Do not allow the journaling descriptor to be a regular file on the same
[dragonfly.git] / sys / kern / vfs_journal.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * $DragonFly: src/sys/kern/vfs_journal.c,v 1.11 2005/03/05 05:08:27 dillon Exp $
35 */
36/*
37 * Each mount point may have zero or more independantly configured journals
38 * attached to it. Each journal is represented by a memory FIFO and worker
39 * thread. Journal events are streamed through the FIFO to the thread,
40 * batched up (typically on one-second intervals), and written out by the
41 * thread.
42 *
43 * Journal vnode ops are executed instead of mnt_vn_norm_ops when one or
44 * more journals have been installed on a mount point. It becomes the
45 * responsibility of the journal op to call the underlying normal op as
46 * appropriate.
47 *
48 * The journaling protocol is intended to evolve into a two-way stream
49 * whereby transaction IDs can be acknowledged by the journaling target
50 * when the data has been committed to hard storage. Both implicit and
51 * explicit acknowledgement schemes will be supported, depending on the
52 * sophistication of the journaling stream, plus resynchronization and
53 * restart when a journaling stream is interrupted. This information will
54 * also be made available to journaling-aware filesystems to allow better
55 * management of their own physical storage synchronization mechanisms as
56 * well as to allow such filesystems to take direct advantage of the kernel's
57 * journaling layer so they don't have to roll their own.
58 *
59 * In addition, the worker thread will have access to much larger
60 * spooling areas then the memory buffer is able to provide by e.g.
61 * reserving swap space, in order to absorb potentially long interruptions
62 * of off-site journaling streams, and to prevent 'slow' off-site linkages
63 * from radically slowing down local filesystem operations.
64 *
65 * Because of the non-trivial algorithms the journaling system will be
66 * required to support, use of a worker thread is mandatory. Efficiencies
67 * are maintained by utilitizing the memory FIFO to batch transactions when
68 * possible, reducing the number of gratuitous thread switches and taking
69 * advantage of cpu caches through the use of shorter batched code paths
70 * rather then trying to do everything in the context of the process
71 * originating the filesystem op. In the future the memory FIFO can be
72 * made per-cpu to remove BGL or other locking requirements.
73 */
74#include <sys/param.h>
75#include <sys/systm.h>
76#include <sys/buf.h>
77#include <sys/conf.h>
78#include <sys/kernel.h>
79#include <sys/queue.h>
80#include <sys/lock.h>
81#include <sys/malloc.h>
82#include <sys/mount.h>
83#include <sys/unistd.h>
84#include <sys/vnode.h>
85#include <sys/poll.h>
86#include <sys/mountctl.h>
87#include <sys/journal.h>
88#include <sys/file.h>
89#include <sys/proc.h>
90#include <sys/msfbuf.h>
91
92#include <machine/limits.h>
93
94#include <vm/vm.h>
95#include <vm/vm_object.h>
96#include <vm/vm_page.h>
97#include <vm/vm_pager.h>
98#include <vm/vnode_pager.h>
99
100#include <sys/file2.h>
101#include <sys/thread2.h>
102
103static int journal_attach(struct mount *mp);
104static void journal_detach(struct mount *mp);
105static int journal_install_vfs_journal(struct mount *mp, struct file *fp,
106 const struct mountctl_install_journal *info);
107static int journal_remove_vfs_journal(struct mount *mp,
108 const struct mountctl_remove_journal *info);
109static int journal_resync_vfs_journal(struct mount *mp, const void *ctl);
110static int journal_status_vfs_journal(struct mount *mp,
111 const struct mountctl_status_journal *info,
112 struct mountctl_journal_ret_status *rstat,
113 int buflen, int *res);
114static void journal_thread(void *info);
115
116static void *journal_reserve(struct journal *jo,
117 struct journal_rawrecbeg **rawpp,
118 int16_t streamid, int bytes);
119static void *journal_extend(struct journal *jo,
120 struct journal_rawrecbeg **rawpp,
121 int truncbytes, int bytes, int *newstreamrecp);
122static void journal_abort(struct journal *jo,
123 struct journal_rawrecbeg **rawpp);
124static void journal_commit(struct journal *jo,
125 struct journal_rawrecbeg **rawpp,
126 int bytes, int closeout);
127
128static void jrecord_init(struct journal *jo,
129 struct jrecord *jrec, int16_t streamid);
130static struct journal_subrecord *jrecord_push(
131 struct jrecord *jrec, int16_t rectype);
132static void jrecord_pop(struct jrecord *jrec, struct journal_subrecord *parent);
133static struct journal_subrecord *jrecord_write(struct jrecord *jrec,
134 int16_t rectype, int bytes);
135static void jrecord_data(struct jrecord *jrec, const void *buf, int bytes);
136static void jrecord_done(struct jrecord *jrec, int abortit);
137
138static int journal_setattr(struct vop_setattr_args *ap);
139static int journal_write(struct vop_write_args *ap);
140static int journal_fsync(struct vop_fsync_args *ap);
141static int journal_putpages(struct vop_putpages_args *ap);
142static int journal_setacl(struct vop_setacl_args *ap);
143static int journal_setextattr(struct vop_setextattr_args *ap);
144static int journal_ncreate(struct vop_ncreate_args *ap);
145static int journal_nmknod(struct vop_nmknod_args *ap);
146static int journal_nlink(struct vop_nlink_args *ap);
147static int journal_nsymlink(struct vop_nsymlink_args *ap);
148static int journal_nwhiteout(struct vop_nwhiteout_args *ap);
149static int journal_nremove(struct vop_nremove_args *ap);
150static int journal_nmkdir(struct vop_nmkdir_args *ap);
151static int journal_nrmdir(struct vop_nrmdir_args *ap);
152static int journal_nrename(struct vop_nrename_args *ap);
153
154static struct vnodeopv_entry_desc journal_vnodeop_entries[] = {
155 { &vop_default_desc, vop_journal_operate_ap },
156 { &vop_mountctl_desc, (void *)journal_mountctl },
157 { &vop_setattr_desc, (void *)journal_setattr },
158 { &vop_write_desc, (void *)journal_write },
159 { &vop_fsync_desc, (void *)journal_fsync },
160 { &vop_putpages_desc, (void *)journal_putpages },
161 { &vop_setacl_desc, (void *)journal_setacl },
162 { &vop_setextattr_desc, (void *)journal_setextattr },
163 { &vop_ncreate_desc, (void *)journal_ncreate },
164 { &vop_nmknod_desc, (void *)journal_nmknod },
165 { &vop_nlink_desc, (void *)journal_nlink },
166 { &vop_nsymlink_desc, (void *)journal_nsymlink },
167 { &vop_nwhiteout_desc, (void *)journal_nwhiteout },
168 { &vop_nremove_desc, (void *)journal_nremove },
169 { &vop_nmkdir_desc, (void *)journal_nmkdir },
170 { &vop_nrmdir_desc, (void *)journal_nrmdir },
171 { &vop_nrename_desc, (void *)journal_nrename },
172 { NULL, NULL }
173};
174
175static MALLOC_DEFINE(M_JOURNAL, "journal", "Journaling structures");
176static MALLOC_DEFINE(M_JFIFO, "journal-fifo", "Journal FIFO");
177
178int
179journal_mountctl(struct vop_mountctl_args *ap)
180{
181 struct mount *mp;
182 int error = 0;
183
184 mp = ap->a_head.a_ops->vv_mount;
185 KKASSERT(mp);
186
187 if (mp->mnt_vn_journal_ops == NULL) {
188 switch(ap->a_op) {
189 case MOUNTCTL_INSTALL_VFS_JOURNAL:
190 error = journal_attach(mp);
191 if (error == 0 && ap->a_ctllen != sizeof(struct mountctl_install_journal))
192 error = EINVAL;
193 if (error == 0 && ap->a_fp == NULL)
194 error = EBADF;
195 if (error == 0)
196 error = journal_install_vfs_journal(mp, ap->a_fp, ap->a_ctl);
197 if (TAILQ_EMPTY(&mp->mnt_jlist))
198 journal_detach(mp);
199 break;
200 case MOUNTCTL_REMOVE_VFS_JOURNAL:
201 case MOUNTCTL_RESYNC_VFS_JOURNAL:
202 case MOUNTCTL_STATUS_VFS_JOURNAL:
203 error = ENOENT;
204 break;
205 default:
206 error = EOPNOTSUPP;
207 break;
208 }
209 } else {
210 switch(ap->a_op) {
211 case MOUNTCTL_INSTALL_VFS_JOURNAL:
212 if (ap->a_ctllen != sizeof(struct mountctl_install_journal))
213 error = EINVAL;
214 if (error == 0 && ap->a_fp == NULL)
215 error = EBADF;
216 if (error == 0)
217 error = journal_install_vfs_journal(mp, ap->a_fp, ap->a_ctl);
218 break;
219 case MOUNTCTL_REMOVE_VFS_JOURNAL:
220 if (ap->a_ctllen != sizeof(struct mountctl_remove_journal))
221 error = EINVAL;
222 if (error == 0)
223 error = journal_remove_vfs_journal(mp, ap->a_ctl);
224 if (TAILQ_EMPTY(&mp->mnt_jlist))
225 journal_detach(mp);
226 break;
227 case MOUNTCTL_RESYNC_VFS_JOURNAL:
228 if (ap->a_ctllen != 0)
229 error = EINVAL;
230 error = journal_resync_vfs_journal(mp, ap->a_ctl);
231 break;
232 case MOUNTCTL_STATUS_VFS_JOURNAL:
233 if (ap->a_ctllen != sizeof(struct mountctl_status_journal))
234 error = EINVAL;
235 if (error == 0) {
236 error = journal_status_vfs_journal(mp, ap->a_ctl,
237 ap->a_buf, ap->a_buflen, ap->a_res);
238 }
239 break;
240 default:
241 error = EOPNOTSUPP;
242 break;
243 }
244 }
245 return (error);
246}
247
248/*
249 * High level mount point setup. When a
250 */
251static int
252journal_attach(struct mount *mp)
253{
254 vfs_add_vnodeops(mp, &mp->mnt_vn_journal_ops, journal_vnodeop_entries);
255 return(0);
256}
257
258static void
259journal_detach(struct mount *mp)
260{
261 if (mp->mnt_vn_journal_ops)
262 vfs_rm_vnodeops(&mp->mnt_vn_journal_ops);
263}
264
265/*
266 * Install a journal on a mount point. Each journal has an associated worker
267 * thread which is responsible for buffering and spooling the data to the
268 * target. A mount point may have multiple journals attached to it. An
269 * initial start record is generated when the journal is associated.
