x86: Defer early TSC timecounter calibration to SI_SUB_CPU
[freebsd.git] / sys / x86 / x86 / tsc.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 1998-2003 Poul-Henning Kamp
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include "opt_clock.h"
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/bus.h>
37 #include <sys/cpu.h>
38 #include <sys/eventhandler.h>
39 #include <sys/limits.h>
40 #include <sys/malloc.h>
41 #include <sys/proc.h>
42 #include <sys/sched.h>
43 #include <sys/sysctl.h>
44 #include <sys/time.h>
45 #include <sys/timetc.h>
46 #include <sys/kernel.h>
47 #include <sys/smp.h>
48 #include <sys/vdso.h>
49 #include <machine/clock.h>
50 #include <machine/cputypes.h>
51 #include <machine/fpu.h>
52 #include <machine/md_var.h>
53 #include <machine/specialreg.h>
54 #include <x86/vmware.h>
55 #include <dev/acpica/acpi_hpet.h>
56 #include <contrib/dev/acpica/include/acpi.h>
57
58 #include "cpufreq_if.h"
59
60 uint64_t        tsc_freq;
61 int             tsc_is_invariant;
62 int             tsc_perf_stat;
63 static int      tsc_early_calib_exact;
64
65 static eventhandler_tag tsc_levels_tag, tsc_pre_tag, tsc_post_tag;
66
67 SYSCTL_INT(_kern_timecounter, OID_AUTO, invariant_tsc, CTLFLAG_RDTUN,
68     &tsc_is_invariant, 0, "Indicates whether the TSC is P-state invariant");
69
70 #ifdef SMP
71 int     smp_tsc;
72 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc, CTLFLAG_RDTUN, &smp_tsc, 0,
73     "Indicates whether the TSC is safe to use in SMP mode");
74
75 int     smp_tsc_adjust = 0;
76 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc_adjust, CTLFLAG_RDTUN,
77     &smp_tsc_adjust, 0, "Try to adjust TSC on APs to match BSP");
78 #endif
79
80 static int      tsc_shift = 1;
81 SYSCTL_INT(_kern_timecounter, OID_AUTO, tsc_shift, CTLFLAG_RDTUN,
82     &tsc_shift, 0, "Shift to pre-apply for the maximum TSC frequency");
83
84 static int      tsc_disabled;
85 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc, CTLFLAG_RDTUN, &tsc_disabled, 0,
86     "Disable x86 Time Stamp Counter");
87
88 static int      tsc_skip_calibration;
89 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc_calibration, CTLFLAG_RDTUN,
90     &tsc_skip_calibration, 0,
91     "Disable early TSC frequency calibration");
92
93 static void tsc_freq_changed(void *arg, const struct cf_level *level,
94     int status);
95 static void tsc_freq_changing(void *arg, const struct cf_level *level,
96     int *status);
97 static u_int tsc_get_timecount(struct timecounter *tc);
98 static inline u_int tsc_get_timecount_low(struct timecounter *tc);
99 static u_int tsc_get_timecount_lfence(struct timecounter *tc);
100 static u_int tsc_get_timecount_low_lfence(struct timecounter *tc);
101 static u_int tsc_get_timecount_mfence(struct timecounter *tc);
102 static u_int tsc_get_timecount_low_mfence(struct timecounter *tc);
103 static u_int tscp_get_timecount(struct timecounter *tc);
104 static u_int tscp_get_timecount_low(struct timecounter *tc);
105 static void tsc_levels_changed(void *arg, int unit);
106 static uint32_t x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th,
107     struct timecounter *tc);
108 #ifdef COMPAT_FREEBSD32
109 static uint32_t x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
110     struct timecounter *tc);
111 #endif
112
113 static struct timecounter tsc_timecounter = {
114         .tc_get_timecount =             tsc_get_timecount,
115         .tc_counter_mask =              ~0u,
116         .tc_name =                      "TSC",
117         .tc_quality =                   800,    /* adjusted in code */
118         .tc_fill_vdso_timehands =       x86_tsc_vdso_timehands,
119 #ifdef COMPAT_FREEBSD32
120         .tc_fill_vdso_timehands32 =     x86_tsc_vdso_timehands32,
121 #endif
122 };
123
124 static int
125 tsc_freq_cpuid_vm(void)
126 {
127         u_int regs[4];
128
129         if (vm_guest == VM_GUEST_NO)
130                 return (false);
131         if (hv_high < 0x40000010)
132                 return (false);
133         do_cpuid(0x40000010, regs);
134         tsc_freq = (uint64_t)(regs[0]) * 1000;
135         tsc_early_calib_exact = 1;
136         return (true);
137 }
138
139 static void
140 tsc_freq_vmware(void)
141 {
142         u_int regs[4];
143
144         vmware_hvcall(VMW_HVCMD_GETHZ, regs);
145         if (regs[1] != UINT_MAX)
146                 tsc_freq = regs[0] | ((uint64_t)regs[1] << 32);
147         tsc_early_calib_exact = 1;
148 }
149
150 /*
151  * Calculate TSC frequency using information from the CPUID leaf 0x15 'Time
152  * Stamp Counter and Nominal Core Crystal Clock'.  If leaf 0x15 is not
153  * functional, as it is on Skylake/Kabylake, try 0x16 'Processor Frequency
154  * Information'.  Leaf 0x16 is described in the SDM as informational only, but
155  * we can use this value until late calibration is complete.
