Add KTR_KERNENTRY to ktr(4) and LINT.
[dragonfly.git] / sys / vfs / hammer / hammer_inode.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * $DragonFly: src/sys/vfs/hammer/hammer_inode.c,v 1.60 2008/05/18 01:48:50 dillon Exp $
35 */
36
37#include "hammer.h"
38#include <vm/vm_extern.h>
39#include <sys/buf.h>
40#include <sys/buf2.h>
41
42static int hammer_unload_inode(struct hammer_inode *ip);
43static void hammer_flush_inode_core(hammer_inode_t ip, int flags);
44static int hammer_setup_child_callback(hammer_record_t rec, void *data);
45static int hammer_setup_parent_inodes(hammer_record_t record);
46
47/*
48 * The kernel is not actively referencing this vnode but is still holding
49 * it cached.
50 *
51 * This is called from the frontend.
52 */
53int
54hammer_vop_inactive(struct vop_inactive_args *ap)
55{
56 struct hammer_inode *ip = VTOI(ap->a_vp);
57
58 /*
59 * Degenerate case
60 */
61 if (ip == NULL) {
62 vrecycle(ap->a_vp);
63 return(0);
64 }
65
66 /*
67 * If the inode no longer has visibility in the filesystem and is
68 * fairly clean, try to recycle it immediately. This can deadlock
69 * in vfsync() if we aren't careful.
70 *
71 * Do not queue the inode to the flusher if we still have visibility,
72 * otherwise namespace calls such as chmod will unnecessarily generate
73 * multiple inode updates.
74 */
75 hammer_inode_unloadable_check(ip, 0);
76 if (ip->ino_data.nlinks == 0) {
77 if (ip->flags & HAMMER_INODE_MODMASK)
78 hammer_flush_inode(ip, 0);
79 else
80 vrecycle(ap->a_vp);
81 }
82 return(0);
83}
84
85/*
86 * Release the vnode association. This is typically (but not always)
87 * the last reference on the inode.
88 *
89 * Once the association is lost we are on our own with regards to
90 * flushing the inode.
91 */
92int
93hammer_vop_reclaim(struct vop_reclaim_args *ap)
94{
95 struct hammer_inode *ip;
96 struct vnode *vp;
97
98 vp = ap->a_vp;
99
100 if ((ip = vp->v_data) != NULL) {
101 vp->v_data = NULL;
102 ip->vp = NULL;
103 hammer_rel_inode(ip, 1);
104 }
105 return(0);
106}
107
108/*
109 * Return a locked vnode for the specified inode. The inode must be
110 * referenced but NOT LOCKED on entry and will remain referenced on
111 * return.
112 *
113 * Called from the frontend.
114 */
115int
116hammer_get_vnode(struct hammer_inode *ip, struct vnode **vpp)
117{
118 struct vnode *vp;
119 int error = 0;
120
121 for (;;) {
122 if ((vp = ip->vp) == NULL) {
123 error = getnewvnode(VT_HAMMER, ip->hmp->mp, vpp, 0, 0);
124 if (error)
125 break;
126 hammer_lock_ex(&ip->lock);
127 if (ip->vp != NULL) {
128 hammer_unlock(&ip->lock);
129 vp->v_type = VBAD;
130 vx_put(vp);
131 continue;
132 }
133 hammer_ref(&ip->lock);
134 vp = *vpp;
135 ip->vp = vp;
136 vp->v_type =
137 hammer_get_vnode_type(ip->ino_data.obj_type);
138
139 switch(ip->ino_data.obj_type) {
140 case HAMMER_OBJTYPE_CDEV:
141 case HAMMER_OBJTYPE_BDEV:
142 vp->v_ops = &ip->hmp->mp->mnt_vn_spec_ops;
143 addaliasu(vp, ip->ino_data.rmajor,
144 ip->ino_data.rminor);
145 break;
146 case HAMMER_OBJTYPE_FIFO:
147 vp->v_ops = &ip->hmp->mp->mnt_vn_fifo_ops;
148 break;
149 default:
150 break;
151 }
152
153 /*
154 * Only mark as the root vnode if the ip is not
155 * historical, otherwise the VFS cache will get
156 * confused. The other half of the special handling
157 * is in hammer_vop_nlookupdotdot().
158 */
159 if (ip->obj_id == HAMMER_OBJID_ROOT &&
160 ip->obj_asof == ip->hmp->asof) {
161 vp->v_flag |= VROOT;
162 }
163
164 vp->v_data = (void *)ip;
165 /* vnode locked by getnewvnode() */
166 /* make related vnode dirty if inode dirty? */
167 hammer_unlock(&ip->lock);
168 if (vp->v_type == VREG)
169 vinitvmio(vp, ip->ino_data.size);
170 break;
171 }
172
173 /*
174 * loop if the vget fails (aka races), or if the vp
175 * no longer matches ip->vp.
176 */
177 if (vget(vp, LK_EXCLUSIVE) == 0) {
178 if (vp == ip->vp)
179 break;
180 vput(vp);
181 }
182 }
183 *vpp = vp;
184 return(error);
185}
186
187/*
188 * Acquire a HAMMER inode. The returned inode is not locked. These functions
189 * do not attach or detach the related vnode (use hammer_get_vnode() for
190 * that).
191 *
192 * The flags argument is only applied for newly created inodes, and only
193 * certain flags are inherited.
194 *
195 * Called from the frontend.
196 */
197struct hammer_inode *
198hammer_get_inode(hammer_transaction_t trans, struct hammer_node **cache,
199 u_int64_t obj_id, hammer_tid_t asof, int flags, int *errorp)
200{
201 hammer_mount_t hmp = trans->hmp;
202 struct hammer_inode_info iinfo;
203 struct hammer_cursor cursor;
204 struct hammer_inode *ip;
205
206 /*
207 * Determine if we already have an inode cached. If we do then
208 * we are golden.
209 */
210 iinfo.obj_id = obj_id;
211 iinfo.obj_asof = asof;
212loop:
213 ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
214 if (ip) {
215 hammer_ref(&ip->lock);
216 *errorp = 0;
217 return(ip);
218 }
219
220 ip = kmalloc(sizeof(*ip), M_HAMMER, M_WAITOK|M_ZERO);
221 ++hammer_count_inodes;
222 ip->obj_id = obj_id;
223 ip->obj_asof = iinfo.obj_asof;
224 ip->hmp = hmp;
225 ip->flags = flags & HAMMER_INODE_RO;
226 if (hmp->ronly)
227 ip->flags |= HAMMER_INODE_RO;
228 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
229 RB_INIT(&ip->rec_tree);
230 TAILQ_INIT(&ip->bio_list);
231 TAILQ_INIT(&ip->bio_alt_list);
232 TAILQ_INIT(&ip->target_list);
233
234 /*
235 * Locate the on-disk inode.
236 */
237retry:
238 hammer_init_cursor(trans, &cursor, cache, NULL);
239 cursor.key_beg.localization = HAMMER_LOCALIZE_INODE;
240 cursor.key_beg.obj_id = ip->obj_id;
241 cursor.key_beg.key = 0;
242 cursor.key_beg.create_tid = 0;
243 cursor.key_beg.delete_tid = 0;
244 cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE;
245 cursor.key_beg.obj_type = 0;
246 cursor.asof = iinfo.obj_asof;
247 cursor.flags = HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_GET_DATA |
248 HAMMER_CURSOR_ASOF;
249
250 *errorp = hammer_btree_lookup(&cursor);
251 if (*errorp == EDEADLK) {
252 hammer_done_cursor(&cursor);
253 goto retry;
254 }
255
256 /*
257 * On success the B-Tree lookup will hold the appropriate
258 * buffer cache buffers and provide a pointer to the requested
259 * information. Copy the information to the in-memory inode
260 * and cache the B-Tree node to improve future operations.
