016e60e2bcd24a0941df9336b8f7482a5f7ae0b6
[dragonfly.git] / sys / vm / vm_object.c
1 /*
2  * Copyright (c) 1991, 1993, 2013
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  *
60  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/proc.h>           /* for curproc, pageproc */
70 #include <sys/thread.h>
71 #include <sys/vnode.h>
72 #include <sys/vmmeter.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/refcount.h>
78
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_pager.h>
87 #include <vm/swap_pager.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_zone.h>
91
92 #include <vm/vm_page2.h>
93
94 #include <machine/specialreg.h>
95
96 #define EASY_SCAN_FACTOR        8
97
98 static void     vm_object_qcollapse(vm_object_t object,
99                                     vm_object_t backing_object);
100 static void     vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
101                                              int pagerflags);
102 static void     vm_object_lock_init(vm_object_t);
103
104
105 /*
106  *      Virtual memory objects maintain the actual data
107  *      associated with allocated virtual memory.  A given
108  *      page of memory exists within exactly one object.
109  *
110  *      An object is only deallocated when all "references"
111  *      are given up.  Only one "reference" to a given
112  *      region of an object should be writeable.
113  *
114  *      Associated with each object is a list of all resident
115  *      memory pages belonging to that object; this list is
116  *      maintained by the "vm_page" module, and locked by the object's
117  *      lock.
118  *
119  *      Each object also records a "pager" routine which is
120  *      used to retrieve (and store) pages to the proper backing
121  *      storage.  In addition, objects may be backed by other
122  *      objects from which they were virtual-copied.
123  *
124  *      The only items within the object structure which are
125  *      modified after time of creation are:
126  *              reference count         locked by object's lock
127  *              pager routine           locked by object's lock
128  *
129  */
130
131 struct vm_object kernel_object;
132
133 static long object_collapses;
134 static long object_bypasses;
135
136 struct vm_object_hash vm_object_hash[VMOBJ_HSIZE];
137
138 MALLOC_DEFINE(M_VM_OBJECT, "vm_object", "vm_object structures");
139
140 #if defined(DEBUG_LOCKS)
141
142 #define vm_object_vndeallocate(obj, vpp)        \
143                 debugvm_object_vndeallocate(obj, vpp, __FILE__, __LINE__)
144
145 /*
146  * Debug helper to track hold/drop/ref/deallocate calls.
147  */
148 static void
149 debugvm_object_add(vm_object_t obj, char *file, int line, int addrem)
150 {
151         int i;
152
153         i = atomic_fetchadd_int(&obj->debug_index, 1);
154         i = i & (VMOBJ_DEBUG_ARRAY_SIZE - 1);
155         ksnprintf(obj->debug_hold_thrs[i],
156                   sizeof(obj->debug_hold_thrs[i]),
157                   "%c%d:(%d):%s",
158                   (addrem == -1 ? '-' : (addrem == 1 ? '+' : '=')),
159                   (curthread->td_proc ? curthread->td_proc->p_pid : -1),
160                   obj->ref_count,
161                   curthread->td_comm);
162         obj->debug_hold_file[i] = file;
163         obj->debug_hold_line[i] = line;
164 #if 0
165         /* Uncomment for debugging obj refs/derefs in reproducable cases */
166         if (strcmp(curthread->td_comm, "sshd") == 0) {
167                 kprintf("%d %p refs=%d ar=%d file: %s/%d\n",
168                         (curthread->td_proc ? curthread->td_proc->p_pid : -1),
169                         obj, obj->ref_count, addrem, file, line);
170         }
171 #endif
172 }
173
174 #endif
175
176 /*
177  * Misc low level routines
178  */
179 static void
180 vm_object_lock_init(vm_object_t obj)
181 {
182 #if defined(DEBUG_LOCKS)
183         int i;
184
185         obj->debug_index = 0;
186         for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
187                 obj->debug_hold_thrs[i][0] = 0;
188                 obj->debug_hold_file[i] = NULL;
189                 obj->debug_hold_line[i] = 0;
190         }
191 #endif
192 }
193
194 void
195 vm_object_lock_swap(void)
196 {
197         lwkt_token_swap();
198 }
199
200 void
201 vm_object_lock(vm_object_t obj)
202 {
203         lwkt_gettoken(&obj->token);
204 }
205
206 /*
207  * Returns TRUE on sucesss
208  */
209 static int
210 vm_object_lock_try(vm_object_t obj)
211 {
212         return(lwkt_trytoken(&obj->token));
213 }
214
215 void
216 vm_object_lock_shared(vm_object_t obj)
217 {
218         lwkt_gettoken_shared(&obj->token);
219 }
220
221 void
222 vm_object_unlock(vm_object_t obj)
223 {
224         lwkt_reltoken(&obj->token);
225 }
226
227 void
228 vm_object_upgrade(vm_object_t obj)
229 {
230         lwkt_reltoken(&obj->token);
231         lwkt_gettoken(&obj->token);
232 }
233
234 void
235 vm_object_downgrade(vm_object_t obj)
236 {
237         lwkt_reltoken(&obj->token);
238         lwkt_gettoken_shared(&obj->token);
239 }
240
241 static __inline void
242 vm_object_assert_held(vm_object_t obj)
243 {
244         ASSERT_LWKT_TOKEN_HELD(&obj->token);
245 }
246
247 static __inline int
248 vm_quickcolor(void)
249 {
250         globaldata_t gd = mycpu;
251         int pg_color;
252
253         pg_color = (int)(intptr_t)gd->gd_curthread >> 10;
254         pg_color += gd->gd_quick_color;
255         gd->gd_quick_color += PQ_PRIME2;
256
257         return pg_color;
258 }
259
260 void
261 VMOBJDEBUG(vm_object_hold)(vm_object_t obj VMOBJDBARGS)
262 {
263         KKASSERT(obj != NULL);
264
265         /*
266          * Object must be held (object allocation is stable due to callers
267          * context, typically already holding the token on a parent object)
268          * prior to potentially blocking on the lock, otherwise the object
269          * can get ripped away from us.
270          */
271         refcount_acquire(&obj->hold_count);
272         vm_object_lock(obj);
273
274 #if defined(DEBUG_LOCKS)
275         debugvm_object_add(obj, file, line, 1);
276 #endif
277 }
278
279 int
280 VMOBJDEBUG(vm_object_hold_try)(vm_object_t obj VMOBJDBARGS)
281 {
282         KKASSERT(obj != NULL);
283
284         /*
285          * Object must be held (object allocation is stable due to callers
286          * context, typically already holding the token on a parent object)
287          * prior to potentially blocking on the lock, otherwise the object
288          * can get ripped away from us.
289          */
290         refcount_acquire(&obj->hold_count);
291         if (vm_object_lock_try(obj) == 0) {
292                 if (refcount_release(&obj->hold_count)) {
293                         if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
294                                 kfree(obj, M_VM_OBJECT);
295                 }
296                 return(0);
297         }
298
299 #if defined(DEBUG_LOCKS)
300         debugvm_object_add(obj, file, line, 1);
301 #endif
302         return(1);
303 }
304
305 void
306 VMOBJDEBUG(vm_object_hold_shared)(vm_object_t obj VMOBJDBARGS)
307 {
308         KKASSERT(obj != NULL);
309
310         /*
311          * Object must be held (object allocation is stable due to callers
312          * context, typically already holding the token on a parent object)
313          * prior to potentially blocking on the lock, otherwise the object
314          * can get ripped away from us.
315          */
316         refcount_acquire(&obj->hold_count);
317         vm_object_lock_shared(obj);
318
319 #if defined(DEBUG_LOCKS)
320         debugvm_object_add(obj, file, line, 1);
321 #endif
322 }
323
324 /*
325  * Drop the token and hold_count on the object.
326  *
327  * WARNING! Token might be shared.
328  */
329 void
330 VMOBJDEBUG(vm_object_drop)(vm_object_t obj VMOBJDBARGS)
331 {
332         if (obj == NULL)
333                 return;
334
335         /*
336          * No new holders should be possible once we drop hold_count 1->0 as
337          * there is no longer any way to reference the object.
338          */
339         KKASSERT(obj->hold_count > 0);
340         if (refcount_release(&obj->hold_count)) {
341 #if defined(DEBUG_LOCKS)
342                 debugvm_object_add(obj, file, line, -1);
343 #endif
344
345                 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
346                         vm_object_unlock(obj);
347                         kfree(obj, M_VM_OBJECT);
348                 } else {
349                         vm_object_unlock(obj);
350                 }
351         } else {
352 #if defined(DEBUG_LOCKS)
353                 debugvm_object_add(obj, file, line, -1);
354 #endif
355                 vm_object_unlock(obj);
356         }
357 }
358
359 /*
360  * Initialize a freshly allocated object, returning a held object.
361  *
362  * Used only by vm_object_allocate(), zinitna() and vm_object_init().
363  *
364  * No requirements.
365  */
366 void
367 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
368 {
369         struct vm_object_hash *hash;
370
371         RB_INIT(&object->rb_memq);
372         LIST_INIT(&object->shadow_head);
373         lwkt_token_init(&object->token, "vmobj");
374
375         object->type = type;
376         object->size = size;
377         object->ref_count = 1;
378         object->memattr = VM_MEMATTR_DEFAULT;
379         object->hold_count = 0;
380         object->flags = 0;
381         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
382                 vm_object_set_flag(object, OBJ_ONEMAPPING);
383         object->paging_in_progress = 0;
384         object->resident_page_count = 0;
385         object->shadow_count = 0;
386         /* cpu localization twist */
387         object->pg_color = vm_quickcolor();
388         object->handle = NULL;
389         object->backing_object = NULL;
390         object->backing_object_offset = (vm_ooffset_t)0;
391
392         atomic_add_int(&object->generation, 1);
393         object->swblock_count = 0;
394         RB_INIT(&object->swblock_root);
395         vm_object_lock_init(object);
396         pmap_object_init(object);
397
398         vm_object_hold(object);
399
400         hash = VMOBJ_HASH(object);
401         lwkt_gettoken(&hash->token);
402         TAILQ_INSERT_TAIL(&hash->list, object, object_list);
403         lwkt_reltoken(&hash->token);
404 }
405
406 /*
407  * Initialize a VM object.
408  */
409 void
410 vm_object_init(vm_object_t object, vm_pindex_t size)
411 {
412         _vm_object_allocate(OBJT_DEFAULT, size, object);
413         vm_object_drop(object);
414 }
415
416 /*
417  * Initialize the VM objects module.
418  *
419  * Called from the low level boot code only.  Note that this occurs before
420  * kmalloc is initialized so we cannot allocate any VM objects.
421  */
422 void
423 vm_object_init1(void)
424 {
425         int i;
426
427         for (i = 0; i < VMOBJ_HSIZE; ++i) {
428                 TAILQ_INIT(&vm_object_hash[i].list);
429                 lwkt_token_init(&vm_object_hash[i].token, "vmobjlst");
430         }
431
432         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
433                             &kernel_object);
434         vm_object_drop(&kernel_object);
435 }
436
437 void
438 vm_object_init2(void)
439 {
440         kmalloc_set_unlimited(M_VM_OBJECT);
441 }
442
443 /*
444  * Allocate and return a new object of the specified type and size.
445  *
446  * No requirements.
447  */
448 vm_object_t
449 vm_object_allocate(objtype_t type, vm_pindex_t size)
450 {
451         vm_object_t obj;
452
453         obj = kmalloc(sizeof(*obj), M_VM_OBJECT, M_INTWAIT|M_ZERO);
454         _vm_object_allocate(type, size, obj);
455         vm_object_drop(obj);
456
457         return (obj);
458 }
459
460 /*
461  * This version returns a held object, allowing further atomic initialization
462  * of the object.
463  */
464 vm_object_t
465 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
466 {
467         vm_object_t obj;
468
469         obj = kmalloc(sizeof(*obj), M_VM_OBJECT, M_INTWAIT|M_ZERO);
470         _vm_object_allocate(type, size, obj);
471
472         return (obj);
473 }
474
475 /*
476  * Add an additional reference to a vm_object.  The object must already be
477  * held.  The original non-lock version is no longer supported.  The object
478  * must NOT be chain locked by anyone at the time the reference is added.
479  *
480  * Referencing a chain-locked object can blow up the fairly sensitive
481  * ref_count and shadow_count tests in the deallocator.  Most callers
482  * will call vm_object_chain_wait() prior to calling
483  * vm_object_reference_locked() to avoid the case.
484  *
485  * The object must be held, but may be held shared if desired (hence why
486  * we use an atomic op).
487  */
488 void
489 VMOBJDEBUG(vm_object_reference_locked)(vm_object_t object VMOBJDBARGS)
490 {
491         KKASSERT(object != NULL);
492         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
493         KKASSERT((object->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) == 0);
494         atomic_add_int(&object->ref_count, 1);
495         if (object->type == OBJT_VNODE) {
496                 vref(object->handle);
497                 /* XXX what if the vnode is being destroyed? */
498         }
499 #if defined(DEBUG_LOCKS)
500         debugvm_object_add(object, file, line, 1);
501 #endif
502 }
503
504 /*
505  * This version is only allowed for vnode objects.
