Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[freebsd.git] / sys / cddl / contrib / opensolaris / uts / common / fs / zfs / vdev_removal.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  */
26
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/zap.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/metaslab.h>
34 #include <sys/metaslab_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/txg.h>
37 #include <sys/avl.h>
38 #include <sys/bpobj.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/arc.h>
43 #include <sys/zfeature.h>
44 #include <sys/vdev_indirect_births.h>
45 #include <sys/vdev_indirect_mapping.h>
46 #include <sys/abd.h>
47 #include <sys/vdev_initialize.h>
48
49 /*
50  * This file contains the necessary logic to remove vdevs from a
51  * storage pool.  Currently, the only devices that can be removed
52  * are log, cache, and spare devices; and top level vdevs from a pool
53  * w/o raidz.  (Note that members of a mirror can also be removed
54  * by the detach operation.)
55  *
56  * Log vdevs are removed by evacuating them and then turning the vdev
57  * into a hole vdev while holding spa config locks.
58  *
59  * Top level vdevs are removed and converted into an indirect vdev via
60  * a multi-step process:
61  *
62  *  - Disable allocations from this device (spa_vdev_remove_top).
63  *
64  *  - From a new thread (spa_vdev_remove_thread), copy data from
65  *    the removing vdev to a different vdev.  The copy happens in open
66  *    context (spa_vdev_copy_impl) and issues a sync task
67  *    (vdev_mapping_sync) so the sync thread can update the partial
68  *    indirect mappings in core and on disk.
69  *
70  *  - If a free happens during a removal, it is freed from the
71  *    removing vdev, and if it has already been copied, from the new
72  *    location as well (free_from_removing_vdev).
73  *
74  *  - After the removal is completed, the copy thread converts the vdev
75  *    into an indirect vdev (vdev_remove_complete) before instructing
76  *    the sync thread to destroy the space maps and finish the removal
77  *    (spa_finish_removal).
78  */
79
80 typedef struct vdev_copy_arg {
81         metaslab_t      *vca_msp;
82         uint64_t        vca_outstanding_bytes;
83         kcondvar_t      vca_cv;
84         kmutex_t        vca_lock;
85 } vdev_copy_arg_t;
86
87 /*
88  * The maximum amount of memory we can use for outstanding i/o while
89  * doing a device removal.  This determines how much i/o we can have
90  * in flight concurrently.
91  */
92 int zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
93
94 /*
95  * The largest contiguous segment that we will attempt to allocate when
96  * removing a device.  This can be no larger than SPA_MAXBLOCKSIZE.  If
97  * there is a performance problem with attempting to allocate large blocks,
98  * consider decreasing this.
99  *
100  * Note: we will issue I/Os of up to this size.  The mpt driver does not
101  * respond well to I/Os larger than 1MB, so we set this to 1MB.  (When
102  * mpt processes an I/O larger than 1MB, it needs to do an allocation of
103  * 2 physically contiguous pages; if this allocation fails, mpt will drop
104  * the I/O and hang the device.)
105  */
106 int zfs_remove_max_segment = 1024 * 1024;
107
108 /*
109  * Allow a remap segment to span free chunks of at most this size. The main
110  * impact of a larger span is that we will read and write larger, more
111  * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
112  * for iops.  The value here was chosen to align with
113  * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
114  * reads (but there's no reason it has to be the same).
115  *
116  * Additionally, a higher span will have the following relatively minor
117  * effects:
118  *  - the mapping will be smaller, since one entry can cover more allocated
119  *    segments
120  *  - more of the fragmentation in the removing device will be preserved
121  *  - we'll do larger allocations, which may fail and fall back on smaller
122  *    allocations
123  */
124 int vdev_removal_max_span = 32 * 1024;
125
126 /*
127  * This is used by the test suite so that it can ensure that certain
128  * actions happen while in the middle of a removal.
129  */
130 uint64_t zfs_remove_max_bytes_pause = UINT64_MAX;
131
132 #define VDEV_REMOVAL_ZAP_OBJS   "lzap"
133
134 static void spa_vdev_remove_thread(void *arg);
135
136 static void
137 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
138 {
139         VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
140             DMU_POOL_DIRECTORY_OBJECT,
141             DMU_POOL_REMOVING, sizeof (uint64_t),
142             sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
143             &spa->spa_removing_phys, tx));
144 }
145
146 static nvlist_t *
147 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
148 {
149         for (int i = 0; i < count; i++) {
150                 uint64_t guid =
151                     fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
152
153                 if (guid == target_guid)
154                         return (nvpp[i]);
155         }
156
157         return (NULL);
158 }
159
160 static void
161 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
162     nvlist_t *dev_to_remove)
163 {
164         nvlist_t **newdev = NULL;
165
166         if (count > 1)
167                 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
168
169         for (int i = 0, j = 0; i < count; i++) {
170                 if (dev[i] == dev_to_remove)
171                         continue;
172                 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
173         }
174
175         VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
176         VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
177
178         for (int i = 0; i < count - 1; i++)
179                 nvlist_free(newdev[i]);
180
181         if (count > 1)
182                 kmem_free(newdev, (count - 1) * sizeof (void *));
183 }
184
185 static spa_vdev_removal_t *
186 spa_vdev_removal_create(vdev_t *vd)
187 {
188         spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
189         mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
190         cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
191         svr->svr_allocd_segs = range_tree_create(NULL, NULL);
192         svr->svr_vdev_id = vd->vdev_id;
193
194         for (int i = 0; i < TXG_SIZE; i++) {
195                 svr->svr_frees[i] = range_tree_create(NULL, NULL);
196                 list_create(&svr->svr_new_segments[i],
197                     sizeof (vdev_indirect_mapping_entry_t),
198                     offsetof(vdev_indirect_mapping_entry_t, vime_node));
199         }
200
201         return (svr);
202 }
203
204 void
205 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
206 {
207         for (int i = 0; i < TXG_SIZE; i++) {
208                 ASSERT0(svr->svr_bytes_done[i]);
209                 ASSERT0(svr->svr_max_offset_to_sync[i]);
210                 range_tree_destroy(svr->svr_frees[i]);
211                 list_destroy(&svr->svr_new_segments[i]);
212         }
213
214         range_tree_destroy(svr->svr_allocd_segs);
215         mutex_destroy(&svr->svr_lock);
216         cv_destroy(&svr->svr_cv);
217         kmem_free(svr, sizeof (*svr));
218 }
219
220 /*
221  * This is called as a synctask in the txg in which we will mark this vdev
222  * as removing (in the config stored in the MOS).
