Vendor import of llvm release_39 branch r276489:
[freebsd.git] / lib / Target / Hexagon / RDFLiveness.cpp
1 //===--- RDFLiveness.cpp --------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Computation of the liveness information from the data-flow graph.
11 //
12 // The main functionality of this code is to compute block live-in
13 // information. With the live-in information in place, the placement
14 // of kill flags can also be recalculated.
15 //
16 // The block live-in calculation is based on the ideas from the following
17 // publication:
18 //
19 // Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin.
20 // "Efficient Liveness Computation Using Merge Sets and DJ-Graphs."
21 // ACM Transactions on Architecture and Code Optimization, Association for
22 // Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance
23 // and Embedded Architectures and Compilers", 8 (4),
24 // <10.1145/2086696.2086706>. <hal-00647369>
25 //
26 #include "RDFGraph.h"
27 #include "RDFLiveness.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineDominanceFrontier.h"
31 #include "llvm/CodeGen/MachineDominators.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/Target/TargetRegisterInfo.h"
35
36 using namespace llvm;
37 using namespace rdf;
38
39 namespace llvm {
40 namespace rdf {
41   template<>
42   raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) {
43     OS << '{';
44     for (auto I : P.Obj) {
45       OS << ' ' << Print<RegisterRef>(I.first, P.G) << '{';
46       for (auto J = I.second.begin(), E = I.second.end(); J != E; ) {
47         OS << Print<NodeId>(*J, P.G);
48         if (++J != E)
49           OS << ',';
50       }
51       OS << '}';
52     }
53     OS << " }";
54     return OS;
55   }
56 } // namespace rdf
57 } // namespace llvm
58
59 // The order in the returned sequence is the order of reaching defs in the
60 // upward traversal: the first def is the closest to the given reference RefA,
61 // the next one is further up, and so on.
62 // The list ends at a reaching phi def, or when the reference from RefA is
63 // covered by the defs in the list (see FullChain).
64 // This function provides two modes of operation:
65 // (1) Returning the sequence of reaching defs for a particular reference
66 // node. This sequence will terminate at the first phi node [1].
67 // (2) Returning a partial sequence of reaching defs, where the final goal
68 // is to traverse past phi nodes to the actual defs arising from the code
69 // itself.
70 // In mode (2), the register reference for which the search was started
71 // may be different from the reference node RefA, for which this call was
72 // made, hence the argument RefRR, which holds the original register.
73 // Also, some definitions may have already been encountered in a previous
74 // call that will influence register covering. The register references
75 // already defined are passed in through DefRRs.
76 // In mode (1), the "continuation" considerations do not apply, and the
77 // RefRR is the same as the register in RefA, and the set DefRRs is empty.
78 //
79 // [1] It is possible for multiple phi nodes to be included in the returned
80 // sequence:
81 //   SubA = phi ...
82 //   SubB = phi ...
83 //   ...  = SuperAB(rdef:SubA), SuperAB"(rdef:SubB)
84 // However, these phi nodes are independent from one another in terms of
85 // the data-flow.
86
87 NodeList Liveness::getAllReachingDefs(RegisterRef RefRR,
88       NodeAddr<RefNode*> RefA, bool FullChain, const RegisterSet &DefRRs) {
89   SetVector<NodeId> DefQ;
90   SetVector<NodeId> Owners;
91
92   // The initial queue should not have reaching defs for shadows. The
93   // whole point of a shadow is that it will have a reaching def that
94   // is not aliased to the reaching defs of the related shadows.
95   NodeId Start = RefA.Id;
96   auto SNA = DFG.addr<RefNode*>(Start);
97   if (NodeId RD = SNA.Addr->getReachingDef())
98     DefQ.insert(RD);
99
100   // Collect all the reaching defs, going up until a phi node is encountered,
101   // or there are no more reaching defs. From this set, the actual set of
102   // reaching defs will be selected.
103   // The traversal upwards must go on until a covering def is encountered.
104   // It is possible that a collection of non-covering (individually) defs
105   // will be sufficient, but keep going until a covering one is found.
106   for (unsigned i = 0; i < DefQ.size(); ++i) {
107     auto TA = DFG.addr<DefNode*>(DefQ[i]);
108     if (TA.Addr->getFlags() & NodeAttrs::PhiRef)
109       continue;
110     // Stop at the covering/overwriting def of the initial register reference.