506  */
507 void
508 VMOBJDEBUG(vm_object_reference_quick)(vm_object_t object VMOBJDBARGS)
509 {
510         KKASSERT(object->type == OBJT_VNODE);
511         atomic_add_int(&object->ref_count, 1);
512         vref(object->handle);
513 #if defined(DEBUG_LOCKS)
514         debugvm_object_add(object, file, line, 1);
515 #endif
516 }
517
518 /*
519  * Object OBJ_CHAINLOCK lock handling.
520  *
521  * The caller can chain-lock backing objects recursively and then
522  * use vm_object_chain_release_all() to undo the whole chain.
523  *
524  * Chain locks are used to prevent collapses and are only applicable
525  * to OBJT_DEFAULT and OBJT_SWAP objects.  Chain locking operations
526  * on other object types are ignored.  This is also important because
527  * it allows e.g. the vnode underlying a memory mapping to take concurrent
528  * faults.
529  *
530  * The object must usually be held on entry, though intermediate
531  * objects need not be held on release.  The object must be held exclusively,
532  * NOT shared.  Note that the prefault path checks the shared state and
533  * avoids using the chain functions.
534  */
535 void
536 vm_object_chain_wait(vm_object_t object, int shared)
537 {
538         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
539         for (;;) {
540                 uint32_t chainlk = object->chainlk;
541
542                 cpu_ccfence();
543                 if (shared) {
544                         if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
545                                 tsleep_interlock(object, 0);
546                                 if (atomic_cmpset_int(&object->chainlk,
547                                                       chainlk,
548                                                       chainlk | CHAINLK_WAIT)) {
549                                         tsleep(object, PINTERLOCKED,
550                                                "objchns", 0);
551                                 }
552                                 /* retry */
553                         } else {
554                                 break;
555                         }
556                         /* retry */
557                 } else {
558                         if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
559                                 tsleep_interlock(object, 0);
560                                 if (atomic_cmpset_int(&object->chainlk,
561                                                       chainlk,
562                                                       chainlk | CHAINLK_WAIT))
563                                 {
564                                         tsleep(object, PINTERLOCKED,
565                                                "objchnx", 0);
566                                 }
567                                 /* retry */
568                         } else {
569                                 if (atomic_cmpset_int(&object->chainlk,
570                                                       chainlk,
571                                                       chainlk & ~CHAINLK_WAIT))
572                                 {
573                                         if (chainlk & CHAINLK_WAIT)
574                                                 wakeup(object);
575                                         break;
576                                 }
577                                 /* retry */
578                         }
579                 }
580                 /* retry */
581         }
582 }
583
584 void
585 vm_object_chain_acquire(vm_object_t object, int shared)
586 {
587         if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
588                 return;
589         if (vm_shared_fault == 0)
590                 shared = 0;
591
592         for (;;) {
593                 uint32_t chainlk = object->chainlk;
594
595                 cpu_ccfence();
596                 if (shared) {
597                         if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
598                                 tsleep_interlock(object, 0);
599                                 if (atomic_cmpset_int(&object->chainlk,
600                                                       chainlk,
601                                                       chainlk | CHAINLK_WAIT)) {
602                                         tsleep(object, PINTERLOCKED,
603                                                "objchns", 0);
604                                 }
605                                 /* retry */
606                         } else if (atomic_cmpset_int(&object->chainlk,
607                                               chainlk, chainlk + 1)) {
608                                 break;
609                         }
610                         /* retry */
611                 } else {
612                         if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
613                                 tsleep_interlock(object, 0);
614                                 if (atomic_cmpset_int(&object->chainlk,
615                                                       chainlk,
616                                                       chainlk |
617                                                        CHAINLK_WAIT |
618                                                        CHAINLK_EXCLREQ)) {
619                                         tsleep(object, PINTERLOCKED,
620                                                "objchnx", 0);
621                                 }
622                                 /* retry */
623                         } else {
624                                 if (atomic_cmpset_int(&object->chainlk,
625                                                       chainlk,
626                                                       (chainlk | CHAINLK_EXCL) &
627                                                       ~(CHAINLK_EXCLREQ |
628                                                         CHAINLK_WAIT))) {
629                                         if (chainlk & CHAINLK_WAIT)
630                                                 wakeup(object);
631                                         break;
632                                 }
633                                 /* retry */
634                         }
635                 }
636                 /* retry */
637         }
638 }
639
640 void
641 vm_object_chain_release(vm_object_t object)
642 {
643         /*ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));*/
644         if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
645                 return;
646         KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
647         for (;;) {
648                 uint32_t chainlk = object->chainlk;
649
650                 cpu_ccfence();
651                 if (chainlk & CHAINLK_MASK) {
652                         if ((chainlk & CHAINLK_MASK) == 1 &&
653                             atomic_cmpset_int(&object->chainlk,
654                                               chainlk,
655                                               (chainlk - 1) & ~CHAINLK_WAIT)) {
656                                 if (chainlk & CHAINLK_WAIT)
657                                         wakeup(object);
658                                 break;
659                         }
660                         if ((chainlk & CHAINLK_MASK) > 1 &&
661                             atomic_cmpset_int(&object->chainlk,
662                                               chainlk, chainlk - 1)) {
663                                 break;
664                         }
665                         /* retry */
666                 } else {
667                         KKASSERT(chainlk & CHAINLK_EXCL);
668                         if (atomic_cmpset_int(&object->chainlk,
669                                               chainlk,
670                                               chainlk & ~(CHAINLK_EXCL |
671                                                           CHAINLK_WAIT))) {
672                                 if (chainlk & CHAINLK_WAIT)
673                                         wakeup(object);
674                                 break;
675                         }
676                 }
677         }
678 }
679
680 /*
681  * Release the chain from first_object through and including stopobj.
682  * The caller is typically holding the first and last object locked
683  * (shared or exclusive) to prevent destruction races.
684  *
685  * We release stopobj first as an optimization as this object is most
686  * likely to be shared across multiple processes.
687  */
688 void
689 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
690 {
691         vm_object_t backing_object;
692         vm_object_t object;
693
694         vm_object_chain_release(stopobj);
695         object = first_object;
696
697         while (object != stopobj) {
698                 KKASSERT(object);
699                 backing_object = object->backing_object;
700                 vm_object_chain_release(object);
701                 object = backing_object;
702         }
703 }
704
705 /*
706  * Dereference an object and its underlying vnode.  The object may be
707  * held shared.  On return the object will remain held.
708  *
709  * This function may return a vnode in *vpp which the caller must release
710  * after the caller drops its own lock.  If vpp is NULL, we assume that
711  * the caller was holding an exclusive lock on the object and we vrele()
712  * the vp ourselves.
713  */
714 static void
715 VMOBJDEBUG(vm_object_vndeallocate)(vm_object_t object, struct vnode **vpp
716                                    VMOBJDBARGS)
717 {
718         struct vnode *vp = (struct vnode *) object->handle;
719
720         KASSERT(object->type == OBJT_VNODE,
721             ("vm_object_vndeallocate: not a vnode object"));
722         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
723         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
724 #ifdef INVARIANTS
725         if (object->ref_count == 0) {
726                 vprint("vm_object_vndeallocate", vp);
727                 panic("vm_object_vndeallocate: bad object reference count");
728         }
729 #endif
730         for (;;) {
731                 int count = object->ref_count;
732                 cpu_ccfence();
733                 if (count == 1) {
734                         vm_object_upgrade(object);
735                         if (atomic_cmpset_int(&object->ref_count, count, 0)) {
736                                 vclrflags(vp, VTEXT);
737                                 break;
738                         }
739                 } else {
740                         if (atomic_cmpset_int(&object->ref_count,
741                                               count, count - 1)) {
742                                 break;
743                         }
744                 }
745                 /* retry */
746         }
747 #if defined(DEBUG_LOCKS)
748         debugvm_object_add(object, file, line, -1);
749 #endif
750
751         /*
752          * vrele or return the vp to vrele.  We can only safely vrele(vp)
753          * if the object was locked exclusively.  But there are two races
754          * here.
755          *
756          * We had to upgrade the object above to safely clear VTEXT
757          * but the alternative path where the shared lock is retained
758          * can STILL race to 0 in other paths and cause our own vrele()
759          * to terminate the vnode.  We can't allow that if the VM object
760          * is still locked shared.
761          */
762         if (vpp)
763                 *vpp = vp;
764         else
765                 vrele(vp);
766 }
767
768 /*
769  * Release a reference to the specified object, gained either through a
770  * vm_object_allocate or a vm_object_reference call.  When all references
771  * are gone, storage associated with this object may be relinquished.
772  *
773  * The caller does not have to hold the object locked but must have control
774  * over the reference in question in order to guarantee that the object
775  * does not get ripped out from under us.
776  *
777  * XXX Currently all deallocations require an exclusive lock.
778  */
779 void
780 VMOBJDEBUG(vm_object_deallocate)(vm_object_t object VMOBJDBARGS)
781 {
782         struct vnode *vp;
783         int count;
784
785         if (object == NULL)
786                 return;
787
788         for (;;) {
789                 count = object->ref_count;
790                 cpu_ccfence();
791
792                 /*
793                  * If decrementing the count enters into special handling
794                  * territory (0, 1, or 2) we have to do it the hard way.
795                  * Fortunate though, objects with only a few refs like this
796                  * are not likely to be heavily contended anyway.
797                  *
798                  * For vnode objects we only care about 1->0 transitions.
799                  */
800                 if (count <= 3 || (object->type == OBJT_VNODE && count <= 1)) {
801 #if defined(DEBUG_LOCKS)
802                         debugvm_object_add(object, file, line, 0);
803 #endif
804                         vm_object_hold(object);
805                         vm_object_deallocate_locked(object);
806                         vm_object_drop(object);
807                         break;
808                 }
809
810                 /*
811                  * Try to decrement ref_count without acquiring a hold on
812                  * the object.  This is particularly important for the exec*()
813                  * and exit*() code paths because the program binary may
814                  * have a great deal of sharing and an exclusive lock will
815                  * crowbar performance in those circumstances.
816                  */
817                 if (object->type == OBJT_VNODE) {
818                         vp = (struct vnode *)object->handle;
819                         if (atomic_cmpset_int(&object->ref_count,
820                                               count, count - 1)) {
821 #if defined(DEBUG_LOCKS)
822                                 debugvm_object_add(object, file, line, -1);
823 #endif
824
825                                 vrele(vp);
826                                 break;
827                         }
828                         /* retry */
829                 } else {
830                         if (atomic_cmpset_int(&object->ref_count,
831                                               count, count - 1)) {
832 #if defined(DEBUG_LOCKS)
833                                 debugvm_object_add(object, file, line, -1);
834 #endif
835                                 break;
836                         }
837                         /* retry */
838                 }
839                 /* retry */
840         }
841 }
842
843 void
844 VMOBJDEBUG(vm_object_deallocate_locked)(vm_object_t object VMOBJDBARGS)
845 {
846         struct vm_object_dealloc_list *dlist = NULL;
847         struct vm_object_dealloc_list *dtmp;
848         vm_object_t temp;
849         int must_drop = 0;
850
851         /*
852          * We may chain deallocate object, but additional objects may
853          * collect on the dlist which also have to be deallocated.  We
854          * must avoid a recursion, vm_object chains can get deep.
855          */
856
857 again:
858         while (object != NULL) {
859                 /*
860                  * vnode case, caller either locked the object exclusively
861                  * or this is a recursion with must_drop != 0 and the vnode
862                  * object will be locked shared.
863                  *
864                  * If locked shared we have to drop the object before we can
865                  * call vrele() or risk a shared/exclusive livelock.
866                  */
867                 if (object->type == OBJT_VNODE) {
868                         ASSERT_LWKT_TOKEN_HELD(&object->token);
869                         if (must_drop) {
870                                 struct vnode *tmp_vp;
871
872                                 vm_object_vndeallocate(object, &tmp_vp);
873                                 vm_object_drop(object);
874                                 must_drop = 0;
875                                 object = NULL;
876                                 vrele(tmp_vp);
877                         } else {
878                                 vm_object_vndeallocate(object, NULL);
879                         }
880                         break;
881                 }
882                 ASSERT_LWKT_TOKEN_HELD_EXCL(&object->token);
883
884                 /*
885                  * Normal case (object is locked exclusively)
886                  */
887                 if (object->ref_count == 0) {
888                         panic("vm_object_deallocate: object deallocated "
889                               "too many times: %d", object->type);
890                 }
891                 if (object->ref_count > 2) {
892                         atomic_add_int(&object->ref_count, -1);
893 #if defined(DEBUG_LOCKS)
894                         debugvm_object_add(object, file, line, -1);
895 #endif
896                         break;
897                 }
898
899                 /*
900                  * Here on ref_count of one or two, which are special cases for
901                  * objects.
902                  *
903                  * Nominal ref_count > 1 case if the second ref is not from
904                  * a shadow.
