Adjust the KTR code to use cache-aligned per-cpu structures.
[dragonfly.git] / sys / kern / lwkt_thread.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.120 2008/10/26 04:29:19 sephe Exp $
35 */
36
37/*
38 * Each cpu in a system has its own self-contained light weight kernel
39 * thread scheduler, which means that generally speaking we only need
40 * to use a critical section to avoid problems. Foreign thread
41 * scheduling is queued via (async) IPIs.
42 */
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/kernel.h>
47#include <sys/proc.h>
48#include <sys/rtprio.h>
49#include <sys/queue.h>
50#include <sys/sysctl.h>
51#include <sys/kthread.h>
52#include <machine/cpu.h>
53#include <sys/lock.h>
54#include <sys/caps.h>
55#include <sys/spinlock.h>
56#include <sys/ktr.h>
57
58#include <sys/thread2.h>
59#include <sys/spinlock2.h>
60
61#include <vm/vm.h>
62#include <vm/vm_param.h>
63#include <vm/vm_kern.h>
64#include <vm/vm_object.h>
65#include <vm/vm_page.h>
66#include <vm/vm_map.h>
67#include <vm/vm_pager.h>
68#include <vm/vm_extern.h>
69
70#include <machine/stdarg.h>
71#include <machine/smp.h>
72
73
74static MALLOC_DEFINE(M_THREAD, "thread", "lwkt threads");
75
76static int untimely_switch = 0;
77#ifdef INVARIANTS
78static int panic_on_cscount = 0;
79#endif
80static __int64_t switch_count = 0;
81static __int64_t preempt_hit = 0;
82static __int64_t preempt_miss = 0;
83static __int64_t preempt_weird = 0;
84static __int64_t token_contention_count = 0;
85static __int64_t mplock_contention_count = 0;
86static int lwkt_use_spin_port;
87#ifdef SMP
88static int chain_mplock = 0;
89#endif
90static struct objcache *thread_cache;
91
92volatile cpumask_t mp_lock_contention_mask;
93
94extern void cpu_heavy_restore(void);
95extern void cpu_lwkt_restore(void);
96extern void cpu_kthread_restore(void);
97extern void cpu_idle_restore(void);
98
99int
100jg_tos_ok(struct thread *td)
101{
102 if (td == NULL) {
103 return 1;
104 }
105 KKASSERT(td->td_sp != NULL);
106 unsigned long tos = ((unsigned long *)td->td_sp)[0];
107 int tos_ok = 0;
108 if ((tos == cpu_heavy_restore) || (tos == cpu_lwkt_restore)
109 || (tos == cpu_kthread_restore) || (tos == cpu_idle_restore)) {
110 tos_ok = 1;
111 }
112 return tos_ok;
113}
114
115/*
116 * We can make all thread ports use the spin backend instead of the thread
117 * backend. This should only be set to debug the spin backend.
118 */
119TUNABLE_INT("lwkt.use_spin_port", &lwkt_use_spin_port);
120
121SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, "");
122#ifdef INVARIANTS
123SYSCTL_INT(_lwkt, OID_AUTO, panic_on_cscount, CTLFLAG_RW, &panic_on_cscount, 0, "");
124#endif
125#ifdef SMP
126SYSCTL_INT(_lwkt, OID_AUTO, chain_mplock, CTLFLAG_RW, &chain_mplock, 0, "");
127#endif
128SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
129SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
130SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
131SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
132#ifdef INVARIANTS
133SYSCTL_QUAD(_lwkt, OID_AUTO, token_contention_count, CTLFLAG_RW,
134 &token_contention_count, 0, "spinning due to token contention");
135SYSCTL_QUAD(_lwkt, OID_AUTO, mplock_contention_count, CTLFLAG_RW,
136 &mplock_contention_count, 0, "spinning due to MPLOCK contention");
137#endif
138
139/*
140 * Kernel Trace
141 */
142#if !defined(KTR_GIANT_CONTENTION)
143#define KTR_GIANT_CONTENTION KTR_ALL
144#endif
145
146KTR_INFO_MASTER(giant);
147KTR_INFO(KTR_GIANT_CONTENTION, giant, beg, 0, "thread=%p", sizeof(void *));
148KTR_INFO(KTR_GIANT_CONTENTION, giant, end, 1, "thread=%p", sizeof(void *));
149
150#define loggiant(name) KTR_LOG(giant_ ## name, curthread)
151
152/*
153 * These helper procedures handle the runq, they can only be called from
154 * within a critical section.
155 *
156 * WARNING! Prior to SMP being brought up it is possible to enqueue and
157 * dequeue threads belonging to other cpus, so be sure to use td->td_gd
158 * instead of 'mycpu' when referencing the globaldata structure. Once
159 * SMP live enqueuing and dequeueing only occurs on the current cpu.
160 */
161static __inline
162void
163_lwkt_dequeue(thread_t td)
164{
165 if (td->td_flags & TDF_RUNQ) {
166 int nq = td->td_pri & TDPRI_MASK;
167 struct globaldata *gd = td->td_gd;
168
169 td->td_flags &= ~TDF_RUNQ;
170 TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
171 /* runqmask is passively cleaned up by the switcher */
172 }
173}
174
175static __inline
176void
177_lwkt_enqueue(thread_t td)
178{
179 if ((td->td_flags & (TDF_RUNQ|TDF_MIGRATING|TDF_TSLEEPQ|TDF_BLOCKQ)) == 0) {
180 int nq = td->td_pri & TDPRI_MASK;
181 struct globaldata *gd = td->td_gd;
182
183 td->td_flags |= TDF_RUNQ;
184 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
185 gd->gd_runqmask |= 1 << nq;
186 }
187}
188
189static __boolean_t
190_lwkt_thread_ctor(void *obj, void *privdata, int ocflags)
191{
192 struct thread *td = (struct thread *)obj;
193
194 td->td_kstack = NULL;
195 td->td_kstack_size = 0;
196 td->td_flags = TDF_ALLOCATED_THREAD;
197 return (1);
198}
199
200static void
201_lwkt_thread_dtor(void *obj, void *privdata)
202{
203 struct thread *td = (struct thread *)obj;
204
205 KASSERT(td->td_flags & TDF_ALLOCATED_THREAD,
206 ("_lwkt_thread_dtor: not allocated from objcache"));
207 KASSERT((td->td_flags & TDF_ALLOCATED_STACK) && td->td_kstack &&
208 td->td_kstack_size > 0,
209 ("_lwkt_thread_dtor: corrupted stack"));
210 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
211}
212
213/*
214 * Initialize the lwkt s/system.