261 */
262 if (*errorp == 0) {
263 ip->ino_leaf = cursor.node->ondisk->elms[cursor.index].leaf;
264 ip->ino_data = cursor.data->inode;
265 hammer_cache_node(cursor.node, &ip->cache[0]);
266 if (cache)
267 hammer_cache_node(cursor.node, cache);
268 }
269
270 /*
271 * On success load the inode's record and data and insert the
272 * inode into the B-Tree. It is possible to race another lookup
273 * insertion of the same inode so deal with that condition too.
274 *
275 * The cursor's locked node interlocks against others creating and
276 * destroying ip while we were blocked.
277 */
278 if (*errorp == 0) {
279 hammer_ref(&ip->lock);
280 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
281 hammer_uncache_node(&ip->cache[0]);
282 hammer_uncache_node(&ip->cache[1]);
283 KKASSERT(ip->lock.refs == 1);
284 --hammer_count_inodes;
285 kfree(ip, M_HAMMER);
286 hammer_done_cursor(&cursor);
287 goto loop;
288 }
289 ip->flags |= HAMMER_INODE_ONDISK;
290 } else {
291 /*
292 * Do not panic on read-only accesses which fail, particularly
293 * historical accesses where the snapshot might not have
294 * complete connectivity.
295 */
296 if ((flags & HAMMER_INODE_RO) == 0) {
297 kprintf("hammer_get_inode: failed ip %p obj_id %016llx cursor %p error %d\n",
298 ip, ip->obj_id, &cursor, *errorp);
299 Debugger("x");
300 }
301 --hammer_count_inodes;
302 kfree(ip, M_HAMMER);
303 ip = NULL;
304 }
305 hammer_done_cursor(&cursor);
306 return (ip);
307}
308
309/*
310 * Create a new filesystem object, returning the inode in *ipp. The
311 * returned inode will be referenced.
312 *
313 * The inode is created in-memory.
314 */
315int
316hammer_create_inode(hammer_transaction_t trans, struct vattr *vap,
317 struct ucred *cred, hammer_inode_t dip,
318 struct hammer_inode **ipp)
319{
320 hammer_mount_t hmp;
321 hammer_inode_t ip;
322 uid_t xuid;
323
324 hmp = trans->hmp;
325 ip = kmalloc(sizeof(*ip), M_HAMMER, M_WAITOK|M_ZERO);
326 ++hammer_count_inodes;
327 ip->obj_id = hammer_alloc_objid(trans, dip);
328 KKASSERT(ip->obj_id != 0);
329 ip->obj_asof = hmp->asof;
330 ip->hmp = hmp;
331 ip->flush_state = HAMMER_FST_IDLE;
332 ip->flags = HAMMER_INODE_DDIRTY | HAMMER_INODE_ITIMES;
333
334 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
335 RB_INIT(&ip->rec_tree);
336 TAILQ_INIT(&ip->bio_list);
337 TAILQ_INIT(&ip->bio_alt_list);
338 TAILQ_INIT(&ip->target_list);
339
340 ip->ino_leaf.atime = trans->time;
341 ip->ino_data.mtime = trans->time;
342 ip->ino_data.size = 0;
343 ip->ino_data.nlinks = 0;
344 /* XXX */
345 ip->ino_leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
346 ip->ino_leaf.base.localization = HAMMER_LOCALIZE_INODE;
347 ip->ino_leaf.base.obj_id = ip->obj_id;
348 ip->ino_leaf.base.key = 0;
349 ip->ino_leaf.base.create_tid = 0;
350 ip->ino_leaf.base.delete_tid = 0;
351 ip->ino_leaf.base.rec_type = HAMMER_RECTYPE_INODE;
352 ip->ino_leaf.base.obj_type = hammer_get_obj_type(vap->va_type);
353
354 ip->ino_data.obj_type = ip->ino_leaf.base.obj_type;
355 ip->ino_data.version = HAMMER_INODE_DATA_VERSION;
356 ip->ino_data.mode = vap->va_mode;
357 ip->ino_data.ctime = trans->time;
358 ip->ino_data.parent_obj_id = (dip) ? dip->ino_leaf.base.obj_id : 0;
359
360 switch(ip->ino_leaf.base.obj_type) {
361 case HAMMER_OBJTYPE_CDEV:
362 case HAMMER_OBJTYPE_BDEV:
363 ip->ino_data.rmajor = vap->va_rmajor;
364 ip->ino_data.rminor = vap->va_rminor;
365 break;
366 default:
367 break;
368 }
369
370 /*
371 * Calculate default uid/gid and overwrite with information from
372 * the vap.
373 */
374 xuid = hammer_to_unix_xid(&dip->ino_data.uid);
375 ip->ino_data.gid = dip->ino_data.gid;
376 xuid = vop_helper_create_uid(hmp->mp, dip->ino_data.mode, xuid, cred,
377 &vap->va_mode);
378 ip->ino_data.mode = vap->va_mode;
379
380 if (vap->va_vaflags & VA_UID_UUID_VALID)
381 ip->ino_data.uid = vap->va_uid_uuid;
382 else if (vap->va_uid != (uid_t)VNOVAL)
383 hammer_guid_to_uuid(&ip->ino_data.uid, xuid);
384 if (vap->va_vaflags & VA_GID_UUID_VALID)
385 ip->ino_data.gid = vap->va_gid_uuid;
386 else if (vap->va_gid != (gid_t)VNOVAL)
387 hammer_guid_to_uuid(&ip->ino_data.gid, vap->va_gid);
388
389 hammer_ref(&ip->lock);
390 if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
391 hammer_unref(&ip->lock);
392 panic("hammer_create_inode: duplicate obj_id %llx", ip->obj_id);
393 }
394 *ipp = ip;
395 return(0);
396}
397
398/*
399 * Called by hammer_sync_inode().
400 */
401static int
402hammer_update_inode(hammer_cursor_t cursor, hammer_inode_t ip)
403{
404 hammer_transaction_t trans = cursor->trans;
405 hammer_record_t record;
406 int error;
407
408retry:
409 error = 0;
410
411 /*
412 * If the inode has a presence on-disk then locate it and mark
413 * it deleted, setting DELONDISK.
414 *
415 * The record may or may not be physically deleted, depending on
416 * the retention policy.
417 */
418 if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
419 HAMMER_INODE_ONDISK) {
420 hammer_normalize_cursor(cursor);
421 cursor->key_beg.localization = HAMMER_LOCALIZE_INODE;
422 cursor->key_beg.obj_id = ip->obj_id;
423 cursor->key_beg.key = 0;
424 cursor->key_beg.create_tid = 0;
425 cursor->key_beg.delete_tid = 0;
426 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
427 cursor->key_beg.obj_type = 0;
428 cursor->asof = ip->obj_asof;
429 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
430 cursor->flags |= HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_ASOF;
431 cursor->flags |= HAMMER_CURSOR_BACKEND;
432
433 error = hammer_btree_lookup(cursor);
434 if (hammer_debug_inode)
435 kprintf("IPDEL %p %08x %d", ip, ip->flags, error);
436 if (error) {
437 kprintf("error %d\n", error);
438 Debugger("hammer_update_inode");
439 }
440
441 if (error == 0) {
442 error = hammer_ip_delete_record(cursor, trans->tid);
443 if (hammer_debug_inode)
444 kprintf(" error %d\n", error);
445 if (error && error != EDEADLK) {
446 kprintf("error %d\n", error);
447 Debugger("hammer_update_inode2");
448 }
449 if (error == 0) {
450 ip->flags |= HAMMER_INODE_DELONDISK;
451 }
452 if (cursor->node)
453 hammer_cache_node(cursor->node, &ip->cache[0]);
454 }
455 if (error == EDEADLK) {
456 hammer_done_cursor(cursor);
457 error = hammer_init_cursor(trans, cursor,
458 &ip->cache[0], ip);
459 if (hammer_debug_inode)
460 kprintf("IPDED %p %d\n", ip, error);
461 if (error == 0)
462 goto retry;
463 }
464 }
465
466 /*
467 * Ok, write out the initial record or a new record (after deleting
468 * the old one), unless the DELETED flag is set. This routine will
469 * clear DELONDISK if it writes out a record.