270 */
271static int
272journal_install_vfs_journal(struct mount *mp, struct file *fp,
273 const struct mountctl_install_journal *info)
274{
275 struct journal *jo;
276 struct jrecord jrec;
277 int error = 0;
278 int size;
279
280 jo = malloc(sizeof(struct journal), M_JOURNAL, M_WAITOK|M_ZERO);
281 bcopy(info->id, jo->id, sizeof(jo->id));
282 jo->flags = info->flags & ~(MC_JOURNAL_ACTIVE | MC_JOURNAL_STOP_REQ);
283
284 /*
285 * Memory FIFO size, round to nearest power of 2
286 */
287 if (info->membufsize) {
288 if (info->membufsize < 65536)
289 size = 65536;
290 else if (info->membufsize > 128 * 1024 * 1024)
291 size = 128 * 1024 * 1024;
292 else
293 size = (int)info->membufsize;
294 } else {
295 size = 1024 * 1024;
296 }
297 jo->fifo.size = 1;
298 while (jo->fifo.size < size)
299 jo->fifo.size <<= 1;
300
301 /*
302 * Other parameters. If not specified the starting transaction id
303 * will be the current date.
304 */
305 if (info->transid) {
306 jo->transid = info->transid;
307 } else {
308 struct timespec ts;
309 getnanotime(&ts);
310 jo->transid = ((int64_t)ts.tv_sec << 30) | ts.tv_nsec;
311 }
312
313 jo->fp = fp;
314
315 /*
316 * Allocate the memory FIFO
317 */
318 jo->fifo.mask = jo->fifo.size - 1;
319 jo->fifo.membase = malloc(jo->fifo.size, M_JFIFO, M_WAITOK|M_ZERO|M_NULLOK);
320 if (jo->fifo.membase == NULL)
321 error = ENOMEM;
322
323 /*
324 * Create the worker thread and generate the association record.
325 */
326 if (error) {
327 free(jo, M_JOURNAL);
328 } else {
329 fhold(fp);
330 jo->flags |= MC_JOURNAL_ACTIVE;
331 lwkt_create(journal_thread, jo, NULL, &jo->thread,
332 TDF_STOPREQ, -1, "journal %.*s", JIDMAX, jo->id);
333 lwkt_setpri(&jo->thread, TDPRI_KERN_DAEMON);
334 lwkt_schedule(&jo->thread);
335
336 jrecord_init(jo, &jrec, JREC_STREAMID_DISCONT);
337 jrecord_write(&jrec, JTYPE_ASSOCIATE, 0);
338 jrecord_done(&jrec, 0);
339 TAILQ_INSERT_TAIL(&mp->mnt_jlist, jo, jentry);
340 }
341 return(error);
342}
343
344/*
345 * Disassociate a journal from a mount point and terminate its worker thread.
346 * A final termination record is written out before the file pointer is
347 * dropped.
348 */
349static int
350journal_remove_vfs_journal(struct mount *mp,
351 const struct mountctl_remove_journal *info)
352{
353 struct journal *jo;
354 struct jrecord jrec;
355 int error;
356
357 TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
358 if (bcmp(jo->id, info->id, sizeof(jo->id)) == 0)
359 break;
360 }
361 if (jo) {
362 error = 0;
363 TAILQ_REMOVE(&mp->mnt_jlist, jo, jentry);
364
365 jrecord_init(jo, &jrec, JREC_STREAMID_DISCONT);
366 jrecord_write(&jrec, JTYPE_DISASSOCIATE, 0);
367 jrecord_done(&jrec, 0);
368
369 jo->flags |= MC_JOURNAL_STOP_REQ | (info->flags & MC_JOURNAL_STOP_IMM);
370 wakeup(&jo->fifo);
371 while (jo->flags & MC_JOURNAL_ACTIVE) {
372 tsleep(jo, 0, "jwait", 0);
373 }
374 lwkt_free_thread(&jo->thread); /* XXX SMP */
375 if (jo->fp)
376 fdrop(jo->fp, curthread);
377 if (jo->fifo.membase)
378 free(jo->fifo.membase, M_JFIFO);
379 free(jo, M_JOURNAL);
380 } else {
381 error = EINVAL;
382 }
383 return (error);
384}
385
386static int
387journal_resync_vfs_journal(struct mount *mp, const void *ctl)
388{
389 return(EINVAL);
390}
391
392static int
393journal_status_vfs_journal(struct mount *mp,
394 const struct mountctl_status_journal *info,
395 struct mountctl_journal_ret_status *rstat,
396 int buflen, int *res)
397{
398 struct journal *jo;
399 int error = 0;
400 int index;
401
402 index = 0;
403 *res = 0;
404 TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
405 if (info->index == MC_JOURNAL_INDEX_ID) {
406 if (bcmp(jo->id, info->id, sizeof(jo->id)) != 0)
407 continue;
408 } else if (info->index >= 0) {
409 if (info->index < index)
410 continue;
411 } else if (info->index != MC_JOURNAL_INDEX_ALL) {
412 continue;
413 }
414 if (buflen < sizeof(*rstat)) {
415 if (*res)
416 rstat[-1].flags |= MC_JOURNAL_STATUS_MORETOCOME;
417 else
418 error = EINVAL;
419 break;
420 }
421 bzero(rstat, sizeof(*rstat));
422 rstat->recsize = sizeof(*rstat);
423 bcopy(jo->id, rstat->id, sizeof(jo->id));
424 rstat->index = index;
425 rstat->membufsize = jo->fifo.size;
426 rstat->membufused = jo->fifo.xindex - jo->fifo.rindex;
427 rstat->membufiopend = jo->fifo.windex - jo->fifo.rindex;
428 rstat->bytessent = jo->total_acked;
429 ++rstat;
430 ++index;
431 *res += sizeof(*rstat);
432 buflen -= sizeof(*rstat);
433 }
434 return(error);
435}
436/*
437 * The per-journal worker thread is responsible for writing out the
438 * journal's FIFO to the target stream.
439 */
440static void
441journal_thread(void *info)
442{
443 struct journal *jo = info;
444 struct journal_rawrecbeg *rawp;
445 int bytes;
446 int error;
447 int avail;
448 int res;
449
450 for (;;) {
451 /*
452 * Calculate the number of bytes available to write. This buffer
453 * area may contain reserved records so we can't just write it out
454 * without further checks.
455 */
456 bytes = jo->fifo.windex - jo->fifo.rindex;
457
458 /*
459 * sleep if no bytes are available or if an incomplete record is
460 * encountered (it needs to be filled in before we can write it
461 * out), and skip any pad records that we encounter.
462 */
463 if (bytes == 0) {
464 if (jo->flags & MC_JOURNAL_STOP_REQ)
465 break;
466 tsleep(&jo->fifo, 0, "jfifo", hz);
467 continue;
468 }
469
470 /*
471 * Sleep if we can not go any further due to hitting an incomplete
472 * record. This case should occur rarely but may have to be better
473 * optimized XXX.
474 */
475 rawp = (void *)(jo->fifo.membase + (jo->fifo.rindex & jo->fifo.mask));
476 if (rawp->begmagic == JREC_INCOMPLETEMAGIC) {
477 tsleep(&jo->fifo, 0, "jpad", hz);
478 continue;
479 }
480
481 /*
482 * Skip any pad records. We do not write out pad records if we can
483 * help it.
484 *
485 * If xindex is caught up to rindex it gets incremented along with
486 * rindex. XXX
487 */
488 if (rawp->streamid == JREC_STREAMID_PAD) {
489 if (jo->fifo.rindex == jo->fifo.xindex)
490 jo->fifo.xindex += (rawp->recsize + 15) & ~15;
491 jo->fifo.rindex += (rawp->recsize + 15) & ~15;
492 jo->total_acked += bytes;
493 KKASSERT(jo->fifo.windex - jo->fifo.rindex >= 0);
494 continue;
495 }
496
497 /*
498 * 'bytes' is the amount of data that can potentially be written out.
499 * Calculate 'res', the amount of data that can actually be written
500 * out. res is bounded either by hitting the end of the physical
501 * memory buffer or by hitting an incomplete record. Incomplete
502 * records often occur due to the way the space reservation model
503 * works.
504 */
505 res = 0;
506 avail = jo->fifo.size - (jo->fifo.rindex & jo->fifo.mask);
507 while (res < bytes && rawp->begmagic == JREC_BEGMAGIC) {
508 res += (rawp->recsize + 15) & ~15;
509 if (res >= avail) {
510 KKASSERT(res == avail);
511 break;
512 }
513 rawp = (void *)((char *)rawp + ((rawp->recsize + 15) & ~15));
514 }
515
516 /*
517 * Issue the write and deal with any errors or other conditions.
518 * For now assume blocking I/O. Since we are record-aware the
519 * code cannot yet handle partial writes.
