Convert mbuf M_ flags into malloc M_ flags when calling malloc().
[dragonfly.git] / sys / kern / vfs_subr.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 1989, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
39 * $FreeBSD: src/sys/kern/vfs_subr.c,v 1.249.2.30 2003/04/04 20:35:57 tegge Exp $
40 * $DragonFly: src/sys/kern/vfs_subr.c,v 1.24 2004/01/27 23:56:48 dillon Exp $
41 */
42
43/*
44 * External virtual filesystem routines
45 */
46#include "opt_ddb.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/buf.h>
51#include <sys/conf.h>
52#include <sys/dirent.h>
53#include <sys/domain.h>
54#include <sys/eventhandler.h>
55#include <sys/fcntl.h>
56#include <sys/kernel.h>
57#include <sys/kthread.h>
58#include <sys/malloc.h>
59#include <sys/mbuf.h>
60#include <sys/mount.h>
61#include <sys/proc.h>
62#include <sys/namei.h>
63#include <sys/reboot.h>
64#include <sys/socket.h>
65#include <sys/stat.h>
66#include <sys/sysctl.h>
67#include <sys/syslog.h>
68#include <sys/vmmeter.h>
69#include <sys/vnode.h>
70
71#include <machine/limits.h>
72
73#include <vm/vm.h>
74#include <vm/vm_object.h>
75#include <vm/vm_extern.h>
76#include <vm/vm_kern.h>
77#include <vm/pmap.h>
78#include <vm/vm_map.h>
79#include <vm/vm_page.h>
80#include <vm/vm_pager.h>
81#include <vm/vnode_pager.h>
82#include <vm/vm_zone.h>
83
84#include <sys/buf2.h>
85#include <sys/thread2.h>
86
87static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
88
89static void insmntque (struct vnode *vp, struct mount *mp);
90static void vclean (struct vnode *vp, int flags, struct thread *td);
91static unsigned long numvnodes;
92static void vlruvp(struct vnode *vp);
93SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
94
95enum vtype iftovt_tab[16] = {
96 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
97 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
98};
99int vttoif_tab[9] = {
100 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
101 S_IFSOCK, S_IFIFO, S_IFMT,
102};
103
104static TAILQ_HEAD(freelst, vnode) vnode_free_list; /* vnode free list */
105
106static u_long wantfreevnodes = 25;
107SYSCTL_INT(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
108static u_long freevnodes = 0;
109SYSCTL_INT(_debug, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
110
111static int reassignbufcalls;
112SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
113static int reassignbufloops;
114SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW, &reassignbufloops, 0, "");
115static int reassignbufsortgood;
116SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW, &reassignbufsortgood, 0, "");
117static int reassignbufsortbad;
118SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW, &reassignbufsortbad, 0, "");
119static int reassignbufmethod = 1;
120SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW, &reassignbufmethod, 0, "");
121
122#ifdef ENABLE_VFS_IOOPT
123int vfs_ioopt = 0;
124SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
125#endif
126
127struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist); /* mounted fs */
128struct lwkt_token mountlist_token;
129struct lwkt_token mntvnode_token;
130int nfs_mount_type = -1;
131static struct lwkt_token mntid_token;
132static struct lwkt_token vnode_free_list_token;
133static struct lwkt_token spechash_token;
134struct nfs_public nfs_pub; /* publicly exported FS */
135static vm_zone_t vnode_zone;
136
137/*
138 * The workitem queue.
139 */
140#define SYNCER_MAXDELAY 32
141static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */
142time_t syncdelay = 30; /* max time to delay syncing data */
143SYSCTL_INT(_kern, OID_AUTO, syncdelay, CTLFLAG_RW, &syncdelay, 0,
144 "VFS data synchronization delay");
145time_t filedelay = 30; /* time to delay syncing files */
146SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
147 "File synchronization delay");
148time_t dirdelay = 29; /* time to delay syncing directories */
149SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
150 "Directory synchronization delay");
151time_t metadelay = 28; /* time to delay syncing metadata */
152SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
153 "VFS metadata synchronization delay");
154static int rushjob; /* number of slots to run ASAP */
155static int stat_rush_requests; /* number of times I/O speeded up */
156SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
157
158static int syncer_delayno = 0;
159static long syncer_mask;
160LIST_HEAD(synclist, vnode);
161static struct synclist *syncer_workitem_pending;
162
163int desiredvnodes;
164SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
165 &desiredvnodes, 0, "Maximum number of vnodes");
166static int minvnodes;
167SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
168 &minvnodes, 0, "Minimum number of vnodes");
169static int vnlru_nowhere = 0;
170SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW, &vnlru_nowhere, 0,
171 "Number of times the vnlru process ran without success");
172
173static void vfs_free_addrlist (struct netexport *nep);
174static int vfs_free_netcred (struct radix_node *rn, void *w);
175static int vfs_hang_addrlist (struct mount *mp, struct netexport *nep,
176 struct export_args *argp);
177
178/*
179 * Initialize the vnode management data structures.
180 */
181void
182vntblinit()
183{
184
185 /*
186 * Desired vnodes is a result of the physical page count
187 * and the size of kernel's heap. It scales in proportion
188 * to the amount of available physical memory. This can
189 * cause trouble on 64-bit and large memory platforms.
190 */
191 /* desiredvnodes = maxproc + vmstats.v_page_count / 4; */
192 desiredvnodes =
193 min(maxproc + vmstats.v_page_count /4,
194 2 * (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) /
195 (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
196
197 minvnodes = desiredvnodes / 4;
198 lwkt_inittoken(&mntvnode_token);
199 lwkt_inittoken(&mntid_token);
200 lwkt_inittoken(&spechash_token);
201 TAILQ_INIT(&vnode_free_list);
202 lwkt_inittoken(&vnode_free_list_token);
203 vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5);
204 /*
205 * Initialize the filesystem syncer.
206 */
207 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
208 &syncer_mask);
209 syncer_maxdelay = syncer_mask + 1;
210}
211
212/*
213 * Mark a mount point as busy. Used to synchronize access and to delay
214 * unmounting. Interlock is not released on failure.
215 */
216int
217vfs_busy(struct mount *mp, int flags, struct lwkt_token *interlkp,
218 struct thread *td)
219{
220 int lkflags;
221
222 if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
223 if (flags & LK_NOWAIT)
224 return (ENOENT);
225 mp->mnt_kern_flag |= MNTK_MWAIT;
226 if (interlkp) {
227 lwkt_reltoken(interlkp);
228 }
229 /*
230 * Since all busy locks are shared except the exclusive
231 * lock granted when unmounting, the only place that a
232 * wakeup needs to be done is at the release of the
233 * exclusive lock at the end of dounmount.
234 */
235 tsleep((caddr_t)mp, 0, "vfs_busy", 0);
236 if (interlkp) {
237 lwkt_gettoken(interlkp);
238 }
239 return (ENOENT);
240 }
241 lkflags = LK_SHARED | LK_NOPAUSE;
242 if (interlkp)
243 lkflags |= LK_INTERLOCK;
244 if (lockmgr(&mp->mnt_lock, lkflags, interlkp, td))
245 panic("vfs_busy: unexpected lock failure");
246 return (0);
247}
248
249/*
250 * Free a busy filesystem.
251 */
252void
253vfs_unbusy(struct mount *mp, struct thread *td)
254{
255 lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
256}
257
258/*
259 * Lookup a filesystem type, and if found allocate and initialize
260 * a mount structure for it.
261 *
262 * Devname is usually updated by mount(8) after booting.
263 */
264int
265vfs_rootmountalloc(char *fstypename, char *devname, struct mount **mpp)
266{
267 struct thread *td = curthread; /* XXX */
268 struct vfsconf *vfsp;
269 struct mount *mp;
270
271 if (fstypename == NULL)
272 return (ENODEV);
273 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
274 if (!strcmp(vfsp->vfc_name, fstypename))
275 break;
276 if (vfsp == NULL)
277 return (ENODEV);
278 mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK);
279 bzero((char *)mp, (u_long)sizeof(struct mount));
280 lockinit(&mp->mnt_lock, 0, "vfslock", VLKTIMEOUT, LK_NOPAUSE);
281 (void)vfs_busy(mp, LK_NOWAIT, 0, td);
282 TAILQ_INIT(&mp->mnt_nvnodelist);
283 TAILQ_INIT(&mp->mnt_reservedvnlist);
284 mp->mnt_nvnodelistsize = 0;
285 mp->mnt_vfc = vfsp;
286 mp->mnt_op = vfsp->vfc_vfsops;
287 mp->mnt_flag = MNT_RDONLY;
288 mp->mnt_vnodecovered = NULLVP;
289 vfsp->vfc_refcount++;
290 mp->mnt_iosize_max = DFLTPHYS;
291 mp->mnt_stat.f_type = vfsp->vfc_typenum;
292 mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
293 strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
294 mp->mnt_stat.f_mntonname[0] = '/';
295 mp->mnt_stat.f_mntonname[1] = 0;
296 (void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
297 *mpp = mp;
298 return (0);
299}
300
301/*
302 * Find an appropriate filesystem to use for the root. If a filesystem
303 * has not been preselected, walk through the list of known filesystems
304 * trying those that have mountroot routines, and try them until one
305 * works or we have tried them all.
306 */
307#ifdef notdef /* XXX JH */
308int
309lite2_vfs_mountroot()
310{
311 struct vfsconf *vfsp;
312 extern int (*lite2_mountroot) (void);
313 int error;
314
315 if (lite2_mountroot != NULL)
316 return ((*lite2_mountroot)());
317 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
318 if (vfsp->vfc_mountroot == NULL)
319 continue;
320 if ((error = (*vfsp->vfc_mountroot)()) == 0)
321 return (0);
322 printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error);
323 }
324 return (ENODEV);
325}
326#endif
327
328/*
329 * Lookup a mount point by filesystem identifier.
330 */
331struct mount *
332vfs_getvfs(fsid)
333 fsid_t *fsid;
334{
335 struct mount *mp;
336
337 lwkt_gettoken(&mountlist_token);
338 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
339 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
340 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
341 lwkt_reltoken(&mountlist_token);
342 return (mp);
343 }
344 }
345 lwkt_reltoken(&mountlist_token);
346 return ((struct mount *) 0);
347}
348
349/*
350 * Get a new unique fsid. Try to make its val[0] unique, since this value
351 * will be used to create fake device numbers for stat(). Also try (but
352 * not so hard) make its val[0] unique mod 2^16, since some emulators only
353 * support 16-bit device numbers. We end up with unique val[0]'s for the
354 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
355 *
356 * Keep in mind that several mounts may be running in parallel. Starting
357 * the search one past where the previous search terminated is both a
358 * micro-optimization and a defense against returning the same fsid to
359 * different mounts.
360 */
361void
362vfs_getnewfsid(mp)
363 struct mount *mp;
364{
365 static u_int16_t mntid_base;
366 fsid_t tfsid;
367 int mtype;
368
369 lwkt_gettoken(&mntid_token);
370 mtype = mp->mnt_vfc->vfc_typenum;
371 tfsid.val[1] = mtype;
372 mtype = (mtype & 0xFF) << 24;
373 for (;;) {
374 tfsid.val[0] = makeudev(255,
375 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
376 mntid_base++;
377 if (vfs_getvfs(&tfsid) == NULL)
378 break;
379 }
380 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
381 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
382 lwkt_reltoken(&mntid_token);
383}
384
385/*
386 * Knob to control the precision of file timestamps:
387 *
388 * 0 = seconds only; nanoseconds zeroed.
389 * 1 = seconds and nanoseconds, accurate within 1/HZ.
390 * 2 = seconds and nanoseconds, truncated to microseconds.
391 * >=3 = seconds and nanoseconds, maximum precision.
392 */
393enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
394
395static int timestamp_precision = TSP_SEC;
396SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
397 &timestamp_precision, 0, "");
398
399/*
400 * Get a current timestamp.