223  *
224  * It begins the evacuation of a toplevel vdev by:
225  * - initializing the spa_removing_phys which tracks this removal
226  * - computing the amount of space to remove for accounting purposes
227  * - dirtying all dbufs in the spa_config_object
228  * - creating the spa_vdev_removal
229  * - starting the spa_vdev_remove_thread
230  */
231 static void
232 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
233 {
234         int vdev_id = (uintptr_t)arg;
235         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
236         vdev_t *vd = vdev_lookup_top(spa, vdev_id);
237         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
238         objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
239         spa_vdev_removal_t *svr = NULL;
240         uint64_t txg = dmu_tx_get_txg(tx);
241
242         ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
243         svr = spa_vdev_removal_create(vd);
244
245         ASSERT(vd->vdev_removing);
246         ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
247
248         spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
249         if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
250                 /*
251                  * By activating the OBSOLETE_COUNTS feature, we prevent
252                  * the pool from being downgraded and ensure that the
253                  * refcounts are precise.
254                  */
255                 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
256                 uint64_t one = 1;
257                 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
258                     VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
259                     &one, tx));
260                 ASSERT3U(vdev_obsolete_counts_are_precise(vd), !=, 0);
261         }
262
263         vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
264         vd->vdev_indirect_mapping =
265             vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
266         vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
267         vd->vdev_indirect_births =
268             vdev_indirect_births_open(mos, vic->vic_births_object);
269         spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
270         spa->spa_removing_phys.sr_start_time = gethrestime_sec();
271         spa->spa_removing_phys.sr_end_time = 0;
272         spa->spa_removing_phys.sr_state = DSS_SCANNING;
273         spa->spa_removing_phys.sr_to_copy = 0;
274         spa->spa_removing_phys.sr_copied = 0;
275
276         /*
277          * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
278          * there may be space in the defer tree, which is free, but still
279          * counted in vs_alloc.
280          */
281         for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
282                 metaslab_t *ms = vd->vdev_ms[i];
283                 if (ms->ms_sm == NULL)
284                         continue;
285
286                 spa->spa_removing_phys.sr_to_copy +=
287                     metaslab_allocated_space(ms);
288
289                 /*
290                  * Space which we are freeing this txg does not need to
291                  * be copied.
292                  */
293                 spa->spa_removing_phys.sr_to_copy -=
294                     range_tree_space(ms->ms_freeing);
295
296                 ASSERT0(range_tree_space(ms->ms_freed));
297                 for (int t = 0; t < TXG_SIZE; t++)
298                         ASSERT0(range_tree_space(ms->ms_allocating[t]));
299         }
300
301         /*
302          * Sync tasks are called before metaslab_sync(), so there should
303          * be no already-synced metaslabs in the TXG_CLEAN list.
304          */
305         ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
306
307         spa_sync_removing_state(spa, tx);
308
309         /*
310          * All blocks that we need to read the most recent mapping must be
311          * stored on concrete vdevs.  Therefore, we must dirty anything that
312          * is read before spa_remove_init().  Specifically, the
313          * spa_config_object.  (Note that although we already modified the
314          * spa_config_object in spa_sync_removing_state, that may not have
315          * modified all blocks of the object.)
316          */
317         dmu_object_info_t doi;
318         VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
319         for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
320                 dmu_buf_t *dbuf;
321                 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
322                     offset, FTAG, &dbuf, 0));
323                 dmu_buf_will_dirty(dbuf, tx);
324                 offset += dbuf->db_size;
325                 dmu_buf_rele(dbuf, FTAG);
326         }
327
328         /*
329          * Now that we've allocated the im_object, dirty the vdev to ensure
330          * that the object gets written to the config on disk.
331          */
332         vdev_config_dirty(vd);
333
334         zfs_dbgmsg("starting removal thread for vdev %llu (%p) in txg %llu "
335             "im_obj=%llu", vd->vdev_id, vd, dmu_tx_get_txg(tx),
336             vic->vic_mapping_object);
337
338         spa_history_log_internal(spa, "vdev remove started", tx,
339             "%s vdev %llu %s", spa_name(spa), vd->vdev_id,
340             (vd->vdev_path != NULL) ? vd->vdev_path : "-");
341         /*
342          * Setting spa_vdev_removal causes subsequent frees to call
343          * free_from_removing_vdev().  Note that we don't need any locking
344          * because we are the sync thread, and metaslab_free_impl() is only
345          * called from syncing context (potentially from a zio taskq thread,
346          * but in any case only when there are outstanding free i/os, which
347          * there are not).