520 *
521 * XXX EWOULDBLOCK/NBIO
522 * XXX notification on failure
523 * XXX permanent verses temporary failures
524 * XXX two-way acknowledgement stream in the return direction / xindex
525 */
526 bytes = res;
527 error = fp_write(jo->fp,
528 jo->fifo.membase + (jo->fifo.rindex & jo->fifo.mask),
529 bytes, &res);
530 if (error) {
531 printf("journal_thread(%s) write, error %d\n", jo->id, error);
532 /* XXX */
533 } else {
534 KKASSERT(res == bytes);
535 }
536
537 /*
538 * Advance rindex. XXX for now also advance xindex, which will
539 * eventually be advanced only when the target acknowledges the
540 * sequence space.
541 */
542 jo->fifo.rindex += bytes;
543 jo->fifo.xindex += bytes;
544 jo->total_acked += bytes;
545 KKASSERT(jo->fifo.windex - jo->fifo.rindex >= 0);
546 if (jo->flags & MC_JOURNAL_WWAIT) {
547 jo->flags &= ~MC_JOURNAL_WWAIT; /* XXX hysteresis */
548 wakeup(&jo->fifo.windex);
549 }
550 }
551 jo->flags &= ~MC_JOURNAL_ACTIVE;
552 wakeup(jo);
553 wakeup(&jo->fifo.windex);
554}
555
556/*
557 * This builds a pad record which the journaling thread will skip over. Pad
558 * records are required when we are unable to reserve sufficient stream space
559 * due to insufficient space at the end of the physical memory fifo.
560 */
561static
562void
563journal_build_pad(struct journal_rawrecbeg *rawp, int recsize)
564{
565 struct journal_rawrecend *rendp;
566
567 KKASSERT((recsize & 15) == 0 && recsize >= 16);
568
569 rawp->streamid = JREC_STREAMID_PAD;
570 rawp->recsize = recsize; /* must be 16-byte aligned */
571 rawp->seqno = 0;
572 /*
573 * WARNING, rendp may overlap rawp->seqno. This is necessary to
574 * allow PAD records to fit in 16 bytes. Use cpu_mb1() to
575 * hopefully cause the compiler to not make any assumptions.
576 */
577 rendp = (void *)((char *)rawp + rawp->recsize - sizeof(*rendp));
578 rendp->endmagic = JREC_ENDMAGIC;
579 rendp->check = 0;
580 rendp->recsize = rawp->recsize;
581
582 /*
583 * Set the begin magic last. This is what will allow the journal
584 * thread to write the record out.
585 */
586 cpu_mb1();
587 rawp->begmagic = JREC_BEGMAGIC;
588}
589
590/*
591 * Wake up the worker thread if the FIFO is more then half full or if
592 * someone is waiting for space to be freed up. Otherwise let the
593 * heartbeat deal with it. Being able to avoid waking up the worker
594 * is the key to the journal's cpu performance.
595 */
596static __inline
597void
598journal_commit_wakeup(struct journal *jo)
599{
600 int avail;
601
602 avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex);
603 KKASSERT(avail >= 0);
604 if ((avail < (jo->fifo.size >> 1)) || (jo->flags & MC_JOURNAL_WWAIT))
605 wakeup(&jo->fifo);
606}
607
608/*
609 * Create a new BEGIN stream record with the specified streamid and the
610 * specified amount of payload space. *rawpp will be set to point to the
611 * base of the new stream record and a pointer to the base of the payload
612 * space will be returned. *rawpp does not need to be pre-NULLd prior to
613 * making this call.
614 *
615 * A stream can be extended, aborted, or committed by other API calls
616 * below. This may result in a sequence of potentially disconnected
617 * stream records to be output to the journaling target. The first record
618 * (the one created by this function) will be marked JREC_STREAMCTL_BEGIN,
619 * while the last record on commit or abort will be marked JREC_STREAMCTL_END
620 * (and possibly also JREC_STREAMCTL_ABORTED). The last record could wind
621 * up being the same as the first, in which case the bits are all set in
622 * the first record.
623 *
624 * The stream record is created in an incomplete state by setting the begin
625 * magic to JREC_INCOMPLETEMAGIC. This prevents the worker thread from
626 * flushing the fifo past our record until we have finished populating it.
627 * Other threads can reserve and operate on their own space without stalling
628 * but the stream output will stall until we have completed operations. The
629 * memory FIFO is intended to be large enough to absorb such situations
630 * without stalling out other threads.
631 */
632static
633void *
634journal_reserve(struct journal *jo, struct journal_rawrecbeg **rawpp,
635 int16_t streamid, int bytes)
636{
637 struct journal_rawrecbeg *rawp;
638 int avail;
639 int availtoend;
640 int req;
641
642 /*
643 * Add header and trailer overheads to the passed payload. Note that
644 * the passed payload size need not be aligned in any way.
645 */
646 bytes += sizeof(struct journal_rawrecbeg);
647 bytes += sizeof(struct journal_rawrecend);
648
649 for (;;) {
650 /*
651 * First, check boundary conditions. If the request would wrap around
652 * we have to skip past the ending block and return to the beginning
653 * of the FIFO's buffer. Calculate 'req' which is the actual number
654 * of bytes being reserved, including wrap-around dead space.
655 *
656 * Neither 'bytes' or 'req' are aligned.
657 *
658 * Note that availtoend is not truncated to avail and so cannot be
659 * used to determine whether the reservation is possible by itself.
660 * Also, since all fifo ops are 16-byte aligned, we can check
661 * the size before calculating the aligned size.
662 */
663 availtoend = jo->fifo.size - (jo->fifo.windex & jo->fifo.mask);
664 KKASSERT((availtoend & 15) == 0);
665 if (bytes > availtoend)
666 req = bytes + availtoend; /* add pad to end */
667 else
668 req = bytes;
669
670 /*
671 * Next calculate the total available space and see if it is
672 * sufficient. We cannot overwrite previously buffered data
673 * past xindex because otherwise we would not be able to restart
674 * a broken link at the target's last point of commit.
675 */
676 avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex);
677 KKASSERT(avail >= 0 && (avail & 15) == 0);
678
679 if (avail < req) {
680 /* XXX MC_JOURNAL_STOP_IMM */
681 jo->flags |= MC_JOURNAL_WWAIT;
682 tsleep(&jo->fifo.windex, 0, "jwrite", 0);
683 continue;
684 }
685
686 /*
687 * Create a pad record for any dead space and create an incomplete
688 * record for the live space, then return a pointer to the
689 * contiguous buffer space that was requested.
690 *
691 * NOTE: The worker thread will not flush past an incomplete
692 * record, so the reserved space can be filled in at-will. The
693 * journaling code must also be aware the reserved sections occuring
694 * after this one will also not be written out even if completed
695 * until this one is completed.
696 */
697 rawp = (void *)(jo->fifo.membase + (jo->fifo.windex & jo->fifo.mask));
698 if (req != bytes) {
699 journal_build_pad(rawp, availtoend);
700 rawp = (void *)jo->fifo.membase;
701 }
702 rawp->begmagic = JREC_INCOMPLETEMAGIC; /* updated by abort/commit */
703 rawp->recsize = bytes; /* (unaligned size) */
704 rawp->streamid = streamid | JREC_STREAMCTL_BEGIN;
705 rawp->seqno = 0; /* set by caller */
706
707 /*
708 * Issue a memory barrier to guarentee that the record data has been
709 * properly initialized before we advance the write index and return
710 * a pointer to the reserved record. Otherwise the worker thread
711 * could accidently run past us.
712 *
713 * Note that stream records are always 16-byte aligned.
714 */
715 cpu_mb1();
716 jo->fifo.windex += (req + 15) & ~15;
717 *rawpp = rawp;
718 return(rawp + 1);
719 }
720 /* not reached */
721 *rawpp = NULL;
722 return(NULL);
723}
724
725/*
726 * Attempt to extend the stream record by <bytes> worth of payload space.
727 *
728 * If it is possible to extend the existing stream record no truncation
729 * occurs and the record is extended as specified. A pointer to the
730 * truncation offset within the payload space is returned.
731 *
732 * If it is not possible to do this the existing stream record is truncated
733 * and committed, and a new stream record of size <bytes> is created. A
734 * pointer to the base of the new stream record's payload space is returned.
735 *
736 * *rawpp is set to the new reservation in the case of a new record but
737 * the caller cannot depend on a comparison with the old rawp to determine if
738 * this case occurs because we could end up using the same memory FIFO
739 * offset for the new stream record. Use *newstreamrecp instead.
740 */
741static void *
742journal_extend(struct journal *jo, struct journal_rawrecbeg **rawpp,
743 int truncbytes, int bytes, int *newstreamrecp)
744{
745 struct journal_rawrecbeg *rawp;
746 int16_t streamid;
747 int availtoend;
748 int avail;
749 int osize;
750 int nsize;
751 int wbase;
752 void *rptr;
753
754 *newstreamrecp = 0;
755 rawp = *rawpp;
756 osize = (rawp->recsize + 15) & ~15;
757 nsize = (rawp->recsize + bytes + 15) & ~15;
758 wbase = (char *)rawp - jo->fifo.membase;
759
760 /*
761 * If the aligned record size does not change we can trivially adjust
762 * the record size.
763 */
764 if (nsize == osize) {
765 rawp->recsize += bytes;
766 return((char *)(rawp + 1) + truncbytes);
767 }
768
769 /*
770 * If the fifo's write index hasn't been modified since we made the
771 * reservation and we do not hit any boundary conditions, we can
772 * trivially make the record smaller or larger.
773 */
774 if ((jo->fifo.windex & jo->fifo.mask) == wbase + osize) {
775 availtoend = jo->fifo.size - wbase;
776 avail = jo->fifo.size - (jo->fifo.windex - jo->fifo.xindex) + osize;
777 KKASSERT((availtoend & 15) == 0);
778 KKASSERT((avail & 15) == 0);
779 if (nsize <= avail && nsize <= availtoend) {
780 jo->fifo.windex += nsize - osize;
781 rawp->recsize += bytes;
782 return((char *)(rawp + 1) + truncbytes);
783 }
784 }
785
786 /*
787 * It was not possible to extend the buffer. Commit the current
788 * buffer and create a new one. We manually clear the BEGIN mark that
789 * journal_reserve() creates (because this is a continuing record, not
790 * the start of a new stream).
