42b95facb33064fedd482c2bd255a71b88854a38
[dragonfly.git] / sbin / hammer / ondisk.c
1 /*
2  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34
35 #include <sys/diskslice.h>
36 #include <sys/diskmbr.h>
37
38 #include "hammer_util.h"
39
40 static void check_volume(struct volume_info *vol);
41 static void get_buffer_readahead(struct buffer_info *base);
42 static __inline int readhammervol(struct volume_info *vol);
43 static __inline int readhammerbuf(struct buffer_info *buf);
44 static __inline int writehammervol(struct volume_info *vol);
45 static __inline int writehammerbuf(struct buffer_info *buf);
46
47 uuid_t Hammer_FSType;
48 uuid_t Hammer_FSId;
49 int UseReadBehind = -4;
50 int UseReadAhead = 4;
51 int DebugOpt;
52
53 TAILQ_HEAD(volume_list, volume_info);
54 static struct volume_list VolList = TAILQ_HEAD_INITIALIZER(VolList);
55 static int valid_hammer_volumes;
56
57 static __inline
58 int
59 buffer_hash(hammer_off_t buf_offset)
60 {
61         int hi;
62
63         hi = (int)(buf_offset / HAMMER_BUFSIZE) & HAMMER_BUFLISTMASK;
64         return(hi);
65 }
66
67 static struct buffer_info*
68 find_buffer(struct volume_info *volume, hammer_off_t buf_offset)
69 {
70         int hi;
71         struct buffer_info *buf;
72
73         hi = buffer_hash(buf_offset);
74         TAILQ_FOREACH(buf, &volume->buffer_lists[hi], entry)
75                 if (buf->buf_offset == buf_offset)
76                         return(buf);
77         return(NULL);
78 }
79
80 static
81 struct volume_info *
82 __alloc_volume(const char *volname, int oflags)
83 {
84         struct volume_info *vol;
85         int i;
86
87         vol = malloc(sizeof(*vol));
88         if (vol == NULL)
89                 err(1, "alloc_volume");
90         bzero(vol, sizeof(*vol));
91
92         vol->vol_no = -1;
93         vol->rdonly = (oflags == O_RDONLY);
94         vol->name = strdup(volname);
95         vol->fd = open(vol->name, oflags);
96         if (vol->fd < 0)
97                 err(1, "alloc_volume: Failed to open %s", vol->name);
98         check_volume(vol);
99
100         vol->ondisk = malloc(HAMMER_BUFSIZE);
101         if (vol->ondisk == NULL)
102                 err(1, "alloc_volume");
103         bzero(vol->ondisk, HAMMER_BUFSIZE);
104
105         for (i = 0; i < HAMMER_BUFLISTS; ++i)
106                 TAILQ_INIT(&vol->buffer_lists[i]);
107
108         return(vol);
109 }
110
111 static void
112 __add_volume(struct volume_info *vol)
113 {
114         struct volume_info *scan;
115         struct stat st1, st2;
116
117         if (fstat(vol->fd, &st1) != 0)
118                 errx(1, "add_volume: %s: Failed to stat", vol->name);
119
120         TAILQ_FOREACH(scan, &VolList, entry) {
121                 if (scan->vol_no == vol->vol_no) {
122                         errx(1, "add_volume: %s: Duplicate volume number %d "
123                                 "against %s",
124                                 vol->name, vol->vol_no, scan->name);
125                 }
126                 if (fstat(scan->fd, &st2) != 0) {
127                         errx(1, "add_volume: %s: Failed to stat %s",
128                                 vol->name, scan->name);
129                 }
130                 if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev)) {
131                         errx(1, "add_volume: %s: Specified more than once",
132                                 vol->name);
133                 }
134         }
135
136         TAILQ_INSERT_TAIL(&VolList, vol, entry);
137 }
138
139 static void
140 __verify_volume(struct volume_info *vol)
141 {
142         hammer_volume_ondisk_t ondisk = vol->ondisk;
143
144         if (ondisk->vol_signature != HAMMER_FSBUF_VOLUME) {
145                 errx(1, "verify_volume: Invalid volume signature %016jx",
146                         ondisk->vol_signature);
147         }
148         if (ondisk->vol_rootvol != HAMMER_ROOT_VOLNO) {
149                 errx(1, "verify_volume: Invalid root volume# %d",
150                         ondisk->vol_rootvol);
151         }
152         if (bcmp(&Hammer_FSType, &ondisk->vol_fstype, sizeof(Hammer_FSType))) {
153                 errx(1, "verify_volume: %s: Header does not indicate "
154                         "that this is a hammer volume", vol->name);
155         }
156         if (bcmp(&Hammer_FSId, &ondisk->vol_fsid, sizeof(Hammer_FSId))) {
157                 errx(1, "verify_volume: %s: FSId does match other volumes!",
158                         vol->name);
159         }
160 }
161
162 /*
163  * Initialize a volume structure and ondisk vol_no field.
