x86: Treat R_X86_64_PLT32 as R_X86_64_PC32
[linux.git] / arch / x86 / kernel / machine_kexec_64.c
1 /*
2  * handle transition of Linux booting another kernel
3  * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8
9 #define pr_fmt(fmt)     "kexec: " fmt
10
11 #include <linux/mm.h>
12 #include <linux/kexec.h>
13 #include <linux/string.h>
14 #include <linux/gfp.h>
15 #include <linux/reboot.h>
16 #include <linux/numa.h>
17 #include <linux/ftrace.h>
18 #include <linux/io.h>
19 #include <linux/suspend.h>
20 #include <linux/vmalloc.h>
21
22 #include <asm/init.h>
23 #include <asm/pgtable.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mmu_context.h>
26 #include <asm/io_apic.h>
27 #include <asm/debugreg.h>
28 #include <asm/kexec-bzimage64.h>
29 #include <asm/setup.h>
30 #include <asm/set_memory.h>
31
32 #ifdef CONFIG_KEXEC_FILE
33 static struct kexec_file_ops *kexec_file_loaders[] = {
34                 &kexec_bzImage64_ops,
35 };
36 #endif
37
38 static void free_transition_pgtable(struct kimage *image)
39 {
40         free_page((unsigned long)image->arch.p4d);
41         free_page((unsigned long)image->arch.pud);
42         free_page((unsigned long)image->arch.pmd);
43         free_page((unsigned long)image->arch.pte);
44 }
45
46 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
47 {
48         p4d_t *p4d;
49         pud_t *pud;
50         pmd_t *pmd;
51         pte_t *pte;
52         unsigned long vaddr, paddr;
53         int result = -ENOMEM;
54
55         vaddr = (unsigned long)relocate_kernel;
56         paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
57         pgd += pgd_index(vaddr);
58         if (!pgd_present(*pgd)) {
59                 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
60                 if (!p4d)
61                         goto err;
62                 image->arch.p4d = p4d;
63                 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
64         }
65         p4d = p4d_offset(pgd, vaddr);
66         if (!p4d_present(*p4d)) {
67                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
68                 if (!pud)
69                         goto err;
70                 image->arch.pud = pud;
71                 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
72         }
73         pud = pud_offset(p4d, vaddr);
74         if (!pud_present(*pud)) {
75                 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
76                 if (!pmd)
77                         goto err;
78                 image->arch.pmd = pmd;
79                 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
80         }
81         pmd = pmd_offset(pud, vaddr);
82         if (!pmd_present(*pmd)) {
83                 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
84                 if (!pte)
85                         goto err;
86                 image->arch.pte = pte;
87                 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
88         }
89         pte = pte_offset_kernel(pmd, vaddr);
90         set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC_NOENC));
91         return 0;
92 err:
93         free_transition_pgtable(image);
94         return result;
95 }
96
97 static void *alloc_pgt_page(void *data)
98 {
99         struct kimage *image = (struct kimage *)data;
100         struct page *page;
101         void *p = NULL;
102
103         page = kimage_alloc_control_pages(image, 0);
104         if (page) {
105                 p = page_address(page);
106                 clear_page(p);
107         }
108
109         return p;
110 }
111
112 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
113 {
114         struct x86_mapping_info info = {
115                 .alloc_pgt_page = alloc_pgt_page,
116                 .context        = image,
117                 .page_flag      = __PAGE_KERNEL_LARGE_EXEC,
118                 .kernpg_flag    = _KERNPG_TABLE_NOENC,
119         };
120         unsigned long mstart, mend;
121         pgd_t *level4p;
122         int result;
123         int i;
124
125         level4p = (pgd_t *)__va(start_pgtable);
126         clear_page(level4p);
127
128         if (direct_gbpages)
129                 info.direct_gbpages = true;
130
131         for (i = 0; i < nr_pfn_mapped; i++) {
132                 mstart = pfn_mapped[i].start << PAGE_SHIFT;
133                 mend   = pfn_mapped[i].end << PAGE_SHIFT;
134
135                 result = kernel_ident_mapping_init(&info,
136                                                  level4p, mstart, mend);
137                 if (result)
138                         return result;
139         }
140
141         /*
142          * segments's mem ranges could be outside 0 ~ max_pfn,
143          * for example when jump back to original kernel from kexeced kernel.
144          * or first kernel is booted with user mem map, and second kernel
145          * could be loaded out of that range.