470 *
471 * Update our inode statistics if this is the first application of
472 * the inode on-disk.
473 */
474 if (error == 0 && (ip->flags & HAMMER_INODE_DELETED) == 0) {
475 /*
476 * Generate a record and write it to the media
477 */
478 record = hammer_alloc_mem_record(ip, 0);
479 record->type = HAMMER_MEM_RECORD_INODE;
480 record->flush_state = HAMMER_FST_FLUSH;
481 record->leaf = ip->sync_ino_leaf;
482 record->leaf.base.create_tid = trans->tid;
483 record->leaf.data_len = sizeof(ip->sync_ino_data);
484 record->data = (void *)&ip->sync_ino_data;
485 record->flags |= HAMMER_RECF_INTERLOCK_BE;
486 for (;;) {
487 error = hammer_ip_sync_record_cursor(cursor, record);
488 if (hammer_debug_inode)
489 kprintf("GENREC %p rec %08x %d\n",
490 ip, record->flags, error);
491 if (error != EDEADLK)
492 break;
493 hammer_done_cursor(cursor);
494 error = hammer_init_cursor(trans, cursor,
495 &ip->cache[0], ip);
496 if (hammer_debug_inode)
497 kprintf("GENREC reinit %d\n", error);
498 if (error)
499 break;
500 }
501 if (error) {
502 kprintf("error %d\n", error);
503 Debugger("hammer_update_inode3");
504 }
505
506 /*
507 * The record isn't managed by the inode's record tree,
508 * destroy it whether we succeed or fail.
509 */
510 record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
511 record->flags |= HAMMER_RECF_DELETED_FE;
512 record->flush_state = HAMMER_FST_IDLE;
513 hammer_rel_mem_record(record);
514
515 /*
516 * Finish up.
517 */
518 if (error == 0) {
519 if (hammer_debug_inode)
520 kprintf("CLEANDELOND %p %08x\n", ip, ip->flags);
521 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
522 HAMMER_INODE_ITIMES);
523 ip->flags &= ~HAMMER_INODE_DELONDISK;
524
525 /*
526 * Root volume count of inodes
527 */
528 if ((ip->flags & HAMMER_INODE_ONDISK) == 0) {
529 hammer_modify_volume_field(trans,
530 trans->rootvol,
531 vol0_stat_inodes);
532 ++ip->hmp->rootvol->ondisk->vol0_stat_inodes;
533 hammer_modify_volume_done(trans->rootvol);
534 ip->flags |= HAMMER_INODE_ONDISK;
535 if (hammer_debug_inode)
536 kprintf("NOWONDISK %p\n", ip);
537 }
538 }
539 }
540
541 /*
542 * If the inode has been destroyed, clean out any left-over flags
543 * that may have been set by the frontend.
544 */
545 if (error == 0 && (ip->flags & HAMMER_INODE_DELETED)) {
546 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
547 HAMMER_INODE_ITIMES);
548 }
549 return(error);
550}
551
552/*
553 * Update only the itimes fields. This is done no-historically. The
554 * record is updated in-place on the disk.
555 */
556static int
557hammer_update_itimes(hammer_cursor_t cursor, hammer_inode_t ip)
558{
559 hammer_transaction_t trans = cursor->trans;
560 struct hammer_btree_leaf_elm *leaf;
561 int error;
562
563retry:
564 error = 0;
565 if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
566 HAMMER_INODE_ONDISK) {
567 hammer_normalize_cursor(cursor);
568 cursor->key_beg.localization = HAMMER_LOCALIZE_INODE;
569 cursor->key_beg.obj_id = ip->obj_id;
570 cursor->key_beg.key = 0;
571 cursor->key_beg.create_tid = 0;
572 cursor->key_beg.delete_tid = 0;
573 cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
574 cursor->key_beg.obj_type = 0;
575 cursor->asof = ip->obj_asof;
576 cursor->flags &= ~HAMMER_CURSOR_INITMASK;
577 cursor->flags |= HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_ASOF;
578 cursor->flags |= HAMMER_CURSOR_BACKEND;
579
580 error = hammer_btree_lookup(cursor);
581 if (error) {
582 kprintf("error %d\n", error);
583 Debugger("hammer_update_itimes1");
584 }
585 if (error == 0) {
586 /*
587 * Do not generate UNDO records for atime updates.
588 */
589 leaf = cursor->leaf;
590 hammer_modify_node(trans, cursor->node,
591 &leaf->atime, sizeof(leaf->atime));
592 leaf->atime = ip->sync_ino_leaf.atime;
593 hammer_modify_node_done(cursor->node);
594 /*rec->ino_mtime = ip->sync_ino_rec.ino_mtime;*/
595 ip->sync_flags &= ~HAMMER_INODE_ITIMES;
596 /* XXX recalculate crc */
597 hammer_cache_node(cursor->node, &ip->cache[0]);
598 }
599 if (error == EDEADLK) {
600 hammer_done_cursor(cursor);
601 error = hammer_init_cursor(trans, cursor,
602 &ip->cache[0], ip);
603 if (error == 0)
604 goto retry;
605 }
606 }
607 return(error);
608}
609
610/*
611 * Release a reference on an inode, flush as requested.
612 *
613 * On the last reference we queue the inode to the flusher for its final
614 * disposition.
615 */
616void
617hammer_rel_inode(struct hammer_inode *ip, int flush)
618{
619 hammer_mount_t hmp = ip->hmp;
620
621 /*
622 * Handle disposition when dropping the last ref.
623 */
624 for (;;) {
625 if (ip->lock.refs == 1) {
626 /*
627 * Determine whether on-disk action is needed for
628 * the inode's final disposition.
629 */
630 KKASSERT(ip->vp == NULL);
631 hammer_inode_unloadable_check(ip, 0);
632 if (ip->flags & HAMMER_INODE_MODMASK) {
633 hammer_flush_inode(ip, 0);
634 } else if (ip->lock.refs == 1) {
635 hammer_unload_inode(ip);
636 break;
637 }
638 } else {
639 if (flush)
640 hammer_flush_inode(ip, 0);
641
642 /*
643 * The inode still has multiple refs, try to drop
644 * one ref.
645 */
646 KKASSERT(ip->lock.refs >= 1);
647 if (ip->lock.refs > 1) {
648 hammer_unref(&ip->lock);
649 break;
650 }
651 }
652 }
653
654 /*
655 * XXX bad hack until I add code to track inodes in SETUP. We
656 * can queue a lot of inodes to the syncer but if we don't wake
657 * it up the undo sets will be too large or too many unflushed
658 * records will build up and blow our malloc limit.
659 */
660 if (++hmp->reclaim_count > 256) {
661 hmp->reclaim_count = 0;
662 hammer_flusher_async(hmp);
663 }
664}
665
666/*
667 * Unload and destroy the specified inode. Must be called with one remaining
668 * reference. The reference is disposed of.
669 *
670 * This can only be called in the context of the flusher.
671 */
672static int
673hammer_unload_inode(struct hammer_inode *ip)
674{
675 KASSERT(ip->lock.refs == 1,
676 ("hammer_unload_inode: %d refs\n", ip->lock.refs));
677 KKASSERT(ip->vp == NULL);
678 KKASSERT(ip->flush_state == HAMMER_FST_IDLE);
679 KKASSERT(ip->cursor_ip_refs == 0);
680 KKASSERT(ip->lock.lockcount == 0);
681 KKASSERT((ip->flags & HAMMER_INODE_MODMASK) == 0);
682
683 KKASSERT(RB_EMPTY(&ip->rec_tree));
684 KKASSERT(TAILQ_EMPTY(&ip->target_list));
685 KKASSERT(TAILQ_EMPTY(&ip->bio_list));
686 KKASSERT(TAILQ_EMPTY(&ip->bio_alt_list));
687
688 RB_REMOVE(hammer_ino_rb_tree, &ip->hmp->rb_inos_root, ip);
689
690 hammer_uncache_node(&ip->cache[0]);
691 hammer_uncache_node(&ip->cache[1]);
692 if (ip->objid_cache)
693 hammer_clear_objid(ip);
694 --hammer_count_inodes;
695 kfree(ip, M_HAMMER);
696
697 return(0);
698}
699
700/*
701 * A transaction has modified an inode, requiring updates as specified by
702 * the passed flags.