164  */
165 struct volume_info *
166 init_volume(const char *filename, int oflags, int32_t vol_no)
167 {
168         struct volume_info *vol;
169
170         vol = __alloc_volume(filename, oflags);
171         vol->vol_no = vol->ondisk->vol_no = vol_no;
172
173         __add_volume(vol);
174
175         return(vol);
176 }
177
178 /*
179  * Initialize a volume structure and read ondisk volume header.
180  */
181 struct volume_info*
182 load_volume(const char *filename, int oflags, int verify)
183 {
184         struct volume_info *vol;
185         int n;
186
187         vol = __alloc_volume(filename, oflags);
188
189         n = readhammervol(vol);
190         if (n == -1) {
191                 err(1, "load_volume: %s: Read failed at offset 0", vol->name);
192         }
193         vol->vol_no = vol->ondisk->vol_no;
194
195         if (valid_hammer_volumes++ == 0)
196                 Hammer_FSId = vol->ondisk->vol_fsid;
197         if (verify)
198                 __verify_volume(vol);
199
200         __add_volume(vol);
201
202         return(vol);
203 }
204
205 /*
206  * Check basic volume characteristics.
207  */
208 static void
209 check_volume(struct volume_info *vol)
210 {
211         struct partinfo pinfo;
212         struct stat st;
213
214         /*
215          * Get basic information about the volume
216          */
217         if (ioctl(vol->fd, DIOCGPART, &pinfo) < 0) {
218                 /*
219                  * Allow the formatting of regular files as HAMMER volumes
220                  */
221                 if (fstat(vol->fd, &st) < 0)
222                         err(1, "Unable to stat %s", vol->name);
223                 vol->size = st.st_size;
224                 vol->type = "REGFILE";
225         } else {
226                 /*
227                  * When formatting a block device as a HAMMER volume the
228                  * sector size must be compatible.  HAMMER uses 16384 byte
229                  * filesystem buffers.
230                  */
231                 if (pinfo.reserved_blocks) {
232                         errx(1, "HAMMER cannot be placed in a partition "
233                                 "which overlaps the disklabel or MBR");
234                 }
235                 if (pinfo.media_blksize > HAMMER_BUFSIZE ||
236                     HAMMER_BUFSIZE % pinfo.media_blksize) {
237                         errx(1, "A media sector size of %d is not supported",
238                              pinfo.media_blksize);
239                 }
240
241                 vol->size = pinfo.media_size;
242                 vol->device_offset = pinfo.media_offset;
243                 vol->type = "DEVICE";
244         }
245 }
246
247 void
248 assert_volume_offset(struct volume_info *vol)
249 {
250         assert(hammer_is_zone_raw_buffer(vol->vol_free_off));
251         assert(hammer_is_zone_raw_buffer(vol->vol_free_end));
252 }
253
254 struct volume_info *
255 get_volume(int32_t vol_no)
256 {
257         struct volume_info *vol;
258
259         TAILQ_FOREACH(vol, &VolList, entry) {
260                 if (vol->vol_no == vol_no)
261                         break;
262         }
263
264         return(vol);
265 }
266
267 struct volume_info *
268 get_root_volume(void)
269 {
270         return(get_volume(HAMMER_ROOT_VOLNO));
271 }
272
273 /*
274  * Acquire the specified buffer.  isnew is -1 only when called
275  * via get_buffer_readahead() to prevent another readahead.