156  */
157 static bool
158 tsc_freq_cpuid(uint64_t *res)
159 {
160         u_int regs[4];
161
162         if (cpu_high < 0x15)
163                 return (false);
164         do_cpuid(0x15, regs);
165         if (regs[0] != 0 && regs[1] != 0 && regs[2] != 0) {
166                 *res = (uint64_t)regs[2] * regs[1] / regs[0];
167                 return (true);
168         }
169
170         if (cpu_high < 0x16)
171                 return (false);
172         do_cpuid(0x16, regs);
173         if (regs[0] != 0) {
174                 *res = (uint64_t)regs[0] * 1000000;
175                 return (true);
176         }
177
178         return (false);
179 }
180
181 static bool
182 tsc_freq_intel_brand(uint64_t *res)
183 {
184         char brand[48];
185         u_int regs[4];
186         uint64_t freq;
187         char *p;
188         u_int i;
189
190         /*
191          * Intel Processor Identification and the CPUID Instruction
192          * Application Note 485.
193          * http://www.intel.com/assets/pdf/appnote/241618.pdf
194          */
195         if (cpu_exthigh >= 0x80000004) {
196                 p = brand;
197                 for (i = 0x80000002; i < 0x80000005; i++) {
198                         do_cpuid(i, regs);
199                         memcpy(p, regs, sizeof(regs));
200                         p += sizeof(regs);
201                 }
202                 p = NULL;
203                 for (i = 0; i < sizeof(brand) - 1; i++)
204                         if (brand[i] == 'H' && brand[i + 1] == 'z')
205                                 p = brand + i;
206                 if (p != NULL) {
207                         p -= 5;
208                         switch (p[4]) {
209                         case 'M':
210                                 i = 1;
211                                 break;
212                         case 'G':
213                                 i = 1000;
214                                 break;
215                         case 'T':
216                                 i = 1000000;
217                                 break;
218                         default:
219                                 return (false);
220                         }
221 #define C2D(c)  ((c) - '0')
222                         if (p[1] == '.') {
223                                 freq = C2D(p[0]) * 1000;
224                                 freq += C2D(p[2]) * 100;
225                                 freq += C2D(p[3]) * 10;
226                                 freq *= i * 1000;
227                         } else {
228                                 freq = C2D(p[0]) * 1000;
229                                 freq += C2D(p[1]) * 100;
230                                 freq += C2D(p[2]) * 10;
231                                 freq += C2D(p[3]);
232                                 freq *= i * 1000000;
233                         }
234 #undef C2D
235                         *res = freq;
236                         return (true);
237                 }
238         }
239         return (false);
240 }
241
242 static void
243 tsc_freq_tc(uint64_t *res)
244 {
245         uint64_t tsc1, tsc2;
246         int64_t overhead;
247         int count, i;
248
249         overhead = 0;
250         for (i = 0, count = 8; i < count; i++) {
251                 tsc1 = rdtsc_ordered();
252                 DELAY(0);
253                 tsc2 = rdtsc_ordered();
254                 if (i > 0)
255                         overhead += tsc2 - tsc1;
256         }
257         overhead /= count;
258
259         tsc1 = rdtsc_ordered();
260         DELAY(100000);
261         tsc2 = rdtsc_ordered();
262         tsc_freq = (tsc2 - tsc1 - overhead) * 10;
263 }
264
265 /*
266  * Try to determine the TSC frequency using CPUID or hypercalls.  If successful,
267  * this lets use the TSC for early DELAY() calls instead of the 8254 timer,
268  * which may be unreliable or entirely absent on contemporary systems.  However,
269  * avoid calibrating using the 8254 here so as to give hypervisors a chance to
270  * register a timecounter that can be used instead.
