_t pmap, struct pmap_inval_info *info,
241 pv_entry_t pte_pv, pv_entry_t pt_pv, vm_offset_t va,
242 pt_entry_t *ptep, void *arg __unused);
243
244static void i386_protection_init (void);
245static void create_pagetables(vm_paddr_t *firstaddr);
246static void pmap_remove_all (vm_page_t m);
247static boolean_t pmap_testbit (vm_page_t m, int bit);
248
249static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
250static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
251
252static unsigned pdir4mb;
253
254static int
255pv_entry_compare(pv_entry_t pv1, pv_entry_t pv2)
256{
257 if (pv1->pv_pindex < pv2->pv_pindex)
258 return(-1);
259 if (pv1->pv_pindex > pv2->pv_pindex)
260 return(1);
261 return(0);
262}
263
264RB_GENERATE2(pv_entry_rb_tree, pv_entry, pv_entry,
265 pv_entry_compare, vm_pindex_t, pv_pindex);
266
267/*
268 * Move the kernel virtual free pointer to the next
269 * 2MB. This is used to help improve performance
270 * by using a large (2MB) page for much of the kernel
271 * (.text, .data, .bss)
272 */
273static
274vm_offset_t
275pmap_kmem_choose(vm_offset_t addr)
276{
277 vm_offset_t newaddr = addr;
278
279 newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
280 return newaddr;
281}
282
283/*
284 * pmap_pte_quick:
285 *
286 * Super fast pmap_pte routine best used when scanning the pv lists.
287 * This eliminates many course-grained invltlb calls. Note that many of
288 * the pv list scans are across different pmaps and it is very wasteful
289 * to do an entire invltlb when checking a single mapping.
290 */
291static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
292
293static
294pt_entry_t *
295pmap_pte_quick(pmap_t pmap, vm_offset_t va)
296{
297 return pmap_pte(pmap, va);
298}
299
300/*
301 * Returns the pindex of a page table entry (representing a terminal page).
302 * There are NUPTE_TOTAL page table entries possible (a huge number)
303 *
304 * x86-64 has a 48-bit address space, where bit 47 is sign-extended out.
305 * We want to properly translate negative KVAs.
306 */
307static __inline
308vm_pindex_t
309pmap_pte_pindex(vm_offset_t va)
310{
311 return ((va >> PAGE_SHIFT) & (NUPTE_TOTAL - 1));
312}
313
314/*
315 * Returns the pindex of a page table.
316 */
317static __inline
318vm_pindex_t
319pmap_pt_pindex(vm_offset_t va)
320{
321 return (NUPTE_TOTAL + ((va >> PDRSHIFT) & (NUPT_TOTAL - 1)));
322}
323
324/*
325 * Returns the pindex of a page directory.
326 */
327static __inline
328vm_pindex_t
329pmap_pd_pindex(vm_offset_t va)
330{
331 return (NUPTE_TOTAL + NUPT_TOTAL +
332 ((va >> PDPSHIFT) & (NUPD_TOTAL - 1)));
333}
334
335static __inline
336vm_pindex_t
337pmap_pdp_pindex(vm_offset_t va)
338{
339 return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
340 ((va >> PML4SHIFT) & (NUPDP_TOTAL - 1)));
341}
342
343static __inline
344vm_pindex_t
345pmap_pml4_pindex(void)
346{
347 return (NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL + NUPDP_TOTAL);
348}
349
350/*
351 * Return various clipped indexes for a given VA
352 *
353 * Returns the index of a pte in a page table, representing a terminal
354 * page.
355 */
356static __inline
357vm_pindex_t
358pmap_pte_index(vm_offset_t va)
359{
360 return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
361}
362
363/*
364 * Returns the index of a pt in a page directory, representing a page
365 * table.
366 */
367static __inline
368vm_pindex_t
369pmap_pt_index(vm_offset_t va)
370{
371 return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
372}
373
374/*
375 * Returns the index of a pd in a page directory page, representing a page
376 * directory.
377 */
378static __inline
379vm_pindex_t
380pmap_pd_index(vm_offset_t va)
381{
382 return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
383}
384
385/*
386 * Returns the index of a pdp in the pml4 table, representing a page
387 * directory page.
388 */
389static __inline
390vm_pindex_t
391pmap_pdp_index(vm_offset_t va)
392{
393 return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
394}
395
396/*
397 * Generic procedure to index a pte from a pt, pd, or pdp.
398 */
399static
400void *
401pv_pte_lookup(pv_entry_t pv, vm_pindex_t pindex)
402{
403 pt_entry_t *pte;
404
405 pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pv->pv_m));
406 return(&pte[pindex]);
407}
408
409/*
410 * Return pointer to PDP slot in the PML4
411 */
412static __inline
413pml4_entry_t *
414pmap_pdp(pmap_t pmap, vm_offset_t va)
415{
416 return (&pmap->pm_pml4[pmap_pdp_index(va)]);
417}
418
419/*
420 * Return pointer to PD slot in the PDP given a pointer to the PDP
421 */
422static __inline
423pdp_entry_t *
424pmap_pdp_to_pd(pml4_entry_t *pdp, vm_offset_t va)
425{
426 pdp_entry_t *pd;
427
428 pd = (pdp_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
429 return (&pd[pmap_pd_index(va)]);
430}
431
432/*
433 * Return pointer to PD slot in the PDP
434 **/
435static __inline
436pdp_entry_t *
437pmap_pd(pmap_t pmap, vm_offset_t va)
438{
439 pml4_entry_t *pdp;
440
441 pdp = pmap_pdp(pmap, va);
442 if ((*pdp & PG_V) == 0)
443 return NULL;
444 return (pmap_pdp_to_pd(pdp, va));
445}
446
447/*
448 * Return pointer to PT slot in the PD given a pointer to the PD
449 */
450static __inline
451pd_entry_t *
452pmap_pd_to_pt(pdp_entry_t *pd, vm_offset_t va)
453{
454 pd_entry_t *pt;
455
456 pt = (pd_entry_t *)PHYS_TO_DMAP(*pd & PG_FRAME);
457 return (&pt[pmap_pt_index(va)]);
458}
459
460/*
461 * Return pointer to PT slot in the PD
462 */
463static __inline
464pd_entry_t *
465pmap_pt(pmap_t pmap, vm_offset_t va)
466{
467 pdp_entry_t *pd;
468
469 pd = pmap_pd(pmap, va);
470 if (pd == NULL || (*pd & PG_V) == 0)
471 return NULL;
472 return (pmap_pd_to_pt(pd, va));
473}
474
475/*
476 * Return pointer to PTE slot in the PT given a pointer to the PT
477 */
478static __inline
479pt_entry_t *
480pmap_pt_to_pte(pd_entry_t *pt, vm_offset_t va)
481{
482 pt_entry_t *pte;
483
484 pte = (pt_entry_t *)PHYS_TO_DMAP(*pt & PG_FRAME);
485 return (&pte[pmap_pte_index(va)]);
486}
487
488/*
489 * Return pointer to PTE slot in the PT
490 */
491static __inline
492pt_entry_t *
493pmap_pte(pmap_t pmap, vm_offset_t va)
494{
495 pd_entry_t *pt;
496
497 pt = pmap_pt(pmap, va);
498 if (pt == NULL || (*pt & PG_V) == 0)
499 return NULL;
500 if ((*pt & PG_PS) != 0)
501 return ((pt_entry_t *)pt);
502 return (pmap_pt_to_pte(pt, va));
503}
504
505/*
506 * Of all the layers (PTE, PT, PD, PDP, PML4) the best one to cache is
507 * the PT layer. This will speed up core pmap operations considerably.
508 */
509static __inline
510void
511pv_cache(pv_entry_t pv, vm_pindex_t pindex)
512{
513 if (pindex >= pmap_pt_pindex(0) && pindex <= pmap_pd_pindex(0))
514 pv->pv_pmap->pm_pvhint = pv;
515}
516
517
518/*
519 * KVM - return address of PT slot in PD
520 */
521static __inline
522pd_entry_t *
523vtopt(vm_offset_t va)
524{
525 uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
526 NPML4EPGSHIFT)) - 1);
527
528 return (PDmap + ((va >> PDRSHIFT) & mask));
529}
530
531/*
532 * KVM - return address of PTE slot in PT
533 */
534static __inline
535pt_entry_t *
536vtopte(vm_offset_t va)
537{
538 uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
539 NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
540
541 return (PTmap + ((va >> PAGE_SHIFT) & mask));
542}
543
544static uint64_t
545allocpages(vm_paddr_t *firstaddr, long n)
546{
547 uint64_t ret;
548
549 ret = *firstaddr;
550 bzero((void *)ret, n * PAGE_SIZE);
551 *firstaddr += n * PAGE_SIZE;
552 return (ret);
553}
554
555static
556void
557create_pagetables(vm_paddr_t *firstaddr)
558{
559 long i; /* must be 64 bits */
560 long nkpt_base;
561 long nkpt_phys;
562 int j;
563
564 /*
565 * We are running (mostly) V=P at this point
566 *
567 * Calculate NKPT - number of kernel page tables. We have to
568 * accomodoate prealloction of the vm_page_array, dump bitmap,
569 * MSGBUF_SIZE, and other stuff. Be generous.
570 *
571 * Maxmem is in pages.
572 *
573 * ndmpdp is the number of 1GB pages we wish to map.
574 */
575 ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
576 if (ndmpdp < 4) /* Minimum 4GB of dirmap */
577 ndmpdp = 4;
578 KKASSERT(ndmpdp <= NKPDPE * NPDEPG);
579
580 /*
581 * Starting at the beginning of kvm (not KERNBASE).
582 */
583 nkpt_phys = (Maxmem * sizeof(struct vm_page) + NBPDR - 1) / NBPDR;
584 nkpt_phys += (Maxmem * sizeof(struct pv_entry) + NBPDR - 1) / NBPDR;
585 nkpt_phys += ((nkpt + nkpt + 1 + NKPML4E + NKPDPE + NDMPML4E +
586 ndmpdp) + 511) / 512;
587 nkpt_phys += 128;
588
589 /*
590 * Starting at KERNBASE - map 2G worth of page table pages.
591 * KERNBASE is offset -2G from the end of kvm.
592 */
593 nkpt_base = (NPDPEPG - KPDPI) * NPTEPG; /* typically 2 x 512 */
594
595 /*
596 * Allocate pages
597 */
598 KPTbase = allocpages(firstaddr, nkpt_base);
599 KPTphys = allocpages(firstaddr, nkpt_phys);
600 KPML4phys = allocpages(firstaddr, 1);
601 KPDPphys = allocpages(firstaddr, NKPML4E);
602 KPDphys = allocpages(firstaddr, NKPDPE);
603
604 /*
605 * Calculate the page directory base for KERNBASE,
606 * that is where we start populating the page table pages.
607 * Basically this is the end - 2.
608 */
609 KPDbase = KPDphys + ((NKPDPE - (NPDPEPG - KPDPI)) << PAGE_SHIFT);
610
611 DMPDPphys = allocpages(firstaddr, NDMPML4E);
612 if ((amd_feature & AMDID_PAGE1GB) == 0)
613 DMPDphys = allocpages(firstaddr, ndmpdp);
614 dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
615
616 /*
617 * Fill in the underlying page table pages for the area around
618 * KERNBASE. This remaps low physical memory to KERNBASE.
619 *
620 * Read-only from zero to physfree
621 * XXX not fully used, underneath 2M pages
622 */
623 for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
624 ((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
625 ((pt_entry_t *)KPTbase)[i] |= PG_RW | PG_V | PG_G;
626 }
627
628 /*
629 * Now map the initial kernel page tables. One block of page
630 * tables is placed at the beginning of kernel virtual memory,
631 * and another block is placed at KERNBASE to map the kernel binary,
632 * data, bss, and initial pre-allocations.
633 */
634 for (i = 0; i < nkpt_base; i++) {
635 ((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
636 ((pd_entry_t *)KPDbase)[i] |= PG_RW | PG_V;
637 }
638 for (i = 0; i < nkpt_phys; i++) {
639 ((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
640 ((pd_entry_t *)KPDphys)[i] |= PG_RW | PG_V;
641 }
642
643 /*
644 * Map from zero to end of allocations using 2M pages as an
645 * optimization. This will bypass some of the KPTBase pages
646 * above in the KERNBASE area.
647 */
648 for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
649 ((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
650 ((pd_entry_t *)KPDbase)[i] |= PG_RW | PG_V | PG_PS | PG_G;
651 }
652
653 /*
654 * And connect up the PD to the PDP. The kernel pmap is expected
655 * to pre-populate all of its PDs. See NKPDPE in vmparam.h.
656 */
657 for (i = 0; i < NKPDPE; i++) {
658 ((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] =
659 KPDphys + (i << PAGE_SHIFT);
660 ((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] |=
661 PG_RW | PG_V | PG_U;
662 }
663
664 /*
665 * Now set up the direct map space using either 2MB or 1GB pages
666 * Preset PG_M and PG_A because demotion expects it.
667 *
668 * When filling in entries in the PD pages make sure any excess
669 * entries are set to zero as we allocated enough PD pages
670 */
671 if ((amd_feature & AMDID_PAGE1GB) == 0) {
672 for (i = 0; i < NPDEPG * ndmpdp; i++) {
673 ((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
674 ((pd_entry_t *)DMPDphys)[i] |= PG_RW | PG_V | PG_PS |
675 PG_G | PG_M | PG_A;
676 }
677
678 /*
679 * And the direct map space's PDP
680 */
681 for (i = 0; i < ndmpdp; i++) {
682 ((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
683 (i << PAGE_SHIFT);
684 ((pdp_entry_t *)DMPDPphys)[i] |= PG_RW | PG_V | PG_U;
685 }
686 } else {
687 for (i = 0; i < ndmpdp; i++) {
688 ((pdp_entry_t *)DMPDPphys)[i] =
689 (vm_paddr_t)i << PDPSHIFT;
690 ((pdp_entry_t *)DMPDPphys)[i] |= PG_RW | PG_V | PG_PS |
691 PG_G | PG_M | PG_A;
692 }
693 }
694
695 /* And recursively map PML4 to itself in order to get PTmap */
696 ((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
697 ((pdp_entry_t *)KPML4phys)[PML4PML4I] |= PG_RW | PG_V | PG_U;
698
699 /*
700 * Connect the Direct Map slots up to the PML4
701 */
702 for (j = 0; j < NDMPML4E; ++j) {
703 ((pdp_entry_t *)KPML4phys)[DMPML4I + j] =
704 (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
705 PG_RW | PG_V | PG_U;
706 }
707
708 /*
709 * Connect the KVA slot up to the PML4
710 */
711 ((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
712 ((pdp_entry_t *)KPML4phys)[KPML4I] |= PG_RW | PG_V | PG_U;
713}
714
715/*
716 * Bootstrap the system enough to run with virtual memory.
717 *
718 * On the i386 this is called after mapping has already been enabled
719 * and just syncs the pmap module with what has already been done.
720 * [We can't call it easily with mapping off since the kernel is not
721 * mapped with PA == VA, hence we would have to relocate every address
722 * from the linked base (virtual) address "KERNBASE" to the actual
723 * (physical) address starting relative to 0]
724 */
725void
726pmap_bootstrap(vm_paddr_t *firstaddr)
727{
728 vm_offset_t va;
729 pt_entry_t *pte;
730 struct mdglobaldata *gd;
731 int pg;
732
733 KvaStart = VM_MIN_KERNEL_ADDRESS;
734 KvaEnd = VM_MAX_KERNEL_ADDRESS;
735 KvaSize = KvaEnd - KvaStart;
736
737 avail_start = *firstaddr;
738
739 /*
740 * Create an initial set of page tables to run the kernel in.