791 */
792 streamid = rawp->streamid & JREC_STREAMID_MASK;
793 journal_commit(jo, rawpp, truncbytes, 0);
794 rptr = journal_reserve(jo, rawpp, streamid, bytes);
795 rawp = *rawpp;
796 rawp->streamid &= ~JREC_STREAMCTL_BEGIN;
797 *newstreamrecp = 1;
798 return(rptr);
799}
800
801/*
802 * Abort a journal record. If the transaction record represents a stream
803 * BEGIN and we can reverse the fifo's write index we can simply reverse
804 * index the entire record, as if it were never reserved in the first place.
805 *
806 * Otherwise we set the JREC_STREAMCTL_ABORTED bit and commit the record
807 * with the payload truncated to 0 bytes.
808 */
809static void
810journal_abort(struct journal *jo, struct journal_rawrecbeg **rawpp)
811{
812 struct journal_rawrecbeg *rawp;
813 int osize;
814
815 rawp = *rawpp;
816 osize = (rawp->recsize + 15) & ~15;
817
818 if ((rawp->streamid & JREC_STREAMCTL_BEGIN) &&
819 (jo->fifo.windex & jo->fifo.mask) ==
820 (char *)rawp - jo->fifo.membase + osize)
821 {
822 jo->fifo.windex -= osize;
823 *rawpp = NULL;
824 } else {
825 rawp->streamid |= JREC_STREAMCTL_ABORTED;
826 journal_commit(jo, rawpp, 0, 1);
827 }
828}
829
830/*
831 * Commit a journal record and potentially truncate it to the specified
832 * number of payload bytes. If you do not want to truncate the record,
833 * simply pass -1 for the bytes parameter. Do not pass rawp->recsize, that
834 * field includes header and trailer and will not be correct. Note that
835 * passing 0 will truncate the entire data payload of the record.
836 *
837 * The logical stream is terminated by this function.
838 *
839 * If truncation occurs, and it is not possible to physically optimize the
840 * memory FIFO due to other threads having reserved space after ours,
841 * the remaining reserved space will be covered by a pad record.
842 */
843static void
844journal_commit(struct journal *jo, struct journal_rawrecbeg **rawpp,
845 int bytes, int closeout)
846{
847 struct journal_rawrecbeg *rawp;
848 struct journal_rawrecend *rendp;
849 int osize;
850 int nsize;
851
852 rawp = *rawpp;
853 *rawpp = NULL;
854
855 KKASSERT((char *)rawp >= jo->fifo.membase &&
856 (char *)rawp + rawp->recsize <= jo->fifo.membase + jo->fifo.size);
857 KKASSERT(((intptr_t)rawp & 15) == 0);
858
859 /*
860 * Truncate the record if necessary. If the FIFO write index as still
861 * at the end of our record we can optimally backindex it. Otherwise
862 * we have to insert a pad record to cover the dead space.
863 *
864 * We calculate osize which is the 16-byte-aligned original recsize.
865 * We calculate nsize which is the 16-byte-aligned new recsize.
866 *
867 * Due to alignment issues or in case the passed truncation bytes is
868 * the same as the original payload, nsize may be equal to osize even
869 * if the committed bytes is less then the originally reserved bytes.
870 */
871 if (bytes >= 0) {
872 KKASSERT(bytes >= 0 && bytes <= rawp->recsize - sizeof(struct journal_rawrecbeg) - sizeof(struct journal_rawrecend));
873 osize = (rawp->recsize + 15) & ~15;
874 rawp->recsize = bytes + sizeof(struct journal_rawrecbeg) +
875 sizeof(struct journal_rawrecend);
876 nsize = (rawp->recsize + 15) & ~15;
877 KKASSERT(nsize <= osize);
878 if (osize == nsize) {
879 /* do nothing */
880 } else if ((jo->fifo.windex & jo->fifo.mask) == (char *)rawp - jo->fifo.membase + osize) {
881 /* we are able to backindex the fifo */
882 jo->fifo.windex -= osize - nsize;
883 } else {
884 /* we cannot backindex the fifo, emplace a pad in the dead space */
885 journal_build_pad((void *)((char *)rawp + nsize), osize - nsize);
886 }
887 }
888
889 /*
890 * Fill in the trailer. Note that unlike pad records, the trailer will
891 * never overlap the header.
892 */
893 rendp = (void *)((char *)rawp +
894 ((rawp->recsize + 15) & ~15) - sizeof(*rendp));
895 rendp->endmagic = JREC_ENDMAGIC;
896 rendp->recsize = rawp->recsize;
897 rendp->check = 0; /* XXX check word, disabled for now */
898
899 /*
900 * Fill in begmagic last. This will allow the worker thread to proceed.
901 * Use a memory barrier to guarentee write ordering. Mark the stream
902 * as terminated if closeout is set. This is the typical case.
903 */
904 if (closeout)
905 rawp->streamid |= JREC_STREAMCTL_END;
906 cpu_mb1(); /* memory barrier */
907 rawp->begmagic = JREC_BEGMAGIC;
908
909 journal_commit_wakeup(jo);
910}
911
912/************************************************************************
913 * TRANSACTION SUPPORT ROUTINES *
914 ************************************************************************
915 *
916 * JRECORD_*() - routines to create subrecord transactions and embed them
917 * in the logical streams managed by the journal_*() routines.
918 */
919
920static int16_t sid = JREC_STREAMID_JMIN;
921
922/*
923 * Initialize the passed jrecord structure and start a new stream transaction
924 * by reserving an initial build space in the journal's memory FIFO.
925 */
926static void
927jrecord_init(struct journal *jo, struct jrecord *jrec, int16_t streamid)
928{
929 bzero(jrec, sizeof(*jrec));
930 jrec->jo = jo;
931 if (streamid < 0) {
932 streamid = sid++; /* XXX need to track stream ids! */
933 if (sid == JREC_STREAMID_JMAX)
934 sid = JREC_STREAMID_JMIN;
935 }
936 jrec->streamid = streamid;
937 jrec->stream_residual = JREC_DEFAULTSIZE;
938 jrec->stream_reserved = jrec->stream_residual;
939 jrec->stream_ptr =
940 journal_reserve(jo, &jrec->rawp, streamid, jrec->stream_reserved);
941}
942
943/*
944 * Push a recursive record type. All pushes should have matching pops.
945 * The old parent is returned and the newly pushed record becomes the
946 * new parent. Note that the old parent's pointer may already be invalid
947 * or may become invalid if jrecord_write() had to build a new stream
948 * record, so the caller should not mess with the returned pointer in
949 * any way other then to save it.
950 */
951static
952struct journal_subrecord *
953jrecord_push(struct jrecord *jrec, int16_t rectype)
954{
955 struct journal_subrecord *save;
956
957 save = jrec->parent;
958 jrec->parent = jrecord_write(jrec, rectype|JMASK_NESTED, 0);
959 jrec->last = NULL;
960 KKASSERT(jrec->parent != NULL);
961 ++jrec->pushcount;
962 ++jrec->pushptrgood; /* cleared on flush */
963 return(save);
964}
965
966/*
967 * Pop a previously pushed sub-transaction. We must set JMASK_LAST
968 * on the last record written within the subtransaction. If the last
969 * record written is not accessible or if the subtransaction is empty,
970 * we must write out a pad record with JMASK_LAST set before popping.
971 *
972 * When popping a subtransaction the parent record's recsize field
973 * will be properly set. If the parent pointer is no longer valid
974 * (which can occur if the data has already been flushed out to the
975 * stream), the protocol spec allows us to leave it 0.
976 *
977 * The saved parent pointer which we restore may or may not be valid,
978 * and if not valid may or may not be NULL, depending on the value
979 * of pushptrgood.
980 */
981static void
982jrecord_pop(struct jrecord *jrec, struct journal_subrecord *save)
983{
984 struct journal_subrecord *last;
985
986 KKASSERT(jrec->pushcount > 0);
987 KKASSERT(jrec->residual == 0);
988
989 /*
990 * Set JMASK_LAST on the last record we wrote at the current
991 * level. If last is NULL we either no longer have access to the
992 * record or the subtransaction was empty and we must write out a pad
993 * record.
994 */
995 if ((last = jrec->last) == NULL) {
996 jrecord_write(jrec, JLEAF_PAD|JMASK_LAST, 0);
997 last = jrec->last; /* reload after possible flush */
998 } else {
999 last->rectype |= JMASK_LAST;
1000 }
1001
1002 /*
1003 * pushptrgood tells us how many levels of parent record pointers
1004 * are valid. The jrec only stores the current parent record pointer
1005 * (and it is only valid if pushptrgood != 0). The higher level parent
1006 * record pointers are saved by the routines calling jrecord_push() and
1007 * jrecord_pop(). These pointers may become stale and we determine
1008 * that fact by tracking the count of valid parent pointers with
1009 * pushptrgood. Pointers become invalid when their related stream
1010 * record gets pushed out.
1011 *
1012 * If no pointer is available (the data has already been pushed out),
1013 * then no fixup of e.g. the length field is possible for non-leaf
1014 * nodes. The protocol allows for this situation by placing a larger
1015 * burden on the program scanning the stream on the other end.
1016 *
1017 * [parentA]
1018 * [node X]
1019 * [parentB]
1020 * [node Y]
1021 * [node Z]
1022 * (pop B) see NOTE B
1023 * (pop A) see NOTE A
1024 *
1025 * NOTE B: This pop sets LAST in node Z if the node is still accessible,
1026 * else a PAD record is appended and LAST is set in that.