905                  *
906                  * (ONEMAPPING only applies to DEFAULT AND SWAP objects)
907                  */
908                 if (object->ref_count == 2 && object->shadow_count == 0) {
909                         if (object->type == OBJT_DEFAULT ||
910                             object->type == OBJT_SWAP) {
911                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
912                         }
913                         atomic_add_int(&object->ref_count, -1);
914 #if defined(DEBUG_LOCKS)
915                         debugvm_object_add(object, file, line, -1);
916 #endif
917                         break;
918                 }
919
920                 /*
921                  * If the second ref is from a shadow we chain along it
922                  * upwards if object's handle is exhausted.
923                  *
924                  * We have to decrement object->ref_count before potentially
925                  * collapsing the first shadow object or the collapse code
926                  * will not be able to handle the degenerate case to remove
927                  * object.  However, if we do it too early the object can
928                  * get ripped out from under us.
929                  */
930                 if (object->ref_count == 2 && object->shadow_count == 1 &&
931                     object->handle == NULL && (object->type == OBJT_DEFAULT ||
932                                                object->type == OBJT_SWAP)) {
933                         temp = LIST_FIRST(&object->shadow_head);
934                         KKASSERT(temp != NULL);
935                         vm_object_hold(temp);
936
937                         /*
938                          * Wait for any paging to complete so the collapse
939                          * doesn't (or isn't likely to) qcollapse.  pip
940                          * waiting must occur before we acquire the
941                          * chainlock.
942                          */
943                         while (
944                                 temp->paging_in_progress ||
945                                 object->paging_in_progress
946                         ) {
947                                 vm_object_pip_wait(temp, "objde1");
948                                 vm_object_pip_wait(object, "objde2");
949                         }
950
951                         /*
952                          * If the parent is locked we have to give up, as
953                          * otherwise we would be acquiring locks in the
954                          * wrong order and potentially deadlock.
955                          */
956                         if (temp->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) {
957                                 vm_object_drop(temp);
958                                 goto skip;
959                         }
960                         vm_object_chain_acquire(temp, 0);
961
962                         /*
963                          * Recheck/retry after the hold and the paging
964                          * wait, both of which can block us.
965                          */
966                         if (object->ref_count != 2 ||
967                             object->shadow_count != 1 ||
968                             object->handle ||
969                             LIST_FIRST(&object->shadow_head) != temp ||
970                             (object->type != OBJT_DEFAULT &&
971                              object->type != OBJT_SWAP)) {
972                                 vm_object_chain_release(temp);
973                                 vm_object_drop(temp);
974                                 continue;
975                         }
976
977                         /*
978                          * We can safely drop object's ref_count now.
979                          */
980                         KKASSERT(object->ref_count == 2);
981                         atomic_add_int(&object->ref_count, -1);
982 #if defined(DEBUG_LOCKS)
983                         debugvm_object_add(object, file, line, -1);
984 #endif
985
986                         /*
987                          * If our single parent is not collapseable just
988                          * decrement ref_count (2->1) and stop.
989                          */
990                         if (temp->handle || (temp->type != OBJT_DEFAULT &&
991                                              temp->type != OBJT_SWAP)) {
992                                 vm_object_chain_release(temp);
993                                 vm_object_drop(temp);
994                                 break;
995                         }
996
997                         /*
998                          * At this point we have already dropped object's
999                          * ref_count so it is possible for a race to
1000                          * deallocate obj out from under us.  Any collapse
1001                          * will re-check the situation.  We must not block
1002                          * until we are able to collapse.
1003                          *
1004                          * Bump temp's ref_count to avoid an unwanted
1005                          * degenerate recursion (can't call
1006                          * vm_object_reference_locked() because it asserts
1007                          * that CHAINLOCK is not set).
1008                          */
1009                         atomic_add_int(&temp->ref_count, 1);
1010                         KKASSERT(temp->ref_count > 1);
1011
1012                         /*
1013                          * Collapse temp, then deallocate the extra ref
1014                          * formally.
1015                          */
1016                         vm_object_collapse(temp, &dlist);
1017                         vm_object_chain_release(temp);
1018                         if (must_drop) {
1019                                 vm_object_lock_swap();
1020                                 vm_object_drop(object);
1021                         }
1022                         object = temp;
1023                         must_drop = 1;
1024                         continue;
1025                 }
1026
1027                 /*
1028                  * Drop the ref and handle termination on the 1->0 transition.
1029                  * We may have blocked above so we have to recheck.
1030                  */
1031 skip:
1032                 KKASSERT(object->ref_count != 0);
1033                 if (object->ref_count >= 2) {
1034                         atomic_add_int(&object->ref_count, -1);
1035 #if defined(DEBUG_LOCKS)
1036                         debugvm_object_add(object, file, line, -1);
1037 #endif
1038                         break;
1039                 }
1040                 KKASSERT(object->ref_count == 1);
1041
1042                 /*
1043                  * 1->0 transition.  Chain through the backing_object.
1044                  * Maintain the ref until we've located the backing object,
1045                  * then re-check.
1046                  */
1047                 while ((temp = object->backing_object) != NULL) {
1048                         if (temp->type == OBJT_VNODE)
1049                                 vm_object_hold_shared(temp);
1050                         else
1051                                 vm_object_hold(temp);
1052                         if (temp == object->backing_object)
1053                                 break;
1054                         vm_object_drop(temp);
1055                 }
1056
1057                 /*
1058                  * 1->0 transition verified, retry if ref_count is no longer
1059                  * 1.  Otherwise disconnect the backing_object (temp) and
1060                  * clean up.
1061                  */
1062                 if (object->ref_count != 1) {
1063                         vm_object_drop(temp);
1064                         continue;
1065                 }
1066
1067                 /*
1068                  * It shouldn't be possible for the object to be chain locked
1069                  * if we're removing the last ref on it.
1070                  *
1071                  * Removing object from temp's shadow list requires dropping
1072                  * temp, which we will do on loop.
1073                  *
1074                  * NOTE! vnodes do not use the shadow list, but still have
1075                  *       the backing_object reference.
1076                  */
1077                 KKASSERT((object->chainlk & (CHAINLK_EXCL|CHAINLK_MASK)) == 0);
1078
1079                 if (temp) {
1080                         if (object->flags & OBJ_ONSHADOW) {
1081                                 LIST_REMOVE(object, shadow_list);
1082                                 temp->shadow_count--;
1083                                 atomic_add_int(&temp->generation, 1);
1084                                 vm_object_clear_flag(object, OBJ_ONSHADOW);
1085                         }
1086                         object->backing_object = NULL;
1087                 }
1088
1089                 atomic_add_int(&object->ref_count, -1);
1090                 if ((object->flags & OBJ_DEAD) == 0)
1091                         vm_object_terminate(object);
1092                 if (must_drop && temp)
1093                         vm_object_lock_swap();
1094                 if (must_drop)
1095                         vm_object_drop(object);
1096                 object = temp;
1097                 must_drop = 1;
1098         }
1099
1100         if (must_drop && object)
1101                 vm_object_drop(object);
1102
1103         /*
1104          * Additional tail recursion on dlist.  Avoid a recursion.  Objects
1105          * on the dlist have a hold count but are not locked.
1106          */
1107         if ((dtmp = dlist) != NULL) {
1108                 dlist = dtmp->next;
1109                 object = dtmp->object;
1110                 kfree(dtmp, M_TEMP);
1111
1112                 vm_object_lock(object); /* already held, add lock */
1113                 must_drop = 1;          /* and we're responsible for it */
1114                 goto again;
1115         }
1116 }
1117
1118 /*
1119  * Destroy the specified object, freeing up related resources.
1120  *
1121  * The object must have zero references.
1122  *
1123  * The object must held.  The caller is responsible for dropping the object
1124  * after terminate returns.  Terminate does NOT drop the object.
1125  */
1126 static int vm_object_terminate_callback(vm_page_t p, void *data);
1127
1128 void
1129 vm_object_terminate(vm_object_t object)
1130 {
1131         struct rb_vm_page_scan_info info;
1132         struct vm_object_hash *hash;
1133
1134         /*
1135          * Make sure no one uses us.  Once we set OBJ_DEAD we should be
1136          * able to safely block.
1137          */
1138         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1139         KKASSERT((object->flags & OBJ_DEAD) == 0);
1140         vm_object_set_flag(object, OBJ_DEAD);
1141
1142         /*
1143          * Wait for the pageout daemon to be done with the object
1144          */
1145         vm_object_pip_wait(object, "objtrm1");
1146
1147         KASSERT(!object->paging_in_progress,
1148                 ("vm_object_terminate: pageout in progress"));
1149
1150         /*
1151          * Clean and free the pages, as appropriate. All references to the
1152          * object are gone, so we don't need to lock it.
1153          */
1154         if (object->type == OBJT_VNODE) {
1155                 struct vnode *vp;
1156
1157                 /*
1158                  * Clean pages and flush buffers.
1159                  *
1160                  * NOTE!  TMPFS buffer flushes do not typically flush the
1161                  *        actual page to swap as this would be highly
1162                  *        inefficient, and normal filesystems usually wrap
1163                  *        page flushes with buffer cache buffers.
1164                  *
1165                  *        To deal with this we have to call vinvalbuf() both
1166                  *        before and after the vm_object_page_clean().
1167                  */
1168                 vp = (struct vnode *) object->handle;
1169                 vinvalbuf(vp, V_SAVE, 0, 0);
1170                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
1171                 vinvalbuf(vp, V_SAVE, 0, 0);
1172         }
1173
1174         /*
1175          * Wait for any I/O to complete, after which there had better not
1176          * be any references left on the object.
1177          */
1178         vm_object_pip_wait(object, "objtrm2");
1179
1180         if (object->ref_count != 0) {
1181                 panic("vm_object_terminate: object with references, "
1182                       "ref_count=%d", object->ref_count);
1183         }
1184
1185         /*
1186          * Cleanup any shared pmaps associated with this object.
1187          */
1188         pmap_object_free(object);
1189
1190         /*
1191          * Now free any remaining pages. For internal objects, this also
1192          * removes them from paging queues. Don't free wired pages, just
1193          * remove them from the object. 
1194          */
1195         info.count = 0;
1196         info.object = object;
1197         do {
1198                 info.error = 0;
1199                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1200                                         vm_object_terminate_callback, &info);
1201         } while (info.error);
1202
1203         /*
1204          * Let the pager know object is dead.
1205          */
1206         vm_pager_deallocate(object);
1207
1208         /*
1209          * Wait for the object hold count to hit 1, clean out pages as
1210          * we go.  vmobj_token interlocks any race conditions that might
1211          * pick the object up from the vm_object_list after we have cleared
1212          * rb_memq.
1213          */
1214         for (;;) {
1215                 if (RB_ROOT(&object->rb_memq) == NULL)
1216                         break;
1217                 kprintf("vm_object_terminate: Warning, object %p "
1218                         "still has %ld pages\n",
1219                         object, object->resident_page_count);
1220                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1221                                         vm_object_terminate_callback, &info);
1222         }
1223
1224         /*
1225          * There had better not be any pages left
1226          */
1227         KKASSERT(object->resident_page_count == 0);
1228
1229         /*
1230          * Remove the object from the global object list.
1231          */
1232         hash = VMOBJ_HASH(object);
1233         lwkt_gettoken(&hash->token);
1234         TAILQ_REMOVE(&hash->list, object, object_list);
1235         lwkt_reltoken(&hash->token);
1236
1237         if (object->ref_count != 0) {
1238                 panic("vm_object_terminate2: object with references, "
1239                       "ref_count=%d", object->ref_count);
1240         }
1241
1242         /*
1243          * NOTE: The object hold_count is at least 1, so we cannot kfree()
1244          *       the object here.  See vm_object_drop().
1245          */
1246 }
1247
1248 /*
1249  * The caller must hold the object.
1250  */
1251 static int
1252 vm_object_terminate_callback(vm_page_t p, void *data)
1253 {
1254         struct rb_vm_page_scan_info *info = data;
1255         vm_object_t object;
1256
1257         object = p->object;
1258         KKASSERT(object == info->object);
1259         if (vm_page_busy_try(p, TRUE)) {
1260                 vm_page_sleep_busy(p, TRUE, "vmotrm");
1261                 info->error = 1;
1262                 return 0;
1263         }
1264         if (object != p->object) {
1265                 /* XXX remove once we determine it can't happen */
1266                 kprintf("vm_object_terminate: Warning: Encountered "
1267                         "busied page %p on queue %d\n", p, p->queue);
1268                 vm_page_wakeup(p);
1269                 info->error = 1;
1270         } else if (p->wire_count == 0) {
1271                 /*
1272                  * NOTE: p->dirty and PG_NEED_COMMIT are ignored.
1273                  */
1274                 vm_page_free(p);
1275                 mycpu->gd_cnt.v_pfree++;
1276         } else {
1277                 if (p->queue != PQ_NONE)
1278                         kprintf("vm_object_terminate: Warning: Encountered "
1279                                 "wired page %p on queue %d\n", p, p->queue);
1280                 vm_page_remove(p);
1281                 vm_page_wakeup(p);
1282         }
1283
1284         /*
1285          * Must be at end to avoid SMP races, caller holds object token
1286          */
1287         if ((++info->count & 63) == 0)
1288                 lwkt_user_yield();
1289         return(0);
1290 }
1291
1292 /*
1293  * Clean all dirty pages in the specified range of object.  Leaves page
1294  * on whatever queue it is currently on.   If NOSYNC is set then do not
1295  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
1296  * leaving the object dirty.