741 */
742 create_pagetables(firstaddr);
743
744 virtual2_start = KvaStart;
745 virtual2_end = PTOV_OFFSET;
746
747 virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
748 virtual_start = pmap_kmem_choose(virtual_start);
749
750 virtual_end = VM_MAX_KERNEL_ADDRESS;
751
752 /* XXX do %cr0 as well */
753 load_cr4(rcr4() | CR4_PGE | CR4_PSE);
754 load_cr3(KPML4phys);
755
756 /*
757 * Initialize protection array.
758 */
759 i386_protection_init();
760
761 /*
762 * The kernel's pmap is statically allocated so we don't have to use
763 * pmap_create, which is unlikely to work correctly at this part of
764 * the boot sequence (XXX and which no longer exists).
765 */
766 kernel_pmap.pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
767 kernel_pmap.pm_count = 1;
768 kernel_pmap.pm_active = (cpumask_t)-1 & ~CPUMASK_LOCK;
769 RB_INIT(&kernel_pmap.pm_pvroot);
770 spin_init(&kernel_pmap.pm_spin);
771 lwkt_token_init(&kernel_pmap.pm_token, "kpmap_tok");
772
773 /*
774 * Reserve some special page table entries/VA space for temporary
775 * mapping of pages.
776 */
777#define SYSMAP(c, p, v, n) \
778 v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
779
780 va = virtual_start;
781 pte = vtopte(va);
782
783 /*
784 * CMAP1/CMAP2 are used for zeroing and copying pages.
785 */
786 SYSMAP(caddr_t, CMAP1, CADDR1, 1)
787
788 /*
789 * Crashdump maps.
790 */
791 SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
792
793 /*
794 * ptvmmap is used for reading arbitrary physical pages via
795 * /dev/mem.
796 */
797 SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
798
799 /*
800 * msgbufp is used to map the system message buffer.
801 * XXX msgbufmap is not used.
802 */
803 SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
804 atop(round_page(MSGBUF_SIZE)))
805
806 virtual_start = va;
807
808 *CMAP1 = 0;
809
810 /*
811 * PG_G is terribly broken on SMP because we IPI invltlb's in some
812 * cases rather then invl1pg. Actually, I don't even know why it
813 * works under UP because self-referential page table mappings
814 */
815#ifdef SMP
816 pgeflag = 0;
817#else
818 if (cpu_feature & CPUID_PGE)
819 pgeflag = PG_G;
820#endif
821
822/*
823 * Initialize the 4MB page size flag
824 */
825 pseflag = 0;
826/*
827 * The 4MB page version of the initial
828 * kernel page mapping.
829 */
830 pdir4mb = 0;
831
832#if !defined(DISABLE_PSE)
833 if (cpu_feature & CPUID_PSE) {
834 pt_entry_t ptditmp;
835 /*
836 * Note that we have enabled PSE mode
837 */
838 pseflag = PG_PS;
839 ptditmp = *(PTmap + x86_64_btop(KERNBASE));
840 ptditmp &= ~(NBPDR - 1);
841 ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
842 pdir4mb = ptditmp;
843
844#ifndef SMP
845 /*
846 * Enable the PSE mode. If we are SMP we can't do this
847 * now because the APs will not be able to use it when
848 * they boot up.
849 */
850 load_cr4(rcr4() | CR4_PSE);
851
852 /*
853 * We can do the mapping here for the single processor
854 * case. We simply ignore the old page table page from
855 * now on.
856 */
857 /*
858 * For SMP, we still need 4K pages to bootstrap APs,
859 * PSE will be enabled as soon as all APs are up.
860 */
861 PTD[KPTDI] = (pd_entry_t)ptditmp;
862 cpu_invltlb();
863#endif
864 }
865#endif
866
867 /*
868 * We need to finish setting up the globaldata page for the BSP.
869 * locore has already populated the page table for the mdglobaldata
870 * portion.
871 */
872 pg = MDGLOBALDATA_BASEALLOC_PAGES;
873 gd = &CPU_prvspace[0].mdglobaldata;
874
875 cpu_invltlb();
876}
877
878#ifdef SMP
879/*
880 * Set 4mb pdir for mp startup
881 */
882void
883pmap_set_opt(void)
884{
885 if (pseflag && (cpu_feature & CPUID_PSE)) {
886 load_cr4(rcr4() | CR4_PSE);
887 if (pdir4mb && mycpu->gd_cpuid == 0) { /* only on BSP */
888 cpu_invltlb();
889 }
890 }
891}
892#endif
893
894/*
895 * Initialize the pmap module.
896 * Called by vm_init, to initialize any structures that the pmap
897 * system needs to map virtual memory.
898 * pmap_init has been enhanced to support in a fairly consistant
899 * way, discontiguous physical memory.
900 */
901void
902pmap_init(void)
903{
904 int i;
905 int initial_pvs;
906
907 /*
908 * Allocate memory for random pmap data structures. Includes the
909 * pv_head_table.
910 */
911
912 for (i = 0; i < vm_page_array_size; i++) {
913 vm_page_t m;
914
915 m = &vm_page_array[i];
916 TAILQ_INIT(&m->md.pv_list);
917 }
918
919 /*
920 * init the pv free list
921 */
922 initial_pvs = vm_page_array_size;
923 if (initial_pvs < MINPV)
924 initial_pvs = MINPV;
925 pvzone = &pvzone_store;
926 pvinit = (void *)kmem_alloc(&kernel_map,
927 initial_pvs * sizeof (struct pv_entry));
928 zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry),
929 pvinit, initial_pvs);
930
931 /*
932 * Now it is safe to enable pv_table recording.
933 */
934 pmap_initialized = TRUE;
935}
936
937/*
938 * Initialize the address space (zone) for the pv_entries. Set a
939 * high water mark so that the system can recover from excessive
940 * numbers of pv entries.
941 */
942void
943pmap_init2(void)
944{
945 int shpgperproc = PMAP_SHPGPERPROC;
946 int entry_max;
947
948 TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
949 pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
950 TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
951 pv_entry_high_water = 9 * (pv_entry_max / 10);
952
953 /*
954 * Subtract out pages already installed in the zone (hack)
955 */
956 entry_max = pv_entry_max - vm_page_array_size;
957 if (entry_max <= 0)
958 entry_max = 1;
959
960 zinitna(pvzone, &pvzone_obj, NULL, 0, entry_max, ZONE_INTERRUPT, 1);
961}
962
963
964/***************************************************
965 * Low level helper routines.....
966 ***************************************************/
967
968/*
969 * this routine defines the region(s) of memory that should
970 * not be tested for the modified bit.
971 */
972static __inline
973int
974pmap_track_modified(vm_pindex_t pindex)
975{
976 vm_offset_t va = (vm_offset_t)pindex << PAGE_SHIFT;
977 if ((va < clean_sva) || (va >= clean_eva))
978 return 1;
979 else
980 return 0;
981}
982
983/*
984 * Extract the physical page address associated with the map/VA pair.
985 * The page must be wired for this to work reliably.
986 *
987 * XXX for the moment we're using pv_find() instead of pv_get(), as
988 * callers might be expecting non-blocking operation.
989 */
990vm_paddr_t
991pmap_extract(pmap_t pmap, vm_offset_t va)
992{
993 vm_paddr_t rtval;
994 pv_entry_t pt_pv;
995 pt_entry_t *ptep;
996
997 rtval = 0;
998 if (va >= VM_MAX_USER_ADDRESS) {
999 /*
1000 * Kernel page directories might be direct-mapped and
1001 * there is typically no PV tracking of pte's
1002 */
1003 pd_entry_t *pt;
1004
1005 pt = pmap_pt(pmap, va);
1006 if (pt && (*pt & PG_V)) {
1007 if (*pt & PG_PS) {
1008 rtval = *pt & PG_PS_FRAME;
1009 rtval |= va & PDRMASK;
1010 } else {
1011 ptep = pmap_pt_to_pte(pt, va);
1012 if (*pt & PG_V) {
1013 rtval = *ptep & PG_FRAME;
1014 rtval |= va & PAGE_MASK;
1015 }
1016 }
1017 }
1018 } else {
1019 /*
1020 * User pages currently do not direct-map the page directory
1021 * and some pages might not used managed PVs. But all PT's
1022 * will have a PV.
1023 */
1024 pt_pv = pv_find(pmap, pmap_pt_pindex(va));
1025 if (pt_pv) {
1026 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
1027 if (*ptep & PG_V) {
1028 rtval = *ptep & PG_FRAME;
1029 rtval |= va & PAGE_MASK;
1030 }
1031 pv_drop(pt_pv);
1032 }
1033 }
1034 return rtval;
1035}
1036
1037/*
1038 * Extract the physical page address associated kernel virtual address.
1039 */
1040vm_paddr_t
1041pmap_kextract(vm_offset_t va)
1042{
1043 pd_entry_t pt; /* pt entry in pd */
1044 vm_paddr_t pa;
1045
1046 if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
1047 pa = DMAP_TO_PHYS(va);
1048 } else {
1049 pt = *vtopt(va);
1050 if (pt & PG_PS) {
1051 pa = (pt & PG_PS_FRAME) | (va & PDRMASK);
1052 } else {
1053 /*
1054 * Beware of a concurrent promotion that changes the
1055 * PDE at this point! For example, vtopte() must not
1056 * be used to access the PTE because it would use the
1057 * new PDE. It is, however, safe to use the old PDE
1058 * because the page table page is preserved by the
1059 * promotion.
1060 */
1061 pa = *pmap_pt_to_pte(&pt, va);
1062 pa = (pa & PG_FRAME) | (va & PAGE_MASK);
1063 }
1064 }
1065 return pa;
1066}
1067
1068/***************************************************
1069 * Low level mapping routines.....
1070 ***************************************************/
1071
1072/*
1073 * Routine: pmap_kenter
1074 * Function:
1075 * Add a wired page to the KVA
1076 * NOTE! note that in order for the mapping to take effect -- you
1077 * should do an invltlb after doing the pmap_kenter().
1078 */
1079void
1080pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1081{
1082 pt_entry_t *pte;
1083 pt_entry_t npte;
1084 pmap_inval_info info;
1085
1086 pmap_inval_init(&info); /* XXX remove */
1087 npte = pa | PG_RW | PG_V | pgeflag;
1088 pte = vtopte(va);
1089 pmap_inval_interlock(&info, &kernel_pmap, va); /* XXX remove */
1090 *pte = npte;
1091 pmap_inval_deinterlock(&info, &kernel_pmap); /* XXX remove */
1092 pmap_inval_done(&info); /* XXX remove */
1093}
1094
1095/*
1096 * Routine: pmap_kenter_quick
1097 * Function:
1098 * Similar to pmap_kenter(), except we only invalidate the
1099 * mapping on the current CPU.
1100 */
1101void
1102pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
1103{
1104 pt_entry_t *pte;
1105 pt_entry_t npte;
1106
1107 npte = pa | PG_RW | PG_V | pgeflag;
1108 pte = vtopte(va);
1109 *pte = npte;
1110 cpu_invlpg((void *)va);
1111}
1112
1113void
1114pmap_kenter_sync(vm_offset_t va)
1115{
1116 pmap_inval_info info;
1117
1118 pmap_inval_init(&info);
1119 pmap_inval_interlock(&info, &kernel_pmap, va);
1120 pmap_inval_deinterlock(&info, &kernel_pmap);
1121 pmap_inval_done(&info);
1122}
1123
1124void
1125pmap_kenter_sync_quick(vm_offset_t va)
1126{
1127 cpu_invlpg((void *)va);
1128}
1129
1130/*
1131 * remove a page from the kernel pagetables
1132 */
1133void
1134pmap_kremove(vm_offset_t va)
1135{
1136 pt_entry_t *pte;
1137 pmap_inval_info info;
1138
1139 pmap_inval_init(&info);
1140 pte = vtopte(va);
1141 pmap_inval_interlock(&info, &kernel_pmap, va);
1142 (void)pte_load_clear(pte);
1143 pmap_inval_deinterlock(&info, &kernel_pmap);
1144 pmap_inval_done(&info);
1145}
1146
1147void
1148pmap_kremove_quick(vm_offset_t va)
1149{
1150 pt_entry_t *pte;
1151 pte = vtopte(va);
1152 (void)pte_load_clear(pte);
1153 cpu_invlpg((void *)va);
1154}
1155
1156/*
1157 * XXX these need to be recoded. They are not used in any critical path.
1158 */
1159void
1160pmap_kmodify_rw(vm_offset_t va)
1161{
1162 atomic_set_long(vtopte(va), PG_RW);
1163 cpu_invlpg((void *)va);
1164}
1165
1166void
1167pmap_kmodify_nc(vm_offset_t va)
1168{
1169 atomic_set_long(vtopte(va), PG_N);
1170 cpu_invlpg((void *)va);
1171}
1172
1173/*
1174 * Used to map a range of physical addresses into kernel virtual
1175 * address space during the low level boot, typically to map the
1176 * dump bitmap, message buffer, and vm_page_array.
1177 *
1178 * These mappings are typically made at some pointer after the end of the
1179 * kernel text+data.
1180 *
1181 * We could return PHYS_TO_DMAP(start) here and not allocate any
1182 * via (*virtp), but then kmem from userland and kernel dumps won't
1183 * have access to the related pointers.
1184 */
1185vm_offset_t
1186pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
1187{
1188 vm_offset_t va;
1189 vm_offset_t va_start;
1190
1191 /*return PHYS_TO_DMAP(start);*/
1192
1193 va_start = *virtp;
1194 va = va_start;
1195
1196 while (start < end) {
1197 pmap_kenter_quick(va, start);
1198 va += PAGE_SIZE;
1199 start += PAGE_SIZE;
1200 }
1201 *virtp = va;
1202 return va_start;
1203}
1204
1205
1206/*
1207 * Add a list of wired pages to the kva
1208 * this routine is only used for temporary
1209 * kernel mappings that do not need to have
1210 * page modification or references recorded.
1211 * Note that old mappings are simply written
1212 * over. The page *must* be wired.
1213 */
1214void
1215pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
1216{
1217 vm_offset_t end_va;
1218
1219 end_va = va + count * PAGE_SIZE;
1220
1221 while (va < end_va) {
1222 pt_entry_t *pte;
1223
1224 pte = vtopte(va);
1225 *pte = VM_PAGE_TO_PHYS(*m) | PG_RW | PG_V | pgeflag;
1226 cpu_invlpg((void *)va);
1227 va += PAGE_SIZE;
1228 m++;
1229 }
1230 smp_invltlb();
1231}
1232
1233/*
1234 * This routine jerks page mappings from the
1235 * kernel -- it is meant only for temporary mappings.
1236 *
1237 * MPSAFE, INTERRUPT SAFE (cluster callback)
1238 */
1239void
1240pmap_qremove(vm_offset_t va, int count)
1241{
1242 vm_offset_t end_va;
1243
1244 end_va = va + count * PAGE_SIZE;
1245
1246 while (va < end_va) {
1247 pt_entry_t *pte;
1248
1249 pte = vtopte(va);
1250 (void)pte_load_clear(pte);
1251 cpu_invlpg((void *)va);
1252 va += PAGE_SIZE;
1253 }
1254 smp_invltlb();
1255}
1256
1257/*
1258 * Create a new thread and optionally associate it with a (new) process.
1259 * NOTE! the new thread's cpu may not equal the current cpu.
1260 */
1261void
1262pmap_init_thread(thread_t td)
1263{
1264 /* enforce pcb placement & alignment */
1265 td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1266 td->td_pcb = (struct pcb *)((intptr_t)td->td_pcb & ~(intptr_t)0xF);
1267 td->td_savefpu = &td->td_pcb->pcb_save;
1268 td->td_sp = (char *)td->td_pcb; /* no -16 */
1269}
1270
1271/*
1272 * This routine directly affects the fork perf for a process.
1273 */
1274void
1275pmap_init_proc(struct proc *p)
1276{
1277}
1278
1279/*
1280 * Initialize pmap0/vmspace0. This pmap is not added to pmap_list because
1281 * it, and IdlePTD, represents the template used to update all other pmaps.