1027 *
1028 * This pop sets the record size in parentB if parentB is still
1029 * accessible, else the record size is left 0 (the scanner must
1030 * deal with that).
1031 *
1032 * This pop sets the new 'last' record to parentB, the pointer
1033 * to which may or may not still be accessible.
1034 *
1035 * NOTE A: This pop sets LAST in parentB if the node is still accessible,
1036 * else a PAD record is appended and LAST is set in that.
1037 *
1038 * This pop sets the record size in parentA if parentA is still
1039 * accessible, else the record size is left 0 (the scanner must
1040 * deal with that).
1041 *
1042 * This pop sets the new 'last' record to parentA, the pointer
1043 * to which may or may not still be accessible.
1044 *
1045 * Also note that the last record in the stream transaction, which in
1046 * the above example is parentA, does not currently have the LAST bit
1047 * set.
1048 *
1049 * The current parent becomes the last record relative to the
1050 * saved parent passed into us. It's validity is based on
1051 * whether pushptrgood is non-zero prior to decrementing. The saved
1052 * parent becomes the new parent, and its validity is based on whether
1053 * pushptrgood is non-zero after decrementing.
1054 *
1055 * The old jrec->parent may be NULL if it is no longer accessible.
1056 * If pushptrgood is non-zero, however, it is guarenteed to not
1057 * be NULL (since no flush occured).
1058 */
1059 jrec->last = jrec->parent;
1060 --jrec->pushcount;
1061 if (jrec->pushptrgood) {
1062 KKASSERT(jrec->last != NULL && last != NULL);
1063 if (--jrec->pushptrgood == 0) {
1064 jrec->parent = NULL; /* 'save' contains garbage or NULL */
1065 } else {
1066 KKASSERT(save != NULL);
1067 jrec->parent = save; /* 'save' must not be NULL */
1068 }
1069
1070 /*
1071 * Set the record size in the old parent. 'last' still points to
1072 * the original last record in the subtransaction being popped,
1073 * jrec->last points to the old parent (which became the last
1074 * record relative to the new parent being popped into).
1075 */
1076 jrec->last->recsize = (char *)last + last->recsize - (char *)jrec->last;
1077 } else {
1078 jrec->parent = NULL;
1079 KKASSERT(jrec->last == NULL);
1080 }
1081}
1082
1083/*
1084 * Write out a leaf record, including associated data.
1085 */
1086static
1087void
1088jrecord_leaf(struct jrecord *jrec, int16_t rectype, void *ptr, int bytes)
1089{
1090 jrecord_write(jrec, rectype, bytes);
1091 jrecord_data(jrec, ptr, bytes);
1092}
1093
1094/*
1095 * Write a leaf record out and return a pointer to its base. The leaf
1096 * record may contain potentially megabytes of data which is supplied
1097 * in jrecord_data() calls. The exact amount must be specified in this
1098 * call.
1099 *
1100 * THE RETURNED SUBRECORD POINTER IS ONLY VALID IMMEDIATELY AFTER THE
1101 * CALL AND MAY BECOME INVALID AT ANY TIME. ONLY THE PUSH/POP CODE SHOULD
1102 * USE THE RETURN VALUE.
1103 */
1104static
1105struct journal_subrecord *
1106jrecord_write(struct jrecord *jrec, int16_t rectype, int bytes)
1107{
1108 struct journal_subrecord *last;
1109 int pusheditout;
1110
1111 /*
1112 * Try to catch some obvious errors. Nesting records must specify a
1113 * size of 0, and there should be no left-overs from previous operations
1114 * (such as incomplete data writeouts).
1115 */
1116 KKASSERT(bytes == 0 || (rectype & JMASK_NESTED) == 0);
1117 KKASSERT(jrec->residual == 0);
1118
1119 /*
1120 * Check to see if the current stream record has enough room for
1121 * the new subrecord header. If it doesn't we extend the current
1122 * stream record.
1123 *
1124 * This may have the side effect of pushing out the current stream record
1125 * and creating a new one. We must adjust our stream tracking fields
1126 * accordingly.
1127 */
1128 if (jrec->stream_residual < sizeof(struct journal_subrecord)) {
1129 jrec->stream_ptr = journal_extend(jrec->jo, &jrec->rawp,
1130 jrec->stream_reserved - jrec->stream_residual,
1131 JREC_DEFAULTSIZE, &pusheditout);
1132 if (pusheditout) {
1133 /*
1134 * If a pushout occured, the pushed out stream record was
1135 * truncated as specified and the new record is exactly the
1136 * extension size specified.
1137 */
1138 jrec->stream_reserved = JREC_DEFAULTSIZE;
1139 jrec->stream_residual = JREC_DEFAULTSIZE;
1140 jrec->parent = NULL; /* no longer accessible */
1141 jrec->pushptrgood = 0; /* restored parents in pops no good */
1142 } else {
1143 /*
1144 * If no pushout occured the stream record is NOT truncated and
1145 * IS extended.
1146 */
1147 jrec->stream_reserved += JREC_DEFAULTSIZE;
1148 jrec->stream_residual += JREC_DEFAULTSIZE;
1149 }
1150 }
1151 last = (void *)jrec->stream_ptr;
1152 last->rectype = rectype;
1153 last->reserved = 0;
1154 last->recsize = sizeof(struct journal_subrecord) + bytes;
1155 jrec->last = last;
1156 jrec->residual = bytes; /* remaining data to be posted */
1157 jrec->residual_align = -bytes & 7; /* post-data alignment required */
1158 jrec->stream_ptr += sizeof(*last); /* current write pointer */
1159 jrec->stream_residual -= sizeof(*last); /* space remaining in stream */
1160 return(last);
1161}
1162
1163/*
1164 * Write out the data associated with a leaf record. Any number of calls
1165 * to this routine may be made as long as the byte count adds up to the
1166 * amount originally specified in jrecord_write().
1167 *
1168 * The act of writing out the leaf data may result in numerous stream records
1169 * being pushed out. Callers should be aware that even the associated
1170 * subrecord header may become inaccessible due to stream record pushouts.
1171 */
1172static void
1173jrecord_data(struct jrecord *jrec, const void *buf, int bytes)
1174{
1175 int pusheditout;
1176 int extsize;
1177
1178 KKASSERT(bytes >= 0 && bytes <= jrec->residual);
1179
1180 /*
1181 * Push out stream records as long as there is insufficient room to hold
1182 * the remaining data.
1183 */
1184 while (jrec->stream_residual < bytes) {
1185 /*
1186 * Fill in any remaining space in the current stream record.
1187 */
1188 bcopy(buf, jrec->stream_ptr, jrec->stream_residual);
1189 buf = (const char *)buf + jrec->stream_residual;
1190 bytes -= jrec->stream_residual;
1191 /*jrec->stream_ptr += jrec->stream_residual;*/
1192 jrec->residual -= jrec->stream_residual;
1193 jrec->stream_residual = 0;
1194
1195 /*
1196 * Try to extend the current stream record, but no more then 1/4
1197 * the size of the FIFO.
1198 */
1199 extsize = jrec->jo->fifo.size >> 2;
1200 if (extsize > bytes)
1201 extsize = (bytes + 15) & ~15;
1202
1203 jrec->stream_ptr = journal_extend(jrec->jo, &jrec->rawp,
1204 jrec->stream_reserved - jrec->stream_residual,
1205 extsize, &pusheditout);
1206 if (pusheditout) {
1207 jrec->stream_reserved = extsize;
1208 jrec->stream_residual = extsize;
1209 jrec->parent = NULL; /* no longer accessible */
1210 jrec->last = NULL; /* no longer accessible */
1211 jrec->pushptrgood = 0; /* restored parents in pops no good */
1212 } else {
1213 jrec->stream_reserved += extsize;
1214 jrec->stream_residual += extsize;
1215 }
1216 }
1217
1218 /*
1219 * Push out any remaining bytes into the current stream record.
1220 */
1221 if (bytes) {
1222 bcopy(buf, jrec->stream_ptr, bytes);
1223 jrec->stream_ptr += bytes;
1224 jrec->stream_residual -= bytes;
1225 jrec->residual -= bytes;
1226 }
1227
1228 /*
1229 * Handle data alignment requirements for the subrecord. Because the
1230 * stream record's data space is more strictly aligned, it must already
1231 * have sufficient space to hold any subrecord alignment slop.
1232 */
1233 if (jrec->residual == 0 && jrec->residual_align) {
1234 KKASSERT(jrec->residual_align <= jrec->stream_residual);
1235 bzero(jrec->stream_ptr, jrec->residual_align);
1236 jrec->stream_ptr += jrec->residual_align;
1237 jrec->stream_residual -= jrec->residual_align;
1238 jrec->residual_align = 0;
1239 }
1240}
1241
1242/*
1243 * We are finished with the transaction. This closes the transaction created
1244 * by jrecord_init().
1245 *
1246 * NOTE: If abortit is not set then we must be at the top level with no
1247 * residual subrecord data left to output.
1248 *
1249 * If abortit is set then we can be in any state, all pushes will be
1250 * popped and it is ok for there to be residual data. This works
1251 * because the virtual stream itself is truncated. Scanners must deal
1252 * with this situation.
1253 *
1254 * The stream record will be committed or aborted as specified and jrecord
1255 * resources will be cleaned up.
1256 */
1257static void
1258jrecord_done(struct jrecord *jrec, int abortit)
1259{
1260 KKASSERT(jrec->rawp != NULL);
1261
1262 if (abortit) {
1263 journal_abort(jrec->jo, &jrec->rawp);
1264 } else {
1265 KKASSERT(jrec->pushcount == 0 && jrec->residual == 0);
1266 journal_commit(jrec->jo, &jrec->rawp,
1267 jrec->stream_reserved - jrec->stream_residual, 1);
1268 }
1269
1270 /*
1271 * jrec should not be used beyond this point without another init,
1272 * but clean up some fields to ensure that we panic if it is.