146          */
147         for (i = 0; i < image->nr_segments; i++) {
148                 mstart = image->segment[i].mem;
149                 mend   = mstart + image->segment[i].memsz;
150
151                 result = kernel_ident_mapping_init(&info,
152                                                  level4p, mstart, mend);
153
154                 if (result)
155                         return result;
156         }
157
158         return init_transition_pgtable(image, level4p);
159 }
160
161 static void set_idt(void *newidt, u16 limit)
162 {
163         struct desc_ptr curidt;
164
165         /* x86-64 supports unaliged loads & stores */
166         curidt.size    = limit;
167         curidt.address = (unsigned long)newidt;
168
169         __asm__ __volatile__ (
170                 "lidtq %0\n"
171                 : : "m" (curidt)
172                 );
173 };
174
175
176 static void set_gdt(void *newgdt, u16 limit)
177 {
178         struct desc_ptr curgdt;
179
180         /* x86-64 supports unaligned loads & stores */
181         curgdt.size    = limit;
182         curgdt.address = (unsigned long)newgdt;
183
184         __asm__ __volatile__ (
185                 "lgdtq %0\n"
186                 : : "m" (curgdt)
187                 );
188 };
189
190 static void load_segments(void)
191 {
192         __asm__ __volatile__ (
193                 "\tmovl %0,%%ds\n"
194                 "\tmovl %0,%%es\n"
195                 "\tmovl %0,%%ss\n"
196                 "\tmovl %0,%%fs\n"
197                 "\tmovl %0,%%gs\n"
198                 : : "a" (__KERNEL_DS) : "memory"
199                 );
200 }
201
202 #ifdef CONFIG_KEXEC_FILE
203 /* Update purgatory as needed after various image segments have been prepared */
204 static int arch_update_purgatory(struct kimage *image)
205 {
206         int ret = 0;
207
208         if (!image->file_mode)
209                 return 0;
210
211         /* Setup copying of backup region */
212         if (image->type == KEXEC_TYPE_CRASH) {
213                 ret = kexec_purgatory_get_set_symbol(image,
214                                 "purgatory_backup_dest",
215                                 &image->arch.backup_load_addr,
216                                 sizeof(image->arch.backup_load_addr), 0);
217                 if (ret)
218                         return ret;
219
220                 ret = kexec_purgatory_get_set_symbol(image,
221                                 "purgatory_backup_src",
222                                 &image->arch.backup_src_start,
223                                 sizeof(image->arch.backup_src_start), 0);
224                 if (ret)
225                         return ret;
226
227                 ret = kexec_purgatory_get_set_symbol(image,
228                                 "purgatory_backup_sz",
229                                 &image->arch.backup_src_sz,
230                                 sizeof(image->arch.backup_src_sz), 0);
231                 if (ret)
232                         return ret;
233         }
234
235         return ret;
236 }
237 #else /* !CONFIG_KEXEC_FILE */
238 static inline int arch_update_purgatory(struct kimage *image)
239 {
240         return 0;
241 }
242 #endif /* CONFIG_KEXEC_FILE */
243
244 int machine_kexec_prepare(struct kimage *image)
245 {
246         unsigned long start_pgtable;
247         int result;
248
249         /* Calculate the offsets */
250         start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
251
252         /* Setup the identity mapped 64bit page table */
253         result = init_pgtable(image, start_pgtable);
254         if (result)
255                 return result;
256
257         /* update purgatory as needed */
258         result = arch_update_purgatory(image);
259         if (result)
260                 return result;
261
262         return 0;
263 }
264
265 void machine_kexec_cleanup(struct kimage *image)
266 {
267         free_transition_pgtable(image);
268 }
269
270 /*
271  * Do not allocate memory (or fail in any way) in machine_kexec().
272  * We are past the point of no return, committed to rebooting now.
273  */
274 void machine_kexec(struct kimage *image)
275 {
276         unsigned long page_list[PAGES_NR];
277         void *control_page;
278         int save_ftrace_enabled;
279
280 #ifdef CONFIG_KEXEC_JUMP
281         if (image->preserve_context)
282                 save_processor_state();
283 #endif
284
285         save_ftrace_enabled = __ftrace_enabled_save();
286
287         /* Interrupts aren't acceptable while we reboot */
288         local_irq_disable();
289         hw_breakpoint_disable();
290
291         if (image->preserve_context) {
292 #ifdef CONFIG_X86_IO_APIC
293                 /*
294                  * We need to put APICs in legacy mode so that we can
295                  * get timer interrupts in second kernel. kexec/kdump
296                  * paths already have calls to disable_IO_APIC() in
297                  * one form or other. kexec jump path also need
298                  * one.
299                  */
300                 disable_IO_APIC();
301 #endif
302         }
303
304         control_page = page_address(image->control_code_page) + PAGE_SIZE;
305         memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
306
307         page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
308         page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
309         page_list[PA_TABLE_PAGE] =
310           (unsigned long)__pa(page_address(image->control_code_page));
311
312         if (image->type == KEXEC_TYPE_DEFAULT)
313                 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
314                                                 << PAGE_SHIFT);
315
316         /*
317          * The segment registers are funny things, they have both a
318          * visible and an invisible part.  Whenever the visible part is
319          * set to a specific selector, the invisible part is loaded
320          * with from a table in memory.  At no other time is the
321          * descriptor table in memory accessed.