1282 *
1283 * On architectures where the kernel pmap is not integrated into the user
1284 * process pmap, this pmap represents the process pmap, not the kernel pmap.
1285 * kernel_pmap should be used to directly access the kernel_pmap.
1286 */
1287void
1288pmap_pinit0(struct pmap *pmap)
1289{
1290 pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
1291 pmap->pm_count = 1;
1292 pmap->pm_active = 0;
1293 pmap->pm_pvhint = NULL;
1294 RB_INIT(&pmap->pm_pvroot);
1295 spin_init(&pmap->pm_spin);
1296 lwkt_token_init(&pmap->pm_token, "pmap_tok");
1297 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1298}
1299
1300/*
1301 * Initialize a preallocated and zeroed pmap structure,
1302 * such as one in a vmspace structure.
1303 */
1304void
1305pmap_pinit(struct pmap *pmap)
1306{
1307 pv_entry_t pv;
1308 int j;
1309
1310 /*
1311 * Misc initialization
1312 */
1313 pmap->pm_count = 1;
1314 pmap->pm_active = 0;
1315 pmap->pm_pvhint = NULL;
1316 if (pmap->pm_pmlpv == NULL) {
1317 RB_INIT(&pmap->pm_pvroot);
1318 bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1319 spin_init(&pmap->pm_spin);
1320 lwkt_token_init(&pmap->pm_token, "pmap_tok");
1321 }
1322
1323 /*
1324 * No need to allocate page table space yet but we do need a valid
1325 * page directory table.
1326 */
1327 if (pmap->pm_pml4 == NULL) {
1328 pmap->pm_pml4 =
1329 (pml4_entry_t *)kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
1330 }
1331
1332 /*
1333 * Allocate the page directory page, which wires it even though
1334 * it isn't being entered into some higher level page table (it
1335 * being the highest level). If one is already cached we don't
1336 * have to do anything.
1337 */
1338 if ((pv = pmap->pm_pmlpv) == NULL) {
1339 pv = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
1340 pmap->pm_pmlpv = pv;
1341 pmap_kenter((vm_offset_t)pmap->pm_pml4,
1342 VM_PAGE_TO_PHYS(pv->pv_m));
1343 pv_put(pv);
1344
1345 /*
1346 * Install DMAP and KMAP.
1347 */
1348 for (j = 0; j < NDMPML4E; ++j) {
1349 pmap->pm_pml4[DMPML4I + j] =
1350 (DMPDPphys + ((vm_paddr_t)j << PML4SHIFT)) |
1351 PG_RW | PG_V | PG_U;
1352 }
1353 pmap->pm_pml4[KPML4I] = KPDPphys | PG_RW | PG_V | PG_U;
1354
1355 /*
1356 * install self-referential address mapping entry
1357 */
1358 pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pv->pv_m) |
1359 PG_V | PG_RW | PG_A | PG_M;
1360 } else {
1361 KKASSERT(pv->pv_m->flags & PG_MAPPED);
1362 KKASSERT(pv->pv_m->flags & PG_WRITEABLE);
1363 }
1364 KKASSERT(pmap->pm_pml4[255] == 0);
1365 KKASSERT(RB_ROOT(&pmap->pm_pvroot) == pv);
1366 KKASSERT(pv->pv_entry.rbe_left == NULL);
1367 KKASSERT(pv->pv_entry.rbe_right == NULL);
1368}
1369
1370/*
1371 * Clean up a pmap structure so it can be physically freed. This routine
1372 * is called by the vmspace dtor function. A great deal of pmap data is
1373 * left passively mapped to improve vmspace management so we have a bit
1374 * of cleanup work to do here.
1375 */
1376void
1377pmap_puninit(pmap_t pmap)
1378{
1379 pv_entry_t pv;
1380 vm_page_t p;
1381
1382 KKASSERT(pmap->pm_active == 0);
1383 if ((pv = pmap->pm_pmlpv) != NULL) {
1384 if (pv_hold_try(pv) == 0)
1385 pv_lock(pv);
1386 p = pmap_remove_pv_page(pv);
1387 pv_free(pv);
1388 pmap_kremove((vm_offset_t)pmap->pm_pml4);
1389 vm_page_busy_wait(p, FALSE, "pgpun");
1390 KKASSERT(p->flags & (PG_FICTITIOUS|PG_UNMANAGED));
1391 vm_page_unwire(p, 0);
1392 vm_page_flag_clear(p, PG_MAPPED | PG_WRITEABLE);
1393
1394 /*
1395 * XXX eventually clean out PML4 static entries and
1396 * use vm_page_free_zero()
1397 */
1398 vm_page_free(p);
1399 pmap->pm_pmlpv = NULL;
1400 }
1401 if (pmap->pm_pml4) {
1402 KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
1403 kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1404 pmap->pm_pml4 = NULL;
1405 }
1406 KKASSERT(pmap->pm_stats.resident_count == 0);
1407 KKASSERT(pmap->pm_stats.wired_count == 0);
1408}
1409
1410/*
1411 * Wire in kernel global address entries. To avoid a race condition
1412 * between pmap initialization and pmap_growkernel, this procedure
1413 * adds the pmap to the master list (which growkernel scans to update),
1414 * then copies the template.
1415 */
1416void
1417pmap_pinit2(struct pmap *pmap)
1418{
1419 /*
1420 * XXX copies current process, does not fill in MPPTDI
1421 */
1422 spin_lock(&pmap_spin);
1423 TAILQ_INSERT_TAIL(&pmap_list, pmap, pm_pmnode);
1424 spin_unlock(&pmap_spin);
1425}
1426
1427/*
1428 * This routine is called when various levels in the page table need to
1429 * be populated. This routine cannot fail.
1430 *
1431 * This function returns two locked pv_entry's, one representing the
1432 * requested pv and one representing the requested pv's parent pv. If
1433 * the pv did not previously exist it will be mapped into its parent
1434 * and wired, otherwise no additional wire count will be added.
1435 */
1436static
1437pv_entry_t
1438pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, pv_entry_t *pvpp)
1439{
1440 pt_entry_t *ptep;
1441 pv_entry_t pv;
1442 pv_entry_t pvp;
1443 vm_pindex_t pt_pindex;
1444 vm_page_t m;
1445 int isnew;
1446
1447 /*
1448 * If the pv already exists and we aren't being asked for the
1449 * parent page table page we can just return it. A locked+held pv
1450 * is returned.
1451 */
1452 pv = pv_alloc(pmap, ptepindex, &isnew);
1453 if (isnew == 0 && pvpp == NULL)
1454 return(pv);
1455
1456 /*
1457 * This is a new PV, we have to resolve its parent page table and
1458 * add an additional wiring to the page if necessary.
1459 */
1460
1461 /*
1462 * Special case terminal PVs. These are not page table pages so
1463 * no vm_page is allocated (the caller supplied the vm_page). If
1464 * pvpp is non-NULL we are being asked to also removed the pt_pv
1465 * for this pv.
1466 *
1467 * Note that pt_pv's are only returned for user VAs. We assert that
1468 * a pt_pv is not being requested for kernel VAs.
1469 */
1470 if (ptepindex < pmap_pt_pindex(0)) {
1471 if (ptepindex >= NUPTE_USER)
1472 KKASSERT(pvpp == NULL);
1473 else
1474 KKASSERT(pvpp != NULL);
1475 if (pvpp) {
1476 pt_pindex = NUPTE_TOTAL + (ptepindex >> NPTEPGSHIFT);
1477 pvp = pmap_allocpte(pmap, pt_pindex, NULL);
1478 if (isnew)
1479 vm_page_wire_quick(pvp->pv_m);
1480 *pvpp = pvp;
1481 } else {
1482 pvp = NULL;
1483 }
1484 return(pv);
1485 }
1486
1487 /*
1488 * Non-terminal PVs allocate a VM page to represent the page table,
1489 * so we have to resolve pvp and calculate ptepindex for the pvp
1490 * and then for the page table entry index in the pvp for
1491 * fall-through.
1492 */
1493 if (ptepindex < pmap_pd_pindex(0)) {
1494 /*
1495 * pv is PT, pvp is PD
1496 */
1497 ptepindex = (ptepindex - pmap_pt_pindex(0)) >> NPDEPGSHIFT;
1498 ptepindex += NUPTE_TOTAL + NUPT_TOTAL;
1499 pvp = pmap_allocpte(pmap, ptepindex, NULL);
1500 if (!isnew)
1501 goto notnew;
1502
1503 /*
1504 * PT index in PD
1505 */
1506 ptepindex = pv->pv_pindex - pmap_pt_pindex(0);
1507 ptepindex &= ((1ul << NPDEPGSHIFT) - 1);
1508 } else if (ptepindex < pmap_pdp_pindex(0)) {
1509 /*
1510 * pv is PD, pvp is PDP
1511 */
1512 ptepindex = (ptepindex - pmap_pd_pindex(0)) >> NPDPEPGSHIFT;
1513 ptepindex += NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL;
1514 pvp = pmap_allocpte(pmap, ptepindex, NULL);
1515 if (!isnew)
1516 goto notnew;
1517
1518 /*
1519 * PD index in PDP
1520 */
1521 ptepindex = pv->pv_pindex - pmap_pd_pindex(0);
1522 ptepindex &= ((1ul << NPDPEPGSHIFT) - 1);
1523 } else if (ptepindex < pmap_pml4_pindex()) {
1524 /*
1525 * pv is PDP, pvp is the root pml4 table
1526 */
1527 pvp = pmap_allocpte(pmap, pmap_pml4_pindex(), NULL);
1528 if (!isnew)
1529 goto notnew;
1530
1531 /*
1532 * PDP index in PML4
1533 */
1534 ptepindex = pv->pv_pindex - pmap_pdp_pindex(0);
1535 ptepindex &= ((1ul << NPML4EPGSHIFT) - 1);
1536 } else {
1537 /*
1538 * pv represents the top-level PML4, there is no parent.
1539 */
1540 pvp = NULL;
1541 if (!isnew)
1542 goto notnew;
1543 }
1544
1545 /*
1546 * This code is only reached if isnew is TRUE and this is not a
1547 * terminal PV. We need to allocate a vm_page for the page table
1548 * at this level and enter it into the parent page table.
1549 *
1550 * page table pages are marked PG_WRITEABLE and PG_MAPPED.
1551 */
1552 for (;;) {
1553 m = vm_page_alloc(NULL, pv->pv_pindex,
1554 VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM |
1555 VM_ALLOC_INTERRUPT);
1556 if (m)
1557 break;
1558 vm_wait(0);
1559 }
1560 vm_page_spin_lock(m);
1561 TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1562 pv->pv_m = m;
1563 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1564 vm_page_spin_unlock(m);
1565 vm_page_unmanage(m); /* m must be spinunlocked */
1566
1567 if ((m->flags & PG_ZERO) == 0) {
1568 pmap_zero_page(VM_PAGE_TO_PHYS(m));
1569 }
1570#ifdef PMAP_DEBUG
1571 else {
1572 pmap_page_assertzero(VM_PAGE_TO_PHYS(m));
1573 }
1574#endif
1575 m->valid = VM_PAGE_BITS_ALL;
1576 vm_page_flag_clear(m, PG_ZERO);
1577 vm_page_wire(m); /* wire for mapping in parent */
1578
1579 /*
1580 * Wire the page into pvp, bump the wire-count for pvp's page table
1581 * page. Bump the resident_count for the pmap. There is no pvp
1582 * for the top level, address the pm_pml4[] array directly.
1583 *
1584 * If the caller wants the parent we return it, otherwise
1585 * we just put it away.
1586 *
1587 * No interlock is needed for pte 0 -> non-zero.
1588 */
1589 if (pvp) {
1590 vm_page_wire_quick(pvp->pv_m);
1591 ptep = pv_pte_lookup(pvp, ptepindex);
1592 KKASSERT((*ptep & PG_V) == 0);
1593 *ptep = VM_PAGE_TO_PHYS(m) | (PG_U | PG_RW | PG_V |
1594 PG_A | PG_M);
1595 }
1596 vm_page_wakeup(m);
1597notnew:
1598 if (pvpp)
1599 *pvpp = pvp;
1600 else if (pvp)
1601 pv_put(pvp);
1602 return (pv);
1603}
1604
1605/*
1606 * Release any resources held by the given physical map.
1607 *
1608 * Called when a pmap initialized by pmap_pinit is being released. Should
1609 * only be called if the map contains no valid mappings.
1610 *
1611 * Caller must hold pmap->pm_token
1612 */
1613struct pmap_release_info {
1614 pmap_t pmap;
1615 int retry;
1616};
1617
1618static int pmap_release_callback(pv_entry_t pv, void *data);
1619
1620void
1621pmap_release(struct pmap *pmap)
1622{
1623 struct pmap_release_info info;
1624
1625 KASSERT(pmap->pm_active == 0,
1626 ("pmap still active! %016jx", (uintmax_t)pmap->pm_active));
1627
1628 spin_lock(&pmap_spin);
1629 TAILQ_REMOVE(&pmap_list, pmap, pm_pmnode);
1630 spin_unlock(&pmap_spin);
1631
1632 /*
1633 * Pull pv's off the RB tree in order from low to high and release
1634 * each page.
1635 */
1636 info.pmap = pmap;
1637 do {
1638 info.retry = 0;
1639 spin_lock(&pmap->pm_spin);
1640 RB_SCAN(pv_entry_rb_tree, &pmap->pm_pvroot, NULL,
1641 pmap_release_callback, &info);
1642 spin_unlock(&pmap->pm_spin);
1643 } while (info.retry);
1644
1645
1646 /*
1647 * One resident page (the pml4 page) should remain.
1648 * No wired pages should remain.
1649 */
1650 KKASSERT(pmap->pm_stats.resident_count == 1);
1651 KKASSERT(pmap->pm_stats.wired_count == 0);
1652}
1653
1654static int
1655pmap_release_callback(pv_entry_t pv, void *data)
1656{
1657 struct pmap_release_info *info = data;
1658 pmap_t pmap = info->pmap;
1659 vm_page_t p;
1660
1661 if (pv_hold_try(pv)) {
1662 spin_unlock(&pmap->pm_spin);
1663 } else {
1664 spin_unlock(&pmap->pm_spin);
1665 pv_lock(pv);
1666 if (pv->pv_pmap != pmap) {
1667 pv_put(pv);
1668 spin_lock(&pmap->pm_spin);
1669 info->retry = 1;
1670 return(-1);
1671 }
1672 }
1673
1674 /*
1675 * The pmap is currently not spinlocked, pv is held+locked.
1676 * Remove the pv's page from its parent's page table. The
1677 * parent's page table page's wire_count will be decremented.
1678 */
1679 pmap_remove_pv_pte(pv, NULL, NULL);
1680
1681 /*
1682 * Terminal pvs are unhooked from their vm_pages. Because
1683 * terminal pages aren't page table pages they aren't wired
1684 * by us, so we have to be sure not to unwire them either.
1685 */
1686 if (pv->pv_pindex < pmap_pt_pindex(0)) {
1687 pmap_remove_pv_page(pv);
1688 goto skip;
1689 }
1690
1691 /*
1692 * We leave the top-level page table page cached, wired, and
1693 * mapped in the pmap until the dtor function (pmap_puninit())
1694 * gets called.
1695 *
1696 * Since we are leaving the top-level pv intact we need
1697 * to break out of what would otherwise be an infinite loop.
1698 */
1699 if (pv->pv_pindex == pmap_pml4_pindex()) {
1700 pv_put(pv);
1701 spin_lock(&pmap->pm_spin);
1702 return(-1);
1703 }
1704
1705 /*
1706 * For page table pages (other than the top-level page),
1707 * remove and free the vm_page. The representitive mapping
1708 * removed above by pmap_remove_pv_pte() did not undo the
1709 * last wire_count so we have to do that as well.