215 */
216void
217lwkt_init(void)
218{
219 /* An objcache has 2 magazines per CPU so divide cache size by 2. */
220 thread_cache = objcache_create_mbacked(M_THREAD, sizeof(struct thread),
221 NULL, CACHE_NTHREADS/2,
222 _lwkt_thread_ctor, _lwkt_thread_dtor, NULL);
223}
224
225/*
226 * Schedule a thread to run. As the current thread we can always safely
227 * schedule ourselves, and a shortcut procedure is provided for that
228 * function.
229 *
230 * (non-blocking, self contained on a per cpu basis)
231 */
232void
233lwkt_schedule_self(thread_t td)
234{
235 crit_enter_quick(td);
236 KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule_self(): scheduling gd_idlethread is illegal!"));
237 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
238 _lwkt_enqueue(td);
239 crit_exit_quick(td);
240}
241
242/*
243 * Deschedule a thread.
244 *
245 * (non-blocking, self contained on a per cpu basis)
246 */
247void
248lwkt_deschedule_self(thread_t td)
249{
250 crit_enter_quick(td);
251 _lwkt_dequeue(td);
252 crit_exit_quick(td);
253}
254
255/*
256 * LWKTs operate on a per-cpu basis
257 *
258 * WARNING! Called from early boot, 'mycpu' may not work yet.
259 */
260void
261lwkt_gdinit(struct globaldata *gd)
262{
263 int i;
264
265 for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
266 TAILQ_INIT(&gd->gd_tdrunq[i]);
267 gd->gd_runqmask = 0;
268 TAILQ_INIT(&gd->gd_tdallq);
269}
270
271/*
272 * Create a new thread. The thread must be associated with a process context
273 * or LWKT start address before it can be scheduled. If the target cpu is
274 * -1 the thread will be created on the current cpu.
275 *
276 * If you intend to create a thread without a process context this function
277 * does everything except load the startup and switcher function.
278 */
279thread_t
280lwkt_alloc_thread(struct thread *td, int stksize, int cpu, int flags)
281{
282 globaldata_t gd = mycpu;
283 void *stack;
284
285 /*
286 * If static thread storage is not supplied allocate a thread. Reuse
287 * a cached free thread if possible. gd_freetd is used to keep an exiting
288 * thread intact through the exit.
289 */
290 if (td == NULL) {
291 if ((td = gd->gd_freetd) != NULL)
292 gd->gd_freetd = NULL;
293 else
294 td = objcache_get(thread_cache, M_WAITOK);
295 KASSERT((td->td_flags &
296 (TDF_ALLOCATED_THREAD|TDF_RUNNING)) == TDF_ALLOCATED_THREAD,
297 ("lwkt_alloc_thread: corrupted td flags 0x%X", td->td_flags));
298 flags |= td->td_flags & (TDF_ALLOCATED_THREAD|TDF_ALLOCATED_STACK);
299 }
300
301 /*
302 * Try to reuse cached stack.
303 */
304 if ((stack = td->td_kstack) != NULL && td->td_kstack_size != stksize) {
305 if (flags & TDF_ALLOCATED_STACK) {
306 kmem_free(&kernel_map, (vm_offset_t)stack, td->td_kstack_size);
307 stack = NULL;
308 }
309 }
310 if (stack == NULL) {
311 stack = (void *)kmem_alloc(&kernel_map, stksize);
312 flags |= TDF_ALLOCATED_STACK;
313 }
314 if (cpu < 0)
315 lwkt_init_thread(td, stack, stksize, flags, gd);
316 else
317 lwkt_init_thread(td, stack, stksize, flags, globaldata_find(cpu));
318 return(td);
319}
320
321/*
322 * Initialize a preexisting thread structure. This function is used by
323 * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
324 *
325 * All threads start out in a critical section at a priority of
326 * TDPRI_KERN_DAEMON. Higher level code will modify the priority as
327 * appropriate. This function may send an IPI message when the
328 * requested cpu is not the current cpu and consequently gd_tdallq may
329 * not be initialized synchronously from the point of view of the originating
330 * cpu.
331 *
332 * NOTE! we have to be careful in regards to creating threads for other cpus
333 * if SMP has not yet been activated.
334 */
335#ifdef SMP
336
337static void
338lwkt_init_thread_remote(void *arg)
339{
340 thread_t td = arg;
341
342 /*
343 * Protected by critical section held by IPI dispatch
344 */
345 TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
346}
347
348#endif
349
350void
351lwkt_init_thread(thread_t td, void *stack, int stksize, int flags,
352 struct globaldata *gd)
353{
354 globaldata_t mygd = mycpu;
355
356 bzero(td, sizeof(struct thread));
357 td->td_kstack = stack;
358 td->td_kstack_size = stksize;
359 td->td_flags = flags;
360 td->td_gd = gd;
361 td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
362#ifdef SMP
363 if ((flags & TDF_MPSAFE) == 0)
364 td->td_mpcount = 1;
365#endif
366 if (lwkt_use_spin_port)
367 lwkt_initport_spin(&td->td_msgport);
368 else
369 lwkt_initport_thread(&td->td_msgport, td);
370 pmap_init_thread(td);
371#ifdef SMP
372 /*
373 * Normally initializing a thread for a remote cpu requires sending an
374 * IPI. However, the idlethread is setup before the other cpus are
375 * activated so we have to treat it as a special case. XXX manipulation
376 * of gd_tdallq requires the BGL.
377 */
378 if (gd == mygd || td == &gd->gd_idlethread) {
379 crit_enter_gd(mygd);
380 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
381 crit_exit_gd(mygd);
382 } else {
383 lwkt_send_ipiq(gd, lwkt_init_thread_remote, td);
384 }
385#else
386 crit_enter_gd(mygd);
387 TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
388 crit_exit_gd(mygd);
389#endif
390}
391
392void
393lwkt_set_comm(thread_t td, const char *ctl, ...)