401 */
402void
403vfs_timestamp(tsp)
404 struct timespec *tsp;
405{
406 struct timeval tv;
407
408 switch (timestamp_precision) {
409 case TSP_SEC:
410 tsp->tv_sec = time_second;
411 tsp->tv_nsec = 0;
412 break;
413 case TSP_HZ:
414 getnanotime(tsp);
415 break;
416 case TSP_USEC:
417 microtime(&tv);
418 TIMEVAL_TO_TIMESPEC(&tv, tsp);
419 break;
420 case TSP_NSEC:
421 default:
422 nanotime(tsp);
423 break;
424 }
425}
426
427/*
428 * Set vnode attributes to VNOVAL
429 */
430void
431vattr_null(vap)
432 struct vattr *vap;
433{
434
435 vap->va_type = VNON;
436 vap->va_size = VNOVAL;
437 vap->va_bytes = VNOVAL;
438 vap->va_mode = VNOVAL;
439 vap->va_nlink = VNOVAL;
440 vap->va_uid = VNOVAL;
441 vap->va_gid = VNOVAL;
442 vap->va_fsid = VNOVAL;
443 vap->va_fileid = VNOVAL;
444 vap->va_blocksize = VNOVAL;
445 vap->va_rdev = VNOVAL;
446 vap->va_atime.tv_sec = VNOVAL;
447 vap->va_atime.tv_nsec = VNOVAL;
448 vap->va_mtime.tv_sec = VNOVAL;
449 vap->va_mtime.tv_nsec = VNOVAL;
450 vap->va_ctime.tv_sec = VNOVAL;
451 vap->va_ctime.tv_nsec = VNOVAL;
452 vap->va_flags = VNOVAL;
453 vap->va_gen = VNOVAL;
454 vap->va_vaflags = 0;
455}
456
457/*
458 * This routine is called when we have too many vnodes. It attempts
459 * to free <count> vnodes and will potentially free vnodes that still
460 * have VM backing store (VM backing store is typically the cause
461 * of a vnode blowout so we want to do this). Therefore, this operation
462 * is not considered cheap.
463 *
464 * A number of conditions may prevent a vnode from being reclaimed.
465 * the buffer cache may have references on the vnode, a directory
466 * vnode may still have references due to the namei cache representing
467 * underlying files, or the vnode may be in active use. It is not
468 * desireable to reuse such vnodes. These conditions may cause the
469 * number of vnodes to reach some minimum value regardless of what
470 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low.
471 */
472static int
473vlrureclaim(struct mount *mp)
474{
475 struct vnode *vp;
476 int done;
477 int trigger;
478 int usevnodes;
479 int count;
480 int gen;
481
482 /*
483 * Calculate the trigger point, don't allow user
484 * screwups to blow us up. This prevents us from
485 * recycling vnodes with lots of resident pages. We
486 * aren't trying to free memory, we are trying to
487 * free vnodes.
488 */
489 usevnodes = desiredvnodes;
490 if (usevnodes <= 0)
491 usevnodes = 1;
492 trigger = vmstats.v_page_count * 2 / usevnodes;
493
494 done = 0;
495 gen = lwkt_gettoken(&mntvnode_token);
496 count = mp->mnt_nvnodelistsize / 10 + 1;
497 while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
498 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
499 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
500
501 if (vp->v_type != VNON &&
502 vp->v_type != VBAD &&
503 VMIGHTFREE(vp) && /* critical path opt */
504 (vp->v_object == NULL || vp->v_object->resident_page_count < trigger)
505 ) {
506 lwkt_gettoken(&vp->v_interlock);
507 if (lwkt_gentoken(&mntvnode_token, &gen) == 0) {
508 if (VMIGHTFREE(vp)) {
509 vgonel(vp, curthread);
510 done++;
511 } else {
512 lwkt_reltoken(&vp->v_interlock);
513 }
514 } else {
515 lwkt_reltoken(&vp->v_interlock);
516 }
517 }
518 --count;
519 }
520 lwkt_reltoken(&mntvnode_token);
521 return done;
522}
523
524/*
525 * Attempt to recycle vnodes in a context that is always safe to block.
526 * Calling vlrurecycle() from the bowels of file system code has some
527 * interesting deadlock problems.
528 */
529static struct thread *vnlruthread;
530static int vnlruproc_sig;
531
532static void
533vnlru_proc(void)
534{
535 struct mount *mp, *nmp;
536 int s;
537 int done;
538 struct thread *td = curthread;
539
540 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
541 SHUTDOWN_PRI_FIRST);
542
543 s = splbio();
544 for (;;) {
545 kproc_suspend_loop();
546 if (numvnodes - freevnodes <= desiredvnodes * 9 / 10) {
547 vnlruproc_sig = 0;
548 wakeup(&vnlruproc_sig);
549 tsleep(td, 0, "vlruwt", hz);
550 continue;
551 }
552 done = 0;
553 lwkt_gettoken(&mountlist_token);
554 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
555 if (vfs_busy(mp, LK_NOWAIT, &mountlist_token, td)) {
556 nmp = TAILQ_NEXT(mp, mnt_list);
557 continue;
558 }
559 done += vlrureclaim(mp);
560 lwkt_gettoken(&mountlist_token);
561 nmp = TAILQ_NEXT(mp, mnt_list);
562 vfs_unbusy(mp, td);
563 }
564 lwkt_reltoken(&mountlist_token);
565 if (done == 0) {
566 vnlru_nowhere++;
567 tsleep(td, 0, "vlrup", hz * 3);
568 }
569 }
570 splx(s);
571}
572
573static struct kproc_desc vnlru_kp = {
574 "vnlru",
575 vnlru_proc,
576 &vnlruthread
577};
578SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
579
580/*
581 * Routines having to do with the management of the vnode table.
582 */
583extern vop_t **dead_vnodeop_p;
584
585/*
586 * Return the next vnode from the free list.
587 */
588int
589getnewvnode(tag, mp, vops, vpp)
590 enum vtagtype tag;
591 struct mount *mp;
592 vop_t **vops;
593 struct vnode **vpp;
594{
595 int s;
596 int gen;
597 int vgen;
598 struct thread *td = curthread; /* XXX */
599 struct vnode *vp = NULL;
600 vm_object_t object;
601
602 s = splbio();
603
604 /*
605 * Try to reuse vnodes if we hit the max. This situation only
606 * occurs in certain large-memory (2G+) situations. We cannot
607 * attempt to directly reclaim vnodes due to nasty recursion
608 * problems.
609 */
610 while (numvnodes - freevnodes > desiredvnodes) {
611 if (vnlruproc_sig == 0) {
612 vnlruproc_sig = 1; /* avoid unnecessary wakeups */
613 wakeup(vnlruthread);
614 }
615 tsleep(&vnlruproc_sig, 0, "vlruwk", hz);
616 }
617
618
619 /*
620 * Attempt to reuse a vnode already on the free list, allocating
621 * a new vnode if we can't find one or if we have not reached a
622 * good minimum for good LRU performance.
623 */
624 gen = lwkt_gettoken(&vnode_free_list_token);
625 if (freevnodes >= wantfreevnodes && numvnodes >= minvnodes) {
626 int count;
627
628 for (count = 0; count < freevnodes; count++) {
629 vp = TAILQ_FIRST(&vnode_free_list);
630 if (vp == NULL || vp->v_usecount)
631 panic("getnewvnode: free vnode isn't");
632
633 /*
634 * Get the vnode's interlock, then re-obtain
635 * vnode_free_list_token in case we lost it. If we
636 * did lose it while getting the vnode interlock,
637 * even if we got it back again, then retry.
638 */
639 vgen = lwkt_gettoken(&vp->v_interlock);
640 if (lwkt_gentoken(&vnode_free_list_token, &gen) != 0) {
641 --count;
642 lwkt_reltoken(&vp->v_interlock);
643 vp = NULL;
644 continue;
645 }
646
647 /*
648 * Whew! We have both tokens. Since we didn't lose
649 * the free list VFREE had better still be set. But
650 * we aren't out of the woods yet. We have to get
651 * the object (may block). If the vnode is not
652 * suitable then move it to the end of the list
653 * if we can. If we can't move it to the end of the
654 * list retry again.
655 */
656 if ((VOP_GETVOBJECT(vp, &object) == 0 &&
657 (object->resident_page_count || object->ref_count))
658 ) {
659 if (lwkt_gentoken(&vp->v_interlock, &vgen) == 0 &&
660 lwkt_gentoken(&vnode_free_list_token, &gen) == 0
661 ) {
662 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
663 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
664 } else {
665 --count;
666 }
667 lwkt_reltoken(&vp->v_interlock);
668 vp = NULL;
669 continue;
670 }
671
672 /*
673 * Still not out of the woods. VOBJECT might have
674 * blocked, if we did not retain our tokens we have
675 * to retry.
676 */
677 if (lwkt_gentoken(&vp->v_interlock, &vgen) != 0 ||
678 lwkt_gentoken(&vnode_free_list_token, &gen) != 0) {
679 --count;
680 vp = NULL;
681 continue;
682 }
683 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
684 KKASSERT(vp->v_flag & VFREE);
685
686 /*
687 * If we have children in the namecache we cannot
688 * reuse the vnode yet because it will break the
689 * namecache chain (YYY use nc_refs for the check?)
690 */
691 if (TAILQ_FIRST(&vp->v_namecache)) {
692 if (cache_leaf_test(vp) < 0) {
693 lwkt_reltoken(&vp->v_interlock);
694 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
695 vp = NULL;
696 continue;
697 }
698 }
699 break;
700 }
701 }
702
703 if (vp) {
704 vp->v_flag |= VDOOMED;
705 vp->v_flag &= ~VFREE;
706 freevnodes--;
707 lwkt_reltoken(&vnode_free_list_token);
708 cache_purge(vp); /* YYY may block */
709 vp->v_lease = NULL;
710 if (vp->v_type != VBAD) {
711 vgonel(vp, td);
712 } else {
713 lwkt_reltoken(&vp->v_interlock);
714 }
715
716#ifdef INVARIANTS
717 {
718 int s;
719
720 if (vp->v_data)
721 panic("cleaned vnode isn't");
722 s = splbio();
723 if (vp->v_numoutput)
724 panic("Clean vnode has pending I/O's");
725 splx(s);
726 }
727#endif
728 vp->v_flag = 0;
729 vp->v_lastw = 0;
730 vp->v_lasta = 0;
731 vp->v_cstart = 0;
732 vp->v_clen = 0;
733 vp->v_socket = 0;
734 vp->v_writecount = 0; /* XXX */
735 } else {
736 lwkt_reltoken(&vnode_free_list_token);
737 vp = (struct vnode *) zalloc(vnode_zone);
738 bzero((char *) vp, sizeof *vp);
739 lwkt_inittoken(&vp->v_interlock);
740 vp->v_dd = vp;
741 cache_purge(vp);
742 TAILQ_INIT(&vp->v_namecache);
743 numvnodes++;
744 }
745
746 TAILQ_INIT(&vp->v_cleanblkhd);
747 TAILQ_INIT(&vp->v_dirtyblkhd);
748 vp->v_type = VNON;
749 vp->v_tag = tag;
750 vp->v_op = vops;
751 insmntque(vp, mp);
752 *vpp = vp;
753 vp->v_usecount = 1;
754 vp->v_data = 0;
755 splx(s);
756
757 vfs_object_create(vp, td);
758 return (0);
759}
760
761/*
762 * Move a vnode from one mount queue to another.
763 */
764static void
765insmntque(vp, mp)
766 struct vnode *vp;
767 struct mount *mp;
768{
769
770 lwkt_gettoken(&mntvnode_token);
771 /*
772 * Delete from old mount point vnode list, if on one.
773 */
774 if (vp->v_mount != NULL) {
775 KASSERT(vp->v_mount->mnt_nvnodelistsize > 0,
776 ("bad mount point vnode list size"));
777 TAILQ_REMOVE(&vp->v_mount->mnt_nvnodelist, vp, v_nmntvnodes);
778 vp->v_mount->mnt_nvnodelistsize--;
779 }
780 /*
781 * Insert into list of vnodes for the new mount point, if available.
782 */
783 if ((vp->v_mount = mp) == NULL) {
784 lwkt_reltoken(&mntvnode_token);
785 return;
786 }
787 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
788 mp->mnt_nvnodelistsize++;
789 lwkt_reltoken(&mntvnode_token);
790}
791
792/*
793 * Update outstanding I/O count and do wakeup if requested.
794 */
795void
796vwakeup(bp)
797 struct buf *bp;
798{
799 struct vnode *vp;
800
801 bp->b_flags &= ~B_WRITEINPROG;
802 if ((vp = bp->b_vp)) {
803 vp->v_numoutput--;
804 if (vp->v_numoutput < 0)
805 panic("vwakeup: neg numoutput");
806 if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
807 vp->v_flag &= ~VBWAIT;
808 wakeup((caddr_t) &vp->v_numoutput);
809 }
810 }
811}
812
813/*
814 * Flush out and invalidate all buffers associated with a vnode.
815 * Called with the underlying object locked.