1273 *
1274 * Note that jrec->rawp is NULLd out by journal_abort/journal_commit.
1275 */
1276 jrec->jo = NULL;
1277 jrec->stream_ptr = NULL;
1278}
1279
1280/************************************************************************
1281 * LOW LEVEL RECORD SUPPORT ROUTINES *
1282 ************************************************************************
1283 *
1284 * These routine create low level recursive and leaf subrecords representing
1285 * common filesystem structures.
1286 */
1287
1288/*
1289 * Write out a filename path relative to the base of the mount point.
1290 * rectype is typically JLEAF_PATH{1,2,3,4}.
1291 */
1292static void
1293jrecord_write_path(struct jrecord *jrec, int16_t rectype, struct namecache *ncp)
1294{
1295 char buf[64]; /* local buffer if it fits, else malloced */
1296 char *base;
1297 int pathlen;
1298 int index;
1299 struct namecache *scan;
1300
1301 /*
1302 * Pass 1 - figure out the number of bytes required. Include terminating
1303 * \0 on last element and '/' separator on other elements.
1304 */
1305again:
1306 pathlen = 0;
1307 for (scan = ncp;
1308 scan && (scan->nc_flag & NCF_MOUNTPT) == 0;
1309 scan = scan->nc_parent
1310 ) {
1311 pathlen += scan->nc_nlen + 1;
1312 }
1313
1314 if (pathlen <= sizeof(buf))
1315 base = buf;
1316 else
1317 base = malloc(pathlen, M_TEMP, M_INTWAIT);
1318
1319 /*
1320 * Pass 2 - generate the path buffer
1321 */
1322 index = pathlen;
1323 for (scan = ncp;
1324 scan && (scan->nc_flag & NCF_MOUNTPT) == 0;
1325 scan = scan->nc_parent
1326 ) {
1327 if (scan->nc_nlen >= index) {
1328 if (base != buf)
1329 free(base, M_TEMP);
1330 goto again;
1331 }
1332 if (index == pathlen)
1333 base[--index] = 0;
1334 else
1335 base[--index] = '/';
1336 index -= scan->nc_nlen;
1337 bcopy(scan->nc_name, base + index, scan->nc_nlen);
1338 }
1339 jrecord_leaf(jrec, rectype, base + index, pathlen - index);
1340 if (base != buf)
1341 free(base, M_TEMP);
1342}
1343
1344/*
1345 * Write out a file attribute structure. While somewhat inefficient, using
1346 * a recursive data structure is the most portable and extensible way.
1347 */
1348static void
1349jrecord_write_vattr(struct jrecord *jrec, struct vattr *vat)
1350{
1351 void *save;
1352
1353 save = jrecord_push(jrec, JTYPE_VATTR);
1354 if (vat->va_type != VNON)
1355 jrecord_leaf(jrec, JLEAF_UID, &vat->va_type, sizeof(vat->va_type));
1356 if (vat->va_uid != VNOVAL)
1357 jrecord_leaf(jrec, JLEAF_UID, &vat->va_mode, sizeof(vat->va_mode));
1358 if (vat->va_nlink != VNOVAL)
1359 jrecord_leaf(jrec, JLEAF_NLINK, &vat->va_nlink, sizeof(vat->va_nlink));
1360 if (vat->va_uid != VNOVAL)
1361 jrecord_leaf(jrec, JLEAF_UID, &vat->va_uid, sizeof(vat->va_uid));
1362 if (vat->va_gid != VNOVAL)
1363 jrecord_leaf(jrec, JLEAF_GID, &vat->va_gid, sizeof(vat->va_gid));
1364 if (vat->va_fsid != VNOVAL)
1365 jrecord_leaf(jrec, JLEAF_FSID, &vat->va_fsid, sizeof(vat->va_fsid));
1366 if (vat->va_fileid != VNOVAL)
1367 jrecord_leaf(jrec, JLEAF_INUM, &vat->va_fileid, sizeof(vat->va_fileid));
1368 if (vat->va_size != VNOVAL)
1369 jrecord_leaf(jrec, JLEAF_SIZE, &vat->va_size, sizeof(vat->va_size));
1370 if (vat->va_atime.tv_sec != VNOVAL)
1371 jrecord_leaf(jrec, JLEAF_ATIME, &vat->va_atime, sizeof(vat->va_atime));
1372 if (vat->va_mtime.tv_sec != VNOVAL)
1373 jrecord_leaf(jrec, JLEAF_MTIME, &vat->va_mtime, sizeof(vat->va_mtime));
1374 if (vat->va_ctime.tv_sec != VNOVAL)
1375 jrecord_leaf(jrec, JLEAF_CTIME, &vat->va_ctime, sizeof(vat->va_ctime));
1376 if (vat->va_gen != VNOVAL)
1377 jrecord_leaf(jrec, JLEAF_GEN, &vat->va_gen, sizeof(vat->va_gen));
1378 if (vat->va_flags != VNOVAL)
1379 jrecord_leaf(jrec, JLEAF_FLAGS, &vat->va_flags, sizeof(vat->va_flags));
1380 if (vat->va_rdev != VNOVAL)
1381 jrecord_leaf(jrec, JLEAF_UDEV, &vat->va_rdev, sizeof(vat->va_rdev));
1382#if 0
1383 if (vat->va_filerev != VNOVAL)
1384 jrecord_leaf(jrec, JLEAF_FILEREV, &vat->va_filerev, sizeof(vat->va_filerev));
1385#endif
1386 jrecord_pop(jrec, save);
1387}
1388
1389/*
1390 * Write out the creds used to issue a file operation. If a process is
1391 * available write out additional tracking information related to the
1392 * process.
1393 *
1394 * XXX additional tracking info
1395 * XXX tty line info
1396 */
1397static void
1398jrecord_write_cred(struct jrecord *jrec, struct thread *td, struct ucred *cred)
1399{
1400 void *save;
1401 struct proc *p;
1402
1403 save = jrecord_push(jrec, JTYPE_CRED);
1404 jrecord_leaf(jrec, JLEAF_UID, &cred->cr_uid, sizeof(cred->cr_uid));
1405 jrecord_leaf(jrec, JLEAF_GID, &cred->cr_gid, sizeof(cred->cr_gid));
1406 if (td && (p = td->td_proc) != NULL) {
1407 jrecord_leaf(jrec, JLEAF_PID, &p->p_pid, sizeof(p->p_pid));
1408 jrecord_leaf(jrec, JLEAF_COMM, p->p_comm, sizeof(p->p_comm));
1409 }
1410 jrecord_pop(jrec, save);
1411}
1412
1413/*
1414 * Write out information required to identify a vnode
1415 *
1416 * XXX this needs work. We should write out the inode number as well,
1417 * and in fact avoid writing out the file path for seqential writes
1418 * occuring within e.g. a certain period of time.
1419 */
1420static void
1421jrecord_write_vnode_ref(struct jrecord *jrec, struct vnode *vp)
1422{
1423 struct namecache *ncp;
1424
1425 TAILQ_FOREACH(ncp, &vp->v_namecache, nc_vnode) {
1426 if ((ncp->nc_flag & (NCF_UNRESOLVED|NCF_DESTROYED)) == 0)
1427 break;
1428 }
1429 if (ncp)
1430 jrecord_write_path(jrec, JLEAF_PATH_REF, ncp);
1431}
1432
1433#if 0
1434/*
1435 * Write out the current contents of the file within the specified
1436 * range. This is typically called from within an UNDO section. A
1437 * locked vnode must be passed.
1438 */
1439static int
1440jrecord_write_filearea(struct jrecord *jrec, struct vnode *vp,
1441 off_t begoff, off_t endoff)
1442{
1443}
1444#endif
1445
1446/*
1447 * Write out the data represented by a pagelist
1448 */
1449static void
1450jrecord_write_pagelist(struct jrecord *jrec, int16_t rectype,
1451 struct vm_page **pglist, int *rtvals, int pgcount,
1452 off_t offset)
1453{
1454 struct msf_buf *msf;
1455 int error;
1456 int b;
1457 int i;
1458
1459 i = 0;
1460 while (i < pgcount) {
1461 /*
1462 * Find the next valid section. Skip any invalid elements
1463 */
1464 if (rtvals[i] != VM_PAGER_OK) {
1465 ++i;
1466 offset += PAGE_SIZE;
1467 continue;
1468 }
1469
1470 /*
1471 * Figure out how big the valid section is, capping I/O at what the
1472 * MSFBUF can represent.
1473 */
1474 b = i;
1475 while (i < pgcount && i - b != XIO_INTERNAL_PAGES &&
1476 rtvals[i] == VM_PAGER_OK
1477 ) {
1478 ++i;
1479 }
1480
1481 /*
1482 * And write it out.
1483 */
1484 if (i - b) {
1485 error = msf_map_pagelist(&msf, pglist + b, i - b, 0);
1486 if (error == 0) {
1487 printf("RECORD PUTPAGES %d\n", msf_buf_bytes(msf));
1488 jrecord_leaf(jrec, JLEAF_SEEKPOS, &offset, sizeof(offset));
1489 jrecord_leaf(jrec, rectype,
1490 msf_buf_kva(msf), msf_buf_bytes(msf));
1491 msf_buf_free(msf);
1492 } else {
1493 printf("jrecord_write_pagelist: mapping failure\n");
1494 }
1495 offset += (off_t)(i - b) << PAGE_SHIFT;
1496 }
1497 }
1498}
1499
1500/*
1501 * Write out the data represented by a UIO.
