- Remove sys/stat.h, sys/signal.h, varargs.h and ctype.h
[dragonfly.git] / sys / kern / kern_clock.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * Copyright (c) 1997, 1998 Poul-Henning Kamp <phk@FreeBSD.org>
35 * Copyright (c) 1982, 1986, 1991, 1993
36 * The Regents of the University of California. All rights reserved.
37 * (c) UNIX System Laboratories, Inc.
38 * All or some portions of this file are derived from material licensed
39 * to the University of California by American Telephone and Telegraph
40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 * the permission of UNIX System Laboratories, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed by the University of
54 * California, Berkeley and its contributors.
55 * 4. Neither the name of the University nor the names of its contributors
56 * may be used to endorse or promote products derived from this software
57 * without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
72 * $FreeBSD: src/sys/kern/kern_clock.c,v 1.105.2.10 2002/10/17 13:19:40 maxim Exp $
73 * $DragonFly: src/sys/kern/kern_clock.c,v 1.30 2005/01/31 21:37:52 joerg Exp $
74 */
75
76#include "opt_ntp.h"
77
78#include <sys/param.h>
79#include <sys/systm.h>
80#include <sys/dkstat.h>
81#include <sys/callout.h>
82#include <sys/kernel.h>
83#include <sys/kinfo.h>
84#include <sys/proc.h>
85#include <sys/malloc.h>
86#include <sys/resourcevar.h>
87#include <sys/signalvar.h>
88#include <sys/timex.h>
89#include <sys/timepps.h>
90#include <vm/vm.h>
91#include <sys/lock.h>
92#include <vm/pmap.h>
93#include <vm/vm_map.h>
94#include <sys/sysctl.h>
95#include <sys/thread2.h>
96
97#include <machine/cpu.h>
98#include <machine/limits.h>
99#include <machine/smp.h>
100
101#ifdef GPROF
102#include <sys/gmon.h>
103#endif
104
105#ifdef DEVICE_POLLING
106extern void init_device_poll(void);
107extern void hardclock_device_poll(void);
108#endif /* DEVICE_POLLING */
109
110static void initclocks (void *dummy);
111SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL)
112
113/*
114 * Some of these don't belong here, but it's easiest to concentrate them.
115 * Note that cp_time counts in microseconds, but most userland programs
116 * just compare relative times against the total by delta.
117 */
118struct cp_time cp_time;
119
120SYSCTL_OPAQUE(_kern, OID_AUTO, cp_time, CTLFLAG_RD, &cp_time, sizeof(cp_time),
121 "LU", "CPU time statistics");
122
123/*
124 * boottime is used to calculate the 'real' uptime. Do not confuse this with
125 * microuptime(). microtime() is not drift compensated. The real uptime
126 * with compensation is nanotime() - bootime. boottime is recalculated
127 * whenever the real time is set based on the compensated elapsed time
128 * in seconds (gd->gd_time_seconds).
129 *
130 * basetime is used to calculate the compensated real time of day. Chunky
131 * changes to the time, aka settimeofday(), are made by modifying basetime.
132 *
133 * The gd_time_seconds and gd_cpuclock_base fields remain fairly monotonic.
134 * Slight adjustments to gd_cpuclock_base are made to phase-lock it to
135 * the real time.
136 */
137struct timespec boottime; /* boot time (realtime) for reference only */
138struct timespec basetime; /* base time adjusts uptime -> realtime */
139time_t time_second; /* read-only 'passive' uptime in seconds */
140
141SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
142 &boottime, timeval, "System boottime");
143SYSCTL_STRUCT(_kern, OID_AUTO, basetime, CTLFLAG_RD,
144 &basetime, timeval, "System basetime");
145
146static void hardclock(systimer_t info, struct intrframe *frame);
147static void statclock(systimer_t info, struct intrframe *frame);
148static void schedclock(systimer_t info, struct intrframe *frame);
149
150int ticks; /* system master ticks at hz */
151int clocks_running; /* tsleep/timeout clocks operational */
152int64_t nsec_adj; /* ntpd per-tick adjustment in nsec << 32 */
153int64_t nsec_acc; /* accumulator */
154
155/*
156 * Finish initializing clock frequencies and start all clocks running.