816 */
817int
818vinvalbuf(struct vnode *vp, int flags, struct thread *td,
819 int slpflag, int slptimeo)
820{
821 struct buf *bp;
822 struct buf *nbp, *blist;
823 int s, error;
824 vm_object_t object;
825
826 if (flags & V_SAVE) {
827 s = splbio();
828 while (vp->v_numoutput) {
829 vp->v_flag |= VBWAIT;
830 error = tsleep((caddr_t)&vp->v_numoutput,
831 slpflag, "vinvlbuf", slptimeo);
832 if (error) {
833 splx(s);
834 return (error);
835 }
836 }
837 if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
838 splx(s);
839 if ((error = VOP_FSYNC(vp, MNT_WAIT, td)) != 0)
840 return (error);
841 s = splbio();
842 if (vp->v_numoutput > 0 ||
843 !TAILQ_EMPTY(&vp->v_dirtyblkhd))
844 panic("vinvalbuf: dirty bufs");
845 }
846 splx(s);
847 }
848 s = splbio();
849 for (;;) {
850 blist = TAILQ_FIRST(&vp->v_cleanblkhd);
851 if (!blist)
852 blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
853 if (!blist)
854 break;
855
856 for (bp = blist; bp; bp = nbp) {
857 nbp = TAILQ_NEXT(bp, b_vnbufs);
858 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
859 error = BUF_TIMELOCK(bp,
860 LK_EXCLUSIVE | LK_SLEEPFAIL,
861 "vinvalbuf", slpflag, slptimeo);
862 if (error == ENOLCK)
863 break;
864 splx(s);
865 return (error);
866 }
867 /*
868 * XXX Since there are no node locks for NFS, I
869 * believe there is a slight chance that a delayed
870 * write will occur while sleeping just above, so
871 * check for it. Note that vfs_bio_awrite expects
872 * buffers to reside on a queue, while VOP_BWRITE and
873 * brelse do not.
874 */
875 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
876 (flags & V_SAVE)) {
877
878 if (bp->b_vp == vp) {
879 if (bp->b_flags & B_CLUSTEROK) {
880 BUF_UNLOCK(bp);
881 vfs_bio_awrite(bp);
882 } else {
883 bremfree(bp);
884 bp->b_flags |= B_ASYNC;
885 VOP_BWRITE(bp->b_vp, bp);
886 }
887 } else {
888 bremfree(bp);
889 (void) VOP_BWRITE(bp->b_vp, bp);
890 }
891 break;
892 }
893 bremfree(bp);
894 bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
895 bp->b_flags &= ~B_ASYNC;
896 brelse(bp);
897 }
898 }
899
900 /*
901 * Wait for I/O to complete. XXX needs cleaning up. The vnode can
902 * have write I/O in-progress but if there is a VM object then the
903 * VM object can also have read-I/O in-progress.
904 */
905 do {
906 while (vp->v_numoutput > 0) {
907 vp->v_flag |= VBWAIT;
908 tsleep(&vp->v_numoutput, 0, "vnvlbv", 0);
909 }
910 if (VOP_GETVOBJECT(vp, &object) == 0) {
911 while (object->paging_in_progress)
912 vm_object_pip_sleep(object, "vnvlbx");
913 }
914 } while (vp->v_numoutput > 0);
915
916 splx(s);
917
918 /*
919 * Destroy the copy in the VM cache, too.
920 */
921 lwkt_gettoken(&vp->v_interlock);
922 if (VOP_GETVOBJECT(vp, &object) == 0) {
923 vm_object_page_remove(object, 0, 0,
924 (flags & V_SAVE) ? TRUE : FALSE);
925 }
926 lwkt_reltoken(&vp->v_interlock);
927
928 if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
929 panic("vinvalbuf: flush failed");
930 return (0);
931}
932
933/*
934 * Truncate a file's buffer and pages to a specified length. This
935 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
936 * sync activity.
937 */
938int
939vtruncbuf(struct vnode *vp, struct thread *td, off_t length, int blksize)
940{
941 struct buf *bp;
942 struct buf *nbp;
943 int s, anyfreed;
944 int trunclbn;
945
946 /*
947 * Round up to the *next* lbn.
948 */
949 trunclbn = (length + blksize - 1) / blksize;
950
951 s = splbio();
952restart:
953 anyfreed = 1;
954 for (;anyfreed;) {
955 anyfreed = 0;
956 for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
957 nbp = TAILQ_NEXT(bp, b_vnbufs);
958 if (bp->b_lblkno >= trunclbn) {
959 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
960 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
961 goto restart;
962 } else {
963 bremfree(bp);
964 bp->b_flags |= (B_INVAL | B_RELBUF);
965 bp->b_flags &= ~B_ASYNC;
966 brelse(bp);
967 anyfreed = 1;
968 }
969 if (nbp &&
970 (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
971 (nbp->b_vp != vp) ||
972 (nbp->b_flags & B_DELWRI))) {
973 goto restart;
974 }
975 }
976 }
977
978 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
979 nbp = TAILQ_NEXT(bp, b_vnbufs);
980 if (bp->b_lblkno >= trunclbn) {
981 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
982 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
983 goto restart;
984 } else {
985 bremfree(bp);
986 bp->b_flags |= (B_INVAL | B_RELBUF);
987 bp->b_flags &= ~B_ASYNC;
988 brelse(bp);
989 anyfreed = 1;
990 }
991 if (nbp &&
992 (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
993 (nbp->b_vp != vp) ||
994 (nbp->b_flags & B_DELWRI) == 0)) {
995 goto restart;
996 }
997 }
998 }
999 }
1000
1001 if (length > 0) {
1002restartsync:
1003 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1004 nbp = TAILQ_NEXT(bp, b_vnbufs);
1005 if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
1006 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1007 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
1008 goto restart;
1009 } else {
1010 bremfree(bp);
1011 if (bp->b_vp == vp) {
1012 bp->b_flags |= B_ASYNC;
1013 } else {
1014 bp->b_flags &= ~B_ASYNC;
1015 }
1016 VOP_BWRITE(bp->b_vp, bp);
1017 }
1018 goto restartsync;
1019 }
1020
1021 }
1022 }
1023
1024 while (vp->v_numoutput > 0) {
1025 vp->v_flag |= VBWAIT;
1026 tsleep(&vp->v_numoutput, 0, "vbtrunc", 0);
1027 }
1028
1029 splx(s);
1030
1031 vnode_pager_setsize(vp, length);
1032
1033 return (0);
1034}
1035
1036/*
1037 * Associate a buffer with a vnode.
1038 */
1039void
1040bgetvp(vp, bp)
1041 struct vnode *vp;
1042 struct buf *bp;
1043{
1044 int s;
1045
1046 KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
1047
1048 vhold(vp);
1049 bp->b_vp = vp;
1050 bp->b_dev = vn_todev(vp);
1051 /*
1052 * Insert onto list for new vnode.
1053 */
1054 s = splbio();
1055 bp->b_xflags |= BX_VNCLEAN;
1056 bp->b_xflags &= ~BX_VNDIRTY;
1057 TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
1058 splx(s);
1059}
1060
1061/*
1062 * Disassociate a buffer from a vnode.
1063 */
1064void
1065brelvp(bp)
1066 struct buf *bp;
1067{
1068 struct vnode *vp;
1069 struct buflists *listheadp;
1070 int s;
1071
1072 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1073
1074 /*
1075 * Delete from old vnode list, if on one.
1076 */
1077 vp = bp->b_vp;
1078 s = splbio();
1079 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1080 if (bp->b_xflags & BX_VNDIRTY)
1081 listheadp = &vp->v_dirtyblkhd;
1082 else
1083 listheadp = &vp->v_cleanblkhd;
1084 TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1085 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1086 }
1087 if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
1088 vp->v_flag &= ~VONWORKLST;
1089 LIST_REMOVE(vp, v_synclist);
1090 }
1091 splx(s);
1092 bp->b_vp = (struct vnode *) 0;
1093 vdrop(vp);
1094}
1095
1096/*
1097 * The workitem queue.
1098 *
1099 * It is useful to delay writes of file data and filesystem metadata
1100 * for tens of seconds so that quickly created and deleted files need
1101 * not waste disk bandwidth being created and removed. To realize this,
1102 * we append vnodes to a "workitem" queue. When running with a soft
1103 * updates implementation, most pending metadata dependencies should
1104 * not wait for more than a few seconds. Thus, mounted on block devices
1105 * are delayed only about a half the time that file data is delayed.
1106 * Similarly, directory updates are more critical, so are only delayed
1107 * about a third the time that file data is delayed. Thus, there are
1108 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
1109 * one each second (driven off the filesystem syncer process). The
1110 * syncer_delayno variable indicates the next queue that is to be processed.
1111 * Items that need to be processed soon are placed in this queue:
1112 *
1113 * syncer_workitem_pending[syncer_delayno]
1114 *
1115 * A delay of fifteen seconds is done by placing the request fifteen
1116 * entries later in the queue:
1117 *
1118 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
1119 *
1120 */
1121
1122/*
1123 * Add an item to the syncer work queue.
1124 */
1125static void
1126vn_syncer_add_to_worklist(struct vnode *vp, int delay)
1127{
1128 int s, slot;
1129
1130 s = splbio();
1131
1132 if (vp->v_flag & VONWORKLST) {
1133 LIST_REMOVE(vp, v_synclist);
1134 }
1135
1136 if (delay > syncer_maxdelay - 2)
1137 delay = syncer_maxdelay - 2;
1138 slot = (syncer_delayno + delay) & syncer_mask;
1139
1140 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
1141 vp->v_flag |= VONWORKLST;
1142 splx(s);
1143}
1144
1145struct thread *updatethread;
1146static void sched_sync (void);
1147static struct kproc_desc up_kp = {
1148 "syncer",
1149 sched_sync,
1150 &updatethread
1151};
1152SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1153
1154/*
1155 * System filesystem synchronizer daemon.
1156 */
1157void
1158sched_sync(void)
1159{
1160 struct synclist *slp;
1161 struct vnode *vp;
1162 long starttime;
1163 int s;
1164 struct thread *td = curthread;
1165
1166 EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, td,
1167 SHUTDOWN_PRI_LAST);
1168
1169 for (;;) {
1170 kproc_suspend_loop();
1171
1172 starttime = time_second;
1173
1174 /*
1175 * Push files whose dirty time has expired. Be careful
1176 * of interrupt race on slp queue.
1177 */
1178 s = splbio();
1179 slp = &syncer_workitem_pending[syncer_delayno];
1180 syncer_delayno += 1;
1181 if (syncer_delayno == syncer_maxdelay)
1182 syncer_delayno = 0;
1183 splx(s);
1184
1185 while ((vp = LIST_FIRST(slp)) != NULL) {
1186 if (VOP_ISLOCKED(vp, NULL) == 0) {
1187 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
1188 (void) VOP_FSYNC(vp, MNT_LAZY, td);
1189 VOP_UNLOCK(vp, 0, td);
1190 }
1191 s = splbio();
1192 if (LIST_FIRST(slp) == vp) {
1193 /*
1194 * Note: v_tag VT_VFS vps can remain on the
1195 * worklist too with no dirty blocks, but
1196 * since sync_fsync() moves it to a different
1197 * slot we are safe.
1198 */
1199 if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
1200 !vn_isdisk(vp, NULL))
1201 panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
1202 /*
1203 * Put us back on the worklist. The worklist
1204 * routine will remove us from our current
1205 * position and then add us back in at a later
1206 * position.
1207 */
1208 vn_syncer_add_to_worklist(vp, syncdelay);
1209 }
1210 splx(s);
1211 }
1212
1213 /*
1214 * Do soft update processing.
1215 */
1216 if (bioops.io_sync)
1217 (*bioops.io_sync)(NULL);
1218
1219 /*
1220 * The variable rushjob allows the kernel to speed up the
1221 * processing of the filesystem syncer process. A rushjob
1222 * value of N tells the filesystem syncer to process the next
1223 * N seconds worth of work on its queue ASAP. Currently rushjob
1224 * is used by the soft update code to speed up the filesystem
1225 * syncer process when the incore state is getting so far
1226 * ahead of the disk that the kernel memory pool is being
1227 * threatened with exhaustion.
1228 */
1229 if (rushjob > 0) {
1230 rushjob -= 1;
1231 continue;
1232 }
1233 /*
1234 * If it has taken us less than a second to process the
1235 * current work, then wait. Otherwise start right over
1236 * again. We can still lose time if any single round
1237 * takes more than two seconds, but it does not really
1238 * matter as we are just trying to generally pace the
1239 * filesystem activity.
1240 */
1241 if (time_second == starttime)
1242 tsleep(&lbolt, 0, "syncer", 0);
1243 }
1244}
1245
1246/*
1247 * Request the syncer daemon to speed up its work.