1297  *
1298  * When stuffing pages asynchronously, allow clustering.  XXX we need a
1299  * synchronous clustering mode implementation.
1300  *
1301  * Odd semantics: if start == end, we clean everything.
1302  *
1303  * The object must be locked? XXX
1304  */
1305 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
1306 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
1307
1308 void
1309 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1310                      int flags)
1311 {
1312         struct rb_vm_page_scan_info info;
1313         struct vnode *vp;
1314         int wholescan;
1315         int pagerflags;
1316         int generation;
1317
1318         vm_object_hold(object);
1319         if (object->type != OBJT_VNODE ||
1320             (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
1321                 vm_object_drop(object);
1322                 return;
1323         }
1324
1325         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? 
1326                         VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1327         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1328
1329         vp = object->handle;
1330
1331         /*
1332          * Interlock other major object operations.  This allows us to 
1333          * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1334          */
1335         vm_object_set_flag(object, OBJ_CLEANING);
1336
1337         /*
1338          * Handle 'entire object' case
1339          */
1340         info.start_pindex = start;
1341         if (end == 0) {
1342                 info.end_pindex = object->size - 1;
1343         } else {
1344                 info.end_pindex = end - 1;
1345         }
1346         wholescan = (start == 0 && info.end_pindex == object->size - 1);
1347         info.limit = flags;
1348         info.pagerflags = pagerflags;
1349         info.object = object;
1350
1351         /*
1352          * If cleaning the entire object do a pass to mark the pages read-only.
1353          * If everything worked out ok, clear OBJ_WRITEABLE and
1354          * OBJ_MIGHTBEDIRTY.
1355          */
1356         if (wholescan) {
1357                 info.error = 0;
1358                 info.count = 0;
1359                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1360                                         vm_object_page_clean_pass1, &info);
1361                 if (info.error == 0) {
1362                         vm_object_clear_flag(object,
1363                                              OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1364                         if (object->type == OBJT_VNODE &&
1365                             (vp = (struct vnode *)object->handle) != NULL) {
1366                                 /*
1367                                  * Use new-style interface to clear VISDIRTY
1368                                  * because the vnode is not necessarily removed
1369                                  * from the syncer list(s) as often as it was
1370                                  * under the old interface, which can leave
1371                                  * the vnode on the syncer list after reclaim.
1372                                  */
1373                                 vclrobjdirty(vp);
1374                         }
1375                 }
1376         }
1377
1378         /*
1379          * Do a pass to clean all the dirty pages we find.
1380          */
1381         do {
1382                 info.error = 0;
1383                 info.count = 0;
1384                 generation = object->generation;
1385                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1386                                         vm_object_page_clean_pass2, &info);
1387         } while (info.error || generation != object->generation);
1388
1389         vm_object_clear_flag(object, OBJ_CLEANING);
1390         vm_object_drop(object);
1391 }
1392
1393 /*
1394  * The caller must hold the object.
1395  */
1396 static 
1397 int
1398 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1399 {
1400         struct rb_vm_page_scan_info *info = data;
1401
1402         KKASSERT(p->object == info->object);
1403
1404         vm_page_flag_set(p, PG_CLEANCHK);
1405         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1406                 info->error = 1;
1407         } else if (vm_page_busy_try(p, FALSE)) {
1408                 info->error = 1;
1409         } else {
1410                 KKASSERT(p->object == info->object);
1411                 vm_page_protect(p, VM_PROT_READ);
1412                 vm_page_wakeup(p);
1413         }
1414
1415         /*
1416          * Must be at end to avoid SMP races, caller holds object token
1417          */
1418         if ((++info->count & 63) == 0)
1419                 lwkt_user_yield();
1420         return(0);
1421 }
1422
1423 /*
1424  * The caller must hold the object
1425  */
1426 static 
1427 int
1428 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1429 {
1430         struct rb_vm_page_scan_info *info = data;
1431         int generation;
1432
1433         KKASSERT(p->object == info->object);
1434
1435         /*
1436          * Do not mess with pages that were inserted after we started
1437          * the cleaning pass.
1438          */
1439         if ((p->flags & PG_CLEANCHK) == 0)
1440                 goto done;
1441
1442         generation = info->object->generation;
1443
1444         if (vm_page_busy_try(p, TRUE)) {
1445                 vm_page_sleep_busy(p, TRUE, "vpcwai");
1446                 info->error = 1;
1447                 goto done;
1448         }
1449
1450         KKASSERT(p->object == info->object &&
1451                  info->object->generation == generation);
1452
1453         /*
1454          * Before wasting time traversing the pmaps, check for trivial
1455          * cases where the page cannot be dirty.
1456          */
1457         if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1458                 KKASSERT((p->dirty & p->valid) == 0 &&
1459                          (p->flags & PG_NEED_COMMIT) == 0);
1460                 vm_page_wakeup(p);
1461                 goto done;
1462         }
1463
1464         /*
1465          * Check whether the page is dirty or not.  The page has been set
1466          * to be read-only so the check will not race a user dirtying the
1467          * page.
1468          */
1469         vm_page_test_dirty(p);
1470         if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) {
1471                 vm_page_flag_clear(p, PG_CLEANCHK);
1472                 vm_page_wakeup(p);
1473                 goto done;
1474         }
1475
1476         /*
1477          * If we have been asked to skip nosync pages and this is a
1478          * nosync page, skip it.  Note that the object flags were
1479          * not cleared in this case (because pass1 will have returned an
1480          * error), so we do not have to set them.
1481          */
1482         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1483                 vm_page_flag_clear(p, PG_CLEANCHK);
1484                 vm_page_wakeup(p);
1485                 goto done;
1486         }
1487
1488         /*
1489          * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
1490          * the pages that get successfully flushed.  Set info->error if
1491          * we raced an object modification.
1492          */
1493         vm_object_page_collect_flush(info->object, p, info->pagerflags);
1494         /* vm_wait_nominal(); this can deadlock the system in syncer/pageout */
1495
1496         /*
1497          * Must be at end to avoid SMP races, caller holds object token
1498          */
1499 done:
1500         if ((++info->count & 63) == 0)
1501                 lwkt_user_yield();
1502         return(0);
1503 }
1504
1505 /*
1506  * Collect the specified page and nearby pages and flush them out.
1507  * The number of pages flushed is returned.  The passed page is busied
1508  * by the caller and we are responsible for its disposition.
1509  *
1510  * The caller must hold the object.
1511  */
1512 static void
1513 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1514 {
1515         int error;
1516         int is;
1517         int ib;
1518         int i;
1519         int page_base;
1520         vm_pindex_t pi;
1521         vm_page_t ma[BLIST_MAX_ALLOC];
1522
1523         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1524
1525         pi = p->pindex;
1526         page_base = pi % BLIST_MAX_ALLOC;
1527         ma[page_base] = p;
1528         ib = page_base - 1;
1529         is = page_base + 1;
1530
1531         while (ib >= 0) {
1532                 vm_page_t tp;
1533
1534                 tp = vm_page_lookup_busy_try(object, pi - page_base + ib,
1535                                              TRUE, &error);
1536                 if (error)
1537                         break;
1538                 if (tp == NULL)
1539                         break;
1540                 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1541                     (tp->flags & PG_CLEANCHK) == 0) {
1542                         vm_page_wakeup(tp);
1543                         break;
1544                 }
1545                 if ((tp->queue - tp->pc) == PQ_CACHE) {
1546                         vm_page_flag_clear(tp, PG_CLEANCHK);
1547                         vm_page_wakeup(tp);
1548                         break;
1549                 }
1550                 vm_page_test_dirty(tp);
1551                 if ((tp->dirty & tp->valid) == 0 &&
1552                     (tp->flags & PG_NEED_COMMIT) == 0) {
1553                         vm_page_flag_clear(tp, PG_CLEANCHK);
1554                         vm_page_wakeup(tp);
1555                         break;
1556                 }
1557                 ma[ib] = tp;
1558                 --ib;
1559         }
1560         ++ib;   /* fixup */
1561
1562         while (is < BLIST_MAX_ALLOC &&
1563                pi - page_base + is < object->size) {
1564                 vm_page_t tp;
1565
1566                 tp = vm_page_lookup_busy_try(object, pi - page_base + is,
1567                                              TRUE, &error);
1568                 if (error)
1569                         break;
1570                 if (tp == NULL)
1571                         break;
1572                 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1573                     (tp->flags & PG_CLEANCHK) == 0) {
1574                         vm_page_wakeup(tp);
1575                         break;
1576                 }
1577                 if ((tp->queue - tp->pc) == PQ_CACHE) {
1578                         vm_page_flag_clear(tp, PG_CLEANCHK);
1579                         vm_page_wakeup(tp);
1580                         break;
1581                 }
1582                 vm_page_test_dirty(tp);
1583                 if ((tp->dirty & tp->valid) == 0 &&
1584                     (tp->flags & PG_NEED_COMMIT) == 0) {
1585                         vm_page_flag_clear(tp, PG_CLEANCHK);
1586                         vm_page_wakeup(tp);
1587                         break;
1588                 }
1589                 ma[is] = tp;
1590                 ++is;
1591         }
1592
1593         /*
1594          * All pages in the ma[] array are busied now
1595          */
1596         for (i = ib; i < is; ++i) {
1597                 vm_page_flag_clear(ma[i], PG_CLEANCHK);
1598                 vm_page_hold(ma[i]);    /* XXX need this any more? */
1599         }
1600         vm_pageout_flush(&ma[ib], is - ib, pagerflags);
1601         for (i = ib; i < is; ++i)       /* XXX need this any more? */
1602                 vm_page_unhold(ma[i]);
1603 }
1604
1605 /*
1606  * Same as vm_object_pmap_copy, except range checking really
1607  * works, and is meant for small sections of an object.
1608  *
1609  * This code protects resident pages by making them read-only
1610  * and is typically called on a fork or split when a page
1611  * is converted to copy-on-write.  
1612  *
1613  * NOTE: If the page is already at VM_PROT_NONE, calling
1614  * vm_page_protect will have no effect.
1615  */
1616 void
1617 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1618 {
1619         vm_pindex_t idx;
1620         vm_page_t p;
1621
1622         if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1623                 return;
1624
1625         vm_object_hold(object);
1626         for (idx = start; idx < end; idx++) {
1627                 p = vm_page_lookup(object, idx);
1628                 if (p == NULL)
1629                         continue;
1630                 vm_page_protect(p, VM_PROT_READ);
1631         }
1632         vm_object_drop(object);
1633 }
1634
1635 /*
1636  * Removes all physical pages in the specified object range from all
1637  * physical maps.
1638  *
1639  * The object must *not* be locked.
1640  */
1641
1642 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1643
1644 void
1645 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1646 {
1647         struct rb_vm_page_scan_info info;
1648
1649         if (object == NULL)
1650                 return;
1651         if (start == end)
1652                 return;
1653         info.start_pindex = start;
1654         info.end_pindex = end - 1;
1655         info.count = 0;
1656         info.object = object;
1657
1658         vm_object_hold(object);
1659         do {
1660                 info.error = 0;
1661                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1662                                         vm_object_pmap_remove_callback, &info);
1663         } while (info.error);
1664         if (start == 0 && end == object->size)
1665                 vm_object_clear_flag(object, OBJ_WRITEABLE);
1666         vm_object_drop(object);
1667 }
1668
1669 /*
1670  * The caller must hold the object
1671  */
1672 static int
1673 vm_object_pmap_remove_callback(vm_page_t p, void *data)
1674 {
1675         struct rb_vm_page_scan_info *info = data;
1676
1677         if (info->object != p->object ||
1678             p->pindex < info->start_pindex ||
1679             p->pindex > info->end_pindex) {
1680                 kprintf("vm_object_pmap_remove_callback: obj/pg race %p/%p\n",
1681                         info->object, p);
1682                 info->error = 1;
1683                 return(0);
1684         }
1685
1686         vm_page_protect(p, VM_PROT_NONE);
1687
1688         /*
1689          * Must be at end to avoid SMP races, caller holds object token
1690          */
1691         if ((++info->count & 63) == 0)
1692                 lwkt_user_yield();
1693         return(0);
1694 }
1695
1696 /*
1697  * Implements the madvise function at the object/page level.
1698  *
1699  * MADV_WILLNEED        (any object)
1700  *
1701  *      Activate the specified pages if they are resident.
1702  *
1703  * MADV_DONTNEED        (any object)
1704  *
1705  *      Deactivate the specified pages if they are resident.
1706  *
1707  * MADV_FREE    (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1708  *
1709  *      Deactivate and clean the specified pages if they are
1710  *      resident.  This permits the process to reuse the pages
1711  *      without faulting or the kernel to reclaim the pages
1712  *      without I/O.
1713  *
1714  * No requirements.