157 */
158/* ARGSUSED*/
159static void
160initclocks(void *dummy)
161{
162 cpu_initclocks();
163#ifdef DEVICE_POLLING
164 init_device_poll();
165#endif
166 /*psratio = profhz / stathz;*/
167 initclocks_pcpu();
168 clocks_running = 1;
169}
170
171/*
172 * Called on a per-cpu basis
173 */
174void
175initclocks_pcpu(void)
176{
177 struct globaldata *gd = mycpu;
178
179 crit_enter();
180 if (gd->gd_cpuid == 0) {
181 gd->gd_time_seconds = 1;
182 gd->gd_cpuclock_base = cputimer_count();
183 } else {
184 /* XXX */
185 gd->gd_time_seconds = globaldata_find(0)->gd_time_seconds;
186 gd->gd_cpuclock_base = globaldata_find(0)->gd_cpuclock_base;
187 }
188
189 /*
190 * Use a non-queued periodic systimer to prevent multiple ticks from
191 * building up if the sysclock jumps forward (8254 gets reset). The
192 * sysclock will never jump backwards. Our time sync is based on
193 * the actual sysclock, not the ticks count.
194 */
195 systimer_init_periodic_nq(&gd->gd_hardclock, hardclock, NULL, hz);
196 systimer_init_periodic_nq(&gd->gd_statclock, statclock, NULL, stathz);
197 /* XXX correct the frequency for scheduler / estcpu tests */
198 systimer_init_periodic_nq(&gd->gd_schedclock, schedclock,
199 NULL, ESTCPUFREQ);
200 crit_exit();
201}
202
203/*
204 * This sets the current real time of day. Timespecs are in seconds and
205 * nanoseconds. We do not mess with gd_time_seconds and gd_cpuclock_base,
206 * instead we adjust basetime so basetime + gd_* results in the current
207 * time of day. This way the gd_* fields are guarenteed to represent
208 * a monotonically increasing 'uptime' value.
209 */
210void
211set_timeofday(struct timespec *ts)
212{
213 struct timespec ts2;
214
215 /*
216 * XXX SMP / non-atomic basetime updates
217 */
218 crit_enter();
219 nanouptime(&ts2);
220 basetime.tv_sec = ts->tv_sec - ts2.tv_sec;
221 basetime.tv_nsec = ts->tv_nsec - ts2.tv_nsec;
222 if (basetime.tv_nsec < 0) {
223 basetime.tv_nsec += 1000000000;
224 --basetime.tv_sec;
225 }
226
227 /*
228 * Note that basetime diverges from boottime as the clock drift is
229 * compensated for, so we cannot do away with boottime. When setting
230 * the absolute time of day the drift is 0 (for an instant) and we
231 * can simply assign boottime to basetime.
232 *
233 * Note that nanouptime() is based on gd_time_seconds which is drift
234 * compensated up to a point (it is guarenteed to remain monotonically
235 * increasing). gd_time_seconds is thus our best uptime guess and
236 * suitable for use in the boottime calculation. It is already taken
237 * into account in the basetime calculation above.
238 */
239 boottime.tv_sec = basetime.tv_sec;
240 timedelta = 0;
241 crit_exit();
242}
243
244/*
245 * Each cpu has its own hardclock, but we only increments ticks and softticks
246 * on cpu #0.
247 *
248 * NOTE! systimer! the MP lock might not be held here. We can only safely
249 * manipulate objects owned by the current cpu.
250 */
251static void
252hardclock(systimer_t info, struct intrframe *frame)
253{
254 sysclock_t cputicks;
255 struct proc *p;
256 struct pstats *pstats;
257 struct globaldata *gd = mycpu;
258
259 /*
260 * Realtime updates are per-cpu. Note that timer corrections as
261 * returned by microtime() and friends make an additional adjustment
262 * using a system-wise 'basetime', but the running time is always
263 * taken from the per-cpu globaldata area. Since the same clock
264 * is distributing (XXX SMP) to all cpus, the per-cpu timebases
265 * stay in synch.