271  */
272 static void
273 probe_tsc_freq_early(void)
274 {
275 #ifdef __i386__
276         /* The TSC is known to be broken on certain CPUs. */
277         switch (cpu_vendor_id) {
278         case CPU_VENDOR_AMD:
279                 switch (cpu_id & 0xFF0) {
280                 case 0x500:
281                         /* K5 Model 0 */
282                         tsc_disabled = 1;
283                         return;
284                 }
285                 break;
286         case CPU_VENDOR_CENTAUR:
287                 switch (cpu_id & 0xff0) {
288                 case 0x540:
289                         /*
290                          * http://www.centtech.com/c6_data_sheet.pdf
291                          *
292                          * I-12 RDTSC may return incoherent values in EDX:EAX
293                          * I-13 RDTSC hangs when certain event counters are used
294                          */
295                         tsc_disabled = 1;
296                         return;
297                 }
298                 break;
299         case CPU_VENDOR_NSC:
300                 switch (cpu_id & 0xff0) {
301                 case 0x540:
302                         if ((cpu_id & CPUID_STEPPING) == 0) {
303                                 tsc_disabled = 1;
304                                 return;
305                         }
306                         break;
307                 }
308                 break;
309         }
310 #endif
311
312         switch (cpu_vendor_id) {
313         case CPU_VENDOR_AMD:
314         case CPU_VENDOR_HYGON:
315                 if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
316                     (vm_guest == VM_GUEST_NO &&
317                     CPUID_TO_FAMILY(cpu_id) >= 0x10))
318                         tsc_is_invariant = 1;
319                 if (cpu_feature & CPUID_SSE2) {
320                         tsc_timecounter.tc_get_timecount =
321                             tsc_get_timecount_mfence;
322                 }
323                 break;
324         case CPU_VENDOR_INTEL:
325                 if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
326                     (vm_guest == VM_GUEST_NO &&
327                     ((CPUID_TO_FAMILY(cpu_id) == 0x6 &&
328                     CPUID_TO_MODEL(cpu_id) >= 0xe) ||
329                     (CPUID_TO_FAMILY(cpu_id) == 0xf &&
330                     CPUID_TO_MODEL(cpu_id) >= 0x3))))
331                         tsc_is_invariant = 1;
332                 if (cpu_feature & CPUID_SSE2) {
333                         tsc_timecounter.tc_get_timecount =
334                             tsc_get_timecount_lfence;
335                 }
336                 break;
337         case CPU_VENDOR_CENTAUR:
338                 if (vm_guest == VM_GUEST_NO &&
339                     CPUID_TO_FAMILY(cpu_id) == 0x6 &&
340                     CPUID_TO_MODEL(cpu_id) >= 0xf &&
341                     (rdmsr(0x1203) & 0x100000000ULL) == 0)
342                         tsc_is_invariant = 1;
343                 if (cpu_feature & CPUID_SSE2) {
344                         tsc_timecounter.tc_get_timecount =
345                             tsc_get_timecount_lfence;
346                 }
347                 break;
348         }
349
350         if (tsc_freq_cpuid_vm()) {
351                 if (bootverbose)
352                         printf(
353                     "Early TSC frequency %juHz derived from hypervisor CPUID\n",
354                             (uintmax_t)tsc_freq);
355         } else if (vm_guest == VM_GUEST_VMWARE) {
356                 tsc_freq_vmware();
357                 if (bootverbose)
358                         printf(
359                     "Early TSC frequency %juHz derived from VMWare hypercall\n",
360                             (uintmax_t)tsc_freq);
361         } else if (tsc_freq_cpuid(&tsc_freq)) {
362                 /*
363                  * If possible, use the value obtained from CPUID as the initial
364                  * frequency.  This will be refined later during boot but is
365                  * good enough for now.  The 8254 PIT is not functional on some
366                  * newer platforms anyway, so don't delay our boot for what
367                  * might be a garbage result.  Late calibration is required if
368                  * the initial frequency was obtained from CPUID.16H, as the
369                  * derived value may be off by as much as 1%.
