ifpoll: Setup if_start cpuid for NPOLLING properly
[dragonfly.git] / sys / dev / netif / emx / if_emx.c
... / ...
CommitLineData
1/*
2 * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>. All rights reserved.
3 *
4 * Copyright (c) 2001-2008, Intel Corporation
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * 3. Neither the name of the Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived from
19 * this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 *
33 *
34 * Copyright (c) 2005 The DragonFly Project. All rights reserved.
35 *
36 * This code is derived from software contributed to The DragonFly Project
37 * by Matthew Dillon <dillon@backplane.com>
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 *
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in
47 * the documentation and/or other materials provided with the
48 * distribution.
49 * 3. Neither the name of The DragonFly Project nor the names of its
50 * contributors may be used to endorse or promote products derived
51 * from this software without specific, prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
57 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 */
66
67#include "opt_ifpoll.h"
68#include "opt_emx.h"
69
70#include <sys/param.h>
71#include <sys/bus.h>
72#include <sys/endian.h>
73#include <sys/interrupt.h>
74#include <sys/kernel.h>
75#include <sys/ktr.h>
76#include <sys/malloc.h>
77#include <sys/mbuf.h>
78#include <sys/proc.h>
79#include <sys/rman.h>
80#include <sys/serialize.h>
81#include <sys/serialize2.h>
82#include <sys/socket.h>
83#include <sys/sockio.h>
84#include <sys/sysctl.h>
85#include <sys/systm.h>
86
87#include <net/bpf.h>
88#include <net/ethernet.h>
89#include <net/if.h>
90#include <net/if_arp.h>
91#include <net/if_dl.h>
92#include <net/if_media.h>
93#include <net/ifq_var.h>
94#include <net/toeplitz.h>
95#include <net/toeplitz2.h>
96#include <net/vlan/if_vlan_var.h>
97#include <net/vlan/if_vlan_ether.h>
98#include <net/if_poll.h>
99
100#include <netinet/in_systm.h>
101#include <netinet/in.h>
102#include <netinet/ip.h>
103#include <netinet/tcp.h>
104#include <netinet/udp.h>
105
106#include <bus/pci/pcivar.h>
107#include <bus/pci/pcireg.h>
108
109#include <dev/netif/ig_hal/e1000_api.h>
110#include <dev/netif/ig_hal/e1000_82571.h>
111#include <dev/netif/emx/if_emx.h>
112
113#ifdef EMX_RSS_DEBUG
114#define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) \
115do { \
116 if (sc->rss_debug >= lvl) \
117 if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
118} while (0)
119#else /* !EMX_RSS_DEBUG */
120#define EMX_RSS_DPRINTF(sc, lvl, fmt, ...) ((void)0)
121#endif /* EMX_RSS_DEBUG */
122
123#define EMX_TX_SERIALIZE 1
124#define EMX_RX_SERIALIZE 2
125
126#define EMX_NAME "Intel(R) PRO/1000 "
127
128#define EMX_DEVICE(id) \
129 { EMX_VENDOR_ID, E1000_DEV_ID_##id, EMX_NAME #id }
130#define EMX_DEVICE_NULL { 0, 0, NULL }
131
132static const struct emx_device {
133 uint16_t vid;
134 uint16_t did;
135 const char *desc;
136} emx_devices[] = {
137 EMX_DEVICE(82571EB_COPPER),
138 EMX_DEVICE(82571EB_FIBER),
139 EMX_DEVICE(82571EB_SERDES),
140 EMX_DEVICE(82571EB_SERDES_DUAL),
141 EMX_DEVICE(82571EB_SERDES_QUAD),
142 EMX_DEVICE(82571EB_QUAD_COPPER),
143 EMX_DEVICE(82571EB_QUAD_COPPER_BP),
144 EMX_DEVICE(82571EB_QUAD_COPPER_LP),
145 EMX_DEVICE(82571EB_QUAD_FIBER),
146 EMX_DEVICE(82571PT_QUAD_COPPER),
147
148 EMX_DEVICE(82572EI_COPPER),
149 EMX_DEVICE(82572EI_FIBER),
150 EMX_DEVICE(82572EI_SERDES),
151 EMX_DEVICE(82572EI),
152
153 EMX_DEVICE(82573E),
154 EMX_DEVICE(82573E_IAMT),
155 EMX_DEVICE(82573L),
156
157 EMX_DEVICE(80003ES2LAN_COPPER_SPT),
158 EMX_DEVICE(80003ES2LAN_SERDES_SPT),
159 EMX_DEVICE(80003ES2LAN_COPPER_DPT),
160 EMX_DEVICE(80003ES2LAN_SERDES_DPT),
161
162 EMX_DEVICE(82574L),
163 EMX_DEVICE(82574LA),
164
165 /* required last entry */
166 EMX_DEVICE_NULL
167};
168
169static int emx_probe(device_t);
170static int emx_attach(device_t);
171static int emx_detach(device_t);
172static int emx_shutdown(device_t);
173static int emx_suspend(device_t);
174static int emx_resume(device_t);
175
176static void emx_init(void *);
177static void emx_stop(struct emx_softc *);
178static int emx_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
179static void emx_start(struct ifnet *);
180#ifdef IFPOLL_ENABLE
181static void emx_npoll(struct ifnet *, struct ifpoll_info *);
182#endif
183static void emx_watchdog(struct ifnet *);
184static void emx_media_status(struct ifnet *, struct ifmediareq *);
185static int emx_media_change(struct ifnet *);
186static void emx_timer(void *);
187static void emx_serialize(struct ifnet *, enum ifnet_serialize);
188static void emx_deserialize(struct ifnet *, enum ifnet_serialize);
189static int emx_tryserialize(struct ifnet *, enum ifnet_serialize);
190#ifdef INVARIANTS
191static void emx_serialize_assert(struct ifnet *, enum ifnet_serialize,
192 boolean_t);
193#endif
194
195static void emx_intr(void *);
196static void emx_intr_mask(void *);
197static void emx_intr_body(struct emx_softc *, boolean_t);
198static void emx_rxeof(struct emx_softc *, int, int);
199static void emx_txeof(struct emx_softc *);
200static void emx_tx_collect(struct emx_softc *);
201static void emx_tx_purge(struct emx_softc *);
202static void emx_enable_intr(struct emx_softc *);
203static void emx_disable_intr(struct emx_softc *);
204
205static int emx_dma_alloc(struct emx_softc *);
206static void emx_dma_free(struct emx_softc *);
207static void emx_init_tx_ring(struct emx_softc *);
208static int emx_init_rx_ring(struct emx_softc *, struct emx_rxdata *);
209static void emx_free_rx_ring(struct emx_softc *, struct emx_rxdata *);
210static int emx_create_tx_ring(struct emx_softc *);
211static int emx_create_rx_ring(struct emx_softc *, struct emx_rxdata *);
212static void emx_destroy_tx_ring(struct emx_softc *, int);
213static void emx_destroy_rx_ring(struct emx_softc *,
214 struct emx_rxdata *, int);
215static int emx_newbuf(struct emx_softc *, struct emx_rxdata *, int, int);
216static int emx_encap(struct emx_softc *, struct mbuf **);
217static int emx_txcsum(struct emx_softc *, struct mbuf *,
218 uint32_t *, uint32_t *);
219static int emx_tso_pullup(struct emx_softc *, struct mbuf **);
220static int emx_tso_setup(struct emx_softc *, struct mbuf *,
221 uint32_t *, uint32_t *);
222
223static int emx_is_valid_eaddr(const uint8_t *);
224static int emx_reset(struct emx_softc *);
225static void emx_setup_ifp(struct emx_softc *);
226static void emx_init_tx_unit(struct emx_softc *);
227static void emx_init_rx_unit(struct emx_softc *);
228static void emx_update_stats(struct emx_softc *);
229static void emx_set_promisc(struct emx_softc *);
230static void emx_disable_promisc(struct emx_softc *);
231static void emx_set_multi(struct emx_softc *);
232static void emx_update_link_status(struct emx_softc *);
233static void emx_smartspeed(struct emx_softc *);
234static void emx_set_itr(struct emx_softc *, uint32_t);
235static void emx_disable_aspm(struct emx_softc *);
236
237static void emx_print_debug_info(struct emx_softc *);
238static void emx_print_nvm_info(struct emx_softc *);
239static void emx_print_hw_stats(struct emx_softc *);
240
241static int emx_sysctl_stats(SYSCTL_HANDLER_ARGS);
242static int emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
243static int emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
244static int emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
245static void emx_add_sysctl(struct emx_softc *);
246
247static void emx_serialize_skipmain(struct emx_softc *);
248static void emx_deserialize_skipmain(struct emx_softc *);
249
250/* Management and WOL Support */
251static void emx_get_mgmt(struct emx_softc *);
252static void emx_rel_mgmt(struct emx_softc *);
253static void emx_get_hw_control(struct emx_softc *);
254static void emx_rel_hw_control(struct emx_softc *);
255static void emx_enable_wol(device_t);
256
257static device_method_t emx_methods[] = {
258 /* Device interface */
259 DEVMETHOD(device_probe, emx_probe),
260 DEVMETHOD(device_attach, emx_attach),
261 DEVMETHOD(device_detach, emx_detach),
262 DEVMETHOD(device_shutdown, emx_shutdown),
263 DEVMETHOD(device_suspend, emx_suspend),
264 DEVMETHOD(device_resume, emx_resume),
265 { 0, 0 }
266};
267
268static driver_t emx_driver = {
269 "emx",
270 emx_methods,
271 sizeof(struct emx_softc),
272};
273
274static devclass_t emx_devclass;
275
276DECLARE_DUMMY_MODULE(if_emx);
277MODULE_DEPEND(emx, ig_hal, 1, 1, 1);
278DRIVER_MODULE(if_emx, pci, emx_driver, emx_devclass, NULL, NULL);
279
280/*
281 * Tunables
282 */
283static int emx_int_throttle_ceil = EMX_DEFAULT_ITR;
284static int emx_rxd = EMX_DEFAULT_RXD;
285static int emx_txd = EMX_DEFAULT_TXD;
286static int emx_smart_pwr_down = 0;
287static int emx_rxr = 0;
288
289/* Controls whether promiscuous also shows bad packets */
290static int emx_debug_sbp = 0;
291
292static int emx_82573_workaround = 1;
293static int emx_msi_enable = 1;
294
295TUNABLE_INT("hw.emx.int_throttle_ceil", &emx_int_throttle_ceil);
296TUNABLE_INT("hw.emx.rxd", &emx_rxd);
297TUNABLE_INT("hw.emx.rxr", &emx_rxr);
298TUNABLE_INT("hw.emx.txd", &emx_txd);
299TUNABLE_INT("hw.emx.smart_pwr_down", &emx_smart_pwr_down);
300TUNABLE_INT("hw.emx.sbp", &emx_debug_sbp);
301TUNABLE_INT("hw.emx.82573_workaround", &emx_82573_workaround);
302TUNABLE_INT("hw.emx.msi.enable", &emx_msi_enable);
303
304/* Global used in WOL setup with multiport cards */
305static int emx_global_quad_port_a = 0;
306
307/* Set this to one to display debug statistics */
308static int emx_display_debug_stats = 0;
309
310#if !defined(KTR_IF_EMX)
311#define KTR_IF_EMX KTR_ALL
312#endif
313KTR_INFO_MASTER(if_emx);
314KTR_INFO(KTR_IF_EMX, if_emx, intr_beg, 0, "intr begin");
315KTR_INFO(KTR_IF_EMX, if_emx, intr_end, 1, "intr end");
316KTR_INFO(KTR_IF_EMX, if_emx, pkt_receive, 4, "rx packet");
317KTR_INFO(KTR_IF_EMX, if_emx, pkt_txqueue, 5, "tx packet");
318KTR_INFO(KTR_IF_EMX, if_emx, pkt_txclean, 6, "tx clean");
319#define logif(name) KTR_LOG(if_emx_ ## name)
320
321static __inline void
322emx_setup_rxdesc(emx_rxdesc_t *rxd, const struct emx_rxbuf *rxbuf)
323{
324 rxd->rxd_bufaddr = htole64(rxbuf->paddr);
325 /* DD bit must be cleared */
326 rxd->rxd_staterr = 0;
327}
328
329static __inline void
330emx_rxcsum(uint32_t staterr, struct mbuf *mp)
331{
332 /* Ignore Checksum bit is set */
333 if (staterr & E1000_RXD_STAT_IXSM)
334 return;
335
336 if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
337 E1000_RXD_STAT_IPCS)
338 mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
339
340 if ((staterr & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
341 E1000_RXD_STAT_TCPCS) {
342 mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
343 CSUM_PSEUDO_HDR |
344 CSUM_FRAG_NOT_CHECKED;
345 mp->m_pkthdr.csum_data = htons(0xffff);
346 }
347}
348
349static __inline struct pktinfo *
350emx_rssinfo(struct mbuf *m, struct pktinfo *pi,
351 uint32_t mrq, uint32_t hash, uint32_t staterr)
352{
353 switch (mrq & EMX_RXDMRQ_RSSTYPE_MASK) {
354 case EMX_RXDMRQ_IPV4_TCP:
355 pi->pi_netisr = NETISR_IP;
356 pi->pi_flags = 0;
357 pi->pi_l3proto = IPPROTO_TCP;
358 break;
359
360 case EMX_RXDMRQ_IPV6_TCP:
361 pi->pi_netisr = NETISR_IPV6;
362 pi->pi_flags = 0;
363 pi->pi_l3proto = IPPROTO_TCP;
364 break;
365
366 case EMX_RXDMRQ_IPV4:
367 if (staterr & E1000_RXD_STAT_IXSM)
368 return NULL;
369
370 if ((staterr &
371 (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
372 E1000_RXD_STAT_TCPCS) {
373 pi->pi_netisr = NETISR_IP;
374 pi->pi_flags = 0;
375 pi->pi_l3proto = IPPROTO_UDP;
376 break;
377 }
378 /* FALL THROUGH */
379 default:
380 return NULL;
381 }
382
383 m->m_flags |= M_HASH;
384 m->m_pkthdr.hash = toeplitz_hash(hash);
385 return pi;
386}
387
388static int
389emx_probe(device_t dev)
390{
391 const struct emx_device *d;
392 uint16_t vid, did;
393
394 vid = pci_get_vendor(dev);
395 did = pci_get_device(dev);
396
397 for (d = emx_devices; d->desc != NULL; ++d) {
398 if (vid == d->vid && did == d->did) {
399 device_set_desc(dev, d->desc);
400 device_set_async_attach(dev, TRUE);
401 return 0;
402 }
403 }
404 return ENXIO;
405}
406
407static int
408emx_attach(device_t dev)
409{
410 struct emx_softc *sc = device_get_softc(dev);
411 struct ifnet *ifp = &sc->arpcom.ac_if;
412 int error = 0, i, throttle, msi_enable;
413 u_int intr_flags;
414 uint16_t eeprom_data, device_id, apme_mask;
415 driver_intr_t *intr_func;
416
417 lwkt_serialize_init(&sc->main_serialize);
418 lwkt_serialize_init(&sc->tx_serialize);
419 for (i = 0; i < EMX_NRX_RING; ++i)
420 lwkt_serialize_init(&sc->rx_data[i].rx_serialize);
421
422 i = 0;
423 sc->serializes[i++] = &sc->main_serialize;
424 sc->serializes[i++] = &sc->tx_serialize;
425 sc->serializes[i++] = &sc->rx_data[0].rx_serialize;
426 sc->serializes[i++] = &sc->rx_data[1].rx_serialize;
427 KKASSERT(i == EMX_NSERIALIZE);
428
429 callout_init_mp(&sc->timer);
430
431 sc->dev = sc->osdep.dev = dev;
432
433 /*
434 * Determine hardware and mac type
435 */
436 sc->hw.vendor_id = pci_get_vendor(dev);
437 sc->hw.device_id = pci_get_device(dev);
438 sc->hw.revision_id = pci_get_revid(dev);
439 sc->hw.subsystem_vendor_id = pci_get_subvendor(dev);
440 sc->hw.subsystem_device_id = pci_get_subdevice(dev);
441
442 if (e1000_set_mac_type(&sc->hw))
443 return ENXIO;
444
445 /*
446 * Pullup extra 4bytes into the first data segment, see:
447 * 82571/82572 specification update errata #7
448 *
449 * NOTE:
450 * 4bytes instead of 2bytes, which are mentioned in the errata,
451 * are pulled; mainly to keep rest of the data properly aligned.