266 *
267 * Note that we never allow info->time (aka gd->gd_hardclock.time)
268 * to reverse index gd_cpuclock_base, but that it is possible for
269 * it to temporarily get behind in the seconds if something in the
270 * system locks interrupts for a long period of time. Since periodic
271 * timers count events, though everything should resynch again
272 * immediately.
273 */
274 cputicks = info->time - gd->gd_cpuclock_base;
275 if (cputicks >= cputimer_freq) {
276 ++gd->gd_time_seconds;
277 gd->gd_cpuclock_base += cputimer_freq;
278 }
279
280 /*
281 * The system-wide ticks counter and NTP related timedelta/tickdelta
282 * adjustments only occur on cpu #0. NTP adjustments are accomplished
283 * by updating basetime.
284 */
285 if (gd->gd_cpuid == 0) {
286 struct timespec nts;
287 int leap;
288
289 ++ticks;
290
291#ifdef DEVICE_POLLING
292 hardclock_device_poll(); /* mpsafe, short and quick */
293#endif /* DEVICE_POLLING */
294
295#if 0
296 if (tco->tc_poll_pps)
297 tco->tc_poll_pps(tco);
298#endif
299 /*
300 * Apply adjtime corrections. At the moment only do this if
301 * we can get the MP lock to interlock with adjtime's modification
302 * of these variables. Note that basetime adjustments are not
303 * MP safe either XXX.
304 */
305 if (timedelta != 0 && try_mplock()) {
306 basetime.tv_nsec += tickdelta * 1000;
307 if (basetime.tv_nsec >= 1000000000) {
308 basetime.tv_nsec -= 1000000000;
309 ++basetime.tv_sec;
310 } else if (basetime.tv_nsec < 0) {
311 basetime.tv_nsec += 1000000000;
312 --basetime.tv_sec;
313 }
314 timedelta -= tickdelta;
315 rel_mplock();
316 }
317
318 /*
319 * Apply per-tick compensation. ticks_adj adjusts for both
320 * offset and frequency, and could be negative.
321 */
322 if (nsec_adj != 0 && try_mplock()) {
323 nsec_acc += nsec_adj;
324 if (nsec_acc >= 0x100000000LL) {
325 basetime.tv_nsec += nsec_acc >> 32;
326 nsec_acc = (nsec_acc & 0xFFFFFFFFLL);
327 } else if (nsec_acc <= -0x100000000LL) {
328 basetime.tv_nsec -= -nsec_acc >> 32;
329 nsec_acc = -(-nsec_acc & 0xFFFFFFFFLL);
330 }
331 if (basetime.tv_nsec >= 1000000000) {
332 basetime.tv_nsec -= 1000000000;
333 ++basetime.tv_sec;
334 } else if (basetime.tv_nsec < 0) {
335 basetime.tv_nsec += 1000000000;
336 --basetime.tv_sec;
337 }
338 rel_mplock();
339 }
340
341 /*
342 * If the realtime-adjusted seconds hand rolls over then tell
343 * ntp_update_second() what we did in the last second so it can
344 * calculate what to do in the next second. It may also add
345 * or subtract a leap second.
346 */
347 getnanotime(&nts);
348 if (time_second != nts.tv_sec) {
349 leap = ntp_update_second(time_second, &nsec_adj);
350 basetime.tv_sec += leap;
351 time_second = nts.tv_sec + leap;
352 nsec_adj /= hz;
353 }
354 }
355
356 /*
357 * softticks are handled for all cpus
358 */
359 hardclock_softtick(gd);
360
361 /*
362 * ITimer handling is per-tick, per-cpu. I don't think psignal()
363 * is mpsafe on curproc, so XXX get the mplock.
364 */
365 if ((p = curproc) != NULL && try_mplock()) {
366 pstats = p->p_stats;
367 if (frame && CLKF_USERMODE(frame) &&
368 timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
369 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
370 psignal(p, SIGVTALRM);
371 if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
372 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
373 psignal(p, SIGPROF);
374 rel_mplock();
375 }
376 setdelayed();
377}
378
379/*
380 * The statistics clock typically runs at a 125Hz rate, and is intended
381 * to be frequency offset from the hardclock (typ 100Hz). It is per-cpu.