703 *
704 * HAMMER_INODE_DDIRTY: Inode data has been updated
705 * HAMMER_INODE_XDIRTY: Dirty in-memory records
706 * HAMMER_INODE_BUFS: Dirty buffer cache buffers
707 * HAMMER_INODE_DELETED: Inode record/data must be deleted
708 * HAMMER_INODE_ITIMES: mtime/atime has been updated
709 */
710void
711hammer_modify_inode(hammer_transaction_t trans, hammer_inode_t ip, int flags)
712{
713 KKASSERT ((ip->flags & HAMMER_INODE_RO) == 0 ||
714 (flags & (HAMMER_INODE_DDIRTY |
715 HAMMER_INODE_XDIRTY | HAMMER_INODE_BUFS |
716 HAMMER_INODE_DELETED | HAMMER_INODE_ITIMES)) == 0);
717
718 ip->flags |= flags;
719}
720
721/*
722 * Request that an inode be flushed. This whole mess cannot block and may
723 * recurse. Once requested HAMMER will attempt to actively flush it until
724 * the flush can be done.
725 *
726 * The inode may already be flushing, or may be in a setup state. We can
727 * place the inode in a flushing state if it is currently idle and flag it
728 * to reflush if it is currently flushing.
729 */
730void
731hammer_flush_inode(hammer_inode_t ip, int flags)
732{
733 hammer_record_t depend;
734 int r, good;
735
736 /*
737 * Trivial 'nothing to flush' case. If the inode is ina SETUP
738 * state we have to put it back into an IDLE state so we can
739 * drop the extra ref.
740 */
741 if ((ip->flags & HAMMER_INODE_MODMASK) == 0) {
742 if (ip->flush_state == HAMMER_FST_SETUP) {
743 ip->flush_state = HAMMER_FST_IDLE;
744 hammer_rel_inode(ip, 0);
745 }
746 return;
747 }
748
749 /*
750 * Our flush action will depend on the current state.
751 */
752 switch(ip->flush_state) {
753 case HAMMER_FST_IDLE:
754 /*
755 * We have no dependancies and can flush immediately. Some
756 * our children may not be flushable so we have to re-test
757 * with that additional knowledge.
758 */
759 hammer_flush_inode_core(ip, flags);
760 break;
761 case HAMMER_FST_SETUP:
762 /*
763 * Recurse upwards through dependancies via target_list
764 * and start their flusher actions going if possible.
765 *
766 * 'good' is our connectivity. -1 means we have none and
767 * can't flush, 0 means there weren't any dependancies, and
768 * 1 means we have good connectivity.
769 */
770 good = 0;
771 TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
772 r = hammer_setup_parent_inodes(depend);
773 if (r < 0 && good == 0)
774 good = -1;
775 if (r > 0)
776 good = 1;
777 }
778
779 /*
780 * We can continue if good >= 0. Determine how many records
781 * under our inode can be flushed (and mark them).
782 */
783 if (good >= 0) {
784 hammer_flush_inode_core(ip, flags);
785 } else {
786 ip->flags |= HAMMER_INODE_REFLUSH;
787 if (flags & HAMMER_FLUSH_SIGNAL) {
788 ip->flags |= HAMMER_INODE_RESIGNAL;
789 hammer_flusher_async(ip->hmp);
790 }
791 }
792 break;
793 default:
794 /*
795 * We are already flushing, flag the inode to reflush
796 * if needed after it completes its current flush.
797 */
798 if ((ip->flags & HAMMER_INODE_REFLUSH) == 0)
799 ip->flags |= HAMMER_INODE_REFLUSH;
800 if (flags & HAMMER_FLUSH_SIGNAL) {
801 ip->flags |= HAMMER_INODE_RESIGNAL;
802 hammer_flusher_async(ip->hmp);
803 }
804 break;
805 }
806}
807
808/*
809 * We are asked to recurse upwards and convert the record from SETUP
810 * to FLUSH if possible. record->ip is a parent of the caller's inode,
811 * and record->target_ip is the caller's inode.
812 *
813 * Return 1 if the record gives us connectivity
814 *
815 * Return 0 if the record is not relevant
816 *
817 * Return -1 if we can't resolve the dependancy and there is no connectivity.
818 */
819static int
820hammer_setup_parent_inodes(hammer_record_t record)
821{
822 hammer_mount_t hmp = record->ip->hmp;
823 hammer_record_t depend;
824 hammer_inode_t ip;
825 int r, good;
826
827 KKASSERT(record->flush_state != HAMMER_FST_IDLE);
828 ip = record->ip;
829
830 /*
831 * If the record is already flushing, is it in our flush group?
832 *
833 * If it is in our flush group but it is a general record or a
834 * delete-on-disk, it does not improve our connectivity (return 0),
835 * and if the target inode is not trying to destroy itself we can't
836 * allow the operation yet anyway (the second return -1).
837 */
838 if (record->flush_state == HAMMER_FST_FLUSH) {
839 if (record->flush_group != hmp->flusher_next) {
840 ip->flags |= HAMMER_INODE_REFLUSH;
841 return(-1);
842 }
843 if (record->type == HAMMER_MEM_RECORD_ADD)
844 return(1);
845 /* GENERAL or DEL */
846 return(0);
847 }
848
849 /*
850 * It must be a setup record. Try to resolve the setup dependancies
851 * by recursing upwards so we can place ip on the flush list.
852 */
853 KKASSERT(record->flush_state == HAMMER_FST_SETUP);
854
855 good = 0;
856 TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
857 r = hammer_setup_parent_inodes(depend);
858 if (r < 0 && good == 0)
859 good = -1;
860 if (r > 0)
861 good = 1;
862 }
863
864 /*
865 * We can't flush ip because it has no connectivity (XXX also check
866 * nlinks for pre-existing connectivity!). Flag it so any resolution
867 * recurses back down.
868 */
869 if (good < 0) {
870 ip->flags |= HAMMER_INODE_REFLUSH;
871 return(good);
872 }
873
874 /*
875 * We are go, place the parent inode in a flushing state so we can
876 * place its record in a flushing state. Note that the parent
877 * may already be flushing. The record must be in the same flush
878 * group as the parent.
879 */
880 if (ip->flush_state != HAMMER_FST_FLUSH)
881 hammer_flush_inode_core(ip, HAMMER_FLUSH_RECURSION);
882 KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
883 KKASSERT(record->flush_state == HAMMER_FST_SETUP);
884
885#if 0
886 if (record->type == HAMMER_MEM_RECORD_DEL &&
887 (record->target_ip->flags & (HAMMER_INODE_DELETED|HAMMER_INODE_DELONDISK)) == 0) {
888 /*
889 * Regardless of flushing state we cannot sync this path if the
890 * record represents a delete-on-disk but the target inode
891 * is not ready to sync its own deletion.
892 *
893 * XXX need to count effective nlinks to determine whether
894 * the flush is ok, otherwise removing a hardlink will
895 * just leave the DEL record to rot.
896 */
897 record->target_ip->flags |= HAMMER_INODE_REFLUSH;
898 return(-1);
899 } else
900#endif
901 if (ip->flush_group == ip->hmp->flusher_next) {
902 /*
903 * This is the record we wanted to synchronize.
904 */
905 record->flush_state = HAMMER_FST_FLUSH;
906 record->flush_group = ip->flush_group;
907 hammer_ref(&record->lock);
908 if (record->type == HAMMER_MEM_RECORD_ADD)
909 return(1);
910
911 /*
912 * A general or delete-on-disk record does not contribute
913 * to our visibility. We can still flush it, however.