452 */
453 if (sc->hw.mac.type == e1000_82571 || sc->hw.mac.type == e1000_82572)
454 sc->flags |= EMX_FLAG_TSO_PULLEX;
455
456 /* Enable bus mastering */
457 pci_enable_busmaster(dev);
458
459 /*
460 * Allocate IO memory
461 */
462 sc->memory_rid = EMX_BAR_MEM;
463 sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
464 &sc->memory_rid, RF_ACTIVE);
465 if (sc->memory == NULL) {
466 device_printf(dev, "Unable to allocate bus resource: memory\n");
467 error = ENXIO;
468 goto fail;
469 }
470 sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
471 sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
472
473 /* XXX This is quite goofy, it is not actually used */
474 sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
475
476 /*
477 * Don't enable MSI-X on 82574, see:
478 * 82574 specification update errata #15
479 *
480 * Don't enable MSI on 82571/82572, see:
481 * 82571/82572 specification update errata #63
482 */
483 msi_enable = emx_msi_enable;
484 if (msi_enable &&
485 (sc->hw.mac.type == e1000_82571 ||
486 sc->hw.mac.type == e1000_82572))
487 msi_enable = 0;
488
489 /*
490 * Allocate interrupt
491 */
492 sc->intr_type = pci_alloc_1intr(dev, msi_enable,
493 &sc->intr_rid, &intr_flags);
494
495 if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
496 int unshared;
497
498 unshared = device_getenv_int(dev, "irq.unshared", 0);
499 if (!unshared) {
500 sc->flags |= EMX_FLAG_SHARED_INTR;
501 if (bootverbose)
502 device_printf(dev, "IRQ shared\n");
503 } else {
504 intr_flags &= ~RF_SHAREABLE;
505 if (bootverbose)
506 device_printf(dev, "IRQ unshared\n");
507 }
508 }
509
510 sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
511 intr_flags);
512 if (sc->intr_res == NULL) {
513 device_printf(dev, "Unable to allocate bus resource: "
514 "interrupt\n");
515 error = ENXIO;
516 goto fail;
517 }
518
519 /* Save PCI command register for Shared Code */
520 sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
521 sc->hw.back = &sc->osdep;
522
523 /* Do Shared Code initialization */
524 if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
525 device_printf(dev, "Setup of Shared code failed\n");
526 error = ENXIO;
527 goto fail;
528 }
529 e1000_get_bus_info(&sc->hw);
530
531 sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
532 sc->hw.phy.autoneg_wait_to_complete = FALSE;
533 sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
534
535 /*
536 * Interrupt throttle rate
537 */
538 throttle = device_getenv_int(dev, "int_throttle_ceil",
539 emx_int_throttle_ceil);
540 if (throttle == 0) {
541 sc->int_throttle_ceil = 0;
542 } else {
543 if (throttle < 0)
544 throttle = EMX_DEFAULT_ITR;
545
546 /* Recalculate the tunable value to get the exact frequency. */
547 throttle = 1000000000 / 256 / throttle;
548
549 /* Upper 16bits of ITR is reserved and should be zero */
550 if (throttle & 0xffff0000)
551 throttle = 1000000000 / 256 / EMX_DEFAULT_ITR;
552
553 sc->int_throttle_ceil = 1000000000 / 256 / throttle;
554 }
555
556 e1000_init_script_state_82541(&sc->hw, TRUE);
557 e1000_set_tbi_compatibility_82543(&sc->hw, TRUE);
558
559 /* Copper options */
560 if (sc->hw.phy.media_type == e1000_media_type_copper) {
561 sc->hw.phy.mdix = EMX_AUTO_ALL_MODES;
562 sc->hw.phy.disable_polarity_correction = FALSE;
563 sc->hw.phy.ms_type = EMX_MASTER_SLAVE;
564 }
565
566 /* Set the frame limits assuming standard ethernet sized frames. */
567 sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
568 sc->min_frame_size = ETHER_MIN_LEN;
569
570 /* This controls when hardware reports transmit completion status. */
571 sc->hw.mac.report_tx_early = 1;
572
573 /* Calculate # of RX rings */
574 sc->rx_ring_cnt = device_getenv_int(dev, "rxr", emx_rxr);
575 sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, EMX_NRX_RING);
576
577 /* Allocate RX/TX rings' busdma(9) stuffs */
578 error = emx_dma_alloc(sc);
579 if (error)
580 goto fail;
581
582 /* Allocate multicast array memory. */
583 sc->mta = kmalloc(ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX,
584 M_DEVBUF, M_WAITOK);
585
586 /* Indicate SOL/IDER usage */
587 if (e1000_check_reset_block(&sc->hw)) {
588 device_printf(dev,
589 "PHY reset is blocked due to SOL/IDER session.\n");
590 }
591
592 /*
593 * Start from a known state, this is important in reading the
594 * nvm and mac from that.
595 */
596 e1000_reset_hw(&sc->hw);
597
598 /* Make sure we have a good EEPROM before we read from it */
599 if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
600 /*
601 * Some PCI-E parts fail the first check due to
602 * the link being in sleep state, call it again,
603 * if it fails a second time its a real issue.
604 */
605 if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
606 device_printf(dev,
607 "The EEPROM Checksum Is Not Valid\n");
608 error = EIO;
609 goto fail;
610 }
611 }
612
613 /* Copy the permanent MAC address out of the EEPROM */
614 if (e1000_read_mac_addr(&sc->hw) < 0) {
615 device_printf(dev, "EEPROM read error while reading MAC"
616 " address\n");
617 error = EIO;
618 goto fail;
619 }
620 if (!emx_is_valid_eaddr(sc->hw.mac.addr)) {
621 device_printf(dev, "Invalid MAC address\n");
622 error = EIO;
623 goto fail;
624 }
625
626 /* Determine if we have to control management hardware */
627 if (e1000_enable_mng_pass_thru(&sc->hw))
628 sc->flags |= EMX_FLAG_HAS_MGMT;
629
630 /*
631 * Setup Wake-on-Lan
632 */
633 apme_mask = EMX_EEPROM_APME;
634 eeprom_data = 0;
635 switch (sc->hw.mac.type) {
636 case e1000_82573:
637 sc->flags |= EMX_FLAG_HAS_AMT;
638 /* FALL THROUGH */
639
640 case e1000_82571:
641 case e1000_82572:
642 case e1000_80003es2lan:
643 if (sc->hw.bus.func == 1) {
644 e1000_read_nvm(&sc->hw,
645 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
646 } else {
647 e1000_read_nvm(&sc->hw,
648 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
649 }
650 break;
651
652 default:
653 e1000_read_nvm(&sc->hw,
654 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
655 break;
656 }
657 if (eeprom_data & apme_mask)
658 sc->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
659
660 /*
661 * We have the eeprom settings, now apply the special cases
662 * where the eeprom may be wrong or the board won't support
663 * wake on lan on a particular port
664 */
665 device_id = pci_get_device(dev);
666 switch (device_id) {
667 case E1000_DEV_ID_82571EB_FIBER:
668 /*
669 * Wake events only supported on port A for dual fiber
670 * regardless of eeprom setting
671 */
672 if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
673 E1000_STATUS_FUNC_1)
674 sc->wol = 0;
675 break;
676
677 case E1000_DEV_ID_82571EB_QUAD_COPPER:
678 case E1000_DEV_ID_82571EB_QUAD_FIBER:
679 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
680 /* if quad port sc, disable WoL on all but port A */
681 if (emx_global_quad_port_a != 0)
682 sc->wol = 0;
683 /* Reset for multiple quad port adapters */
684 if (++emx_global_quad_port_a == 4)
685 emx_global_quad_port_a = 0;
686 break;
687 }
688
689 /* XXX disable wol */
690 sc->wol = 0;
691
692 /* Setup OS specific network interface */
693 emx_setup_ifp(sc);
694
695 /* Add sysctl tree, must after em_setup_ifp() */
696 emx_add_sysctl(sc);
697
698 /* Reset the hardware */
699 error = emx_reset(sc);
700 if (error) {
701 device_printf(dev, "Unable to reset the hardware\n");
702 goto fail;
703 }
704
705 /* Initialize statistics */
706 emx_update_stats(sc);
707
708 sc->hw.mac.get_link_status = 1;
709 emx_update_link_status(sc);
710
711 sc->spare_tx_desc = EMX_TX_SPARE;
712
713 /*
714 * Keep following relationship between spare_tx_desc, oact_tx_desc
715 * and tx_int_nsegs:
716 * (spare_tx_desc + EMX_TX_RESERVED) <=
717 * oact_tx_desc <= EMX_TX_OACTIVE_MAX <= tx_int_nsegs
718 */
719 sc->oact_tx_desc = sc->num_tx_desc / 8;
720 if (sc->oact_tx_desc > EMX_TX_OACTIVE_MAX)
721 sc->oact_tx_desc = EMX_TX_OACTIVE_MAX;
722 if (sc->oact_tx_desc < sc->spare_tx_desc + EMX_TX_RESERVED)
723 sc->oact_tx_desc = sc->spare_tx_desc + EMX_TX_RESERVED;
724
725 sc->tx_int_nsegs = sc->num_tx_desc / 16;
726 if (sc->tx_int_nsegs < sc->oact_tx_desc)
727 sc->tx_int_nsegs = sc->oact_tx_desc;
728
729 /* Non-AMT based hardware can now take control from firmware */
730 if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
731 EMX_FLAG_HAS_MGMT)
732 emx_get_hw_control(sc);
733
734 /*
735 * Missing Interrupt Following ICR read:
736 *
737 * 82571/82572 specification update errata #76
738 * 82573 specification update errata #31
739 * 82574 specification update errata #12
740 */
741 intr_func = emx_intr;
742 if ((sc->flags & EMX_FLAG_SHARED_INTR) &&
743 (sc->hw.mac.type == e1000_82571 ||
744 sc->hw.mac.type == e1000_82572 ||
745 sc->hw.mac.type == e1000_82573 ||
746 sc->hw.mac.type == e1000_82574))
747 intr_func = emx_intr_mask;
748
749 error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, intr_func, sc,
750 &sc->intr_tag, &sc->main_serialize);
751 if (error) {
752 device_printf(dev, "Failed to register interrupt handler");
753 ether_ifdetach(&sc->arpcom.ac_if);
754 goto fail;
755 }
756
757 ifp->if_cpuid = rman_get_cpuid(sc->intr_res);
758 KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
759 return (0);
760fail:
761 emx_detach(dev);
762 return (error);
763}
764
765static int
766emx_detach(device_t dev)
767{
768 struct emx_softc *sc = device_get_softc(dev);
769
770 if (device_is_attached(dev)) {
771 struct ifnet *ifp = &sc->arpcom.ac_if;
772
773 ifnet_serialize_all(ifp);
774
775 emx_stop(sc);
776
777 e1000_phy_hw_reset(&sc->hw);
778
779 emx_rel_mgmt(sc);
780 emx_rel_hw_control(sc);
781
782 if (sc->wol) {
783 E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
784 E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
785 emx_enable_wol(dev);
786 }
787
788 bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
789
790 ifnet_deserialize_all(ifp);
791
792 ether_ifdetach(ifp);
793 } else if (sc->memory != NULL) {
794 emx_rel_hw_control(sc);
795 }
796 bus_generic_detach(dev);
797
798 if (sc->intr_res != NULL) {
799 bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
800 sc->intr_res);
801 }
802
803 if (sc->intr_type == PCI_INTR_TYPE_MSI)
804 pci_release_msi(dev);
805
806 if (sc->memory != NULL) {
807 bus_release_resource(dev, SYS_RES_MEMORY, sc->memory_rid,
808 sc->memory);
809 }
810
811 emx_dma_free(sc);
812
813 /* Free sysctl tree */
814 if (sc->sysctl_tree != NULL)
815 sysctl_ctx_free(&sc->sysctl_ctx);
816
817 if (sc->mta != NULL)
818 kfree(sc->mta, M_DEVBUF);
819
820 return (0);
821}
822
823static int
824emx_shutdown(device_t dev)
825{
826 return emx_suspend(dev);
827}
828
829static int
830emx_suspend(device_t dev)
831{
832 struct emx_softc *sc = device_get_softc(dev);
833 struct ifnet *ifp = &sc->arpcom.ac_if;
834
835 ifnet_serialize_all(ifp);
836
837 emx_stop(sc);
838
839 emx_rel_mgmt(sc);
840 emx_rel_hw_control(sc);
841
842 if (sc->wol) {
843 E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
844 E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
845 emx_enable_wol(dev);
846 }
847
848 ifnet_deserialize_all(ifp);
849
850 return bus_generic_suspend(dev);
851}
852
853static int
854emx_resume(device_t dev)
855{
856 struct emx_softc *sc = device_get_softc(dev);
857 struct ifnet *ifp = &sc->arpcom.ac_if;
858
859 ifnet_serialize_all(ifp);
860
861 emx_init(sc);
862 emx_get_mgmt(sc);
863 if_devstart(ifp);
864
865 ifnet_deserialize_all(ifp);
866
867 return bus_generic_resume(dev);
868}
869
870static void
871emx_start(struct ifnet *ifp)
872{
873 struct emx_softc *sc = ifp->if_softc;
874 struct mbuf *m_head;
875
876 ASSERT_SERIALIZED(&sc->tx_serialize);
877
878 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
879 return;
880
881 if (!sc->link_active) {
882 ifq_purge(&ifp->if_snd);
883 return;
884 }
885
886 while (!ifq_is_empty(&ifp->if_snd)) {
887 /* Now do we at least have a minimal? */
888 if (EMX_IS_OACTIVE(sc)) {
889 emx_tx_collect(sc);
890 if (EMX_IS_OACTIVE(sc)) {
891 ifp->if_flags |= IFF_OACTIVE;
892 sc->no_tx_desc_avail1++;
893 break;
894 }
895 }
896
897 logif(pkt_txqueue);
898 m_head = ifq_dequeue(&ifp->if_snd, NULL);
899 if (m_head == NULL)
900 break;
901
902 if (emx_encap(sc, &m_head)) {
903 ifp->if_oerrors++;
904 emx_tx_collect(sc);
905 continue;
906 }
907
908 /* Send a copy of the frame to the BPF listener */
909 ETHER_BPF_MTAP(ifp, m_head);
910
911 /* Set timeout in case hardware has problems transmitting. */
912 ifp->if_timer = EMX_TX_TIMEOUT;
913 }
914}
915
916static int
917emx_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
918{
919 struct emx_softc *sc = ifp->if_softc;
920 struct ifreq *ifr = (struct ifreq *)data;
921 uint16_t eeprom_data = 0;
922 int max_frame_size, mask, reinit;
923 int error = 0;
924
925 ASSERT_IFNET_SERIALIZED_ALL(ifp);
926
927 switch (command) {
928 case SIOCSIFMTU:
929 switch (sc->hw.mac.type) {
930 case e1000_82573:
931 /*
932 * 82573 only supports jumbo frames
933 * if ASPM is disabled.
934 */
935 e1000_read_nvm(&sc->hw, NVM_INIT_3GIO_3, 1,
936 &eeprom_data);
937 if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
938 max_frame_size = ETHER_MAX_LEN;
939 break;
940 }
941 /* FALL THROUGH */
942
943 /* Limit Jumbo Frame size */
944 case e1000_82571:
945 case e1000_82572:
946 case e1000_82574:
947 case e1000_80003es2lan:
948 max_frame_size = 9234;
949 break;
950
951 default:
952 max_frame_size = MAX_JUMBO_FRAME_SIZE;
953 break;
954 }
955 if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
956 ETHER_CRC_LEN) {
957 error = EINVAL;
958 break;
959 }
960
961 ifp->if_mtu = ifr->ifr_mtu;
962 sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
963 ETHER_CRC_LEN;
964
965 if (ifp->if_flags & IFF_RUNNING)
966 emx_init(sc);
967 break;
968
969 case SIOCSIFFLAGS:
970 if (ifp->if_flags & IFF_UP) {
971 if ((ifp->if_flags & IFF_RUNNING)) {
972 if ((ifp->if_flags ^ sc->if_flags) &
973 (IFF_PROMISC | IFF_ALLMULTI)) {
974 emx_disable_promisc(sc);
975 emx_set_promisc(sc);
976 }
977 } else {
978 emx_init(sc);
979 }
980 } else if (ifp->if_flags & IFF_RUNNING) {
981 emx_stop(sc);
982 }
983 sc->if_flags = ifp->if_flags;
984 break;
985
986 case SIOCADDMULTI:
987 case SIOCDELMULTI:
988 if (ifp->if_flags & IFF_RUNNING) {
989 emx_disable_intr(sc);
990 emx_set_multi(sc);
991#ifdef IFPOLL_ENABLE
992 if (!(ifp->if_flags & IFF_NPOLLING))
993#endif
994 emx_enable_intr(sc);
995 }
996 break;
997
998 case SIOCSIFMEDIA:
999 /* Check SOL/IDER usage */
1000 if (e1000_check_reset_block(&sc->hw)) {
1001 device_printf(sc->dev, "Media change is"
1002 " blocked due to SOL/IDER session.\n");
1003 break;
1004 }
1005 /* FALL THROUGH */
1006
1007 case SIOCGIFMEDIA:
1008 error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
1009 break;
1010
1011 case SIOCSIFCAP:
1012 reinit = 0;
1013 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1014 if (mask & IFCAP_RXCSUM) {
1015 ifp->if_capenable ^= IFCAP_RXCSUM;
1016 reinit = 1;
1017 }
1018 if (mask & IFCAP_VLAN_HWTAGGING) {
1019 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1020 reinit = 1;
1021 }
1022 if (mask & IFCAP_TXCSUM) {
1023 ifp->if_capenable ^= IFCAP_TXCSUM;
1024 if (ifp->if_capenable & IFCAP_TXCSUM)
1025 ifp->if_hwassist |= EMX_CSUM_FEATURES;
1026 else
1027 ifp->if_hwassist &= ~EMX_CSUM_FEATURES;
1028 }
1029 if (mask & IFCAP_TSO) {
1030 ifp->if_capenable ^= IFCAP_TSO;
1031 if (ifp->if_capenable & IFCAP_TSO)
1032 ifp->if_hwassist |= CSUM_TSO;
1033 else
1034 ifp->if_hwassist &= ~CSUM_TSO;
1035 }
1036 if (mask & IFCAP_RSS)
1037 ifp->if_capenable ^= IFCAP_RSS;
1038 if (reinit && (ifp->if_flags & IFF_RUNNING))
1039 emx_init(sc);
1040 break;
1041
1042 default:
1043 error = ether_ioctl(ifp, command, data);
1044 break;
1045 }
1046 return (error);
1047}
1048
1049static void
1050emx_watchdog(struct ifnet *ifp)
1051{
1052 struct emx_softc *sc = ifp->if_softc;
1053
1054 ASSERT_IFNET_SERIALIZED_ALL(ifp);
1055
1056 /*
1057 * The timer is set to 5 every time start queues a packet.