1715  */
1716 void
1717 vm_object_madvise(vm_object_t object, vm_pindex_t pindex,
1718                   vm_pindex_t count, int advise)
1719 {
1720         vm_pindex_t end, tpindex;
1721         vm_object_t tobject;
1722         vm_object_t xobj;
1723         vm_page_t m;
1724         int error;
1725
1726         if (object == NULL)
1727                 return;
1728
1729         end = pindex + count;
1730
1731         vm_object_hold(object);
1732         tobject = object;
1733
1734         /*
1735          * Locate and adjust resident pages
1736          */
1737         for (; pindex < end; pindex += 1) {
1738 relookup:
1739                 if (tobject != object)
1740                         vm_object_drop(tobject);
1741                 tobject = object;
1742                 tpindex = pindex;
1743 shadowlookup:
1744                 /*
1745                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1746                  * and those pages must be OBJ_ONEMAPPING.
1747                  */
1748                 if (advise == MADV_FREE) {
1749                         if ((tobject->type != OBJT_DEFAULT &&
1750                              tobject->type != OBJT_SWAP) ||
1751                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1752                                 continue;
1753                         }
1754                 }
1755
1756                 m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1757
1758                 if (error) {
1759                         vm_page_sleep_busy(m, TRUE, "madvpo");
1760                         goto relookup;
1761                 }
1762                 if (m == NULL) {
1763                         /*
1764                          * There may be swap even if there is no backing page
1765                          */
1766                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1767                                 swap_pager_freespace(tobject, tpindex, 1);
1768
1769                         /*
1770                          * next object
1771                          */
1772                         while ((xobj = tobject->backing_object) != NULL) {
1773                                 KKASSERT(xobj != object);
1774                                 vm_object_hold(xobj);
1775                                 if (xobj == tobject->backing_object)
1776                                         break;
1777                                 vm_object_drop(xobj);
1778                         }
1779                         if (xobj == NULL)
1780                                 continue;
1781                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1782                         if (tobject != object) {
1783                                 vm_object_lock_swap();
1784                                 vm_object_drop(tobject);
1785                         }
1786                         tobject = xobj;
1787                         goto shadowlookup;
1788                 }
1789
1790                 /*
1791                  * If the page is not in a normal active state, we skip it.
1792                  * If the page is not managed there are no page queues to
1793                  * mess with.  Things can break if we mess with pages in
1794                  * any of the below states.
1795                  */
1796                 if (m->wire_count ||
1797                     (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1798                     m->valid != VM_PAGE_BITS_ALL
1799                 ) {
1800                         vm_page_wakeup(m);
1801                         continue;
1802                 }
1803
1804                 /*
1805                  * Theoretically once a page is known not to be busy, an
1806                  * interrupt cannot come along and rip it out from under us.
1807                  */
1808
1809                 if (advise == MADV_WILLNEED) {
1810                         vm_page_activate(m);
1811                 } else if (advise == MADV_DONTNEED) {
1812                         vm_page_dontneed(m);
1813                 } else if (advise == MADV_FREE) {
1814                         /*
1815                          * Mark the page clean.  This will allow the page
1816                          * to be freed up by the system.  However, such pages
1817                          * are often reused quickly by malloc()/free()
1818                          * so we do not do anything that would cause
1819                          * a page fault if we can help it.
1820                          *
1821                          * Specifically, we do not try to actually free
1822                          * the page now nor do we try to put it in the
1823                          * cache (which would cause a page fault on reuse).
1824                          *
1825                          * But we do make the page is freeable as we
1826                          * can without actually taking the step of unmapping
1827                          * it.
1828                          */
1829                         pmap_clear_modify(m);
1830                         m->dirty = 0;
1831                         m->act_count = 0;
1832                         vm_page_dontneed(m);
1833                         if (tobject->type == OBJT_SWAP)
1834                                 swap_pager_freespace(tobject, tpindex, 1);
1835                 }
1836                 vm_page_wakeup(m);
1837         }       
1838         if (tobject != object)
1839                 vm_object_drop(tobject);
1840         vm_object_drop(object);
1841 }
1842
1843 /*
1844  * Create a new object which is backed by the specified existing object
1845  * range.  Replace the pointer and offset that was pointing at the existing
1846  * object with the pointer/offset for the new object.
1847  *
1848  * If addref is non-zero the returned object is given an additional reference.
1849  * This mechanic exists to avoid the situation where refs might be 1 and
1850  * race against a collapse when the caller intends to bump it.  So the
1851  * caller cannot add the ref after the fact.  Used when the caller is
1852  * duplicating a vm_map_entry.
1853  *
1854  * No other requirements.
1855  */
1856 void
1857 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1858                  int addref)
1859 {
1860         vm_object_t source;
1861         vm_object_t result;
1862         int useshadowlist;
1863
1864         source = *objectp;
1865
1866         /*
1867          * Don't create the new object if the old object isn't shared.
1868          * We have to chain wait before adding the reference to avoid
1869          * racing a collapse or deallocation.
1870          *
1871          * Clear OBJ_ONEMAPPING flag when shadowing.
1872          *
1873          * The caller owns a ref on source via *objectp which we are going
1874          * to replace.  This ref is inherited by the backing_object assignment.
1875          * from nobject and does not need to be incremented here.
1876          *
1877          * However, we add a temporary extra reference to the original source
1878          * prior to holding nobject in case we block, to avoid races where
1879          * someone else might believe that the source can be collapsed.
1880          */
1881         useshadowlist = 0;
1882         if (source) {
1883                 if (source->type != OBJT_VNODE) {
1884                         useshadowlist = 1;
1885                         vm_object_hold(source);
1886                         vm_object_chain_wait(source, 0);
1887                         if (source->ref_count == 1 &&
1888                             source->handle == NULL &&
1889                             (source->type == OBJT_DEFAULT ||
1890                              source->type == OBJT_SWAP)) {
1891                                 if (addref) {
1892                                         vm_object_reference_locked(source);
1893                                         vm_object_clear_flag(source,
1894                                                              OBJ_ONEMAPPING);
1895                                 }
1896                                 vm_object_drop(source);
1897                                 return;
1898                         }
1899                         vm_object_reference_locked(source);
1900                         vm_object_clear_flag(source, OBJ_ONEMAPPING);
1901                 } else {
1902                         vm_object_reference_quick(source);
1903                         vm_object_clear_flag(source, OBJ_ONEMAPPING);
1904                 }
1905         }
1906
1907         /*
1908          * Allocate a new object with the given length.  The new object
1909          * is returned referenced but we may have to add another one.
1910          * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1911          * (typically because the caller is about to clone a vm_map_entry).
1912          *
1913          * The source object currently has an extra reference to prevent
1914          * collapses into it while we mess with its shadow list, which
1915          * we will remove later in this routine.
1916          *
1917          * The target object may require a second reference if asked for one
1918          * by the caller.
1919          */
1920         result = vm_object_allocate(OBJT_DEFAULT, length);
1921         if (result == NULL)
1922                 panic("vm_object_shadow: no object for shadowing");
1923         vm_object_hold(result);
1924         if (addref) {
1925                 vm_object_reference_locked(result);
1926                 vm_object_clear_flag(result, OBJ_ONEMAPPING);
1927         }
1928
1929         /*
1930          * The new object shadows the source object.  Chain wait before
1931          * adjusting shadow_count or the shadow list to avoid races.
1932          *
1933          * Try to optimize the result object's page color when shadowing
1934          * in order to maintain page coloring consistency in the combined 
1935          * shadowed object.
1936          *
1937          * The backing_object reference to source requires adding a ref to
1938          * source.  We simply inherit the ref from the original *objectp
1939          * (which we are replacing) so no additional refs need to be added.
1940          * (we must still clean up the extra ref we had to prevent collapse
1941          * races).
1942          *
1943          * SHADOWING IS NOT APPLICABLE TO OBJT_VNODE OBJECTS
1944          */
1945         KKASSERT(result->backing_object == NULL);
1946         result->backing_object = source;
1947         if (source) {
1948                 if (useshadowlist) {
1949                         vm_object_chain_wait(source, 0);
1950                         LIST_INSERT_HEAD(&source->shadow_head,
1951                                          result, shadow_list);
1952                         source->shadow_count++;
1953                         atomic_add_int(&source->generation, 1);
1954                         vm_object_set_flag(result, OBJ_ONSHADOW);
1955                 }
1956                 /* cpu localization twist */
1957                 result->pg_color = vm_quickcolor();
1958         }
1959
1960         /*
1961          * Adjust the return storage.  Drop the ref on source before
1962          * returning.
1963          */
1964         result->backing_object_offset = *offset;
1965         vm_object_drop(result);
1966         *offset = 0;
1967         if (source) {
1968                 if (useshadowlist) {
1969                         vm_object_deallocate_locked(source);
1970                         vm_object_drop(source);
1971                 } else {
1972                         vm_object_deallocate(source);
1973                 }
1974         }
1975
1976         /*
1977          * Return the new things
1978          */
1979         *objectp = result;
1980 }
1981
1982 #define OBSC_TEST_ALL_SHADOWED  0x0001
1983 #define OBSC_COLLAPSE_NOWAIT    0x0002
1984 #define OBSC_COLLAPSE_WAIT      0x0004
1985
1986 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1987
1988 /*
1989  * The caller must hold the object.
1990  */
1991 static __inline int
1992 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
1993 {
1994         struct rb_vm_page_scan_info info;
1995         struct vm_object_hash *hash;
1996
1997         vm_object_assert_held(object);
1998         vm_object_assert_held(backing_object);
1999
2000         KKASSERT(backing_object == object->backing_object);
2001         info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
2002
2003         /*
2004          * Initial conditions
2005          */
2006         if (op & OBSC_TEST_ALL_SHADOWED) {
2007                 /*
2008                  * We do not want to have to test for the existence of
2009                  * swap pages in the backing object.  XXX but with the
2010                  * new swapper this would be pretty easy to do.
2011                  *
2012                  * XXX what about anonymous MAP_SHARED memory that hasn't
2013                  * been ZFOD faulted yet?  If we do not test for this, the
2014                  * shadow test may succeed! XXX
2015                  */
2016                 if (backing_object->type != OBJT_DEFAULT)
2017                         return(0);
2018         }
2019         if (op & OBSC_COLLAPSE_WAIT) {
2020                 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
2021                 vm_object_set_flag(backing_object, OBJ_DEAD);
2022
2023                 hash = VMOBJ_HASH(backing_object);
2024                 lwkt_gettoken(&hash->token);
2025                 TAILQ_REMOVE(&hash->list, backing_object, object_list);
2026                 lwkt_reltoken(&hash->token);
2027         }
2028
2029         /*
2030          * Our scan.   We have to retry if a negative error code is returned,
2031          * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
2032          * the scan had to be stopped because the parent does not completely
2033          * shadow the child.
2034          */
2035         info.object = object;
2036         info.backing_object = backing_object;
2037         info.limit = op;
2038         info.count = 0;
2039         do {
2040                 info.error = 1;
2041                 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
2042                                         vm_object_backing_scan_callback,
2043                                         &info);
2044         } while (info.error < 0);
2045
2046         return(info.error);
2047 }
2048
2049 /*
2050  * The caller must hold the object.
2051  */
2052 static int
2053 vm_object_backing_scan_callback(vm_page_t p, void *data)
2054 {
2055         struct rb_vm_page_scan_info *info = data;
2056         vm_object_t backing_object;
2057         vm_object_t object;
2058         vm_pindex_t pindex;
2059         vm_pindex_t new_pindex;
2060         vm_pindex_t backing_offset_index;
2061         int op;
2062
2063         pindex = p->pindex;
2064         new_pindex = pindex - info->backing_offset_index;
2065         op = info->limit;
2066         object = info->object;
2067         backing_object = info->backing_object;
2068         backing_offset_index = info->backing_offset_index;
2069
2070         if (op & OBSC_TEST_ALL_SHADOWED) {
2071                 vm_page_t pp;
2072
2073                 /*
2074                  * Ignore pages outside the parent object's range
2075                  * and outside the parent object's mapping of the 
2076                  * backing object.
2077                  *
2078                  * note that we do not busy the backing object's
2079                  * page.
2080                  */
2081                 if (pindex < backing_offset_index ||
2082                     new_pindex >= object->size
2083                 ) {
2084                         return(0);
2085                 }
2086
2087                 /*
2088                  * See if the parent has the page or if the parent's
2089                  * object pager has the page.  If the parent has the
2090                  * page but the page is not valid, the parent's
2091                  * object pager must have the page.
2092                  *
2093                  * If this fails, the parent does not completely shadow
2094                  * the object and we might as well give up now.
2095                  */
2096                 pp = vm_page_lookup(object, new_pindex);
2097                 if ((pp == NULL || pp->valid == 0) &&
2098                     !vm_pager_has_page(object, new_pindex)
2099                 ) {
2100                         info->error = 0;        /* problemo */
2101                         return(-1);             /* stop the scan */
2102                 }
2103         }
2104
2105         /*
2106          * Check for busy page.  Note that we may have lost (p) when we
2107          * possibly blocked above.