1710 */
1711 p = pmap_remove_pv_page(pv);
1712 vm_page_busy_wait(p, FALSE, "pmaprl");
1713 if (p->wire_count != 1) {
1714 kprintf("p->wire_count was %016lx %d\n",
1715 pv->pv_pindex, p->wire_count);
1716 }
1717 KKASSERT(p->wire_count == 1);
1718 KKASSERT(p->flags & PG_UNMANAGED);
1719
1720 vm_page_unwire(p, 0);
1721 KKASSERT(p->wire_count == 0);
1722 /* JG eventually revert to using vm_page_free_zero() */
1723 vm_page_free(p);
1724skip:
1725 pv_free(pv);
1726 spin_lock(&pmap->pm_spin);
1727 return(0);
1728}
1729
1730/*
1731 * This function will remove the pte associated with a pv from its parent.
1732 * Terminal pv's are supported. The removal will be interlocked if info
1733 * is non-NULL. The caller must dispose of pv instead of just unlocking
1734 * it.
1735 *
1736 * The wire count will be dropped on the parent page table. The wire
1737 * count on the page being removed (pv->pv_m) from the parent page table
1738 * is NOT touched. Note that terminal pages will not have any additional
1739 * wire counts while page table pages will have at least one representing
1740 * the mapping, plus others representing sub-mappings.
1741 *
1742 * NOTE: Cannot be called on kernel page table pages, only KVM terminal
1743 * pages and user page table and terminal pages.
1744 *
1745 * The pv must be locked.
1746 *
1747 * XXX must lock parent pv's if they exist to remove pte XXX
1748 */
1749static
1750void
1751pmap_remove_pv_pte(pv_entry_t pv, pv_entry_t pvp, struct pmap_inval_info *info)
1752{
1753 vm_pindex_t ptepindex = pv->pv_pindex;
1754 pmap_t pmap = pv->pv_pmap;
1755 vm_page_t p;
1756 int gotpvp = 0;
1757
1758 KKASSERT(pmap);
1759
1760 if (ptepindex == pmap_pml4_pindex()) {
1761 /*
1762 * We are the top level pml4 table, there is no parent.
1763 */
1764 p = pmap->pm_pmlpv->pv_m;
1765 } else if (ptepindex >= pmap_pdp_pindex(0)) {
1766 /*
1767 * Remove a PDP page from the pml4e. This can only occur
1768 * with user page tables. We do not have to lock the
1769 * pml4 PV so just ignore pvp.
1770 */
1771 vm_pindex_t pml4_pindex;
1772 vm_pindex_t pdp_index;
1773 pml4_entry_t *pdp;
1774
1775 pdp_index = ptepindex - pmap_pdp_pindex(0);
1776 if (pvp == NULL) {
1777 pml4_pindex = pmap_pml4_pindex();
1778 pvp = pv_get(pv->pv_pmap, pml4_pindex);
1779 gotpvp = 1;
1780 }
1781 pdp = &pmap->pm_pml4[pdp_index & ((1ul << NPML4EPGSHIFT) - 1)];
1782 KKASSERT((*pdp & PG_V) != 0);
1783 p = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
1784 *pdp = 0;
1785 KKASSERT(info == NULL);
1786 } else if (ptepindex >= pmap_pd_pindex(0)) {
1787 /*
1788 * Remove a PD page from the pdp
1789 */
1790 vm_pindex_t pdp_pindex;
1791 vm_pindex_t pd_index;
1792 pdp_entry_t *pd;
1793
1794 pd_index = ptepindex - pmap_pd_pindex(0);
1795
1796 if (pvp == NULL) {
1797 pdp_pindex = NUPTE_TOTAL + NUPT_TOTAL + NUPD_TOTAL +
1798 (pd_index >> NPML4EPGSHIFT);
1799 pvp = pv_get(pv->pv_pmap, pdp_pindex);
1800 gotpvp = 1;
1801 }
1802 pd = pv_pte_lookup(pvp, pd_index & ((1ul << NPDPEPGSHIFT) - 1));
1803 KKASSERT((*pd & PG_V) != 0);
1804 p = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
1805 *pd = 0;
1806 KKASSERT(info == NULL);
1807 } else if (ptepindex >= pmap_pt_pindex(0)) {
1808 /*
1809 * Remove a PT page from the pd
1810 */
1811 vm_pindex_t pd_pindex;
1812 vm_pindex_t pt_index;
1813 pd_entry_t *pt;
1814
1815 pt_index = ptepindex - pmap_pt_pindex(0);
1816
1817 if (pvp == NULL) {
1818 pd_pindex = NUPTE_TOTAL + NUPT_TOTAL +
1819 (pt_index >> NPDPEPGSHIFT);
1820 pvp = pv_get(pv->pv_pmap, pd_pindex);
1821 gotpvp = 1;
1822 }
1823 pt = pv_pte_lookup(pvp, pt_index & ((1ul << NPDPEPGSHIFT) - 1));
1824 KKASSERT((*pt & PG_V) != 0);
1825 p = PHYS_TO_VM_PAGE(*pt & PG_FRAME);
1826 *pt = 0;
1827 KKASSERT(info == NULL);
1828 } else {
1829 /*
1830 * Remove a PTE from the PT page
1831 *
1832 * NOTE: pv's must be locked bottom-up to avoid deadlocking.
1833 * pv is a pte_pv so we can safely lock pt_pv.
1834 */
1835 vm_pindex_t pt_pindex;
1836 pt_entry_t *ptep;
1837 pt_entry_t pte;
1838 vm_offset_t va;
1839
1840 pt_pindex = ptepindex >> NPTEPGSHIFT;
1841 va = (vm_offset_t)ptepindex << PAGE_SHIFT;
1842
1843 if (ptepindex >= NUPTE_USER) {
1844 ptep = vtopte(ptepindex << PAGE_SHIFT);
1845 KKASSERT(pvp == NULL);
1846 } else {
1847 if (pvp == NULL) {
1848 pt_pindex = NUPTE_TOTAL +
1849 (ptepindex >> NPDPEPGSHIFT);
1850 pvp = pv_get(pv->pv_pmap, pt_pindex);
1851 gotpvp = 1;
1852 }
1853 ptep = pv_pte_lookup(pvp, ptepindex &
1854 ((1ul << NPDPEPGSHIFT) - 1));
1855 }
1856
1857 if (info)
1858 pmap_inval_interlock(info, pmap, va);
1859 pte = pte_load_clear(ptep);
1860 if (info)
1861 pmap_inval_deinterlock(info, pmap);
1862 else
1863 cpu_invlpg((void *)va);
1864
1865 /*
1866 * Now update the vm_page_t
1867 */
1868 if ((pte & (PG_MANAGED|PG_V)) != (PG_MANAGED|PG_V)) {
1869 kprintf("remove_pte badpte %016lx %016lx %d\n",
1870 pte, pv->pv_pindex,
1871 pv->pv_pindex < pmap_pt_pindex(0));
1872 }
1873 /*KKASSERT((pte & (PG_MANAGED|PG_V)) == (PG_MANAGED|PG_V));*/
1874 p = PHYS_TO_VM_PAGE(pte & PG_FRAME);
1875
1876 if (pte & PG_M) {
1877 if (pmap_track_modified(ptepindex))
1878 vm_page_dirty(p);
1879 }
1880 if (pte & PG_A) {
1881 vm_page_flag_set(p, PG_REFERENCED);
1882 }
1883 if (pte & PG_W)
1884 atomic_add_long(&pmap->pm_stats.wired_count, -1);
1885 if (pte & PG_G)
1886 cpu_invlpg((void *)va);
1887 }
1888
1889 /*
1890 * Unwire the parent page table page. The wire_count cannot go below
1891 * 1 here because the parent page table page is itself still mapped.
1892 *
1893 * XXX remove the assertions later.
1894 */
1895 KKASSERT(pv->pv_m == p);
1896 if (pvp && vm_page_unwire_quick(pvp->pv_m))
1897 panic("pmap_remove_pv_pte: Insufficient wire_count");
1898
1899 if (gotpvp)
1900 pv_put(pvp);
1901}
1902
1903static
1904vm_page_t
1905pmap_remove_pv_page(pv_entry_t pv)
1906{
1907 vm_page_t m;
1908
1909 m = pv->pv_m;
1910 KKASSERT(m);
1911 vm_page_spin_lock(m);
1912 pv->pv_m = NULL;
1913 TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1914 /*
1915 if (m->object)
1916 atomic_add_int(&m->object->agg_pv_list_count, -1);
1917 */
1918 if (TAILQ_EMPTY(&m->md.pv_list))
1919 vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1920 vm_page_spin_unlock(m);
1921 return(m);
1922}
1923
1924/*
1925 * Grow the number of kernel page table entries, if needed.
1926 *
1927 * This routine is always called to validate any address space
1928 * beyond KERNBASE (for kldloads). kernel_vm_end only governs the address
1929 * space below KERNBASE.
1930 */
1931void
1932pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
1933{
1934 vm_paddr_t paddr;
1935 vm_offset_t ptppaddr;
1936 vm_page_t nkpg;
1937 pd_entry_t *pt, newpt;
1938 pdp_entry_t newpd;
1939 int update_kernel_vm_end;
1940
1941 /*
1942 * bootstrap kernel_vm_end on first real VM use
1943 */
1944 if (kernel_vm_end == 0) {
1945 kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
1946 nkpt = 0;
1947 while ((*pmap_pt(&kernel_pmap, kernel_vm_end) & PG_V) != 0) {
1948 kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1949 ~(PAGE_SIZE * NPTEPG - 1);
1950 nkpt++;
1951 if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1952 kernel_vm_end = kernel_map.max_offset;
1953 break;
1954 }
1955 }
1956 }
1957
1958 /*
1959 * Fill in the gaps. kernel_vm_end is only adjusted for ranges
1960 * below KERNBASE. Ranges above KERNBASE are kldloaded and we
1961 * do not want to force-fill 128G worth of page tables.
1962 */
1963 if (kstart < KERNBASE) {
1964 if (kstart > kernel_vm_end)
1965 kstart = kernel_vm_end;
1966 KKASSERT(kend <= KERNBASE);
1967 update_kernel_vm_end = 1;
1968 } else {
1969 update_kernel_vm_end = 0;
1970 }
1971
1972 kstart = rounddown2(kstart, PAGE_SIZE * NPTEPG);
1973 kend = roundup2(kend, PAGE_SIZE * NPTEPG);
1974
1975 if (kend - 1 >= kernel_map.max_offset)
1976 kend = kernel_map.max_offset;
1977
1978 while (kstart < kend) {
1979 pt = pmap_pt(&kernel_pmap, kstart);
1980 if (pt == NULL) {
1981 /* We need a new PDP entry */
1982 nkpg = vm_page_alloc(NULL, nkpt,
1983 VM_ALLOC_NORMAL |
1984 VM_ALLOC_SYSTEM |
1985 VM_ALLOC_INTERRUPT);
1986 if (nkpg == NULL) {
1987 panic("pmap_growkernel: no memory to grow "
1988 "kernel");
1989 }
1990 paddr = VM_PAGE_TO_PHYS(nkpg);
1991 if ((nkpg->flags & PG_ZERO) == 0)
1992 pmap_zero_page(paddr);
1993 vm_page_flag_clear(nkpg, PG_ZERO);
1994 newpd = (pdp_entry_t)
1995 (paddr | PG_V | PG_RW | PG_A | PG_M);
1996 *pmap_pd(&kernel_pmap, kstart) = newpd;
1997 nkpt++;
1998 continue; /* try again */
1999 }
2000 if ((*pt & PG_V) != 0) {
2001 kstart = (kstart + PAGE_SIZE * NPTEPG) &
2002 ~(PAGE_SIZE * NPTEPG - 1);
2003 if (kstart - 1 >= kernel_map.max_offset) {
2004 kstart = kernel_map.max_offset;
2005 break;
2006 }
2007 continue;
2008 }
2009
2010 /*
2011 * This index is bogus, but out of the way
2012 */
2013 nkpg = vm_page_alloc(NULL, nkpt,
2014 VM_ALLOC_NORMAL |
2015 VM_ALLOC_SYSTEM |
2016 VM_ALLOC_INTERRUPT);
2017 if (nkpg == NULL)
2018 panic("pmap_growkernel: no memory to grow kernel");
2019
2020 vm_page_wire(nkpg);
2021 ptppaddr = VM_PAGE_TO_PHYS(nkpg);
2022 pmap_zero_page(ptppaddr);
2023 vm_page_flag_clear(nkpg, PG_ZERO);
2024 newpt = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
2025 *pmap_pt(&kernel_pmap, kstart) = newpt;
2026 nkpt++;
2027
2028 kstart = (kstart + PAGE_SIZE * NPTEPG) &
2029 ~(PAGE_SIZE * NPTEPG - 1);
2030
2031 if (kstart - 1 >= kernel_map.max_offset) {
2032 kstart = kernel_map.max_offset;
2033 break;
2034 }
2035 }
2036
2037 /*
2038 * Only update kernel_vm_end for areas below KERNBASE.
2039 */
2040 if (update_kernel_vm_end && kernel_vm_end < kstart)
2041 kernel_vm_end = kstart;
2042}
2043
2044/*
2045 * Retire the given physical map from service.
2046 * Should only be called if the map contains
2047 * no valid mappings.
2048 */
2049void
2050pmap_destroy(pmap_t pmap)
2051{
2052 int count;
2053
2054 if (pmap == NULL)
2055 return;
2056
2057 lwkt_gettoken(&pmap->pm_token);
2058 count = --pmap->pm_count;
2059 if (count == 0) {
2060 pmap_release(pmap); /* eats pm_token */
2061 panic("destroying a pmap is not yet implemented");
2062 }
2063 lwkt_reltoken(&pmap->pm_token);
2064}
2065
2066/*
2067 * Add a reference to the specified pmap.
2068 */
2069void
2070pmap_reference(pmap_t pmap)
2071{
2072 if (pmap != NULL) {
2073 lwkt_gettoken(&pmap->pm_token);
2074 pmap->pm_count++;
2075 lwkt_reltoken(&pmap->pm_token);
2076 }
2077}
2078
2079/***************************************************
2080 * page management routines.
2081 ***************************************************/
2082
2083/*
2084 * Hold a pv without locking it
2085 */
2086static void
2087pv_hold(pv_entry_t pv)
2088{
2089 u_int count;
2090
2091 if (atomic_cmpset_int(&pv->pv_hold, 0, 1))
2092 return;
2093
2094 for (;;) {
2095 count = pv->pv_hold;
2096 cpu_ccfence();
2097 if (atomic_cmpset_int(&pv->pv_hold, count, count + 1))
2098 return;
2099 /* retry */
2100 }
2101}
2102
2103/*
2104 * Hold a pv_entry, preventing its destruction. TRUE is returned if the pv
2105 * was successfully locked, FALSE if it wasn't. The caller must dispose of
2106 * the pv properly.
2107 *
2108 * Either the pmap->pm_spin or the related vm_page_spin (if traversing a
2109 * pv list via its page) must be held by the caller.
2110 */
2111static int
2112_pv_hold_try(pv_entry_t pv PMAP_DEBUG_DECL)
2113{
2114 u_int count;
2115
2116 if (atomic_cmpset_int(&pv->pv_hold, 0, PV_HOLD_LOCKED | 1)) {
2117#ifdef PMAP_DEBUG
2118 pv->pv_func = func;
2119 pv->pv_line = lineno;
2120#endif
2121 return TRUE;
2122 }
2123
2124 for (;;) {
2125 count = pv->pv_hold;
2126 cpu_ccfence();
2127 if ((count & PV_HOLD_LOCKED) == 0) {
2128 if (atomic_cmpset_int(&pv->pv_hold, count,
2129 (count + 1) | PV_HOLD_LOCKED)) {
2130#ifdef PMAP_DEBUG
2131 pv->pv_func = func;
2132 pv->pv_line = lineno;
2133#endif
2134 return TRUE;
2135 }
2136 } else {
2137 if (atomic_cmpset_int(&pv->pv_hold, count, count + 1))
2138 return FALSE;
2139 }
2140 /* retry */
2141 }
2142}
2143
2144/*
2145 * Drop a previously held pv_entry which could not be locked, allowing its
2146 * destruction.