276  */
277 static struct buffer_info *
278 get_buffer(hammer_off_t buf_offset, int isnew)
279 {
280         struct buffer_info *buf;
281         struct volume_info *volume;
282         int vol_no;
283         int zone;
284         int hi;
285         int dora = 0;
286         int error = 0;
287
288         zone = HAMMER_ZONE_DECODE(buf_offset);
289         if (zone > HAMMER_ZONE_RAW_BUFFER_INDEX)
290                 buf_offset = blockmap_lookup(buf_offset, NULL, NULL, &error);
291         if (error || buf_offset == HAMMER_OFF_BAD)
292                 return(NULL);
293         assert(hammer_is_zone_raw_buffer(buf_offset));
294
295         vol_no = HAMMER_VOL_DECODE(buf_offset);
296         volume = get_volume(vol_no);
297         assert(volume != NULL);
298
299         buf_offset &= ~HAMMER_BUFMASK64;
300         buf = find_buffer(volume, buf_offset);
301
302         if (buf == NULL) {
303                 buf = malloc(sizeof(*buf));
304                 bzero(buf, sizeof(*buf));
305                 buf->buf_offset = buf_offset;
306                 buf->raw_offset = hammer_xlate_to_phys(volume->ondisk,
307                                                         buf_offset);
308                 buf->volume = volume;
309                 buf->ondisk = malloc(HAMMER_BUFSIZE);
310                 if (isnew <= 0) {
311                         if (readhammerbuf(buf) == -1) {
312                                 err(1, "get_buffer: %s:%016jx "
313                                     "Read failed at offset %016jx",
314                                     volume->name,
315                                     (intmax_t)buf->buf_offset,
316                                     (intmax_t)buf->raw_offset);
317                         }
318                 }
319
320                 hi = buffer_hash(buf_offset);
321                 TAILQ_INSERT_TAIL(&volume->buffer_lists[hi], buf, entry);
322                 hammer_cache_add(&buf->cache);
323                 dora = (isnew == 0);
324         } else {
325                 assert(buf->ondisk != NULL);
326                 assert(isnew != -1);
327                 hammer_cache_used(&buf->cache);
328         }
329
330         ++buf->cache.refs;
331         hammer_cache_flush();
332
333         if (isnew > 0) {
334                 assert(buf->cache.modified == 0);
335                 bzero(buf->ondisk, HAMMER_BUFSIZE);
336                 buf->cache.modified = 1;
337         }
338         if (dora)
339                 get_buffer_readahead(buf);
340         return(buf);
341 }
342
343 static void
344 get_buffer_readahead(struct buffer_info *base)
345 {
346         struct buffer_info *buf;
347         struct volume_info *vol;
348         hammer_off_t buf_offset;
349         int64_t raw_offset;
350         int ri = UseReadBehind;
351         int re = UseReadAhead;
352
353         raw_offset = base->raw_offset + ri * HAMMER_BUFSIZE;
354         vol = base->volume;
355
356         while (ri < re) {
357                 if (raw_offset >= vol->ondisk->vol_buf_end)
358                         break;
359                 if (raw_offset < vol->ondisk->vol_buf_beg || ri == 0) {
360                         ++ri;
361                         raw_offset += HAMMER_BUFSIZE;
362                         continue;
363                 }
364                 buf_offset = HAMMER_ENCODE_RAW_BUFFER(vol->vol_no,
365                         raw_offset - vol->ondisk->vol_buf_beg);
366                 buf = find_buffer(vol, buf_offset);
367                 if (buf == NULL) {
368                         buf = get_buffer(buf_offset, -1);
369                         rel_buffer(buf);
370                 }
371                 ++ri;
372                 raw_offset += HAMMER_BUFSIZE;
373         }
374 }
375
376 void
377 rel_buffer(struct buffer_info *buffer)
378 {
379         struct volume_info *volume;
380         int hi;
381
382         if (buffer == NULL)
383                 return;
384         assert(buffer->cache.refs > 0);
385         if (--buffer->cache.refs == 0) {
386                 if (buffer->cache.delete) {
387                         hi = buffer_hash(buffer->buf_offset);
388                         volume = buffer->volume;
389                         if (buffer->cache.modified)
390                                 flush_buffer(buffer);
391                         TAILQ_REMOVE(&volume->buffer_lists[hi], buffer, entry);
392                         hammer_cache_del(&buffer->cache);
393                         free(buffer->ondisk);
394                         free(buffer);
395                 }
396         }
397 }
398
399 /*
400  * Retrieve a pointer to a buffer data given a buffer offset.  The underlying
401  * bufferp is freed if isnew or the offset is out of range of the cached data.
402  * If bufferp is freed a referenced buffer is loaded into it.