348          */
349         ASSERT3P(spa->spa_vdev_removal, ==, NULL);
350         spa->spa_vdev_removal = svr;
351         svr->svr_thread = thread_create(NULL, 0,
352             spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
353 }
354
355 /*
356  * When we are opening a pool, we must read the mapping for each
357  * indirect vdev in order from most recently removed to least
358  * recently removed.  We do this because the blocks for the mapping
359  * of older indirect vdevs may be stored on more recently removed vdevs.
360  * In order to read each indirect mapping object, we must have
361  * initialized all more recently removed vdevs.
362  */
363 int
364 spa_remove_init(spa_t *spa)
365 {
366         int error;
367
368         error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
369             DMU_POOL_DIRECTORY_OBJECT,
370             DMU_POOL_REMOVING, sizeof (uint64_t),
371             sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
372             &spa->spa_removing_phys);
373
374         if (error == ENOENT) {
375                 spa->spa_removing_phys.sr_state = DSS_NONE;
376                 spa->spa_removing_phys.sr_removing_vdev = -1;
377                 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
378                 spa->spa_indirect_vdevs_loaded = B_TRUE;
379                 return (0);
380         } else if (error != 0) {
381                 return (error);
382         }
383
384         if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
385                 /*
386                  * We are currently removing a vdev.  Create and
387                  * initialize a spa_vdev_removal_t from the bonus
388                  * buffer of the removing vdevs vdev_im_object, and
389                  * initialize its partial mapping.
390                  */
391                 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
392                 vdev_t *vd = vdev_lookup_top(spa,
393                     spa->spa_removing_phys.sr_removing_vdev);
394
395                 if (vd == NULL) {
396                         spa_config_exit(spa, SCL_STATE, FTAG);
397                         return (EINVAL);
398                 }
399
400                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
401
402                 ASSERT(vdev_is_concrete(vd));
403                 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
404                 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
405                 ASSERT(vd->vdev_removing);
406
407                 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
408                     spa->spa_meta_objset, vic->vic_mapping_object);
409                 vd->vdev_indirect_births = vdev_indirect_births_open(
410                     spa->spa_meta_objset, vic->vic_births_object);
411                 spa_config_exit(spa, SCL_STATE, FTAG);
412
413                 spa->spa_vdev_removal = svr;
414         }
415
416         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
417         uint64_t indirect_vdev_id =
418             spa->spa_removing_phys.sr_prev_indirect_vdev;
419         while (indirect_vdev_id != UINT64_MAX) {
420                 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
421                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
422
423                 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
424                 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
425                     spa->spa_meta_objset, vic->vic_mapping_object);
426                 vd->vdev_indirect_births = vdev_indirect_births_open(
427                     spa->spa_meta_objset, vic->vic_births_object);
428
429                 indirect_vdev_id = vic->vic_prev_indirect_vdev;
430         }
431         spa_config_exit(spa, SCL_STATE, FTAG);
432
433         /*
434          * Now that we've loaded all the indirect mappings, we can allow
435          * reads from other blocks (e.g. via predictive prefetch).
436          */
437         spa->spa_indirect_vdevs_loaded = B_TRUE;
438         return (0);
439 }
440
441 void
442 spa_restart_removal(spa_t *spa)
443 {
444         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
445
446         if (svr == NULL)
447                 return;
448
449         /*
450          * In general when this function is called there is no
451          * removal thread running. The only scenario where this
452          * is not true is during spa_import() where this function
453          * is called twice [once from spa_import_impl() and
454          * spa_async_resume()]. Thus, in the scenario where we
455          * import a pool that has an ongoing removal we don't
456          * want to spawn a second thread.
457          */
458         if (svr->svr_thread != NULL)
459                 return;
460
461         if (!spa_writeable(spa))
462                 return;
463
464         zfs_dbgmsg("restarting removal of %llu", svr->svr_vdev_id);
465         svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
466             0, &p0, TS_RUN, minclsyspri);
467 }
468
469 /*
470  * Process freeing from a device which is in the middle of being removed.
471  * We must handle this carefully so that we attempt to copy freed data,
472  * and we correctly free already-copied data.
473  */
474 void
475 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
476 {
477         spa_t *spa = vd->vdev_spa;
478         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
479         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
480         uint64_t txg = spa_syncing_txg(spa);
481         uint64_t max_offset_yet = 0;
482
483         ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
484         ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
485             vdev_indirect_mapping_object(vim));
486         ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
487
488         mutex_enter(&svr->svr_lock);
489
490         /*
491          * Remove the segment from the removing vdev's spacemap.  This
492          * ensures that we will not attempt to copy this space (if the
493          * removal thread has not yet visited it), and also ensures
494          * that we know what is actually allocated on the new vdevs
495          * (needed if we cancel the removal).
496          *
497          * Note: we must do the metaslab_free_concrete() with the svr_lock
498          * held, so that the remove_thread can not load this metaslab and then
499          * visit this offset between the time that we metaslab_free_concrete()
500          * and when we check to see if it has been visited.
501          *
502          * Note: The checkpoint flag is set to false as having/taking
503          * a checkpoint and removing a device can't happen at the same
504          * time.
505          */
506         ASSERT(!spa_has_checkpoint(spa));
507         metaslab_free_concrete(vd, offset, size, B_FALSE);
508
509         uint64_t synced_size = 0;
510         uint64_t synced_offset = 0;
511         uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
512         if (offset < max_offset_synced) {
513                 /*
514                  * The mapping for this offset is already on disk.
515                  * Free from the new location.
516                  *
517                  * Note that we use svr_max_synced_offset because it is
518                  * updated atomically with respect to the in-core mapping.
519                  * By contrast, vim_max_offset is not.