2147 *
2148 * Must not be called with a spinlock held as we might zfree() the pv if it
2149 * is no longer associated with a pmap and this was the last hold count.
2150 */
2151static void
2152pv_drop(pv_entry_t pv)
2153{
2154 u_int count;
2155
2156 if (atomic_cmpset_int(&pv->pv_hold, 1, 0)) {
2157 if (pv->pv_pmap == NULL)
2158 zfree(pvzone, pv);
2159 return;
2160 }
2161
2162 for (;;) {
2163 count = pv->pv_hold;
2164 cpu_ccfence();
2165 KKASSERT((count & PV_HOLD_MASK) > 0);
2166 KKASSERT((count & (PV_HOLD_LOCKED | PV_HOLD_MASK)) !=
2167 (PV_HOLD_LOCKED | 1));
2168 if (atomic_cmpset_int(&pv->pv_hold, count, count - 1)) {
2169 if (count == 1 && pv->pv_pmap == NULL)
2170 zfree(pvzone, pv);
2171 return;
2172 }
2173 /* retry */
2174 }
2175}
2176
2177/*
2178 * Find or allocate the requested PV entry, returning a locked pv
2179 */
2180static
2181pv_entry_t
2182_pv_alloc(pmap_t pmap, vm_pindex_t pindex, int *isnew PMAP_DEBUG_DECL)
2183{
2184 pv_entry_t pv;
2185 pv_entry_t pnew = NULL;
2186
2187 spin_lock(&pmap->pm_spin);
2188 for (;;) {
2189 if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex) {
2190 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
2191 pindex);
2192 }
2193 if (pv == NULL) {
2194 if (pnew == NULL) {
2195 spin_unlock(&pmap->pm_spin);
2196 pnew = zalloc(pvzone);
2197 spin_lock(&pmap->pm_spin);
2198 continue;
2199 }
2200 pnew->pv_pmap = pmap;
2201 pnew->pv_pindex = pindex;
2202 pnew->pv_hold = PV_HOLD_LOCKED | 1;
2203#ifdef PMAP_DEBUG
2204 pnew->pv_func = func;
2205 pnew->pv_line = lineno;
2206#endif
2207 pv_entry_rb_tree_RB_INSERT(&pmap->pm_pvroot, pnew);
2208 atomic_add_long(&pmap->pm_stats.resident_count, 1);
2209 spin_unlock(&pmap->pm_spin);
2210 *isnew = 1;
2211 return(pnew);
2212 }
2213 if (pnew) {
2214 spin_unlock(&pmap->pm_spin);
2215 zfree(pvzone, pnew);
2216 pnew = NULL;
2217 spin_lock(&pmap->pm_spin);
2218 continue;
2219 }
2220 if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
2221 spin_unlock(&pmap->pm_spin);
2222 *isnew = 0;
2223 return(pv);
2224 }
2225 spin_unlock(&pmap->pm_spin);
2226 _pv_lock(pv PMAP_DEBUG_COPY);
2227 if (pv->pv_pmap == pmap && pv->pv_pindex == pindex) {
2228 *isnew = 0;
2229 return(pv);
2230 }
2231 pv_put(pv);
2232 spin_lock(&pmap->pm_spin);
2233 }
2234
2235
2236}
2237
2238/*
2239 * Find the requested PV entry, returning a locked+held pv or NULL
2240 */
2241static
2242pv_entry_t
2243_pv_get(pmap_t pmap, vm_pindex_t pindex PMAP_DEBUG_DECL)
2244{
2245 pv_entry_t pv;
2246
2247 spin_lock(&pmap->pm_spin);
2248 for (;;) {
2249 /*
2250 * Shortcut cache
2251 */
2252 if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex) {
2253 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot,
2254 pindex);
2255 }
2256 if (pv == NULL) {
2257 spin_unlock(&pmap->pm_spin);
2258 return NULL;
2259 }
2260 if (_pv_hold_try(pv PMAP_DEBUG_COPY)) {
2261 pv_cache(pv, pindex);
2262 spin_unlock(&pmap->pm_spin);
2263 return(pv);
2264 }
2265 spin_unlock(&pmap->pm_spin);
2266 _pv_lock(pv PMAP_DEBUG_COPY);
2267 if (pv->pv_pmap == pmap && pv->pv_pindex == pindex)
2268 return(pv);
2269 pv_put(pv);
2270 spin_lock(&pmap->pm_spin);
2271 }
2272}
2273
2274/*
2275 * Lookup, hold, and attempt to lock (pmap,pindex).
2276 *
2277 * If the entry does not exist NULL is returned and *errorp is set to 0
2278 *
2279 * If the entry exists and could be successfully locked it is returned and
2280 * errorp is set to 0.
2281 *
2282 * If the entry exists but could NOT be successfully locked it is returned
2283 * held and *errorp is set to 1.
2284 */
2285static
2286pv_entry_t
2287pv_get_try(pmap_t pmap, vm_pindex_t pindex, int *errorp)
2288{
2289 pv_entry_t pv;
2290
2291 spin_lock(&pmap->pm_spin);
2292 if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex)
2293 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
2294 if (pv == NULL) {
2295 spin_unlock(&pmap->pm_spin);
2296 *errorp = 0;
2297 return NULL;
2298 }
2299 if (pv_hold_try(pv)) {
2300 pv_cache(pv, pindex);
2301 spin_unlock(&pmap->pm_spin);
2302 *errorp = 0;
2303 return(pv); /* lock succeeded */
2304 }
2305 spin_unlock(&pmap->pm_spin);
2306 *errorp = 1;
2307 return (pv); /* lock failed */
2308}
2309
2310/*
2311 * Find the requested PV entry, returning a held pv or NULL
2312 */
2313static
2314pv_entry_t
2315pv_find(pmap_t pmap, vm_pindex_t pindex)
2316{
2317 pv_entry_t pv;
2318
2319 spin_lock(&pmap->pm_spin);
2320
2321 if ((pv = pmap->pm_pvhint) == NULL || pv->pv_pindex != pindex)
2322 pv = pv_entry_rb_tree_RB_LOOKUP(&pmap->pm_pvroot, pindex);
2323 if (pv == NULL) {
2324 spin_unlock(&pmap->pm_spin);
2325 return NULL;
2326 }
2327 pv_hold(pv);
2328 pv_cache(pv, pindex);
2329 spin_unlock(&pmap->pm_spin);
2330 return(pv);
2331}
2332
2333/*
2334 * Lock a held pv, keeping the hold count
2335 */
2336static
2337void
2338_pv_lock(pv_entry_t pv PMAP_DEBUG_DECL)
2339{
2340 u_int count;
2341
2342 for (;;) {
2343 count = pv->pv_hold;
2344 cpu_ccfence();
2345 if ((count & PV_HOLD_LOCKED) == 0) {
2346 if (atomic_cmpset_int(&pv->pv_hold, count,
2347 count | PV_HOLD_LOCKED)) {
2348#ifdef PMAP_DEBUG
2349 pv->pv_func = func;
2350 pv->pv_line = lineno;
2351#endif
2352 return;
2353 }
2354 continue;
2355 }
2356 tsleep_interlock(pv, 0);
2357 if (atomic_cmpset_int(&pv->pv_hold, count,
2358 count | PV_HOLD_WAITING)) {
2359#ifdef PMAP_DEBUG
2360 kprintf("pv waiting on %s:%d\n",
2361 pv->pv_func, pv->pv_line);
2362#endif
2363 tsleep(pv, PINTERLOCKED, "pvwait", hz);
2364 }
2365 /* retry */
2366 }
2367}
2368
2369/*
2370 * Unlock a held and locked pv, keeping the hold count.
2371 */
2372static
2373void
2374pv_unlock(pv_entry_t pv)
2375{
2376 u_int count;
2377
2378 if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 1, 1))
2379 return;
2380
2381 for (;;) {
2382 count = pv->pv_hold;
2383 cpu_ccfence();
2384 KKASSERT((count & (PV_HOLD_LOCKED|PV_HOLD_MASK)) >=
2385 (PV_HOLD_LOCKED | 1));
2386 if (atomic_cmpset_int(&pv->pv_hold, count,
2387 count &
2388 ~(PV_HOLD_LOCKED | PV_HOLD_WAITING))) {
2389 if (count & PV_HOLD_WAITING)
2390 wakeup(pv);
2391 break;
2392 }
2393 }
2394}
2395
2396/*
2397 * Unlock and drop a pv. If the pv is no longer associated with a pmap
2398 * and the hold count drops to zero we will free it.
2399 *
2400 * Caller should not hold any spin locks. We are protected from hold races
2401 * by virtue of holds only occuring only with a pmap_spin or vm_page_spin
2402 * lock held. A pv cannot be located otherwise.
2403 */
2404static
2405void
2406pv_put(pv_entry_t pv)
2407{
2408 if (atomic_cmpset_int(&pv->pv_hold, PV_HOLD_LOCKED | 1, 0)) {
2409 if (pv->pv_pmap == NULL)
2410 zfree(pvzone, pv);
2411 return;
2412 }
2413 pv_unlock(pv);
2414 pv_drop(pv);
2415}
2416
2417/*
2418 * Unlock, drop, and free a pv, destroying it. The pv is removed from its
2419 * pmap. Any pte operations must have already been completed.
2420 */
2421static
2422void
2423pv_free(pv_entry_t pv)
2424{
2425 pmap_t pmap;
2426
2427 KKASSERT(pv->pv_m == NULL);
2428 if ((pmap = pv->pv_pmap) != NULL) {
2429 spin_lock(&pmap->pm_spin);
2430 pv_entry_rb_tree_RB_REMOVE(&pmap->pm_pvroot, pv);
2431 if (pmap->pm_pvhint == pv)
2432 pmap->pm_pvhint = NULL;
2433 atomic_add_long(&pmap->pm_stats.resident_count, -1);
2434 pv->pv_pmap = NULL;
2435 pv->pv_pindex = 0;
2436 spin_unlock(&pmap->pm_spin);
2437 }
2438 pv_put(pv);
2439}
2440
2441/*
2442 * This routine is very drastic, but can save the system
2443 * in a pinch.
2444 */
2445void
2446pmap_collect(void)
2447{
2448 int i;
2449 vm_page_t m;
2450 static int warningdone=0;
2451
2452 if (pmap_pagedaemon_waken == 0)
2453 return;
2454 pmap_pagedaemon_waken = 0;
2455 if (warningdone < 5) {
2456 kprintf("pmap_collect: collecting pv entries -- "
2457 "suggest increasing PMAP_SHPGPERPROC\n");
2458 warningdone++;
2459 }
2460
2461 for (i = 0; i < vm_page_array_size; i++) {
2462 m = &vm_page_array[i];
2463 if (m->wire_count || m->hold_count)
2464 continue;
2465 if (vm_page_busy_try(m, TRUE) == 0) {
2466 if (m->wire_count == 0 && m->hold_count == 0) {
2467 pmap_remove_all(m);
2468 }
2469 vm_page_wakeup(m);
2470 }
2471 }
2472}
2473
2474/*
2475 * Scan the pmap for active page table entries and issue a callback.
2476 * The callback must dispose of pte_pv.
2477 *
2478 * NOTE: Unmanaged page table entries will not have a pte_pv
2479 *
2480 * NOTE: Kernel page table entries will not have a pt_pv. That is, wiring
2481 * counts are not tracked in kernel page table pages.
2482 *
2483 * It is assumed that the start and end are properly rounded to the page size.
2484 */
2485static void
2486pmap_scan(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva,
2487 void (*func)(pmap_t, struct pmap_inval_info *,
2488 pv_entry_t, pv_entry_t, vm_offset_t,
2489 pt_entry_t *, void *),
2490 void *arg)
2491{
2492 pv_entry_t pdp_pv; /* A page directory page PV */
2493 pv_entry_t pd_pv; /* A page directory PV */
2494 pv_entry_t pt_pv; /* A page table PV */
2495 pv_entry_t pte_pv; /* A page table entry PV */
2496 pt_entry_t *ptep;
2497 vm_offset_t va_next;
2498 struct pmap_inval_info info;
2499 int error;
2500
2501 if (pmap == NULL)
2502 return;
2503
2504 /*
2505 * Hold the token for stability; if the pmap is empty we have nothing
2506 * to do.
2507 */
2508 lwkt_gettoken(&pmap->pm_token);
2509#if 0
2510 if (pmap->pm_stats.resident_count == 0) {
2511 lwkt_reltoken(&pmap->pm_token);
2512 return;
2513 }
2514#endif
2515
2516 pmap_inval_init(&info);
2517
2518 /*
2519 * Special handling for removing one page, which is a very common
2520 * operation (it is?).
2521 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4
2522 */
2523 if (sva + PAGE_SIZE == eva) {
2524 if (sva >= VM_MAX_USER_ADDRESS) {
2525 /*
2526 * Kernel mappings do not track wire counts on
2527 * page table pages.
2528 */
2529 pt_pv = NULL;
2530 pte_pv = pv_get(pmap, pmap_pte_pindex(sva));
2531 ptep = vtopte(sva);
2532 } else {
2533 /*
2534 * User mappings may or may not have a pte_pv but
2535 * will always have a pt_pv if the page is present.
2536 */
2537 pte_pv = pv_get(pmap, pmap_pte_pindex(sva));
2538 pt_pv = pv_get(pmap, pmap_pt_pindex(sva));
2539 if (pt_pv == NULL) {
2540 KKASSERT(pte_pv == NULL);
2541 goto fast_skip;
2542 }
2543 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(sva));
2544 }
2545 if (*ptep == 0) {
2546 /*
2547 * Unlike the pv_find() case below we actually
2548 * acquired a locked pv in this case so any
2549 * race should have been resolved. It is expected
2550 * to not exist.
2551 */
2552 KKASSERT(pte_pv == NULL);
2553 } else if (pte_pv) {
2554 KASSERT((*ptep & (PG_MANAGED|PG_V)) == (PG_MANAGED|
2555 PG_V),
2556 ("bad *ptep %016lx sva %016lx pte_pv %p",
2557 *ptep, sva, pte_pv));
2558 func(pmap, &info, pte_pv, pt_pv, sva, ptep, arg);
2559 } else {
2560 KASSERT((*ptep & (PG_MANAGED|PG_V)) == PG_V,
2561 ("bad *ptep %016lx sva %016lx pte_pv NULL",
2562 *ptep, sva));
2563 func(pmap, &info, pte_pv, pt_pv, sva, ptep, arg);
2564 }
2565 if (pt_pv)
2566 pv_put(pt_pv);
2567fast_skip:
2568 pmap_inval_done(&info);
2569 lwkt_reltoken(&pmap->pm_token);
2570 return;
2571 }
2572
2573 /*
2574 * NOTE: kernel mappings do not track page table pages, only
2575 * terminal pages.
2576 *
2577 * NOTE: Locks must be ordered bottom-up. pte,pt,pd,pdp,pml4.
2578 * However, for the scan to be efficient we try to
2579 * cache items top-down.