914 */
915 return(0);
916 } else {
917 /*
918 * We couldn't resolve the dependancies, request that the
919 * inode be flushed when the dependancies can be resolved.
920 */
921 ip->flags |= HAMMER_INODE_REFLUSH;
922 return(-1);
923 }
924}
925
926/*
927 * This is the core routine placing an inode into the FST_FLUSH state.
928 */
929static void
930hammer_flush_inode_core(hammer_inode_t ip, int flags)
931{
932 int go_count;
933
934 /*
935 * Set flush state and prevent the flusher from cycling into
936 * the next flush group. Do not place the ip on the list yet.
937 * Inodes not in the idle state get an extra reference.
938 */
939 KKASSERT(ip->flush_state != HAMMER_FST_FLUSH);
940 if (ip->flush_state == HAMMER_FST_IDLE)
941 hammer_ref(&ip->lock);
942 ip->flush_state = HAMMER_FST_FLUSH;
943 ip->flush_group = ip->hmp->flusher_next;
944 ++ip->hmp->flusher_lock;
945
946 /*
947 * We need to be able to vfsync/truncate from the backend.
948 */
949 KKASSERT((ip->flags & HAMMER_INODE_VHELD) == 0);
950 if (ip->vp && (ip->vp->v_flag & VINACTIVE) == 0) {
951 ip->flags |= HAMMER_INODE_VHELD;
952 vref(ip->vp);
953 }
954
955 /*
956 * Figure out how many in-memory records we can actually flush
957 * (not including inode meta-data, buffers, etc).
958 */
959 if (flags & HAMMER_FLUSH_RECURSION) {
960 go_count = 1;
961 } else {
962 go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
963 hammer_setup_child_callback, NULL);
964 }
965
966 /*
967 * This is a more involved test that includes go_count. If we
968 * can't flush, flag the inode and return. If go_count is 0 we
969 * were are unable to flush any records in our rec_tree and
970 * must ignore the XDIRTY flag.
971 */
972 if (go_count == 0) {
973 if ((ip->flags & HAMMER_INODE_MODMASK_NOXDIRTY) == 0) {
974 ip->flags |= HAMMER_INODE_REFLUSH;
975 ip->flush_state = HAMMER_FST_SETUP;
976 if (ip->flags & HAMMER_INODE_VHELD) {
977 ip->flags &= ~HAMMER_INODE_VHELD;
978 vrele(ip->vp);
979 }
980 if (flags & HAMMER_FLUSH_SIGNAL) {
981 ip->flags |= HAMMER_INODE_RESIGNAL;
982 hammer_flusher_async(ip->hmp);
983 }
984 if (--ip->hmp->flusher_lock == 0)
985 wakeup(&ip->hmp->flusher_lock);
986 return;
987 }
988 }
989
990 /*
991 * Snapshot the state of the inode for the backend flusher.
992 *
993 * The truncation must be retained in the frontend until after
994 * we've actually performed the record deletion.
995 *
996 * NOTE: The DELETING flag is a mod flag, but it is also sticky,
997 * and stays in ip->flags. Once set, it stays set until the
998 * inode is destroyed.
999 */
1000 ip->sync_flags = (ip->flags & HAMMER_INODE_MODMASK);
1001 ip->sync_trunc_off = ip->trunc_off;
1002 ip->sync_ino_leaf = ip->ino_leaf;
1003 ip->sync_ino_data = ip->ino_data;
1004 ip->flags &= ~HAMMER_INODE_MODMASK | HAMMER_INODE_TRUNCATED;
1005
1006 /*
1007 * The flusher list inherits our inode and reference.
1008 */
1009 TAILQ_INSERT_TAIL(&ip->hmp->flush_list, ip, flush_entry);
1010 if (--ip->hmp->flusher_lock == 0)
1011 wakeup(&ip->hmp->flusher_lock);
1012
1013 if (flags & HAMMER_FLUSH_SIGNAL)
1014 hammer_flusher_async(ip->hmp);
1015}
1016
1017/*
1018 * Callback for scan of ip->rec_tree. Try to include each record in our
1019 * flush. ip->flush_group has been set but the inode has not yet been
1020 * moved into a flushing state.
1021 *
1022 * If we get stuck on a record we have to set HAMMER_INODE_REFLUSH on
1023 * both inodes.
1024 *
1025 * We return 1 for any record placed or found in FST_FLUSH, which prevents
1026 * the caller from shortcutting the flush.
1027 */
1028static int
1029hammer_setup_child_callback(hammer_record_t rec, void *data)
1030{
1031 hammer_inode_t target_ip;
1032 hammer_inode_t ip;
1033 int r;
1034
1035 /*
1036 * If the record has been deleted by the backend (it's being held
1037 * by the frontend in a race), just ignore it.
1038 */
1039 if (rec->flags & HAMMER_RECF_DELETED_BE)
1040 return(0);
1041
1042 /*
1043 * If the record is in an idle state it has no dependancies and
1044 * can be flushed.
1045 */
1046 ip = rec->ip;
1047 r = 0;
1048
1049 switch(rec->flush_state) {
1050 case HAMMER_FST_IDLE:
1051 /*
1052 * Record has no setup dependancy, we can flush it.
1053 */
1054 KKASSERT(rec->target_ip == NULL);
1055 rec->flush_state = HAMMER_FST_FLUSH;
1056 rec->flush_group = ip->flush_group;
1057 hammer_ref(&rec->lock);
1058 r = 1;
1059 break;
1060 case HAMMER_FST_SETUP:
1061 /*
1062 * Record has a setup dependancy. Try to include the
1063 * target ip in the flush.
1064 *
1065 * We have to be careful here, if we do not do the right
1066 * thing we can lose track of dirty inodes and the system
1067 * will lockup trying to allocate buffers.
1068 */
1069 target_ip = rec->target_ip;
1070 KKASSERT(target_ip != NULL);
1071 KKASSERT(target_ip->flush_state != HAMMER_FST_IDLE);
1072 if (target_ip->flush_state == HAMMER_FST_FLUSH) {
1073 /*
1074 * If the target IP is already flushing in our group
1075 * we are golden, otherwise make sure the target
1076 * reflushes.
1077 */
1078 if (target_ip->flush_group == ip->flush_group) {
1079 rec->flush_state = HAMMER_FST_FLUSH;
1080 rec->flush_group = ip->flush_group;
1081 hammer_ref(&rec->lock);
1082 r = 1;
1083 } else {
1084 target_ip->flags |= HAMMER_INODE_REFLUSH;
1085 }
1086 } else if (rec->type == HAMMER_MEM_RECORD_ADD) {
1087 /*
1088 * If the target IP is not flushing we can force
1089 * it to flush, even if it is unable to write out
1090 * any of its own records we have at least one in
1091 * hand that we CAN deal with.
1092 */
1093 rec->flush_state = HAMMER_FST_FLUSH;
1094 rec->flush_group = ip->flush_group;
1095 hammer_ref(&rec->lock);
1096 hammer_flush_inode_core(target_ip,
1097 HAMMER_FLUSH_RECURSION);
1098 r = 1;
1099 } else {
1100 /*
1101 * General or delete-on-disk record.
1102 *
1103 * XXX this needs help. If a delete-on-disk we could
1104 * disconnect the target. If the target has its own
1105 * dependancies they really need to be flushed.
1106 *
1107 * XXX
1108 */
1109 rec->flush_state = HAMMER_FST_FLUSH;
1110 rec->flush_group = ip->flush_group;
1111 hammer_ref(&rec->lock);
1112 hammer_flush_inode_core(target_ip,
1113 HAMMER_FLUSH_RECURSION);
1114 r = 1;
1115 }
1116 break;
1117 case HAMMER_FST_FLUSH:
1118 /*
1119 * Record already associated with a flush group. It had
1120 * better be ours.