1058 * Then txeof keeps resetting it as long as it cleans at
1059 * least one descriptor.
1060 * Finally, anytime all descriptors are clean the timer is
1061 * set to 0.
1062 */
1063
1064 if (E1000_READ_REG(&sc->hw, E1000_TDT(0)) ==
1065 E1000_READ_REG(&sc->hw, E1000_TDH(0))) {
1066 /*
1067 * If we reach here, all TX jobs are completed and
1068 * the TX engine should have been idled for some time.
1069 * We don't need to call if_devstart() here.
1070 */
1071 ifp->if_flags &= ~IFF_OACTIVE;
1072 ifp->if_timer = 0;
1073 return;
1074 }
1075
1076 /*
1077 * If we are in this routine because of pause frames, then
1078 * don't reset the hardware.
1079 */
1080 if (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_TXOFF) {
1081 ifp->if_timer = EMX_TX_TIMEOUT;
1082 return;
1083 }
1084
1085 if (e1000_check_for_link(&sc->hw) == 0)
1086 if_printf(ifp, "watchdog timeout -- resetting\n");
1087
1088 ifp->if_oerrors++;
1089 sc->watchdog_events++;
1090
1091 emx_init(sc);
1092
1093 if (!ifq_is_empty(&ifp->if_snd))
1094 if_devstart(ifp);
1095}
1096
1097static void
1098emx_init(void *xsc)
1099{
1100 struct emx_softc *sc = xsc;
1101 struct ifnet *ifp = &sc->arpcom.ac_if;
1102 device_t dev = sc->dev;
1103 uint32_t pba;
1104 int i;
1105
1106 ASSERT_IFNET_SERIALIZED_ALL(ifp);
1107
1108 emx_stop(sc);
1109
1110 /*
1111 * Packet Buffer Allocation (PBA)
1112 * Writing PBA sets the receive portion of the buffer
1113 * the remainder is used for the transmit buffer.
1114 */
1115 switch (sc->hw.mac.type) {
1116 /* Total Packet Buffer on these is 48K */
1117 case e1000_82571:
1118 case e1000_82572:
1119 case e1000_80003es2lan:
1120 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1121 break;
1122
1123 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1124 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1125 break;
1126
1127 case e1000_82574:
1128 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1129 break;
1130
1131 default:
1132 /* Devices before 82547 had a Packet Buffer of 64K. */
1133 if (sc->max_frame_size > 8192)
1134 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1135 else
1136 pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1137 }
1138 E1000_WRITE_REG(&sc->hw, E1000_PBA, pba);
1139
1140 /* Get the latest mac address, User can use a LAA */
1141 bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1142
1143 /* Put the address into the Receive Address Array */
1144 e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1145
1146 /*
1147 * With the 82571 sc, RAR[0] may be overwritten
1148 * when the other port is reset, we make a duplicate
1149 * in RAR[14] for that eventuality, this assures
1150 * the interface continues to function.
1151 */
1152 if (sc->hw.mac.type == e1000_82571) {
1153 e1000_set_laa_state_82571(&sc->hw, TRUE);
1154 e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1155 E1000_RAR_ENTRIES - 1);
1156 }
1157
1158 /* Initialize the hardware */
1159 if (emx_reset(sc)) {
1160 device_printf(dev, "Unable to reset the hardware\n");
1161 /* XXX emx_stop()? */
1162 return;
1163 }
1164 emx_update_link_status(sc);
1165
1166 /* Setup VLAN support, basic and offload if available */
1167 E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1168
1169 if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1170 uint32_t ctrl;
1171
1172 ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
1173 ctrl |= E1000_CTRL_VME;
1174 E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
1175 }
1176
1177 /* Configure for OS presence */
1178 emx_get_mgmt(sc);
1179
1180 /* Prepare transmit descriptors and buffers */
1181 emx_init_tx_ring(sc);
1182 emx_init_tx_unit(sc);
1183
1184 /* Setup Multicast table */
1185 emx_set_multi(sc);
1186
1187 /* Prepare receive descriptors and buffers */
1188 for (i = 0; i < sc->rx_ring_cnt; ++i) {
1189 if (emx_init_rx_ring(sc, &sc->rx_data[i])) {
1190 device_printf(dev,
1191 "Could not setup receive structures\n");
1192 emx_stop(sc);
1193 return;
1194 }
1195 }
1196 emx_init_rx_unit(sc);
1197
1198 /* Don't lose promiscuous settings */
1199 emx_set_promisc(sc);
1200
1201 ifp->if_flags |= IFF_RUNNING;
1202 ifp->if_flags &= ~IFF_OACTIVE;
1203
1204 callout_reset(&sc->timer, hz, emx_timer, sc);
1205 e1000_clear_hw_cntrs_base_generic(&sc->hw);
1206
1207 /* MSI/X configuration for 82574 */
1208 if (sc->hw.mac.type == e1000_82574) {
1209 int tmp;
1210
1211 tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1212 tmp |= E1000_CTRL_EXT_PBA_CLR;
1213 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1214 /*
1215 * XXX MSIX
1216 * Set the IVAR - interrupt vector routing.
1217 * Each nibble represents a vector, high bit
1218 * is enable, other 3 bits are the MSIX table
1219 * entry, we map RXQ0 to 0, TXQ0 to 1, and
1220 * Link (other) to 2, hence the magic number.
1221 */
1222 E1000_WRITE_REG(&sc->hw, E1000_IVAR, 0x800A0908);
1223 }
1224
1225#ifdef IFPOLL_ENABLE
1226 /*
1227 * Only enable interrupts if we are not polling, make sure
1228 * they are off otherwise.
1229 */
1230 if (ifp->if_flags & IFF_NPOLLING)
1231 emx_disable_intr(sc);
1232 else
1233#endif /* IFPOLL_ENABLE */
1234 emx_enable_intr(sc);
1235
1236 /* AMT based hardware can now take control from firmware */
1237 if ((sc->flags & (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT)) ==
1238 (EMX_FLAG_HAS_MGMT | EMX_FLAG_HAS_AMT))
1239 emx_get_hw_control(sc);
1240
1241 /* Don't reset the phy next time init gets called */
1242 sc->hw.phy.reset_disable = TRUE;
1243}
1244
1245static void
1246emx_intr(void *xsc)
1247{
1248 emx_intr_body(xsc, TRUE);
1249}
1250
1251static void
1252emx_intr_body(struct emx_softc *sc, boolean_t chk_asserted)
1253{
1254 struct ifnet *ifp = &sc->arpcom.ac_if;
1255 uint32_t reg_icr;
1256
1257 logif(intr_beg);
1258 ASSERT_SERIALIZED(&sc->main_serialize);
1259
1260 reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1261
1262 if (chk_asserted && (reg_icr & E1000_ICR_INT_ASSERTED) == 0) {
1263 logif(intr_end);
1264 return;
1265 }
1266
1267 /*
1268 * XXX: some laptops trigger several spurious interrupts
1269 * on emx(4) when in the resume cycle. The ICR register
1270 * reports all-ones value in this case. Processing such
1271 * interrupts would lead to a freeze. I don't know why.
1272 */
1273 if (reg_icr == 0xffffffff) {
1274 logif(intr_end);
1275 return;
1276 }
1277
1278 if (ifp->if_flags & IFF_RUNNING) {
1279 if (reg_icr &
1280 (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
1281 int i;
1282
1283 for (i = 0; i < sc->rx_ring_cnt; ++i) {
1284 lwkt_serialize_enter(
1285 &sc->rx_data[i].rx_serialize);
1286 emx_rxeof(sc, i, -1);
1287 lwkt_serialize_exit(
1288 &sc->rx_data[i].rx_serialize);
1289 }
1290 }
1291 if (reg_icr & E1000_ICR_TXDW) {
1292 lwkt_serialize_enter(&sc->tx_serialize);
1293 emx_txeof(sc);
1294 if (!ifq_is_empty(&ifp->if_snd))
1295 if_devstart(ifp);
1296 lwkt_serialize_exit(&sc->tx_serialize);
1297 }
1298 }
1299
1300 /* Link status change */
1301 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1302 emx_serialize_skipmain(sc);
1303
1304 callout_stop(&sc->timer);
1305 sc->hw.mac.get_link_status = 1;
1306 emx_update_link_status(sc);
1307
1308 /* Deal with TX cruft when link lost */
1309 emx_tx_purge(sc);
1310
1311 callout_reset(&sc->timer, hz, emx_timer, sc);
1312
1313 emx_deserialize_skipmain(sc);
1314 }
1315
1316 if (reg_icr & E1000_ICR_RXO)
1317 sc->rx_overruns++;
1318
1319 logif(intr_end);
1320}
1321
1322static void
1323emx_intr_mask(void *xsc)
1324{
1325 struct emx_softc *sc = xsc;
1326
1327 E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
1328 /*
1329 * NOTE:
1330 * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1331 * so don't check it.
1332 */
1333 emx_intr_body(sc, FALSE);
1334 E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
1335}
1336
1337static void
1338emx_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1339{
1340 struct emx_softc *sc = ifp->if_softc;
1341
1342 ASSERT_IFNET_SERIALIZED_ALL(ifp);
1343
1344 emx_update_link_status(sc);
1345
1346 ifmr->ifm_status = IFM_AVALID;
1347 ifmr->ifm_active = IFM_ETHER;
1348
1349 if (!sc->link_active)
1350 return;
1351
1352 ifmr->ifm_status |= IFM_ACTIVE;
1353
1354 if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1355 sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1356 ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
1357 } else {
1358 switch (sc->link_speed) {
1359 case 10:
1360 ifmr->ifm_active |= IFM_10_T;
1361 break;
1362 case 100:
1363 ifmr->ifm_active |= IFM_100_TX;
1364 break;
1365
1366 case 1000:
1367 ifmr->ifm_active |= IFM_1000_T;
1368 break;
1369 }
1370 if (sc->link_duplex == FULL_DUPLEX)
1371 ifmr->ifm_active |= IFM_FDX;
1372 else
1373 ifmr->ifm_active |= IFM_HDX;
1374 }
1375}
1376
1377static int
1378emx_media_change(struct ifnet *ifp)
1379{
1380 struct emx_softc *sc = ifp->if_softc;
1381 struct ifmedia *ifm = &sc->media;
1382
1383 ASSERT_IFNET_SERIALIZED_ALL(ifp);
1384
1385 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1386 return (EINVAL);
1387
1388 switch (IFM_SUBTYPE(ifm->ifm_media)) {
1389 case IFM_AUTO:
1390 sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1391 sc->hw.phy.autoneg_advertised = EMX_AUTONEG_ADV_DEFAULT;
1392 break;
1393
1394 case IFM_1000_LX:
1395 case IFM_1000_SX:
1396 case IFM_1000_T:
1397 sc->hw.mac.autoneg = EMX_DO_AUTO_NEG;
1398 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1399 break;
1400
1401 case IFM_100_TX:
1402 sc->hw.mac.autoneg = FALSE;
1403 sc->hw.phy.autoneg_advertised = 0;
1404 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1405 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1406 else
1407 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1408 break;
1409
1410 case IFM_10_T:
1411 sc->hw.mac.autoneg = FALSE;
1412 sc->hw.phy.autoneg_advertised = 0;
1413 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1414 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1415 else
1416 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1417 break;
1418
1419 default:
1420 if_printf(ifp, "Unsupported media type\n");
1421 break;
1422 }
1423
1424 /*
1425 * As the speed/duplex settings my have changed we need to
1426 * reset the PHY.
1427 */
1428 sc->hw.phy.reset_disable = FALSE;
1429
1430 emx_init(sc);
1431
1432 return (0);
1433}
1434
1435static int
1436emx_encap(struct emx_softc *sc, struct mbuf **m_headp)
1437{
1438 bus_dma_segment_t segs[EMX_MAX_SCATTER];
1439 bus_dmamap_t map;
1440 struct emx_txbuf *tx_buffer, *tx_buffer_mapped;
1441 struct e1000_tx_desc *ctxd = NULL;
1442 struct mbuf *m_head = *m_headp;
1443 uint32_t txd_upper, txd_lower, cmd = 0;
1444 int maxsegs, nsegs, i, j, first, last = 0, error;
1445
1446 if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1447 error = emx_tso_pullup(sc, m_headp);
1448 if (error)
1449 return error;
1450 m_head = *m_headp;
1451 }
1452
1453 txd_upper = txd_lower = 0;
1454
1455 /*
1456 * Capture the first descriptor index, this descriptor
1457 * will have the index of the EOP which is the only one
1458 * that now gets a DONE bit writeback.
1459 */
1460 first = sc->next_avail_tx_desc;
1461 tx_buffer = &sc->tx_buf[first];
1462 tx_buffer_mapped = tx_buffer;
1463 map = tx_buffer->map;
1464
1465 maxsegs = sc->num_tx_desc_avail - EMX_TX_RESERVED;
1466 KASSERT(maxsegs >= sc->spare_tx_desc, ("not enough spare TX desc"));
1467 if (maxsegs > EMX_MAX_SCATTER)
1468 maxsegs = EMX_MAX_SCATTER;
1469
1470 error = bus_dmamap_load_mbuf_defrag(sc->txtag, map, m_headp,
1471 segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1472 if (error) {
1473 if (error == ENOBUFS)
1474 sc->mbuf_alloc_failed++;
1475 else
1476 sc->no_tx_dma_setup++;
1477
1478 m_freem(*m_headp);
1479 *m_headp = NULL;
1480 return error;
1481 }
1482 bus_dmamap_sync(sc->txtag, map, BUS_DMASYNC_PREWRITE);
1483
1484 m_head = *m_headp;
1485 sc->tx_nsegs += nsegs;
1486
1487 if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1488 /* TSO will consume one TX desc */
1489 sc->tx_nsegs += emx_tso_setup(sc, m_head,
1490 &txd_upper, &txd_lower);
1491 } else if (m_head->m_pkthdr.csum_flags & EMX_CSUM_FEATURES) {
1492 /* TX csum offloading will consume one TX desc */
1493 sc->tx_nsegs += emx_txcsum(sc, m_head, &txd_upper, &txd_lower);
1494 }
1495 i = sc->next_avail_tx_desc;
1496
1497 /* Set up our transmit descriptors */
1498 for (j = 0; j < nsegs; j++) {
1499 tx_buffer = &sc->tx_buf[i];
1500 ctxd = &sc->tx_desc_base[i];
1501
1502 ctxd->buffer_addr = htole64(segs[j].ds_addr);
1503 ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1504 txd_lower | segs[j].ds_len);
1505 ctxd->upper.data = htole32(txd_upper);
1506
1507 last = i;
1508 if (++i == sc->num_tx_desc)
1509 i = 0;
1510 }
1511
1512 sc->next_avail_tx_desc = i;
1513
1514 KKASSERT(sc->num_tx_desc_avail > nsegs);
1515 sc->num_tx_desc_avail -= nsegs;
1516
1517 /* Handle VLAN tag */
1518 if (m_head->m_flags & M_VLANTAG) {
1519 /* Set the vlan id. */
1520 ctxd->upper.fields.special =
1521 htole16(m_head->m_pkthdr.ether_vlantag);
1522
1523 /* Tell hardware to add tag */
1524 ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1525 }
1526
1527 tx_buffer->m_head = m_head;
1528 tx_buffer_mapped->map = tx_buffer->map;
1529 tx_buffer->map = map;
1530
1531 if (sc->tx_nsegs >= sc->tx_int_nsegs) {
1532 sc->tx_nsegs = 0;
1533
1534 /*
1535 * Report Status (RS) is turned on
1536 * every tx_int_nsegs descriptors.