111     RegisterRef RR = TA.Addr->getRegRef();
112     if (RAI.covers(RR, RefRR)) {
113       uint16_t Flags = TA.Addr->getFlags();
114       if (!(Flags & NodeAttrs::Preserving))
115         continue;
116     }
117     // Get the next level of reaching defs. This will include multiple
118     // reaching defs for shadows.
119     for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA))
120       if (auto RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
121         DefQ.insert(RD);
122   }
123
124   // Remove all non-phi defs that are not aliased to RefRR, and collect
125   // the owners of the remaining defs.
126   SetVector<NodeId> Defs;
127   for (auto N : DefQ) {
128     auto TA = DFG.addr<DefNode*>(N);
129     bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef;
130     if (!IsPhi && !RAI.alias(RefRR, TA.Addr->getRegRef()))
131       continue;
132     Defs.insert(TA.Id);
133     Owners.insert(TA.Addr->getOwner(DFG).Id);
134   }
135
136   // Return the MachineBasicBlock containing a given instruction.
137   auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* {
138     if (IA.Addr->getKind() == NodeAttrs::Stmt)
139       return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent();
140     assert(IA.Addr->getKind() == NodeAttrs::Phi);
141     NodeAddr<PhiNode*> PA = IA;
142     NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG);
143     return BA.Addr->getCode();
144   };
145   // Less(A,B) iff instruction A is further down in the dominator tree than B.
146   auto Less = [&Block,this] (NodeId A, NodeId B) -> bool {
147     if (A == B)
148       return false;
149     auto OA = DFG.addr<InstrNode*>(A), OB = DFG.addr<InstrNode*>(B);
150     MachineBasicBlock *BA = Block(OA), *BB = Block(OB);
151     if (BA != BB)
152       return MDT.dominates(BB, BA);
153     // They are in the same block.
154     bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt;
155     bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt;
156     if (StmtA) {
157       if (!StmtB)   // OB is a phi and phis dominate statements.
158         return true;
159       auto CA = NodeAddr<StmtNode*>(OA).Addr->getCode();
160       auto CB = NodeAddr<StmtNode*>(OB).Addr->getCode();
161       // The order must be linear, so tie-break such equalities.
162       if (CA == CB)
163         return A < B;
164       return MDT.dominates(CB, CA);
165     } else {
166       // OA is a phi.
167       if (StmtB)
168         return false;
169       // Both are phis. There is no ordering between phis (in terms of
170       // the data-flow), so tie-break this via node id comparison.
171       return A < B;
172     }
173   };
174
175   std::vector<NodeId> Tmp(Owners.begin(), Owners.end());
176   std::sort(Tmp.begin(), Tmp.end(), Less);
177
178   // The vector is a list of instructions, so that defs coming from
179   // the same instruction don't need to be artificially ordered.
180   // Then, when computing the initial segment, and iterating over an
181   // instruction, pick the defs that contribute to the covering (i.e. is
182   // not covered by previously added defs). Check the defs individually,
183   // i.e. first check each def if is covered or not (without adding them
184   // to the tracking set), and then add all the selected ones.
185
186   // The reason for this is this example:
187   // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes).
188   // *d3<C>              If A \incl BuC, and B \incl AuC, then *d2 would be
189   //                     covered if we added A first, and A would be covered
190   //                     if we added B first.
191
192   NodeList RDefs;
193   RegisterSet RRs = DefRRs;
194
195   auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool {
196     return TA.Addr->getKind() == NodeAttrs::Def &&
197            Defs.count(TA.Id);
198   };
199   for (auto T : Tmp) {
200     if (!FullChain && RAI.covers(RRs, RefRR))
201       break;
202     auto TA = DFG.addr<InstrNode*>(T);
203     bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA);
204     NodeList Ds;
205     for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) {
206       auto QR = DA.Addr->getRegRef();
207       // Add phi defs even if they are covered by subsequent defs. This is
208       // for cases where the reached use is not covered by any of the defs
209       // encountered so far: the phi def is needed to expose the liveness
210       // of that use to the entry of the block.
211       // Example:
212       //   phi d1<R3>(,d2,), ...  Phi def d1 is covered by d2.
213       //   d2<R3>(d1,,u3), ...
214       //   ..., u3<D1>(d2)        This use needs to be live on entry.
215       if (FullChain || IsPhi || !RAI.covers(RRs, QR))
216         Ds.push_back(DA);
217     }
218     RDefs.insert(RDefs.end(), Ds.begin(), Ds.end());
219     for (NodeAddr<DefNode*> DA : Ds) {
220       // When collecting a full chain of definitions, do not consider phi
221       // defs to actually define a register.