394{
395 __va_list va;
396
397 __va_start(va, ctl);
398 kvsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
399 __va_end(va);
400}
401
402void
403lwkt_hold(thread_t td)
404{
405 ++td->td_refs;
406}
407
408void
409lwkt_rele(thread_t td)
410{
411 KKASSERT(td->td_refs > 0);
412 --td->td_refs;
413}
414
415void
416lwkt_wait_free(thread_t td)
417{
418 while (td->td_refs)
419 tsleep(td, 0, "tdreap", hz);
420}
421
422void
423lwkt_free_thread(thread_t td)
424{
425 KASSERT((td->td_flags & TDF_RUNNING) == 0,
426 ("lwkt_free_thread: did not exit! %p", td));
427
428 if (td->td_flags & TDF_ALLOCATED_THREAD) {
429 objcache_put(thread_cache, td);
430 } else if (td->td_flags & TDF_ALLOCATED_STACK) {
431 /* client-allocated struct with internally allocated stack */
432 KASSERT(td->td_kstack && td->td_kstack_size > 0,
433 ("lwkt_free_thread: corrupted stack"));
434 kmem_free(&kernel_map, (vm_offset_t)td->td_kstack, td->td_kstack_size);
435 td->td_kstack = NULL;
436 td->td_kstack_size = 0;
437 }
438}
439
440
441/*
442 * Switch to the next runnable lwkt. If no LWKTs are runnable then
443 * switch to the idlethread. Switching must occur within a critical
444 * section to avoid races with the scheduling queue.
445 *
446 * We always have full control over our cpu's run queue. Other cpus
447 * that wish to manipulate our queue must use the cpu_*msg() calls to
448 * talk to our cpu, so a critical section is all that is needed and
449 * the result is very, very fast thread switching.
450 *
451 * The LWKT scheduler uses a fixed priority model and round-robins at
452 * each priority level. User process scheduling is a totally
453 * different beast and LWKT priorities should not be confused with
454 * user process priorities.
455 *
456 * The MP lock may be out of sync with the thread's td_mpcount. lwkt_switch()
457 * cleans it up. Note that the td_switch() function cannot do anything that
458 * requires the MP lock since the MP lock will have already been setup for
459 * the target thread (not the current thread). It's nice to have a scheduler
460 * that does not need the MP lock to work because it allows us to do some
461 * really cool high-performance MP lock optimizations.
462 *
463 * PREEMPTION NOTE: Preemption occurs via lwkt_preempt(). lwkt_switch()
464 * is not called by the current thread in the preemption case, only when
465 * the preempting thread blocks (in order to return to the original thread).
466 */
467void
468lwkt_switch(void)
469{
470 globaldata_t gd = mycpu;
471 thread_t td = gd->gd_curthread;
472 thread_t ntd;
473#ifdef SMP
474 int mpheld;
475#endif
476
477 /*
478 * Switching from within a 'fast' (non thread switched) interrupt or IPI
479 * is illegal. However, we may have to do it anyway if we hit a fatal
480 * kernel trap or we have paniced.
481 *
482 * If this case occurs save and restore the interrupt nesting level.
483 */
484 if (gd->gd_intr_nesting_level) {
485 int savegdnest;
486 int savegdtrap;
487
488 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
489 panic("lwkt_switch: cannot switch from within "
490 "a fast interrupt, yet, td %p\n", td);
491 } else {
492 savegdnest = gd->gd_intr_nesting_level;
493 savegdtrap = gd->gd_trap_nesting_level;
494 gd->gd_intr_nesting_level = 0;
495 gd->gd_trap_nesting_level = 0;
496 if ((td->td_flags & TDF_PANICWARN) == 0) {
497 td->td_flags |= TDF_PANICWARN;
498 kprintf("Warning: thread switch from interrupt or IPI, "
499 "thread %p (%s)\n", td, td->td_comm);
500 print_backtrace();
501 }
502 lwkt_switch();
503 gd->gd_intr_nesting_level = savegdnest;
504 gd->gd_trap_nesting_level = savegdtrap;
505 return;
506 }
507 }
508
509 /*
510 * Passive release (used to transition from user to kernel mode
511 * when we block or switch rather then when we enter the kernel).
512 * This function is NOT called if we are switching into a preemption
513 * or returning from a preemption. Typically this causes us to lose
514 * our current process designation (if we have one) and become a true
515 * LWKT thread, and may also hand the current process designation to
516 * another process and schedule thread.
517 */
518 if (td->td_release)
519 td->td_release(td);
520
521 crit_enter_gd(gd);
522 if (td->td_toks)
523 lwkt_relalltokens(td);
524
525 /*
526 * We had better not be holding any spin locks, but don't get into an
527 * endless panic loop.
528 */
529 KASSERT(gd->gd_spinlock_rd == NULL || panicstr != NULL,
530 ("lwkt_switch: still holding a shared spinlock %p!",
531 gd->gd_spinlock_rd));
532 KASSERT(gd->gd_spinlocks_wr == 0 || panicstr != NULL,
533 ("lwkt_switch: still holding %d exclusive spinlocks!",
534 gd->gd_spinlocks_wr));
535
536
537#ifdef SMP
538 /*
539 * td_mpcount cannot be used to determine if we currently hold the
540 * MP lock because get_mplock() will increment it prior to attempting
541 * to get the lock, and switch out if it can't. Our ownership of
542 * the actual lock will remain stable while we are in a critical section
543 * (but, of course, another cpu may own or release the lock so the
544 * actual value of mp_lock is not stable).
545 */
546 mpheld = MP_LOCK_HELD();
547#ifdef INVARIANTS
548 if (td->td_cscount) {
549 kprintf("Diagnostic: attempt to switch while mastering cpusync: %p\n",
550 td);
551 if (panic_on_cscount)
552 panic("switching while mastering cpusync");
553 }
554#endif
555#endif
556 if ((ntd = td->td_preempted) != NULL) {
557 /*
558 * We had preempted another thread on this cpu, resume the preempted
559 * thread. This occurs transparently, whether the preempted thread
560 * was scheduled or not (it may have been preempted after descheduling
561 * itself).
562 *
563 * We have to setup the MP lock for the original thread after backing
564 * out the adjustment that was made to curthread when the original
565 * was preempted.
566 */
567 KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
568#ifdef SMP
569 if (ntd->td_mpcount && mpheld == 0) {
570 panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d",
571 td, ntd, td->td_mpcount, ntd->td_mpcount);
572 }
573 if (ntd->td_mpcount) {
574 td->td_mpcount -= ntd->td_mpcount;
575 KKASSERT(td->td_mpcount >= 0);
576 }
577#endif
578 ntd->td_flags |= TDF_PREEMPT_DONE;
579
580 /*
581 * The interrupt may have woken a thread up, we need to properly
582 * set the reschedule flag if the originally interrupted thread is
583 * at a lower priority.