382 *
383 * NOTE! systimer! the MP lock might not be held here. We can only safely
384 * manipulate objects owned by the current cpu.
385 *
386 * The stats clock is responsible for grabbing a profiling sample.
387 * Most of the statistics are only used by user-level statistics programs.
388 * The main exceptions are p->p_uticks, p->p_sticks, p->p_iticks, and
389 * p->p_estcpu.
390 *
391 * Like the other clocks, the stat clock is called from what is effectively
392 * a fast interrupt, so the context should be the thread/process that got
393 * interrupted.
394 */
395static void
396statclock(systimer_t info, struct intrframe *frame)
397{
398#ifdef GPROF
399 struct gmonparam *g;
400 int i;
401#endif
402 thread_t td;
403 struct proc *p;
404 int bump;
405 struct timeval tv;
406 struct timeval *stv;
407
408 /*
409 * How big was our timeslice relative to the last time?
410 */
411 microuptime(&tv); /* mpsafe */
412 stv = &mycpu->gd_stattv;
413 if (stv->tv_sec == 0) {
414 bump = 1;
415 } else {
416 bump = tv.tv_usec - stv->tv_usec +
417 (tv.tv_sec - stv->tv_sec) * 1000000;
418 if (bump < 0)
419 bump = 0;
420 if (bump > 1000000)
421 bump = 1000000;
422 }
423 *stv = tv;
424
425 td = curthread;
426 p = td->td_proc;
427
428 if (frame && CLKF_USERMODE(frame)) {
429 /*
430 * Came from userland, handle user time and deal with
431 * possible process.
432 */
433 if (p && (p->p_flag & P_PROFIL))
434 addupc_intr(p, CLKF_PC(frame), 1);
435 td->td_uticks += bump;
436
437 /*
438 * Charge the time as appropriate
439 */
440 if (p && p->p_nice > NZERO)
441 cp_time.cp_nice += bump;
442 else
443 cp_time.cp_user += bump;
444 } else {
445#ifdef GPROF
446 /*
447 * Kernel statistics are just like addupc_intr, only easier.
448 */
449 g = &_gmonparam;
450 if (g->state == GMON_PROF_ON && frame) {
451 i = CLKF_PC(frame) - g->lowpc;
452 if (i < g->textsize) {
453 i /= HISTFRACTION * sizeof(*g->kcount);
454 g->kcount[i]++;
455 }
456 }
457#endif
458 /*
459 * Came from kernel mode, so we were:
460 * - handling an interrupt,
461 * - doing syscall or trap work on behalf of the current
462 * user process, or
463 * - spinning in the idle loop.
464 * Whichever it is, charge the time as appropriate.
465 * Note that we charge interrupts to the current process,
466 * regardless of whether they are ``for'' that process,
467 * so that we know how much of its real time was spent
468 * in ``non-process'' (i.e., interrupt) work.
469 *
470 * XXX assume system if frame is NULL. A NULL frame
471 * can occur if ipi processing is done from an splx().
472 */
473 if (frame && CLKF_INTR(frame))
474 td->td_iticks += bump;
475 else
476 td->td_sticks += bump;
477
478 if (frame && CLKF_INTR(frame)) {
479 cp_time.cp_intr += bump;
480 } else {
481 if (td == &mycpu->gd_idlethread)
482 cp_time.cp_idle += bump;
483 else
484 cp_time.cp_sys += bump;
485 }
486 }
487}
488
489/*
490 * The scheduler clock typically runs at a 20Hz rate. NOTE! systimer,
491 * the MP lock might not be held. We can safely manipulate parts of curproc
492 * but that's about it.