403  */
404 void *
405 get_buffer_data(hammer_off_t buf_offset, struct buffer_info **bufferp,
406                 int isnew)
407 {
408         if (*bufferp != NULL) {
409                 if (isnew > 0 ||
410                     (((*bufferp)->buf_offset ^ buf_offset) & ~HAMMER_BUFMASK64)) {
411                         rel_buffer(*bufferp);
412                         *bufferp = NULL;
413                 }
414         }
415
416         if (*bufferp == NULL) {
417                 *bufferp = get_buffer(buf_offset, isnew);
418                 if (*bufferp == NULL)
419                         return(NULL);
420         }
421
422         return(((char *)(*bufferp)->ondisk) +
423                 ((int32_t)buf_offset & HAMMER_BUFMASK));
424 }
425
426 /*
427  * Allocate HAMMER elements - B-Tree nodes
428  */
429 hammer_node_ondisk_t
430 alloc_btree_node(hammer_off_t *offp, struct buffer_info **data_bufferp)
431 {
432         hammer_node_ondisk_t node;
433
434         node = alloc_blockmap(HAMMER_ZONE_BTREE_INDEX, sizeof(*node),
435                               offp, data_bufferp);
436         bzero(node, sizeof(*node));
437         return(node);
438 }
439
440 /*
441  * Allocate HAMMER elements - meta data (inode, direntry, PFS, etc)
442  */
443 void *
444 alloc_meta_element(hammer_off_t *offp, int32_t data_len,
445                    struct buffer_info **data_bufferp)
446 {
447         void *data;
448
449         data = alloc_blockmap(HAMMER_ZONE_META_INDEX, data_len,
450                               offp, data_bufferp);
451         bzero(data, data_len);
452         return(data);
453 }
454
455 /*
456  * Format a new blockmap.  This is mostly a degenerate case because
457  * all allocations are now actually done from the freemap.
458  */
459 void
460 format_blockmap(struct volume_info *root_vol, int zone, hammer_off_t offset)
461 {
462         hammer_blockmap_t blockmap;
463         hammer_off_t zone_base;
464
465         /* Only root volume needs formatting */
466         assert(root_vol->vol_no == HAMMER_ROOT_VOLNO);
467
468         assert(hammer_is_zone2_mapped_index(zone));
469
470         blockmap = &root_vol->ondisk->vol0_blockmap[zone];
471         zone_base = HAMMER_ZONE_ENCODE(zone, offset);
472
473         bzero(blockmap, sizeof(*blockmap));
474         blockmap->phys_offset = 0;
475         blockmap->first_offset = zone_base;
476         blockmap->next_offset = zone_base;
477         blockmap->alloc_offset = HAMMER_ENCODE(zone, 255, -1);
478         hammer_crc_set_blockmap(blockmap);
479 }
480
481 /*
482  * Format a new freemap.  Set all layer1 entries to UNAVAIL.  The initialize
483  * code will load each volume's freemap.
484  */
485 void
486 format_freemap(struct volume_info *root_vol)
487 {
488         struct buffer_info *buffer = NULL;
489         hammer_off_t layer1_offset;
490         hammer_blockmap_t blockmap;
491         hammer_blockmap_layer1_t layer1;
492         int i, isnew;
493
494         /* Only root volume needs formatting */
495         assert(root_vol->vol_no == HAMMER_ROOT_VOLNO);
496
497         layer1_offset = alloc_bigblock(root_vol, HAMMER_ZONE_FREEMAP_INDEX);
498         for (i = 0; i < HAMMER_BIGBLOCK_SIZE; i += sizeof(*layer1)) {
499                 isnew = ((i % HAMMER_BUFSIZE) == 0);
500                 layer1 = get_buffer_data(layer1_offset + i, &buffer, isnew);
501                 bzero(layer1, sizeof(*layer1));
502                 layer1->phys_offset = HAMMER_BLOCKMAP_UNAVAIL;
503                 layer1->blocks_free = 0;
504                 hammer_crc_set_layer1(layer1);
505         }
506         assert(i == HAMMER_BIGBLOCK_SIZE);
507         rel_buffer(buffer);
508
509         blockmap = &root_vol->ondisk->vol0_blockmap[HAMMER_ZONE_FREEMAP_INDEX];
510         bzero(blockmap, sizeof(*blockmap));
511         blockmap->phys_offset = layer1_offset;
512         blockmap->first_offset = 0;
513         blockmap->next_offset = HAMMER_ENCODE_RAW_BUFFER(0, 0);
514         blockmap->alloc_offset = HAMMER_ENCODE_RAW_BUFFER(255, -1);
515         hammer_crc_set_blockmap(blockmap);
516 }
517
518 /*
519  * Load the volume's remaining free space into the freemap.
520  *
521  * Returns the number of big-blocks available.