520                  *
521                  * This block may be split between a synced entry and an
522                  * in-flight or unvisited entry.  Only process the synced
523                  * portion of it here.
524                  */
525                 synced_size = MIN(size, max_offset_synced - offset);
526                 synced_offset = offset;
527
528                 ASSERT3U(max_offset_yet, <=, max_offset_synced);
529                 max_offset_yet = max_offset_synced;
530
531                 DTRACE_PROBE3(remove__free__synced,
532                     spa_t *, spa,
533                     uint64_t, offset,
534                     uint64_t, synced_size);
535
536                 size -= synced_size;
537                 offset += synced_size;
538         }
539
540         /*
541          * Look at all in-flight txgs starting from the currently syncing one
542          * and see if a section of this free is being copied. By starting from
543          * this txg and iterating forward, we might find that this region
544          * was copied in two different txgs and handle it appropriately.
545          */
546         for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
547                 int txgoff = (txg + i) & TXG_MASK;
548                 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
549                         /*
550                          * The mapping for this offset is in flight, and
551                          * will be synced in txg+i.
552                          */
553                         uint64_t inflight_size = MIN(size,
554                             svr->svr_max_offset_to_sync[txgoff] - offset);
555
556                         DTRACE_PROBE4(remove__free__inflight,
557                             spa_t *, spa,
558                             uint64_t, offset,
559                             uint64_t, inflight_size,
560                             uint64_t, txg + i);
561
562                         /*
563                          * We copy data in order of increasing offset.
564                          * Therefore the max_offset_to_sync[] must increase
565                          * (or be zero, indicating that nothing is being
566                          * copied in that txg).
567                          */
568                         if (svr->svr_max_offset_to_sync[txgoff] != 0) {
569                                 ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
570                                     >=, max_offset_yet);
571                                 max_offset_yet =
572                                     svr->svr_max_offset_to_sync[txgoff];
573                         }
574
575                         /*
576                          * We've already committed to copying this segment:
577                          * we have allocated space elsewhere in the pool for
578                          * it and have an IO outstanding to copy the data. We
579                          * cannot free the space before the copy has
580                          * completed, or else the copy IO might overwrite any
581                          * new data. To free that space, we record the
582                          * segment in the appropriate svr_frees tree and free
583                          * the mapped space later, in the txg where we have
584                          * completed the copy and synced the mapping (see
585                          * vdev_mapping_sync).
586                          */
587                         range_tree_add(svr->svr_frees[txgoff],
588                             offset, inflight_size);
589                         size -= inflight_size;
590                         offset += inflight_size;
591
592                         /*
593                          * This space is already accounted for as being
594                          * done, because it is being copied in txg+i.
595                          * However, if i!=0, then it is being copied in
596                          * a future txg.  If we crash after this txg
597                          * syncs but before txg+i syncs, then the space
598                          * will be free.  Therefore we must account
599                          * for the space being done in *this* txg
600                          * (when it is freed) rather than the future txg
601                          * (when it will be copied).
602                          */
603                         ASSERT3U(svr->svr_bytes_done[txgoff], >=,
604                             inflight_size);
605                         svr->svr_bytes_done[txgoff] -= inflight_size;
606                         svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
607                 }
608         }
609         ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
610
611         if (size > 0) {
612                 /*
613                  * The copy thread has not yet visited this offset.  Ensure
614                  * that it doesn't.
615                  */
616
617                 DTRACE_PROBE3(remove__free__unvisited,
618                     spa_t *, spa,
619                     uint64_t, offset,
620                     uint64_t, size);
621
622                 if (svr->svr_allocd_segs != NULL)
623                         range_tree_clear(svr->svr_allocd_segs, offset, size);
624
625                 /*
626                  * Since we now do not need to copy this data, for
627                  * accounting purposes we have done our job and can count
628                  * it as completed.
629                  */
630                 svr->svr_bytes_done[txg & TXG_MASK] += size;
631         }
632         mutex_exit(&svr->svr_lock);
633
634         /*
635          * Now that we have dropped svr_lock, process the synced portion
636          * of this free.
637          */
638         if (synced_size > 0) {
639                 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
640
641                 /*
642                  * Note: this can only be called from syncing context,
643                  * and the vdev_indirect_mapping is only changed from the
644                  * sync thread, so we don't need svr_lock while doing
645                  * metaslab_free_impl_cb.
646                  */
647                 boolean_t checkpoint = B_FALSE;
648                 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
649                     metaslab_free_impl_cb, &checkpoint);
650         }
651 }
652
653 /*
654  * Stop an active removal and update the spa_removing phys.
655  */
656 static void
657 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
658 {
659         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
660         ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
661
662         /* Ensure the removal thread has completed before we free the svr. */
663         spa_vdev_remove_suspend(spa);
664
665         ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
666
667         if (state == DSS_FINISHED) {
668                 spa_removing_phys_t *srp = &spa->spa_removing_phys;
669                 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
670                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
671
672                 if (srp->sr_prev_indirect_vdev != UINT64_MAX) {
673                         vdev_t *pvd = vdev_lookup_top(spa,
674                             srp->sr_prev_indirect_vdev);
675                         ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
676                 }
677
678                 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
679                 srp->sr_prev_indirect_vdev = vd->vdev_id;
680         }
681         spa->spa_removing_phys.sr_state = state;
682         spa->spa_removing_phys.sr_end_time = gethrestime_sec();
683
684         spa->spa_vdev_removal = NULL;
685         spa_vdev_removal_destroy(svr);
686
687         spa_sync_removing_state(spa, tx);
688
689         vdev_config_dirty(spa->spa_root_vdev);
690 }
691
692 static void
693 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
694 {
695         vdev_t *vd = arg;
696         vdev_indirect_mark_obsolete(vd, offset, size);
697         boolean_t checkpoint = B_FALSE;
698         vdev_indirect_ops.vdev_op_remap(vd, offset, size,
699             metaslab_free_impl_cb, &checkpoint);
700 }
701
702 /*
703  * On behalf of the removal thread, syncs an incremental bit more of
704  * the indirect mapping to disk and updates the in-memory mapping.