493 */
494static void
495schedclock(systimer_t info, struct intrframe *frame)
496{
497 struct proc *p;
498 struct pstats *pstats;
499 struct rusage *ru;
500 struct vmspace *vm;
501 long rss;
502
503 schedulerclock(NULL); /* mpsafe */
504 if ((p = curproc) != NULL) {
505 /* Update resource usage integrals and maximums. */
506 if ((pstats = p->p_stats) != NULL &&
507 (ru = &pstats->p_ru) != NULL &&
508 (vm = p->p_vmspace) != NULL) {
509 ru->ru_ixrss += pgtok(vm->vm_tsize);
510 ru->ru_idrss += pgtok(vm->vm_dsize);
511 ru->ru_isrss += pgtok(vm->vm_ssize);
512 rss = pgtok(vmspace_resident_count(vm));
513 if (ru->ru_maxrss < rss)
514 ru->ru_maxrss = rss;
515 }
516 }
517}
518
519/*
520 * Compute number of ticks for the specified amount of time. The
521 * return value is intended to be used in a clock interrupt timed
522 * operation and guarenteed to meet or exceed the requested time.
523 * If the representation overflows, return INT_MAX. The minimum return
524 * value is 1 ticks and the function will average the calculation up.
525 * If any value greater then 0 microseconds is supplied, a value
526 * of at least 2 will be returned to ensure that a near-term clock
527 * interrupt does not cause the timeout to occur (degenerately) early.
528 *
529 * Note that limit checks must take into account microseconds, which is
530 * done simply by using the smaller signed long maximum instead of
531 * the unsigned long maximum.
532 *
533 * If ints have 32 bits, then the maximum value for any timeout in
534 * 10ms ticks is 248 days.
535 */
536int
537tvtohz_high(struct timeval *tv)
538{
539 int ticks;
540 long sec, usec;
541
542 sec = tv->tv_sec;
543 usec = tv->tv_usec;
544 if (usec < 0) {
545 sec--;
546 usec += 1000000;
547 }
548 if (sec < 0) {
549#ifdef DIAGNOSTIC
550 if (usec > 0) {
551 sec++;
552 usec -= 1000000;
553 }
554 printf("tvotohz: negative time difference %ld sec %ld usec\n",
555 sec, usec);
556#endif
557 ticks = 1;
558 } else if (sec <= INT_MAX / hz) {
559 ticks = (int)(sec * hz +
560 ((u_long)usec + (tick - 1)) / tick) + 1;
561 } else {
562 ticks = INT_MAX;
563 }
564 return (ticks);
565}
566
567/*
568 * Compute number of ticks for the specified amount of time, erroring on
569 * the side of it being too low to ensure that sleeping the returned number
570 * of ticks will not result in a late return.
571 *
572 * The supplied timeval may not be negative and should be normalized. A
573 * return value of 0 is possible if the timeval converts to less then
574 * 1 tick.
575 *
576 * If ints have 32 bits, then the maximum value for any timeout in
577 * 10ms ticks is 248 days.
578 */
579int
580tvtohz_low(struct timeval *tv)
581{
582 int ticks;
583 long sec;
584
585 sec = tv->tv_sec;
586 if (sec <= INT_MAX / hz)
587 ticks = (int)(sec * hz + (u_long)tv->tv_usec / tick);
588 else
589 ticks = INT_MAX;
590 return (ticks);
591}
592
593
594/*
595 * Start profiling on a process.
596 *
597 * Kernel profiling passes proc0 which never exits and hence
598 * keeps the profile clock running constantly.
599 */
600void
601startprofclock(struct proc *p)
602{
603 if ((p->p_flag & P_PROFIL) == 0) {
604 p->p_flag |= P_PROFIL;
605#if 0 /* XXX */
606 if (++profprocs == 1 && stathz != 0) {
607 s = splstatclock();
608 psdiv = psratio;
609 setstatclockrate(profhz);
610 splx(s);
611 }
612#endif
613 }
614}
615
616/*
617 * Stop profiling on a process.
618 */
619void
620stopprofclock(struct proc *p)
621{
622 if (p->p_flag & P_PROFIL) {
623 p->p_flag &= ~P_PROFIL;
624#if 0 /* XXX */
625 if (--profprocs == 0 && stathz != 0) {
626 s = splstatclock();
627 psdiv = 1;
628 setstatclockrate(stathz);
629 splx(s);
630 }
631#endif
632 }
633}
634
635/*
636 * Return information about system clocks.