222       uint16_t Flags = DA.Addr->getFlags();
223       if (!FullChain || !(Flags & NodeAttrs::PhiRef))
224         if (!(Flags & NodeAttrs::Preserving))
225           RRs.insert(DA.Addr->getRegRef());
226     }
227   }
228
229   return RDefs;
230 }
231
232
233 static const RegisterSet NoRegs;
234
235 NodeList Liveness::getAllReachingDefs(NodeAddr<RefNode*> RefA) {
236   return getAllReachingDefs(RefA.Addr->getRegRef(), RefA, false, NoRegs);
237 }
238
239
240 NodeSet Liveness::getAllReachingDefsRec(RegisterRef RefRR,
241       NodeAddr<RefNode*> RefA, NodeSet &Visited, const NodeSet &Defs) {
242   // Collect all defined registers. Do not consider phis to be defining
243   // anything, only collect "real" definitions.
244   RegisterSet DefRRs;
245   for (const auto D : Defs) {
246     const auto DA = DFG.addr<const DefNode*>(D);
247     if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
248       DefRRs.insert(DA.Addr->getRegRef());
249   }
250
251   auto RDs = getAllReachingDefs(RefRR, RefA, true, DefRRs);
252   if (RDs.empty())
253     return Defs;
254
255   // Make a copy of the preexisting definitions and add the newly found ones.
256   NodeSet TmpDefs = Defs;
257   for (auto R : RDs)
258     TmpDefs.insert(R.Id);
259
260   NodeSet Result = Defs;
261
262   for (NodeAddr<DefNode*> DA : RDs) {
263     Result.insert(DA.Id);
264     if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
265       continue;
266     NodeAddr<PhiNode*> PA = DA.Addr->getOwner(DFG);
267     if (Visited.count(PA.Id))
268       continue;
269     Visited.insert(PA.Id);
270     // Go over all phi uses and get the reaching defs for each use.
271     for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
272       const auto &T = getAllReachingDefsRec(RefRR, U, Visited, TmpDefs);
273       Result.insert(T.begin(), T.end());
274     }
275   }
276
277   return Result;
278 }
279
280
281 NodeSet Liveness::getAllReachedUses(RegisterRef RefRR,
282       NodeAddr<DefNode*> DefA, const RegisterSet &DefRRs) {
283   NodeSet Uses;
284
285   // If the original register is already covered by all the intervening
286   // defs, no more uses can be reached.
287   if (RAI.covers(DefRRs, RefRR))
288     return Uses;
289
290   // Add all directly reached uses.
291   NodeId U = DefA.Addr->getReachedUse();
292   while (U != 0) {
293     auto UA = DFG.addr<UseNode*>(U);
294     auto UR = UA.Addr->getRegRef();
295     if (RAI.alias(RefRR, UR) && !RAI.covers(DefRRs, UR))
296       Uses.insert(U);
297     U = UA.Addr->getSibling();
298   }
299
300   // Traverse all reached defs.
301   for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) {
302     auto DA = DFG.addr<DefNode*>(D);
303     NextD = DA.Addr->getSibling();
304     auto DR = DA.Addr->getRegRef();
305     // If this def is already covered, it cannot reach anything new.
306     // Similarly, skip it if it is not aliased to the interesting register.
307     if (RAI.covers(DefRRs, DR) || !RAI.alias(RefRR, DR))
308       continue;
309     NodeSet T;
310     if (DA.Addr->getFlags() & NodeAttrs::Preserving) {
311       // If it is a preserving def, do not update the set of intervening defs.
312       T = getAllReachedUses(RefRR, DA, DefRRs);
313     } else {
314       RegisterSet NewDefRRs = DefRRs;
315       NewDefRRs.insert(DR);
316       T = getAllReachedUses(RefRR, DA, NewDefRRs);
317     }
318     Uses.insert(T.begin(), T.end());
319   }
320   return Uses;
321 }
322
323
324 void Liveness::computePhiInfo() {
325   RealUseMap.clear();
326
327   NodeList Phis;
328   NodeAddr<FuncNode*> FA = DFG.getFunc();
329   auto Blocks = FA.Addr->members(DFG);
330   for (NodeAddr<BlockNode*> BA : Blocks) {
331     auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
332     Phis.insert(Phis.end(), Ps.begin(), Ps.end());
333   }
334
335   // phi use -> (map: reaching phi -> set of registers defined in between)
336   std::map<NodeId,std::map<NodeId,RegisterSet>> PhiUp;
337   std::vector<NodeId> PhiUQ;  // Work list of phis for upward propagation.