705  * Called as a sync task in every txg that the removal thread makes progress.
706  */
707 static void
708 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
709 {
710         spa_vdev_removal_t *svr = arg;
711         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
712         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
713         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
714         uint64_t txg = dmu_tx_get_txg(tx);
715         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
716
717         ASSERT(vic->vic_mapping_object != 0);
718         ASSERT3U(txg, ==, spa_syncing_txg(spa));
719
720         vdev_indirect_mapping_add_entries(vim,
721             &svr->svr_new_segments[txg & TXG_MASK], tx);
722         vdev_indirect_births_add_entry(vd->vdev_indirect_births,
723             vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
724
725         /*
726          * Free the copied data for anything that was freed while the
727          * mapping entries were in flight.
728          */
729         mutex_enter(&svr->svr_lock);
730         range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
731             free_mapped_segment_cb, vd);
732         ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
733             vdev_indirect_mapping_max_offset(vim));
734         svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
735         mutex_exit(&svr->svr_lock);
736
737         spa_sync_removing_state(spa, tx);
738 }
739
740 typedef struct vdev_copy_segment_arg {
741         spa_t *vcsa_spa;
742         dva_t *vcsa_dest_dva;
743         uint64_t vcsa_txg;
744         range_tree_t *vcsa_obsolete_segs;
745 } vdev_copy_segment_arg_t;
746
747 static void
748 unalloc_seg(void *arg, uint64_t start, uint64_t size)
749 {
750         vdev_copy_segment_arg_t *vcsa = arg;
751         spa_t *spa = vcsa->vcsa_spa;
752         blkptr_t bp = { 0 };
753
754         BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
755         BP_SET_LSIZE(&bp, size);
756         BP_SET_PSIZE(&bp, size);
757         BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
758         BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
759         BP_SET_TYPE(&bp, DMU_OT_NONE);
760         BP_SET_LEVEL(&bp, 0);
761         BP_SET_DEDUP(&bp, 0);
762         BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
763
764         DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
765         DVA_SET_OFFSET(&bp.blk_dva[0],
766             DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
767         DVA_SET_ASIZE(&bp.blk_dva[0], size);
768
769         zio_free(spa, vcsa->vcsa_txg, &bp);
770 }
771
772 /*
773  * All reads and writes associated with a call to spa_vdev_copy_segment()
774  * are done.
775  */
776 static void
777 spa_vdev_copy_segment_done(zio_t *zio)
778 {
779         vdev_copy_segment_arg_t *vcsa = zio->io_private;
780
781         range_tree_vacate(vcsa->vcsa_obsolete_segs,
782             unalloc_seg, vcsa);
783         range_tree_destroy(vcsa->vcsa_obsolete_segs);
784         kmem_free(vcsa, sizeof (*vcsa));
785
786         spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
787 }
788
789 /*
790  * The write of the new location is done.
791  */
792 static void
793 spa_vdev_copy_segment_write_done(zio_t *zio)
794 {
795         vdev_copy_arg_t *vca = zio->io_private;
796
797         abd_free(zio->io_abd);
798
799         mutex_enter(&vca->vca_lock);
800         vca->vca_outstanding_bytes -= zio->io_size;
801         cv_signal(&vca->vca_cv);
802         mutex_exit(&vca->vca_lock);
803 }
804
805 /*
806  * The read of the old location is done.  The parent zio is the write to
807  * the new location.  Allow it to start.
808  */
809 static void
810 spa_vdev_copy_segment_read_done(zio_t *zio)
811 {
812         zio_nowait(zio_unique_parent(zio));
813 }
814
815 /*
816  * If the old and new vdevs are mirrors, we will read both sides of the old
817  * mirror, and write each copy to the corresponding side of the new mirror.
818  * If the old and new vdevs have a different number of children, we will do
819  * this as best as possible.  Since we aren't verifying checksums, this
820  * ensures that as long as there's a good copy of the data, we'll have a
821  * good copy after the removal, even if there's silent damage to one side
822  * of the mirror. If we're removing a mirror that has some silent damage,
823  * we'll have exactly the same damage in the new location (assuming that
824  * the new location is also a mirror).
825  *
826  * We accomplish this by creating a tree of zio_t's, with as many writes as
827  * there are "children" of the new vdev (a non-redundant vdev counts as one
828  * child, a 2-way mirror has 2 children, etc). Each write has an associated
829  * read from a child of the old vdev. Typically there will be the same
830  * number of children of the old and new vdevs.  However, if there are more
831  * children of the new vdev, some child(ren) of the old vdev will be issued
832  * multiple reads.  If there are more children of the old vdev, some copies
833  * will be dropped.
834  *
835  * For example, the tree of zio_t's for a 2-way mirror is:
836  *
837  *                            null
838  *                           /    \
839  *    write(new vdev, child 0)      write(new vdev, child 1)
840  *      |                             |
841  *    read(old vdev, child 0)       read(old vdev, child 1)
842  *
843  * Child zio's complete before their parents complete.  However, zio's
844  * created with zio_vdev_child_io() may be issued before their children
845  * complete.  In this case we need to make sure that the children (reads)
846  * complete before the parents (writes) are *issued*.  We do this by not
847  * calling zio_nowait() on each write until its corresponding read has
848  * completed.