1537 */
1538 cmd = E1000_TXD_CMD_RS;
1539
1540 /*
1541 * Keep track of the descriptor, which will
1542 * be written back by hardware.
1543 */
1544 sc->tx_dd[sc->tx_dd_tail] = last;
1545 EMX_INC_TXDD_IDX(sc->tx_dd_tail);
1546 KKASSERT(sc->tx_dd_tail != sc->tx_dd_head);
1547 }
1548
1549 /*
1550 * Last Descriptor of Packet needs End Of Packet (EOP)
1551 */
1552 ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1553
1554 /*
1555 * Advance the Transmit Descriptor Tail (TDT), this tells
1556 * the E1000 that this frame is available to transmit.
1557 */
1558 E1000_WRITE_REG(&sc->hw, E1000_TDT(0), i);
1559
1560 return (0);
1561}
1562
1563static void
1564emx_set_promisc(struct emx_softc *sc)
1565{
1566 struct ifnet *ifp = &sc->arpcom.ac_if;
1567 uint32_t reg_rctl;
1568
1569 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1570
1571 if (ifp->if_flags & IFF_PROMISC) {
1572 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1573 /* Turn this on if you want to see bad packets */
1574 if (emx_debug_sbp)
1575 reg_rctl |= E1000_RCTL_SBP;
1576 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1577 } else if (ifp->if_flags & IFF_ALLMULTI) {
1578 reg_rctl |= E1000_RCTL_MPE;
1579 reg_rctl &= ~E1000_RCTL_UPE;
1580 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1581 }
1582}
1583
1584static void
1585emx_disable_promisc(struct emx_softc *sc)
1586{
1587 uint32_t reg_rctl;
1588
1589 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1590
1591 reg_rctl &= ~E1000_RCTL_UPE;
1592 reg_rctl &= ~E1000_RCTL_MPE;
1593 reg_rctl &= ~E1000_RCTL_SBP;
1594 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1595}
1596
1597static void
1598emx_set_multi(struct emx_softc *sc)
1599{
1600 struct ifnet *ifp = &sc->arpcom.ac_if;
1601 struct ifmultiaddr *ifma;
1602 uint32_t reg_rctl = 0;
1603 uint8_t *mta;
1604 int mcnt = 0;
1605
1606 mta = sc->mta;
1607 bzero(mta, ETH_ADDR_LEN * EMX_MCAST_ADDR_MAX);
1608
1609 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1610 if (ifma->ifma_addr->sa_family != AF_LINK)
1611 continue;
1612
1613 if (mcnt == EMX_MCAST_ADDR_MAX)
1614 break;
1615
1616 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1617 &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1618 mcnt++;
1619 }
1620
1621 if (mcnt >= EMX_MCAST_ADDR_MAX) {
1622 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1623 reg_rctl |= E1000_RCTL_MPE;
1624 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1625 } else {
1626 e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1627 }
1628}
1629
1630/*
1631 * This routine checks for link status and updates statistics.
1632 */
1633static void
1634emx_timer(void *xsc)
1635{
1636 struct emx_softc *sc = xsc;
1637 struct ifnet *ifp = &sc->arpcom.ac_if;
1638
1639 lwkt_serialize_enter(&sc->main_serialize);
1640
1641 emx_update_link_status(sc);
1642 emx_update_stats(sc);
1643
1644 /* Reset LAA into RAR[0] on 82571 */
1645 if (e1000_get_laa_state_82571(&sc->hw) == TRUE)
1646 e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1647
1648 if (emx_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1649 emx_print_hw_stats(sc);
1650
1651 emx_smartspeed(sc);
1652
1653 callout_reset(&sc->timer, hz, emx_timer, sc);
1654
1655 lwkt_serialize_exit(&sc->main_serialize);
1656}
1657
1658static void
1659emx_update_link_status(struct emx_softc *sc)
1660{
1661 struct e1000_hw *hw = &sc->hw;
1662 struct ifnet *ifp = &sc->arpcom.ac_if;
1663 device_t dev = sc->dev;
1664 uint32_t link_check = 0;
1665
1666 /* Get the cached link value or read phy for real */
1667 switch (hw->phy.media_type) {
1668 case e1000_media_type_copper:
1669 if (hw->mac.get_link_status) {
1670 /* Do the work to read phy */
1671 e1000_check_for_link(hw);
1672 link_check = !hw->mac.get_link_status;
1673 if (link_check) /* ESB2 fix */
1674 e1000_cfg_on_link_up(hw);
1675 } else {
1676 link_check = TRUE;
1677 }
1678 break;
1679
1680 case e1000_media_type_fiber:
1681 e1000_check_for_link(hw);
1682 link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1683 break;
1684
1685 case e1000_media_type_internal_serdes:
1686 e1000_check_for_link(hw);
1687 link_check = sc->hw.mac.serdes_has_link;
1688 break;
1689
1690 case e1000_media_type_unknown:
1691 default:
1692 break;
1693 }
1694
1695 /* Now check for a transition */
1696 if (link_check && sc->link_active == 0) {
1697 e1000_get_speed_and_duplex(hw, &sc->link_speed,
1698 &sc->link_duplex);
1699
1700 /*
1701 * Check if we should enable/disable SPEED_MODE bit on
1702 * 82571EB/82572EI
1703 */
1704 if (sc->link_speed != SPEED_1000 &&
1705 (hw->mac.type == e1000_82571 ||
1706 hw->mac.type == e1000_82572)) {
1707 int tarc0;
1708
1709 tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
1710 tarc0 &= ~EMX_TARC_SPEED_MODE;
1711 E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
1712 }
1713 if (bootverbose) {
1714 device_printf(dev, "Link is up %d Mbps %s\n",
1715 sc->link_speed,
1716 ((sc->link_duplex == FULL_DUPLEX) ?
1717 "Full Duplex" : "Half Duplex"));
1718 }
1719 sc->link_active = 1;
1720 sc->smartspeed = 0;
1721 ifp->if_baudrate = sc->link_speed * 1000000;
1722 ifp->if_link_state = LINK_STATE_UP;
1723 if_link_state_change(ifp);
1724 } else if (!link_check && sc->link_active == 1) {
1725 ifp->if_baudrate = sc->link_speed = 0;
1726 sc->link_duplex = 0;
1727 if (bootverbose)
1728 device_printf(dev, "Link is Down\n");
1729 sc->link_active = 0;
1730#if 0
1731 /* Link down, disable watchdog */
1732 if->if_timer = 0;
1733#endif
1734 ifp->if_link_state = LINK_STATE_DOWN;
1735 if_link_state_change(ifp);
1736 }
1737}
1738
1739static void
1740emx_stop(struct emx_softc *sc)
1741{
1742 struct ifnet *ifp = &sc->arpcom.ac_if;
1743 int i;
1744
1745 ASSERT_IFNET_SERIALIZED_ALL(ifp);
1746
1747 emx_disable_intr(sc);
1748
1749 callout_stop(&sc->timer);
1750
1751 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1752 ifp->if_timer = 0;
1753
1754 /*
1755 * Disable multiple receive queues.
1756 *
1757 * NOTE:
1758 * We should disable multiple receive queues before
1759 * resetting the hardware.
1760 */
1761 E1000_WRITE_REG(&sc->hw, E1000_MRQC, 0);
1762
1763 e1000_reset_hw(&sc->hw);
1764 E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1765
1766 for (i = 0; i < sc->num_tx_desc; i++) {
1767 struct emx_txbuf *tx_buffer = &sc->tx_buf[i];
1768
1769 if (tx_buffer->m_head != NULL) {
1770 bus_dmamap_unload(sc->txtag, tx_buffer->map);
1771 m_freem(tx_buffer->m_head);
1772 tx_buffer->m_head = NULL;
1773 }
1774 }
1775
1776 for (i = 0; i < sc->rx_ring_cnt; ++i)
1777 emx_free_rx_ring(sc, &sc->rx_data[i]);
1778
1779 sc->csum_flags = 0;
1780 sc->csum_lhlen = 0;
1781 sc->csum_iphlen = 0;
1782 sc->csum_thlen = 0;
1783 sc->csum_mss = 0;
1784 sc->csum_pktlen = 0;
1785
1786 sc->tx_dd_head = 0;
1787 sc->tx_dd_tail = 0;
1788 sc->tx_nsegs = 0;
1789}
1790
1791static int
1792emx_reset(struct emx_softc *sc)
1793{
1794 device_t dev = sc->dev;
1795 uint16_t rx_buffer_size;
1796
1797 /* Set up smart power down as default off on newer adapters. */
1798 if (!emx_smart_pwr_down &&
1799 (sc->hw.mac.type == e1000_82571 ||
1800 sc->hw.mac.type == e1000_82572)) {
1801 uint16_t phy_tmp = 0;
1802
1803 /* Speed up time to link by disabling smart power down. */
1804 e1000_read_phy_reg(&sc->hw,
1805 IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
1806 phy_tmp &= ~IGP02E1000_PM_SPD;
1807 e1000_write_phy_reg(&sc->hw,
1808 IGP02E1000_PHY_POWER_MGMT, phy_tmp);
1809 }
1810
1811 /*
1812 * These parameters control the automatic generation (Tx) and
1813 * response (Rx) to Ethernet PAUSE frames.
1814 * - High water mark should allow for at least two frames to be
1815 * received after sending an XOFF.
1816 * - Low water mark works best when it is very near the high water mark.
1817 * This allows the receiver to restart by sending XON when it has
1818 * drained a bit. Here we use an arbitary value of 1500 which will
1819 * restart after one full frame is pulled from the buffer. There
1820 * could be several smaller frames in the buffer and if so they will
1821 * not trigger the XON until their total number reduces the buffer
1822 * by 1500.
1823 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1824 */
1825 rx_buffer_size = (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) << 10;
1826
1827 sc->hw.fc.high_water = rx_buffer_size -
1828 roundup2(sc->max_frame_size, 1024);
1829 sc->hw.fc.low_water = sc->hw.fc.high_water - 1500;
1830
1831 if (sc->hw.mac.type == e1000_80003es2lan)
1832 sc->hw.fc.pause_time = 0xFFFF;
1833 else
1834 sc->hw.fc.pause_time = EMX_FC_PAUSE_TIME;
1835 sc->hw.fc.send_xon = TRUE;
1836 sc->hw.fc.requested_mode = e1000_fc_full;
1837
1838 /* Issue a global reset */
1839 e1000_reset_hw(&sc->hw);
1840 E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1841 emx_disable_aspm(sc);
1842
1843 if (e1000_init_hw(&sc->hw) < 0) {
1844 device_printf(dev, "Hardware Initialization Failed\n");
1845 return (EIO);
1846 }
1847
1848 E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1849 e1000_get_phy_info(&sc->hw);
1850 e1000_check_for_link(&sc->hw);
1851
1852 return (0);
1853}
1854
1855static void
1856emx_setup_ifp(struct emx_softc *sc)
1857{
1858 struct ifnet *ifp = &sc->arpcom.ac_if;
1859
1860 if_initname(ifp, device_get_name(sc->dev),
1861 device_get_unit(sc->dev));
1862 ifp->if_softc = sc;
1863 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1864 ifp->if_init = emx_init;
1865 ifp->if_ioctl = emx_ioctl;
1866 ifp->if_start = emx_start;
1867#ifdef IFPOLL_ENABLE
1868 ifp->if_npoll = emx_npoll;
1869#endif
1870 ifp->if_watchdog = emx_watchdog;
1871 ifp->if_serialize = emx_serialize;
1872 ifp->if_deserialize = emx_deserialize;
1873 ifp->if_tryserialize = emx_tryserialize;
1874#ifdef INVARIANTS
1875 ifp->if_serialize_assert = emx_serialize_assert;
1876#endif
1877 ifq_set_maxlen(&ifp->if_snd, sc->num_tx_desc - 1);
1878 ifq_set_ready(&ifp->if_snd);
1879
1880 ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1881
1882 ifp->if_capabilities = IFCAP_HWCSUM |
1883 IFCAP_VLAN_HWTAGGING |
1884 IFCAP_VLAN_MTU |
1885 IFCAP_TSO;
1886 if (sc->rx_ring_cnt > 1)
1887 ifp->if_capabilities |= IFCAP_RSS;
1888 ifp->if_capenable = ifp->if_capabilities;
1889 ifp->if_hwassist = EMX_CSUM_FEATURES | CSUM_TSO;
1890
1891 /*
1892 * Tell the upper layer(s) we support long frames.