338
339   // Go over all phis.
340   for (NodeAddr<PhiNode*> PhiA : Phis) {
341     // Go over all defs and collect the reached uses that are non-phi uses
342     // (i.e. the "real uses").
343     auto &RealUses = RealUseMap[PhiA.Id];
344     auto PhiRefs = PhiA.Addr->members(DFG);
345
346     // Have a work queue of defs whose reached uses need to be found.
347     // For each def, add to the queue all reached (non-phi) defs.
348     SetVector<NodeId> DefQ;
349     NodeSet PhiDefs;
350     for (auto R : PhiRefs) {
351       if (!DFG.IsRef<NodeAttrs::Def>(R))
352         continue;
353       DefQ.insert(R.Id);
354       PhiDefs.insert(R.Id);
355     }
356     for (unsigned i = 0; i < DefQ.size(); ++i) {
357       NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]);
358       NodeId UN = DA.Addr->getReachedUse();
359       while (UN != 0) {
360         NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN);
361         if (!(A.Addr->getFlags() & NodeAttrs::PhiRef))
362           RealUses[getRestrictedRegRef(A)].insert(A.Id);
363         UN = A.Addr->getSibling();
364       }
365       NodeId DN = DA.Addr->getReachedDef();
366       while (DN != 0) {
367         NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN);
368         for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) {
369           uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags();
370           // Must traverse the reached-def chain. Consider:
371           //   def(D0) -> def(R0) -> def(R0) -> use(D0)
372           // The reachable use of D0 passes through a def of R0.
373           if (!(Flags & NodeAttrs::PhiRef))
374             DefQ.insert(T.Id);
375         }
376         DN = A.Addr->getSibling();
377       }
378     }
379     // Filter out these uses that appear to be reachable, but really
380     // are not. For example:
381     //
382     // R1:0 =          d1
383     //      = R1:0     u2     Reached by d1.
384     //   R0 =          d3
385     //      = R1:0     u4     Still reached by d1: indirectly through
386     //                        the def d3.
387     //   R1 =          d5
388     //      = R1:0     u6     Not reached by d1 (covered collectively
389     //                        by d3 and d5), but following reached
390     //                        defs and uses from d1 will lead here.
391     auto HasDef = [&PhiDefs] (NodeAddr<DefNode*> DA) -> bool {
392       return PhiDefs.count(DA.Id);
393     };
394     for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) {
395       // For each reached register UI->first, there is a set UI->second, of
396       // uses of it. For each such use, check if it is reached by this phi,
397       // i.e. check if the set of its reaching uses intersects the set of
398       // this phi's defs.
399       auto &Uses = UI->second;
400       for (auto I = Uses.begin(), E = Uses.end(); I != E; ) {
401         auto UA = DFG.addr<UseNode*>(*I);
402         NodeList RDs = getAllReachingDefs(UI->first, UA);
403         if (std::any_of(RDs.begin(), RDs.end(), HasDef))
404           ++I;
405         else
406           I = Uses.erase(I);
407       }
408       if (Uses.empty())
409         UI = RealUses.erase(UI);
410       else
411         ++UI;
412     }
413
414     // If this phi reaches some "real" uses, add it to the queue for upward
415     // propagation.
416     if (!RealUses.empty())
417       PhiUQ.push_back(PhiA.Id);
418
419     // Go over all phi uses and check if the reaching def is another phi.
420     // Collect the phis that are among the reaching defs of these uses.
421     // While traversing the list of reaching defs for each phi use, collect
422     // the set of registers defined between this phi (Phi) and the owner phi
423     // of the reaching def.
424     for (auto I : PhiRefs) {
425       if (!DFG.IsRef<NodeAttrs::Use>(I))
426         continue;
427       NodeAddr<UseNode*> UA = I;
428       auto &UpMap = PhiUp[UA.Id];
429       RegisterSet DefRRs;
430       for (NodeAddr<DefNode*> DA : getAllReachingDefs(UA)) {
431         if (DA.Addr->getFlags() & NodeAttrs::PhiRef)
432           UpMap[DA.Addr->getOwner(DFG).Id] = DefRRs;
433         else
434           DefRRs.insert(DA.Addr->getRegRef());
435       }
436     }
437   }
438
439   if (Trace) {
440     dbgs() << "Phi-up-to-phi map:\n";
441     for (auto I : PhiUp) {
442       dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {";
443       for (auto R : I.second)
444         dbgs() << ' ' << Print<NodeId>(R.first, DFG)
445                << Print<RegisterSet>(R.second, DFG);
446       dbgs() << " }\n";
447     }
448   }
449
450   // Propagate the reached registers up in the phi chain.