522  */
523 int64_t
524 initialize_freemap(struct volume_info *vol)
525 {
526         struct volume_info *root_vol;
527         struct buffer_info *buffer1 = NULL;
528         struct buffer_info *buffer2 = NULL;
529         hammer_blockmap_layer1_t layer1;
530         hammer_blockmap_layer2_t layer2;
531         hammer_off_t layer1_offset;
532         hammer_off_t layer2_offset;
533         hammer_off_t phys_offset;
534         hammer_off_t block_offset;
535         hammer_off_t aligned_vol_free_end;
536         hammer_blockmap_t freemap;
537         int64_t count = 0;
538         int64_t layer1_count = 0;
539
540         root_vol = get_root_volume();
541
542         assert_volume_offset(vol);
543         aligned_vol_free_end = (vol->vol_free_end + HAMMER_BLOCKMAP_LAYER2_MASK)
544                                 & ~HAMMER_BLOCKMAP_LAYER2_MASK;
545
546         printf("initialize freemap volume %d\n", vol->vol_no);
547
548         /*
549          * Initialize the freemap.  First preallocate the big-blocks required
550          * to implement layer2.   This preallocation is a bootstrap allocation
551          * using blocks from the target volume.
552          */
553         freemap = &root_vol->ondisk->vol0_blockmap[HAMMER_ZONE_FREEMAP_INDEX];
554
555         for (phys_offset = HAMMER_ENCODE_RAW_BUFFER(vol->vol_no, 0);
556              phys_offset < aligned_vol_free_end;
557              phys_offset += HAMMER_BLOCKMAP_LAYER2) {
558                 layer1_offset = freemap->phys_offset +
559                                 HAMMER_BLOCKMAP_LAYER1_OFFSET(phys_offset);
560                 layer1 = get_buffer_data(layer1_offset, &buffer1, 0);
561                 if (layer1->phys_offset == HAMMER_BLOCKMAP_UNAVAIL) {
562                         layer1->phys_offset = alloc_bigblock(vol,
563                                                 HAMMER_ZONE_FREEMAP_INDEX);
564                         layer1->blocks_free = 0;
565                         buffer1->cache.modified = 1;
566                         hammer_crc_set_layer1(layer1);
567                 }
568         }
569
570         /*
571          * Now fill everything in.
572          */
573         for (phys_offset = HAMMER_ENCODE_RAW_BUFFER(vol->vol_no, 0);
574              phys_offset < aligned_vol_free_end;
575              phys_offset += HAMMER_BLOCKMAP_LAYER2) {
576                 layer1_count = 0;
577                 layer1_offset = freemap->phys_offset +
578                                 HAMMER_BLOCKMAP_LAYER1_OFFSET(phys_offset);
579                 layer1 = get_buffer_data(layer1_offset, &buffer1, 0);
580                 assert(layer1->phys_offset != HAMMER_BLOCKMAP_UNAVAIL);
581
582                 for (block_offset = 0;
583                      block_offset < HAMMER_BLOCKMAP_LAYER2;
584                      block_offset += HAMMER_BIGBLOCK_SIZE) {
585                         layer2_offset = layer1->phys_offset +
586                                         HAMMER_BLOCKMAP_LAYER2_OFFSET(block_offset);
587                         layer2 = get_buffer_data(layer2_offset, &buffer2, 0);
588                         bzero(layer2, sizeof(*layer2));
589
590                         if (phys_offset + block_offset < vol->vol_free_off) {
591                                 /*
592                                  * Big-blocks already allocated as part
593                                  * of the freemap bootstrap.
594                                  */
595                                 layer2->zone = HAMMER_ZONE_FREEMAP_INDEX;
596                                 layer2->append_off = HAMMER_BIGBLOCK_SIZE;
597                                 layer2->bytes_free = 0;
598                         } else if (phys_offset + block_offset < vol->vol_free_end) {
599                                 layer2->zone = 0;
600                                 layer2->append_off = 0;
601                                 layer2->bytes_free = HAMMER_BIGBLOCK_SIZE;
602                                 ++count;
603                                 ++layer1_count;
604                         } else {
605                                 layer2->zone = HAMMER_ZONE_UNAVAIL_INDEX;
606                                 layer2->append_off = HAMMER_BIGBLOCK_SIZE;
607                                 layer2->bytes_free = 0;
608                         }
609                         hammer_crc_set_layer2(layer2);
610                         buffer2->cache.modified = 1;
611                 }
612
613                 layer1->blocks_free += layer1_count;
614                 hammer_crc_set_layer1(layer1);
615                 buffer1->cache.modified = 1;
616         }
617
618         rel_buffer(buffer1);
619         rel_buffer(buffer2);
620         return(count);
621 }
622
623 /*
624  * Returns the number of big-blocks available for filesystem data and undos
625  * without formatting.