1502 */
1503struct jwuio_info {
1504 struct jrecord *jrec;
1505 int16_t rectype;
1506};
1507
1508static int jrecord_write_uio_callback(void *info, char *buf, int bytes);
1509
1510static void
1511jrecord_write_uio(struct jrecord *jrec, int16_t rectype, struct uio *uio)
1512{
1513 struct jwuio_info info = { jrec, rectype };
1514 int error;
1515
1516 if (uio->uio_segflg != UIO_NOCOPY) {
1517 jrecord_leaf(jrec, JLEAF_SEEKPOS, &uio->uio_offset,
1518 sizeof(uio->uio_offset));
1519 error = msf_uio_iterate(uio, jrecord_write_uio_callback, &info);
1520 if (error)
1521 printf("XXX warning uio iterate failed %d\n", error);
1522 }
1523}
1524
1525static int
1526jrecord_write_uio_callback(void *info_arg, char *buf, int bytes)
1527{
1528 struct jwuio_info *info = info_arg;
1529
1530 jrecord_leaf(info->jrec, info->rectype, buf, bytes);
1531 return(0);
1532}
1533
1534/************************************************************************
1535 * JOURNAL VNOPS *
1536 ************************************************************************
1537 *
1538 * These are function shims replacing the normal filesystem ops. We become
1539 * responsible for calling the underlying filesystem ops. We have the choice
1540 * of executing the underlying op first and then generating the journal entry,
1541 * or starting the journal entry, executing the underlying op, and then
1542 * either completing or aborting it.
1543 *
1544 * The journal is supposed to be a high-level entity, which generally means
1545 * identifying files by name rather then by inode. Supplying both allows
1546 * the journal to be used both for inode-number-compatible 'mirrors' and
1547 * for simple filesystem replication.
1548 *
1549 * Writes are particularly difficult to deal with because a single write may
1550 * represent a hundred megabyte buffer or more, and both writes and truncations
1551 * require the 'old' data to be written out as well as the new data if the
1552 * log is reversable. Other issues:
1553 *
1554 * - How to deal with operations on unlinked files (no path available),
1555 * but which may still be filesystem visible due to hard links.
1556 *
1557 * - How to deal with modifications made via a memory map.
1558 *
1559 * - Future cache coherency support will require cache coherency API calls
1560 * both prior to and after the call to the underlying VFS.
1561 *
1562 * ALSO NOTE: We do not have to shim compatibility VOPs like MKDIR which have
1563 * new VFS equivalents (NMKDIR).
1564 */
1565
1566/*
1567 * Journal vop_settattr { a_vp, a_vap, a_cred, a_td }
1568 */
1569static
1570int
1571journal_setattr(struct vop_setattr_args *ap)
1572{
1573 struct mount *mp;
1574 struct journal *jo;
1575 struct jrecord jrec;
1576 void *save; /* warning, save pointers do not always remain valid */
1577 int error;
1578
1579 error = vop_journal_operate_ap(&ap->a_head);
1580 mp = ap->a_head.a_ops->vv_mount;
1581 if (error == 0) {
1582 TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1583 jrecord_init(jo, &jrec, -1);
1584 save = jrecord_push(&jrec, JTYPE_SETATTR);
1585 jrecord_write_cred(&jrec, ap->a_td, ap->a_cred);
1586 jrecord_write_vnode_ref(&jrec, ap->a_vp);
1587 jrecord_write_vattr(&jrec, ap->a_vap);
1588 jrecord_pop(&jrec, save);
1589 jrecord_done(&jrec, 0);
1590 }
1591 }
1592 return (error);
1593}
1594
1595/*
1596 * Journal vop_write { a_vp, a_uio, a_ioflag, a_cred }
1597 */
1598static
1599int
1600journal_write(struct vop_write_args *ap)
1601{
1602 struct mount *mp;
1603 struct journal *jo;
1604 struct jrecord jrec;
1605 struct uio uio_copy;
1606 struct iovec uio_one_iovec;
1607 void *save; /* warning, save pointers do not always remain valid */
1608 int error;
1609
1610 /*
1611 * This is really nasty. UIO's don't retain sufficient information to
1612 * be reusable once they've gone through the VOP chain. The iovecs get
1613 * cleared, so we have to copy the UIO.
1614 *
1615 * XXX fix the UIO code to not destroy iov's during a scan so we can
1616 * reuse the uio over and over again.
1617 */
1618 uio_copy = *ap->a_uio;
1619 if (uio_copy.uio_iovcnt == 1) {
1620 uio_one_iovec = ap->a_uio->uio_iov[0];
1621 uio_copy.uio_iov = &uio_one_iovec;
1622 } else {
1623 uio_copy.uio_iov = malloc(uio_copy.uio_iovcnt * sizeof(struct iovec),
1624 M_JOURNAL, M_WAITOK);
1625 bcopy(ap->a_uio->uio_iov, uio_copy.uio_iov,
1626 uio_copy.uio_iovcnt * sizeof(struct iovec));
1627 }
1628
1629 error = vop_journal_operate_ap(&ap->a_head);
1630 mp = ap->a_head.a_ops->vv_mount;
1631 if (error == 0) {
1632 TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1633 jrecord_init(jo, &jrec, -1);
1634 save = jrecord_push(&jrec, JTYPE_WRITE);
1635 jrecord_write_cred(&jrec, NULL, ap->a_cred);
1636 jrecord_write_vnode_ref(&jrec, ap->a_vp);
1637 jrecord_write_uio(&jrec, JLEAF_FILEDATA, &uio_copy);
1638 jrecord_pop(&jrec, save);
1639 jrecord_done(&jrec, 0);
1640 }
1641 }
1642
1643 if (uio_copy.uio_iov != &uio_one_iovec)
1644 free(uio_copy.uio_iov, M_JOURNAL);
1645
1646
1647 return (error);
1648}
1649
1650/*
1651 * Journal vop_fsync { a_vp, a_waitfor, a_td }
1652 */
1653static
1654int
1655journal_fsync(struct vop_fsync_args *ap)
1656{
1657 struct mount *mp;
1658 struct journal *jo;
1659 int error;
1660
1661 error = vop_journal_operate_ap(&ap->a_head);
1662 mp = ap->a_head.a_ops->vv_mount;
1663 if (error == 0) {
1664 TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1665 /* XXX synchronize pending journal records */
1666 }
1667 }
1668 return (error);
1669}
1670
1671/*
1672 * Journal vop_putpages { a_vp, a_m, a_count, a_sync, a_rtvals, a_offset }
1673 *
1674 * note: a_count is in bytes.
1675 */
1676static
1677int
1678journal_putpages(struct vop_putpages_args *ap)
1679{
1680 struct mount *mp;
1681 struct journal *jo;
1682 struct jrecord jrec;
1683 void *save; /* warning, save pointers do not always remain valid */
1684 int error;
1685
1686 error = vop_journal_operate_ap(&ap->a_head);
1687 mp = ap->a_head.a_ops->vv_mount;
1688 if (error == 0 && ap->a_count > 0) {
1689 TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1690 jrecord_init(jo, &jrec, -1);
1691 save = jrecord_push(&jrec, JTYPE_PUTPAGES);
1692 jrecord_write_vnode_ref(&jrec, ap->a_vp);
1693 jrecord_write_pagelist(&jrec, JLEAF_FILEDATA,
1694 ap->a_m, ap->a_rtvals, btoc(ap->a_count), ap->a_offset);
1695 jrecord_pop(&jrec, save);
1696 jrecord_done(&jrec, 0);
1697 }
1698 }
1699 return (error);
1700}
1701
1702/*
1703 * Journal vop_setacl { a_vp, a_type, a_aclp, a_cred, a_td }
1704 */
1705static
1706int
1707journal_setacl(struct vop_setacl_args *ap)
1708{
1709 struct mount *mp;
1710 struct journal *jo;
1711 struct jrecord jrec;
1712 void *save; /* warning, save pointers do not always remain valid */
1713 int error;
1714
1715 error = vop_journal_operate_ap(&ap->a_head);
1716 mp = ap->a_head.a_ops->vv_mount;
1717 if (error == 0) {
1718 TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1719 jrecord_init(jo, &jrec, -1);
1720 save = jrecord_push(&jrec, JTYPE_SETACL);
1721 jrecord_write_cred(&jrec, ap->a_td, ap->a_cred);
1722 jrecord_write_vnode_ref(&jrec, ap->a_vp);
1723 /* XXX type, aclp */
1724 jrecord_pop(&jrec, save);
1725 jrecord_done(&jrec, 0);
1726 }
1727 }
1728 return (error);
1729}
1730
1731/*
1732 * Journal vop_setextattr { a_vp, a_name, a_uio, a_cred, a_td }
1733 */
1734static
1735int
1736journal_setextattr(struct vop_setextattr_args *ap)
1737{
1738 struct mount *mp;
1739 struct journal *jo;
1740 struct jrecord jrec;
1741 void *save; /* warning, save pointers do not always remain valid */
1742 int error;
1743
1744 error = vop_journal_operate_ap(&ap->a_head);
1745 mp = ap->a_head.a_ops->vv_mount;
1746 if (error == 0) {
1747 TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1748 jrecord_init(jo, &jrec, -1);
1749 save = jrecord_push(&jrec, JTYPE_SETEXTATTR);
1750 jrecord_write_cred(&jrec, ap->a_td, ap->a_cred);
1751 jrecord_write_vnode_ref(&jrec, ap->a_vp);
1752 jrecord_leaf(&jrec, JLEAF_ATTRNAME, ap->a_name, strlen(ap->a_name));
1753 jrecord_write_uio(&jrec, JLEAF_FILEDATA, ap->a_uio);