451   //
452   // The following type of situation needs careful handling:
453   //
454   //   phi d1<R1:0>  (1)
455   //        |
456   //   ... d2<R1>
457   //        |
458   //   phi u3<R1:0>  (2)
459   //        |
460   //   ... u4<R1>
461   //
462   // The phi node (2) defines a register pair R1:0, and reaches a "real"
463   // use u4 of just R1. The same phi node is also known to reach (upwards)
464   // the phi node (1). However, the use u4 is not reached by phi (1),
465   // because of the intervening definition d2 of R1. The data flow between
466   // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0.
467   //
468   // When propagating uses up the phi chains, get the all reaching defs
469   // for a given phi use, and traverse the list until the propagated ref
470   // is covered, or until or until reaching the final phi. Only assume
471   // that the reference reaches the phi in the latter case.
472
473   for (unsigned i = 0; i < PhiUQ.size(); ++i) {
474     auto PA = DFG.addr<PhiNode*>(PhiUQ[i]);
475     auto &RealUses = RealUseMap[PA.Id];
476     for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
477       NodeAddr<UseNode*> UA = U;
478       auto &UpPhis = PhiUp[UA.Id];
479       for (auto UP : UpPhis) {
480         bool Changed = false;
481         auto &MidDefs = UP.second;
482         // Collect the set UpReached of uses that are reached by the current
483         // phi PA, and are not covered by any intervening def between PA and
484         // the upward phi UP.
485         RegisterSet UpReached;
486         for (auto T : RealUses) {
487           if (!isRestricted(PA, UA, T.first))
488             continue;
489           if (!RAI.covers(MidDefs, T.first))
490             UpReached.insert(T.first);
491         }
492         if (UpReached.empty())
493           continue;
494         // Update the set PRUs of real uses reached by the upward phi UP with
495         // the actual set of uses (UpReached) that the UP phi reaches.
496         auto &PRUs = RealUseMap[UP.first];
497         for (auto R : UpReached) {
498           unsigned Z = PRUs[R].size();
499           PRUs[R].insert(RealUses[R].begin(), RealUses[R].end());
500           Changed |= (PRUs[R].size() != Z);
501         }
502         if (Changed)
503           PhiUQ.push_back(UP.first);
504       }
505     }
506   }
507
508   if (Trace) {
509     dbgs() << "Real use map:\n";
510     for (auto I : RealUseMap) {
511       dbgs() << "phi " << Print<NodeId>(I.first, DFG);
512       NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first);
513       NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG);
514       if (!Ds.empty()) {
515         RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef();
516         dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>';
517       } else {
518         dbgs() << "<noreg>";
519       }
520       dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n';
521     }
522   }
523 }
524
525
526 void Liveness::computeLiveIns() {
527   // Populate the node-to-block map. This speeds up the calculations
528   // significantly.
529   NBMap.clear();
530   for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
531     MachineBasicBlock *BB = BA.Addr->getCode();
532     for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
533       for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
534         NBMap.insert(std::make_pair(RA.Id, BB));
535       NBMap.insert(std::make_pair(IA.Id, BB));
536     }
537   }
538
539   MachineFunction &MF = DFG.getMF();
540
541   // Compute IDF first, then the inverse.
542   decltype(IIDF) IDF;
543   for (auto &B : MF) {
544     auto F1 = MDF.find(&B);
545     if (F1 == MDF.end())
546       continue;
547     SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end());
548     for (unsigned i = 0; i < IDFB.size(); ++i) {
549       auto F2 = MDF.find(IDFB[i]);
550       if (F2 != MDF.end())
551         IDFB.insert(F2->second.begin(), F2->second.end());
552     }
553     // Add B to the IDF(B). This will put B in the IIDF(B).
554     IDFB.insert(&B);
555     IDF[&B].insert(IDFB.begin(), IDFB.end());
556   }
557
558   for (auto I : IDF)
559     for (auto S : I.second)
560       IIDF[S].insert(I.first);
561
562   computePhiInfo();
563
564   NodeAddr<FuncNode*> FA = DFG.getFunc();
565   auto Blocks = FA.Addr->members(DFG);
566
567   // Build the phi live-on-entry map.