626  */
627 int64_t
628 count_freemap(struct volume_info *vol)
629 {
630         hammer_off_t phys_offset;
631         hammer_off_t vol_free_off;
632         hammer_off_t aligned_vol_free_end;
633         int64_t count = 0;
634
635         vol_free_off = HAMMER_ENCODE_RAW_BUFFER(vol->vol_no, 0);
636
637         assert_volume_offset(vol);
638         aligned_vol_free_end = (vol->vol_free_end + HAMMER_BLOCKMAP_LAYER2_MASK)
639                                 & ~HAMMER_BLOCKMAP_LAYER2_MASK;
640
641         if (vol->vol_no == HAMMER_ROOT_VOLNO)
642                 vol_free_off += HAMMER_BIGBLOCK_SIZE;
643
644         for (phys_offset = HAMMER_ENCODE_RAW_BUFFER(vol->vol_no, 0);
645              phys_offset < aligned_vol_free_end;
646              phys_offset += HAMMER_BLOCKMAP_LAYER2) {
647                 vol_free_off += HAMMER_BIGBLOCK_SIZE;
648         }
649
650         for (phys_offset = HAMMER_ENCODE_RAW_BUFFER(vol->vol_no, 0);
651              phys_offset < aligned_vol_free_end;
652              phys_offset += HAMMER_BIGBLOCK_SIZE) {
653                 if (phys_offset < vol_free_off) {
654                         ;
655                 } else if (phys_offset < vol->vol_free_end) {
656                         ++count;
657                 }
658         }
659
660         return(count);
661 }
662
663 /*
664  * Format the undomap for the root volume.
665  */
666 void
667 format_undomap(struct volume_info *root_vol, int64_t *undo_buffer_size)
668 {
669         const int undo_zone = HAMMER_ZONE_UNDO_INDEX;
670         hammer_off_t undo_limit;
671         hammer_blockmap_t blockmap;
672         hammer_volume_ondisk_t ondisk;
673         struct buffer_info *buffer = NULL;
674         hammer_off_t scan;
675         int n;
676         int limit_index;
677         uint32_t seqno;
678
679         /* Only root volume needs formatting */
680         assert(root_vol->vol_no == HAMMER_ROOT_VOLNO);
681         ondisk = root_vol->ondisk;
682
683         /*
684          * Size the undo buffer in multiples of HAMMER_BIGBLOCK_SIZE,
685          * up to HAMMER_MAX_UNDO_BIGBLOCKS big-blocks.
686          * Size to approximately 0.1% of the disk.
687          *
688          * The minimum UNDO fifo size is 512MB, or approximately 1% of
689          * the recommended 50G disk.
690          *
691          * Changing this minimum is rather dangerous as complex filesystem
692          * operations can cause the UNDO FIFO to fill up otherwise.
693          */
694         undo_limit = *undo_buffer_size;
695         if (undo_limit == 0) {
696                 undo_limit = HAMMER_VOL_BUF_SIZE(ondisk) / 1000;
697                 if (undo_limit < HAMMER_BIGBLOCK_SIZE * HAMMER_MIN_UNDO_BIGBLOCKS)
698                         undo_limit = HAMMER_BIGBLOCK_SIZE * HAMMER_MIN_UNDO_BIGBLOCKS;
699         }
700         undo_limit = (undo_limit + HAMMER_BIGBLOCK_MASK64) &
701                      ~HAMMER_BIGBLOCK_MASK64;
702         if (undo_limit < HAMMER_BIGBLOCK_SIZE)
703                 undo_limit = HAMMER_BIGBLOCK_SIZE;
704         if (undo_limit > HAMMER_BIGBLOCK_SIZE * HAMMER_MAX_UNDO_BIGBLOCKS)
705                 undo_limit = HAMMER_BIGBLOCK_SIZE * HAMMER_MAX_UNDO_BIGBLOCKS;
706         *undo_buffer_size = undo_limit;
707
708         blockmap = &ondisk->vol0_blockmap[undo_zone];
709         bzero(blockmap, sizeof(*blockmap));
710         blockmap->phys_offset = HAMMER_BLOCKMAP_UNAVAIL;
711         blockmap->first_offset = HAMMER_ZONE_ENCODE(undo_zone, 0);
712         blockmap->next_offset = blockmap->first_offset;
713         blockmap->alloc_offset = HAMMER_ZONE_ENCODE(undo_zone, undo_limit);
714         hammer_crc_set_blockmap(blockmap);
715
716         limit_index = undo_limit / HAMMER_BIGBLOCK_SIZE;
717         assert(limit_index <= HAMMER_MAX_UNDO_BIGBLOCKS);
718
719         for (n = 0; n < limit_index; ++n) {