584 */
585 if (gd->gd_runqmask > (2 << (ntd->td_pri & TDPRI_MASK)) - 1)
586 need_lwkt_resched();
587 /* YYY release mp lock on switchback if original doesn't need it */
588 } else {
589 /*
590 * Priority queue / round-robin at each priority. Note that user
591 * processes run at a fixed, low priority and the user process
592 * scheduler deals with interactions between user processes
593 * by scheduling and descheduling them from the LWKT queue as
594 * necessary.
595 *
596 * We have to adjust the MP lock for the target thread. If we
597 * need the MP lock and cannot obtain it we try to locate a
598 * thread that does not need the MP lock. If we cannot, we spin
599 * instead of HLT.
600 *
601 * A similar issue exists for the tokens held by the target thread.
602 * If we cannot obtain ownership of the tokens we cannot immediately
603 * schedule the thread.
604 */
605
606 /*
607 * If an LWKT reschedule was requested, well that is what we are
608 * doing now so clear it.
609 */
610 clear_lwkt_resched();
611again:
612 if (gd->gd_runqmask) {
613 int nq = bsrl(gd->gd_runqmask);
614 if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
615 gd->gd_runqmask &= ~(1 << nq);
616 goto again;
617 }
618#ifdef SMP
619 /*
620 * THREAD SELECTION FOR AN SMP MACHINE BUILD
621 *
622 * If the target needs the MP lock and we couldn't get it,
623 * or if the target is holding tokens and we could not
624 * gain ownership of the tokens, continue looking for a
625 * thread to schedule and spin instead of HLT if we can't.
626 *
627 * NOTE: the mpheld variable invalid after this conditional, it
628 * can change due to both cpu_try_mplock() returning success
629 * AND interactions in lwkt_getalltokens() due to the fact that
630 * we are trying to check the mpcount of a thread other then
631 * the current thread. Because of this, if the current thread
632 * is not holding td_mpcount, an IPI indirectly run via
633 * lwkt_getalltokens() can obtain and release the MP lock and
634 * cause the core MP lock to be released.
635 */
636 if ((ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) ||
637 (ntd->td_toks && lwkt_getalltokens(ntd) == 0)
638 ) {
639 u_int32_t rqmask = gd->gd_runqmask;
640
641 mpheld = MP_LOCK_HELD();
642 ntd = NULL;
643 while (rqmask) {
644 TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
645 if (ntd->td_mpcount && !mpheld && !cpu_try_mplock()) {
646 /* spinning due to MP lock being held */
647#ifdef INVARIANTS
648 ++mplock_contention_count;
649#endif
650 /* mplock still not held, 'mpheld' still valid */
651 continue;
652 }
653
654 /*
655 * mpheld state invalid after getalltokens call returns
656 * failure, but the variable is only needed for
657 * the loop.
658 */
659 if (ntd->td_toks && !lwkt_getalltokens(ntd)) {
660 /* spinning due to token contention */
661#ifdef INVARIANTS
662 ++token_contention_count;
663#endif
664 mpheld = MP_LOCK_HELD();
665 continue;
666 }
667 break;
668 }
669 if (ntd)
670 break;
671 rqmask &= ~(1 << nq);
672 nq = bsrl(rqmask);
673
674 /*
675 * We have two choices. We can either refuse to run a
676 * user thread when a kernel thread needs the MP lock
677 * but could not get it, or we can allow it to run but
678 * then expect an IPI (hopefully) later on to force a
679 * reschedule when the MP lock might become available.
680 */
681 if (nq < TDPRI_KERN_LPSCHED) {
682 if (chain_mplock == 0)
683 break;
684 atomic_set_int(&mp_lock_contention_mask,
685 gd->gd_cpumask);
686 /* continue loop, allow user threads to be scheduled */
687 }
688 }
689 if (ntd == NULL) {
690 cpu_mplock_contested();
691 ntd = &gd->gd_idlethread;
692 ntd->td_flags |= TDF_IDLE_NOHLT;
693 goto using_idle_thread;
694 } else {
695 ++gd->gd_cnt.v_swtch;
696 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
697 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
698 }
699 } else {
700 ++gd->gd_cnt.v_swtch;
701 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
702 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
703 }
704#else
705 /*
706 * THREAD SELECTION FOR A UP MACHINE BUILD. We don't have to
707 * worry about tokens or the BGL. However, we still have
708 * to call lwkt_getalltokens() in order to properly detect
709 * stale tokens. This call cannot fail for a UP build!
710 */
711 lwkt_getalltokens(ntd);
712 ++gd->gd_cnt.v_swtch;
713 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
714 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
715#endif
716 } else {
717 /*
718 * We have nothing to run but only let the idle loop halt
719 * the cpu if there are no pending interrupts.
720 */
721 ntd = &gd->gd_idlethread;
722 if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
723 ntd->td_flags |= TDF_IDLE_NOHLT;
724#ifdef SMP
725using_idle_thread:
726 /*
727 * The idle thread should not be holding the MP lock unless we
728 * are trapping in the kernel or in a panic. Since we select the
729 * idle thread unconditionally when no other thread is available,
730 * if the MP lock is desired during a panic or kernel trap, we
731 * have to loop in the scheduler until we get it.
732 */
733 if (ntd->td_mpcount) {
734 mpheld = MP_LOCK_HELD();
735 if (gd->gd_trap_nesting_level == 0 && panicstr == NULL) {
736 panic("Idle thread %p was holding the BGL!", ntd);
737 } else if (mpheld == 0) {
738 cpu_mplock_contested();
739 goto again;
740 }
741 }
742#endif
743 }
744 }
745 KASSERT(ntd->td_pri >= TDPRI_CRIT,
746 ("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
747
748 /*
749 * Do the actual switch. If the new target does not need the MP lock
750 * and we are holding it, release the MP lock. If the new target requires
751 * the MP lock we have already acquired it for the target.