1121 */
1122 KKASSERT(rec->flush_group == ip->flush_group);
1123 r = 1;
1124 break;
1125 }
1126 return(r);
1127}
1128
1129/*
1130 * Wait for a previously queued flush to complete
1131 */
1132void
1133hammer_wait_inode(hammer_inode_t ip)
1134{
1135 while (ip->flush_state != HAMMER_FST_IDLE) {
1136 ip->flags |= HAMMER_INODE_FLUSHW;
1137 tsleep(&ip->flags, 0, "hmrwin", 0);
1138 }
1139}
1140
1141/*
1142 * Called by the backend code when a flush has been completed.
1143 * The inode has already been removed from the flush list.
1144 *
1145 * A pipelined flush can occur, in which case we must re-enter the
1146 * inode on the list and re-copy its fields.
1147 */
1148void
1149hammer_flush_inode_done(hammer_inode_t ip)
1150{
1151 struct bio *bio;
1152 int dorel = 0;
1153
1154 KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
1155
1156 /*
1157 * Allow BIOs to queue to the inode's primary bioq again.
1158 */
1159 ip->flags &= ~HAMMER_INODE_WRITE_ALT;
1160
1161 /*
1162 * Merge left-over flags back into the frontend and fix the state.
1163 */
1164 ip->flags |= ip->sync_flags;
1165
1166 /*
1167 * The backend may have adjusted nlinks, so if the adjusted nlinks
1168 * does not match the fronttend set the frontend's RDIRTY flag again.
1169 */
1170 if (ip->ino_data.nlinks != ip->sync_ino_data.nlinks)
1171 ip->flags |= HAMMER_INODE_DDIRTY;
1172
1173 /*
1174 * Reflush any BIOs that wound up in the alt list. Our inode will
1175 * also wind up at the end of the flusher's list.
1176 */
1177 while ((bio = TAILQ_FIRST(&ip->bio_alt_list)) != NULL) {
1178 TAILQ_REMOVE(&ip->bio_alt_list, bio, bio_act);
1179 TAILQ_INSERT_TAIL(&ip->bio_list, bio, bio_act);
1180 }
1181 /*
1182 * Fix up the dirty buffer status.
1183 */
1184 if (TAILQ_FIRST(&ip->bio_list) ||
1185 (ip->vp && RB_ROOT(&ip->vp->v_rbdirty_tree))) {
1186 ip->flags |= HAMMER_INODE_BUFS;
1187 }
1188
1189 /*
1190 * Re-set the XDIRTY flag if some of the inode's in-memory records
1191 * could not be flushed.
1192 */
1193 if (RB_ROOT(&ip->rec_tree))
1194 ip->flags |= HAMMER_INODE_XDIRTY;
1195
1196 /*
1197 * Do not lose track of inodes which no longer have vnode
1198 * assocations, otherwise they may never get flushed again.
1199 */
1200 if ((ip->flags & HAMMER_INODE_MODMASK) && ip->vp == NULL)
1201 ip->flags |= HAMMER_INODE_REFLUSH;
1202
1203 /*
1204 * Adjust flush_state. The target state (idle or setup) shouldn't
1205 * be terribly important since we will reflush if we really need
1206 * to do anything. XXX
1207 */
1208 if (TAILQ_EMPTY(&ip->target_list) && RB_EMPTY(&ip->rec_tree)) {
1209 ip->flush_state = HAMMER_FST_IDLE;
1210 dorel = 1;
1211 } else {
1212 ip->flush_state = HAMMER_FST_SETUP;
1213 }
1214
1215 /*
1216 * Clean up the vnode ref
1217 */
1218 if (ip->flags & HAMMER_INODE_VHELD) {
1219 ip->flags &= ~HAMMER_INODE_VHELD;
1220 vrele(ip->vp);
1221 }
1222
1223 /*
1224 * If the frontend made more changes and requested another flush,
1225 * then try to get it running.
1226 */
1227 if (ip->flags & HAMMER_INODE_REFLUSH) {
1228 ip->flags &= ~HAMMER_INODE_REFLUSH;
1229 if (ip->flags & HAMMER_INODE_RESIGNAL) {
1230 ip->flags &= ~HAMMER_INODE_RESIGNAL;
1231 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
1232 } else {
1233 hammer_flush_inode(ip, 0);
1234 }
1235 }
1236
1237 /*
1238 * Finally, if the frontend is waiting for a flush to complete,
1239 * wake it up.
1240 */
1241 if (ip->flush_state != HAMMER_FST_FLUSH) {
1242 if (ip->flags & HAMMER_INODE_FLUSHW) {
1243 ip->flags &= ~HAMMER_INODE_FLUSHW;
1244 wakeup(&ip->flags);
1245 }
1246 }
1247 if (dorel)
1248 hammer_rel_inode(ip, 0);
1249}
1250
1251/*
1252 * Called from hammer_sync_inode() to synchronize in-memory records
1253 * to the media.
1254 */
1255static int
1256hammer_sync_record_callback(hammer_record_t record, void *data)
1257{
1258 hammer_cursor_t cursor = data;
1259 hammer_transaction_t trans = cursor->trans;
1260 int error;
1261
1262 /*
1263 * Skip records that do not belong to the current flush.
1264 */
1265 if (record->flush_state != HAMMER_FST_FLUSH)
1266 return(0);
1267 KKASSERT((record->flags & HAMMER_RECF_DELETED_BE) == 0);
1268#if 1
1269 if (record->flush_group != record->ip->flush_group) {
1270 kprintf("sync_record %p ip %p bad flush group %d %d\n", record, record->ip, record->flush_group ,record->ip->flush_group);
1271 Debugger("blah2");
1272 return(0);
1273 }
1274#endif
1275 KKASSERT(record->flush_group == record->ip->flush_group);
1276
1277 /*
1278 * Interlock the record using the BE flag. Once BE is set the
1279 * frontend cannot change the state of FE.
1280 *
1281 * NOTE: If FE is set prior to us setting BE we still sync the
1282 * record out, but the flush completion code converts it to
1283 * a delete-on-disk record instead of destroying it.
1284 */
1285 KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
1286 record->flags |= HAMMER_RECF_INTERLOCK_BE;
1287
1288 /*
1289 * If the whole inode is being deleting all on-disk records will
1290 * be deleted very soon, we can't sync any new records to disk
1291 * because they will be deleted in the same transaction they were
1292 * created in (delete_tid == create_tid), which will assert.
1293 *
1294 * XXX There may be a case with RECORD_ADD with DELETED_FE set
1295 * that we currently panic on.
1296 */
1297 if (record->ip->sync_flags & HAMMER_INODE_DELETING) {
1298 switch(record->type) {
1299 case HAMMER_MEM_RECORD_GENERAL:
1300 record->flags |= HAMMER_RECF_DELETED_FE;
1301 record->flags |= HAMMER_RECF_DELETED_BE;
1302 error = 0;
1303 goto done;
1304 case HAMMER_MEM_RECORD_ADD:
1305 panic("hammer_sync_record_callback: illegal add "
1306 "during inode deletion record %p", record);
1307 break; /* NOT REACHED */
1308 case HAMMER_MEM_RECORD_INODE:
1309 panic("hammer_sync_record_callback: attempt to "
1310 "sync inode record %p?", record);
1311 break; /* NOT REACHED */
1312 case HAMMER_MEM_RECORD_DEL:
1313 /*
1314 * Follow through and issue the on-disk deletion
1315 */
1316 break;
1317 }
1318 }
1319
1320 /*
1321 * If DELETED_FE is set we may have already sent dependant pieces
1322 * to the disk and we must flush the record as if it hadn't been
1323 * deleted. This creates a bit of a mess because we have to
1324 * have ip_sync_record convert the record to MEM_RECORD_DEL before
1325 * it inserts the B-Tree record. Otherwise the media sync might
1326 * be visible to the frontend.