637 */
638static int
639sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
640{
641 struct kinfo_clockinfo clkinfo;
642 /*
643 * Construct clockinfo structure.
644 */
645 clkinfo.ci_hz = hz;
646 clkinfo.ci_tick = tick;
647 clkinfo.ci_tickadj = tickadj;
648 clkinfo.ci_profhz = profhz;
649 clkinfo.ci_stathz = stathz ? stathz : hz;
650 return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
651}
652
653SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate, CTLTYPE_STRUCT|CTLFLAG_RD,
654 0, 0, sysctl_kern_clockrate, "S,clockinfo","");
655
656/*
657 * We have eight functions for looking at the clock, four for
658 * microseconds and four for nanoseconds. For each there is fast
659 * but less precise version "get{nano|micro}[up]time" which will
660 * return a time which is up to 1/HZ previous to the call, whereas
661 * the raw version "{nano|micro}[up]time" will return a timestamp
662 * which is as precise as possible. The "up" variants return the
663 * time relative to system boot, these are well suited for time
664 * interval measurements.
665 *
666 * Each cpu independantly maintains the current time of day, so all
667 * we need to do to protect ourselves from changes is to do a loop
668 * check on the seconds field changing out from under us.
669 *
670 * The system timer maintains a 32 bit count and due to various issues
671 * it is possible for the calculated delta to occassionally exceed
672 * cputimer_freq. If this occurs the cputimer_freq64_nsec multiplication
673 * can easily overflow, so we deal with the case. For uniformity we deal
674 * with the case in the usec case too.
675 */
676void
677getmicrouptime(struct timeval *tvp)
678{
679 struct globaldata *gd = mycpu;
680 sysclock_t delta;
681
682 do {
683 tvp->tv_sec = gd->gd_time_seconds;
684 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
685 } while (tvp->tv_sec != gd->gd_time_seconds);
686
687 if (delta >= cputimer_freq) {
688 tvp->tv_sec += delta / cputimer_freq;
689 delta %= cputimer_freq;
690 }
691 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32;
692 if (tvp->tv_usec >= 1000000) {
693 tvp->tv_usec -= 1000000;
694 ++tvp->tv_sec;
695 }
696}
697
698void
699getnanouptime(struct timespec *tsp)
700{
701 struct globaldata *gd = mycpu;
702 sysclock_t delta;
703
704 do {
705 tsp->tv_sec = gd->gd_time_seconds;
706 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
707 } while (tsp->tv_sec != gd->gd_time_seconds);
708
709 if (delta >= cputimer_freq) {
710 tsp->tv_sec += delta / cputimer_freq;
711 delta %= cputimer_freq;
712 }
713 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
714}
715
716void
717microuptime(struct timeval *tvp)
718{
719 struct globaldata *gd = mycpu;
720 sysclock_t delta;
721
722 do {
723 tvp->tv_sec = gd->gd_time_seconds;
724 delta = cputimer_count() - gd->gd_cpuclock_base;
725 } while (tvp->tv_sec != gd->gd_time_seconds);
726
727 if (delta >= cputimer_freq) {
728 tvp->tv_sec += delta / cputimer_freq;
729 delta %= cputimer_freq;
730 }
731 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32;
732}
733
734void
735nanouptime(struct timespec *tsp)
736{
737 struct globaldata *gd = mycpu;
738 sysclock_t delta;
739
740 do {
741 tsp->tv_sec = gd->gd_time_seconds;
742 delta = cputimer_count() - gd->gd_cpuclock_base;
743 } while (tsp->tv_sec != gd->gd_time_seconds);