752 */
753#ifdef SMP
754 if (ntd->td_mpcount == 0 ) {
755 if (MP_LOCK_HELD())
756 cpu_rel_mplock();
757 } else {
758 ASSERT_MP_LOCK_HELD(ntd);
759 }
760#endif
761 if (td != ntd) {
762 ++switch_count;
763 KKASSERT(jg_tos_ok(ntd));
764 td->td_switch(ntd);
765 }
766 /* NOTE: current cpu may have changed after switch */
767 crit_exit_quick(td);
768}
769
770/*
771 * Request that the target thread preempt the current thread. Preemption
772 * only works under a specific set of conditions:
773 *
774 * - We are not preempting ourselves
775 * - The target thread is owned by the current cpu
776 * - We are not currently being preempted
777 * - The target is not currently being preempted
778 * - We are not holding any spin locks
779 * - The target thread is not holding any tokens
780 * - We are able to satisfy the target's MP lock requirements (if any).
781 *
782 * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION. Typically
783 * this is called via lwkt_schedule() through the td_preemptable callback.
784 * critpri is the managed critical priority that we should ignore in order
785 * to determine whether preemption is possible (aka usually just the crit
786 * priority of lwkt_schedule() itself).
787 *
788 * XXX at the moment we run the target thread in a critical section during
789 * the preemption in order to prevent the target from taking interrupts
790 * that *WE* can't. Preemption is strictly limited to interrupt threads
791 * and interrupt-like threads, outside of a critical section, and the
792 * preempted source thread will be resumed the instant the target blocks
793 * whether or not the source is scheduled (i.e. preemption is supposed to
794 * be as transparent as possible).
795 *
796 * The target thread inherits our MP count (added to its own) for the
797 * duration of the preemption in order to preserve the atomicy of the
798 * MP lock during the preemption. Therefore, any preempting targets must be
799 * careful in regards to MP assertions. Note that the MP count may be
800 * out of sync with the physical mp_lock, but we do not have to preserve
801 * the original ownership of the lock if it was out of synch (that is, we
802 * can leave it synchronized on return).
803 */
804void
805lwkt_preempt(thread_t ntd, int critpri)
806{
807 struct globaldata *gd = mycpu;
808 thread_t td;
809#ifdef SMP
810 int mpheld;
811 int savecnt;
812#endif
813
814 /*
815 * The caller has put us in a critical section. We can only preempt
816 * if the caller of the caller was not in a critical section (basically
817 * a local interrupt), as determined by the 'critpri' parameter. We
818 * also can't preempt if the caller is holding any spinlocks (even if
819 * he isn't in a critical section). This also handles the tokens test.
820 *
821 * YYY The target thread must be in a critical section (else it must
822 * inherit our critical section? I dunno yet).
823 *
824 * Set need_lwkt_resched() unconditionally for now YYY.
825 */
826 KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
827
828 td = gd->gd_curthread;
829 if ((ntd->td_pri & TDPRI_MASK) <= (td->td_pri & TDPRI_MASK)) {
830 ++preempt_miss;
831 return;
832 }
833 if ((td->td_pri & ~TDPRI_MASK) > critpri) {
834 ++preempt_miss;
835 need_lwkt_resched();
836 return;
837 }
838#ifdef SMP
839 if (ntd->td_gd != gd) {
840 ++preempt_miss;
841 need_lwkt_resched();
842 return;
843 }
844#endif
845 /*
846 * Take the easy way out and do not preempt if we are holding
847 * any spinlocks. We could test whether the thread(s) being
848 * preempted interlock against the target thread's tokens and whether
849 * we can get all the target thread's tokens, but this situation
850 * should not occur very often so its easier to simply not preempt.
851 * Also, plain spinlocks are impossible to figure out at this point so
852 * just don't preempt.
853 *
854 * Do not try to preempt if the target thread is holding any tokens.
855 * We could try to acquire the tokens but this case is so rare there
856 * is no need to support it.
857 */
858 if (gd->gd_spinlock_rd || gd->gd_spinlocks_wr) {
859 ++preempt_miss;
860 need_lwkt_resched();
861 return;
862 }
863 if (ntd->td_toks) {
864 ++preempt_miss;
865 need_lwkt_resched();
866 return;
867 }
868 if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
869 ++preempt_weird;
870 need_lwkt_resched();
871 return;
872 }
873 if (ntd->td_preempted) {
874 ++preempt_hit;
875 need_lwkt_resched();
876 return;
877 }
878#ifdef SMP
879 /*
880 * note: an interrupt might have occured just as we were transitioning
881 * to or from the MP lock. In this case td_mpcount will be pre-disposed
882 * (non-zero) but not actually synchronized with the actual state of the
883 * lock. We can use it to imply an MP lock requirement for the
884 * preemption but we cannot use it to test whether we hold the MP lock
885 * or not.
886 */
887 savecnt = td->td_mpcount;
888 mpheld = MP_LOCK_HELD();
889 ntd->td_mpcount += td->td_mpcount;
890 if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
891 ntd->td_mpcount -= td->td_mpcount;
892 ++preempt_miss;
893 need_lwkt_resched();
894 return;
895 }
896#endif
897
898 /*
899 * Since we are able to preempt the current thread, there is no need to
900 * call need_lwkt_resched().
901 */
902 ++preempt_hit;
903 ntd->td_preempted = td;
904 td->td_flags |= TDF_PREEMPT_LOCK;
905 td->td_switch(ntd);
906
907 KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
908#ifdef SMP
909 KKASSERT(savecnt == td->td_mpcount);
910 mpheld = MP_LOCK_HELD();
911 if (mpheld && td->td_mpcount == 0)
912 cpu_rel_mplock();
913 else if (mpheld == 0 && td->td_mpcount)
914 panic("lwkt_preempt(): MP lock was not held through");
915#endif
916 ntd->td_preempted = NULL;
917 td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
918}
919
920/*
921 * Yield our thread while higher priority threads are pending. This is
922 * typically called when we leave a critical section but it can be safely
923 * called while we are in a critical section.
924 *
925 * This function will not generally yield to equal priority threads but it
926 * can occur as a side effect. Note that lwkt_switch() is called from
927 * inside the critical section to prevent its own crit_exit() from reentering
928 * lwkt_yield_quick().
929 *
930 * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint
931 * came along but was blocked and made pending.
932 *
933 * (self contained on a per cpu basis)
934 */
935void
936lwkt_yield_quick(void)
937{
938 globaldata_t gd = mycpu;
939 thread_t td = gd->gd_curthread;
940
941 /*
942 * gd_reqflags is cleared in splz if the cpl is 0. If we were to clear
943 * it with a non-zero cpl then we might not wind up calling splz after
944 * a task switch when the critical section is exited even though the
945 * new task could accept the interrupt.