849  *
850  * The spa_config_lock must be held while zio's created by
851  * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
852  * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
853  * zio is needed to release the spa_config_lock after all the reads and
854  * writes complete. (Note that we can't grab the config lock for each read,
855  * because it is not reentrant - we could deadlock with a thread waiting
856  * for a write lock.)
857  */
858 static void
859 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
860     vdev_t *source_vd, uint64_t source_offset,
861     vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
862 {
863         ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
864
865         mutex_enter(&vca->vca_lock);
866         vca->vca_outstanding_bytes += size;
867         mutex_exit(&vca->vca_lock);
868
869         abd_t *abd = abd_alloc_for_io(size, B_FALSE);
870
871         vdev_t *source_child_vd;
872         if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
873                 /*
874                  * Source and dest are both mirrors.  Copy from the same
875                  * child id as we are copying to (wrapping around if there
876                  * are more dest children than source children).
877                  */
878                 source_child_vd =
879                     source_vd->vdev_child[dest_id % source_vd->vdev_children];
880         } else {
881                 source_child_vd = source_vd;
882         }
883
884         zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
885             dest_child_vd, dest_offset, abd, size,
886             ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
887             ZIO_FLAG_CANFAIL,
888             spa_vdev_copy_segment_write_done, vca);
889
890         zio_nowait(zio_vdev_child_io(write_zio, NULL,
891             source_child_vd, source_offset, abd, size,
892             ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
893             ZIO_FLAG_CANFAIL,
894             spa_vdev_copy_segment_read_done, vca));
895 }
896
897 /*
898  * Allocate a new location for this segment, and create the zio_t's to
899  * read from the old location and write to the new location.
900  */
901 static int
902 spa_vdev_copy_segment(vdev_t *vd, range_tree_t *segs,
903     uint64_t maxalloc, uint64_t txg,
904     vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
905 {
906         metaslab_group_t *mg = vd->vdev_mg;
907         spa_t *spa = vd->vdev_spa;
908         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
909         vdev_indirect_mapping_entry_t *entry;
910         dva_t dst = { 0 };
911         uint64_t start = range_tree_min(segs);
912
913         ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
914
915         uint64_t size = range_tree_span(segs);
916         if (range_tree_span(segs) > maxalloc) {
917                 /*
918                  * We can't allocate all the segments.  Prefer to end
919                  * the allocation at the end of a segment, thus avoiding
920                  * additional split blocks.
921                  */
922                 range_seg_t search;
923                 avl_index_t where;
924                 search.rs_start = start + maxalloc;
925                 search.rs_end = search.rs_start;
926                 range_seg_t *rs = avl_find(&segs->rt_root, &search, &where);
927                 if (rs == NULL) {
928                         rs = avl_nearest(&segs->rt_root, where, AVL_BEFORE);
929                 } else {
930                         rs = AVL_PREV(&segs->rt_root, rs);
931                 }
932                 if (rs != NULL) {
933                         size = rs->rs_end - start;
934                 } else {
935                         /*
936                          * There are no segments that end before maxalloc.
937                          * I.e. the first segment is larger than maxalloc,
938                          * so we must split it.
939                          */
940                         size = maxalloc;
941                 }
942         }
943         ASSERT3U(size, <=, maxalloc);
944
945         /*
946          * An allocation class might not have any remaining vdevs or space
947          */
948         metaslab_class_t *mc = mg->mg_class;
949         if (mc != spa_normal_class(spa) && mc->mc_groups <= 1)
950                 mc = spa_normal_class(spa);
951         int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg, 0,
952             zal, 0);
953         if (error == ENOSPC && mc != spa_normal_class(spa)) {
954                 error = metaslab_alloc_dva(spa, spa_normal_class(spa), size,
955                     &dst, 0, NULL, txg, 0, zal, 0);
956         }
957         if (error != 0)
958                 return (error);
959
960         /*
961          * Determine the ranges that are not actually needed.  Offsets are
962          * relative to the start of the range to be copied (i.e. relative to the
963          * local variable "start").
964          */
965         range_tree_t *obsolete_segs = range_tree_create(NULL, NULL);
966
967         range_seg_t *rs = avl_first(&segs->rt_root);
968         ASSERT3U(rs->rs_start, ==, start);
969         uint64_t prev_seg_end = rs->rs_end;
970         while ((rs = AVL_NEXT(&segs->rt_root, rs)) != NULL) {
971                 if (rs->rs_start >= start + size) {
972                         break;
973                 } else {
974                         range_tree_add(obsolete_segs,
975                             prev_seg_end - start,
976                             rs->rs_start - prev_seg_end);
977                 }
978                 prev_seg_end = rs->rs_end;
979         }
980         /* We don't end in the middle of an obsolete range */
981         ASSERT3U(start + size, <=, prev_seg_end);
982
983         range_tree_clear(segs, start, size);
984
985         /*
986          * We can't have any padding of the allocated size, otherwise we will
987          * misunderstand what's allocated, and the size of the mapping.
988          * The caller ensures this will be true by passing in a size that is
989          * aligned to the worst (highest) ashift in the pool.
990          */
991         ASSERT3U(DVA_GET_ASIZE(&dst), ==, size);
992
993         entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
994         DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
995         entry->vime_mapping.vimep_dst = dst;
996         if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
997                 entry->vime_obsolete_count = range_tree_space(obsolete_segs);
998         }
999
1000         vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1001         vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1002         vcsa->vcsa_obsolete_segs = obsolete_segs;
1003         vcsa->vcsa_spa = spa;
1004         vcsa->vcsa_txg = txg;
1005
1006         /*
1007          * See comment before spa_vdev_copy_one_child().