1248 * We never push it to speed up more than half of its
1249 * normal turn time, otherwise it could take over the cpu.
1250 *
1251 * YYY wchan field protected by the BGL.
1252 */
1253int
1254speedup_syncer()
1255{
1256 crit_enter();
1257 if (updatethread->td_wchan == &lbolt) { /* YYY */
1258 unsleep(updatethread);
1259 lwkt_schedule(updatethread);
1260 }
1261 crit_exit();
1262 if (rushjob < syncdelay / 2) {
1263 rushjob += 1;
1264 stat_rush_requests += 1;
1265 return (1);
1266 }
1267 return(0);
1268}
1269
1270/*
1271 * Associate a p-buffer with a vnode.
1272 *
1273 * Also sets B_PAGING flag to indicate that vnode is not fully associated
1274 * with the buffer. i.e. the bp has not been linked into the vnode or
1275 * ref-counted.
1276 */
1277void
1278pbgetvp(vp, bp)
1279 struct vnode *vp;
1280 struct buf *bp;
1281{
1282
1283 KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1284
1285 bp->b_vp = vp;
1286 bp->b_flags |= B_PAGING;
1287 bp->b_dev = vn_todev(vp);
1288}
1289
1290/*
1291 * Disassociate a p-buffer from a vnode.
1292 */
1293void
1294pbrelvp(bp)
1295 struct buf *bp;
1296{
1297
1298 KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1299
1300 /* XXX REMOVE ME */
1301 if (TAILQ_NEXT(bp, b_vnbufs) != NULL) {
1302 panic(
1303 "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1304 bp,
1305 (int)bp->b_flags
1306 );
1307 }
1308 bp->b_vp = (struct vnode *) 0;
1309 bp->b_flags &= ~B_PAGING;
1310}
1311
1312void
1313pbreassignbuf(bp, newvp)
1314 struct buf *bp;
1315 struct vnode *newvp;
1316{
1317 if ((bp->b_flags & B_PAGING) == 0) {
1318 panic(
1319 "pbreassignbuf() on non phys bp %p",
1320 bp
1321 );
1322 }
1323 bp->b_vp = newvp;
1324}
1325
1326/*
1327 * Reassign a buffer from one vnode to another.
1328 * Used to assign file specific control information
1329 * (indirect blocks) to the vnode to which they belong.
1330 */
1331void
1332reassignbuf(bp, newvp)
1333 struct buf *bp;
1334 struct vnode *newvp;
1335{
1336 struct buflists *listheadp;
1337 int delay;
1338 int s;
1339
1340 if (newvp == NULL) {
1341 printf("reassignbuf: NULL");
1342 return;
1343 }
1344 ++reassignbufcalls;
1345
1346 /*
1347 * B_PAGING flagged buffers cannot be reassigned because their vp
1348 * is not fully linked in.
1349 */
1350 if (bp->b_flags & B_PAGING)
1351 panic("cannot reassign paging buffer");
1352
1353 s = splbio();
1354 /*
1355 * Delete from old vnode list, if on one.
1356 */
1357 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1358 if (bp->b_xflags & BX_VNDIRTY)
1359 listheadp = &bp->b_vp->v_dirtyblkhd;
1360 else
1361 listheadp = &bp->b_vp->v_cleanblkhd;
1362 TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1363 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1364 if (bp->b_vp != newvp) {
1365 vdrop(bp->b_vp);
1366 bp->b_vp = NULL; /* for clarification */
1367 }
1368 }
1369 /*
1370 * If dirty, put on list of dirty buffers; otherwise insert onto list
1371 * of clean buffers.
1372 */
1373 if (bp->b_flags & B_DELWRI) {
1374 struct buf *tbp;
1375
1376 listheadp = &newvp->v_dirtyblkhd;
1377 if ((newvp->v_flag & VONWORKLST) == 0) {
1378 switch (newvp->v_type) {
1379 case VDIR:
1380 delay = dirdelay;
1381 break;
1382 case VCHR:
1383 case VBLK:
1384 if (newvp->v_specmountpoint != NULL) {
1385 delay = metadelay;
1386 break;
1387 }
1388 /* fall through */
1389 default:
1390 delay = filedelay;
1391 }
1392 vn_syncer_add_to_worklist(newvp, delay);
1393 }
1394 bp->b_xflags |= BX_VNDIRTY;
1395 tbp = TAILQ_FIRST(listheadp);
1396 if (tbp == NULL ||
1397 bp->b_lblkno == 0 ||
1398 (bp->b_lblkno > 0 && tbp->b_lblkno < 0) ||
1399 (bp->b_lblkno > 0 && bp->b_lblkno < tbp->b_lblkno)) {
1400 TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1401 ++reassignbufsortgood;
1402 } else if (bp->b_lblkno < 0) {
1403 TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
1404 ++reassignbufsortgood;
1405 } else if (reassignbufmethod == 1) {
1406 /*
1407 * New sorting algorithm, only handle sequential case,
1408 * otherwise append to end (but before metadata)
1409 */
1410 if ((tbp = gbincore(newvp, bp->b_lblkno - 1)) != NULL &&
1411 (tbp->b_xflags & BX_VNDIRTY)) {
1412 /*
1413 * Found the best place to insert the buffer
1414 */
1415 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1416 ++reassignbufsortgood;
1417 } else {
1418 /*
1419 * Missed, append to end, but before meta-data.
1420 * We know that the head buffer in the list is
1421 * not meta-data due to prior conditionals.
1422 *
1423 * Indirect effects: NFS second stage write
1424 * tends to wind up here, giving maximum
1425 * distance between the unstable write and the
1426 * commit rpc.
1427 */
1428 tbp = TAILQ_LAST(listheadp, buflists);
1429 while (tbp && tbp->b_lblkno < 0)
1430 tbp = TAILQ_PREV(tbp, buflists, b_vnbufs);
1431 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1432 ++reassignbufsortbad;
1433 }
1434 } else {
1435 /*
1436 * Old sorting algorithm, scan queue and insert
1437 */
1438 struct buf *ttbp;
1439 while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
1440 (ttbp->b_lblkno < bp->b_lblkno)) {
1441 ++reassignbufloops;
1442 tbp = ttbp;
1443 }
1444 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1445 }
1446 } else {
1447 bp->b_xflags |= BX_VNCLEAN;
1448 TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
1449 if ((newvp->v_flag & VONWORKLST) &&
1450 TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1451 newvp->v_flag &= ~VONWORKLST;
1452 LIST_REMOVE(newvp, v_synclist);
1453 }
1454 }
1455 if (bp->b_vp != newvp) {
1456 bp->b_vp = newvp;
1457 vhold(bp->b_vp);
1458 }
1459 splx(s);
1460}
1461
1462/*
1463 * Create a vnode for a block device.
1464 * Used for mounting the root file system.
1465 */
1466int
1467bdevvp(dev, vpp)
1468 dev_t dev;
1469 struct vnode **vpp;
1470{
1471 struct vnode *vp;
1472 struct vnode *nvp;
1473 int error;
1474
1475 if (dev == NODEV) {
1476 *vpp = NULLVP;
1477 return (ENXIO);
1478 }
1479 error = getnewvnode(VT_NON, (struct mount *)0, spec_vnodeop_p, &nvp);
1480 if (error) {
1481 *vpp = NULLVP;
1482 return (error);
1483 }
1484 vp = nvp;
1485 vp->v_type = VBLK;
1486 addalias(vp, dev);
1487 *vpp = vp;
1488 return (0);
1489}
1490
1491/*
1492 * Add a vnode to the alias list hung off the dev_t.
1493 *
1494 * The reason for this gunk is that multiple vnodes can reference
1495 * the same physical device, so checking vp->v_usecount to see
1496 * how many users there are is inadequate; the v_usecount for
1497 * the vnodes need to be accumulated. vcount() does that.
1498 */
1499void
1500addaliasu(struct vnode *nvp, udev_t nvp_rdev)
1501{
1502 dev_t dev;
1503
1504 if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1505 panic("addaliasu on non-special vnode");
1506 dev = udev2dev(nvp_rdev, nvp->v_type == VBLK ? 1 : 0);
1507 if (dev != NODEV) {
1508 nvp->v_rdev = dev;
1509 addalias(nvp, dev);
1510 } else
1511 nvp->v_rdev = NULL;
1512}
1513
1514void
1515addalias(struct vnode *nvp, dev_t dev)
1516{
1517
1518 if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1519 panic("addalias on non-special vnode");
1520
1521 nvp->v_rdev = dev;
1522 lwkt_gettoken(&spechash_token);
1523 SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
1524 lwkt_reltoken(&spechash_token);
1525}
1526
1527/*
1528 * Grab a particular vnode from the free list, increment its
1529 * reference count and lock it. The vnode lock bit is set if the
1530 * vnode is being eliminated in vgone. The process is awakened
1531 * when the transition is completed, and an error returned to
1532 * indicate that the vnode is no longer usable (possibly having
1533 * been changed to a new file system type).
1534 */
1535int
1536vget(vp, flags, td)
1537 struct vnode *vp;
1538 int flags;
1539 struct thread *td;
1540{
1541 int error;
1542
1543 /*
1544 * If the vnode is in the process of being cleaned out for
1545 * another use, we wait for the cleaning to finish and then
1546 * return failure. Cleaning is determined by checking that
1547 * the VXLOCK flag is set.
1548 */
1549 if (vp->v_flag & VXLOCK) {
1550 if (vp->v_vxproc == curproc) {
1551#if 0
1552 /* this can now occur in normal operation */
1553 log(LOG_INFO, "VXLOCK interlock avoided\n");
1554#endif
1555 } else {
1556 vp->v_flag |= VXWANT;
1557 tsleep((caddr_t)vp, 0, "vget", 0);
1558 return (ENOENT);
1559 }
1560 }
1561
1562 /*
1563 * Bump v_usecount to prevent the vnode from being cleaned. If the
1564 * vnode gets cleaned unexpectedly we could wind up calling lockmgr
1565 * on a lock embedded in an inode which is then ripped out from
1566 * it.
1567 */
1568 vp->v_usecount++; /* XXX MP */
1569
1570 if ((flags & LK_INTERLOCK) == 0) {
1571 lwkt_gettoken(&vp->v_interlock);
1572 }
1573
1574 if (VSHOULDBUSY(vp))
1575 vbusy(vp);
1576 if (flags & LK_TYPE_MASK) {
1577 if ((error = vn_lock(vp, flags | LK_INTERLOCK, td)) != 0) {
1578 /*
1579 * must expand vrele here because we do not want
1580 * to call VOP_INACTIVE if the reference count
1581 * drops back to zero since it was never really
1582 * active. We must remove it from the free list
1583 * before sleeping so that multiple processes do
1584 * not try to recycle it.
1585 */
1586 lwkt_gettoken(&vp->v_interlock);
1587 vp->v_usecount--;
1588 if (VSHOULDFREE(vp))
1589 vfree(vp);
1590 else
1591 vlruvp(vp);
1592 lwkt_reltoken(&vp->v_interlock);
1593 }
1594 return (error);
1595 }
1596 lwkt_reltoken(&vp->v_interlock);
1597 return (0);
1598}
1599
1600void
1601vref(struct vnode *vp)
1602{
1603 vp->v_usecount++; /* XXX MP */
1604}
1605
1606/*
1607 * Vnode put/release.
1608 * If count drops to zero, call inactive routine and return to freelist.
1609 */
1610void
1611vrele(struct vnode *vp)
1612{
1613 struct thread *td = curthread; /* XXX */
1614
1615 KASSERT(vp != NULL, ("vrele: null vp"));
1616
1617 lwkt_gettoken(&vp->v_interlock);
1618
1619 if (vp->v_usecount > 1) {
1620
1621 vp->v_usecount--;
1622 lwkt_reltoken(&vp->v_interlock);
1623
1624 return;
1625 }
1626
1627 if (vp->v_usecount == 1) {
1628 vp->v_usecount--;
1629 /*
1630 * We must call VOP_INACTIVE with the node locked.