946 *
947 * XXX from crit_exit() only called after last crit section is released.
948 * If called directly will run splz() even if in a critical section.
949 *
950 * td_nest_count prevent deep nesting via splz() or doreti(). Note that
951 * except for this special case, we MUST call splz() here to handle any
952 * pending ints, particularly after we switch, or we might accidently
953 * halt the cpu with interrupts pending.
954 */
955 if (gd->gd_reqflags && td->td_nest_count < 2)
956 splz();
957
958 /*
959 * YYY enabling will cause wakeup() to task-switch, which really
960 * confused the old 4.x code. This is a good way to simulate
961 * preemption and MP without actually doing preemption or MP, because a
962 * lot of code assumes that wakeup() does not block.
963 */
964 if (untimely_switch && td->td_nest_count == 0 &&
965 gd->gd_intr_nesting_level == 0
966 ) {
967 crit_enter_quick(td);
968 /*
969 * YYY temporary hacks until we disassociate the userland scheduler
970 * from the LWKT scheduler.
971 */
972 if (td->td_flags & TDF_RUNQ) {
973 lwkt_switch(); /* will not reenter yield function */
974 } else {
975 lwkt_schedule_self(td); /* make sure we are scheduled */
976 lwkt_switch(); /* will not reenter yield function */
977 lwkt_deschedule_self(td); /* make sure we are descheduled */
978 }
979 crit_exit_noyield(td);
980 }
981}
982
983/*
984 * This implements a normal yield which, unlike _quick, will yield to equal
985 * priority threads as well. Note that gd_reqflags tests will be handled by
986 * the crit_exit() call in lwkt_switch().
987 *
988 * (self contained on a per cpu basis)
989 */
990void
991lwkt_yield(void)
992{
993 lwkt_schedule_self(curthread);
994 lwkt_switch();
995}
996
997/*
998 * Return 0 if no runnable threads are pending at the same or higher
999 * priority as the passed thread.
1000 *
1001 * Return 1 if runnable threads are pending at the same priority.
1002 *
1003 * Return 2 if runnable threads are pending at a higher priority.
1004 */
1005int
1006lwkt_check_resched(thread_t td)
1007{
1008 int pri = td->td_pri & TDPRI_MASK;
1009
1010 if (td->td_gd->gd_runqmask > (2 << pri) - 1)
1011 return(2);
1012 if (TAILQ_NEXT(td, td_threadq))
1013 return(1);
1014 return(0);
1015}
1016
1017/*
1018 * Generic schedule. Possibly schedule threads belonging to other cpus and
1019 * deal with threads that might be blocked on a wait queue.
1020 *
1021 * We have a little helper inline function which does additional work after
1022 * the thread has been enqueued, including dealing with preemption and
1023 * setting need_lwkt_resched() (which prevents the kernel from returning
1024 * to userland until it has processed higher priority threads).
1025 *
1026 * It is possible for this routine to be called after a failed _enqueue
1027 * (due to the target thread migrating, sleeping, or otherwise blocked).
1028 * We have to check that the thread is actually on the run queue!
1029 *
1030 * reschedok is an optimized constant propagated from lwkt_schedule() or
1031 * lwkt_schedule_noresched(). By default it is non-zero, causing a
1032 * reschedule to be requested if the target thread has a higher priority.
1033 * The port messaging code will set MSG_NORESCHED and cause reschedok to
1034 * be 0, prevented undesired reschedules.
1035 */
1036static __inline
1037void
1038_lwkt_schedule_post(globaldata_t gd, thread_t ntd, int cpri, int reschedok)
1039{
1040 thread_t otd;
1041
1042 if (ntd->td_flags & TDF_RUNQ) {
1043 if (ntd->td_preemptable && reschedok) {
1044 ntd->td_preemptable(ntd, cpri); /* YYY +token */
1045 } else if (reschedok) {
1046 otd = curthread;
1047 if ((ntd->td_pri & TDPRI_MASK) > (otd->td_pri & TDPRI_MASK))
1048 need_lwkt_resched();
1049 }
1050 }
1051}
1052
1053static __inline
1054void
1055_lwkt_schedule(thread_t td, int reschedok)
1056{
1057 globaldata_t mygd = mycpu;
1058
1059 KASSERT(td != &td->td_gd->gd_idlethread, ("lwkt_schedule(): scheduling gd_idlethread is illegal!"));
1060 crit_enter_gd(mygd);
1061 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1062 if (td == mygd->gd_curthread) {
1063 _lwkt_enqueue(td);
1064 } else {
1065 /*
1066 * If we own the thread, there is no race (since we are in a
1067 * critical section). If we do not own the thread there might
1068 * be a race but the target cpu will deal with it.
1069 */
1070#ifdef SMP
1071 if (td->td_gd == mygd) {
1072 _lwkt_enqueue(td);
1073 _lwkt_schedule_post(mygd, td, TDPRI_CRIT, reschedok);
1074 } else {
1075 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_schedule, td);
1076 }
1077#else
1078 _lwkt_enqueue(td);
1079 _lwkt_schedule_post(mygd, td, TDPRI_CRIT, reschedok);
1080#endif
1081 }
1082 crit_exit_gd(mygd);
1083}
1084
1085void
1086lwkt_schedule(thread_t td)
1087{
1088 _lwkt_schedule(td, 1);
1089}
1090
1091void
1092lwkt_schedule_noresched(thread_t td)
1093{
1094 _lwkt_schedule(td, 0);
1095}
1096
1097#ifdef SMP
1098
1099/*
1100 * Thread migration using a 'Pull' method. The thread may or may not be
1101 * the current thread. It MUST be descheduled and in a stable state.
1102 * lwkt_giveaway() must be called on the cpu owning the thread.
1103 *
1104 * At any point after lwkt_giveaway() is called, the target cpu may
1105 * 'pull' the thread by calling lwkt_acquire().
1106 *
1107 * MPSAFE - must be called under very specific conditions.