370                  */
371                 if (bootverbose)
372                         printf("Early TSC frequency %juHz derived from CPUID\n",
373                             (uintmax_t)tsc_freq);
374         }
375 }
376
377 /*
378  * If we were unable to determine the TSC frequency via CPU registers, try
379  * to calibrate against a known clock.
380  */
381 static void
382 probe_tsc_freq_late(void)
383 {
384         if (tsc_freq != 0)
385                 return;
386
387         if (tsc_skip_calibration) {
388                 /*
389                  * Try to parse the brand string to obtain the nominal TSC
390                  * frequency.
391                  */
392                 if (cpu_vendor_id == CPU_VENDOR_INTEL &&
393                     tsc_freq_intel_brand(&tsc_freq)) {
394                         if (bootverbose)
395                                 printf(
396                     "Early TSC frequency %juHz derived from brand string\n",
397                                     (uintmax_t)tsc_freq);
398                 } else {
399                         tsc_disabled = 1;
400                 }
401         } else {
402                 /*
403                  * Calibrate against a timecounter or the 8254 PIT.  This
404                  * estimate will be refined later in tsc_calib().
405                  */
406                 tsc_freq_tc(&tsc_freq);
407                 if (bootverbose)
408                         printf(
409                     "Early TSC frequency %juHz calibrated from 8254 PIT\n",
410                             (uintmax_t)tsc_freq);
411         }
412 }
413
414 void
415 start_TSC(void)
416 {
417         if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
418                 return;
419
420         probe_tsc_freq_late();
421
422         if (cpu_power_ecx & CPUID_PERF_STAT) {
423                 /*
424                  * XXX Some emulators expose host CPUID without actual support
425                  * for these MSRs.  We must test whether they really work.
426                  */
427                 wrmsr(MSR_MPERF, 0);
428                 wrmsr(MSR_APERF, 0);
429                 DELAY(10);
430                 if (rdmsr(MSR_MPERF) > 0 && rdmsr(MSR_APERF) > 0)
431                         tsc_perf_stat = 1;
432         }
433
434         /*
435          * Inform CPU accounting about our boot-time clock rate.  This will
436          * be updated if someone loads a cpufreq driver after boot that
437          * discovers a new max frequency.
438          *
439          * The frequency may also be updated after late calibration is complete;
440          * however, we register the TSC as the ticker now to avoid switching
441          * counters after much of the kernel has already booted and potentially
442          * sampled the CPU clock.
443          */
444         if (tsc_freq != 0)
445                 set_cputicker(rdtsc, tsc_freq, !tsc_is_invariant);
446
447         if (tsc_is_invariant)
448                 return;
449
450         /* Register to find out about changes in CPU frequency. */
451         tsc_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change,
452             tsc_freq_changing, NULL, EVENTHANDLER_PRI_FIRST);
453         tsc_post_tag = EVENTHANDLER_REGISTER(cpufreq_post_change,
454             tsc_freq_changed, NULL, EVENTHANDLER_PRI_FIRST);
455         tsc_levels_tag = EVENTHANDLER_REGISTER(cpufreq_levels_changed,
456             tsc_levels_changed, NULL, EVENTHANDLER_PRI_ANY);
457 }
458
459 #ifdef SMP
460
461 /*
462  * RDTSC is not a serializing instruction, and does not drain
463  * instruction stream, so we need to drain the stream before executing
464  * it.  It could be fixed by use of RDTSCP, except the instruction is
465  * not available everywhere.
466  *
467  * Use CPUID for draining in the boot-time SMP constistency test.  The
468  * timecounters use MFENCE for AMD CPUs, and LFENCE for others (Intel
469  * and VIA) when SSE2 is present, and nothing on older machines which
470  * also do not issue RDTSC prematurely.  There, testing for SSE2 and
471  * vendor is too cumbersome, and we learn about TSC presence from CPUID.
472  *
473  * Do not use do_cpuid(), since we do not need CPUID results, which
474  * have to be written into memory with do_cpuid().