1893 */
1894 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1895
1896 /*
1897 * Specify the media types supported by this sc and register
1898 * callbacks to update media and link information
1899 */
1900 ifmedia_init(&sc->media, IFM_IMASK,
1901 emx_media_change, emx_media_status);
1902 if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1903 sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1904 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1905 0, NULL);
1906 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1907 } else {
1908 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1909 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1910 0, NULL);
1911 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1912 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1913 0, NULL);
1914 if (sc->hw.phy.type != e1000_phy_ife) {
1915 ifmedia_add(&sc->media,
1916 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1917 ifmedia_add(&sc->media,
1918 IFM_ETHER | IFM_1000_T, 0, NULL);
1919 }
1920 }
1921 ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1922 ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1923}
1924
1925/*
1926 * Workaround for SmartSpeed on 82541 and 82547 controllers
1927 */
1928static void
1929emx_smartspeed(struct emx_softc *sc)
1930{
1931 uint16_t phy_tmp;
1932
1933 if (sc->link_active || sc->hw.phy.type != e1000_phy_igp ||
1934 sc->hw.mac.autoneg == 0 ||
1935 (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
1936 return;
1937
1938 if (sc->smartspeed == 0) {
1939 /*
1940 * If Master/Slave config fault is asserted twice,
1941 * we assume back-to-back
1942 */
1943 e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1944 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
1945 return;
1946 e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
1947 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
1948 e1000_read_phy_reg(&sc->hw,
1949 PHY_1000T_CTRL, &phy_tmp);
1950 if (phy_tmp & CR_1000T_MS_ENABLE) {
1951 phy_tmp &= ~CR_1000T_MS_ENABLE;
1952 e1000_write_phy_reg(&sc->hw,
1953 PHY_1000T_CTRL, phy_tmp);
1954 sc->smartspeed++;
1955 if (sc->hw.mac.autoneg &&
1956 !e1000_phy_setup_autoneg(&sc->hw) &&
1957 !e1000_read_phy_reg(&sc->hw,
1958 PHY_CONTROL, &phy_tmp)) {
1959 phy_tmp |= MII_CR_AUTO_NEG_EN |
1960 MII_CR_RESTART_AUTO_NEG;
1961 e1000_write_phy_reg(&sc->hw,
1962 PHY_CONTROL, phy_tmp);
1963 }
1964 }
1965 }
1966 return;
1967 } else if (sc->smartspeed == EMX_SMARTSPEED_DOWNSHIFT) {
1968 /* If still no link, perhaps using 2/3 pair cable */
1969 e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
1970 phy_tmp |= CR_1000T_MS_ENABLE;
1971 e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
1972 if (sc->hw.mac.autoneg &&
1973 !e1000_phy_setup_autoneg(&sc->hw) &&
1974 !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
1975 phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
1976 e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
1977 }
1978 }
1979
1980 /* Restart process after EMX_SMARTSPEED_MAX iterations */
1981 if (sc->smartspeed++ == EMX_SMARTSPEED_MAX)
1982 sc->smartspeed = 0;
1983}
1984
1985static int
1986emx_create_tx_ring(struct emx_softc *sc)
1987{
1988 device_t dev = sc->dev;
1989 struct emx_txbuf *tx_buffer;
1990 int error, i, tsize, ntxd;
1991
1992 /*
1993 * Validate number of transmit descriptors. It must not exceed
1994 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
1995 */
1996 ntxd = device_getenv_int(dev, "txd", emx_txd);
1997 if ((ntxd * sizeof(struct e1000_tx_desc)) % EMX_DBA_ALIGN != 0 ||
1998 ntxd > EMX_MAX_TXD || ntxd < EMX_MIN_TXD) {
1999 device_printf(dev, "Using %d TX descriptors instead of %d!\n",
2000 EMX_DEFAULT_TXD, ntxd);
2001 sc->num_tx_desc = EMX_DEFAULT_TXD;
2002 } else {
2003 sc->num_tx_desc = ntxd;
2004 }
2005
2006 /*
2007 * Allocate Transmit Descriptor ring
2008 */
2009 tsize = roundup2(sc->num_tx_desc * sizeof(struct e1000_tx_desc),
2010 EMX_DBA_ALIGN);
2011 sc->tx_desc_base = bus_dmamem_coherent_any(sc->parent_dtag,
2012 EMX_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
2013 &sc->tx_desc_dtag, &sc->tx_desc_dmap,
2014 &sc->tx_desc_paddr);
2015 if (sc->tx_desc_base == NULL) {
2016 device_printf(dev, "Unable to allocate tx_desc memory\n");
2017 return ENOMEM;
2018 }
2019
2020 sc->tx_buf = kmalloc(sizeof(struct emx_txbuf) * sc->num_tx_desc,
2021 M_DEVBUF, M_WAITOK | M_ZERO);
2022
2023 /*
2024 * Create DMA tags for tx buffers
2025 */
2026 error = bus_dma_tag_create(sc->parent_dtag, /* parent */
2027 1, 0, /* alignment, bounds */
2028 BUS_SPACE_MAXADDR, /* lowaddr */
2029 BUS_SPACE_MAXADDR, /* highaddr */
2030 NULL, NULL, /* filter, filterarg */
2031 EMX_TSO_SIZE, /* maxsize */
2032 EMX_MAX_SCATTER, /* nsegments */
2033 EMX_MAX_SEGSIZE, /* maxsegsize */
2034 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2035 BUS_DMA_ONEBPAGE, /* flags */
2036 &sc->txtag);
2037 if (error) {
2038 device_printf(dev, "Unable to allocate TX DMA tag\n");
2039 kfree(sc->tx_buf, M_DEVBUF);
2040 sc->tx_buf = NULL;
2041 return error;
2042 }
2043
2044 /*
2045 * Create DMA maps for tx buffers
2046 */
2047 for (i = 0; i < sc->num_tx_desc; i++) {
2048 tx_buffer = &sc->tx_buf[i];
2049
2050 error = bus_dmamap_create(sc->txtag,
2051 BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2052 &tx_buffer->map);
2053 if (error) {
2054 device_printf(dev, "Unable to create TX DMA map\n");
2055 emx_destroy_tx_ring(sc, i);
2056 return error;
2057 }
2058 }
2059 return (0);
2060}
2061
2062static void
2063emx_init_tx_ring(struct emx_softc *sc)
2064{
2065 /* Clear the old ring contents */
2066 bzero(sc->tx_desc_base,
2067 sizeof(struct e1000_tx_desc) * sc->num_tx_desc);
2068
2069 /* Reset state */
2070 sc->next_avail_tx_desc = 0;
2071 sc->next_tx_to_clean = 0;
2072 sc->num_tx_desc_avail = sc->num_tx_desc;
2073}
2074
2075static void
2076emx_init_tx_unit(struct emx_softc *sc)
2077{
2078 uint32_t tctl, tarc, tipg = 0;
2079 uint64_t bus_addr;
2080
2081 /* Setup the Base and Length of the Tx Descriptor Ring */
2082 bus_addr = sc->tx_desc_paddr;
2083 E1000_WRITE_REG(&sc->hw, E1000_TDLEN(0),
2084 sc->num_tx_desc * sizeof(struct e1000_tx_desc));
2085 E1000_WRITE_REG(&sc->hw, E1000_TDBAH(0),
2086 (uint32_t)(bus_addr >> 32));
2087 E1000_WRITE_REG(&sc->hw, E1000_TDBAL(0),
2088 (uint32_t)bus_addr);
2089 /* Setup the HW Tx Head and Tail descriptor pointers */
2090 E1000_WRITE_REG(&sc->hw, E1000_TDT(0), 0);
2091 E1000_WRITE_REG(&sc->hw, E1000_TDH(0), 0);
2092
2093 /* Set the default values for the Tx Inter Packet Gap timer */
2094 switch (sc->hw.mac.type) {
2095 case e1000_80003es2lan:
2096 tipg = DEFAULT_82543_TIPG_IPGR1;
2097 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2098 E1000_TIPG_IPGR2_SHIFT;
2099 break;
2100
2101 default:
2102 if (sc->hw.phy.media_type == e1000_media_type_fiber ||
2103 sc->hw.phy.media_type == e1000_media_type_internal_serdes)
2104 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2105 else
2106 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2107 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2108 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2109 break;
2110 }
2111
2112 E1000_WRITE_REG(&sc->hw, E1000_TIPG, tipg);
2113
2114 /* NOTE: 0 is not allowed for TIDV */
2115 E1000_WRITE_REG(&sc->hw, E1000_TIDV, 1);
2116 E1000_WRITE_REG(&sc->hw, E1000_TADV, 0);
2117
2118 if (sc->hw.mac.type == e1000_82571 ||
2119 sc->hw.mac.type == e1000_82572) {
2120 tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2121 tarc |= EMX_TARC_SPEED_MODE;
2122 E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2123 } else if (sc->hw.mac.type == e1000_80003es2lan) {
2124 tarc = E1000_READ_REG(&sc->hw, E1000_TARC(0));
2125 tarc |= 1;
2126 E1000_WRITE_REG(&sc->hw, E1000_TARC(0), tarc);
2127 tarc = E1000_READ_REG(&sc->hw, E1000_TARC(1));
2128 tarc |= 1;
2129 E1000_WRITE_REG(&sc->hw, E1000_TARC(1), tarc);
2130 }
2131
2132 /* Program the Transmit Control Register */
2133 tctl = E1000_READ_REG(&sc->hw, E1000_TCTL);
2134 tctl &= ~E1000_TCTL_CT;
2135 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2136 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2137 tctl |= E1000_TCTL_MULR;
2138
2139 /* This write will effectively turn on the transmit unit. */
2140 E1000_WRITE_REG(&sc->hw, E1000_TCTL, tctl);
2141}
2142
2143static void
2144emx_destroy_tx_ring(struct emx_softc *sc, int ndesc)
2145{
2146 struct emx_txbuf *tx_buffer;
2147 int i;
2148
2149 /* Free Transmit Descriptor ring */
2150 if (sc->tx_desc_base) {
2151 bus_dmamap_unload(sc->tx_desc_dtag, sc->tx_desc_dmap);
2152 bus_dmamem_free(sc->tx_desc_dtag, sc->tx_desc_base,
2153 sc->tx_desc_dmap);
2154 bus_dma_tag_destroy(sc->tx_desc_dtag);
2155
2156 sc->tx_desc_base = NULL;
2157 }
2158
2159 if (sc->tx_buf == NULL)
2160 return;
2161
2162 for (i = 0; i < ndesc; i++) {
2163 tx_buffer = &sc->tx_buf[i];
2164
2165 KKASSERT(tx_buffer->m_head == NULL);
2166 bus_dmamap_destroy(sc->txtag, tx_buffer->map);
2167 }
2168 bus_dma_tag_destroy(sc->txtag);
2169
2170 kfree(sc->tx_buf, M_DEVBUF);
2171 sc->tx_buf = NULL;
2172}
2173
2174/*
2175 * The offload context needs to be set when we transfer the first
2176 * packet of a particular protocol (TCP/UDP). This routine has been
2177 * enhanced to deal with inserted VLAN headers.
2178 *
2179 * If the new packet's ether header length, ip header length and
2180 * csum offloading type are same as the previous packet, we should
2181 * avoid allocating a new csum context descriptor; mainly to take
2182 * advantage of the pipeline effect of the TX data read request.
2183 *
2184 * This function returns number of TX descrptors allocated for
2185 * csum context.
2186 */
2187static int
2188emx_txcsum(struct emx_softc *sc, struct mbuf *mp,
2189 uint32_t *txd_upper, uint32_t *txd_lower)
2190{
2191 struct e1000_context_desc *TXD;
2192 int curr_txd, ehdrlen, csum_flags;
2193 uint32_t cmd, hdr_len, ip_hlen;
2194
2195 csum_flags = mp->m_pkthdr.csum_flags & EMX_CSUM_FEATURES;
2196 ip_hlen = mp->m_pkthdr.csum_iphlen;
2197 ehdrlen = mp->m_pkthdr.csum_lhlen;
2198
2199 if (sc->csum_lhlen == ehdrlen && sc->csum_iphlen == ip_hlen &&
2200 sc->csum_flags == csum_flags) {
2201 /*
2202 * Same csum offload context as the previous packets;
2203 * just return.
2204 */
2205 *txd_upper = sc->csum_txd_upper;
2206 *txd_lower = sc->csum_txd_lower;
2207 return 0;
2208 }
2209
2210 /*
2211 * Setup a new csum offload context.
2212 */
2213
2214 curr_txd = sc->next_avail_tx_desc;
2215 TXD = (struct e1000_context_desc *)&sc->tx_desc_base[curr_txd];
2216
2217 cmd = 0;
2218
2219 /* Setup of IP header checksum. */
2220 if (csum_flags & CSUM_IP) {
2221 /*
2222 * Start offset for header checksum calculation.
2223 * End offset for header checksum calculation.
2224 * Offset of place to put the checksum.
2225 */
2226 TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2227 TXD->lower_setup.ip_fields.ipcse =
2228 htole16(ehdrlen + ip_hlen - 1);
2229 TXD->lower_setup.ip_fields.ipcso =
2230 ehdrlen + offsetof(struct ip, ip_sum);
2231 cmd |= E1000_TXD_CMD_IP;
2232 *txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2233 }
2234 hdr_len = ehdrlen + ip_hlen;
2235
2236 if (csum_flags & CSUM_TCP) {
2237 /*
2238 * Start offset for payload checksum calculation.
2239 * End offset for payload checksum calculation.
2240 * Offset of place to put the checksum.
2241 */
2242 TXD->upper_setup.tcp_fields.tucss = hdr_len;
2243 TXD->upper_setup.tcp_fields.tucse = htole16(0);
2244 TXD->upper_setup.tcp_fields.tucso =
2245 hdr_len + offsetof(struct tcphdr, th_sum);
2246 cmd |= E1000_TXD_CMD_TCP;
2247 *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2248 } else if (csum_flags & CSUM_UDP) {
2249 /*
2250 * Start offset for header checksum calculation.
2251 * End offset for header checksum calculation.
2252 * Offset of place to put the checksum.
2253 */
2254 TXD->upper_setup.tcp_fields.tucss = hdr_len;
2255 TXD->upper_setup.tcp_fields.tucse = htole16(0);
2256 TXD->upper_setup.tcp_fields.tucso =
2257 hdr_len + offsetof(struct udphdr, uh_sum);
2258 *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2259 }
2260
2261 *txd_lower = E1000_TXD_CMD_DEXT | /* Extended descr type */
2262 E1000_TXD_DTYP_D; /* Data descr */
2263
2264 /* Save the information for this csum offloading context */
2265 sc->csum_lhlen = ehdrlen;
2266 sc->csum_iphlen = ip_hlen;
2267 sc->csum_flags = csum_flags;
2268 sc->csum_txd_upper = *txd_upper;
2269 sc->csum_txd_lower = *txd_lower;
2270
2271 TXD->tcp_seg_setup.data = htole32(0);
2272 TXD->cmd_and_length =
2273 htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2274
2275 if (++curr_txd == sc->num_tx_desc)
2276 curr_txd = 0;
2277
2278 KKASSERT(sc->num_tx_desc_avail > 0);
2279 sc->num_tx_desc_avail--;
2280
2281 sc->next_avail_tx_desc = curr_txd;
2282 return 1;
2283}
2284
2285static void
2286emx_txeof(struct emx_softc *sc)
2287{
2288 struct ifnet *ifp = &sc->arpcom.ac_if;
2289 struct emx_txbuf *tx_buffer;
2290 int first, num_avail;
2291
2292 if (sc->tx_dd_head == sc->tx_dd_tail)
2293 return;
2294
2295 if (sc->num_tx_desc_avail == sc->num_tx_desc)
2296 return;
2297
2298 num_avail = sc->num_tx_desc_avail;
2299 first = sc->next_tx_to_clean;
2300
2301 while (sc->tx_dd_head != sc->tx_dd_tail) {
2302 int dd_idx = sc->tx_dd[sc->tx_dd_head];
2303 struct e1000_tx_desc *tx_desc;
2304
2305 tx_desc = &sc->tx_desc_base[dd_idx];
2306 if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2307 EMX_INC_TXDD_IDX(sc->tx_dd_head);
2308
2309 if (++dd_idx == sc->num_tx_desc)
2310 dd_idx = 0;
2311
2312 while (first != dd_idx) {
2313 logif(pkt_txclean);
2314
2315 num_avail++;
2316
2317 tx_buffer = &sc->tx_buf[first];
2318 if (tx_buffer->m_head) {
2319 ifp->if_opackets++;
2320 bus_dmamap_unload(sc->txtag,
2321 tx_buffer->map);
2322 m_freem(tx_buffer->m_head);
2323 tx_buffer->m_head = NULL;
2324 }
2325
2326 if (++first == sc->num_tx_desc)
2327 first = 0;
2328 }
2329 } else {
2330 break;
2331 }
2332 }
2333 sc->next_tx_to_clean = first;
2334 sc->num_tx_desc_avail = num_avail;
2335
2336 if (sc->tx_dd_head == sc->tx_dd_tail) {
2337 sc->tx_dd_head = 0;
2338 sc->tx_dd_tail = 0;
2339 }
2340
2341 if (!EMX_IS_OACTIVE(sc)) {
2342 ifp->if_flags &= ~IFF_OACTIVE;
2343
2344 /* All clean, turn off the timer */
2345 if (sc->num_tx_desc_avail == sc->num_tx_desc)
2346 ifp->if_timer = 0;
2347 }
2348}
2349
2350static void
2351emx_tx_collect(struct emx_softc *sc)
2352{
2353 struct ifnet *ifp = &sc->arpcom.ac_if;
2354 struct emx_txbuf *tx_buffer;
2355 int tdh, first, num_avail, dd_idx = -1;
2356
2357 if (sc->num_tx_desc_avail == sc->num_tx_desc)
2358 return;
2359
2360 tdh = E1000_READ_REG(&sc->hw, E1000_TDH(0));
2361 if (tdh == sc->next_tx_to_clean)
2362 return;
2363
2364 if (sc->tx_dd_head != sc->tx_dd_tail)
2365 dd_idx = sc->tx_dd[sc->tx_dd_head];
2366
2367 num_avail = sc->num_tx_desc_avail;
2368 first = sc->next_tx_to_clean;
2369
2370 while (first != tdh) {
2371 logif(pkt_txclean);
2372
2373 num_avail++;
2374
2375 tx_buffer = &sc->tx_buf[first];
2376 if (tx_buffer->m_head) {
2377 ifp->if_opackets++;
2378 bus_dmamap_unload(sc->txtag,
2379 tx_buffer->map);
2380 m_freem(tx_buffer->m_head);
2381 tx_buffer->m_head = NULL;
2382 }
2383
2384 if (first == dd_idx) {
2385 EMX_INC_TXDD_IDX(sc->tx_dd_head);
2386 if (sc->tx_dd_head == sc->tx_dd_tail) {
2387 sc->tx_dd_head = 0;
2388 sc->tx_dd_tail = 0;
2389 dd_idx = -1;
2390 } else {
2391 dd_idx = sc->tx_dd[sc->tx_dd_head];
2392 }
2393 }
2394
2395 if (++first == sc->num_tx_desc)
2396 first = 0;
2397 }
2398 sc->next_tx_to_clean = first;
2399 sc->num_tx_desc_avail = num_avail;
2400
2401 if (!EMX_IS_OACTIVE(sc)) {
2402 ifp->if_flags &= ~IFF_OACTIVE;
2403
2404 /* All clean, turn off the timer */
2405 if (sc->num_tx_desc_avail == sc->num_tx_desc)
2406 ifp->if_timer = 0;
2407 }
2408}
2409
2410/*
2411 * When Link is lost sometimes there is work still in the TX ring
2412 * which will result in a watchdog, rather than allow that do an
2413 * attempted cleanup and then reinit here. Note that this has been
2414 * seens mostly with fiber adapters.