568   for (NodeAddr<BlockNode*> BA : Blocks) {
569     MachineBasicBlock *MB = BA.Addr->getCode();
570     auto &LON = PhiLON[MB];
571     for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG))
572       for (auto S : RealUseMap[P.Id])
573         LON[S.first].insert(S.second.begin(), S.second.end());
574   }
575
576   if (Trace) {
577     dbgs() << "Phi live-on-entry map:\n";
578     for (auto I : PhiLON)
579       dbgs() << "block #" << I.first->getNumber() << " -> "
580              << Print<RefMap>(I.second, DFG) << '\n';
581   }
582
583   // Build the phi live-on-exit map. Each phi node has some set of reached
584   // "real" uses. Propagate this set backwards into the block predecessors
585   // through the reaching defs of the corresponding phi uses.
586   for (NodeAddr<BlockNode*> BA : Blocks) {
587     auto Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
588     for (NodeAddr<PhiNode*> PA : Phis) {
589       auto &RUs = RealUseMap[PA.Id];
590       if (RUs.empty())
591         continue;
592
593       for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
594         NodeAddr<PhiUseNode*> UA = U;
595         if (UA.Addr->getReachingDef() == 0)
596           continue;
597
598         // Mark all reached "real" uses of P as live on exit in the
599         // predecessor.
600         // Remap all the RUs so that they have a correct reaching def.
601         auto PrA = DFG.addr<BlockNode*>(UA.Addr->getPredecessor());
602         auto &LOX = PhiLOX[PrA.Addr->getCode()];
603         for (auto R : RUs) {
604           RegisterRef RR = R.first;
605           if (!isRestricted(PA, UA, RR))
606             RR = getRestrictedRegRef(UA);
607           // The restricted ref may be different from the ref that was
608           // accessed in the "real use". This means that this phi use
609           // is not the one that carries this reference, so skip it.
610           if (!RAI.alias(R.first, RR))
611             continue;
612           for (auto D : getAllReachingDefs(RR, UA))
613             LOX[RR].insert(D.Id);
614         }
615       }  // for U : phi uses
616     }  // for P : Phis
617   }  // for B : Blocks
618
619   if (Trace) {
620     dbgs() << "Phi live-on-exit map:\n";
621     for (auto I : PhiLOX)
622       dbgs() << "block #" << I.first->getNumber() << " -> "
623              << Print<RefMap>(I.second, DFG) << '\n';
624   }
625
626   RefMap LiveIn;
627   traverse(&MF.front(), LiveIn);
628
629   // Add function live-ins to the live-in set of the function entry block.
630   auto &EntryIn = LiveMap[&MF.front()];
631   for (auto I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I)
632     EntryIn.insert({I->first,0});
633
634   if (Trace) {
635     // Dump the liveness map
636     for (auto &B : MF) {
637       BitVector LV(TRI.getNumRegs());
638       for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
639         LV.set(I->PhysReg);
640       dbgs() << "BB#" << B.getNumber() << "\t rec = {";
641       for (int x = LV.find_first(); x >= 0; x = LV.find_next(x))
642         dbgs() << ' ' << Print<RegisterRef>({unsigned(x),0}, DFG);
643       dbgs() << " }\n";
644       dbgs() << "\tcomp = " << Print<RegisterSet>(LiveMap[&B], DFG) << '\n';
645     }
646   }
647 }
648
649
650 void Liveness::resetLiveIns() {
651   for (auto &B : DFG.getMF()) {
652     // Remove all live-ins.
653     std::vector<unsigned> T;
654     for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
655       T.push_back(I->PhysReg);
656     for (auto I : T)
657       B.removeLiveIn(I);
658     // Add the newly computed live-ins.
659     auto &LiveIns = LiveMap[&B];
660     for (auto I : LiveIns) {
661       assert(I.Sub == 0);
662       B.addLiveIn(I.Reg);
663     }
664   }
665 }
666
667
668 void Liveness::resetKills() {
669   for (auto &B : DFG.getMF())
670     resetKills(&B);
671 }
672
673
674 void Liveness::resetKills(MachineBasicBlock *B) {
675   auto CopyLiveIns = [] (MachineBasicBlock *B, BitVector &LV) -> void {
676     for (auto I = B->livein_begin(), E = B->livein_end(); I != E; ++I)
677       LV.set(I->PhysReg);
678   };
679
680   BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs());
681   CopyLiveIns(B, LiveIn);
682   for (auto SI : B->successors())
683     CopyLiveIns(SI, Live);
684
685   for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
686     MachineInstr *MI = &*I;
687     if (MI->isDebugValue())
688       continue;
689
690     MI->clearKillInfo();
691     for (auto &Op : MI->operands()) {
692       // An implicit def of a super-register may not necessarily start a
693       // live range of it, since an implicit use could be used to keep parts
694       // of it live. Instead of analyzing the implicit operands, ignore
695       // implicit defs.