1108 */
1109void
1110lwkt_giveaway(thread_t td)
1111{
1112 globaldata_t gd = mycpu;
1113
1114 crit_enter_gd(gd);
1115 KKASSERT(td->td_gd == gd);
1116 TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
1117 td->td_flags |= TDF_MIGRATING;
1118 crit_exit_gd(gd);
1119}
1120
1121void
1122lwkt_acquire(thread_t td)
1123{
1124 globaldata_t gd;
1125 globaldata_t mygd;
1126
1127 KKASSERT(td->td_flags & TDF_MIGRATING);
1128 gd = td->td_gd;
1129 mygd = mycpu;
1130 if (gd != mycpu) {
1131 cpu_lfence();
1132 KKASSERT((td->td_flags & TDF_RUNQ) == 0);
1133 crit_enter_gd(mygd);
1134 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1135#ifdef SMP
1136 lwkt_process_ipiq();
1137#endif
1138 cpu_lfence();
1139 }
1140 td->td_gd = mygd;
1141 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1142 td->td_flags &= ~TDF_MIGRATING;
1143 crit_exit_gd(mygd);
1144 } else {
1145 crit_enter_gd(mygd);
1146 TAILQ_INSERT_TAIL(&mygd->gd_tdallq, td, td_allq);
1147 td->td_flags &= ~TDF_MIGRATING;
1148 crit_exit_gd(mygd);
1149 }
1150}
1151
1152#endif
1153
1154/*
1155 * Generic deschedule. Descheduling threads other then your own should be
1156 * done only in carefully controlled circumstances. Descheduling is
1157 * asynchronous.
1158 *
1159 * This function may block if the cpu has run out of messages.
1160 */
1161void
1162lwkt_deschedule(thread_t td)
1163{
1164 crit_enter();
1165#ifdef SMP
1166 if (td == curthread) {
1167 _lwkt_dequeue(td);
1168 } else {
1169 if (td->td_gd == mycpu) {
1170 _lwkt_dequeue(td);
1171 } else {
1172 lwkt_send_ipiq(td->td_gd, (ipifunc1_t)lwkt_deschedule, td);
1173 }
1174 }
1175#else
1176 _lwkt_dequeue(td);
1177#endif
1178 crit_exit();
1179}
1180
1181/*
1182 * Set the target thread's priority. This routine does not automatically
1183 * switch to a higher priority thread, LWKT threads are not designed for
1184 * continuous priority changes. Yield if you want to switch.
1185 *
1186 * We have to retain the critical section count which uses the high bits
1187 * of the td_pri field. The specified priority may also indicate zero or
1188 * more critical sections by adding TDPRI_CRIT*N.
1189 *
1190 * Note that we requeue the thread whether it winds up on a different runq
1191 * or not. uio_yield() depends on this and the routine is not normally
1192 * called with the same priority otherwise.
1193 */
1194void
1195lwkt_setpri(thread_t td, int pri)
1196{
1197 KKASSERT(pri >= 0);
1198 KKASSERT(td->td_gd == mycpu);
1199 crit_enter();
1200 if (td->td_flags & TDF_RUNQ) {
1201 _lwkt_dequeue(td);
1202 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1203 _lwkt_enqueue(td);
1204 } else {
1205 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1206 }
1207 crit_exit();
1208}
1209
1210void
1211lwkt_setpri_self(int pri)
1212{
1213 thread_t td = curthread;
1214
1215 KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
1216 crit_enter();
1217 if (td->td_flags & TDF_RUNQ) {
1218 _lwkt_dequeue(td);
1219 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1220 _lwkt_enqueue(td);
1221 } else {
1222 td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
1223 }
1224 crit_exit();
1225}
1226
1227/*
1228 * Migrate the current thread to the specified cpu.
1229 *
1230 * This is accomplished by descheduling ourselves from the current cpu,
1231 * moving our thread to the tdallq of the target cpu, IPI messaging the
1232 * target cpu, and switching out. TDF_MIGRATING prevents scheduling
1233 * races while the thread is being migrated.
1234 */
1235#ifdef SMP
1236static void lwkt_setcpu_remote(void *arg);
1237#endif
1238
1239void
1240lwkt_setcpu_self(globaldata_t rgd)
1241{
1242#ifdef SMP
1243 thread_t td = curthread;
1244
1245 if (td->td_gd != rgd) {
1246 crit_enter_quick(td);
1247 td->td_flags |= TDF_MIGRATING;
1248 lwkt_deschedule_self(td);
1249 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1250 lwkt_send_ipiq(rgd, (ipifunc1_t)lwkt_setcpu_remote, td);
1251 lwkt_switch();
1252 /* we are now on the target cpu */
1253 TAILQ_INSERT_TAIL(&rgd->gd_tdallq, td, td_allq);
1254 crit_exit_quick(td);
1255 }
1256#endif
1257}
1258
1259void
1260lwkt_migratecpu(int cpuid)
1261{
1262#ifdef SMP
1263 globaldata_t rgd;
1264
1265 rgd = globaldata_find(cpuid);
1266 lwkt_setcpu_self(rgd);
1267#endif
1268}
1269
1270/*
1271 * Remote IPI for cpu migration (called while in a critical section so we
1272 * do not have to enter another one). The thread has already been moved to
1273 * our cpu's allq, but we must wait for the thread to be completely switched
1274 * out on the originating cpu before we schedule it on ours or the stack
1275 * state may be corrupt. We clear TDF_MIGRATING after flushing the GD
1276 * change to main memory.
1277 *
1278 * XXX The use of TDF_MIGRATING might not be sufficient to avoid races
1279 * against wakeups. It is best if this interface is used only when there
1280 * are no pending events that might try to schedule the thread.
1281 */
1282#ifdef SMP
1283static void
1284lwkt_setcpu_remote(void *arg)
1285{
1286 thread_t td = arg;
1287 globaldata_t gd = mycpu;
1288
1289 while (td->td_flags & (TDF_RUNNING|TDF_PREEMPT_LOCK)) {
1290#ifdef SMP
1291 lwkt_process_ipiq();
1292#endif
1293 cpu_lfence();
1294 }
1295 td->td_gd = gd;
1296 cpu_sfence();
1297 td->td_flags &= ~TDF_MIGRATING;
1298 KKASSERT(td->td_lwp == NULL || (td->td_lwp->lwp_flag & LWP_ONRUNQ) == 0);
1299 _lwkt_enqueue(td);
1300}
1301#endif
1302
1303struct lwp *
1304lwkt_preempted_proc(void)
1305{
1306 thread_t td = curthread;
1307 while (td->td_preempted)
1308 td = td->td_preempted;
1309 return(td->td_lwp);
1310}
1311
1312/*
1313 * Create a kernel process/thread/whatever. It shares it's address space
1314 * with proc0 - ie: kernel only.