475  */
476 #define TSC_READ(x)                                                     \
477 static void                                                             \
478 tsc_read_##x(void *arg)                                                 \
479 {                                                                       \
480         uint64_t *tsc = arg;                                            \
481         u_int cpu = PCPU_GET(cpuid);                                    \
482                                                                         \
483         __asm __volatile("cpuid" : : : "eax", "ebx", "ecx", "edx");     \
484         tsc[cpu * 3 + x] = rdtsc();                                     \
485 }
486 TSC_READ(0)
487 TSC_READ(1)
488 TSC_READ(2)
489 #undef TSC_READ
490
491 #define N       1000
492
493 static void
494 comp_smp_tsc(void *arg)
495 {
496         uint64_t *tsc;
497         int64_t d1, d2;
498         u_int cpu = PCPU_GET(cpuid);
499         u_int i, j, size;
500
501         size = (mp_maxid + 1) * 3;
502         for (i = 0, tsc = arg; i < N; i++, tsc += size)
503                 CPU_FOREACH(j) {
504                         if (j == cpu)
505                                 continue;
506                         d1 = tsc[cpu * 3 + 1] - tsc[j * 3];
507                         d2 = tsc[cpu * 3 + 2] - tsc[j * 3 + 1];
508                         if (d1 <= 0 || d2 <= 0) {
509                                 smp_tsc = 0;
510                                 return;
511                         }
512                 }
513 }
514
515 static void
516 adj_smp_tsc(void *arg)
517 {
518         uint64_t *tsc;
519         int64_t d, min, max;
520         u_int cpu = PCPU_GET(cpuid);
521         u_int first, i, size;
522
523         first = CPU_FIRST();
524         if (cpu == first)
525                 return;
526         min = INT64_MIN;
527         max = INT64_MAX;
528         size = (mp_maxid + 1) * 3;
529         for (i = 0, tsc = arg; i < N; i++, tsc += size) {
530                 d = tsc[first * 3] - tsc[cpu * 3 + 1];
531                 if (d > min)
532                         min = d;
533                 d = tsc[first * 3 + 1] - tsc[cpu * 3 + 2];
534                 if (d > min)
535                         min = d;
536                 d = tsc[first * 3 + 1] - tsc[cpu * 3];
537                 if (d < max)
538                         max = d;
539                 d = tsc[first * 3 + 2] - tsc[cpu * 3 + 1];
540                 if (d < max)
541                         max = d;
542         }
543         if (min > max)
544                 return;
545         d = min / 2 + max / 2;
546         __asm __volatile (
547                 "movl $0x10, %%ecx\n\t"
548                 "rdmsr\n\t"
549                 "addl %%edi, %%eax\n\t"
550                 "adcl %%esi, %%edx\n\t"
551                 "wrmsr\n"
552                 : /* No output */
553                 : "D" ((uint32_t)d), "S" ((uint32_t)(d >> 32))
554                 : "ax", "cx", "dx", "cc"
555         );
556 }
557
558 static int
559 test_tsc(int adj_max_count)
560 {
561         uint64_t *data, *tsc;
562         u_int i, size, adj;
563
564         if ((!smp_tsc && !tsc_is_invariant))
565                 return (-100);
566         /*
567          * Misbehavior of TSC under VirtualBox has been observed.  In
568          * particular, threads doing small (~1 second) sleeps may miss their
569          * wakeup and hang around in sleep state, causing hangs on shutdown.
570          */
571         if (vm_guest == VM_GUEST_VBOX)
572                 return (0);
573
574         TSENTER();
575         size = (mp_maxid + 1) * 3;
576         data = malloc(sizeof(*data) * size * N, M_TEMP, M_WAITOK);
577         adj = 0;
578 retry:
579         for (i = 0, tsc = data; i < N; i++, tsc += size)
580                 smp_rendezvous(tsc_read_0, tsc_read_1, tsc_read_2, tsc);
581         smp_tsc = 1;    /* XXX */
582         smp_rendezvous(smp_no_rendezvous_barrier, comp_smp_tsc,
583             smp_no_rendezvous_barrier, data);
584         if (!smp_tsc && adj < adj_max_count) {
585                 adj++;
586                 smp_rendezvous(smp_no_rendezvous_barrier, adj_smp_tsc,
587                     smp_no_rendezvous_barrier, data);
588                 goto retry;
589         }
590         free(data, M_TEMP);
591         if (bootverbose)
592                 printf("SMP: %sed TSC synchronization test%s\n",
593                     smp_tsc ? "pass" : "fail", 
594                     adj > 0 ? " after adjustment" : "");
595         TSEXIT();
596         if (smp_tsc && tsc_is_invariant) {
597                 switch (cpu_vendor_id) {
598                 case CPU_VENDOR_AMD:
599                 case CPU_VENDOR_HYGON:
600                         /*
601                          * Processor Programming Reference (PPR) for AMD
602                          * Family 17h states that the TSC uses a common
603                          * reference for all sockets, cores and threads.