2580 */
2581 pdp_pv = NULL;
2582 pd_pv = NULL;
2583 pt_pv = NULL;
2584
2585 for (; sva < eva; sva = va_next) {
2586 lwkt_yield();
2587 if (sva >= VM_MAX_USER_ADDRESS) {
2588 if (pt_pv) {
2589 pv_put(pt_pv);
2590 pt_pv = NULL;
2591 }
2592 goto kernel_skip;
2593 }
2594
2595 /*
2596 * PDP cache
2597 */
2598 if (pdp_pv == NULL) {
2599 pdp_pv = pv_get(pmap, pmap_pdp_pindex(sva));
2600 } else if (pdp_pv->pv_pindex != pmap_pdp_pindex(sva)) {
2601 pv_put(pdp_pv);
2602 pdp_pv = pv_get(pmap, pmap_pdp_pindex(sva));
2603 }
2604 if (pdp_pv == NULL) {
2605 va_next = (sva + NBPML4) & ~PML4MASK;
2606 if (va_next < sva)
2607 va_next = eva;
2608 continue;
2609 }
2610
2611 /*
2612 * PD cache
2613 */
2614 if (pd_pv == NULL) {
2615 if (pdp_pv) {
2616 pv_put(pdp_pv);
2617 pdp_pv = NULL;
2618 }
2619 pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
2620 } else if (pd_pv->pv_pindex != pmap_pd_pindex(sva)) {
2621 pv_put(pd_pv);
2622 if (pdp_pv) {
2623 pv_put(pdp_pv);
2624 pdp_pv = NULL;
2625 }
2626 pd_pv = pv_get(pmap, pmap_pd_pindex(sva));
2627 }
2628 if (pd_pv == NULL) {
2629 va_next = (sva + NBPDP) & ~PDPMASK;
2630 if (va_next < sva)
2631 va_next = eva;
2632 continue;
2633 }
2634
2635 /*
2636 * PT cache
2637 */
2638 if (pt_pv == NULL) {
2639 if (pdp_pv) {
2640 pv_put(pdp_pv);
2641 pdp_pv = NULL;
2642 }
2643 if (pd_pv) {
2644 pv_put(pd_pv);
2645 pd_pv = NULL;
2646 }
2647 pt_pv = pv_get(pmap, pmap_pt_pindex(sva));
2648 } else if (pt_pv->pv_pindex != pmap_pt_pindex(sva)) {
2649 if (pdp_pv) {
2650 pv_put(pdp_pv);
2651 pdp_pv = NULL;
2652 }
2653 if (pd_pv) {
2654 pv_put(pd_pv);
2655 pd_pv = NULL;
2656 }
2657 pv_put(pt_pv);
2658 pt_pv = pv_get(pmap, pmap_pt_pindex(sva));
2659 }
2660
2661 /*
2662 * We will scan or skip a page table page so adjust va_next
2663 * either way.
2664 */
2665 if (pt_pv == NULL) {
2666 va_next = (sva + NBPDR) & ~PDRMASK;
2667 if (va_next < sva)
2668 va_next = eva;
2669 continue;
2670 }
2671
2672 /*
2673 * From this point in the loop testing pt_pv for non-NULL
2674 * means we are in UVM, else if it is NULL we are in KVM.
2675 */
2676kernel_skip:
2677 va_next = (sva + NBPDR) & ~PDRMASK;
2678 if (va_next < sva)
2679 va_next = eva;
2680
2681 /*
2682 * Limit our scan to either the end of the va represented
2683 * by the current page table page, or to the end of the
2684 * range being removed.
2685 *
2686 * Scan the page table for pages. Some pages may not be
2687 * managed (might not have a pv_entry).
2688 *
2689 * There is no page table management for kernel pages so
2690 * pt_pv will be NULL in that case, but otherwise pt_pv
2691 * is non-NULL, locked, and referenced.
2692 */
2693 if (va_next > eva)
2694 va_next = eva;
2695
2696 /*
2697 * At this point a non-NULL pt_pv means a UVA, and a NULL
2698 * pt_pv means a KVA.
2699 */
2700 if (pt_pv)
2701 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(sva));
2702 else
2703 ptep = vtopte(sva);
2704
2705 while (sva < va_next) {
2706 /*
2707 * Acquire the related pte_pv, if any. If *ptep == 0
2708 * the related pte_pv should not exist, but if *ptep
2709 * is not zero the pte_pv may or may not exist (e.g.
2710 * will not exist for an unmanaged page).
2711 *
2712 * However a multitude of races are possible here.
2713 *
2714 * In addition, the (pt_pv, pte_pv) lock order is
2715 * backwards, so we have to be careful in aquiring
2716 * a properly locked pte_pv.
2717 */
2718 lwkt_yield();
2719 if (pt_pv) {
2720 pte_pv = pv_get_try(pmap, pmap_pte_pindex(sva),
2721 &error);
2722 if (error) {
2723 if (pdp_pv) {
2724 pv_put(pdp_pv);
2725 pdp_pv = NULL;
2726 }
2727 if (pd_pv) {
2728 pv_put(pd_pv);
2729 pd_pv = NULL;
2730 }
2731 pv_put(pt_pv); /* must be non-NULL */
2732 pt_pv = NULL;
2733 pv_lock(pte_pv); /* safe to block now */
2734 pv_put(pte_pv);
2735 pte_pv = NULL;
2736 pt_pv = pv_get(pmap,
2737 pmap_pt_pindex(sva));
2738 continue;
2739 }
2740 } else {
2741 pte_pv = pv_get(pmap, pmap_pte_pindex(sva));
2742 }
2743
2744 /*
2745 * Ok, if *ptep == 0 we had better NOT have a pte_pv.
2746 */
2747 if (*ptep == 0) {
2748 if (pte_pv) {
2749 kprintf("Unexpected non-NULL pte_pv "
2750 "%p pt_pv %p *ptep = %016lx\n",
2751 pte_pv, pt_pv, *ptep);
2752 panic("Unexpected non-NULL pte_pv");
2753 }
2754 sva += PAGE_SIZE;
2755 ++ptep;
2756 continue;
2757 }
2758
2759 /*
2760 * Ready for the callback. The locked pte_pv (if any)
2761 * is consumed by the callback. pte_pv will exist if
2762 * the page is managed, and will not exist if it
2763 * isn't.
2764 */
2765 if (pte_pv) {
2766 KASSERT((*ptep & (PG_MANAGED|PG_V)) ==
2767 (PG_MANAGED|PG_V),
2768 ("bad *ptep %016lx sva %016lx "
2769 "pte_pv %p",
2770 *ptep, sva, pte_pv));
2771 func(pmap, &info, pte_pv, pt_pv, sva,
2772 ptep, arg);
2773 } else {
2774 KASSERT((*ptep & (PG_MANAGED|PG_V)) ==
2775 PG_V,
2776 ("bad *ptep %016lx sva %016lx "
2777 "pte_pv NULL",
2778 *ptep, sva));
2779 func(pmap, &info, pte_pv, pt_pv, sva,
2780 ptep, arg);
2781 }
2782 pte_pv = NULL;
2783 sva += PAGE_SIZE;
2784 ++ptep;
2785 }
2786 }
2787 if (pdp_pv) {
2788 pv_put(pdp_pv);
2789 pdp_pv = NULL;
2790 }
2791 if (pd_pv) {
2792 pv_put(pd_pv);
2793 pd_pv = NULL;
2794 }
2795 if (pt_pv) {
2796 pv_put(pt_pv);
2797 pt_pv = NULL;
2798 }
2799 pmap_inval_done(&info);
2800 lwkt_reltoken(&pmap->pm_token);
2801}
2802
2803void
2804pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
2805{
2806 pmap_scan(pmap, sva, eva, pmap_remove_callback, NULL);
2807}
2808
2809static void
2810pmap_remove_callback(pmap_t pmap, struct pmap_inval_info *info,
2811 pv_entry_t pte_pv, pv_entry_t pt_pv, vm_offset_t va,
2812 pt_entry_t *ptep, void *arg __unused)
2813{
2814 pt_entry_t pte;
2815
2816 if (pte_pv) {
2817 /*
2818 * This will also drop pt_pv's wire_count. Note that
2819 * terminal pages are not wired based on mmu presence.
2820 */
2821 pmap_remove_pv_pte(pte_pv, pt_pv, info);
2822 pmap_remove_pv_page(pte_pv);
2823 pv_free(pte_pv);
2824 } else {
2825 /*
2826 * pt_pv's wire_count is still bumped by unmanaged pages
2827 * so we must decrement it manually.
2828 */
2829 pmap_inval_interlock(info, pmap, va);
2830 pte = pte_load_clear(ptep);
2831 pmap_inval_deinterlock(info, pmap);
2832 if (pte & PG_W)
2833 atomic_add_long(&pmap->pm_stats.wired_count, -1);
2834 atomic_add_long(&pmap->pm_stats.resident_count, -1);
2835 if (pt_pv && vm_page_unwire_quick(pt_pv->pv_m))
2836 panic("pmap_remove: insufficient wirecount");
2837 }
2838}
2839
2840/*
2841 * Removes this physical page from all physical maps in which it resides.
2842 * Reflects back modify bits to the pager.
2843 *
2844 * This routine may not be called from an interrupt.
2845 */
2846static
2847void
2848pmap_remove_all(vm_page_t m)
2849{
2850 struct pmap_inval_info info;
2851 pv_entry_t pv;
2852
2853 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2854 return;
2855
2856 pmap_inval_init(&info);
2857 vm_page_spin_lock(m);
2858 while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2859 KKASSERT(pv->pv_m == m);
2860 if (pv_hold_try(pv)) {
2861 vm_page_spin_unlock(m);
2862 } else {
2863 vm_page_spin_unlock(m);
2864 pv_lock(pv);
2865 if (pv->pv_m != m) {
2866 pv_put(pv);
2867 vm_page_spin_lock(m);
2868 continue;
2869 }
2870 }
2871 /*
2872 * Holding no spinlocks, pv is locked.
2873 */
2874 pmap_remove_pv_pte(pv, NULL, &info);
2875 pmap_remove_pv_page(pv);
2876 pv_free(pv);
2877 vm_page_spin_lock(m);
2878 }
2879 KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
2880 vm_page_spin_unlock(m);
2881 pmap_inval_done(&info);
2882}
2883
2884/*
2885 * pmap_protect:
2886 *
2887 * Set the physical protection on the specified range of this map
2888 * as requested.
2889 *
2890 * This function may not be called from an interrupt if the map is
2891 * not the kernel_pmap.
2892 */
2893void
2894pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2895{
2896 /* JG review for NX */
2897
2898 if (pmap == NULL)
2899 return;
2900 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2901 pmap_remove(pmap, sva, eva);
2902 return;
2903 }
2904 if (prot & VM_PROT_WRITE)
2905 return;
2906 pmap_scan(pmap, sva, eva, pmap_protect_callback, &prot);
2907}
2908
2909static
2910void
2911pmap_protect_callback(pmap_t pmap, struct pmap_inval_info *info,
2912 pv_entry_t pte_pv, pv_entry_t pt_pv, vm_offset_t va,
2913 pt_entry_t *ptep, void *arg __unused)
2914{
2915 pt_entry_t pbits;
2916 pt_entry_t cbits;
2917 vm_page_t m;
2918
2919 /*
2920 * XXX non-optimal.
2921 */
2922 pmap_inval_interlock(info, pmap, va);
2923again:
2924 pbits = *ptep;
2925 cbits = pbits;
2926 if (pte_pv) {
2927 m = NULL;
2928 if (pbits & PG_A) {
2929 m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2930 KKASSERT(m == pte_pv->pv_m);
2931 vm_page_flag_set(m, PG_REFERENCED);
2932 cbits &= ~PG_A;
2933 }
2934 if (pbits & PG_M) {
2935 if (pmap_track_modified(pte_pv->pv_pindex)) {
2936 if (m == NULL)
2937 m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2938 vm_page_dirty(m);
2939 cbits &= ~PG_M;
2940 }
2941 }
2942 }
2943 cbits &= ~PG_RW;
2944 if (pbits != cbits && !atomic_cmpset_long(ptep, pbits, cbits)) {
2945 goto again;
2946 }
2947 pmap_inval_deinterlock(info, pmap);
2948 if (pte_pv)
2949 pv_put(pte_pv);
2950}
2951
2952/*
2953 * Insert the vm_page (m) at the virtual address (va), replacing any prior
2954 * mapping at that address. Set protection and wiring as requested.
2955 *
2956 * NOTE: This routine MUST insert the page into the pmap now, it cannot
2957 * lazy-evaluate.
2958 */
2959void
2960pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2961 boolean_t wired)
2962{
2963 pmap_inval_info info;
2964 pv_entry_t pt_pv; /* page table */
2965 pv_entry_t pte_pv; /* page table entry */
2966 pt_entry_t *ptep;
2967 vm_paddr_t opa;
2968 pt_entry_t origpte, newpte;
2969 vm_paddr_t pa;
2970
2971 if (pmap == NULL)
2972 return;
2973 va = trunc_page(va);
2974#ifdef PMAP_DIAGNOSTIC
2975 if (va >= KvaEnd)
2976 panic("pmap_enter: toobig");
2977 if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2978 panic("pmap_enter: invalid to pmap_enter page table "
2979 "pages (va: 0x%lx)", va);
2980#endif
2981 if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
2982 kprintf("Warning: pmap_enter called on UVA with "
2983 "kernel_pmap\n");
2984#ifdef DDB
2985 db_print_backtrace();
2986#endif
2987 }
2988 if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
2989 kprintf("Warning: pmap_enter called on KVA without"
2990 "kernel_pmap\n");
2991#ifdef DDB
2992 db_print_backtrace();
2993#endif
2994 }
2995
2996 /*
2997 * Get locked PV entries for our new page table entry (pte_pv)
2998 * and for its parent page table (pt_pv). We need the parent
2999 * so we can resolve the location of the ptep.
3000 *
3001 * Only hardware MMU actions can modify the ptep out from
3002 * under us.
3003 *
3004 * if (m) is fictitious or unmanaged we do not create a managing
3005 * pte_pv for it. Any pre-existing page's management state must
3006 * match (avoiding code complexity).
3007 *
3008 * If the pmap is still being initialized we assume existing
3009 * page tables.
3010 *
3011 * Kernel mapppings do not track page table pages (i.e. pt_pv).
3012 * pmap_allocpte() checks the
3013 */
3014 if (pmap_initialized == FALSE) {
3015 pte_pv = NULL;
3016 pt_pv = NULL;
3017 ptep = vtopte(va);
3018 } else if (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) {
3019 pte_pv = NULL;
3020 if (va >= VM_MAX_USER_ADDRESS) {
3021 pt_pv = NULL;
3022 ptep = vtopte(va);
3023 } else {
3024 pt_pv = pmap_allocpte(pmap, pmap_pt_pindex(va), NULL);
3025 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
3026 }
3027 KKASSERT(*ptep == 0 || (*ptep & PG_MANAGED) == 0);
3028 } else {
3029 if (va >= VM_MAX_USER_ADDRESS) {
3030 pt_pv = NULL;
3031 pte_pv = pmap_allocpte(pmap, pmap_pte_pindex(va), NULL);
3032 ptep = vtopte(va);
3033 } else {
3034 pte_pv = pmap_allocpte(pmap, pmap_pte_pindex(va),
3035 &pt_pv);
3036 ptep = pv_pte_lookup(pt_pv, pmap_pte_index(va));
3037 }
3038 KKASSERT(*ptep == 0 || (*ptep & PG_MANAGED));
3039 }
3040
3041 pa = VM_PAGE_TO_PHYS(m);
3042 origpte = *ptep;
3043 opa = origpte & PG_FRAME;
3044
3045 newpte = (pt_entry_t)(pa | pte_prot(pmap, prot) | PG_V | PG_A);
3046 if (wired)
3047 newpte |= PG_W;
3048 if (va < VM_MAX_USER_ADDRESS)
3049 newpte |= PG_U;
3050 if (pte_pv)
3051 newpte |= PG_MANAGED;
3052 if (pmap == &kernel_pmap)
3053 newpte |= pgeflag;
3054
3055 /*
3056 * It is possible for multiple faults to occur in threaded
3057 * environments, the existing pte might be correct.
3058 */
3059 if (((origpte ^ newpte) & ~(pt_entry_t)(PG_M|PG_A)) == 0)
3060 goto done;
3061
3062 if ((prot & VM_PROT_NOSYNC) == 0)
3063 pmap_inval_init(&info);
3064
3065 /*
3066 * Ok, either the address changed or the protection or wiring
3067 * changed.
3068 *
3069 * Clear the current entry, interlocking the removal. For managed
3070 * pte's this will also flush the modified state to the vm_page.