322          *
323          * I take advantage of this here by force loading the
324          * segments, before I zap the gdt with an invalid value.
325          */
326         load_segments();
327         /*
328          * The gdt & idt are now invalid.
329          * If you want to load them you must set up your own idt & gdt.
330          */
331         set_gdt(phys_to_virt(0), 0);
332         set_idt(phys_to_virt(0), 0);
333
334         /* now call it */
335         image->start = relocate_kernel((unsigned long)image->head,
336                                        (unsigned long)page_list,
337                                        image->start,
338                                        image->preserve_context,
339                                        sme_active());
340
341 #ifdef CONFIG_KEXEC_JUMP
342         if (image->preserve_context)
343                 restore_processor_state();
344 #endif
345
346         __ftrace_enabled_restore(save_ftrace_enabled);
347 }
348
349 void arch_crash_save_vmcoreinfo(void)
350 {
351         VMCOREINFO_NUMBER(phys_base);
352         VMCOREINFO_SYMBOL(init_top_pgt);
353
354 #ifdef CONFIG_NUMA
355         VMCOREINFO_SYMBOL(node_data);
356         VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
357 #endif
358         vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
359                               kaslr_offset());
360         VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
361 }
362
363 /* arch-dependent functionality related to kexec file-based syscall */
364
365 #ifdef CONFIG_KEXEC_FILE
366 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
367                                   unsigned long buf_len)
368 {
369         int i, ret = -ENOEXEC;
370         struct kexec_file_ops *fops;
371
372         for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) {
373                 fops = kexec_file_loaders[i];
374                 if (!fops || !fops->probe)
375                         continue;
376
377                 ret = fops->probe(buf, buf_len);
378                 if (!ret) {
379                         image->fops = fops;
380                         return ret;
381                 }
382         }
383
384         return ret;
385 }
386
387 void *arch_kexec_kernel_image_load(struct kimage *image)
388 {
389         vfree(image->arch.elf_headers);
390         image->arch.elf_headers = NULL;
391
392         if (!image->fops || !image->fops->load)
393                 return ERR_PTR(-ENOEXEC);
394
395         return image->fops->load(image, image->kernel_buf,
396                                  image->kernel_buf_len, image->initrd_buf,
397                                  image->initrd_buf_len, image->cmdline_buf,
398                                  image->cmdline_buf_len);
399 }
400
401 int arch_kimage_file_post_load_cleanup(struct kimage *image)
402 {
403         if (!image->fops || !image->fops->cleanup)
404                 return 0;
405
406         return image->fops->cleanup(image->image_loader_data);
407 }
408
409 #ifdef CONFIG_KEXEC_VERIFY_SIG
410 int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel,
411                                  unsigned long kernel_len)
412 {
413         if (!image->fops || !image->fops->verify_sig) {
414                 pr_debug("kernel loader does not support signature verification.");
415                 return -EKEYREJECTED;
416         }
417
418         return image->fops->verify_sig(kernel, kernel_len);
419 }
420 #endif
421
422 /*
423  * Apply purgatory relocations.
424  *
425  * ehdr: Pointer to elf headers
426  * sechdrs: Pointer to section headers.
427  * relsec: section index of SHT_RELA section.
428  *
429  * TODO: Some of the code belongs to generic code. Move that in kexec.c.
430  */
431 int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr,
432                                      Elf64_Shdr *sechdrs, unsigned int relsec)
433 {
434         unsigned int i;
435         Elf64_Rela *rel;
436         Elf64_Sym *sym;
437         void *location;
438         Elf64_Shdr *section, *symtabsec;
439         unsigned long address, sec_base, value;
440         const char *strtab, *name, *shstrtab;
441
442         /*
443          * ->sh_offset has been modified to keep the pointer to section
444          * contents in memory
445          */
446         rel = (void *)sechdrs[relsec].sh_offset;
447
448         /* Section to which relocations apply */
449         section = &sechdrs[sechdrs[relsec].sh_info];
450
451         pr_debug("Applying relocate section %u to %u\n", relsec,
452                  sechdrs[relsec].sh_info);
453
454         /* Associated symbol table */
455         symtabsec = &sechdrs[sechdrs[relsec].sh_link];
456
457         /* String table */
458         if (symtabsec->sh_link >= ehdr->e_shnum) {
459                 /* Invalid strtab section number */
460                 pr_err("Invalid string table section index %d\n",
461                        symtabsec->sh_link);
462                 return -ENOEXEC;
463         }
464
465         strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset;
466
467         /* section header string table */
468         shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset;
469
470         for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
471
472                 /*
473                  * rel[i].r_offset contains byte offset from beginning
474                  * of section to the storage unit affected.