1327 */
1328 if (record->flags & HAMMER_RECF_DELETED_FE) {
1329 if (record->type == HAMMER_MEM_RECORD_ADD) {
1330 record->flags |= HAMMER_RECF_CONVERT_DELETE;
1331 } else {
1332 KKASSERT(record->type != HAMMER_MEM_RECORD_DEL);
1333 return(0);
1334 }
1335 }
1336
1337 /*
1338 * Assign the create_tid for new records. Deletions already
1339 * have the record's entire key properly set up.
1340 */
1341 if (record->type != HAMMER_MEM_RECORD_DEL)
1342 record->leaf.base.create_tid = trans->tid;
1343 for (;;) {
1344 error = hammer_ip_sync_record_cursor(cursor, record);
1345 if (error != EDEADLK)
1346 break;
1347 hammer_done_cursor(cursor);
1348 error = hammer_init_cursor(trans, cursor, &record->ip->cache[0],
1349 record->ip);
1350 if (error)
1351 break;
1352 }
1353 record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
1354
1355 if (error) {
1356 error = -error;
1357 if (error != -ENOSPC) {
1358 kprintf("hammer_sync_record_callback: sync failed rec "
1359 "%p, error %d\n", record, error);
1360 Debugger("sync failed rec");
1361 }
1362 }
1363done:
1364 hammer_flush_record_done(record, error);
1365 return(error);
1366}
1367
1368/*
1369 * XXX error handling
1370 */
1371int
1372hammer_sync_inode(hammer_inode_t ip)
1373{
1374 struct hammer_transaction trans;
1375 struct hammer_cursor cursor;
1376 struct bio *bio;
1377 hammer_record_t depend;
1378 hammer_record_t next;
1379 int error, tmp_error;
1380 u_int64_t nlinks;
1381
1382 if ((ip->sync_flags & HAMMER_INODE_MODMASK) == 0)
1383 return(0);
1384
1385 hammer_start_transaction_fls(&trans, ip->hmp);
1386 error = hammer_init_cursor(&trans, &cursor, &ip->cache[0], ip);
1387 if (error)
1388 goto done;
1389
1390 /*
1391 * Any directory records referencing this inode which are not in
1392 * our current flush group must adjust our nlink count for the
1393 * purposes of synchronization to disk.
1394 *
1395 * Records which are in our flush group can be unlinked from our
1396 * inode now, potentially allowing the inode to be physically
1397 * deleted.
1398 */
1399 nlinks = ip->ino_data.nlinks;
1400 next = TAILQ_FIRST(&ip->target_list);
1401 while ((depend = next) != NULL) {
1402 next = TAILQ_NEXT(depend, target_entry);
1403 if (depend->flush_state == HAMMER_FST_FLUSH &&
1404 depend->flush_group == ip->hmp->flusher_act) {
1405 /*
1406 * If this is an ADD that was deleted by the frontend
1407 * the frontend nlinks count will have already been
1408 * decremented, but the backend is going to sync its
1409 * directory entry and must account for it. The
1410 * record will be converted to a delete-on-disk when
1411 * it gets synced.
1412 *
1413 * If the ADD was not deleted by the frontend we
1414 * can remove the dependancy from our target_list.
1415 */
1416 if (depend->flags & HAMMER_RECF_DELETED_FE) {
1417 ++nlinks;
1418 } else {
1419 TAILQ_REMOVE(&ip->target_list, depend,
1420 target_entry);
1421 depend->target_ip = NULL;
1422 }
1423 } else if ((depend->flags & HAMMER_RECF_DELETED_FE) == 0) {
1424 /*
1425 * Not part of our flush group
1426 */
1427 KKASSERT((depend->flags & HAMMER_RECF_DELETED_BE) == 0);
1428 switch(depend->type) {
1429 case HAMMER_MEM_RECORD_ADD:
1430 --nlinks;
1431 break;
1432 case HAMMER_MEM_RECORD_DEL:
1433 ++nlinks;
1434 break;
1435 default:
1436 break;
1437 }
1438 }
1439 }
1440
1441 /*
1442 * Set dirty if we had to modify the link count.
1443 */
1444 if (ip->sync_ino_data.nlinks != nlinks) {
1445 KKASSERT((int64_t)nlinks >= 0);
1446 ip->sync_ino_data.nlinks = nlinks;
1447 ip->sync_flags |= HAMMER_INODE_DDIRTY;
1448 }
1449
1450 /*
1451 * Queue up as many dirty buffers as we can then set a flag to
1452 * cause any further BIOs to go to the alternative queue.
1453 */
1454 if (ip->flags & HAMMER_INODE_VHELD)
1455 error = vfsync(ip->vp, MNT_NOWAIT, 1, NULL, NULL);
1456 ip->flags |= HAMMER_INODE_WRITE_ALT;
1457
1458 /*
1459 * The buffer cache may contain dirty buffers beyond the inode
1460 * state we copied from the frontend to the backend. Because
1461 * we are syncing our buffer cache on the backend, resync
1462 * the truncation point and the file size so we don't wipe out
1463 * any data.
1464 *
1465 * Syncing the buffer cache on the frontend has serious problems
1466 * because it prevents us from passively queueing dirty inodes
1467 * to the backend (the BIO's could stall indefinitely).
1468 */
1469 if (ip->flags & HAMMER_INODE_TRUNCATED) {
1470 ip->sync_trunc_off = ip->trunc_off;
1471 ip->sync_flags |= HAMMER_INODE_TRUNCATED;
1472 }
1473 if (ip->sync_ino_data.size != ip->ino_data.size) {
1474 ip->sync_ino_data.size = ip->ino_data.size;
1475 ip->sync_flags |= HAMMER_INODE_DDIRTY;
1476 }
1477
1478 /*
1479 * If there is a trunction queued destroy any data past the (aligned)
1480 * truncation point. Userland will have dealt with the buffer
1481 * containing the truncation point for us.
1482 *
1483 * We don't flush pending frontend data buffers until after we've
1484 * dealth with the truncation.
1485 *
1486 * Don't bother if the inode is or has been deleted.
1487 */
1488 if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
1489 /*
1490 * Interlock trunc_off. The VOP front-end may continue to
1491 * make adjustments to it while we are blocked.
1492 */
1493 off_t trunc_off;
1494 off_t aligned_trunc_off;
1495
1496 trunc_off = ip->sync_trunc_off;
1497 aligned_trunc_off = (trunc_off + HAMMER_BUFMASK) &
1498 ~HAMMER_BUFMASK64;
1499
1500 /*
1501 * Delete any whole blocks on-media. The front-end has
1502 * already cleaned out any partial block and made it
1503 * pending. The front-end may have updated trunc_off
1504 * while we were blocked so do not just unconditionally
1505 * set it to the maximum offset.
1506 */
1507 error = hammer_ip_delete_range(&cursor, ip,
1508 aligned_trunc_off,
1509 0x7FFFFFFFFFFFFFFFLL);
1510 if (error)
1511 Debugger("hammer_ip_delete_range errored");
1512 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
1513 if (ip->trunc_off >= trunc_off) {
1514 ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
1515 ip->flags &= ~HAMMER_INODE_TRUNCATED;
1516 }
1517 } else {
1518 error = 0;
1519 }
1520
1521 /*
1522 * Now sync related records. These will typically be directory
1523 * entries or delete-on-disk records.
1524 *
1525 * Not all records will be flushed, but clear XDIRTY anyway. We
1526 * will set it again in the frontend hammer_flush_inode_done()
1527 * if records remain.
1528 */
1529 if (error == 0) {
1530 tmp_error = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1531 hammer_sync_record_callback, &cursor);
1532 if (tmp_error < 0)
1533 tmp_error = -error;
1534 if (tmp_error)
1535 error = tmp_error;
1536 if (RB_EMPTY(&ip->rec_tree))
1537 ip->sync_flags &= ~HAMMER_INODE_XDIRTY;
1538 }
1539
1540 /*
1541 * If we are deleting the inode the frontend had better not have
1542 * any active references on elements making up the inode.