720                 ondisk->vol0_undo_array[n] = alloc_bigblock(root_vol,
721                                                         HAMMER_ZONE_UNDO_INDEX);
722         }
723         while (n < HAMMER_MAX_UNDO_BIGBLOCKS) {
724                 ondisk->vol0_undo_array[n++] = HAMMER_BLOCKMAP_UNAVAIL;
725         }
726
727         /*
728          * Pre-initialize the UNDO blocks (HAMMER version 4+)
729          */
730         printf("initializing the undo map (%jd MB)\n",
731                 (intmax_t)(blockmap->alloc_offset & HAMMER_OFF_LONG_MASK) /
732                 (1024 * 1024));
733
734         scan = blockmap->first_offset;
735         seqno = 0;
736
737         while (scan < blockmap->alloc_offset) {
738                 hammer_fifo_head_t head;
739                 hammer_fifo_tail_t tail;
740                 int isnew;
741                 int bytes = HAMMER_UNDO_ALIGN;
742
743                 isnew = ((scan & HAMMER_BUFMASK64) == 0);
744                 head = get_buffer_data(scan, &buffer, isnew);
745                 buffer->cache.modified = 1;
746                 tail = (void *)((char *)head + bytes - sizeof(*tail));
747
748                 bzero(head, bytes);
749                 head->hdr_signature = HAMMER_HEAD_SIGNATURE;
750                 head->hdr_type = HAMMER_HEAD_TYPE_DUMMY;
751                 head->hdr_size = bytes;
752                 head->hdr_seq = seqno++;
753
754                 tail->tail_signature = HAMMER_TAIL_SIGNATURE;
755                 tail->tail_type = HAMMER_HEAD_TYPE_DUMMY;
756                 tail->tail_size = bytes;
757
758                 hammer_crc_set_fifo_head(head, bytes);
759
760                 scan += bytes;
761         }
762         rel_buffer(buffer);
763 }
764
765 const char *zone_labels[] = {
766         "",             /* 0 */
767         "raw_volume",   /* 1 */
768         "raw_buffer",   /* 2 */
769         "undo",         /* 3 */
770         "freemap",      /* 4 */
771         "",             /* 5 */
772         "",             /* 6 */
773         "",             /* 7 */
774         "btree",        /* 8 */
775         "meta",         /* 9 */
776         "large_data",   /* 10 */
777         "small_data",   /* 11 */
778         "",             /* 12 */
779         "",             /* 13 */
780         "",             /* 14 */
781         "unavail",      /* 15 */
782 };
783
784 void
785 print_blockmap(const struct volume_info *vol)
786 {
787         hammer_blockmap_t blockmap;
788         hammer_volume_ondisk_t ondisk;
789         int64_t size, used;
790         int i;
791 #define INDENT ""
792
793         ondisk = vol->ondisk;
794         printf(INDENT"vol_label\t%s\n", ondisk->vol_label);
795         printf(INDENT"vol_count\t%d\n", ondisk->vol_count);
796         printf(INDENT"vol_bot_beg\t%s\n", sizetostr(ondisk->vol_bot_beg));
797         printf(INDENT"vol_mem_beg\t%s\n", sizetostr(ondisk->vol_mem_beg));
798         printf(INDENT"vol_buf_beg\t%s\n", sizetostr(ondisk->vol_buf_beg));
799         printf(INDENT"vol_buf_end\t%s\n", sizetostr(ondisk->vol_buf_end));
800         printf(INDENT"vol0_next_tid\t%016jx\n",
801                (uintmax_t)ondisk->vol0_next_tid);
802
803         blockmap = &ondisk->vol0_blockmap[HAMMER_ZONE_UNDO_INDEX];
804         size = blockmap->alloc_offset & HAMMER_OFF_LONG_MASK;
805         if (blockmap->first_offset <= blockmap->next_offset)
806                 used = blockmap->next_offset - blockmap->first_offset;
807         else
808                 used = blockmap->alloc_offset - blockmap->first_offset +
809                         (blockmap->next_offset & HAMMER_OFF_LONG_MASK);
810         printf(INDENT"undo_size\t%s\n", sizetostr(size));
811         printf(INDENT"undo_used\t%s\n", sizetostr(used));
812
813         printf(INDENT"zone #             "
814                "phys             first            next             alloc\n");