1631 * If we are doing a vpu, the node is already locked,
1632 * but, in the case of vrele, we must explicitly lock
1633 * the vnode before calling VOP_INACTIVE
1634 */
1635
1636 if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, td) == 0)
1637 VOP_INACTIVE(vp, td);
1638 if (VSHOULDFREE(vp))
1639 vfree(vp);
1640 else
1641 vlruvp(vp);
1642 } else {
1643#ifdef DIAGNOSTIC
1644 vprint("vrele: negative ref count", vp);
1645 lwkt_reltoken(&vp->v_interlock);
1646#endif
1647 panic("vrele: negative ref cnt");
1648 }
1649}
1650
1651void
1652vput(struct vnode *vp)
1653{
1654 struct thread *td = curthread; /* XXX */
1655
1656 KASSERT(vp != NULL, ("vput: null vp"));
1657
1658 lwkt_gettoken(&vp->v_interlock);
1659
1660 if (vp->v_usecount > 1) {
1661 vp->v_usecount--;
1662 VOP_UNLOCK(vp, LK_INTERLOCK, td);
1663 return;
1664 }
1665
1666 if (vp->v_usecount == 1) {
1667 vp->v_usecount--;
1668 /*
1669 * We must call VOP_INACTIVE with the node locked.
1670 * If we are doing a vpu, the node is already locked,
1671 * so we just need to release the vnode mutex.
1672 */
1673 lwkt_reltoken(&vp->v_interlock);
1674 VOP_INACTIVE(vp, td);
1675 if (VSHOULDFREE(vp))
1676 vfree(vp);
1677 else
1678 vlruvp(vp);
1679 } else {
1680#ifdef DIAGNOSTIC
1681 vprint("vput: negative ref count", vp);
1682#endif
1683 panic("vput: negative ref cnt");
1684 }
1685}
1686
1687/*
1688 * Somebody doesn't want the vnode recycled.
1689 */
1690void
1691vhold(vp)
1692 struct vnode *vp;
1693{
1694 int s;
1695
1696 s = splbio();
1697 vp->v_holdcnt++;
1698 if (VSHOULDBUSY(vp))
1699 vbusy(vp);
1700 splx(s);
1701}
1702
1703/*
1704 * One less who cares about this vnode.
1705 */
1706void
1707vdrop(vp)
1708 struct vnode *vp;
1709{
1710 int s;
1711
1712 s = splbio();
1713 if (vp->v_holdcnt <= 0)
1714 panic("vdrop: holdcnt");
1715 vp->v_holdcnt--;
1716 if (VSHOULDFREE(vp))
1717 vfree(vp);
1718 splx(s);
1719}
1720
1721/*
1722 * Remove any vnodes in the vnode table belonging to mount point mp.
1723 *
1724 * If FORCECLOSE is not specified, there should not be any active ones,
1725 * return error if any are found (nb: this is a user error, not a
1726 * system error). If FORCECLOSE is specified, detach any active vnodes
1727 * that are found.
1728 *
1729 * If WRITECLOSE is set, only flush out regular file vnodes open for
1730 * writing.
1731 *
1732 * SKIPSYSTEM causes any vnodes marked VSYSTEM to be skipped.
1733 *
1734 * `rootrefs' specifies the base reference count for the root vnode
1735 * of this filesystem. The root vnode is considered busy if its
1736 * v_usecount exceeds this value. On a successful return, vflush()
1737 * will call vrele() on the root vnode exactly rootrefs times.
1738 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
1739 * be zero.
1740 */
1741#ifdef DIAGNOSTIC
1742static int busyprt = 0; /* print out busy vnodes */
1743SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1744#endif
1745
1746int
1747vflush(mp, rootrefs, flags)
1748 struct mount *mp;
1749 int rootrefs;
1750 int flags;
1751{
1752 struct thread *td = curthread; /* XXX */
1753 struct vnode *vp, *nvp, *rootvp = NULL;
1754 struct vattr vattr;
1755 int busy = 0, error;
1756
1757 if (rootrefs > 0) {
1758 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
1759 ("vflush: bad args"));
1760 /*
1761 * Get the filesystem root vnode. We can vput() it
1762 * immediately, since with rootrefs > 0, it won't go away.
1763 */
1764 if ((error = VFS_ROOT(mp, &rootvp)) != 0)
1765 return (error);
1766 vput(rootvp);
1767 }
1768 lwkt_gettoken(&mntvnode_token);
1769loop:
1770 for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp; vp = nvp) {
1771 /*
1772 * Make sure this vnode wasn't reclaimed in getnewvnode().
1773 * Start over if it has (it won't be on the list anymore).
1774 */
1775 if (vp->v_mount != mp)
1776 goto loop;
1777 nvp = TAILQ_NEXT(vp, v_nmntvnodes);
1778
1779 lwkt_gettoken(&vp->v_interlock);
1780 /*
1781 * Skip over a vnodes marked VSYSTEM.
1782 */
1783 if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1784 lwkt_reltoken(&vp->v_interlock);
1785 continue;
1786 }
1787 /*
1788 * If WRITECLOSE is set, flush out unlinked but still open
1789 * files (even if open only for reading) and regular file
1790 * vnodes open for writing.
1791 */
1792 if ((flags & WRITECLOSE) &&
1793 (vp->v_type == VNON ||
1794 (VOP_GETATTR(vp, &vattr, td) == 0 &&
1795 vattr.va_nlink > 0)) &&
1796 (vp->v_writecount == 0 || vp->v_type != VREG)) {
1797 lwkt_reltoken(&vp->v_interlock);
1798 continue;
1799 }
1800
1801 /*
1802 * With v_usecount == 0, all we need to do is clear out the
1803 * vnode data structures and we are done.
1804 */
1805 if (vp->v_usecount == 0) {
1806 lwkt_reltoken(&mntvnode_token);
1807 vgonel(vp, td);
1808 lwkt_gettoken(&mntvnode_token);
1809 continue;
1810 }
1811
1812 /*
1813 * If FORCECLOSE is set, forcibly close the vnode. For block
1814 * or character devices, revert to an anonymous device. For
1815 * all other files, just kill them.
1816 */
1817 if (flags & FORCECLOSE) {
1818 lwkt_reltoken(&mntvnode_token);
1819 if (vp->v_type != VBLK && vp->v_type != VCHR) {
1820 vgonel(vp, td);
1821 } else {
1822 vclean(vp, 0, td);
1823 vp->v_op = spec_vnodeop_p;
1824 insmntque(vp, (struct mount *) 0);
1825 }
1826 lwkt_gettoken(&mntvnode_token);
1827 continue;
1828 }
1829#ifdef DIAGNOSTIC
1830 if (busyprt)
1831 vprint("vflush: busy vnode", vp);
1832#endif
1833 lwkt_reltoken(&vp->v_interlock);
1834 busy++;
1835 }
1836 lwkt_reltoken(&mntvnode_token);
1837 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
1838 /*
1839 * If just the root vnode is busy, and if its refcount
1840 * is equal to `rootrefs', then go ahead and kill it.
1841 */
1842 lwkt_gettoken(&rootvp->v_interlock);
1843 KASSERT(busy > 0, ("vflush: not busy"));
1844 KASSERT(rootvp->v_usecount >= rootrefs, ("vflush: rootrefs"));
1845 if (busy == 1 && rootvp->v_usecount == rootrefs) {
1846 vgonel(rootvp, td);
1847 busy = 0;
1848 } else
1849 lwkt_reltoken(&rootvp->v_interlock);
1850 }
1851 if (busy)
1852 return (EBUSY);
1853 for (; rootrefs > 0; rootrefs--)
1854 vrele(rootvp);
1855 return (0);
1856}
1857
1858/*
1859 * We do not want to recycle the vnode too quickly.
1860 *
1861 * XXX we can't move vp's around the nvnodelist without really screwing
1862 * up the efficiency of filesystem SYNC and friends. This code is
1863 * disabled until we fix the syncing code's scanning algorithm.
1864 */
1865static void
1866vlruvp(struct vnode *vp)
1867{
1868#if 0
1869 struct mount *mp;
1870
1871 if ((mp = vp->v_mount) != NULL) {
1872 lwkt_gettoken(&mntvnode_token);
1873 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1874 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1875 lwkt_reltoken(&mntvnode_token);
1876 }
1877#endif
1878}
1879
1880/*
1881 * Disassociate the underlying file system from a vnode.
1882 */
1883static void
1884vclean(struct vnode *vp, int flags, struct thread *td)
1885{
1886 int active;
1887
1888 /*
1889 * Check to see if the vnode is in use. If so we have to reference it
1890 * before we clean it out so that its count cannot fall to zero and
1891 * generate a race against ourselves to recycle it.
1892 */
1893 if ((active = vp->v_usecount))
1894 vp->v_usecount++;
1895
1896 /*
1897 * Prevent the vnode from being recycled or brought into use while we
1898 * clean it out.
1899 */
1900 if (vp->v_flag & VXLOCK)
1901 panic("vclean: deadlock");
1902 vp->v_flag |= VXLOCK;
1903 vp->v_vxproc = curproc;
1904 /*
1905 * Even if the count is zero, the VOP_INACTIVE routine may still
1906 * have the object locked while it cleans it out. The VOP_LOCK
1907 * ensures that the VOP_INACTIVE routine is done with its work.
1908 * For active vnodes, it ensures that no other activity can
1909 * occur while the underlying object is being cleaned out.
1910 */
1911 VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
1912
1913 /*
1914 * Clean out any buffers associated with the vnode.
1915 */
1916 vinvalbuf(vp, V_SAVE, td, 0, 0);
1917
1918 VOP_DESTROYVOBJECT(vp);
1919
1920 /*
1921 * If purging an active vnode, it must be closed and
1922 * deactivated before being reclaimed. Note that the
1923 * VOP_INACTIVE will unlock the vnode.
1924 */
1925 if (active) {
1926 if (flags & DOCLOSE)
1927 VOP_CLOSE(vp, FNONBLOCK, td);
1928 VOP_INACTIVE(vp, td);
1929 } else {
1930 /*
1931 * Any other processes trying to obtain this lock must first
1932 * wait for VXLOCK to clear, then call the new lock operation.
1933 */
1934 VOP_UNLOCK(vp, 0, td);
1935 }
1936 /*
1937 * Reclaim the vnode.
1938 */
1939 if (VOP_RECLAIM(vp, td))
1940 panic("vclean: cannot reclaim");
1941
1942 if (active) {
1943 /*
1944 * Inline copy of vrele() since VOP_INACTIVE
1945 * has already been called.
1946 */
1947 lwkt_gettoken(&vp->v_interlock);
1948 if (--vp->v_usecount <= 0) {
1949#ifdef DIAGNOSTIC
1950 if (vp->v_usecount < 0 || vp->v_writecount != 0) {
1951 vprint("vclean: bad ref count", vp);
1952 panic("vclean: ref cnt");
1953 }
1954#endif
1955 vfree(vp);
1956 }
1957 lwkt_reltoken(&vp->v_interlock);
1958 }
1959
1960 cache_purge(vp);
1961 vp->v_vnlock = NULL;
1962
1963 if (VSHOULDFREE(vp))
1964 vfree(vp);
1965
1966 /*
1967 * Done with purge, notify sleepers of the grim news.
1968 */
1969 vp->v_op = dead_vnodeop_p;
1970 vn_pollgone(vp);
1971 vp->v_tag = VT_NON;
1972 vp->v_flag &= ~VXLOCK;
1973 vp->v_vxproc = NULL;
1974 if (vp->v_flag & VXWANT) {
1975 vp->v_flag &= ~VXWANT;
1976 wakeup((caddr_t) vp);
1977 }
1978}
1979
1980/*
1981 * Eliminate all activity associated with the requested vnode
1982 * and with all vnodes aliased to the requested vnode.
1983 */
1984int
1985vop_revoke(ap)
1986 struct vop_revoke_args /* {
1987 struct vnode *a_vp;
1988 int a_flags;
1989 } */ *ap;
1990{
1991 struct vnode *vp, *vq;
1992 dev_t dev;
1993
1994 KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1995
1996 vp = ap->a_vp;
1997 /*
1998 * If a vgone (or vclean) is already in progress,
1999 * wait until it is done and return.
2000 */
2001 if (vp->v_flag & VXLOCK) {
2002 vp->v_flag |= VXWANT;
2003 lwkt_reltoken(&vp->v_interlock);
2004 tsleep((caddr_t)vp, 0, "vop_revokeall", 0);
2005 return (0);
2006 }
2007 dev = vp->v_rdev;
2008 for (;;) {
2009 lwkt_gettoken(&spechash_token);
2010 vq = SLIST_FIRST(&dev->si_hlist);
2011 lwkt_reltoken(&spechash_token);
2012 if (!vq)
2013 break;
2014 vgone(vq);
2015 }
2016 return (0);
2017}
2018
2019/*
2020 * Recycle an unused vnode to the front of the free list.
2021 * Release the passed interlock if the vnode will be recycled.