2415 */
2416static void
2417emx_tx_purge(struct emx_softc *sc)
2418{
2419 struct ifnet *ifp = &sc->arpcom.ac_if;
2420
2421 if (!sc->link_active && ifp->if_timer) {
2422 emx_tx_collect(sc);
2423 if (ifp->if_timer) {
2424 if_printf(ifp, "Link lost, TX pending, reinit\n");
2425 ifp->if_timer = 0;
2426 emx_init(sc);
2427 }
2428 }
2429}
2430
2431static int
2432emx_newbuf(struct emx_softc *sc, struct emx_rxdata *rdata, int i, int init)
2433{
2434 struct mbuf *m;
2435 bus_dma_segment_t seg;
2436 bus_dmamap_t map;
2437 struct emx_rxbuf *rx_buffer;
2438 int error, nseg;
2439
2440 m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2441 if (m == NULL) {
2442 rdata->mbuf_cluster_failed++;
2443 if (init) {
2444 if_printf(&sc->arpcom.ac_if,
2445 "Unable to allocate RX mbuf\n");
2446 }
2447 return (ENOBUFS);
2448 }
2449 m->m_len = m->m_pkthdr.len = MCLBYTES;
2450
2451 if (sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2452 m_adj(m, ETHER_ALIGN);
2453
2454 error = bus_dmamap_load_mbuf_segment(rdata->rxtag,
2455 rdata->rx_sparemap, m,
2456 &seg, 1, &nseg, BUS_DMA_NOWAIT);
2457 if (error) {
2458 m_freem(m);
2459 if (init) {
2460 if_printf(&sc->arpcom.ac_if,
2461 "Unable to load RX mbuf\n");
2462 }
2463 return (error);
2464 }
2465
2466 rx_buffer = &rdata->rx_buf[i];
2467 if (rx_buffer->m_head != NULL)
2468 bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2469
2470 map = rx_buffer->map;
2471 rx_buffer->map = rdata->rx_sparemap;
2472 rdata->rx_sparemap = map;
2473
2474 rx_buffer->m_head = m;
2475 rx_buffer->paddr = seg.ds_addr;
2476
2477 emx_setup_rxdesc(&rdata->rx_desc[i], rx_buffer);
2478 return (0);
2479}
2480
2481static int
2482emx_create_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2483{
2484 device_t dev = sc->dev;
2485 struct emx_rxbuf *rx_buffer;
2486 int i, error, rsize, nrxd;
2487
2488 /*
2489 * Validate number of receive descriptors. It must not exceed
2490 * hardware maximum, and must be multiple of E1000_DBA_ALIGN.
2491 */
2492 nrxd = device_getenv_int(dev, "rxd", emx_rxd);
2493 if ((nrxd * sizeof(emx_rxdesc_t)) % EMX_DBA_ALIGN != 0 ||
2494 nrxd > EMX_MAX_RXD || nrxd < EMX_MIN_RXD) {
2495 device_printf(dev, "Using %d RX descriptors instead of %d!\n",
2496 EMX_DEFAULT_RXD, nrxd);
2497 rdata->num_rx_desc = EMX_DEFAULT_RXD;
2498 } else {
2499 rdata->num_rx_desc = nrxd;
2500 }
2501
2502 /*
2503 * Allocate Receive Descriptor ring
2504 */
2505 rsize = roundup2(rdata->num_rx_desc * sizeof(emx_rxdesc_t),
2506 EMX_DBA_ALIGN);
2507 rdata->rx_desc = bus_dmamem_coherent_any(sc->parent_dtag,
2508 EMX_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2509 &rdata->rx_desc_dtag, &rdata->rx_desc_dmap,
2510 &rdata->rx_desc_paddr);
2511 if (rdata->rx_desc == NULL) {
2512 device_printf(dev, "Unable to allocate rx_desc memory\n");
2513 return ENOMEM;
2514 }
2515
2516 rdata->rx_buf = kmalloc(sizeof(struct emx_rxbuf) * rdata->num_rx_desc,
2517 M_DEVBUF, M_WAITOK | M_ZERO);
2518
2519 /*
2520 * Create DMA tag for rx buffers
2521 */
2522 error = bus_dma_tag_create(sc->parent_dtag, /* parent */
2523 1, 0, /* alignment, bounds */
2524 BUS_SPACE_MAXADDR, /* lowaddr */
2525 BUS_SPACE_MAXADDR, /* highaddr */
2526 NULL, NULL, /* filter, filterarg */
2527 MCLBYTES, /* maxsize */
2528 1, /* nsegments */
2529 MCLBYTES, /* maxsegsize */
2530 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2531 &rdata->rxtag);
2532 if (error) {
2533 device_printf(dev, "Unable to allocate RX DMA tag\n");
2534 kfree(rdata->rx_buf, M_DEVBUF);
2535 rdata->rx_buf = NULL;
2536 return error;
2537 }
2538
2539 /*
2540 * Create spare DMA map for rx buffers
2541 */
2542 error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2543 &rdata->rx_sparemap);
2544 if (error) {
2545 device_printf(dev, "Unable to create spare RX DMA map\n");
2546 bus_dma_tag_destroy(rdata->rxtag);
2547 kfree(rdata->rx_buf, M_DEVBUF);
2548 rdata->rx_buf = NULL;
2549 return error;
2550 }
2551
2552 /*
2553 * Create DMA maps for rx buffers
2554 */
2555 for (i = 0; i < rdata->num_rx_desc; i++) {
2556 rx_buffer = &rdata->rx_buf[i];
2557
2558 error = bus_dmamap_create(rdata->rxtag, BUS_DMA_WAITOK,
2559 &rx_buffer->map);
2560 if (error) {
2561 device_printf(dev, "Unable to create RX DMA map\n");
2562 emx_destroy_rx_ring(sc, rdata, i);
2563 return error;
2564 }
2565 }
2566 return (0);
2567}
2568
2569static void
2570emx_free_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2571{
2572 int i;
2573
2574 for (i = 0; i < rdata->num_rx_desc; i++) {
2575 struct emx_rxbuf *rx_buffer = &rdata->rx_buf[i];
2576
2577 if (rx_buffer->m_head != NULL) {
2578 bus_dmamap_unload(rdata->rxtag, rx_buffer->map);
2579 m_freem(rx_buffer->m_head);
2580 rx_buffer->m_head = NULL;
2581 }
2582 }
2583
2584 if (rdata->fmp != NULL)
2585 m_freem(rdata->fmp);
2586 rdata->fmp = NULL;
2587 rdata->lmp = NULL;
2588}
2589
2590static int
2591emx_init_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata)
2592{
2593 int i, error;
2594
2595 /* Reset descriptor ring */
2596 bzero(rdata->rx_desc, sizeof(emx_rxdesc_t) * rdata->num_rx_desc);
2597
2598 /* Allocate new ones. */
2599 for (i = 0; i < rdata->num_rx_desc; i++) {
2600 error = emx_newbuf(sc, rdata, i, 1);
2601 if (error)
2602 return (error);
2603 }
2604
2605 /* Setup our descriptor pointers */
2606 rdata->next_rx_desc_to_check = 0;
2607
2608 return (0);
2609}
2610
2611static void
2612emx_init_rx_unit(struct emx_softc *sc)
2613{
2614 struct ifnet *ifp = &sc->arpcom.ac_if;
2615 uint64_t bus_addr;
2616 uint32_t rctl, itr, rfctl;
2617 int i;
2618
2619 /*
2620 * Make sure receives are disabled while setting
2621 * up the descriptor ring
2622 */
2623 rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2624 E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2625
2626 /*
2627 * Set the interrupt throttling rate. Value is calculated
2628 * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
2629 */
2630 if (sc->int_throttle_ceil)
2631 itr = 1000000000 / 256 / sc->int_throttle_ceil;
2632 else
2633 itr = 0;
2634 emx_set_itr(sc, itr);
2635
2636 /* Use extended RX descriptor */
2637 rfctl = E1000_RFCTL_EXTEN;
2638
2639 /* Disable accelerated ackknowledge */
2640 if (sc->hw.mac.type == e1000_82574)
2641 rfctl |= E1000_RFCTL_ACK_DIS;
2642
2643 E1000_WRITE_REG(&sc->hw, E1000_RFCTL, rfctl);
2644
2645 /*
2646 * Receive Checksum Offload for TCP and UDP
2647 *
2648 * Checksum offloading is also enabled if multiple receive
2649 * queue is to be supported, since we need it to figure out
2650 * packet type.
2651 */
2652 if ((ifp->if_capenable & IFCAP_RXCSUM) ||
2653 sc->rx_ring_cnt > 1) {
2654 uint32_t rxcsum;
2655
2656 rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2657
2658 /*
2659 * NOTE:
2660 * PCSD must be enabled to enable multiple
2661 * receive queues.
2662 */
2663 rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2664 E1000_RXCSUM_PCSD;
2665 E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2666 }
2667
2668 /*
2669 * Configure multiple receive queue (RSS)
2670 */
2671 if (sc->rx_ring_cnt > 1) {
2672 uint8_t key[EMX_NRSSRK * EMX_RSSRK_SIZE];
2673 uint32_t reta;
2674
2675 KASSERT(sc->rx_ring_cnt == EMX_NRX_RING,
2676 ("invalid number of RX ring (%d)", sc->rx_ring_cnt));
2677
2678 /*
2679 * NOTE:
2680 * When we reach here, RSS has already been disabled
2681 * in emx_stop(), so we could safely configure RSS key
2682 * and redirect table.
2683 */
2684
2685 /*
2686 * Configure RSS key
2687 */
2688 toeplitz_get_key(key, sizeof(key));
2689 for (i = 0; i < EMX_NRSSRK; ++i) {
2690 uint32_t rssrk;
2691
2692 rssrk = EMX_RSSRK_VAL(key, i);
2693 EMX_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2694
2695 E1000_WRITE_REG(&sc->hw, E1000_RSSRK(i), rssrk);
2696 }
2697
2698 /*
2699 * Configure RSS redirect table in following fashion:
2700 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2701 */
2702 reta = 0;
2703 for (i = 0; i < EMX_RETA_SIZE; ++i) {
2704 uint32_t q;
2705
2706 q = (i % sc->rx_ring_cnt) << EMX_RETA_RINGIDX_SHIFT;
2707 reta |= q << (8 * i);
2708 }
2709 EMX_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2710
2711 for (i = 0; i < EMX_NRETA; ++i)
2712 E1000_WRITE_REG(&sc->hw, E1000_RETA(i), reta);
2713
2714 /*
2715 * Enable multiple receive queues.
2716 * Enable IPv4 RSS standard hash functions.
2717 * Disable RSS interrupt.
2718 */
2719 E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2720 E1000_MRQC_ENABLE_RSS_2Q |
2721 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2722 E1000_MRQC_RSS_FIELD_IPV4);
2723 }
2724
2725 /*
2726 * XXX TEMPORARY WORKAROUND: on some systems with 82573
2727 * long latencies are observed, like Lenovo X60. This
2728 * change eliminates the problem, but since having positive
2729 * values in RDTR is a known source of problems on other
2730 * platforms another solution is being sought.
2731 */
2732 if (emx_82573_workaround && sc->hw.mac.type == e1000_82573) {
2733 E1000_WRITE_REG(&sc->hw, E1000_RADV, EMX_RADV_82573);
2734 E1000_WRITE_REG(&sc->hw, E1000_RDTR, EMX_RDTR_82573);
2735 }
2736
2737 for (i = 0; i < sc->rx_ring_cnt; ++i) {
2738 struct emx_rxdata *rdata = &sc->rx_data[i];
2739
2740 /*
2741 * Setup the Base and Length of the Rx Descriptor Ring
2742 */
2743 bus_addr = rdata->rx_desc_paddr;
2744 E1000_WRITE_REG(&sc->hw, E1000_RDLEN(i),
2745 rdata->num_rx_desc * sizeof(emx_rxdesc_t));
2746 E1000_WRITE_REG(&sc->hw, E1000_RDBAH(i),
2747 (uint32_t)(bus_addr >> 32));
2748 E1000_WRITE_REG(&sc->hw, E1000_RDBAL(i),
2749 (uint32_t)bus_addr);
2750
2751 /*
2752 * Setup the HW Rx Head and Tail Descriptor Pointers
2753 */
2754 E1000_WRITE_REG(&sc->hw, E1000_RDH(i), 0);
2755 E1000_WRITE_REG(&sc->hw, E1000_RDT(i),
2756 sc->rx_data[i].num_rx_desc - 1);
2757 }
2758
2759 /* Setup the Receive Control Register */
2760 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2761 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2762 E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC |
2763 (sc->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2764
2765 /* Make sure VLAN Filters are off */
2766 rctl &= ~E1000_RCTL_VFE;
2767
2768 /* Don't store bad paket */
2769 rctl &= ~E1000_RCTL_SBP;
2770
2771 /* MCLBYTES */
2772 rctl |= E1000_RCTL_SZ_2048;
2773
2774 if (ifp->if_mtu > ETHERMTU)
2775 rctl |= E1000_RCTL_LPE;
2776 else
2777 rctl &= ~E1000_RCTL_LPE;
2778
2779 /* Enable Receives */
2780 E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
2781}
2782
2783static void
2784emx_destroy_rx_ring(struct emx_softc *sc, struct emx_rxdata *rdata, int ndesc)
2785{
2786 struct emx_rxbuf *rx_buffer;
2787 int i;
2788
2789 /* Free Receive Descriptor ring */
2790 if (rdata->rx_desc) {
2791 bus_dmamap_unload(rdata->rx_desc_dtag, rdata->rx_desc_dmap);
2792 bus_dmamem_free(rdata->rx_desc_dtag, rdata->rx_desc,
2793 rdata->rx_desc_dmap);
2794 bus_dma_tag_destroy(rdata->rx_desc_dtag);
2795
2796 rdata->rx_desc = NULL;
2797 }
2798
2799 if (rdata->rx_buf == NULL)
2800 return;
2801
2802 for (i = 0; i < ndesc; i++) {
2803 rx_buffer = &rdata->rx_buf[i];
2804
2805 KKASSERT(rx_buffer->m_head == NULL);
2806 bus_dmamap_destroy(rdata->rxtag, rx_buffer->map);
2807 }
2808 bus_dmamap_destroy(rdata->rxtag, rdata->rx_sparemap);
2809 bus_dma_tag_destroy(rdata->rxtag);
2810
2811 kfree(rdata->rx_buf, M_DEVBUF);
2812 rdata->rx_buf = NULL;
2813}
2814
2815static void
2816emx_rxeof(struct emx_softc *sc, int ring_idx, int count)
2817{
2818 struct emx_rxdata *rdata = &sc->rx_data[ring_idx];
2819 struct ifnet *ifp = &sc->arpcom.ac_if;
2820 uint32_t staterr;
2821 emx_rxdesc_t *current_desc;
2822 struct mbuf *mp;
2823 int i;
2824
2825 i = rdata->next_rx_desc_to_check;
2826 current_desc = &rdata->rx_desc[i];
2827 staterr = le32toh(current_desc->rxd_staterr);
2828
2829 if (!(staterr & E1000_RXD_STAT_DD))
2830 return;
2831
2832 while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2833 struct pktinfo *pi = NULL, pi0;
2834 struct emx_rxbuf *rx_buf = &rdata->rx_buf[i];
2835 struct mbuf *m = NULL;
2836 int eop, len;
2837
2838 logif(pkt_receive);
2839
2840 mp = rx_buf->m_head;
2841
2842 /*
2843 * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
2844 * needs to access the last received byte in the mbuf.
2845 */
2846 bus_dmamap_sync(rdata->rxtag, rx_buf->map,
2847 BUS_DMASYNC_POSTREAD);
2848
2849 len = le16toh(current_desc->rxd_length);
2850 if (staterr & E1000_RXD_STAT_EOP) {
2851 count--;
2852 eop = 1;
2853 } else {
2854 eop = 0;
2855 }
2856
2857 if (!(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
2858 uint16_t vlan = 0;
2859 uint32_t mrq, rss_hash;
2860
2861 /*
2862 * Save several necessary information,
2863 * before emx_newbuf() destroy it.