815         for (i = 0; i < HAMMER_MAX_ZONES; i++) {
816                 blockmap = &ondisk->vol0_blockmap[i];
817                 printf(INDENT"zone %-2d %-10s %016jx %016jx %016jx %016jx\n",
818                         i, zone_labels[i],
819                         (uintmax_t)blockmap->phys_offset,
820                         (uintmax_t)blockmap->first_offset,
821                         (uintmax_t)blockmap->next_offset,
822                         (uintmax_t)blockmap->alloc_offset);
823         }
824 }
825
826 /*
827  * Flush various tracking structures to disk
828  */
829 void
830 flush_all_volumes(void)
831 {
832         struct volume_info *vol;
833
834         TAILQ_FOREACH(vol, &VolList, entry)
835                 flush_volume(vol);
836 }
837
838 void
839 flush_volume(struct volume_info *volume)
840 {
841         struct buffer_info *buffer;
842         int i;
843
844         for (i = 0; i < HAMMER_BUFLISTS; ++i) {
845                 TAILQ_FOREACH(buffer, &volume->buffer_lists[i], entry)
846                         flush_buffer(buffer);
847         }
848         if (writehammervol(volume) == -1)
849                 err(1, "Write volume %d (%s)", volume->vol_no, volume->name);
850 }
851
852 void
853 flush_buffer(struct buffer_info *buffer)
854 {
855         struct volume_info *vol;
856
857         vol = buffer->volume;
858         if (writehammerbuf(buffer) == -1)
859                 err(1, "Write volume %d (%s)", vol->vol_no, vol->name);
860         buffer->cache.modified = 0;
861 }
862
863 /*
864  * Core I/O operations
865  */
866 static int
867 __read(struct volume_info *vol, void *data, int64_t offset, int size)
868 {
869         ssize_t n;
870
871         n = pread(vol->fd, data, size, offset);
872         if (n != size)
873                 return(-1);
874         return(0);
875 }
876
877 static __inline int
878 readhammervol(struct volume_info *vol)
879 {
880         return(__read(vol, vol->ondisk, 0, HAMMER_BUFSIZE));
881 }
882
883 static __inline int
884 readhammerbuf(struct buffer_info *buf)
885 {
886         return(__read(buf->volume, buf->ondisk, buf->raw_offset, HAMMER_BUFSIZE));
887 }
888
889 static int
890 __write(struct volume_info *vol, const void *data, int64_t offset, int size)
891 {
892         ssize_t n;
893
894         if (vol->rdonly)
895                 return(0);
896
897         n = pwrite(vol->fd, data, size, offset);
898         if (n != size)
899                 return(-1);
900         return(0);
901 }
902
903 static __inline int
904 writehammervol(struct volume_info *vol)
905 {
906         return(__write(vol, vol->ondisk, 0, HAMMER_BUFSIZE));
907 }
908
909 static __inline int
910 writehammerbuf(struct buffer_info *buf)
911 {
912         return(__write(buf->volume, buf->ondisk, buf->raw_offset, HAMMER_BUFSIZE));
913 }
914
915 int64_t init_boot_area_size(int64_t value, off_t avg_vol_size)
916 {
917         if (value == 0) {
918                 value = HAMMER_BOOT_NOMBYTES;
919                 while (value > avg_vol_size / HAMMER_MAX_VOLUMES)
920                         value >>= 1;
921         }
922
923         if (value < HAMMER_BOOT_MINBYTES) {
924                 value = HAMMER_BOOT_MINBYTES;
925         } else if (value > HAMMER_BOOT_MAXBYTES) {
926                 value = HAMMER_BOOT_MAXBYTES;
927         }
928
929         return(value);
930 }
931
932 int64_t init_memory_log_size(int64_t value, off_t avg_vol_size)
933 {
934         if (value == 0) {
935                 value = HAMMER_MEM_NOMBYTES;
936                 while (value > avg_vol_size / HAMMER_MAX_VOLUMES)
937                         value >>= 1;
938         }
939
940         if (value < HAMMER_MEM_MINBYTES) {
941                 value = HAMMER_MEM_MINBYTES;
942         } else if (value > HAMMER_MEM_MAXBYTES) {
943                 value = HAMMER_MEM_MAXBYTES;
944         }
945
946         return(value);
947 }