2108          */
2109         if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
2110                 vm_page_t pp;
2111
2112                 if (vm_page_busy_try(p, TRUE)) {
2113                         if (op & OBSC_COLLAPSE_NOWAIT) {
2114                                 return(0);
2115                         } else {
2116                                 /*
2117                                  * If we slept, anything could have
2118                                  * happened.   Ask that the scan be restarted.
2119                                  *
2120                                  * Since the object is marked dead, the
2121                                  * backing offset should not have changed.  
2122                                  */
2123                                 vm_page_sleep_busy(p, TRUE, "vmocol");
2124                                 info->error = -1;
2125                                 return(-1);
2126                         }
2127                 }
2128
2129                 /*
2130                  * If (p) is no longer valid restart the scan.
2131                  */
2132                 if (p->object != backing_object || p->pindex != pindex) {
2133                         kprintf("vm_object_backing_scan: Warning: page "
2134                                 "%p ripped out from under us\n", p);
2135                         vm_page_wakeup(p);
2136                         info->error = -1;
2137                         return(-1);
2138                 }
2139
2140                 if (op & OBSC_COLLAPSE_NOWAIT) {
2141                         if (p->valid == 0 ||
2142                             p->wire_count ||
2143                             (p->flags & PG_NEED_COMMIT)) {
2144                                 vm_page_wakeup(p);
2145                                 return(0);
2146                         }
2147                 } else {
2148                         /* XXX what if p->valid == 0 , hold_count, etc? */
2149                 }
2150
2151                 KASSERT(
2152                     p->object == backing_object,
2153                     ("vm_object_qcollapse(): object mismatch")
2154                 );
2155
2156                 /*
2157                  * Destroy any associated swap
2158                  */
2159                 if (backing_object->type == OBJT_SWAP)
2160                         swap_pager_freespace(backing_object, p->pindex, 1);
2161
2162                 if (
2163                     p->pindex < backing_offset_index ||
2164                     new_pindex >= object->size
2165                 ) {
2166                         /*
2167                          * Page is out of the parent object's range, we 
2168                          * can simply destroy it. 
2169                          */
2170                         vm_page_protect(p, VM_PROT_NONE);
2171                         vm_page_free(p);
2172                         return(0);
2173                 }
2174
2175                 pp = vm_page_lookup(object, new_pindex);
2176                 if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
2177                         /*
2178                          * page already exists in parent OR swap exists
2179                          * for this location in the parent.  Destroy 
2180                          * the original page from the backing object.
2181                          *
2182                          * Leave the parent's page alone
2183                          */
2184                         vm_page_protect(p, VM_PROT_NONE);
2185                         vm_page_free(p);
2186                         return(0);
2187                 }
2188
2189                 /*
2190                  * Page does not exist in parent, rename the
2191                  * page from the backing object to the main object. 
2192                  *
2193                  * If the page was mapped to a process, it can remain 
2194                  * mapped through the rename.
2195                  */
2196                 if ((p->queue - p->pc) == PQ_CACHE)
2197                         vm_page_deactivate(p);
2198
2199                 vm_page_rename(p, object, new_pindex);
2200                 vm_page_wakeup(p);
2201                 /* page automatically made dirty by rename */
2202         }
2203         return(0);
2204 }
2205
2206 /*
2207  * This version of collapse allows the operation to occur earlier and
2208  * when paging_in_progress is true for an object...  This is not a complete
2209  * operation, but should plug 99.9% of the rest of the leaks.
2210  *
2211  * The caller must hold the object and backing_object and both must be
2212  * chainlocked.
2213  *
2214  * (only called from vm_object_collapse)
2215  */
2216 static void
2217 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
2218 {
2219         if (backing_object->ref_count == 1) {
2220                 atomic_add_int(&backing_object->ref_count, 2);
2221 #if defined(DEBUG_LOCKS)
2222                 debugvm_object_add(backing_object, "qcollapse", 1, 2);
2223 #endif
2224                 vm_object_backing_scan(object, backing_object,
2225                                        OBSC_COLLAPSE_NOWAIT);
2226                 atomic_add_int(&backing_object->ref_count, -2);
2227 #if defined(DEBUG_LOCKS)
2228                 debugvm_object_add(backing_object, "qcollapse", 2, -2);
2229 #endif
2230         }
2231 }
2232
2233 /*
2234  * Collapse an object with the object backing it.  Pages in the backing
2235  * object are moved into the parent, and the backing object is deallocated.
2236  * Any conflict is resolved in favor of the parent's existing pages.
2237  *
2238  * object must be held and chain-locked on call.
2239  *
2240  * The caller must have an extra ref on object to prevent a race from
2241  * destroying it during the collapse.
2242  */
2243 void
2244 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
2245 {
2246         struct vm_object_dealloc_list *dlist = NULL;
2247         vm_object_t backing_object;
2248
2249         /*
2250          * Only one thread is attempting a collapse at any given moment.
2251          * There are few restrictions for (object) that callers of this
2252          * function check so reentrancy is likely.
2253          */
2254         KKASSERT(object != NULL);
2255         vm_object_assert_held(object);
2256         KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
2257
2258         for (;;) {
2259                 vm_object_t bbobj;
2260                 int dodealloc;
2261
2262                 /*
2263                  * We can only collapse a DEFAULT/SWAP object with a
2264                  * DEFAULT/SWAP object.
2265                  */
2266                 if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP) {
2267                         backing_object = NULL;
2268                         break;
2269                 }
2270
2271                 backing_object = object->backing_object;
2272                 if (backing_object == NULL)
2273                         break;
2274                 if (backing_object->type != OBJT_DEFAULT &&
2275                     backing_object->type != OBJT_SWAP) {
2276                         backing_object = NULL;
2277                         break;
2278                 }
2279
2280                 /*
2281                  * Hold the backing_object and check for races
2282                  */
2283                 vm_object_hold(backing_object);
2284                 if (backing_object != object->backing_object ||
2285                     (backing_object->type != OBJT_DEFAULT &&
2286                      backing_object->type != OBJT_SWAP)) {
2287                         vm_object_drop(backing_object);
2288                         continue;
2289                 }
2290
2291                 /*
2292                  * Chain-lock the backing object too because if we
2293                  * successfully merge its pages into the top object we
2294                  * will collapse backing_object->backing_object as the
2295                  * new backing_object.  Re-check that it is still our
2296                  * backing object.
2297                  */
2298                 vm_object_chain_acquire(backing_object, 0);
2299                 if (backing_object != object->backing_object) {
2300                         vm_object_chain_release(backing_object);
2301                         vm_object_drop(backing_object);
2302                         continue;
2303                 }
2304
2305                 /*
2306                  * we check the backing object first, because it is most likely
2307                  * not collapsable.
2308                  */
2309                 if (backing_object->handle != NULL ||
2310                     (backing_object->type != OBJT_DEFAULT &&
2311                      backing_object->type != OBJT_SWAP) ||
2312                     (backing_object->flags & OBJ_DEAD) ||
2313                     object->handle != NULL ||
2314                     (object->type != OBJT_DEFAULT &&
2315                      object->type != OBJT_SWAP) ||
2316                     (object->flags & OBJ_DEAD)) {
2317                         break;
2318                 }
2319
2320                 /*
2321                  * If paging is in progress we can't do a normal collapse.
2322                  */
2323                 if (
2324                     object->paging_in_progress != 0 ||
2325                     backing_object->paging_in_progress != 0
2326                 ) {
2327                         vm_object_qcollapse(object, backing_object);
2328                         break;
2329                 }
2330
2331                 /*
2332                  * We know that we can either collapse the backing object (if
2333                  * the parent is the only reference to it) or (perhaps) have
2334                  * the parent bypass the object if the parent happens to shadow
2335                  * all the resident pages in the entire backing object.
2336                  *
2337                  * This is ignoring pager-backed pages such as swap pages.
2338                  * vm_object_backing_scan fails the shadowing test in this
2339                  * case.
2340                  */
2341                 if (backing_object->ref_count == 1) {
2342                         /*
2343                          * If there is exactly one reference to the backing
2344                          * object, we can collapse it into the parent.  
2345                          */
2346                         KKASSERT(object->backing_object == backing_object);
2347                         vm_object_backing_scan(object, backing_object,
2348                                                OBSC_COLLAPSE_WAIT);
2349
2350                         /*
2351                          * Move the pager from backing_object to object.
2352                          */
2353                         if (backing_object->type == OBJT_SWAP) {
2354                                 vm_object_pip_add(backing_object, 1);
2355
2356                                 /*
2357                                  * scrap the paging_offset junk and do a 
2358                                  * discrete copy.  This also removes major 
2359                                  * assumptions about how the swap-pager 
2360                                  * works from where it doesn't belong.  The
2361                                  * new swapper is able to optimize the
2362                                  * destroy-source case.
2363                                  */
2364                                 vm_object_pip_add(object, 1);
2365                                 swap_pager_copy(backing_object, object,
2366                                     OFF_TO_IDX(object->backing_object_offset),
2367                                     TRUE);
2368                                 vm_object_pip_wakeup(object);
2369                                 vm_object_pip_wakeup(backing_object);
2370                         }
2371
2372                         /*
2373                          * Object now shadows whatever backing_object did.
2374                          * Remove object from backing_object's shadow_list.
2375                          *
2376                          * Removing object from backing_objects shadow list
2377                          * requires releasing object, which we will do below.
2378                          */
2379                         KKASSERT(object->backing_object == backing_object);
2380                         if (object->flags & OBJ_ONSHADOW) {
2381                                 LIST_REMOVE(object, shadow_list);
2382                                 backing_object->shadow_count--;
2383                                 atomic_add_int(&backing_object->generation, 1);
2384                                 vm_object_clear_flag(object, OBJ_ONSHADOW);
2385                         }
2386
2387                         /*
2388                          * backing_object->backing_object moves from within
2389                          * backing_object to within object.
2390                          *
2391                          * OBJT_VNODE bbobj's should have empty shadow lists.
2392                          */
2393                         while ((bbobj = backing_object->backing_object) != NULL) {
2394                                 if (bbobj->type == OBJT_VNODE)
2395                                         vm_object_hold_shared(bbobj);
2396                                 else
2397                                         vm_object_hold(bbobj);
2398                                 if (bbobj == backing_object->backing_object)
2399                                         break;
2400                                 vm_object_drop(bbobj);
2401                         }
2402
2403                         /*
2404                          * We are removing backing_object from bbobj's
2405                          * shadow list and adding object to bbobj's shadow
2406                          * list, so the ref_count on bbobj is unchanged.
2407                          */
2408                         if (bbobj) {
2409                                 if (backing_object->flags & OBJ_ONSHADOW) {
2410                                         /* not locked exclusively if vnode */
2411                                         KKASSERT(bbobj->type != OBJT_VNODE);
2412                                         LIST_REMOVE(backing_object,
2413                                                     shadow_list);
2414                                         bbobj->shadow_count--;
2415                                         atomic_add_int(&bbobj->generation, 1);
2416                                         vm_object_clear_flag(backing_object,
2417                                                              OBJ_ONSHADOW);
2418                                 }
2419                                 backing_object->backing_object = NULL;
2420                         }
2421                         object->backing_object = bbobj;
2422                         if (bbobj) {
2423                                 if (bbobj->type != OBJT_VNODE) {
2424                                         LIST_INSERT_HEAD(&bbobj->shadow_head,
2425                                                          object, shadow_list);
2426                                         bbobj->shadow_count++;
2427                                         atomic_add_int(&bbobj->generation, 1);
2428                                         vm_object_set_flag(object,
2429                                                            OBJ_ONSHADOW);
2430                                 }
2431                         }
2432
2433                         object->backing_object_offset +=
2434                                 backing_object->backing_object_offset;
2435
2436                         vm_object_drop(bbobj);
2437
2438                         /*
2439                          * Discard the old backing_object.  Nothing should be
2440                          * able to ref it, other than a vm_map_split(),
2441                          * and vm_map_split() will stall on our chain lock.
2442                          * And we control the parent so it shouldn't be
2443                          * possible for it to go away either.
2444                          *
2445                          * Since the backing object has no pages, no pager
2446                          * left, and no object references within it, all
2447                          * that is necessary is to dispose of it.
2448                          */
2449                         KASSERT(backing_object->ref_count == 1,
2450                                 ("backing_object %p was somehow "
2451                                  "re-referenced during collapse!",
2452                                  backing_object));
2453                         KASSERT(RB_EMPTY(&backing_object->rb_memq),
2454                                 ("backing_object %p somehow has left "
2455                                  "over pages during collapse!",
2456                                  backing_object));
2457
2458                         /*
2459                          * The object can be destroyed.
2460                          *
2461                          * XXX just fall through and dodealloc instead
2462                          *     of forcing destruction?
2463                          */
2464                         atomic_add_int(&backing_object->ref_count, -1);
2465 #if defined(DEBUG_LOCKS)
2466                         debugvm_object_add(backing_object, "collapse", 1, -1);
2467 #endif
2468                         if ((backing_object->flags & OBJ_DEAD) == 0)
2469                                 vm_object_terminate(backing_object);
2470                         object_collapses++;
2471                         dodealloc = 0;
2472                 } else {
2473                         /*
2474                          * If we do not entirely shadow the backing object,
2475                          * there is nothing we can do so we give up.