696       if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
697         continue;
698       unsigned R = Op.getReg();
699       if (!TargetRegisterInfo::isPhysicalRegister(R))
700         continue;
701       for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
702         Live.reset(*SR);
703     }
704     for (auto &Op : MI->operands()) {
705       if (!Op.isReg() || !Op.isUse())
706         continue;
707       unsigned R = Op.getReg();
708       if (!TargetRegisterInfo::isPhysicalRegister(R))
709         continue;
710       bool IsLive = false;
711       for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) {
712         if (!Live[*AR])
713           continue;
714         IsLive = true;
715         break;
716       }
717       if (IsLive)
718         continue;
719       Op.setIsKill(true);
720       for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
721         Live.set(*SR);
722     }
723   }
724 }
725
726
727 // For shadows, determine if RR is aliased to a reaching def of any other
728 // shadow associated with RA. If it is not, then RR is "restricted" to RA,
729 // and so it can be considered a value specific to RA. This is important
730 // for accurately determining values associated with phi uses.
731 // For non-shadows, this function returns "true".
732 bool Liveness::isRestricted(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
733       RegisterRef RR) const {
734   NodeId Start = RA.Id;
735   for (NodeAddr<RefNode*> TA = DFG.getNextShadow(IA, RA);
736        TA.Id != 0 && TA.Id != Start; TA = DFG.getNextShadow(IA, TA)) {
737     NodeId RD = TA.Addr->getReachingDef();
738     if (RD == 0)
739       continue;
740     if (RAI.alias(RR, DFG.addr<DefNode*>(RD).Addr->getRegRef()))
741       return false;
742   }
743   return true;
744 }
745
746
747 RegisterRef Liveness::getRestrictedRegRef(NodeAddr<RefNode*> RA) const {
748   assert(DFG.IsRef<NodeAttrs::Use>(RA));
749   if (RA.Addr->getFlags() & NodeAttrs::Shadow) {
750     NodeId RD = RA.Addr->getReachingDef();
751     assert(RD);
752     RA = DFG.addr<DefNode*>(RD);
753   }
754   return RA.Addr->getRegRef();
755 }
756
757
758 unsigned Liveness::getPhysReg(RegisterRef RR) const {
759   if (!TargetRegisterInfo::isPhysicalRegister(RR.Reg))
760     return 0;
761   return RR.Sub ? TRI.getSubReg(RR.Reg, RR.Sub) : RR.Reg;
762 }
763
764
765 // Helper function to obtain the basic block containing the reaching def
766 // of the given use.
767 MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const {
768   auto F = NBMap.find(RN);
769   if (F != NBMap.end())
770     return F->second;
771   llvm_unreachable("Node id not in map");
772 }
773
774
775 void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) {
776   // The LiveIn map, for each (physical) register, contains the set of live
777   // reaching defs of that register that are live on entry to the associated
778   // block.
779
780   // The summary of the traversal algorithm:
781   //
782   // R is live-in in B, if there exists a U(R), such that rdef(R) dom B
783   // and (U \in IDF(B) or B dom U).
784   //
785   // for (C : children) {
786   //   LU = {}
787   //   traverse(C, LU)
788   //   LiveUses += LU
789   // }
790   //
791   // LiveUses -= Defs(B);
792   // LiveUses += UpwardExposedUses(B);
793   // for (C : IIDF[B])
794   //   for (U : LiveUses)
795   //     if (Rdef(U) dom C)
796   //       C.addLiveIn(U)
797   //
798
799   // Go up the dominator tree (depth-first).
800   MachineDomTreeNode *N = MDT.getNode(B);
801   for (auto I : *N) {
802     RefMap L;
803     MachineBasicBlock *SB = I->getBlock();
804     traverse(SB, L);
805
806     for (auto S : L)
807       LiveIn[S.first].insert(S.second.begin(), S.second.end());
808   }
809
810   if (Trace) {
811     dbgs() << LLVM_FUNCTION_NAME << " in BB#" << B->getNumber()
812            << " after recursion into";
813     for (auto I : *N)
814       dbgs() << ' ' << I->getBlock()->getNumber();
815     dbgs() << "\n  LiveIn: " << Print<RefMap>(LiveIn, DFG);
816     dbgs() << "\n  Local:  " << Print<RegisterSet>(LiveMap[B], DFG) << '\n';
817   }
818
819   // Add phi uses that are live on exit from this block.