2022 */
2023int
2024vrecycle(struct vnode *vp, struct lwkt_token *inter_lkp, struct thread *td)
2025{
2026 lwkt_gettoken(&vp->v_interlock);
2027 if (vp->v_usecount == 0) {
2028 if (inter_lkp) {
2029 lwkt_reltoken(inter_lkp);
2030 }
2031 vgonel(vp, td);
2032 return (1);
2033 }
2034 lwkt_reltoken(&vp->v_interlock);
2035 return (0);
2036}
2037
2038/*
2039 * Eliminate all activity associated with a vnode
2040 * in preparation for reuse.
2041 */
2042void
2043vgone(struct vnode *vp)
2044{
2045 struct thread *td = curthread; /* XXX */
2046
2047 lwkt_gettoken(&vp->v_interlock);
2048 vgonel(vp, td);
2049}
2050
2051/*
2052 * vgone, with the vp interlock held.
2053 */
2054void
2055vgonel(struct vnode *vp, struct thread *td)
2056{
2057 int s;
2058
2059 /*
2060 * If a vgone (or vclean) is already in progress,
2061 * wait until it is done and return.
2062 */
2063 if (vp->v_flag & VXLOCK) {
2064 vp->v_flag |= VXWANT;
2065 lwkt_reltoken(&vp->v_interlock);
2066 tsleep((caddr_t)vp, 0, "vgone", 0);
2067 return;
2068 }
2069
2070 /*
2071 * Clean out the filesystem specific data.
2072 */
2073 vclean(vp, DOCLOSE, td);
2074 lwkt_gettoken(&vp->v_interlock);
2075
2076 /*
2077 * Delete from old mount point vnode list, if on one.
2078 */
2079 if (vp->v_mount != NULL)
2080 insmntque(vp, (struct mount *)0);
2081 /*
2082 * If special device, remove it from special device alias list
2083 * if it is on one.
2084 */
2085 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
2086 lwkt_gettoken(&spechash_token);
2087 SLIST_REMOVE(&vp->v_hashchain, vp, vnode, v_specnext);
2088 freedev(vp->v_rdev);
2089 lwkt_reltoken(&spechash_token);
2090 vp->v_rdev = NULL;
2091 }
2092
2093 /*
2094 * If it is on the freelist and not already at the head,
2095 * move it to the head of the list. The test of the
2096 * VDOOMED flag and the reference count of zero is because
2097 * it will be removed from the free list by getnewvnode,
2098 * but will not have its reference count incremented until
2099 * after calling vgone. If the reference count were
2100 * incremented first, vgone would (incorrectly) try to
2101 * close the previous instance of the underlying object.
2102 */
2103 if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
2104 s = splbio();
2105 lwkt_gettoken(&vnode_free_list_token);
2106 if (vp->v_flag & VFREE)
2107 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2108 else
2109 freevnodes++;
2110 vp->v_flag |= VFREE;
2111 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2112 lwkt_reltoken(&vnode_free_list_token);
2113 splx(s);
2114 }
2115
2116 vp->v_type = VBAD;
2117 lwkt_reltoken(&vp->v_interlock);
2118}
2119
2120/*
2121 * Lookup a vnode by device number.
2122 */
2123int
2124vfinddev(dev, type, vpp)
2125 dev_t dev;
2126 enum vtype type;
2127 struct vnode **vpp;
2128{
2129 struct vnode *vp;
2130
2131 lwkt_gettoken(&spechash_token);
2132 SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
2133 if (type == vp->v_type) {
2134 *vpp = vp;
2135 lwkt_reltoken(&spechash_token);
2136 return (1);
2137 }
2138 }
2139 lwkt_reltoken(&spechash_token);
2140 return (0);
2141}
2142
2143/*
2144 * Calculate the total number of references to a special device.
2145 */
2146int
2147vcount(vp)
2148 struct vnode *vp;
2149{
2150 struct vnode *vq;
2151 int count;
2152
2153 count = 0;
2154 lwkt_gettoken(&spechash_token);
2155 SLIST_FOREACH(vq, &vp->v_hashchain, v_specnext)
2156 count += vq->v_usecount;
2157 lwkt_reltoken(&spechash_token);
2158 return (count);
2159}
2160
2161/*
2162 * Same as above, but using the dev_t as argument
2163 */
2164
2165int
2166count_dev(dev)
2167 dev_t dev;
2168{
2169 struct vnode *vp;
2170
2171 vp = SLIST_FIRST(&dev->si_hlist);
2172 if (vp == NULL)
2173 return (0);
2174 return(vcount(vp));
2175}
2176
2177/*
2178 * Print out a description of a vnode.
2179 */
2180static char *typename[] =
2181{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2182
2183void
2184vprint(label, vp)
2185 char *label;
2186 struct vnode *vp;
2187{
2188 char buf[96];
2189
2190 if (label != NULL)
2191 printf("%s: %p: ", label, (void *)vp);
2192 else
2193 printf("%p: ", (void *)vp);
2194 printf("type %s, usecount %d, writecount %d, refcount %d,",
2195 typename[vp->v_type], vp->v_usecount, vp->v_writecount,
2196 vp->v_holdcnt);
2197 buf[0] = '\0';
2198 if (vp->v_flag & VROOT)
2199 strcat(buf, "|VROOT");
2200 if (vp->v_flag & VTEXT)
2201 strcat(buf, "|VTEXT");
2202 if (vp->v_flag & VSYSTEM)
2203 strcat(buf, "|VSYSTEM");
2204 if (vp->v_flag & VXLOCK)
2205 strcat(buf, "|VXLOCK");
2206 if (vp->v_flag & VXWANT)
2207 strcat(buf, "|VXWANT");
2208 if (vp->v_flag & VBWAIT)
2209 strcat(buf, "|VBWAIT");
2210 if (vp->v_flag & VDOOMED)
2211 strcat(buf, "|VDOOMED");
2212 if (vp->v_flag & VFREE)
2213 strcat(buf, "|VFREE");
2214 if (vp->v_flag & VOBJBUF)
2215 strcat(buf, "|VOBJBUF");
2216 if (buf[0] != '\0')
2217 printf(" flags (%s)", &buf[1]);
2218 if (vp->v_data == NULL) {
2219 printf("\n");
2220 } else {
2221 printf("\n\t");
2222 VOP_PRINT(vp);
2223 }
2224}
2225
2226#ifdef DDB
2227#include <ddb/ddb.h>
2228/*
2229 * List all of the locked vnodes in the system.
2230 * Called when debugging the kernel.
2231 */
2232DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
2233{
2234 struct thread *td = curthread; /* XXX */
2235 struct mount *mp, *nmp;
2236 struct vnode *vp;
2237
2238 printf("Locked vnodes\n");
2239 lwkt_gettoken(&mountlist_token);
2240 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2241 if (vfs_busy(mp, LK_NOWAIT, &mountlist_token, td)) {
2242 nmp = TAILQ_NEXT(mp, mnt_list);
2243 continue;
2244 }
2245 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2246 if (VOP_ISLOCKED(vp, NULL))
2247 vprint((char *)0, vp);
2248 }
2249 lwkt_gettoken(&mountlist_token);
2250 nmp = TAILQ_NEXT(mp, mnt_list);
2251 vfs_unbusy(mp, td);
2252 }
2253 lwkt_reltoken(&mountlist_token);
2254}
2255#endif
2256
2257/*
2258 * Top level filesystem related information gathering.
2259 */
2260static int sysctl_ovfs_conf (SYSCTL_HANDLER_ARGS);
2261
2262static int
2263vfs_sysctl(SYSCTL_HANDLER_ARGS)
2264{
2265 int *name = (int *)arg1 - 1; /* XXX */
2266 u_int namelen = arg2 + 1; /* XXX */
2267 struct vfsconf *vfsp;
2268
2269#if 1 || defined(COMPAT_PRELITE2)
2270 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2271 if (namelen == 1)
2272 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2273#endif
2274
2275#ifdef notyet
2276 /* all sysctl names at this level are at least name and field */
2277 if (namelen < 2)
2278 return (ENOTDIR); /* overloaded */
2279 if (name[0] != VFS_GENERIC) {
2280 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2281 if (vfsp->vfc_typenum == name[0])
2282 break;
2283 if (vfsp == NULL)
2284 return (EOPNOTSUPP);
2285 return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
2286 oldp, oldlenp, newp, newlen, p));
2287 }
2288#endif
2289 switch (name[1]) {
2290 case VFS_MAXTYPENUM:
2291 if (namelen != 2)
2292 return (ENOTDIR);
2293 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2294 case VFS_CONF:
2295 if (namelen != 3)
2296 return (ENOTDIR); /* overloaded */
2297 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2298 if (vfsp->vfc_typenum == name[2])
2299 break;
2300 if (vfsp == NULL)
2301 return (EOPNOTSUPP);
2302 return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
2303 }
2304 return (EOPNOTSUPP);
2305}
2306
2307SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
2308 "Generic filesystem");
2309
2310#if 1 || defined(COMPAT_PRELITE2)
2311
2312static int
2313sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2314{
2315 int error;
2316 struct vfsconf *vfsp;
2317 struct ovfsconf ovfs;
2318
2319 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2320 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
2321 strcpy(ovfs.vfc_name, vfsp->vfc_name);
2322 ovfs.vfc_index = vfsp->vfc_typenum;
2323 ovfs.vfc_refcount = vfsp->vfc_refcount;
2324 ovfs.vfc_flags = vfsp->vfc_flags;
2325 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2326 if (error)
2327 return error;
2328 }
2329 return 0;
2330}
2331
2332#endif /* 1 || COMPAT_PRELITE2 */
2333
2334#if 0
2335#define KINFO_VNODESLOP 10
2336/*
2337 * Dump vnode list (via sysctl).
2338 * Copyout address of vnode followed by vnode.
2339 */
2340/* ARGSUSED */
2341static int
2342sysctl_vnode(SYSCTL_HANDLER_ARGS)
2343{
2344 struct proc *p = curproc; /* XXX */
2345 struct mount *mp, *nmp;
2346 struct vnode *nvp, *vp;
2347 int error;
2348
2349#define VPTRSZ sizeof (struct vnode *)
2350#define VNODESZ sizeof (struct vnode)
2351
2352 req->lock = 0;
2353 if (!req->oldptr) /* Make an estimate */
2354 return (SYSCTL_OUT(req, 0,
2355 (numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
2356
2357 lwkt_gettoken(&mountlist_token);
2358 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2359 if (vfs_busy(mp, LK_NOWAIT, &mountlist_token, p)) {
2360 nmp = TAILQ_NEXT(mp, mnt_list);
2361 continue;
2362 }
2363again:
2364 lwkt_gettoken(&mntvnode_token);
2365 for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
2366 vp != NULL;
2367 vp = nvp) {
2368 /*
2369 * Check that the vp is still associated with
2370 * this filesystem. RACE: could have been
2371 * recycled onto the same filesystem.
2372 */
2373 if (vp->v_mount != mp) {
2374 lwkt_reltoken(&mntvnode_token);
2375 goto again;
2376 }
2377 nvp = TAILQ_NEXT(vp, v_nmntvnodes);
2378 lwkt_reltoken(&mntvnode_token);
2379 if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
2380 (error = SYSCTL_OUT(req, vp, VNODESZ)))
2381 return (error);
2382 lwkt_gettoken(&mntvnode_token);
2383 }
2384 lwkt_reltoken(&mntvnode_token);
2385 lwkt_gettoken(&mountlist_token);
2386 nmp = TAILQ_NEXT(mp, mnt_list);
2387 vfs_unbusy(mp, p);
2388 }
2389 lwkt_reltoken(&mountlist_token);
2390
2391 return (0);
2392}
2393#endif
2394
2395/*
2396 * XXX
2397 * Exporting the vnode list on large systems causes them to crash.
2398 * Exporting the vnode list on medium systems causes sysctl to coredump.
2399 */
2400#if 0
2401SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2402 0, 0, sysctl_vnode, "S,vnode", "");
2403#endif
2404
2405/*
2406 * Check to see if a filesystem is mounted on a block device.
2407 */
2408int
2409vfs_mountedon(vp)
2410 struct vnode *vp;
2411{
2412
2413 if (vp->v_specmountpoint != NULL)
2414 return (EBUSY);
2415 return (0);
2416}
2417
2418/*
2419 * Unmount all filesystems. The list is traversed in reverse order
2420 * of mounting to avoid dependencies.
2421 */
2422void
2423vfs_unmountall()
2424{
2425 struct mount *mp;
2426 struct thread *td = curthread;
2427 int error;
2428
2429 if (td->td_proc == NULL)
2430 td = initproc->p_thread; /* XXX XXX use proc0 instead? */
2431
2432 /*
2433 * Since this only runs when rebooting, it is not interlocked.