2476                          */
2477                         if (vm_object_backing_scan(object, backing_object,
2478                                                 OBSC_TEST_ALL_SHADOWED) == 0) {
2479                                 break;
2480                         }
2481
2482                         /*
2483                          * bbobj is backing_object->backing_object.  Since
2484                          * object completely shadows backing_object we can
2485                          * bypass it and become backed by bbobj instead.
2486                          *
2487                          * The shadow list for vnode backing objects is not
2488                          * used and a shared hold is allowed.
2489                          */
2490                         while ((bbobj = backing_object->backing_object) != NULL) {
2491                                 if (bbobj->type == OBJT_VNODE)
2492                                         vm_object_hold_shared(bbobj);
2493                                 else
2494                                         vm_object_hold(bbobj);
2495                                 if (bbobj == backing_object->backing_object)
2496                                         break;
2497                                 vm_object_drop(bbobj);
2498                         }
2499
2500                         /*
2501                          * Make object shadow bbobj instead of backing_object.
2502                          * Remove object from backing_object's shadow list.
2503                          *
2504                          * Deallocating backing_object will not remove
2505                          * it, since its reference count is at least 2.
2506                          *
2507                          * Removing object from backing_object's shadow
2508                          * list requires releasing a ref, which we do
2509                          * below by setting dodealloc to 1.
2510                          */
2511                         KKASSERT(object->backing_object == backing_object);
2512                         if (object->flags & OBJ_ONSHADOW) {
2513                                 LIST_REMOVE(object, shadow_list);
2514                                 backing_object->shadow_count--;
2515                                 atomic_add_int(&backing_object->generation, 1);
2516                                 vm_object_clear_flag(object, OBJ_ONSHADOW);
2517                         }
2518
2519                         /*
2520                          * Add a ref to bbobj, bbobj now shadows object.
2521                          *
2522                          * NOTE: backing_object->backing_object still points
2523                          *       to bbobj.  That relationship remains intact
2524                          *       because backing_object has > 1 ref, so
2525                          *       someone else is pointing to it (hence why
2526                          *       we can't collapse it into object and can
2527                          *       only handle the all-shadowed bypass case).
2528                          */
2529                         if (bbobj) {
2530                                 if (bbobj->type != OBJT_VNODE) {
2531                                         vm_object_chain_wait(bbobj, 0);
2532                                         vm_object_reference_locked(bbobj);
2533                                         LIST_INSERT_HEAD(&bbobj->shadow_head,
2534                                                          object, shadow_list);
2535                                         bbobj->shadow_count++;
2536                                         atomic_add_int(&bbobj->generation, 1);
2537                                         vm_object_set_flag(object,
2538                                                            OBJ_ONSHADOW);
2539                                 } else {
2540                                         vm_object_reference_quick(bbobj);
2541                                 }
2542                                 object->backing_object_offset +=
2543                                         backing_object->backing_object_offset;
2544                                 object->backing_object = bbobj;
2545                                 vm_object_drop(bbobj);
2546                         } else {
2547                                 object->backing_object = NULL;
2548                         }
2549
2550                         /*
2551                          * Drop the reference count on backing_object.  To
2552                          * handle ref_count races properly we can't assume
2553                          * that the ref_count is still at least 2 so we
2554                          * have to actually call vm_object_deallocate()
2555                          * (after clearing the chainlock).
2556                          */
2557                         object_bypasses++;
2558                         dodealloc = 1;
2559                 }
2560
2561                 /*
2562                  * Ok, we want to loop on the new object->bbobj association,
2563                  * possibly collapsing it further.  However if dodealloc is
2564                  * non-zero we have to deallocate the backing_object which
2565                  * itself can potentially undergo a collapse, creating a
2566                  * recursion depth issue with the LWKT token subsystem.
2567                  *
2568                  * In the case where we must deallocate the backing_object
2569                  * it is possible now that the backing_object has a single
2570                  * shadow count on some other object (not represented here
2571                  * as yet), since it no longer shadows us.  Thus when we
2572                  * call vm_object_deallocate() it may attempt to collapse
2573                  * itself into its remaining parent.
2574                  */
2575                 if (dodealloc) {
2576                         struct vm_object_dealloc_list *dtmp;
2577
2578                         vm_object_chain_release(backing_object);
2579                         vm_object_unlock(backing_object);
2580                         /* backing_object remains held */
2581
2582                         /*
2583                          * Auto-deallocation list for caller convenience.
2584                          */
2585                         if (dlistp == NULL)
2586                                 dlistp = &dlist;
2587
2588                         dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2589                         dtmp->object = backing_object;
2590                         dtmp->next = *dlistp;
2591                         *dlistp = dtmp;
2592                 } else {
2593                         vm_object_chain_release(backing_object);
2594                         vm_object_drop(backing_object);
2595                 }
2596                 /* backing_object = NULL; not needed */
2597                 /* loop */
2598         }
2599
2600         /*
2601          * Clean up any left over backing_object
2602          */
2603         if (backing_object) {
2604                 vm_object_chain_release(backing_object);
2605                 vm_object_drop(backing_object);
2606         }
2607
2608         /*
2609          * Clean up any auto-deallocation list.  This is a convenience
2610          * for top-level callers so they don't have to pass &dlist.
2611          * Do not clean up any caller-passed dlistp, the caller will
2612          * do that.
2613          */
2614         if (dlist)
2615                 vm_object_deallocate_list(&dlist);
2616
2617 }
2618
2619 /*
2620  * vm_object_collapse() may collect additional objects in need of
2621  * deallocation.  This routine deallocates these objects.  The
2622  * deallocation itself can trigger additional collapses (which the
2623  * deallocate function takes care of).  This procedure is used to
2624  * reduce procedural recursion since these vm_object shadow chains
2625  * can become quite long.
2626  */
2627 void
2628 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2629 {
2630         struct vm_object_dealloc_list *dlist;
2631
2632         while ((dlist = *dlistp) != NULL) {
2633                 *dlistp = dlist->next;
2634                 vm_object_lock(dlist->object);
2635                 vm_object_deallocate_locked(dlist->object);
2636                 vm_object_drop(dlist->object);
2637                 kfree(dlist, M_TEMP);
2638         }
2639 }
2640
2641 /*
2642  * Removes all physical pages in the specified object range from the
2643  * object's list of pages.
2644  *
2645  * No requirements.
2646  */
2647 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2648
2649 void
2650 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2651                       boolean_t clean_only)
2652 {
2653         struct rb_vm_page_scan_info info;
2654         int all;
2655
2656         /*
2657          * Degenerate cases and assertions
2658          */
2659         vm_object_hold(object);
2660         if (object == NULL ||
2661             (object->resident_page_count == 0 && object->swblock_count == 0)) {
2662                 vm_object_drop(object);
2663                 return;
2664         }
2665         KASSERT(object->type != OBJT_PHYS, 
2666                 ("attempt to remove pages from a physical object"));
2667
2668         /*
2669          * Indicate that paging is occuring on the object
2670          */
2671         vm_object_pip_add(object, 1);
2672
2673         /*
2674          * Figure out the actual removal range and whether we are removing
2675          * the entire contents of the object or not.  If removing the entire
2676          * contents, be sure to get all pages, even those that might be 
2677          * beyond the end of the object.
2678          */
2679         info.object = object;
2680         info.start_pindex = start;
2681         if (end == 0)
2682                 info.end_pindex = (vm_pindex_t)-1;
2683         else
2684                 info.end_pindex = end - 1;
2685         info.limit = clean_only;
2686         info.count = 0;
2687         all = (start == 0 && info.end_pindex >= object->size - 1);
2688
2689         /*
2690          * Loop until we are sure we have gotten them all.
2691          */
2692         do {
2693                 info.error = 0;
2694                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2695                                         vm_object_page_remove_callback, &info);
2696         } while (info.error);
2697
2698         /*
2699          * Remove any related swap if throwing away pages, or for
2700          * non-swap objects (the swap is a clean copy in that case).
2701          */
2702         if (object->type != OBJT_SWAP || clean_only == FALSE) {
2703                 if (all)
2704                         swap_pager_freespace_all(object);
2705                 else
2706                         swap_pager_freespace(object, info.start_pindex,
2707                              info.end_pindex - info.start_pindex + 1);
2708         }
2709
2710         /*
2711          * Cleanup
2712          */
2713         vm_object_pip_wakeup(object);
2714         vm_object_drop(object);
2715 }
2716
2717 /*
2718  * The caller must hold the object.
2719  *
2720  * NOTE: User yields are allowed when removing more than one page, but not
2721  *       allowed if only removing one page (the path for single page removals
2722  *       might hold a spinlock).
2723  */
2724 static int
2725 vm_object_page_remove_callback(vm_page_t p, void *data)
2726 {
2727         struct rb_vm_page_scan_info *info = data;
2728
2729         if (info->object != p->object ||
2730             p->pindex < info->start_pindex ||
2731             p->pindex > info->end_pindex) {
2732                 kprintf("vm_object_page_remove_callbackA: obj/pg race %p/%p\n",
2733                         info->object, p);
2734                 return(0);
2735         }
2736         if (vm_page_busy_try(p, TRUE)) {
2737                 vm_page_sleep_busy(p, TRUE, "vmopar");
2738                 info->error = 1;
2739                 return(0);
2740         }
2741         if (info->object != p->object) {
2742                 /* this should never happen */
2743                 kprintf("vm_object_page_remove_callbackB: obj/pg race %p/%p\n",
2744                         info->object, p);
2745                 vm_page_wakeup(p);
2746                 return(0);
2747         }
2748
2749         /*
2750          * Wired pages cannot be destroyed, but they can be invalidated
2751          * and we do so if clean_only (limit) is not set.
2752          *
2753          * WARNING!  The page may be wired due to being part of a buffer
2754          *           cache buffer, and the buffer might be marked B_CACHE.
2755          *           This is fine as part of a truncation but VFSs must be
2756          *           sure to fix the buffer up when re-extending the file.
2757          *
2758          * NOTE!     PG_NEED_COMMIT is ignored.
2759          */
2760         if (p->wire_count != 0) {
2761                 vm_page_protect(p, VM_PROT_NONE);
2762                 if (info->limit == 0)
2763                         p->valid = 0;
2764                 vm_page_wakeup(p);
2765                 goto done;
2766         }
2767
2768         /*
2769          * limit is our clean_only flag.  If set and the page is dirty or
2770          * requires a commit, do not free it.  If set and the page is being
2771          * held by someone, do not free it.
2772          */
2773         if (info->limit && p->valid) {
2774                 vm_page_test_dirty(p);
2775                 if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) {
2776                         vm_page_wakeup(p);
2777                         goto done;
2778                 }
2779         }
2780
2781         /*
2782          * Destroy the page
2783          */
2784         vm_page_protect(p, VM_PROT_NONE);
2785         vm_page_free(p);
2786
2787         /*
2788          * Must be at end to avoid SMP races, caller holds object token
2789          */
2790 done:
2791         if ((++info->count & 63) == 0)
2792                 lwkt_user_yield();
2793
2794         return(0);
2795 }
2796
2797 /*
2798  * Coalesces two objects backing up adjoining regions of memory into a
2799  * single object.
2800  *
2801  * returns TRUE if objects were combined.
2802  *
2803  * NOTE: Only works at the moment if the second object is NULL -
2804  *       if it's not, which object do we lock first?
2805  *
2806  * Parameters:
2807  *      prev_object     First object to coalesce
2808  *      prev_offset     Offset into prev_object
2809  *      next_object     Second object into coalesce
2810  *      next_offset     Offset into next_object
2811  *
2812  *      prev_size       Size of reference to prev_object
2813  *      next_size       Size of reference to next_object
2814  *
2815  * The caller does not need to hold (prev_object) but must have a stable
2816  * pointer to it (typically by holding the vm_map locked).
2817  */
2818 boolean_t
2819 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2820                    vm_size_t prev_size, vm_size_t next_size)
2821 {
2822         vm_pindex_t next_pindex;
2823
2824         if (prev_object == NULL)
2825                 return (TRUE);
2826
2827         vm_object_hold(prev_object);
2828
2829         if (prev_object->type != OBJT_DEFAULT &&
2830             prev_object->type != OBJT_SWAP) {
2831                 vm_object_drop(prev_object);
2832                 return (FALSE);
2833         }
2834
2835         /*
2836          * Try to collapse the object first
2837          */
2838         vm_object_chain_acquire(prev_object, 0);
2839         vm_object_collapse(prev_object, NULL);
2840
2841         /*
2842          * Can't coalesce if: . more than one reference . paged out . shadows
2843          * another object . has a copy elsewhere (any of which mean that the
2844          * pages not mapped to prev_entry may be in use anyway)
2845          */
2846
2847         if (prev_object->backing_object != NULL) {
2848                 vm_object_chain_release(prev_object);
2849                 vm_object_drop(prev_object);
2850                 return (FALSE);
2851         }
2852
2853         prev_size >>= PAGE_SHIFT;
2854         next_size >>= PAGE_SHIFT;
2855         next_pindex = prev_pindex + prev_size;
2856
2857         if ((prev_object->ref_count > 1) &&
2858             (prev_object->size != next_pindex)) {
2859                 vm_object_chain_release(prev_object);
2860                 vm_object_drop(prev_object);
2861                 return (FALSE);
2862         }
2863
2864         /*
2865          * Remove any pages that may still be in the object from a previous
2866          * deallocation.