3071 * Atomic ops are mandatory in order to ensure that PG_M events are
3072 * not lost during any transition.
3073 */
3074 if (opa) {
3075 if (pte_pv) {
3076 /*
3077 * pmap_remove_pv_pte() unwires pt_pv and assumes
3078 * we will free pte_pv, but since we are reusing
3079 * pte_pv we want to retain the wire count.
3080 *
3081 * pt_pv won't exist for a kernel page (managed or
3082 * otherwise).
3083 */
3084 if (pt_pv)
3085 vm_page_wire_quick(pt_pv->pv_m);
3086 if (prot & VM_PROT_NOSYNC)
3087 pmap_remove_pv_pte(pte_pv, pt_pv, NULL);
3088 else
3089 pmap_remove_pv_pte(pte_pv, pt_pv, &info);
3090 if (pte_pv->pv_m)
3091 pmap_remove_pv_page(pte_pv);
3092 } else if (prot & VM_PROT_NOSYNC) {
3093 /* leave wire count on PT page intact */
3094 (void)pte_load_clear(ptep);
3095 cpu_invlpg((void *)va);
3096 atomic_add_long(&pmap->pm_stats.resident_count, -1);
3097 } else {
3098 /* leave wire count on PT page intact */
3099 pmap_inval_interlock(&info, pmap, va);
3100 (void)pte_load_clear(ptep);
3101 pmap_inval_deinterlock(&info, pmap);
3102 atomic_add_long(&pmap->pm_stats.resident_count, -1);
3103 }
3104 KKASSERT(*ptep == 0);
3105 }
3106
3107 if (pte_pv) {
3108 /*
3109 * Enter on the PV list if part of our managed memory.
3110 * Wiring of the PT page is already handled.
3111 */
3112 KKASSERT(pte_pv->pv_m == NULL);
3113 vm_page_spin_lock(m);
3114 pte_pv->pv_m = m;
3115 TAILQ_INSERT_TAIL(&m->md.pv_list, pte_pv, pv_list);
3116 /*
3117 if (m->object)
3118 atomic_add_int(&m->object->agg_pv_list_count, 1);
3119 */
3120 vm_page_flag_set(m, PG_MAPPED);
3121 vm_page_spin_unlock(m);
3122 } else if (pt_pv && opa == 0) {
3123 /*
3124 * We have to adjust the wire count on the PT page ourselves
3125 * for unmanaged entries. If opa was non-zero we retained
3126 * the existing wire count from the removal.
3127 */
3128 vm_page_wire_quick(pt_pv->pv_m);
3129 }
3130
3131 /*
3132 * Ok, for UVM (pt_pv != NULL) we don't need to interlock or
3133 * invalidate anything, the TLB won't have any stale entries to
3134 * remove.
3135 *
3136 * For KVM there appear to still be issues. Theoretically we
3137 * should be able to scrap the interlocks entirely but we
3138 * get crashes.
3139 */
3140 if ((prot & VM_PROT_NOSYNC) == 0 && pt_pv == NULL)
3141 pmap_inval_interlock(&info, pmap, va);
3142 *(volatile pt_entry_t *)ptep = newpte;
3143
3144 if ((prot & VM_PROT_NOSYNC) == 0 && pt_pv == NULL)
3145 pmap_inval_deinterlock(&info, pmap);
3146 else if (pt_pv == NULL)
3147 cpu_invlpg((void *)va);
3148
3149 if (wired)
3150 atomic_add_long(&pmap->pm_stats.wired_count, 1);
3151 if (newpte & PG_RW)
3152 vm_page_flag_set(m, PG_WRITEABLE);
3153 if (pte_pv == NULL)
3154 atomic_add_long(&pmap->pm_stats.resident_count, 1);
3155
3156 /*
3157 * Cleanup
3158 */
3159 if ((prot & VM_PROT_NOSYNC) == 0 || pte_pv == NULL)
3160 pmap_inval_done(&info);
3161done:
3162 KKASSERT((newpte & PG_MANAGED) == 0 || (m->flags & PG_MAPPED));
3163
3164 /*
3165 * Cleanup the pv entry, allowing other accessors.
3166 */
3167 if (pte_pv)
3168 pv_put(pte_pv);
3169 if (pt_pv)
3170 pv_put(pt_pv);
3171}
3172
3173/*
3174 * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
3175 * This code also assumes that the pmap has no pre-existing entry for this
3176 * VA.
3177 *
3178 * This code currently may only be used on user pmaps, not kernel_pmap.
3179 */
3180void
3181pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
3182{
3183 pmap_enter(pmap, va, m, VM_PROT_READ, FALSE);
3184}
3185
3186/*
3187 * Make a temporary mapping for a physical address. This is only intended
3188 * to be used for panic dumps.
3189 *
3190 * The caller is responsible for calling smp_invltlb().
3191 */
3192void *
3193pmap_kenter_temporary(vm_paddr_t pa, long i)
3194{
3195 pmap_kenter_quick((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
3196 return ((void *)crashdumpmap);
3197}
3198
3199#define MAX_INIT_PT (96)
3200
3201/*
3202 * This routine preloads the ptes for a given object into the specified pmap.
3203 * This eliminates the blast of soft faults on process startup and
3204 * immediately after an mmap.
3205 */
3206static int pmap_object_init_pt_callback(vm_page_t p, void *data);
3207
3208void
3209pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
3210 vm_object_t object, vm_pindex_t pindex,
3211 vm_size_t size, int limit)
3212{
3213 struct rb_vm_page_scan_info info;
3214 struct lwp *lp;
3215 vm_size_t psize;
3216
3217 /*
3218 * We can't preinit if read access isn't set or there is no pmap
3219 * or object.
3220 */
3221 if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
3222 return;
3223
3224 /*
3225 * We can't preinit if the pmap is not the current pmap
3226 */
3227 lp = curthread->td_lwp;
3228 if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
3229 return;
3230
3231 psize = x86_64_btop(size);
3232
3233 if ((object->type != OBJT_VNODE) ||
3234 ((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
3235 (object->resident_page_count > MAX_INIT_PT))) {
3236 return;
3237 }
3238
3239 if (pindex + psize > object->size) {
3240 if (object->size < pindex)
3241 return;
3242 psize = object->size - pindex;
3243 }
3244
3245 if (psize == 0)
3246 return;
3247
3248 /*
3249 * Use a red-black scan to traverse the requested range and load
3250 * any valid pages found into the pmap.
3251 *
3252 * We cannot safely scan the object's memq without holding the
3253 * object token.
3254 */
3255 info.start_pindex = pindex;
3256 info.end_pindex = pindex + psize - 1;
3257 info.limit = limit;
3258 info.mpte = NULL;
3259 info.addr = addr;
3260 info.pmap = pmap;
3261
3262 vm_object_hold_shared(object);
3263 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
3264 pmap_object_init_pt_callback, &info);
3265 vm_object_drop(object);
3266}
3267
3268static
3269int
3270pmap_object_init_pt_callback(vm_page_t p, void *data)
3271{
3272 struct rb_vm_page_scan_info *info = data;
3273 vm_pindex_t rel_index;
3274
3275 /*
3276 * don't allow an madvise to blow away our really
3277 * free pages allocating pv entries.
3278 */
3279 if ((info->limit & MAP_PREFAULT_MADVISE) &&
3280 vmstats.v_free_count < vmstats.v_free_reserved) {
3281 return(-1);
3282 }
3283
3284 /*
3285 * Ignore list markers and ignore pages we cannot instantly
3286 * busy (while holding the object token).
3287 */
3288 if (p->flags & PG_MARKER)
3289 return 0;
3290 if (vm_page_busy_try(p, TRUE))
3291 return 0;
3292 if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
3293 (p->flags & PG_FICTITIOUS) == 0) {
3294 if ((p->queue - p->pc) == PQ_CACHE)
3295 vm_page_deactivate(p);
3296 rel_index = p->pindex - info->start_pindex;
3297 pmap_enter_quick(info->pmap,
3298 info->addr + x86_64_ptob(rel_index), p);
3299 }
3300 vm_page_wakeup(p);
3301 lwkt_yield();
3302 return(0);
3303}
3304
3305/*
3306 * Return TRUE if the pmap is in shape to trivially pre-fault the specified
3307 * address.
3308 *
3309 * Returns FALSE if it would be non-trivial or if a pte is already loaded
3310 * into the slot.
3311 *
3312 * XXX This is safe only because page table pages are not freed.
3313 */
3314int
3315pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
3316{
3317 pt_entry_t *pte;
3318
3319 /*spin_lock(&pmap->pm_spin);*/
3320 if ((pte = pmap_pte(pmap, addr)) != NULL) {
3321 if (*pte & PG_V) {
3322 /*spin_unlock(&pmap->pm_spin);*/
3323 return FALSE;
3324 }
3325 }
3326 /*spin_unlock(&pmap->pm_spin);*/
3327 return TRUE;
3328}
3329
3330/*
3331 * Change the wiring attribute for a pmap/va pair. The mapping must already
3332 * exist in the pmap. The mapping may or may not be managed.
3333 */
3334void
3335pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
3336{
3337 pt_entry_t *ptep;
3338 pv_entry_t pv;
3339
3340 if (pmap == NULL)
3341 return;
3342 lwkt_gettoken(&pmap->pm_token);
3343 pv = pmap_allocpte(pmap, pmap_pt_pindex(va), NULL);
3344 ptep = pv_pte_lookup(pv, pmap_pte_index(va));
3345
3346 if (wired && !pmap_pte_w(ptep))
3347 atomic_add_long(&pmap->pm_stats.wired_count, 1);
3348 else if (!wired && pmap_pte_w(ptep))
3349 atomic_add_long(&pmap->pm_stats.wired_count, -1);
3350
3351 /*
3352 * Wiring is not a hardware characteristic so there is no need to
3353 * invalidate TLB. However, in an SMP environment we must use
3354 * a locked bus cycle to update the pte (if we are not using
3355 * the pmap_inval_*() API that is)... it's ok to do this for simple
3356 * wiring changes.
3357 */
3358#ifdef SMP
3359 if (wired)
3360 atomic_set_long(ptep, PG_W);
3361 else
3362 atomic_clear_long(ptep, PG_W);
3363#else
3364 if (wired)
3365 atomic_set_long_nonlocked(ptep, PG_W);
3366 else
3367 atomic_clear_long_nonlocked(ptep, PG_W);
3368#endif
3369 pv_put(pv);
3370 lwkt_reltoken(&pmap->pm_token);
3371}
3372
3373
3374
3375/*
3376 * Copy the range specified by src_addr/len from the source map to
3377 * the range dst_addr/len in the destination map.
3378 *
3379 * This routine is only advisory and need not do anything.
3380 */
3381void
3382pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
3383 vm_size_t len, vm_offset_t src_addr)
3384{
3385}
3386
3387/*
3388 * pmap_zero_page:
3389 *
3390 * Zero the specified physical page.
3391 *
3392 * This function may be called from an interrupt and no locking is
3393 * required.
3394 */
3395void
3396pmap_zero_page(vm_paddr_t phys)
3397{
3398 vm_offset_t va = PHYS_TO_DMAP(phys);
3399
3400 pagezero((void *)va);
3401}
3402
3403/*
3404 * pmap_page_assertzero:
3405 *
3406 * Assert that a page is empty, panic if it isn't.
3407 */
3408void
3409pmap_page_assertzero(vm_paddr_t phys)
3410{
3411 vm_offset_t va = PHYS_TO_DMAP(phys);
3412 size_t i;
3413
3414 for (i = 0; i < PAGE_SIZE; i += sizeof(long)) {
3415 if (*(long *)((char *)va + i) != 0) {
3416 panic("pmap_page_assertzero() @ %p not zero!\n",
3417 (void *)(intptr_t)va);
3418 }
3419 }
3420}
3421
3422/*
3423 * pmap_zero_page:
3424 *
3425 * Zero part of a physical page by mapping it into memory and clearing
3426 * its contents with bzero.
3427 *
3428 * off and size may not cover an area beyond a single hardware page.
3429 */
3430void
3431pmap_zero_page_area(vm_paddr_t phys, int off, int size)
3432{
3433 vm_offset_t virt = PHYS_TO_DMAP(phys);
3434
3435 bzero((char *)virt + off, size);
3436}
3437
3438/*
3439 * pmap_copy_page:
3440 *
3441 * Copy the physical page from the source PA to the target PA.
3442 * This function may be called from an interrupt. No locking
3443 * is required.
3444 */
3445void
3446pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
3447{
3448 vm_offset_t src_virt, dst_virt;
3449
3450 src_virt = PHYS_TO_DMAP(src);
3451 dst_virt = PHYS_TO_DMAP(dst);
3452 bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
3453}
3454
3455/*
3456 * pmap_copy_page_frag:
3457 *
3458 * Copy the physical page from the source PA to the target PA.
3459 * This function may be called from an interrupt. No locking
3460 * is required.
3461 */
3462void
3463pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
3464{
3465 vm_offset_t src_virt, dst_virt;
3466
3467 src_virt = PHYS_TO_DMAP(src);
3468 dst_virt = PHYS_TO_DMAP(dst);
3469
3470 bcopy((char *)src_virt + (src & PAGE_MASK),
3471 (char *)dst_virt + (dst & PAGE_MASK),
3472 bytes);
3473}
3474
3475/*
3476 * Returns true if the pmap's pv is one of the first 16 pvs linked to from
3477 * this page. This count may be changed upwards or downwards in the future;
3478 * it is only necessary that true be returned for a small subset of pmaps
3479 * for proper page aging.
3480 */
3481boolean_t
3482pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3483{
3484 pv_entry_t pv;
3485 int loops = 0;
3486
3487 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3488 return FALSE;
3489
3490 vm_page_spin_lock(m);
3491 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3492 if (pv->pv_pmap == pmap) {
3493 vm_page_spin_unlock(m);
3494 return TRUE;
3495 }
3496 loops++;
3497 if (loops >= 16)
3498 break;
3499 }
3500 vm_page_spin_unlock(m);
3501 return (FALSE);
3502}
3503
3504/*
3505 * Remove all pages from specified address space this aids process exit
3506 * speeds. Also, this code may be special cased for the current process
3507 * only.
3508 */
3509void
3510pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3511{
3512 pmap_remove(pmap, sva, eva);
3513}
3514
3515/*
3516 * pmap_testbit tests bits in pte's note that the testbit/clearbit
3517 * routines are inline, and a lot of things compile-time evaluate.
3518 */
3519static
3520boolean_t
3521pmap_testbit(vm_page_t m, int bit)
3522{
3523 pv_entry_t pv;
3524 pt_entry_t *pte;
3525
3526 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3527 return FALSE;
3528
3529 if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3530 return FALSE;
3531 vm_page_spin_lock(m);
3532 if (TAILQ_FIRST(&m->md.pv_list) == NULL) {
3533 vm_page_spin_unlock(m);
3534 return FALSE;
3535 }
3536
3537 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3538 /*
3539 * if the bit being tested is the modified bit, then
3540 * mark clean_map and ptes as never
3541 * modified.
3542 */
3543 if (bit & (PG_A|PG_M)) {
3544 if (!pmap_track_modified(pv->pv_pindex))
3545 continue;
3546 }
3547
3548#if defined(PMAP_DIAGNOSTIC)
3549 if (pv->pv_pmap == NULL) {
3550 kprintf("Null pmap (tb) at pindex: %"PRIu64"\n",
3551 pv->pv_pindex);
3552 continue;
3553 }
3554#endif
3555 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
3556 if (*pte & bit) {
3557 vm_page_spin_unlock(m);
3558 return TRUE;
3559 }
3560 }
3561 vm_page_spin_unlock(m);
3562 return (FALSE);
3563}
3564
3565/*
3566 * This routine is used to modify bits in ptes. Only one bit should be
3567 * specified. PG_RW requires special handling.