2434 */
2435 while(!TAILQ_EMPTY(&mountlist)) {
2436 mp = TAILQ_LAST(&mountlist, mntlist);
2437 error = dounmount(mp, MNT_FORCE, td);
2438 if (error) {
2439 TAILQ_REMOVE(&mountlist, mp, mnt_list);
2440 printf("unmount of %s failed (",
2441 mp->mnt_stat.f_mntonname);
2442 if (error == EBUSY)
2443 printf("BUSY)\n");
2444 else
2445 printf("%d)\n", error);
2446 } else {
2447 /* The unmount has removed mp from the mountlist */
2448 }
2449 }
2450}
2451
2452/*
2453 * Build hash lists of net addresses and hang them off the mount point.
2454 * Called by ufs_mount() to set up the lists of export addresses.
2455 */
2456static int
2457vfs_hang_addrlist(mp, nep, argp)
2458 struct mount *mp;
2459 struct netexport *nep;
2460 struct export_args *argp;
2461{
2462 struct netcred *np;
2463 struct radix_node_head *rnh;
2464 int i;
2465 struct radix_node *rn;
2466 struct sockaddr *saddr, *smask = 0;
2467 struct domain *dom;
2468 int error;
2469
2470 if (argp->ex_addrlen == 0) {
2471 if (mp->mnt_flag & MNT_DEFEXPORTED)
2472 return (EPERM);
2473 np = &nep->ne_defexported;
2474 np->netc_exflags = argp->ex_flags;
2475 np->netc_anon = argp->ex_anon;
2476 np->netc_anon.cr_ref = 1;
2477 mp->mnt_flag |= MNT_DEFEXPORTED;
2478 return (0);
2479 }
2480
2481 if (argp->ex_addrlen < 0 || argp->ex_addrlen > MLEN)
2482 return (EINVAL);
2483 if (argp->ex_masklen < 0 || argp->ex_masklen > MLEN)
2484 return (EINVAL);
2485
2486 i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2487 np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
2488 bzero((caddr_t) np, i);
2489 saddr = (struct sockaddr *) (np + 1);
2490 if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2491 goto out;
2492 if (saddr->sa_len > argp->ex_addrlen)
2493 saddr->sa_len = argp->ex_addrlen;
2494 if (argp->ex_masklen) {
2495 smask = (struct sockaddr *) ((caddr_t) saddr + argp->ex_addrlen);
2496 error = copyin(argp->ex_mask, (caddr_t) smask, argp->ex_masklen);
2497 if (error)
2498 goto out;
2499 if (smask->sa_len > argp->ex_masklen)
2500 smask->sa_len = argp->ex_masklen;
2501 }
2502 i = saddr->sa_family;
2503 if ((rnh = nep->ne_rtable[i]) == 0) {
2504 /*
2505 * Seems silly to initialize every AF when most are not used,
2506 * do so on demand here
2507 */
2508 for (dom = domains; dom; dom = dom->dom_next)
2509 if (dom->dom_family == i && dom->dom_rtattach) {
2510 dom->dom_rtattach((void **) &nep->ne_rtable[i],
2511 dom->dom_rtoffset);
2512 break;
2513 }
2514 if ((rnh = nep->ne_rtable[i]) == 0) {
2515 error = ENOBUFS;
2516 goto out;
2517 }
2518 }
2519 rn = (*rnh->rnh_addaddr) ((caddr_t) saddr, (caddr_t) smask, rnh,
2520 np->netc_rnodes);
2521 if (rn == 0 || np != (struct netcred *) rn) { /* already exists */
2522 error = EPERM;
2523 goto out;
2524 }
2525 np->netc_exflags = argp->ex_flags;
2526 np->netc_anon = argp->ex_anon;
2527 np->netc_anon.cr_ref = 1;
2528 return (0);
2529out:
2530 free(np, M_NETADDR);
2531 return (error);
2532}
2533
2534/* ARGSUSED */
2535static int
2536vfs_free_netcred(rn, w)
2537 struct radix_node *rn;
2538 void *w;
2539{
2540 struct radix_node_head *rnh = (struct radix_node_head *) w;
2541
2542 (*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2543 free((caddr_t) rn, M_NETADDR);
2544 return (0);
2545}
2546
2547/*
2548 * Free the net address hash lists that are hanging off the mount points.
2549 */
2550static void
2551vfs_free_addrlist(nep)
2552 struct netexport *nep;
2553{
2554 int i;
2555 struct radix_node_head *rnh;
2556
2557 for (i = 0; i <= AF_MAX; i++)
2558 if ((rnh = nep->ne_rtable[i])) {
2559 (*rnh->rnh_walktree) (rnh, vfs_free_netcred,
2560 (caddr_t) rnh);
2561 free((caddr_t) rnh, M_RTABLE);
2562 nep->ne_rtable[i] = 0;
2563 }
2564}
2565
2566int
2567vfs_export(mp, nep, argp)
2568 struct mount *mp;
2569 struct netexport *nep;
2570 struct export_args *argp;
2571{
2572 int error;
2573
2574 if (argp->ex_flags & MNT_DELEXPORT) {
2575 if (mp->mnt_flag & MNT_EXPUBLIC) {
2576 vfs_setpublicfs(NULL, NULL, NULL);
2577 mp->mnt_flag &= ~MNT_EXPUBLIC;
2578 }
2579 vfs_free_addrlist(nep);
2580 mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2581 }
2582 if (argp->ex_flags & MNT_EXPORTED) {
2583 if (argp->ex_flags & MNT_EXPUBLIC) {
2584 if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2585 return (error);
2586 mp->mnt_flag |= MNT_EXPUBLIC;
2587 }
2588 if ((error = vfs_hang_addrlist(mp, nep, argp)))
2589 return (error);
2590 mp->mnt_flag |= MNT_EXPORTED;
2591 }
2592 return (0);
2593}
2594
2595
2596/*
2597 * Set the publicly exported filesystem (WebNFS). Currently, only
2598 * one public filesystem is possible in the spec (RFC 2054 and 2055)
2599 */
2600int
2601vfs_setpublicfs(mp, nep, argp)
2602 struct mount *mp;
2603 struct netexport *nep;
2604 struct export_args *argp;
2605{
2606 int error;
2607 struct vnode *rvp;
2608 char *cp;
2609
2610 /*
2611 * mp == NULL -> invalidate the current info, the FS is
2612 * no longer exported. May be called from either vfs_export
2613 * or unmount, so check if it hasn't already been done.
2614 */
2615 if (mp == NULL) {
2616 if (nfs_pub.np_valid) {
2617 nfs_pub.np_valid = 0;
2618 if (nfs_pub.np_index != NULL) {
2619 FREE(nfs_pub.np_index, M_TEMP);
2620 nfs_pub.np_index = NULL;
2621 }
2622 }
2623 return (0);
2624 }
2625
2626 /*
2627 * Only one allowed at a time.
2628 */
2629 if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2630 return (EBUSY);
2631
2632 /*
2633 * Get real filehandle for root of exported FS.
2634 */
2635 bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2636 nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2637
2638 if ((error = VFS_ROOT(mp, &rvp)))
2639 return (error);
2640
2641 if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2642 return (error);
2643
2644 vput(rvp);
2645
2646 /*
2647 * If an indexfile was specified, pull it in.
2648 */
2649 if (argp->ex_indexfile != NULL) {
2650 MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
2651 M_WAITOK);
2652 error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2653 MAXNAMLEN, (size_t *)0);
2654 if (!error) {
2655 /*
2656 * Check for illegal filenames.
2657 */
2658 for (cp = nfs_pub.np_index; *cp; cp++) {
2659 if (*cp == '/') {
2660 error = EINVAL;
2661 break;
2662 }
2663 }
2664 }
2665 if (error) {
2666 FREE(nfs_pub.np_index, M_TEMP);
2667 return (error);
2668 }
2669 }
2670
2671 nfs_pub.np_mount = mp;
2672 nfs_pub.np_valid = 1;
2673 return (0);
2674}
2675
2676struct netcred *
2677vfs_export_lookup(mp, nep, nam)
2678 struct mount *mp;
2679 struct netexport *nep;
2680 struct sockaddr *nam;
2681{
2682 struct netcred *np;
2683 struct radix_node_head *rnh;
2684 struct sockaddr *saddr;
2685
2686 np = NULL;
2687 if (mp->mnt_flag & MNT_EXPORTED) {
2688 /*
2689 * Lookup in the export list first.
2690 */
2691 if (nam != NULL) {
2692 saddr = nam;
2693 rnh = nep->ne_rtable[saddr->sa_family];
2694 if (rnh != NULL) {
2695 np = (struct netcred *)
2696 (*rnh->rnh_matchaddr)((caddr_t)saddr,
2697 rnh);
2698 if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2699 np = NULL;
2700 }
2701 }
2702 /*
2703 * If no address match, use the default if it exists.
2704 */
2705 if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2706 np = &nep->ne_defexported;
2707 }
2708 return (np);
2709}
2710
2711/*
2712 * perform msync on all vnodes under a mount point
2713 * the mount point must be locked.
2714 */
2715void
2716vfs_msync(struct mount *mp, int flags)
2717{
2718 struct thread *td = curthread; /* XXX */
2719 struct vnode *vp, *nvp;
2720 struct vm_object *obj;
2721 int tries;
2722
2723 tries = 5;
2724 lwkt_gettoken(&mntvnode_token);
2725loop:
2726 for (vp = TAILQ_FIRST(&mp->mnt_nvnodelist); vp != NULL; vp = nvp) {
2727 if (vp->v_mount != mp) {
2728 if (--tries > 0)
2729 goto loop;
2730 break;
2731 }
2732 nvp = TAILQ_NEXT(vp, v_nmntvnodes);
2733
2734 if (vp->v_flag & VXLOCK) /* XXX: what if MNT_WAIT? */
2735 continue;
2736
2737 /*
2738 * There could be hundreds of thousands of vnodes, we cannot
2739 * afford to do anything heavy-weight until we have a fairly
2740 * good indication that there is something to do.
2741 */
2742 if ((vp->v_flag & VOBJDIRTY) &&
2743 (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
2744 lwkt_reltoken(&mntvnode_token);
2745 if (!vget(vp,
2746 LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ, td)) {
2747 if (VOP_GETVOBJECT(vp, &obj) == 0) {
2748 vm_object_page_clean(obj, 0, 0, flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
2749 }
2750 vput(vp);
2751 }
2752 lwkt_gettoken(&mntvnode_token);
2753 if (TAILQ_NEXT(vp, v_nmntvnodes) != nvp) {
2754 if (--tries > 0)
2755 goto loop;
2756 break;
2757 }
2758 }
2759 }
2760 lwkt_reltoken(&mntvnode_token);
2761}
2762
2763/*
2764 * Create the VM object needed for VMIO and mmap support. This
2765 * is done for all VREG files in the system. Some filesystems might
2766 * afford the additional metadata buffering capability of the
2767 * VMIO code by making the device node be VMIO mode also.
2768 *
2769 * vp must be locked when vfs_object_create is called.
2770 */
2771int
2772vfs_object_create(struct vnode *vp, struct thread *td)
2773{
2774 return (VOP_CREATEVOBJECT(vp, td));
2775}
2776
2777void
2778vfree(vp)
2779 struct vnode *vp;
2780{
2781 int s;
2782
2783 s = splbio();
2784 lwkt_gettoken(&vnode_free_list_token);
2785 KASSERT((vp->v_flag & VFREE) == 0, ("vnode already free"));
2786 if (vp->v_flag & VAGE) {
2787 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2788 } else {
2789 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2790 }
2791 freevnodes++;
2792 lwkt_reltoken(&vnode_free_list_token);
2793 vp->v_flag &= ~VAGE;
2794 vp->v_flag |= VFREE;
2795 splx(s);
2796}
2797
2798void
2799vbusy(vp)
2800 struct vnode *vp;
2801{
2802 int s;
2803
2804 s = splbio();
2805 lwkt_gettoken(&vnode_free_list_token);
2806 KASSERT((vp->v_flag & VFREE) != 0, ("vnode not free"));
2807 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2808 freevnodes--;
2809 lwkt_reltoken(&vnode_free_list_token);
2810 vp->v_flag &= ~(VFREE|VAGE);
2811 splx(s);
2812}
2813
2814/*
2815 * Record a process's interest in events which might happen to
2816 * a vnode. Because poll uses the historic select-style interface
2817 * internally, this routine serves as both the ``check for any
2818 * pending events'' and the ``record my interest in future events''
2819 * functions. (These are done together, while the lock is held,
2820 * to avoid race conditions.)