604                          */
605                         if (CPUID_TO_FAMILY(cpu_id) >= 0x17)
606                                 return (1000);
607                         /*
608                          * Starting with Family 15h processors, TSC clock
609                          * source is in the north bridge.  Check whether
610                          * we have a single-socket/multi-core platform.
611                          * XXX Need more work for complex cases.
612                          */
613                         if (CPUID_TO_FAMILY(cpu_id) < 0x15 ||
614                             (amd_feature2 & AMDID2_CMP) == 0 ||
615                             smp_cpus > (cpu_procinfo2 & AMDID_CMP_CORES) + 1)
616                                 break;
617                         return (1000);
618                 case CPU_VENDOR_INTEL:
619                         /*
620                          * XXX Assume Intel platforms have synchronized TSCs.
621                          */
622                         return (1000);
623                 }
624                 return (800);
625         }
626         return (-100);
627 }
628
629 #undef N
630
631 #endif /* SMP */
632
633 static void
634 init_TSC_tc(void)
635 {
636         uint64_t max_freq;
637         int shift;
638
639         if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
640                 return;
641
642         /*
643          * Limit timecounter frequency to fit in an int and prevent it from
644          * overflowing too fast.
645          */
646         max_freq = UINT_MAX;
647
648         /*
649          * Intel CPUs without a C-state invariant TSC can stop the TSC
650          * in either C2 or C3.  Disable use of C2 and C3 while using
651          * the TSC as the timecounter.  The timecounter can be changed
652          * to enable C2 and C3.
653          *
654          * Note that the TSC is used as the cputicker for computing
655          * thread runtime regardless of the timecounter setting, so
656          * using an alternate timecounter and enabling C2 or C3 can
657          * result incorrect runtimes for kernel idle threads (but not
658          * for any non-idle threads).
659          */
660         if (cpu_vendor_id == CPU_VENDOR_INTEL &&
661             (amd_pminfo & AMDPM_TSC_INVARIANT) == 0) {
662                 tsc_timecounter.tc_flags |= TC_FLAGS_C2STOP;
663                 if (bootverbose)
664                         printf("TSC timecounter disables C2 and C3.\n");
665         }
666
667         /*
668          * We can not use the TSC in SMP mode unless the TSCs on all CPUs
669          * are synchronized.  If the user is sure that the system has
670          * synchronized TSCs, set kern.timecounter.smp_tsc tunable to a
671          * non-zero value.  The TSC seems unreliable in virtualized SMP
672          * environments, so it is set to a negative quality in those cases.
673          */
674 #ifdef SMP
675         if (mp_ncpus > 1)
676                 tsc_timecounter.tc_quality = test_tsc(smp_tsc_adjust);
677         else
678 #endif /* SMP */
679         if (tsc_is_invariant)
680                 tsc_timecounter.tc_quality = 1000;
681         max_freq >>= tsc_shift;
682
683         for (shift = 0; shift <= 31 && (tsc_freq >> shift) > max_freq; shift++)
684                 ;
685
686         /*
687          * Timecounter implementation selection, top to bottom:
688          * - If RDTSCP is available, use RDTSCP.
689          * - If fence instructions are provided (SSE2), use LFENCE;RDTSC
690          *   on Intel, and MFENCE;RDTSC on AMD.
691          * - For really old CPUs, just use RDTSC.
692          */
693         if ((amd_feature & AMDID_RDTSCP) != 0) {
694                 tsc_timecounter.tc_get_timecount = shift > 0 ?
695                     tscp_get_timecount_low : tscp_get_timecount;
696         } else if ((cpu_feature & CPUID_SSE2) != 0 && mp_ncpus > 1) {
697                 if (cpu_vendor_id == CPU_VENDOR_AMD ||
698                     cpu_vendor_id == CPU_VENDOR_HYGON) {
699                         tsc_timecounter.tc_get_timecount = shift > 0 ?
700                             tsc_get_timecount_low_mfence :
701                             tsc_get_timecount_mfence;
702                 } else {
703                         tsc_timecounter.tc_get_timecount = shift > 0 ?