820   RefMap &PUs = PhiLOX[B];
821   for (auto S : PUs)
822     LiveIn[S.first].insert(S.second.begin(), S.second.end());
823
824   if (Trace) {
825     dbgs() << "after LOX\n";
826     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
827     dbgs() << "  Local:  " << Print<RegisterSet>(LiveMap[B], DFG) << '\n';
828   }
829
830   // Stop tracking all uses defined in this block: erase those records
831   // where the reaching def is located in B and which cover all reached
832   // uses.
833   auto Copy = LiveIn;
834   LiveIn.clear();
835
836   for (auto I : Copy) {
837     auto &Defs = LiveIn[I.first];
838     NodeSet Rest;
839     for (auto R : I.second) {
840       auto DA = DFG.addr<DefNode*>(R);
841       RegisterRef DDR = DA.Addr->getRegRef();
842       NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
843       NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
844       // Defs from a different block need to be preserved. Defs from this
845       // block will need to be processed further, except for phi defs, the
846       // liveness of which is handled through the PhiLON/PhiLOX maps.
847       if (B != BA.Addr->getCode())
848         Defs.insert(R);
849       else {
850         bool IsPreserving = DA.Addr->getFlags() & NodeAttrs::Preserving;
851         if (IA.Addr->getKind() != NodeAttrs::Phi && !IsPreserving) {
852           bool Covering = RAI.covers(DDR, I.first);
853           NodeId U = DA.Addr->getReachedUse();
854           while (U && Covering) {
855             auto DUA = DFG.addr<UseNode*>(U);
856             RegisterRef Q = DUA.Addr->getRegRef();
857             Covering = RAI.covers(DA.Addr->getRegRef(), Q);
858             U = DUA.Addr->getSibling();
859           }
860           if (!Covering)
861             Rest.insert(R);
862         }
863       }
864     }
865
866     // Non-covering defs from B.
867     for (auto R : Rest) {
868       auto DA = DFG.addr<DefNode*>(R);
869       RegisterRef DRR = DA.Addr->getRegRef();
870       RegisterSet RRs;
871       for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) {
872         NodeAddr<InstrNode*> IA = TA.Addr->getOwner(DFG);
873         NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
874         // Preserving defs do not count towards covering.
875         if (!(TA.Addr->getFlags() & NodeAttrs::Preserving))
876           RRs.insert(TA.Addr->getRegRef());
877         if (BA.Addr->getCode() == B)
878           continue;
879         if (RAI.covers(RRs, DRR))
880           break;
881         Defs.insert(TA.Id);
882       }
883     }
884   }
885
886   emptify(LiveIn);
887
888   if (Trace) {
889     dbgs() << "after defs in block\n";
890     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
891     dbgs() << "  Local:  " << Print<RegisterSet>(LiveMap[B], DFG) << '\n';
892   }
893
894   // Scan the block for upward-exposed uses and add them to the tracking set.
895   for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) {
896     NodeAddr<InstrNode*> IA = I;
897     if (IA.Addr->getKind() != NodeAttrs::Stmt)
898       continue;
899     for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
900       RegisterRef RR = UA.Addr->getRegRef();
901       for (auto D : getAllReachingDefs(UA))
902         if (getBlockWithRef(D.Id) != B)
903           LiveIn[RR].insert(D.Id);
904     }
905   }
906
907   if (Trace) {
908     dbgs() << "after uses in block\n";
909     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
910     dbgs() << "  Local:  " << Print<RegisterSet>(LiveMap[B], DFG) << '\n';
911   }
912
913   // Phi uses should not be propagated up the dominator tree, since they
914   // are not dominated by their corresponding reaching defs.
915   auto &Local = LiveMap[B];
916   auto &LON = PhiLON[B];
917   for (auto R : LON)
918     Local.insert(R.first);
919
920   if (Trace) {
921     dbgs() << "after phi uses in block\n";
922     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
923     dbgs() << "  Local:  " << Print<RegisterSet>(Local, DFG) << '\n';
924   }
925
926   for (auto C : IIDF[B]) {
927     auto &LiveC = LiveMap[C];
928     for (auto S : LiveIn)
929       for (auto R : S.second)
930         if (MDT.properlyDominates(getBlockWithRef(R), C))
931           LiveC.insert(S.first);
932   }
933 }
934
935
936 void Liveness::emptify(RefMap &M) {
937   for (auto I = M.begin(), E = M.end(); I != E; )
938     I = I->second.empty() ? M.erase(I) : std::next(I);
939 }
940