2864 */
2865 if ((staterr & E1000_RXD_STAT_VP) && eop)
2866 vlan = le16toh(current_desc->rxd_vlan);
2867
2868 mrq = le32toh(current_desc->rxd_mrq);
2869 rss_hash = le32toh(current_desc->rxd_rss);
2870
2871 EMX_RSS_DPRINTF(sc, 10,
2872 "ring%d, mrq 0x%08x, rss_hash 0x%08x\n",
2873 ring_idx, mrq, rss_hash);
2874
2875 if (emx_newbuf(sc, rdata, i, 0) != 0) {
2876 ifp->if_iqdrops++;
2877 goto discard;
2878 }
2879
2880 /* Assign correct length to the current fragment */
2881 mp->m_len = len;
2882
2883 if (rdata->fmp == NULL) {
2884 mp->m_pkthdr.len = len;
2885 rdata->fmp = mp; /* Store the first mbuf */
2886 rdata->lmp = mp;
2887 } else {
2888 /*
2889 * Chain mbuf's together
2890 */
2891 rdata->lmp->m_next = mp;
2892 rdata->lmp = rdata->lmp->m_next;
2893 rdata->fmp->m_pkthdr.len += len;
2894 }
2895
2896 if (eop) {
2897 rdata->fmp->m_pkthdr.rcvif = ifp;
2898 ifp->if_ipackets++;
2899
2900 if (ifp->if_capenable & IFCAP_RXCSUM)
2901 emx_rxcsum(staterr, rdata->fmp);
2902
2903 if (staterr & E1000_RXD_STAT_VP) {
2904 rdata->fmp->m_pkthdr.ether_vlantag =
2905 vlan;
2906 rdata->fmp->m_flags |= M_VLANTAG;
2907 }
2908 m = rdata->fmp;
2909 rdata->fmp = NULL;
2910 rdata->lmp = NULL;
2911
2912 if (ifp->if_capenable & IFCAP_RSS) {
2913 pi = emx_rssinfo(m, &pi0, mrq,
2914 rss_hash, staterr);
2915 }
2916#ifdef EMX_RSS_DEBUG
2917 rdata->rx_pkts++;
2918#endif
2919 }
2920 } else {
2921 ifp->if_ierrors++;
2922discard:
2923 emx_setup_rxdesc(current_desc, rx_buf);
2924 if (rdata->fmp != NULL) {
2925 m_freem(rdata->fmp);
2926 rdata->fmp = NULL;
2927 rdata->lmp = NULL;
2928 }
2929 m = NULL;
2930 }
2931
2932 if (m != NULL)
2933 ether_input_pkt(ifp, m, pi);
2934
2935 /* Advance our pointers to the next descriptor. */
2936 if (++i == rdata->num_rx_desc)
2937 i = 0;
2938
2939 current_desc = &rdata->rx_desc[i];
2940 staterr = le32toh(current_desc->rxd_staterr);
2941 }
2942 rdata->next_rx_desc_to_check = i;
2943
2944 /* Advance the E1000's Receive Queue "Tail Pointer". */
2945 if (--i < 0)
2946 i = rdata->num_rx_desc - 1;
2947 E1000_WRITE_REG(&sc->hw, E1000_RDT(ring_idx), i);
2948}
2949
2950static void
2951emx_enable_intr(struct emx_softc *sc)
2952{
2953 uint32_t ims_mask = IMS_ENABLE_MASK;
2954
2955 lwkt_serialize_handler_enable(&sc->main_serialize);
2956
2957#if 0
2958 if (sc->hw.mac.type == e1000_82574) {
2959 E1000_WRITE_REG(hw, EMX_EIAC, EM_MSIX_MASK);
2960 ims_mask |= EM_MSIX_MASK;
2961 }
2962#endif
2963 E1000_WRITE_REG(&sc->hw, E1000_IMS, ims_mask);
2964}
2965
2966static void
2967emx_disable_intr(struct emx_softc *sc)
2968{
2969 if (sc->hw.mac.type == e1000_82574)
2970 E1000_WRITE_REG(&sc->hw, EMX_EIAC, 0);
2971 E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2972
2973 lwkt_serialize_handler_disable(&sc->main_serialize);
2974}
2975
2976/*
2977 * Bit of a misnomer, what this really means is
2978 * to enable OS management of the system... aka
2979 * to disable special hardware management features
2980 */
2981static void
2982emx_get_mgmt(struct emx_softc *sc)
2983{
2984 /* A shared code workaround */
2985 if (sc->flags & EMX_FLAG_HAS_MGMT) {
2986 int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2987 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2988
2989 /* disable hardware interception of ARP */
2990 manc &= ~(E1000_MANC_ARP_EN);
2991
2992 /* enable receiving management packets to the host */
2993 manc |= E1000_MANC_EN_MNG2HOST;
2994#define E1000_MNG2HOST_PORT_623 (1 << 5)
2995#define E1000_MNG2HOST_PORT_664 (1 << 6)
2996 manc2h |= E1000_MNG2HOST_PORT_623;
2997 manc2h |= E1000_MNG2HOST_PORT_664;
2998 E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2999
3000 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3001 }
3002}
3003
3004/*
3005 * Give control back to hardware management
3006 * controller if there is one.
3007 */
3008static void
3009emx_rel_mgmt(struct emx_softc *sc)
3010{
3011 if (sc->flags & EMX_FLAG_HAS_MGMT) {
3012 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
3013
3014 /* re-enable hardware interception of ARP */
3015 manc |= E1000_MANC_ARP_EN;
3016 manc &= ~E1000_MANC_EN_MNG2HOST;
3017
3018 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
3019 }
3020}
3021
3022/*
3023 * emx_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3024 * For ASF and Pass Through versions of f/w this means that
3025 * the driver is loaded. For AMT version (only with 82573)
3026 * of the f/w this means that the network i/f is open.
3027 */
3028static void
3029emx_get_hw_control(struct emx_softc *sc)
3030{
3031 /* Let firmware know the driver has taken over */
3032 if (sc->hw.mac.type == e1000_82573) {
3033 uint32_t swsm;
3034
3035 swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3036 E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3037 swsm | E1000_SWSM_DRV_LOAD);
3038 } else {
3039 uint32_t ctrl_ext;
3040
3041 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3042 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3043 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3044 }
3045 sc->flags |= EMX_FLAG_HW_CTRL;
3046}
3047
3048/*
3049 * emx_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3050 * For ASF and Pass Through versions of f/w this means that the
3051 * driver is no longer loaded. For AMT version (only with 82573)
3052 * of the f/w this means that the network i/f is closed.
3053 */
3054static void
3055emx_rel_hw_control(struct emx_softc *sc)
3056{
3057 if ((sc->flags & EMX_FLAG_HW_CTRL) == 0)
3058 return;
3059 sc->flags &= ~EMX_FLAG_HW_CTRL;
3060
3061 /* Let firmware taken over control of h/w */
3062 if (sc->hw.mac.type == e1000_82573) {
3063 uint32_t swsm;
3064
3065 swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
3066 E1000_WRITE_REG(&sc->hw, E1000_SWSM,
3067 swsm & ~E1000_SWSM_DRV_LOAD);
3068 } else {
3069 uint32_t ctrl_ext;
3070
3071 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
3072 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
3073 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3074 }
3075}
3076
3077static int
3078emx_is_valid_eaddr(const uint8_t *addr)
3079{
3080 char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3081
3082 if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3083 return (FALSE);
3084
3085 return (TRUE);
3086}
3087
3088/*
3089 * Enable PCI Wake On Lan capability
3090 */
3091void
3092emx_enable_wol(device_t dev)
3093{
3094 uint16_t cap, status;
3095 uint8_t id;
3096
3097 /* First find the capabilities pointer*/
3098 cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3099
3100 /* Read the PM Capabilities */
3101 id = pci_read_config(dev, cap, 1);
3102 if (id != PCIY_PMG) /* Something wrong */
3103 return;
3104
3105 /*
3106 * OK, we have the power capabilities,
3107 * so now get the status register
3108 */
3109 cap += PCIR_POWER_STATUS;
3110 status = pci_read_config(dev, cap, 2);
3111 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3112 pci_write_config(dev, cap, status, 2);
3113}
3114
3115static void
3116emx_update_stats(struct emx_softc *sc)
3117{
3118 struct ifnet *ifp = &sc->arpcom.ac_if;
3119
3120 if (sc->hw.phy.media_type == e1000_media_type_copper ||
3121 (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3122 sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
3123 sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
3124 }
3125 sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
3126 sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
3127 sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
3128 sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
3129
3130 sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
3131 sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
3132 sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
3133 sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
3134 sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
3135 sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
3136 sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
3137 sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
3138 sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
3139 sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
3140 sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
3141 sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
3142 sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
3143 sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
3144 sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
3145 sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
3146 sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
3147 sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
3148 sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
3149 sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
3150
3151 /* For the 64-bit byte counters the low dword must be read first. */
3152 /* Both registers clear on the read of the high dword */
3153
3154 sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCH);
3155 sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCH);
3156
3157 sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
3158 sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
3159 sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
3160 sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
3161 sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
3162
3163 sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
3164 sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
3165
3166 sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
3167 sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
3168 sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
3169 sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
3170 sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
3171 sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
3172 sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
3173 sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
3174 sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
3175 sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
3176
3177 sc->stats.algnerrc += E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
3178 sc->stats.rxerrc += E1000_READ_REG(&sc->hw, E1000_RXERRC);
3179 sc->stats.tncrs += E1000_READ_REG(&sc->hw, E1000_TNCRS);
3180 sc->stats.cexterr += E1000_READ_REG(&sc->hw, E1000_CEXTERR);
3181 sc->stats.tsctc += E1000_READ_REG(&sc->hw, E1000_TSCTC);
3182 sc->stats.tsctfc += E1000_READ_REG(&sc->hw, E1000_TSCTFC);
3183
3184 ifp->if_collisions = sc->stats.colc;
3185
3186 /* Rx Errors */
3187 ifp->if_ierrors = sc->dropped_pkts + sc->stats.rxerrc +
3188 sc->stats.crcerrs + sc->stats.algnerrc +
3189 sc->stats.ruc + sc->stats.roc +
3190 sc->stats.mpc + sc->stats.cexterr;
3191
3192 /* Tx Errors */
3193 ifp->if_oerrors = sc->stats.ecol + sc->stats.latecol +
3194 sc->watchdog_events;
3195}
3196
3197static void
3198emx_print_debug_info(struct emx_softc *sc)
3199{
3200 device_t dev = sc->dev;
3201 uint8_t *hw_addr = sc->hw.hw_addr;
3202
3203 device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3204 device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3205 E1000_READ_REG(&sc->hw, E1000_CTRL),
3206 E1000_READ_REG(&sc->hw, E1000_RCTL));
3207 device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3208 ((E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff0000) >> 16),\
3209 (E1000_READ_REG(&sc->hw, E1000_PBA) & 0xffff) );
3210 device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3211 sc->hw.fc.high_water, sc->hw.fc.low_water);
3212 device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3213 E1000_READ_REG(&sc->hw, E1000_TIDV),
3214 E1000_READ_REG(&sc->hw, E1000_TADV));
3215 device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3216 E1000_READ_REG(&sc->hw, E1000_RDTR),
3217 E1000_READ_REG(&sc->hw, E1000_RADV));
3218 device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3219 E1000_READ_REG(&sc->hw, E1000_TDH(0)),
3220 E1000_READ_REG(&sc->hw, E1000_TDT(0)));
3221 device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3222 E1000_READ_REG(&sc->hw, E1000_RDH(0)),
3223 E1000_READ_REG(&sc->hw, E1000_RDT(0)));
3224 device_printf(dev, "Num Tx descriptors avail = %d\n",
3225 sc->num_tx_desc_avail);
3226 device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3227 sc->no_tx_desc_avail1);
3228 device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3229 sc->no_tx_desc_avail2);
3230 device_printf(dev, "Std mbuf failed = %ld\n",
3231 sc->mbuf_alloc_failed);
3232 device_printf(dev, "Std mbuf cluster failed = %ld\n",
3233 sc->rx_data[0].mbuf_cluster_failed);
3234 device_printf(dev, "Driver dropped packets = %ld\n",
3235 sc->dropped_pkts);
3236 device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3237 sc->no_tx_dma_setup);
3238
3239 device_printf(dev, "TSO segments %lu\n", sc->tso_segments);
3240 device_printf(dev, "TSO ctx reused %lu\n", sc->tso_ctx_reused);
3241}
3242
3243static void
3244emx_print_hw_stats(struct emx_softc *sc)
3245{
3246 device_t dev = sc->dev;
3247
3248 device_printf(dev, "Excessive collisions = %lld\n",
3249 (long long)sc->stats.ecol);
3250#if (DEBUG_HW > 0) /* Dont output these errors normally */
3251 device_printf(dev, "Symbol errors = %lld\n",
3252 (long long)sc->stats.symerrs);
3253#endif
3254 device_printf(dev, "Sequence errors = %lld\n",
3255 (long long)sc->stats.sec);
3256 device_printf(dev, "Defer count = %lld\n",
3257 (long long)sc->stats.dc);
3258 device_printf(dev, "Missed Packets = %lld\n",
3259 (long long)sc->stats.mpc);
3260 device_printf(dev, "Receive No Buffers = %lld\n",
3261 (long long)sc->stats.rnbc);
3262 /* RLEC is inaccurate on some hardware, calculate our own. */
3263 device_printf(dev, "Receive Length Errors = %lld\n",
3264 ((long long)sc->stats.roc + (long long)sc->stats.ruc));
3265 device_printf(dev, "Receive errors = %lld\n",
3266 (long long)sc->stats.rxerrc);
3267 device_printf(dev, "Crc errors = %lld\n",
3268 (long long)sc->stats.crcerrs);
3269 device_printf(dev, "Alignment errors = %lld\n",
3270 (long long)sc->stats.algnerrc);
3271 device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3272 (long long)sc->stats.cexterr);
3273 device_printf(dev, "RX overruns = %ld\n", sc->rx_overruns);
3274 device_printf(dev, "watchdog timeouts = %ld\n",
3275 sc->watchdog_events);
3276 device_printf(dev, "XON Rcvd = %lld\n",
3277 (long long)sc->stats.xonrxc);
3278 device_printf(dev, "XON Xmtd = %lld\n",
3279 (long long)sc->stats.xontxc);
3280 device_printf(dev, "XOFF Rcvd = %lld\n",
3281 (long long)sc->stats.xoffrxc);
3282 device_printf(dev, "XOFF Xmtd = %lld\n",
3283 (long long)sc->stats.xofftxc);
3284 device_printf(dev, "Good Packets Rcvd = %lld\n",
3285 (long long)sc->stats.gprc);
3286 device_printf(dev, "Good Packets Xmtd = %lld\n",
3287 (long long)sc->stats.gptc);
3288}
3289
3290static void
3291emx_print_nvm_info(struct emx_softc *sc)
3292{
3293 uint16_t eeprom_data;
3294 int i, j, row = 0;
3295
3296 /* Its a bit crude, but it gets the job done */
3297 kprintf("\nInterface EEPROM Dump:\n");
3298 kprintf("Offset\n0x0000 ");
3299 for (i = 0, j = 0; i < 32; i++, j++) {
3300 if (j == 8) { /* Make the offset block */
3301 j = 0; ++row;
3302 kprintf("\n0x00%x0 ",row);
3303 }
3304 e1000_read_nvm(&sc->hw, i, 1, &eeprom_data);
3305 kprintf("%04x ", eeprom_data);
3306 }
3307 kprintf("\n");
3308}
3309
3310static int
3311emx_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3312{
3313 struct emx_softc *sc;
3314 struct ifnet *ifp;
3315 int error, result;
3316
3317 result = -1;
3318 error = sysctl_handle_int(oidp, &result, 0, req);
3319 if (error || !req->newptr)
3320 return (error);
3321
3322 sc = (struct emx_softc *)arg1;
3323 ifp = &sc->arpcom.ac_if;
3324
3325 ifnet_serialize_all(ifp);
3326
3327 if (result == 1)
3328 emx_print_debug_info(sc);
3329
3330 /*
3331 * This value will cause a hex dump of the
3332 * first 32 16-bit words of the EEPROM to
3333 * the screen.
3334 */
3335 if (result == 2)
3336 emx_print_nvm_info(sc);
3337
3338 ifnet_deserialize_all(ifp);
3339
3340 return (error);
3341}
3342
3343static int
3344emx_sysctl_stats(SYSCTL_HANDLER_ARGS)
3345{
3346 int error, result;
3347
3348 result = -1;
3349 error = sysctl_handle_int(oidp, &result, 0, req);
3350 if (error || !req->newptr)
3351 return (error);
3352
3353 if (result == 1) {
3354 struct emx_softc *sc = (struct emx_softc *)arg1;
3355 struct ifnet *ifp = &sc->arpcom.ac_if;
3356
3357 ifnet_serialize_all(ifp);
3358 emx_print_hw_stats(sc);
3359 ifnet_deserialize_all(ifp);
3360 }
3361 return (error);
3362}
3363
3364static void
3365emx_add_sysctl(struct emx_softc *sc)
3366{
3367#ifdef EMX_RSS_DEBUG
3368 char rx_pkt[32];
3369 int i;
3370#endif
3371
3372 sysctl_ctx_init(&sc->sysctl_ctx);
3373 sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
3374 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
3375 device_get_nameunit(sc->dev),
3376 CTLFLAG_RD, 0, "");
3377 if (sc->sysctl_tree == NULL) {
3378 device_printf(sc->dev, "can't add sysctl node\n");
3379 return;
3380 }
3381
3382 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3383 OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3384 emx_sysctl_debug_info, "I", "Debug Information");
3385
3386 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3387 OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, sc, 0,
3388 emx_sysctl_stats, "I", "Statistics");
3389
3390 SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3391 OID_AUTO, "rxd", CTLFLAG_RD,
3392 &sc->rx_data[0].num_rx_desc, 0, NULL);
3393 SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3394 OID_AUTO, "txd", CTLFLAG_RD, &sc->num_tx_desc, 0, NULL);
3395
3396 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3397 OID_AUTO, "int_throttle_ceil", CTLTYPE_INT|CTLFLAG_RW,
3398 sc, 0, emx_sysctl_int_throttle, "I",
3399 "interrupt throttling rate");
3400 SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3401 OID_AUTO, "int_tx_nsegs", CTLTYPE_INT|CTLFLAG_RW,
3402 sc, 0, emx_sysctl_int_tx_nsegs, "I",
3403 "# segments per TX interrupt");
3404
3405 SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3406 OID_AUTO, "rx_ring_cnt", CTLFLAG_RD,
3407 &sc->rx_ring_cnt, 0, "RX ring count");
3408
3409#ifdef EMX_RSS_DEBUG
3410 SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
3411 OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug,
3412 0, "RSS debug level");
3413 for (i = 0; i < sc->rx_ring_cnt; ++i) {
3414 ksnprintf(rx_pkt, sizeof(rx_pkt), "rx%d_pkt", i);
3415 SYSCTL_ADD_UINT(&sc->sysctl_ctx,
3416 SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
3417 rx_pkt, CTLFLAG_RW,
3418 &sc->rx_data[i].rx_pkts, 0, "RXed packets");
3419 }
3420#endif
3421}
3422
3423static int
3424emx_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
3425{
3426 struct emx_softc *sc = (void *)arg1;
3427 struct ifnet *ifp = &sc->arpcom.ac_if;
3428 int error, throttle;
3429
3430 throttle = sc->int_throttle_ceil;
3431 error = sysctl_handle_int(oidp, &throttle, 0, req);
3432 if (error || req->newptr == NULL)
3433 return error;
3434 if (throttle < 0 || throttle > 1000000000 / 256)
3435 return EINVAL;
3436
3437 if (throttle) {
3438 /*
3439 * Set the interrupt throttling rate in 256ns increments,
3440 * recalculate sysctl value assignment to get exact frequency.