1008          */
1009         spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1010         zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
1011             spa_vdev_copy_segment_done, vcsa, 0);
1012         vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1013         if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1014                 for (int i = 0; i < dest_vd->vdev_children; i++) {
1015                         vdev_t *child = dest_vd->vdev_child[i];
1016                         spa_vdev_copy_one_child(vca, nzio, vd, start,
1017                             child, DVA_GET_OFFSET(&dst), i, size);
1018                 }
1019         } else {
1020                 spa_vdev_copy_one_child(vca, nzio, vd, start,
1021                     dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1022         }
1023         zio_nowait(nzio);
1024
1025         list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1026         ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1027         vdev_dirty(vd, 0, NULL, txg);
1028
1029         return (0);
1030 }
1031
1032 /*
1033  * Complete the removal of a toplevel vdev. This is called as a
1034  * synctask in the same txg that we will sync out the new config (to the
1035  * MOS object) which indicates that this vdev is indirect.
1036  */
1037 static void
1038 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1039 {
1040         spa_vdev_removal_t *svr = arg;
1041         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1042         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1043
1044         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1045
1046         for (int i = 0; i < TXG_SIZE; i++) {
1047                 ASSERT0(svr->svr_bytes_done[i]);
1048         }
1049
1050         ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1051             spa->spa_removing_phys.sr_to_copy);
1052
1053         vdev_destroy_spacemaps(vd, tx);
1054
1055         /* destroy leaf zaps, if any */
1056         ASSERT3P(svr->svr_zaplist, !=, NULL);
1057         for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1058             pair != NULL;
1059             pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1060                 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1061         }
1062         fnvlist_free(svr->svr_zaplist);
1063
1064         spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1065         /* vd->vdev_path is not available here */
1066         spa_history_log_internal(spa, "vdev remove completed",  tx,
1067             "%s vdev %llu", spa_name(spa), vd->vdev_id);
1068 }
1069
1070 static void
1071 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1072 {
1073         ASSERT3P(zlist, !=, NULL);
1074         ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
1075
1076         if (vd->vdev_leaf_zap != 0) {
1077                 char zkey[32];
1078                 (void) snprintf(zkey, sizeof (zkey), "%s-%ju",
1079                     VDEV_REMOVAL_ZAP_OBJS, (uintmax_t)vd->vdev_leaf_zap);
1080                 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1081         }
1082
1083         for (uint64_t id = 0; id < vd->vdev_children; id++) {
1084                 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1085         }
1086 }
1087
1088 static void
1089 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1090 {
1091         vdev_t *ivd;
1092         dmu_tx_t *tx;
1093         spa_t *spa = vd->vdev_spa;
1094         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1095
1096         /*
1097          * First, build a list of leaf zaps to be destroyed.
1098          * This is passed to the sync context thread,
1099          * which does the actual unlinking.
1100          */
1101         svr->svr_zaplist = fnvlist_alloc();
1102         vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1103
1104         ivd = vdev_add_parent(vd, &vdev_indirect_ops);
1105         ivd->vdev_removing = 0;
1106
1107         vd->vdev_leaf_zap = 0;
1108
1109         vdev_remove_child(ivd, vd);
1110         vdev_compact_children(ivd);
1111
1112         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1113
1114         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1115         dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_remove_complete_sync, svr,
1116             0, ZFS_SPACE_CHECK_NONE, tx);
1117         dmu_tx_commit(tx);
1118
1119         /*
1120          * Indicate that this thread has exited.
1121          * After this, we can not use svr.
1122          */
1123         mutex_enter(&svr->svr_lock);
1124         svr->svr_thread = NULL;
1125         cv_broadcast(&svr->svr_cv);
1126         mutex_exit(&svr->svr_lock);
1127 }
1128
1129 /*
1130  * Complete the removal of a toplevel vdev. This is called in open
1131  * context by the removal thread after we have copied all vdev's data.
1132  */
1133 static void
1134 vdev_remove_complete(spa_t *spa)
1135 {
1136         uint64_t txg;
1137
1138         /*
1139          * Wait for any deferred frees to be synced before we call
1140          * vdev_metaslab_fini()
1141          */
1142         txg_wait_synced(spa->spa_dsl_pool, 0);
1143         txg = spa_vdev_enter(spa);
1144         vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1145         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1146
1147         sysevent_t *ev = spa_event_create(spa, vd, NULL,
1148             ESC_ZFS_VDEV_REMOVE_DEV);
1149
1150         zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1151             vd->vdev_id, txg);
1152
1153         /*
1154          * Discard allocation state.
1155          */
1156         if (vd->vdev_mg != NULL) {
1157                 vdev_metaslab_fini(vd);
1158                 metaslab_group_destroy(vd->vdev_mg);
1159                 vd->vdev_mg = NULL;
1160         }
1161         ASSERT0(vd->vdev_stat.vs_space);
1162         ASSERT0(vd->vdev_stat.vs_dspace);
1163
1164         vdev_remove_replace_with_indirect(vd, txg);
1165
1166         /*
1167          * We now release the locks, allowing spa_sync to run and finish the
1168          * removal via vdev_remove_complete_sync in syncing context.
1169          *
1170          * Note that we hold on to the vdev_t that has been replaced.  Since
1171          * it isn't part of the vdev tree any longer, it can't be concurrently
1172          * manipulated, even while we don't have the config lock.
1173          */
1174         (void) spa_vdev_exit(spa, NULL, txg, 0);
1175
1176         /*
1177          * Top ZAP should have been transferred to the indirect vdev in
1178          * vdev_remove_replace_with_indirect.