704                             tsc_get_timecount_low_lfence :
705                             tsc_get_timecount_lfence;
706                 }
707         } else {
708                 tsc_timecounter.tc_get_timecount = shift > 0 ?
709                     tsc_get_timecount_low : tsc_get_timecount;
710         }
711         if (shift > 0) {
712                 tsc_timecounter.tc_name = "TSC-low";
713                 if (bootverbose)
714                         printf("TSC timecounter discards lower %d bit(s)\n",
715                             shift);
716         }
717         if (tsc_freq != 0) {
718                 tsc_timecounter.tc_frequency = tsc_freq >> shift;
719                 tsc_timecounter.tc_priv = (void *)(intptr_t)shift;
720
721                 /*
722                  * Timecounter registration is deferred until after late
723                  * calibration is finished.
724                  */
725         }
726 }
727 SYSINIT(tsc_tc, SI_SUB_SMP, SI_ORDER_ANY, init_TSC_tc, NULL);
728
729 static void
730 tsc_update_freq(uint64_t new_freq)
731 {
732         atomic_store_rel_64(&tsc_freq, new_freq);
733         atomic_store_rel_64(&tsc_timecounter.tc_frequency,
734             new_freq >> (int)(intptr_t)tsc_timecounter.tc_priv);
735 }
736
737 void
738 tsc_init(void)
739 {
740         if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
741                 return;
742
743         probe_tsc_freq_early();
744 }
745
746 /*
747  * Perform late calibration of the TSC frequency once ACPI-based timecounters
748  * are available.  At this point timehands are not set up, so we read the
749  * highest-quality timecounter directly rather than using (s)binuptime().
750  */
751 void
752 tsc_calibrate(void)
753 {
754         uint64_t freq;
755
756         if (tsc_disabled)
757                 return;
758         if (tsc_early_calib_exact)
759                 goto calibrated;
760
761         fpu_kern_enter(curthread, NULL, FPU_KERN_NOCTX);
762         freq = clockcalib(rdtsc_ordered, "TSC");
763         fpu_kern_leave(curthread, NULL);
764         tsc_update_freq(freq);
765
766 calibrated:
767         tc_init(&tsc_timecounter);
768         set_cputicker(rdtsc, tsc_freq, !tsc_is_invariant);
769 }
770
771 void
772 resume_TSC(void)
773 {
774 #ifdef SMP
775         int quality;
776
777         /* If TSC was not good on boot, it is unlikely to become good now. */
778         if (tsc_timecounter.tc_quality < 0)
779                 return;
780         /* Nothing to do with UP. */
781         if (mp_ncpus < 2)
782                 return;
783
784         /*
785          * If TSC was good, a single synchronization should be enough,
786          * but honour smp_tsc_adjust if it's set.
787          */
788         quality = test_tsc(MAX(smp_tsc_adjust, 1));
789         if (quality != tsc_timecounter.tc_quality) {
790                 printf("TSC timecounter quality changed: %d -> %d\n",
791                     tsc_timecounter.tc_quality, quality);
792                 tsc_timecounter.tc_quality = quality;
793         }
794 #endif /* SMP */
795 }
796
797 /*
798  * When cpufreq levels change, find out about the (new) max frequency.  We
799  * use this to update CPU accounting in case it got a lower estimate at boot.
800  */
801 static void
802 tsc_levels_changed(void *arg, int unit)
803 {
804         device_t cf_dev;
805         struct cf_level *levels;
806         int count, error;
807         uint64_t max_freq;
808
809         /* Only use values from the first CPU, assuming all are equal. */
810         if (unit != 0)
811                 return;
812
813         /* Find the appropriate cpufreq device instance. */
814         cf_dev = devclass_get_device(devclass_find("cpufreq"), unit);
815         if (cf_dev == NULL) {
816                 printf("tsc_levels_changed() called but no cpufreq device?\n");
817                 return;
818         }
819
820         /* Get settings from the device and find the max frequency. */
821         count = 64;
822         levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT);
823         if (levels == NULL)
824                 return;
825         error = CPUFREQ_LEVELS(cf_dev, levels, &count);
826         if (error == 0 && count != 0) {
827                 max_freq = (uint64_t)levels[0].total_set.freq * 1000000;
828                 set_cputicker(rdtsc, max_freq, 1);
829         } else
830                 printf("tsc_levels_changed: no max freq found\n");
831         free(levels, M_TEMP);
832 }
833
834 /*
835  * If the TSC timecounter is in use, veto the pending change.  It may be
836  * possible in the future to handle a dynamically-changing timecounter rate.