3568 *
3569 * Caller must NOT hold any spin locks
3570 */
3571static __inline
3572void
3573pmap_clearbit(vm_page_t m, int bit)
3574{
3575 struct pmap_inval_info info;
3576 pv_entry_t pv;
3577 pt_entry_t *pte;
3578 pt_entry_t pbits;
3579 pmap_t save_pmap;
3580
3581 if (bit == PG_RW)
3582 vm_page_flag_clear(m, PG_WRITEABLE);
3583 if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
3584 return;
3585 }
3586
3587 /*
3588 * PG_M or PG_A case
3589 *
3590 * Loop over all current mappings setting/clearing as appropos If
3591 * setting RO do we need to clear the VAC?
3592 *
3593 * NOTE: When clearing PG_M we could also (not implemented) drop
3594 * through to the PG_RW code and clear PG_RW too, forcing
3595 * a fault on write to redetect PG_M for virtual kernels, but
3596 * it isn't necessary since virtual kernels invalidate the
3597 * pte when they clear the VPTE_M bit in their virtual page
3598 * tables.
3599 *
3600 * NOTE: Does not re-dirty the page when clearing only PG_M.
3601 */
3602 if ((bit & PG_RW) == 0) {
3603 vm_page_spin_lock(m);
3604 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3605 #if defined(PMAP_DIAGNOSTIC)
3606 if (pv->pv_pmap == NULL) {
3607 kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
3608 pv->pv_pindex);
3609 continue;
3610 }
3611 #endif
3612 pte = pmap_pte_quick(pv->pv_pmap,
3613 pv->pv_pindex << PAGE_SHIFT);
3614 pbits = *pte;
3615 if (pbits & bit)
3616 atomic_clear_long(pte, bit);
3617 }
3618 vm_page_spin_unlock(m);
3619 return;
3620 }
3621
3622 /*
3623 * Clear PG_RW. Also clears PG_M and marks the page dirty if PG_M
3624 * was set.
3625 */
3626 pmap_inval_init(&info);
3627
3628restart:
3629 vm_page_spin_lock(m);
3630 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3631 /*
3632 * don't write protect pager mappings
3633 */
3634 if (!pmap_track_modified(pv->pv_pindex))
3635 continue;
3636
3637#if defined(PMAP_DIAGNOSTIC)
3638 if (pv->pv_pmap == NULL) {
3639 kprintf("Null pmap (cb) at pindex: %"PRIu64"\n",
3640 pv->pv_pindex);
3641 continue;
3642 }
3643#endif
3644 /*
3645 * Skip pages which do not have PG_RW set.
3646 */
3647 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
3648 if ((*pte & PG_RW) == 0)
3649 continue;
3650
3651 /*
3652 * Lock the PV
3653 */
3654 if (pv_hold_try(pv) == 0) {
3655 vm_page_spin_unlock(m);
3656 pv_lock(pv); /* held, now do a blocking lock */
3657 pv_put(pv); /* and release */
3658 goto restart; /* anything could have happened */
3659 }
3660
3661 save_pmap = pv->pv_pmap;
3662 vm_page_spin_unlock(m);
3663 pmap_inval_interlock(&info, save_pmap,
3664 (vm_offset_t)pv->pv_pindex << PAGE_SHIFT);
3665 KKASSERT(pv->pv_pmap == save_pmap);
3666 for (;;) {
3667 pbits = *pte;
3668 cpu_ccfence();
3669 if (atomic_cmpset_long(pte, pbits,
3670 pbits & ~(PG_RW|PG_M))) {
3671 break;
3672 }
3673 }
3674 pmap_inval_deinterlock(&info, save_pmap);
3675 vm_page_spin_lock(m);
3676
3677 /*
3678 * If PG_M was found to be set while we were clearing PG_RW
3679 * we also clear PG_M (done above) and mark the page dirty.
3680 * Callers expect this behavior.
3681 */
3682 if (pbits & PG_M)
3683 vm_page_dirty(m);
3684 pv_put(pv);
3685 }
3686 vm_page_spin_unlock(m);
3687 pmap_inval_done(&info);
3688}
3689
3690/*
3691 * Lower the permission for all mappings to a given page.
3692 *
3693 * Page must be busied by caller.
3694 */
3695void
3696pmap_page_protect(vm_page_t m, vm_prot_t prot)
3697{
3698 /* JG NX support? */
3699 if ((prot & VM_PROT_WRITE) == 0) {
3700 if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3701 /*
3702 * NOTE: pmap_clearbit(.. PG_RW) also clears
3703 * the PG_WRITEABLE flag in (m).
3704 */
3705 pmap_clearbit(m, PG_RW);
3706 } else {
3707 pmap_remove_all(m);
3708 }
3709 }
3710}
3711
3712vm_paddr_t
3713pmap_phys_address(vm_pindex_t ppn)
3714{
3715 return (x86_64_ptob(ppn));
3716}
3717
3718/*
3719 * Return a count of reference bits for a page, clearing those bits.
3720 * It is not necessary for every reference bit to be cleared, but it
3721 * is necessary that 0 only be returned when there are truly no
3722 * reference bits set.
3723 *
3724 * XXX: The exact number of bits to check and clear is a matter that
3725 * should be tested and standardized at some point in the future for
3726 * optimal aging of shared pages.
3727 *
3728 * This routine may not block.
3729 */
3730int
3731pmap_ts_referenced(vm_page_t m)
3732{
3733 pv_entry_t pv;
3734 pt_entry_t *pte;
3735 int rtval = 0;
3736
3737 if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3738 return (rtval);
3739
3740 vm_page_spin_lock(m);
3741 TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3742 if (!pmap_track_modified(pv->pv_pindex))
3743 continue;
3744 pte = pmap_pte_quick(pv->pv_pmap, pv->pv_pindex << PAGE_SHIFT);
3745 if (pte && (*pte & PG_A)) {
3746#ifdef SMP
3747 atomic_clear_long(pte, PG_A);
3748#else
3749 atomic_clear_long_nonlocked(pte, PG_A);
3750#endif
3751 rtval++;
3752 if (rtval > 4)
3753 break;
3754 }
3755 }
3756 vm_page_spin_unlock(m);
3757 return (rtval);
3758}
3759
3760/*
3761 * pmap_is_modified:
3762 *
3763 * Return whether or not the specified physical page was modified
3764 * in any physical maps.
3765 */
3766boolean_t
3767pmap_is_modified(vm_page_t m)
3768{
3769 boolean_t res;
3770
3771 res = pmap_testbit(m, PG_M);
3772 return (res);
3773}
3774
3775/*
3776 * Clear the modify bits on the specified physical page.
3777 */
3778void
3779pmap_clear_modify(vm_page_t m)
3780{
3781 pmap_clearbit(m, PG_M);
3782}
3783
3784/*
3785 * pmap_clear_reference:
3786 *
3787 * Clear the reference bit on the specified physical page.
3788 */
3789void
3790pmap_clear_reference(vm_page_t m)
3791{
3792 pmap_clearbit(m, PG_A);
3793}
3794
3795/*
3796 * Miscellaneous support routines follow
3797 */
3798
3799static
3800void
3801i386_protection_init(void)
3802{
3803 int *kp, prot;
3804
3805 /* JG NX support may go here; No VM_PROT_EXECUTE ==> set NX bit */
3806 kp = protection_codes;
3807 for (prot = 0; prot < 8; prot++) {
3808 switch (prot) {
3809 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3810 /*
3811 * Read access is also 0. There isn't any execute bit,
3812 * so just make it readable.
3813 */
3814 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3815 case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3816 case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3817 *kp++ = 0;
3818 break;
3819 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3820 case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3821 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3822 case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3823 *kp++ = PG_RW;
3824 break;
3825 }
3826 }
3827}
3828
3829/*
3830 * Map a set of physical memory pages into the kernel virtual
3831 * address space. Return a pointer to where it is mapped. This
3832 * routine is intended to be used for mapping device memory,
3833 * NOT real memory.
3834 *
3835 * NOTE: we can't use pgeflag unless we invalidate the pages one at
3836 * a time.
3837 */
3838void *
3839pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3840{
3841 vm_offset_t va, tmpva, offset;
3842 pt_entry_t *pte;
3843
3844 offset = pa & PAGE_MASK;
3845 size = roundup(offset + size, PAGE_SIZE);
3846
3847 va = kmem_alloc_nofault(&kernel_map, size, PAGE_SIZE);
3848 if (va == 0)
3849 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3850
3851 pa = pa & ~PAGE_MASK;
3852 for (tmpva = va; size > 0;) {
3853 pte = vtopte(tmpva);
3854 *pte = pa | PG_RW | PG_V; /* | pgeflag; */
3855 size -= PAGE_SIZE;
3856 tmpva += PAGE_SIZE;
3857 pa += PAGE_SIZE;
3858 }
3859 cpu_invltlb();
3860 smp_invltlb();
3861
3862 return ((void *)(va + offset));
3863}
3864
3865void *
3866pmap_mapdev_uncacheable(vm_paddr_t pa, vm_size_t size)
3867{
3868 vm_offset_t va, tmpva, offset;
3869 pt_entry_t *pte;
3870
3871 offset = pa & PAGE_MASK;
3872 size = roundup(offset + size, PAGE_SIZE);
3873
3874 va = kmem_alloc_nofault(&kernel_map, size, PAGE_SIZE);
3875 if (va == 0)
3876 panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3877
3878 pa = pa & ~PAGE_MASK;
3879 for (tmpva = va; size > 0;) {
3880 pte = vtopte(tmpva);
3881 *pte = pa | PG_RW | PG_V | PG_N; /* | pgeflag; */
3882 size -= PAGE_SIZE;
3883 tmpva += PAGE_SIZE;
3884 pa += PAGE_SIZE;
3885 }
3886 cpu_invltlb();
3887 smp_invltlb();
3888
3889 return ((void *)(va + offset));
3890}
3891
3892void
3893pmap_unmapdev(vm_offset_t va, vm_size_t size)
3894{
3895 vm_offset_t base, offset;
3896
3897 base = va & ~PAGE_MASK;
3898 offset = va & PAGE_MASK;
3899 size = roundup(offset + size, PAGE_SIZE);
3900 pmap_qremove(va, size >> PAGE_SHIFT);
3901 kmem_free(&kernel_map, base, size);
3902}
3903
3904/*
3905 * perform the pmap work for mincore
3906 */
3907int
3908pmap_mincore(pmap_t pmap, vm_offset_t addr)
3909{
3910 pt_entry_t *ptep, pte;
3911 vm_page_t m;
3912 int val = 0;
3913
3914 lwkt_gettoken(&pmap->pm_token);
3915 ptep = pmap_pte(pmap, addr);
3916
3917 if (ptep && (pte = *ptep) != 0) {
3918 vm_offset_t pa;
3919
3920 val = MINCORE_INCORE;
3921 if ((pte & PG_MANAGED) == 0)
3922 goto done;
3923
3924 pa = pte & PG_FRAME;
3925
3926 m = PHYS_TO_VM_PAGE(pa);
3927
3928 /*
3929 * Modified by us
3930 */
3931 if (pte & PG_M)
3932 val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3933 /*
3934 * Modified by someone
3935 */
3936 else if (m->dirty || pmap_is_modified(m))
3937 val |= MINCORE_MODIFIED_OTHER;
3938 /*
3939 * Referenced by us
3940 */
3941 if (pte & PG_A)
3942 val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3943
3944 /*
3945 * Referenced by someone
3946 */
3947 else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3948 val |= MINCORE_REFERENCED_OTHER;
3949 vm_page_flag_set(m, PG_REFERENCED);
3950 }
3951 }
3952done:
3953 lwkt_reltoken(&pmap->pm_token);
3954
3955 return val;
3956}
3957
3958/*
3959 * Replace p->p_vmspace with a new one. If adjrefs is non-zero the new
3960 * vmspace will be ref'd and the old one will be deref'd.
3961 *
3962 * The vmspace for all lwps associated with the process will be adjusted
3963 * and cr3 will be reloaded if any lwp is the current lwp.
3964 *
3965 * The process must hold the vmspace->vm_map.token for oldvm and newvm
3966 */
3967void
3968pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
3969{
3970 struct vmspace *oldvm;
3971 struct lwp *lp;
3972
3973 oldvm = p->p_vmspace;
3974 if (oldvm != newvm) {
3975 if (adjrefs)
3976 sysref_get(&newvm->vm_sysref);
3977 p->p_vmspace = newvm;
3978 KKASSERT(p->p_nthreads == 1);
3979 lp = RB_ROOT(&p->p_lwp_tree);
3980 pmap_setlwpvm(lp, newvm);
3981 if (adjrefs)
3982 sysref_put(&oldvm->vm_sysref);
3983 }
3984}
3985
3986/*
3987 * Set the vmspace for a LWP. The vmspace is almost universally set the
3988 * same as the process vmspace, but virtual kernels need to swap out contexts
3989 * on a per-lwp basis.
3990 *
3991 * Caller does not necessarily hold any vmspace tokens. Caller must control
3992 * the lwp (typically be in the context of the lwp). We use a critical
3993 * section to protect against statclock and hardclock (statistics collection).
3994 */
3995void
3996pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
3997{
3998 struct vmspace *oldvm;
3999 struct pmap *pmap;
4000
4001 oldvm = lp->lwp_vmspace;
4002
4003 if (oldvm != newvm) {
4004 crit_enter();
4005 lp->lwp_vmspace = newvm;
4006 if (curthread->td_lwp == lp) {
4007 pmap = vmspace_pmap(newvm);
4008#if defined(SMP)
4009 atomic_set_cpumask(&pmap->pm_active, mycpu->gd_cpumask);
4010 if (pmap->pm_active & CPUMASK_LOCK)
4011 pmap_interlock_wait(newvm);
4012#else
4013 pmap->pm_active |= 1;
4014#endif
4015#if defined(SWTCH_OPTIM_STATS)
4016 tlb_flush_count++;
4017#endif
4018 curthread->td_pcb->pcb_cr3 = vtophys(pmap->pm_pml4);
4019 curthread->td_pcb->pcb_cr3 |= PG_RW | PG_U | PG_V;
4020 load_cr3(curthread->td_pcb->pcb_cr3);
4021 pmap = vmspace_pmap(oldvm);
4022#if defined(SMP)
4023 atomic_clear_cpumask(&pmap->pm_active, mycpu->gd_cpumask);
4024#else
4025 pmap->pm_active &= ~(cpumask_t)1;
4026#endif
4027 }
4028 crit_exit();
4029 }
4030}
4031
4032#ifdef SMP
4033
4034/*
4035 * Called when switching to a locked pmap, used to interlock against pmaps
4036 * undergoing modifications to prevent us from activating the MMU for the
4037 * target pmap until all such modifications have completed. We have to do
4038 * this because the thread making the modifications has already set up its
4039 * SMP synchronization mask.
4040 *
4041 * This function cannot sleep!
4042 *
4043 * No requirements.
4044 */
4045void
4046pmap_interlock_wait(struct vmspace *vm)
4047{
4048 struct pmap *pmap = &vm->vm_pmap;
4049
4050 if (pmap->pm_active & CPUMASK_LOCK) {
4051 crit_enter();
4052 KKASSERT(curthread->td_critcount >= 2);
4053 DEBUG_PUSH_INFO("pmap_interlock_wait");
4054 while (pmap->pm_active & CPUMASK_LOCK) {
4055 cpu_ccfence();
4056 lwkt_process_ipiq();
4057 }
4058 DEBUG_POP_INFO();
4059 crit_exit();
4060 }
4061}
4062
4063#endif
4064
4065vm_offset_t
4066pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
4067{
4068
4069 if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
4070 return addr;
4071 }
4072
4073 addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
4074 return addr;
4075}
4076
4077/*
4078 * Used by kmalloc/kfree, page already exists at va
4079 */
4080vm_page_t
4081pmap_kvtom(vm_offset_t va)
4082{
4083 return(PHYS_TO_VM_PAGE(*vtopte(va) & PG_FRAME));
4084}