1315 *
1316 * NOTE! By default new threads are created with the MP lock held. A
1317 * thread which does not require the MP lock should release it by calling
1318 * rel_mplock() at the start of the new thread.
1319 */
1320int
1321lwkt_create(void (*func)(void *), void *arg,
1322 struct thread **tdp, thread_t template, int tdflags, int cpu,
1323 const char *fmt, ...)
1324{
1325 thread_t td;
1326 __va_list ap;
1327
1328 td = lwkt_alloc_thread(template, LWKT_THREAD_STACK, cpu,
1329 tdflags);
1330 if (tdp)
1331 *tdp = td;
1332 cpu_set_thread_handler(td, lwkt_exit, func, arg);
1333
1334 /*
1335 * Set up arg0 for 'ps' etc
1336 */
1337 __va_start(ap, fmt);
1338 kvsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1339 __va_end(ap);
1340
1341 /*
1342 * Schedule the thread to run
1343 */
1344 if ((td->td_flags & TDF_STOPREQ) == 0)
1345 lwkt_schedule(td);
1346 else
1347 td->td_flags &= ~TDF_STOPREQ;
1348 return 0;
1349}
1350
1351/*
1352 * Destroy an LWKT thread. Warning! This function is not called when
1353 * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1354 * uses a different reaping mechanism.
1355 */
1356void
1357lwkt_exit(void)
1358{
1359 thread_t td = curthread;
1360 thread_t std;
1361 globaldata_t gd;
1362
1363 if (td->td_flags & TDF_VERBOSE)
1364 kprintf("kthread %p %s has exited\n", td, td->td_comm);
1365 caps_exit(td);
1366
1367 /*
1368 * Get us into a critical section to interlock gd_freetd and loop
1369 * until we can get it freed.
1370 *
1371 * We have to cache the current td in gd_freetd because objcache_put()ing
1372 * it would rip it out from under us while our thread is still active.
1373 */
1374 gd = mycpu;
1375 crit_enter_quick(td);
1376 while ((std = gd->gd_freetd) != NULL) {
1377 gd->gd_freetd = NULL;
1378 objcache_put(thread_cache, std);
1379 }
1380 lwkt_deschedule_self(td);
1381 lwkt_remove_tdallq(td);
1382 if (td->td_flags & TDF_ALLOCATED_THREAD)
1383 gd->gd_freetd = td;
1384 cpu_thread_exit();
1385}
1386
1387void
1388lwkt_remove_tdallq(thread_t td)
1389{
1390 KKASSERT(td->td_gd == mycpu);
1391 TAILQ_REMOVE(&td->td_gd->gd_tdallq, td, td_allq);
1392}
1393
1394void
1395crit_panic(void)
1396{
1397 thread_t td = curthread;
1398 int lpri = td->td_pri;
1399
1400 td->td_pri = 0;
1401 panic("td_pri is/would-go negative! %p %d", td, lpri);
1402}
1403
1404#ifdef SMP
1405
1406/*
1407 * Called from debugger/panic on cpus which have been stopped. We must still
1408 * process the IPIQ while stopped, even if we were stopped while in a critical
1409 * section (XXX).
1410 *
1411 * If we are dumping also try to process any pending interrupts. This may
1412 * or may not work depending on the state of the cpu at the point it was
1413 * stopped.
1414 */
1415void
1416lwkt_smp_stopped(void)
1417{
1418 globaldata_t gd = mycpu;
1419
1420 crit_enter_gd(gd);
1421 if (dumping) {
1422 lwkt_process_ipiq();
1423 splz();
1424 } else {
1425 lwkt_process_ipiq();
1426 }
1427 crit_exit_gd(gd);
1428}
1429
1430/*
1431 * get_mplock() calls this routine if it is unable to obtain the MP lock.
1432 * get_mplock() has already incremented td_mpcount. We must block and
1433 * not return until giant is held.
1434 *
1435 * All we have to do is lwkt_switch() away. The LWKT scheduler will not
1436 * reschedule the thread until it can obtain the giant lock for it.
1437 */
1438void
1439lwkt_mp_lock_contested(void)
1440{
1441 loggiant(beg);
1442 lwkt_switch();
1443 loggiant(end);
1444}
1445
1446/*
1447 * The rel_mplock() code will call this function after releasing the
1448 * last reference on the MP lock if mp_lock_contention_mask is non-zero.
1449 *
1450 * We then chain an IPI to a single other cpu potentially needing the
1451 * lock. This is a bit heuristical and we can wind up with IPIs flying
1452 * all over the place.
1453 */
1454static void lwkt_mp_lock_uncontested_remote(void *arg __unused);
1455
1456void
1457lwkt_mp_lock_uncontested(void)
1458{
1459 globaldata_t gd;
1460 globaldata_t dgd;
1461 cpumask_t mask;
1462 cpumask_t tmpmask;
1463 int cpuid;
1464
1465 if (chain_mplock) {
1466 gd = mycpu;
1467 atomic_clear_int(&mp_lock_contention_mask, gd->gd_cpumask);
1468 mask = mp_lock_contention_mask;
1469 tmpmask = ~((1 << gd->gd_cpuid) - 1);
1470
1471 if (mask) {
1472 if (mask & tmpmask)
1473 cpuid = bsfl(mask & tmpmask);
1474 else
1475 cpuid = bsfl(mask);
1476 atomic_clear_int(&mp_lock_contention_mask, 1 << cpuid);
1477 dgd = globaldata_find(cpuid);
1478 lwkt_send_ipiq(dgd, lwkt_mp_lock_uncontested_remote, NULL);
1479 }
1480 }
1481}
1482
1483/*
1484 * The idea is for this IPI to interrupt a potentially lower priority
1485 * thread, such as a user thread, to allow the scheduler to reschedule
1486 * a higher priority kernel thread that needs the MP lock.
1487 *
1488 * For now we set the LWKT reschedule flag which generates an AST in
1489 * doreti, though theoretically it is also possible to possibly preempt
1490 * here if the underlying thread was operating in user mode. Nah.
1491 */
1492static void
1493lwkt_mp_lock_uncontested_remote(void *arg __unused)
1494{
1495 need_lwkt_resched();
1496}
1497
1498#endif