3441 */
3442 throttle = 1000000000 / 256 / throttle;
3443
3444 /* Upper 16bits of ITR is reserved and should be zero */
3445 if (throttle & 0xffff0000)
3446 return EINVAL;
3447 }
3448
3449 ifnet_serialize_all(ifp);
3450
3451 if (throttle)
3452 sc->int_throttle_ceil = 1000000000 / 256 / throttle;
3453 else
3454 sc->int_throttle_ceil = 0;
3455
3456 if (ifp->if_flags & IFF_RUNNING)
3457 emx_set_itr(sc, throttle);
3458
3459 ifnet_deserialize_all(ifp);
3460
3461 if (bootverbose) {
3462 if_printf(ifp, "Interrupt moderation set to %d/sec\n",
3463 sc->int_throttle_ceil);
3464 }
3465 return 0;
3466}
3467
3468static int
3469emx_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
3470{
3471 struct emx_softc *sc = (void *)arg1;
3472 struct ifnet *ifp = &sc->arpcom.ac_if;
3473 int error, segs;
3474
3475 segs = sc->tx_int_nsegs;
3476 error = sysctl_handle_int(oidp, &segs, 0, req);
3477 if (error || req->newptr == NULL)
3478 return error;
3479 if (segs <= 0)
3480 return EINVAL;
3481
3482 ifnet_serialize_all(ifp);
3483
3484 /*
3485 * Don't allow int_tx_nsegs to become:
3486 * o Less the oact_tx_desc
3487 * o Too large that no TX desc will cause TX interrupt to
3488 * be generated (OACTIVE will never recover)
3489 * o Too small that will cause tx_dd[] overflow
3490 */
3491 if (segs < sc->oact_tx_desc ||
3492 segs >= sc->num_tx_desc - sc->oact_tx_desc ||
3493 segs < sc->num_tx_desc / EMX_TXDD_SAFE) {
3494 error = EINVAL;
3495 } else {
3496 error = 0;
3497 sc->tx_int_nsegs = segs;
3498 }
3499
3500 ifnet_deserialize_all(ifp);
3501
3502 return error;
3503}
3504
3505static int
3506emx_dma_alloc(struct emx_softc *sc)
3507{
3508 int error, i;
3509
3510 /*
3511 * Create top level busdma tag
3512 */
3513 error = bus_dma_tag_create(NULL, 1, 0,
3514 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3515 NULL, NULL,
3516 BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3517 0, &sc->parent_dtag);
3518 if (error) {
3519 device_printf(sc->dev, "could not create top level DMA tag\n");
3520 return error;
3521 }
3522
3523 /*
3524 * Allocate transmit descriptors ring and buffers
3525 */
3526 error = emx_create_tx_ring(sc);
3527 if (error) {
3528 device_printf(sc->dev, "Could not setup transmit structures\n");
3529 return error;
3530 }
3531
3532 /*
3533 * Allocate receive descriptors ring and buffers
3534 */
3535 for (i = 0; i < sc->rx_ring_cnt; ++i) {
3536 error = emx_create_rx_ring(sc, &sc->rx_data[i]);
3537 if (error) {
3538 device_printf(sc->dev,
3539 "Could not setup receive structures\n");
3540 return error;
3541 }
3542 }
3543 return 0;
3544}
3545
3546static void
3547emx_dma_free(struct emx_softc *sc)
3548{
3549 int i;
3550
3551 emx_destroy_tx_ring(sc, sc->num_tx_desc);
3552
3553 for (i = 0; i < sc->rx_ring_cnt; ++i) {
3554 emx_destroy_rx_ring(sc, &sc->rx_data[i],
3555 sc->rx_data[i].num_rx_desc);
3556 }
3557
3558 /* Free top level busdma tag */
3559 if (sc->parent_dtag != NULL)
3560 bus_dma_tag_destroy(sc->parent_dtag);
3561}
3562
3563static void
3564emx_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3565{
3566 struct emx_softc *sc = ifp->if_softc;
3567
3568 ifnet_serialize_array_enter(sc->serializes, EMX_NSERIALIZE,
3569 EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz);
3570}
3571
3572static void
3573emx_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3574{
3575 struct emx_softc *sc = ifp->if_softc;
3576
3577 ifnet_serialize_array_exit(sc->serializes, EMX_NSERIALIZE,
3578 EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz);
3579}
3580
3581static int
3582emx_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3583{
3584 struct emx_softc *sc = ifp->if_softc;
3585
3586 return ifnet_serialize_array_try(sc->serializes, EMX_NSERIALIZE,
3587 EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz);
3588}
3589
3590static void
3591emx_serialize_skipmain(struct emx_softc *sc)
3592{
3593 lwkt_serialize_array_enter(sc->serializes, EMX_NSERIALIZE, 1);
3594}
3595
3596static void
3597emx_deserialize_skipmain(struct emx_softc *sc)
3598{
3599 lwkt_serialize_array_exit(sc->serializes, EMX_NSERIALIZE, 1);
3600}
3601
3602#ifdef INVARIANTS
3603
3604static void
3605emx_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3606 boolean_t serialized)
3607{
3608 struct emx_softc *sc = ifp->if_softc;
3609
3610 ifnet_serialize_array_assert(sc->serializes, EMX_NSERIALIZE,
3611 EMX_TX_SERIALIZE, EMX_RX_SERIALIZE, slz, serialized);
3612}
3613
3614#endif /* INVARIANTS */
3615
3616#ifdef IFPOLL_ENABLE
3617
3618static void
3619emx_npoll_status(struct ifnet *ifp, int pollhz __unused)
3620{
3621 struct emx_softc *sc = ifp->if_softc;
3622 uint32_t reg_icr;
3623
3624 ASSERT_SERIALIZED(&sc->main_serialize);
3625
3626 reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3627 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3628 callout_stop(&sc->timer);
3629 sc->hw.mac.get_link_status = 1;
3630 emx_update_link_status(sc);
3631 callout_reset(&sc->timer, hz, emx_timer, sc);
3632 }
3633}
3634
3635static void
3636emx_npoll_tx(struct ifnet *ifp, void *arg __unused, int cycle __unused)
3637{
3638 struct emx_softc *sc = ifp->if_softc;
3639
3640 ASSERT_SERIALIZED(&sc->tx_serialize);
3641
3642 emx_txeof(sc);
3643 if (!ifq_is_empty(&ifp->if_snd))
3644 if_devstart(ifp);
3645}
3646
3647static void
3648emx_npoll_rx(struct ifnet *ifp, void *arg, int cycle)
3649{
3650 struct emx_softc *sc = ifp->if_softc;
3651 struct emx_rxdata *rdata = arg;
3652
3653 ASSERT_SERIALIZED(&rdata->rx_serialize);
3654
3655 emx_rxeof(sc, rdata - sc->rx_data, cycle);
3656}
3657
3658static void
3659emx_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3660{
3661 struct emx_softc *sc = ifp->if_softc;
3662
3663 ASSERT_IFNET_SERIALIZED_ALL(ifp);
3664
3665 if (info) {
3666 int i;
3667
3668 info->ifpi_status.status_func = emx_npoll_status;
3669 info->ifpi_status.serializer = &sc->main_serialize;
3670
3671 info->ifpi_tx[0].poll_func = emx_npoll_tx;
3672 info->ifpi_tx[0].arg = NULL;
3673 info->ifpi_tx[0].serializer = &sc->tx_serialize;
3674
3675 for (i = 0; i < sc->rx_ring_cnt; ++i) {
3676 info->ifpi_rx[i].poll_func = emx_npoll_rx;
3677 info->ifpi_rx[i].arg = &sc->rx_data[i];
3678 info->ifpi_rx[i].serializer =
3679 &sc->rx_data[i].rx_serialize;
3680 }
3681
3682 if (ifp->if_flags & IFF_RUNNING)
3683 emx_disable_intr(sc);
3684 ifp->if_npoll_cpuid = 0; /* XXX */
3685 } else {
3686 if (ifp->if_flags & IFF_RUNNING)
3687 emx_enable_intr(sc);
3688 ifp->if_npoll_cpuid = -1;
3689 }
3690}
3691
3692#endif /* IFPOLL_ENABLE */
3693
3694static void
3695emx_set_itr(struct emx_softc *sc, uint32_t itr)
3696{
3697 E1000_WRITE_REG(&sc->hw, E1000_ITR, itr);
3698 if (sc->hw.mac.type == e1000_82574) {
3699 int i;
3700
3701 /*
3702 * When using MSIX interrupts we need to
3703 * throttle using the EITR register
3704 */
3705 for (i = 0; i < 4; ++i)
3706 E1000_WRITE_REG(&sc->hw, E1000_EITR_82574(i), itr);
3707 }
3708}
3709
3710/*
3711 * Disable the L0s, 82574L Errata #20
3712 */
3713static void
3714emx_disable_aspm(struct emx_softc *sc)
3715{
3716 uint16_t link_cap, link_ctrl, disable;
3717 uint8_t pcie_ptr, reg;
3718 device_t dev = sc->dev;
3719
3720 switch (sc->hw.mac.type) {
3721 case e1000_82571:
3722 case e1000_82572:
3723 case e1000_82573:
3724 /*
3725 * 82573 specification update
3726 * errata #8 disable L0s
3727 * errata #41 disable L1
3728 *
3729 * 82571/82572 specification update
3730 # errata #13 disable L1
3731 * errata #68 disable L0s
3732 */
3733 disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
3734 break;
3735
3736 case e1000_82574:
3737 /*
3738 * 82574 specification update errata #20
3739 *
3740 * There is no need to disable L1
3741 */
3742 disable = PCIEM_LNKCTL_ASPM_L0S;
3743 break;
3744
3745 default:
3746 return;
3747 }
3748
3749 pcie_ptr = pci_get_pciecap_ptr(dev);
3750 if (pcie_ptr == 0)
3751 return;
3752
3753 link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
3754 if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
3755 return;
3756
3757 if (bootverbose)
3758 if_printf(&sc->arpcom.ac_if, "disable ASPM %#02x\n", disable);
3759
3760 reg = pcie_ptr + PCIER_LINKCTRL;
3761 link_ctrl = pci_read_config(dev, reg, 2);
3762 link_ctrl &= ~disable;
3763 pci_write_config(dev, reg, link_ctrl, 2);
3764}
3765
3766static int
3767emx_tso_pullup(struct emx_softc *sc, struct mbuf **mp)
3768{
3769 int iphlen, hoff, thoff, ex = 0;
3770 struct mbuf *m;
3771 struct ip *ip;
3772
3773 m = *mp;
3774 KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
3775
3776 iphlen = m->m_pkthdr.csum_iphlen;
3777 thoff = m->m_pkthdr.csum_thlen;
3778 hoff = m->m_pkthdr.csum_lhlen;
3779
3780 KASSERT(iphlen > 0, ("invalid ip hlen"));
3781 KASSERT(thoff > 0, ("invalid tcp hlen"));
3782 KASSERT(hoff > 0, ("invalid ether hlen"));
3783
3784 if (sc->flags & EMX_FLAG_TSO_PULLEX)
3785 ex = 4;
3786
3787 if (m->m_len < hoff + iphlen + thoff + ex) {
3788 m = m_pullup(m, hoff + iphlen + thoff + ex);
3789 if (m == NULL) {
3790 *mp = NULL;
3791 return ENOBUFS;
3792 }
3793 *mp = m;
3794 }
3795 ip = mtodoff(m, struct ip *, hoff);
3796 ip->ip_len = 0;
3797
3798 return 0;
3799}
3800
3801static int
3802emx_tso_setup(struct emx_softc *sc, struct mbuf *mp,
3803 uint32_t *txd_upper, uint32_t *txd_lower)
3804{
3805 struct e1000_context_desc *TXD;
3806 int hoff, iphlen, thoff, hlen;
3807 int mss, pktlen, curr_txd;
3808
3809#ifdef EMX_TSO_DEBUG
3810 sc->tso_segments++;
3811#endif
3812
3813 iphlen = mp->m_pkthdr.csum_iphlen;
3814 thoff = mp->m_pkthdr.csum_thlen;
3815 hoff = mp->m_pkthdr.csum_lhlen;
3816 mss = mp->m_pkthdr.tso_segsz;
3817 pktlen = mp->m_pkthdr.len;
3818
3819 if (sc->csum_flags == CSUM_TSO &&
3820 sc->csum_iphlen == iphlen &&
3821 sc->csum_lhlen == hoff &&
3822 sc->csum_thlen == thoff &&
3823 sc->csum_mss == mss &&
3824 sc->csum_pktlen == pktlen) {
3825 *txd_upper = sc->csum_txd_upper;
3826 *txd_lower = sc->csum_txd_lower;
3827#ifdef EMX_TSO_DEBUG
3828 sc->tso_ctx_reused++;
3829#endif
3830 return 0;
3831 }
3832 hlen = hoff + iphlen + thoff;
3833
3834 /*
3835 * Setup a new TSO context.
3836 */
3837
3838 curr_txd = sc->next_avail_tx_desc;
3839 TXD = (struct e1000_context_desc *)&sc->tx_desc_base[curr_txd];
3840
3841 *txd_lower = E1000_TXD_CMD_DEXT | /* Extended descr type */
3842 E1000_TXD_DTYP_D | /* Data descr type */
3843 E1000_TXD_CMD_TSE; /* Do TSE on this packet */
3844
3845 /* IP and/or TCP header checksum calculation and insertion. */
3846 *txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
3847
3848 /*
3849 * Start offset for header checksum calculation.
3850 * End offset for header checksum calculation.
3851 * Offset of place put the checksum.
3852 */
3853 TXD->lower_setup.ip_fields.ipcss = hoff;
3854 TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
3855 TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
3856
3857 /*
3858 * Start offset for payload checksum calculation.
3859 * End offset for payload checksum calculation.
3860 * Offset of place to put the checksum.
3861 */
3862 TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
3863 TXD->upper_setup.tcp_fields.tucse = 0;
3864 TXD->upper_setup.tcp_fields.tucso =
3865 hoff + iphlen + offsetof(struct tcphdr, th_sum);
3866
3867 /*
3868 * Payload size per packet w/o any headers.
3869 * Length of all headers up to payload.
3870 */
3871 TXD->tcp_seg_setup.fields.mss = htole16(mss);
3872 TXD->tcp_seg_setup.fields.hdr_len = hlen;
3873 TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
3874 E1000_TXD_CMD_DEXT | /* Extended descr */
3875 E1000_TXD_CMD_TSE | /* TSE context */
3876 E1000_TXD_CMD_IP | /* Do IP csum */
3877 E1000_TXD_CMD_TCP | /* Do TCP checksum */
3878 (pktlen - hlen)); /* Total len */
3879
3880 /* Save the information for this TSO context */
3881 sc->csum_flags = CSUM_TSO;
3882 sc->csum_lhlen = hoff;
3883 sc->csum_iphlen = iphlen;
3884 sc->csum_thlen = thoff;
3885 sc->csum_mss = mss;
3886 sc->csum_pktlen = pktlen;
3887 sc->csum_txd_upper = *txd_upper;
3888 sc->csum_txd_lower = *txd_lower;
3889
3890 if (++curr_txd == sc->num_tx_desc)
3891 curr_txd = 0;
3892
3893 KKASSERT(sc->num_tx_desc_avail > 0);
3894 sc->num_tx_desc_avail--;
3895
3896 sc->next_avail_tx_desc = curr_txd;
3897 return 1;
3898}