2867          */
2868         if (next_pindex < prev_object->size) {
2869                 vm_object_page_remove(prev_object,
2870                                       next_pindex,
2871                                       next_pindex + next_size, FALSE);
2872                 if (prev_object->type == OBJT_SWAP)
2873                         swap_pager_freespace(prev_object,
2874                                              next_pindex, next_size);
2875         }
2876
2877         /*
2878          * Extend the object if necessary.
2879          */
2880         if (next_pindex + next_size > prev_object->size)
2881                 prev_object->size = next_pindex + next_size;
2882
2883         vm_object_chain_release(prev_object);
2884         vm_object_drop(prev_object);
2885         return (TRUE);
2886 }
2887
2888 /*
2889  * Make the object writable and flag is being possibly dirty.
2890  *
2891  * The object might not be held (or might be held but held shared),
2892  * the related vnode is probably not held either.  Object and vnode are
2893  * stable by virtue of the vm_page busied by the caller preventing
2894  * destruction.
2895  *
2896  * If the related mount is flagged MNTK_THR_SYNC we need to call
2897  * vsetobjdirty().  Filesystems using this option usually shortcut
2898  * synchronization by only scanning the syncer list.
2899  */
2900 void
2901 vm_object_set_writeable_dirty(vm_object_t object)
2902 {
2903         struct vnode *vp;
2904
2905         /*vm_object_assert_held(object);*/
2906         /*
2907          * Avoid contention in vm fault path by checking the state before
2908          * issuing an atomic op on it.
2909          */
2910         if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2911             (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2912                 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2913         }
2914         if (object->type == OBJT_VNODE &&
2915             (vp = (struct vnode *)object->handle) != NULL) {
2916                 if ((vp->v_flag & VOBJDIRTY) == 0) {
2917                         if (vp->v_mount &&
2918                             (vp->v_mount->mnt_kern_flag & MNTK_THR_SYNC)) {
2919                                 /*
2920                                  * New style THR_SYNC places vnodes on the
2921                                  * syncer list more deterministically.
2922                                  */
2923                                 vsetobjdirty(vp);
2924                         } else {
2925                                 /*
2926                                  * Old style scan would not necessarily place
2927                                  * a vnode on the syncer list when possibly
2928                                  * modified via mmap.
2929                                  */
2930                                 vsetflags(vp, VOBJDIRTY);
2931                         }
2932                 }
2933         }
2934 }
2935
2936 #include "opt_ddb.h"
2937 #ifdef DDB
2938 #include <sys/cons.h>
2939
2940 #include <ddb/ddb.h>
2941
2942 static int      _vm_object_in_map (vm_map_t map, vm_object_t object,
2943                                        vm_map_entry_t entry);
2944 static int      vm_object_in_map (vm_object_t object);
2945
2946 /*
2947  * The caller must hold the object.
2948  */
2949 static int
2950 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2951 {
2952         vm_map_t tmpm;
2953         vm_map_entry_t tmpe;
2954         vm_object_t obj, nobj;
2955         int entcount;
2956
2957         if (map == 0)
2958                 return 0;
2959         if (entry == 0) {
2960                 tmpe = map->header.next;
2961                 entcount = map->nentries;
2962                 while (entcount-- && (tmpe != &map->header)) {
2963                         if( _vm_object_in_map(map, object, tmpe)) {
2964                                 return 1;
2965                         }
2966                         tmpe = tmpe->next;
2967                 }
2968                 return (0);
2969         }
2970         switch(entry->maptype) {
2971         case VM_MAPTYPE_SUBMAP:
2972                 tmpm = entry->object.sub_map;
2973                 tmpe = tmpm->header.next;
2974                 entcount = tmpm->nentries;
2975                 while (entcount-- && tmpe != &tmpm->header) {
2976                         if( _vm_object_in_map(tmpm, object, tmpe)) {
2977                                 return 1;
2978                         }
2979                         tmpe = tmpe->next;
2980                 }
2981                 break;
2982         case VM_MAPTYPE_NORMAL:
2983         case VM_MAPTYPE_VPAGETABLE:
2984                 obj = entry->object.vm_object;
2985                 while (obj) {
2986                         if (obj == object) {
2987                                 if (obj != entry->object.vm_object)
2988                                         vm_object_drop(obj);
2989                                 return 1;
2990                         }
2991                         while ((nobj = obj->backing_object) != NULL) {
2992                                 vm_object_hold(nobj);
2993                                 if (nobj == obj->backing_object)
2994                                         break;
2995                                 vm_object_drop(nobj);
2996                         }
2997                         if (obj != entry->object.vm_object) {
2998                                 if (nobj)
2999                                         vm_object_lock_swap();
3000                                 vm_object_drop(obj);
3001                         }
3002                         obj = nobj;
3003                 }
3004                 break;
3005         default:
3006                 break;
3007         }
3008         return 0;
3009 }
3010
3011 static int vm_object_in_map_callback(struct proc *p, void *data);
3012
3013 struct vm_object_in_map_info {
3014         vm_object_t object;
3015         int rv;
3016 };
3017
3018 /*
3019  * Debugging only
3020  */
3021 static int
3022 vm_object_in_map(vm_object_t object)
3023 {
3024         struct vm_object_in_map_info info;
3025
3026         info.rv = 0;
3027         info.object = object;
3028
3029         allproc_scan(vm_object_in_map_callback, &info);
3030         if (info.rv)
3031                 return 1;
3032         if( _vm_object_in_map(&kernel_map, object, 0))
3033                 return 1;
3034         if( _vm_object_in_map(&pager_map, object, 0))
3035                 return 1;
3036         if( _vm_object_in_map(&buffer_map, object, 0))
3037                 return 1;
3038         return 0;
3039 }
3040
3041 /*
3042  * Debugging only
3043  */
3044 static int
3045 vm_object_in_map_callback(struct proc *p, void *data)
3046 {
3047         struct vm_object_in_map_info *info = data;
3048
3049         if (p->p_vmspace) {
3050                 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
3051                         info->rv = 1;
3052                         return -1;
3053                 }
3054         }
3055         return (0);
3056 }
3057
3058 DB_SHOW_COMMAND(vmochk, vm_object_check)
3059 {
3060         struct vm_object_hash *hash;
3061         vm_object_t object;
3062         int n;
3063
3064         /*
3065          * make sure that internal objs are in a map somewhere
3066          * and none have zero ref counts.
3067          */
3068         for (n = 0; n < VMOBJ_HSIZE; ++n) {
3069                 hash = &vm_object_hash[n];
3070                 for (object = TAILQ_FIRST(&hash->list);
3071                                 object != NULL;
3072                                 object = TAILQ_NEXT(object, object_list)) {
3073                         if (object->type == OBJT_MARKER)
3074                                 continue;
3075                         if (object->handle != NULL ||
3076                             (object->type != OBJT_DEFAULT &&
3077                              object->type != OBJT_SWAP)) {
3078                                 continue;
3079                         }
3080                         if (object->ref_count == 0) {
3081                                 db_printf("vmochk: internal obj has "
3082                                           "zero ref count: %ld\n",
3083                                           (long)object->size);
3084                         }
3085                         if (vm_object_in_map(object))
3086                                 continue;
3087                         db_printf("vmochk: internal obj is not in a map: "
3088                                   "ref: %d, size: %lu: 0x%lx, "
3089                                   "backing_object: %p\n",
3090                                   object->ref_count, (u_long)object->size,
3091                                   (u_long)object->size,
3092                                   (void *)object->backing_object);
3093                 }
3094         }
3095 }
3096
3097 /*
3098  * Debugging only
3099  */
3100 DB_SHOW_COMMAND(object, vm_object_print_static)
3101 {
3102         /* XXX convert args. */
3103         vm_object_t object = (vm_object_t)addr;
3104         boolean_t full = have_addr;
3105
3106         vm_page_t p;
3107
3108         /* XXX count is an (unused) arg.  Avoid shadowing it. */
3109 #define count   was_count
3110
3111         int count;
3112
3113         if (object == NULL)
3114                 return;
3115
3116         db_iprintf(
3117             "Object %p: type=%d, size=0x%lx, res=%ld, ref=%d, flags=0x%x\n",
3118             object, (int)object->type, (u_long)object->size,
3119             object->resident_page_count, object->ref_count, object->flags);
3120         /*
3121          * XXX no %qd in kernel.  Truncate object->backing_object_offset.
3122          */
3123         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
3124             object->shadow_count, 
3125             object->backing_object ? object->backing_object->ref_count : 0,
3126             object->backing_object, (long)object->backing_object_offset);
3127
3128         if (!full)
3129                 return;
3130
3131         db_indent += 2;
3132         count = 0;
3133         RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
3134                 if (count == 0)
3135                         db_iprintf("memory:=");
3136                 else if (count == 6) {
3137                         db_printf("\n");
3138                         db_iprintf(" ...");
3139                         count = 0;
3140                 } else
3141                         db_printf(",");
3142                 count++;
3143
3144                 db_printf("(off=0x%lx,page=0x%lx)",
3145                     (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
3146         }
3147         if (count != 0)
3148                 db_printf("\n");
3149         db_indent -= 2;
3150 }
3151
3152 /* XXX. */
3153 #undef count
3154
3155 /*
3156  * XXX need this non-static entry for calling from vm_map_print.
3157  *
3158  * Debugging only
3159  */
3160 void
3161 vm_object_print(/* db_expr_t */ long addr,
3162                 boolean_t have_addr,
3163                 /* db_expr_t */ long count,
3164                 char *modif)
3165 {
3166         vm_object_print_static(addr, have_addr, count, modif);
3167 }
3168
3169 /*
3170  * Debugging only
3171  */
3172 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
3173 {
3174         struct vm_object_hash *hash;
3175         vm_object_t object;
3176         int nl = 0;
3177         int c;
3178         int n;
3179
3180         for (n = 0; n < VMOBJ_HSIZE; ++n) {
3181                 hash = &vm_object_hash[n];
3182                 for (object = TAILQ_FIRST(&hash->list);
3183                                 object != NULL;
3184                                 object = TAILQ_NEXT(object, object_list)) {
3185                         vm_pindex_t idx, fidx;
3186                         vm_pindex_t osize;
3187                         vm_paddr_t pa = -1, padiff;
3188                         int rcount;
3189                         vm_page_t m;
3190
3191                         if (object->type == OBJT_MARKER)
3192                                 continue;
3193                         db_printf("new object: %p\n", (void *)object);
3194                         if ( nl > 18) {
3195                                 c = cngetc();
3196                                 if (c != ' ')
3197                                         return;
3198                                 nl = 0;
3199                         }
3200                         nl++;
3201                         rcount = 0;
3202                         fidx = 0;
3203                         osize = object->size;
3204                         if (osize > 128)
3205                                 osize = 128;
3206                         for (idx = 0; idx < osize; idx++) {
3207                                 m = vm_page_lookup(object, idx);
3208                                 if (m == NULL) {
3209                                         if (rcount) {
3210                                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3211                                                         (long)fidx, rcount, (long)pa);
3212                                                 if ( nl > 18) {
3213                                                         c = cngetc();
3214                                                         if (c != ' ')
3215                                                                 return;
3216                                                         nl = 0;
3217                                                 }
3218                                                 nl++;
3219                                                 rcount = 0;
3220                                         }
3221                                         continue;
3222                                 }
3223
3224                                 if (rcount &&
3225                                         (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
3226                                         ++rcount;
3227                                         continue;
3228                                 }
3229                                 if (rcount) {
3230                                         padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
3231                                         padiff >>= PAGE_SHIFT;
3232                                         padiff &= PQ_L2_MASK;
3233                                         if (padiff == 0) {
3234                                                 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
3235                                                 ++rcount;
3236                                                 continue;
3237                                         }
3238                                         db_printf(" index(%ld)run(%d)pa(0x%lx)",
3239                                                 (long)fidx, rcount, (long)pa);
3240                                         db_printf("pd(%ld)\n", (long)padiff);
3241                                         if ( nl > 18) {
3242                                                 c = cngetc();
3243                                                 if (c != ' ')
3244                                                         return;
3245                                                 nl = 0;
3246                                         }
3247                                         nl++;
3248                                 }
3249                                 fidx = idx;
3250                                 pa = VM_PAGE_TO_PHYS(m);
3251                                 rcount = 1;
3252                         }
3253                         if (rcount) {
3254                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3255                                         (long)fidx, rcount, (long)pa);
3256                                 if ( nl > 18) {
3257                                         c = cngetc();
3258                                         if (c != ' ')
3259                                                 return;
3260                                         nl = 0;
3261                                 }
3262                                 nl++;
3263                         }
3264                 }
3265         }
3266 }
3267 #endif /* DDB */