1754 jrecord_pop(&jrec, save);
1755 jrecord_done(&jrec, 0);
1756 }
1757 }
1758 return (error);
1759}
1760
1761/*
1762 * Journal vop_ncreate { a_ncp, a_vpp, a_cred, a_vap }
1763 */
1764static
1765int
1766journal_ncreate(struct vop_ncreate_args *ap)
1767{
1768 struct mount *mp;
1769 struct journal *jo;
1770 struct jrecord jrec;
1771 void *save; /* warning, save pointers do not always remain valid */
1772 int error;
1773
1774 error = vop_journal_operate_ap(&ap->a_head);
1775 mp = ap->a_head.a_ops->vv_mount;
1776 if (error == 0) {
1777 TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1778 jrecord_init(jo, &jrec, -1);
1779 save = jrecord_push(&jrec, JTYPE_CREATE);
1780 jrecord_write_cred(&jrec, NULL, ap->a_cred);
1781 jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
1782 if (*ap->a_vpp)
1783 jrecord_write_vnode_ref(&jrec, *ap->a_vpp);
1784 jrecord_pop(&jrec, save);
1785 jrecord_done(&jrec, 0);
1786 }
1787 }
1788 return (error);
1789}
1790
1791/*
1792 * Journal vop_nmknod { a_ncp, a_vpp, a_cred, a_vap }
1793 */
1794static
1795int
1796journal_nmknod(struct vop_nmknod_args *ap)
1797{
1798 struct mount *mp;
1799 struct journal *jo;
1800 struct jrecord jrec;
1801 void *save; /* warning, save pointers do not always remain valid */
1802 int error;
1803
1804 error = vop_journal_operate_ap(&ap->a_head);
1805 mp = ap->a_head.a_ops->vv_mount;
1806 if (error == 0) {
1807 TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1808 jrecord_init(jo, &jrec, -1);
1809 save = jrecord_push(&jrec, JTYPE_MKNOD);
1810 jrecord_write_cred(&jrec, NULL, ap->a_cred);
1811 jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
1812 jrecord_write_vattr(&jrec, ap->a_vap);
1813 if (*ap->a_vpp)
1814 jrecord_write_vnode_ref(&jrec, *ap->a_vpp);
1815 jrecord_pop(&jrec, save);
1816 jrecord_done(&jrec, 0);
1817 }
1818 }
1819 return (error);
1820}
1821
1822/*
1823 * Journal vop_nlink { a_ncp, a_vp, a_cred }
1824 */
1825static
1826int
1827journal_nlink(struct vop_nlink_args *ap)
1828{
1829 struct mount *mp;
1830 struct journal *jo;
1831 struct jrecord jrec;
1832 void *save; /* warning, save pointers do not always remain valid */
1833 int error;
1834
1835 error = vop_journal_operate_ap(&ap->a_head);
1836 mp = ap->a_head.a_ops->vv_mount;
1837 if (error == 0) {
1838 TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1839 jrecord_init(jo, &jrec, -1);
1840 save = jrecord_push(&jrec, JTYPE_LINK);
1841 jrecord_write_cred(&jrec, NULL, ap->a_cred);
1842 jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
1843 jrecord_write_vnode_ref(&jrec, ap->a_vp);
1844 /* XXX PATH to VP and inode number */
1845 jrecord_pop(&jrec, save);
1846 jrecord_done(&jrec, 0);
1847 }
1848 }
1849 return (error);
1850}
1851
1852/*
1853 * Journal vop_symlink { a_ncp, a_vpp, a_cred, a_vap, a_target }
1854 */
1855static
1856int
1857journal_nsymlink(struct vop_nsymlink_args *ap)
1858{
1859 struct mount *mp;
1860 struct journal *jo;
1861 struct jrecord jrec;
1862 void *save; /* warning, save pointers do not always remain valid */
1863 int error;
1864
1865 error = vop_journal_operate_ap(&ap->a_head);
1866 mp = ap->a_head.a_ops->vv_mount;
1867 if (error == 0) {
1868 TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1869 jrecord_init(jo, &jrec, -1);
1870 save = jrecord_push(&jrec, JTYPE_SYMLINK);
1871 jrecord_write_cred(&jrec, NULL, ap->a_cred);
1872 jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
1873 jrecord_leaf(&jrec, JLEAF_SYMLINKDATA,
1874 ap->a_target, strlen(ap->a_target));
1875 if (*ap->a_vpp)
1876 jrecord_write_vnode_ref(&jrec, *ap->a_vpp);
1877 jrecord_pop(&jrec, save);
1878 jrecord_done(&jrec, 0);
1879 }
1880 }
1881 return (error);
1882}
1883
1884/*
1885 * Journal vop_nwhiteout { a_ncp, a_cred, a_flags }
1886 */
1887static
1888int
1889journal_nwhiteout(struct vop_nwhiteout_args *ap)
1890{
1891 struct mount *mp;
1892 struct journal *jo;
1893 struct jrecord jrec;
1894 void *save; /* warning, save pointers do not always remain valid */
1895 int error;
1896
1897 error = vop_journal_operate_ap(&ap->a_head);
1898 mp = ap->a_head.a_ops->vv_mount;
1899 if (error == 0) {
1900 TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1901 jrecord_init(jo, &jrec, -1);
1902 save = jrecord_push(&jrec, JTYPE_WHITEOUT);
1903 jrecord_write_cred(&jrec, NULL, ap->a_cred);
1904 jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
1905 jrecord_pop(&jrec, save);
1906 jrecord_done(&jrec, 0);
1907 }
1908 }
1909 return (error);
1910}
1911
1912/*
1913 * Journal vop_nremove { a_ncp, a_cred }
1914 */
1915static
1916int
1917journal_nremove(struct vop_nremove_args *ap)
1918{
1919 struct mount *mp;
1920 struct journal *jo;
1921 struct jrecord jrec;
1922 void *save; /* warning, save pointers do not always remain valid */
1923 int error;
1924
1925 error = vop_journal_operate_ap(&ap->a_head);
1926 mp = ap->a_head.a_ops->vv_mount;
1927 if (error == 0) {
1928 TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1929 jrecord_init(jo, &jrec, -1);
1930 save = jrecord_push(&jrec, JTYPE_REMOVE);
1931 jrecord_write_cred(&jrec, NULL, ap->a_cred);
1932 jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
1933 jrecord_pop(&jrec, save);
1934 jrecord_done(&jrec, 0);
1935 }
1936 }
1937 return (error);
1938}
1939
1940/*
1941 * Journal vop_nmkdir { a_ncp, a_vpp, a_cred, a_vap }
1942 */
1943static
1944int
1945journal_nmkdir(struct vop_nmkdir_args *ap)
1946{
1947 struct mount *mp;
1948 struct journal *jo;
1949 struct jrecord jrec;
1950 void *save; /* warning, save pointers do not always remain valid */
1951 int error;
1952
1953 error = vop_journal_operate_ap(&ap->a_head);
1954 mp = ap->a_head.a_ops->vv_mount;
1955 if (error == 0) {
1956 TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1957 jrecord_init(jo, &jrec, -1);
1958 if (jo->flags & MC_JOURNAL_WANT_REVERSABLE) {
1959 save = jrecord_push(&jrec, JTYPE_UNDO);
1960 /* XXX undo operations */
1961 jrecord_pop(&jrec, save);
1962 }
1963#if 0
1964 if (jo->flags & MC_JOURNAL_WANT_AUDIT) {
1965 jrecord_write_audit(&jrec);
1966 }
1967#endif
1968 save = jrecord_push(&jrec, JTYPE_MKDIR);
1969 jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
1970 jrecord_write_cred(&jrec, NULL, ap->a_cred);
1971 jrecord_write_vattr(&jrec, ap->a_vap);
1972 jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
1973 if (*ap->a_vpp)
1974 jrecord_write_vnode_ref(&jrec, *ap->a_vpp);
1975 jrecord_pop(&jrec, save);
1976 jrecord_done(&jrec, 0);
1977 }
1978 }
1979 return (error);
1980}
1981
1982/*
1983 * Journal vop_nrmdir { a_ncp, a_cred }
1984 */
1985static
1986int
1987journal_nrmdir(struct vop_nrmdir_args *ap)
1988{
1989 struct mount *mp;
1990 struct journal *jo;
1991 struct jrecord jrec;
1992 void *save; /* warning, save pointers do not always remain valid */
1993 int error;
1994
1995 error = vop_journal_operate_ap(&ap->a_head);
1996 mp = ap->a_head.a_ops->vv_mount;
1997 if (error == 0) {
1998 TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
1999 jrecord_init(jo, &jrec, -1);
2000 save = jrecord_push(&jrec, JTYPE_RMDIR);
2001 jrecord_write_cred(&jrec, NULL, ap->a_cred);
2002 jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_ncp);
2003 jrecord_pop(&jrec, save);
2004 jrecord_done(&jrec, 0);
2005 }
2006 }
2007 return (error);
2008}
2009
2010/*
2011 * Journal vop_nrename { a_fncp, a_tncp, a_cred }
2012 */
2013static
2014int
2015journal_nrename(struct vop_nrename_args *ap)
2016{
2017 struct mount *mp;
2018 struct journal *jo;
2019 struct jrecord jrec;
2020 void *save; /* warning, save pointers do not always remain valid */
2021 int error;
2022
2023 error = vop_journal_operate_ap(&ap->a_head);
2024 mp = ap->a_head.a_ops->vv_mount;
2025 if (error == 0) {
2026 TAILQ_FOREACH(jo, &mp->mnt_jlist, jentry) {
2027 jrecord_init(jo, &jrec, -1);
2028 save = jrecord_push(&jrec, JTYPE_RENAME);
2029 jrecord_write_cred(&jrec, NULL, ap->a_cred);
2030 jrecord_write_path(&jrec, JLEAF_PATH1, ap->a_fncp);
2031 jrecord_write_path(&jrec, JLEAF_PATH2, ap->a_tncp);
2032 jrecord_pop(&jrec, save);
2033 jrecord_done(&jrec, 0);
2034 }
2035 }
2036 return (error);
2037}
2038