744
745 if (delta >= cputimer_freq) {
746 tsp->tv_sec += delta / cputimer_freq;
747 delta %= cputimer_freq;
748 }
749 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
750}
751
752/*
753 * realtime routines
754 */
755
756void
757getmicrotime(struct timeval *tvp)
758{
759 struct globaldata *gd = mycpu;
760 sysclock_t delta;
761
762 do {
763 tvp->tv_sec = gd->gd_time_seconds;
764 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
765 } while (tvp->tv_sec != gd->gd_time_seconds);
766
767 if (delta >= cputimer_freq) {
768 tvp->tv_sec += delta / cputimer_freq;
769 delta %= cputimer_freq;
770 }
771 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32;
772
773 tvp->tv_sec += basetime.tv_sec;
774 tvp->tv_usec += basetime.tv_nsec / 1000;
775 while (tvp->tv_usec >= 1000000) {
776 tvp->tv_usec -= 1000000;
777 ++tvp->tv_sec;
778 }
779}
780
781void
782getnanotime(struct timespec *tsp)
783{
784 struct globaldata *gd = mycpu;
785 sysclock_t delta;
786
787 do {
788 tsp->tv_sec = gd->gd_time_seconds;
789 delta = gd->gd_hardclock.time - gd->gd_cpuclock_base;
790 } while (tsp->tv_sec != gd->gd_time_seconds);
791
792 if (delta >= cputimer_freq) {
793 tsp->tv_sec += delta / cputimer_freq;
794 delta %= cputimer_freq;
795 }
796 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
797
798 tsp->tv_sec += basetime.tv_sec;
799 tsp->tv_nsec += basetime.tv_nsec;
800 while (tsp->tv_nsec >= 1000000000) {
801 tsp->tv_nsec -= 1000000000;
802 ++tsp->tv_sec;
803 }
804}
805
806void
807microtime(struct timeval *tvp)
808{
809 struct globaldata *gd = mycpu;
810 sysclock_t delta;
811
812 do {
813 tvp->tv_sec = gd->gd_time_seconds;
814 delta = cputimer_count() - gd->gd_cpuclock_base;
815 } while (tvp->tv_sec != gd->gd_time_seconds);
816
817 if (delta >= cputimer_freq) {
818 tvp->tv_sec += delta / cputimer_freq;
819 delta %= cputimer_freq;
820 }
821 tvp->tv_usec = (cputimer_freq64_usec * delta) >> 32;
822
823 tvp->tv_sec += basetime.tv_sec;
824 tvp->tv_usec += basetime.tv_nsec / 1000;
825 while (tvp->tv_usec >= 1000000) {
826 tvp->tv_usec -= 1000000;
827 ++tvp->tv_sec;
828 }
829}
830
831void
832nanotime(struct timespec *tsp)
833{
834 struct globaldata *gd = mycpu;
835 sysclock_t delta;
836
837 do {
838 tsp->tv_sec = gd->gd_time_seconds;
839 delta = cputimer_count() - gd->gd_cpuclock_base;
840 } while (tsp->tv_sec != gd->gd_time_seconds);
841
842 if (delta >= cputimer_freq) {
843 tsp->tv_sec += delta / cputimer_freq;
844 delta %= cputimer_freq;
845 }
846 tsp->tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
847
848 tsp->tv_sec += basetime.tv_sec;
849 tsp->tv_nsec += basetime.tv_nsec;
850 while (tsp->tv_nsec >= 1000000000) {
851 tsp->tv_nsec -= 1000000000;
852 ++tsp->tv_sec;
853 }
854}
855
856int
857pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
858{
859 pps_params_t *app;
860 struct pps_fetch_args *fapi;
861#ifdef PPS_SYNC
862 struct pps_kcbind_args *kapi;
863#endif
864
865 switch (cmd) {
866 case PPS_IOC_CREATE:
867 return (0);
868 case PPS_IOC_DESTROY:
869 return (0);
870 case PPS_IOC_SETPARAMS:
871 app = (pps_params_t *)data;
872 if (app->mode & ~pps->ppscap)
873 return (EINVAL);
874 pps->ppsparam = *app;
875 return (0);
876 case PPS_IOC_GETPARAMS:
877 app = (pps_params_t *)data;
878 *app = pps->ppsparam;
879 app->api_version = PPS_API_VERS_1;