2821 */
2822int
2823vn_pollrecord(struct vnode *vp, struct thread *td, int events)
2824{
2825 lwkt_gettoken(&vp->v_pollinfo.vpi_token);
2826 if (vp->v_pollinfo.vpi_revents & events) {
2827 /*
2828 * This leaves events we are not interested
2829 * in available for the other process which
2830 * which presumably had requested them
2831 * (otherwise they would never have been
2832 * recorded).
2833 */
2834 events &= vp->v_pollinfo.vpi_revents;
2835 vp->v_pollinfo.vpi_revents &= ~events;
2836
2837 lwkt_reltoken(&vp->v_pollinfo.vpi_token);
2838 return events;
2839 }
2840 vp->v_pollinfo.vpi_events |= events;
2841 selrecord(td, &vp->v_pollinfo.vpi_selinfo);
2842 lwkt_reltoken(&vp->v_pollinfo.vpi_token);
2843 return 0;
2844}
2845
2846/*
2847 * Note the occurrence of an event. If the VN_POLLEVENT macro is used,
2848 * it is possible for us to miss an event due to race conditions, but
2849 * that condition is expected to be rare, so for the moment it is the
2850 * preferred interface.
2851 */
2852void
2853vn_pollevent(vp, events)
2854 struct vnode *vp;
2855 short events;
2856{
2857 lwkt_gettoken(&vp->v_pollinfo.vpi_token);
2858 if (vp->v_pollinfo.vpi_events & events) {
2859 /*
2860 * We clear vpi_events so that we don't
2861 * call selwakeup() twice if two events are
2862 * posted before the polling process(es) is
2863 * awakened. This also ensures that we take at
2864 * most one selwakeup() if the polling process
2865 * is no longer interested. However, it does
2866 * mean that only one event can be noticed at
2867 * a time. (Perhaps we should only clear those
2868 * event bits which we note?) XXX
2869 */
2870 vp->v_pollinfo.vpi_events = 0; /* &= ~events ??? */
2871 vp->v_pollinfo.vpi_revents |= events;
2872 selwakeup(&vp->v_pollinfo.vpi_selinfo);
2873 }
2874 lwkt_reltoken(&vp->v_pollinfo.vpi_token);
2875}
2876
2877/*
2878 * Wake up anyone polling on vp because it is being revoked.
2879 * This depends on dead_poll() returning POLLHUP for correct
2880 * behavior.
2881 */
2882void
2883vn_pollgone(vp)
2884 struct vnode *vp;
2885{
2886 lwkt_gettoken(&vp->v_pollinfo.vpi_token);
2887 if (vp->v_pollinfo.vpi_events) {
2888 vp->v_pollinfo.vpi_events = 0;
2889 selwakeup(&vp->v_pollinfo.vpi_selinfo);
2890 }
2891 lwkt_reltoken(&vp->v_pollinfo.vpi_token);
2892}
2893
2894
2895
2896/*
2897 * Routine to create and manage a filesystem syncer vnode.
2898 */
2899#define sync_close ((int (*) (struct vop_close_args *))nullop)
2900static int sync_fsync (struct vop_fsync_args *);
2901static int sync_inactive (struct vop_inactive_args *);
2902static int sync_reclaim (struct vop_reclaim_args *);
2903#define sync_lock ((int (*) (struct vop_lock_args *))vop_nolock)
2904#define sync_unlock ((int (*) (struct vop_unlock_args *))vop_nounlock)
2905static int sync_print (struct vop_print_args *);
2906#define sync_islocked ((int(*) (struct vop_islocked_args *))vop_noislocked)
2907
2908static vop_t **sync_vnodeop_p;
2909static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
2910 { &vop_default_desc, (vop_t *) vop_eopnotsupp },
2911 { &vop_close_desc, (vop_t *) sync_close }, /* close */
2912 { &vop_fsync_desc, (vop_t *) sync_fsync }, /* fsync */
2913 { &vop_inactive_desc, (vop_t *) sync_inactive }, /* inactive */
2914 { &vop_reclaim_desc, (vop_t *) sync_reclaim }, /* reclaim */
2915 { &vop_lock_desc, (vop_t *) sync_lock }, /* lock */
2916 { &vop_unlock_desc, (vop_t *) sync_unlock }, /* unlock */
2917 { &vop_print_desc, (vop_t *) sync_print }, /* print */
2918 { &vop_islocked_desc, (vop_t *) sync_islocked }, /* islocked */
2919 { NULL, NULL }
2920};
2921static struct vnodeopv_desc sync_vnodeop_opv_desc =
2922 { &sync_vnodeop_p, sync_vnodeop_entries };
2923
2924VNODEOP_SET(sync_vnodeop_opv_desc);
2925
2926/*
2927 * Create a new filesystem syncer vnode for the specified mount point.
2928 */
2929int
2930vfs_allocate_syncvnode(mp)
2931 struct mount *mp;
2932{
2933 struct vnode *vp;
2934 static long start, incr, next;
2935 int error;
2936
2937 /* Allocate a new vnode */
2938 if ((error = getnewvnode(VT_VFS, mp, sync_vnodeop_p, &vp)) != 0) {
2939 mp->mnt_syncer = NULL;
2940 return (error);
2941 }
2942 vp->v_type = VNON;
2943 /*
2944 * Place the vnode onto the syncer worklist. We attempt to
2945 * scatter them about on the list so that they will go off
2946 * at evenly distributed times even if all the filesystems
2947 * are mounted at once.
2948 */
2949 next += incr;
2950 if (next == 0 || next > syncer_maxdelay) {
2951 start /= 2;
2952 incr /= 2;
2953 if (start == 0) {
2954 start = syncer_maxdelay / 2;
2955 incr = syncer_maxdelay;
2956 }
2957 next = start;
2958 }
2959 vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
2960 mp->mnt_syncer = vp;
2961 return (0);
2962}
2963
2964/*
2965 * Do a lazy sync of the filesystem.
2966 */
2967static int
2968sync_fsync(ap)
2969 struct vop_fsync_args /* {
2970 struct vnode *a_vp;
2971 struct ucred *a_cred;
2972 int a_waitfor;
2973 struct thread *a_td;
2974 } */ *ap;
2975{
2976 struct vnode *syncvp = ap->a_vp;
2977 struct mount *mp = syncvp->v_mount;
2978 struct thread *td = ap->a_td;
2979 int asyncflag;
2980
2981 /*
2982 * We only need to do something if this is a lazy evaluation.
2983 */
2984 if (ap->a_waitfor != MNT_LAZY)
2985 return (0);
2986
2987 /*
2988 * Move ourselves to the back of the sync list.
2989 */
2990 vn_syncer_add_to_worklist(syncvp, syncdelay);
2991
2992 /*
2993 * Walk the list of vnodes pushing all that are dirty and
2994 * not already on the sync list.
2995 */
2996 lwkt_gettoken(&mountlist_token);
2997 if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_token, td) != 0) {
2998 lwkt_reltoken(&mountlist_token);
2999 return (0);
3000 }
3001 asyncflag = mp->mnt_flag & MNT_ASYNC;
3002 mp->mnt_flag &= ~MNT_ASYNC;
3003 vfs_msync(mp, MNT_NOWAIT);
3004 VFS_SYNC(mp, MNT_LAZY, td);
3005 if (asyncflag)
3006 mp->mnt_flag |= MNT_ASYNC;
3007 vfs_unbusy(mp, td);
3008 return (0);
3009}
3010
3011/*
3012 * The syncer vnode is no referenced.
3013 */
3014static int
3015sync_inactive(ap)
3016 struct vop_inactive_args /* {
3017 struct vnode *a_vp;
3018 struct proc *a_p;
3019 } */ *ap;
3020{
3021
3022 vgone(ap->a_vp);
3023 return (0);
3024}
3025
3026/*
3027 * The syncer vnode is no longer needed and is being decommissioned.
3028 *
3029 * Modifications to the worklist must be protected at splbio().
3030 */
3031static int
3032sync_reclaim(ap)
3033 struct vop_reclaim_args /* {
3034 struct vnode *a_vp;
3035 } */ *ap;
3036{
3037 struct vnode *vp = ap->a_vp;
3038 int s;
3039
3040 s = splbio();
3041 vp->v_mount->mnt_syncer = NULL;
3042 if (vp->v_flag & VONWORKLST) {
3043 LIST_REMOVE(vp, v_synclist);
3044 vp->v_flag &= ~VONWORKLST;
3045 }
3046 splx(s);
3047
3048 return (0);
3049}
3050
3051/*
3052 * Print out a syncer vnode.
3053 */
3054static int
3055sync_print(ap)
3056 struct vop_print_args /* {
3057 struct vnode *a_vp;
3058 } */ *ap;
3059{
3060 struct vnode *vp = ap->a_vp;
3061
3062 printf("syncer vnode");
3063 if (vp->v_vnlock != NULL)
3064 lockmgr_printinfo(vp->v_vnlock);
3065 printf("\n");
3066 return (0);
3067}
3068
3069/*
3070 * extract the dev_t from a VBLK or VCHR
3071 */
3072dev_t
3073vn_todev(vp)
3074 struct vnode *vp;
3075{
3076 if (vp->v_type != VBLK && vp->v_type != VCHR)
3077 return (NODEV);
3078 return (vp->v_rdev);
3079}
3080
3081/*
3082 * Check if vnode represents a disk device
3083 */
3084int
3085vn_isdisk(vp, errp)
3086 struct vnode *vp;
3087 int *errp;
3088{
3089 if (vp->v_type != VBLK && vp->v_type != VCHR) {
3090 if (errp != NULL)
3091 *errp = ENOTBLK;
3092 return (0);
3093 }
3094 if (vp->v_rdev == NULL) {
3095 if (errp != NULL)
3096 *errp = ENXIO;
3097 return (0);
3098 }
3099 if (!dev_dport(vp->v_rdev)) {
3100 if (errp != NULL)
3101 *errp = ENXIO;
3102 return (0);
3103 }
3104 if (!(dev_dflags(vp->v_rdev) & D_DISK)) {
3105 if (errp != NULL)
3106 *errp = ENOTBLK;
3107 return (0);
3108 }
3109 if (errp != NULL)
3110 *errp = 0;
3111 return (1);
3112}
3113
3114void
3115NDFREE(ndp, flags)
3116 struct nameidata *ndp;
3117 const uint flags;
3118{
3119 if (!(flags & NDF_NO_FREE_PNBUF) &&
3120 (ndp->ni_cnd.cn_flags & CNP_HASBUF)) {
3121 zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
3122 ndp->ni_cnd.cn_flags &= ~CNP_HASBUF;
3123 }
3124 if (!(flags & NDF_NO_DNCP_RELE) &&
3125 (ndp->ni_cnd.cn_flags & CNP_WANTDNCP) &&
3126 ndp->ni_dncp) {
3127 cache_drop(ndp->ni_dncp);
3128 ndp->ni_dncp = NULL;
3129 }
3130 if (!(flags & NDF_NO_NCP_RELE) &&
3131 (ndp->ni_cnd.cn_flags & CNP_WANTNCP) &&
3132 ndp->ni_ncp) {
3133 cache_drop(ndp->ni_ncp);
3134 ndp->ni_ncp = NULL;
3135 }
3136 if (!(flags & NDF_NO_DVP_UNLOCK) &&
3137 (ndp->ni_cnd.cn_flags & CNP_LOCKPARENT) &&
3138 ndp->ni_dvp != ndp->ni_vp) {
3139 VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_td);
3140 }
3141 if (!(flags & NDF_NO_DVP_RELE) &&
3142 (ndp->ni_cnd.cn_flags & (CNP_LOCKPARENT|CNP_WANTPARENT))) {
3143 vrele(ndp->ni_dvp);
3144 ndp->ni_dvp = NULL;
3145 }
3146 if (!(flags & NDF_NO_VP_UNLOCK) &&
3147 (ndp->ni_cnd.cn_flags & CNP_LOCKLEAF) && ndp->ni_vp) {
3148 VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_td);
3149 }
3150 if (!(flags & NDF_NO_VP_RELE) &&
3151 ndp->ni_vp) {
3152 vrele(ndp->ni_vp);
3153 ndp->ni_vp = NULL;
3154 }
3155 if (!(flags & NDF_NO_STARTDIR_RELE) &&
3156 (ndp->ni_cnd.cn_flags & CNP_SAVESTART)) {
3157 vrele(ndp->ni_startdir);
3158 ndp->ni_startdir = NULL;
3159 }
3160}
3161