837  */
838 static void
839 tsc_freq_changing(void *arg, const struct cf_level *level, int *status)
840 {
841
842         if (*status != 0 || timecounter != &tsc_timecounter)
843                 return;
844
845         printf("timecounter TSC must not be in use when "
846             "changing frequencies; change denied\n");
847         *status = EBUSY;
848 }
849
850 /* Update TSC freq with the value indicated by the caller. */
851 static void
852 tsc_freq_changed(void *arg, const struct cf_level *level, int status)
853 {
854         uint64_t freq;
855
856         /* If there was an error during the transition, don't do anything. */
857         if (tsc_disabled || status != 0)
858                 return;
859
860         /* Total setting for this level gives the new frequency in MHz. */
861         freq = (uint64_t)level->total_set.freq * 1000000;
862         tsc_update_freq(freq);
863 }
864
865 static int
866 sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
867 {
868         int error;
869         uint64_t freq;
870
871         freq = atomic_load_acq_64(&tsc_freq);
872         if (freq == 0)
873                 return (EOPNOTSUPP);
874         error = sysctl_handle_64(oidp, &freq, 0, req);
875         if (error == 0 && req->newptr != NULL)
876                 tsc_update_freq(freq);
877         return (error);
878 }
879 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq,
880     CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE,
881     0, 0, sysctl_machdep_tsc_freq, "QU",
882     "Time Stamp Counter frequency");
883
884 static u_int
885 tsc_get_timecount(struct timecounter *tc __unused)
886 {
887
888         return (rdtsc32());
889 }
890
891 static u_int
892 tscp_get_timecount(struct timecounter *tc __unused)
893 {
894
895         return (rdtscp32());
896 }
897
898 static inline u_int
899 tsc_get_timecount_low(struct timecounter *tc)
900 {
901         uint32_t rv;
902
903         __asm __volatile("rdtsc; shrd %%cl, %%edx, %0"
904             : "=a" (rv) : "c" ((int)(intptr_t)tc->tc_priv) : "edx");
905         return (rv);
906 }
907
908 static u_int
909 tscp_get_timecount_low(struct timecounter *tc)
910 {
911         uint32_t rv;
912
913         __asm __volatile("rdtscp; movl %1, %%ecx; shrd %%cl, %%edx, %0"
914             : "=&a" (rv) : "m" (tc->tc_priv) : "ecx", "edx");
915         return (rv);
916 }
917
918 static u_int
919 tsc_get_timecount_lfence(struct timecounter *tc __unused)
920 {
921
922         lfence();
923         return (rdtsc32());
924 }
925
926 static u_int
927 tsc_get_timecount_low_lfence(struct timecounter *tc)
928 {
929
930         lfence();
931         return (tsc_get_timecount_low(tc));
932 }
933
934 static u_int
935 tsc_get_timecount_mfence(struct timecounter *tc __unused)
936 {
937
938         mfence();
939         return (rdtsc32());
940 }
941
942 static u_int
943 tsc_get_timecount_low_mfence(struct timecounter *tc)
944 {
945
946         mfence();
947         return (tsc_get_timecount_low(tc));
948 }
949
950 static uint32_t
951 x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
952 {
953
954         vdso_th->th_algo = VDSO_TH_ALGO_X86_TSC;
955         vdso_th->th_x86_shift = (int)(intptr_t)tc->tc_priv;
956         vdso_th->th_x86_hpet_idx = 0xffffffff;
957         vdso_th->th_x86_pvc_last_systime = 0;
958         vdso_th->th_x86_pvc_stable_mask = 0;
959         bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
960         return (1);
961 }
962
963 #ifdef COMPAT_FREEBSD32
964 static uint32_t
965 x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
966     struct timecounter *tc)
967 {
968
969         vdso_th32->th_algo = VDSO_TH_ALGO_X86_TSC;
970         vdso_th32->th_x86_shift = (int)(intptr_t)tc->tc_priv;
971         vdso_th32->th_x86_hpet_idx = 0xffffffff;
972         vdso_th32->th_x86_pvc_last_systime = 0;
973         vdso_th32->th_x86_pvc_stable_mask = 0;
974         bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res));
975         return (1);
976 }
977 #endif