880 return (0);
881 case PPS_IOC_GETCAP:
882 *(int*)data = pps->ppscap;
883 return (0);
884 case PPS_IOC_FETCH:
885 fapi = (struct pps_fetch_args *)data;
886 if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
887 return (EINVAL);
888 if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
889 return (EOPNOTSUPP);
890 pps->ppsinfo.current_mode = pps->ppsparam.mode;
891 fapi->pps_info_buf = pps->ppsinfo;
892 return (0);
893 case PPS_IOC_KCBIND:
894#ifdef PPS_SYNC
895 kapi = (struct pps_kcbind_args *)data;
896 /* XXX Only root should be able to do this */
897 if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
898 return (EINVAL);
899 if (kapi->kernel_consumer != PPS_KC_HARDPPS)
900 return (EINVAL);
901 if (kapi->edge & ~pps->ppscap)
902 return (EINVAL);
903 pps->kcmode = kapi->edge;
904 return (0);
905#else
906 return (EOPNOTSUPP);
907#endif
908 default:
909 return (ENOTTY);
910 }
911}
912
913void
914pps_init(struct pps_state *pps)
915{
916 pps->ppscap |= PPS_TSFMT_TSPEC;
917 if (pps->ppscap & PPS_CAPTUREASSERT)
918 pps->ppscap |= PPS_OFFSETASSERT;
919 if (pps->ppscap & PPS_CAPTURECLEAR)
920 pps->ppscap |= PPS_OFFSETCLEAR;
921}
922
923void
924pps_event(struct pps_state *pps, sysclock_t count, int event)
925{
926 struct globaldata *gd;
927 struct timespec *tsp;
928 struct timespec *osp;
929 struct timespec ts;
930 sysclock_t *pcount;
931#ifdef PPS_SYNC
932 sysclock_t tcount;
933#endif
934 sysclock_t delta;
935 pps_seq_t *pseq;
936 int foff;
937 int fhard;
938
939 gd = mycpu;
940
941 /* Things would be easier with arrays... */
942 if (event == PPS_CAPTUREASSERT) {
943 tsp = &pps->ppsinfo.assert_timestamp;
944 osp = &pps->ppsparam.assert_offset;
945 foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
946 fhard = pps->kcmode & PPS_CAPTUREASSERT;
947 pcount = &pps->ppscount[0];
948 pseq = &pps->ppsinfo.assert_sequence;
949 } else {
950 tsp = &pps->ppsinfo.clear_timestamp;
951 osp = &pps->ppsparam.clear_offset;
952 foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
953 fhard = pps->kcmode & PPS_CAPTURECLEAR;
954 pcount = &pps->ppscount[1];
955 pseq = &pps->ppsinfo.clear_sequence;
956 }
957
958 /* Nothing really happened */
959 if (*pcount == count)
960 return;
961
962 *pcount = count;
963
964 do {
965 ts.tv_sec = gd->gd_time_seconds;
966 delta = count - gd->gd_cpuclock_base;
967 } while (ts.tv_sec != gd->gd_time_seconds);
968
969 if (delta >= cputimer_freq) {
970 ts.tv_sec += delta / cputimer_freq;
971 delta %= cputimer_freq;
972 }
973 ts.tv_nsec = (cputimer_freq64_nsec * delta) >> 32;
974 ts.tv_sec += basetime.tv_sec;
975 ts.tv_nsec += basetime.tv_nsec;
976 while (ts.tv_nsec >= 1000000000) {
977 ts.tv_nsec -= 1000000000;
978 ++ts.tv_sec;
979 }
980
981 (*pseq)++;
982 *tsp = ts;
983
984 if (foff) {
985 timespecadd(tsp, osp);
986 if (tsp->tv_nsec < 0) {
987 tsp->tv_nsec += 1000000000;
988 tsp->tv_sec -= 1;
989 }
990 }
991#ifdef PPS_SYNC
992 if (fhard) {
993 /* magic, at its best... */
994 tcount = count - pps->ppscount[2];
995 pps->ppscount[2] = count;
996 if (tcount >= cputimer_freq) {
997 delta = (1000000000 * (tcount / cputimer_freq) +
998 cputimer_freq64_nsec *
999 (tcount % cputimer_freq)) >> 32;
1000 } else {
1001 delta = (cputimer_freq64_nsec * tcount) >> 32;
1002 }
1003 hardpps(tsp, delta);
1004 }
1005#endif
1006}
1007