475                  *
476                  * This is location to update (->sh_offset). This is temporary
477                  * buffer where section is currently loaded. This will finally
478                  * be loaded to a different address later, pointed to by
479                  * ->sh_addr. kexec takes care of moving it
480                  *  (kexec_load_segment()).
481                  */
482                 location = (void *)(section->sh_offset + rel[i].r_offset);
483
484                 /* Final address of the location */
485                 address = section->sh_addr + rel[i].r_offset;
486
487                 /*
488                  * rel[i].r_info contains information about symbol table index
489                  * w.r.t which relocation must be made and type of relocation
490                  * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
491                  * these respectively.
492                  */
493                 sym = (Elf64_Sym *)symtabsec->sh_offset +
494                                 ELF64_R_SYM(rel[i].r_info);
495
496                 if (sym->st_name)
497                         name = strtab + sym->st_name;
498                 else
499                         name = shstrtab + sechdrs[sym->st_shndx].sh_name;
500
501                 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
502                          name, sym->st_info, sym->st_shndx, sym->st_value,
503                          sym->st_size);
504
505                 if (sym->st_shndx == SHN_UNDEF) {
506                         pr_err("Undefined symbol: %s\n", name);
507                         return -ENOEXEC;
508                 }
509
510                 if (sym->st_shndx == SHN_COMMON) {
511                         pr_err("symbol '%s' in common section\n", name);
512                         return -ENOEXEC;
513                 }
514
515                 if (sym->st_shndx == SHN_ABS)
516                         sec_base = 0;
517                 else if (sym->st_shndx >= ehdr->e_shnum) {
518                         pr_err("Invalid section %d for symbol %s\n",
519                                sym->st_shndx, name);
520                         return -ENOEXEC;
521                 } else
522                         sec_base = sechdrs[sym->st_shndx].sh_addr;
523
524                 value = sym->st_value;
525                 value += sec_base;
526                 value += rel[i].r_addend;
527
528                 switch (ELF64_R_TYPE(rel[i].r_info)) {
529                 case R_X86_64_NONE:
530                         break;
531                 case R_X86_64_64:
532                         *(u64 *)location = value;
533                         break;
534                 case R_X86_64_32:
535                         *(u32 *)location = value;
536                         if (value != *(u32 *)location)
537                                 goto overflow;
538                         break;
539                 case R_X86_64_32S:
540                         *(s32 *)location = value;
541                         if ((s64)value != *(s32 *)location)
542                                 goto overflow;
543                         break;
544                 case R_X86_64_PC32:
545                 case R_X86_64_PLT32:
546                         value -= (u64)address;
547                         *(u32 *)location = value;
548                         break;
549                 default:
550                         pr_err("Unknown rela relocation: %llu\n",
551                                ELF64_R_TYPE(rel[i].r_info));
552                         return -ENOEXEC;
553                 }
554         }
555         return 0;
556
557 overflow:
558         pr_err("Overflow in relocation type %d value 0x%lx\n",
559                (int)ELF64_R_TYPE(rel[i].r_info), value);
560         return -ENOEXEC;
561 }
562 #endif /* CONFIG_KEXEC_FILE */
563
564 static int
565 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
566 {
567         struct page *page;
568         unsigned int nr_pages;
569
570         /*
571          * For physical range: [start, end]. We must skip the unassigned
572          * crashk resource with zero-valued "end" member.
573          */
574         if (!end || start > end)
575                 return 0;
576
577         page = pfn_to_page(start >> PAGE_SHIFT);
578         nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
579         if (protect)
580                 return set_pages_ro(page, nr_pages);
581         else
582                 return set_pages_rw(page, nr_pages);
583 }
584
585 static void kexec_mark_crashkres(bool protect)
586 {
587         unsigned long control;
588
589         kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
590
591         /* Don't touch the control code page used in crash_kexec().*/
592         control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
593         /* Control code page is located in the 2nd page. */
594         kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
595         control += KEXEC_CONTROL_PAGE_SIZE;
596         kexec_mark_range(control, crashk_res.end, protect);
597 }
598
599 void arch_kexec_protect_crashkres(void)
600 {
601         kexec_mark_crashkres(true);
602 }
603
604 void arch_kexec_unprotect_crashkres(void)
605 {
606         kexec_mark_crashkres(false);
607 }
608
609 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
610 {
611         /*
612          * If SME is active we need to be sure that kexec pages are
613          * not encrypted because when we boot to the new kernel the
614          * pages won't be accessed encrypted (initially).
615          */
616         return set_memory_decrypted((unsigned long)vaddr, pages);
617 }
618
619 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
620 {
621         /*
622          * If SME is active we need to reset the pages back to being
623          * an encrypted mapping before freeing them.
624          */
625         set_memory_encrypted((unsigned long)vaddr, pages);
626 }