1543 */
1544 if (error == 0 && ip->sync_ino_data.nlinks == 0 &&
1545 RB_EMPTY(&ip->rec_tree) &&
1546 (ip->sync_flags & HAMMER_INODE_DELETING) &&
1547 (ip->flags & HAMMER_INODE_DELETED) == 0) {
1548 int count1 = 0;
1549
1550 hkprintf("Y");
1551 ip->flags |= HAMMER_INODE_DELETED;
1552 error = hammer_ip_delete_range_all(&cursor, ip, &count1);
1553 if (error == 0) {
1554 ip->sync_flags &= ~HAMMER_INODE_DELETING;
1555 ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
1556 KKASSERT(RB_EMPTY(&ip->rec_tree));
1557
1558 /*
1559 * Set delete_tid in both the frontend and backend
1560 * copy of the inode record. The DELETED flag handles
1561 * this, do not set RDIRTY.
1562 */
1563 ip->ino_leaf.base.delete_tid = trans.tid;
1564 ip->sync_ino_leaf.base.delete_tid = trans.tid;
1565
1566 /*
1567 * Adjust the inode count in the volume header
1568 */
1569 if (ip->flags & HAMMER_INODE_ONDISK) {
1570 hammer_modify_volume_field(&trans,
1571 trans.rootvol,
1572 vol0_stat_inodes);
1573 --ip->hmp->rootvol->ondisk->vol0_stat_inodes;
1574 hammer_modify_volume_done(trans.rootvol);
1575 }
1576 } else {
1577 ip->flags &= ~HAMMER_INODE_DELETED;
1578 Debugger("hammer_ip_delete_range_all errored");
1579 }
1580 }
1581
1582 /*
1583 * Flush any queued BIOs. These will just biodone() the IO's if
1584 * the inode has been deleted.
1585 */
1586 while ((bio = TAILQ_FIRST(&ip->bio_list)) != NULL) {
1587 TAILQ_REMOVE(&ip->bio_list, bio, bio_act);
1588 tmp_error = hammer_dowrite(&cursor, ip, bio);
1589 if (tmp_error)
1590 error = tmp_error;
1591 }
1592 ip->sync_flags &= ~HAMMER_INODE_BUFS;
1593
1594 if (error)
1595 Debugger("RB_SCAN errored");
1596
1597 /*
1598 * Now update the inode's on-disk inode-data and/or on-disk record.
1599 * DELETED and ONDISK are managed only in ip->flags.
1600 */
1601 switch(ip->flags & (HAMMER_INODE_DELETED | HAMMER_INODE_ONDISK)) {
1602 case HAMMER_INODE_DELETED|HAMMER_INODE_ONDISK:
1603 /*
1604 * If deleted and on-disk, don't set any additional flags.
1605 * the delete flag takes care of things.
1606 *
1607 * Clear flags which may have been set by the frontend.
1608 */
1609 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY|
1610 HAMMER_INODE_XDIRTY|HAMMER_INODE_ITIMES|
1611 HAMMER_INODE_DELETING);
1612 break;
1613 case HAMMER_INODE_DELETED:
1614 /*
1615 * Take care of the case where a deleted inode was never
1616 * flushed to the disk in the first place.
1617 *
1618 * Clear flags which may have been set by the frontend.
1619 */
1620 ip->sync_flags &= ~(HAMMER_INODE_DDIRTY|
1621 HAMMER_INODE_XDIRTY|HAMMER_INODE_ITIMES|
1622 HAMMER_INODE_DELETING);
1623 while (RB_ROOT(&ip->rec_tree)) {
1624 hammer_record_t record = RB_ROOT(&ip->rec_tree);
1625 hammer_ref(&record->lock);
1626 KKASSERT(record->lock.refs == 1);
1627 record->flags |= HAMMER_RECF_DELETED_FE;
1628 record->flags |= HAMMER_RECF_DELETED_BE;
1629 hammer_rel_mem_record(record);
1630 }
1631 break;
1632 case HAMMER_INODE_ONDISK:
1633 /*
1634 * If already on-disk, do not set any additional flags.
1635 */
1636 break;
1637 default:
1638 /*
1639 * If not on-disk and not deleted, set both dirty flags
1640 * to force an initial record to be written. Also set
1641 * the create_tid for the inode.
1642 *
1643 * Set create_tid in both the frontend and backend
1644 * copy of the inode record.
1645 */
1646 ip->ino_leaf.base.create_tid = trans.tid;
1647 ip->sync_ino_leaf.base.create_tid = trans.tid;
1648 ip->sync_flags |= HAMMER_INODE_DDIRTY;
1649 break;
1650 }
1651
1652 /*
1653 * If RDIRTY or DDIRTY is set, write out a new record. If the inode
1654 * is already on-disk the old record is marked as deleted.
1655 *
1656 * If DELETED is set hammer_update_inode() will delete the existing
1657 * record without writing out a new one.
1658 *
1659 * If *ONLY* the ITIMES flag is set we can update the record in-place.
1660 */
1661 if (ip->flags & HAMMER_INODE_DELETED) {
1662 error = hammer_update_inode(&cursor, ip);
1663 } else
1664 if ((ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_ITIMES)) ==
1665 HAMMER_INODE_ITIMES) {
1666 error = hammer_update_itimes(&cursor, ip);
1667 } else
1668 if (ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_ITIMES)) {
1669 error = hammer_update_inode(&cursor, ip);
1670 }
1671 if (error)
1672 Debugger("hammer_update_itimes/inode errored");
1673done:
1674 /*
1675 * Save the TID we used to sync the inode with to make sure we
1676 * do not improperly reuse it.
1677 */
1678 hammer_done_cursor(&cursor);
1679 hammer_done_transaction(&trans);
1680 return(error);
1681}
1682
1683/*
1684 * This routine is called when the OS is no longer actively referencing
1685 * the inode (but might still be keeping it cached), or when releasing
1686 * the last reference to an inode.
1687 *
1688 * At this point if the inode's nlinks count is zero we want to destroy
1689 * it, which may mean destroying it on-media too.
1690 */
1691void
1692hammer_inode_unloadable_check(hammer_inode_t ip, int getvp)
1693{
1694 struct vnode *vp;
1695
1696 /*
1697 * Set the DELETING flag when the link count drops to 0 and the
1698 * OS no longer has any opens on the inode.
1699 *
1700 * The backend will clear DELETING (a mod flag) and set DELETED
1701 * (a state flag) when it is actually able to perform the
1702 * operation.
1703 */
1704 if (ip->ino_data.nlinks == 0 &&
1705 (ip->flags & (HAMMER_INODE_DELETING|HAMMER_INODE_DELETED)) == 0) {
1706 ip->flags |= HAMMER_INODE_DELETING;
1707 ip->flags |= HAMMER_INODE_TRUNCATED;
1708 ip->trunc_off = 0;
1709 vp = NULL;
1710 if (getvp) {
1711 if (hammer_get_vnode(ip, &vp) != 0)
1712 return;
1713 }
1714 if (ip->vp) {
1715 vtruncbuf(ip->vp, 0, HAMMER_BUFSIZE);
1716 vnode_pager_setsize(ip->vp, 0);
1717 }
1718 if (getvp) {
1719 vput(vp);
1720 }
1721 }
1722}
1723
1724/*
1725 * Re-test an inode when a dependancy had gone away to see if we
1726 * can chain flush it.
1727 */
1728void
1729hammer_test_inode(hammer_inode_t ip)
1730{
1731 if (ip->flags & HAMMER_INODE_REFLUSH) {
1732 ip->flags &= ~HAMMER_INODE_REFLUSH;
1733 hammer_ref(&ip->lock);
1734 if (ip->flags & HAMMER_INODE_RESIGNAL) {
1735 ip->flags &= ~HAMMER_INODE_RESIGNAL;
1736 hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
1737 } else {
1738 hammer_flush_inode(ip, 0);
1739 }
1740 hammer_rel_inode(ip, 0);
1741 }
1742}
1743