1179          */
1180         ASSERT0(vd->vdev_top_zap);
1181
1182         /*
1183          * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1184          */
1185         ASSERT0(vd->vdev_leaf_zap);
1186
1187         txg = spa_vdev_enter(spa);
1188         (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1189         /*
1190          * Request to update the config and the config cachefile.
1191          */
1192         vdev_config_dirty(spa->spa_root_vdev);
1193         (void) spa_vdev_exit(spa, vd, txg, 0);
1194
1195         spa_event_post(ev);
1196 }
1197
1198 /*
1199  * Evacuates a segment of size at most max_alloc from the vdev
1200  * via repeated calls to spa_vdev_copy_segment. If an allocation
1201  * fails, the pool is probably too fragmented to handle such a
1202  * large size, so decrease max_alloc so that the caller will not try
1203  * this size again this txg.
1204  */
1205 static void
1206 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1207     uint64_t *max_alloc, dmu_tx_t *tx)
1208 {
1209         uint64_t txg = dmu_tx_get_txg(tx);
1210         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1211
1212         mutex_enter(&svr->svr_lock);
1213
1214         /*
1215          * Determine how big of a chunk to copy.  We can allocate up
1216          * to max_alloc bytes, and we can span up to vdev_removal_max_span
1217          * bytes of unallocated space at a time.  "segs" will track the
1218          * allocated segments that we are copying.  We may also be copying
1219          * free segments (of up to vdev_removal_max_span bytes).
1220          */
1221         range_tree_t *segs = range_tree_create(NULL, NULL);
1222         for (;;) {
1223                 range_seg_t *rs = avl_first(&svr->svr_allocd_segs->rt_root);
1224                 if (rs == NULL)
1225                         break;
1226
1227                 uint64_t seg_length;
1228
1229                 if (range_tree_is_empty(segs)) {
1230                         /* need to truncate the first seg based on max_alloc */
1231                         seg_length =
1232                             MIN(rs->rs_end - rs->rs_start, *max_alloc);
1233                 } else {
1234                         if (rs->rs_start - range_tree_max(segs) >
1235                             vdev_removal_max_span) {
1236                                 /*
1237                                  * Including this segment would cause us to
1238                                  * copy a larger unneeded chunk than is allowed.
1239                                  */
1240                                 break;
1241                         } else if (rs->rs_end - range_tree_min(segs) >
1242                             *max_alloc) {
1243                                 /*
1244                                  * This additional segment would extend past
1245                                  * max_alloc. Rather than splitting this
1246                                  * segment, leave it for the next mapping.
1247                                  */
1248                                 break;
1249                         } else {
1250                                 seg_length = rs->rs_end - rs->rs_start;
1251                         }
1252                 }
1253
1254                 range_tree_add(segs, rs->rs_start, seg_length);
1255                 range_tree_remove(svr->svr_allocd_segs,
1256                     rs->rs_start, seg_length);
1257         }
1258
1259         if (range_tree_is_empty(segs)) {
1260                 mutex_exit(&svr->svr_lock);
1261                 range_tree_destroy(segs);
1262                 return;
1263         }
1264
1265         if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1266                 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1267                     svr, 0, ZFS_SPACE_CHECK_NONE, tx);
1268         }
1269
1270         svr->svr_max_offset_to_sync[txg & TXG_MASK] = range_tree_max(segs);
1271
1272         /*
1273          * Note: this is the amount of *allocated* space
1274          * that we are taking care of each txg.
1275          */
1276         svr->svr_bytes_done[txg & TXG_MASK] += range_tree_space(segs);
1277
1278         mutex_exit(&svr->svr_lock);
1279
1280         zio_alloc_list_t zal;
1281         metaslab_trace_init(&zal);
1282         uint64_t thismax = SPA_MAXBLOCKSIZE;
1283         while (!range_tree_is_empty(segs)) {
1284                 int error = spa_vdev_copy_segment(vd,
1285                     segs, thismax, txg, vca, &zal);
1286
1287                 if (error == ENOSPC) {
1288                         /*
1289                          * Cut our segment in half, and don't try this
1290                          * segment size again this txg.  Note that the
1291                          * allocation size must be aligned to the highest
1292                          * ashift in the pool, so that the allocation will
1293                          * not be padded out to a multiple of the ashift,
1294                          * which could cause us to think that this mapping
1295                          * is larger than we intended.
1296                          */
1297                         ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1298                         ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1299                         uint64_t attempted =
1300                             MIN(range_tree_span(segs), thismax);
1301                         thismax = P2ROUNDUP(attempted / 2,
1302                             1 << spa->spa_max_ashift);
1303                         /*
1304                          * The minimum-size allocation can not fail.
1305                          */
1306                         ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1307                         *max_alloc = attempted - (1 << spa->spa_max_ashift);
1308                 } else {
1309                         ASSERT0(error);
1310
1311                         /*
1312                          * We've performed an allocation, so reset the
1313                          * alloc trace list.
1314                          */
1315                         metaslab_trace_fini(&zal);
1316                         metaslab_trace_init(&zal);
1317                 }
1318         }
1319         metaslab_trace_fini(&zal);
1320         range_tree_destroy(segs);
1321 }
1322
1323 /*
1324  * The removal thread operates in open context.  It iterates over all
1325  * allocated space in the vdev, by loading each metaslab's spacemap.
1326  * For each contiguous segment of allocated space (capping the segment
1327  * size at SPA_MAXBLOCKSIZE), we:
1328  *    - Allocate space for it on another vdev.
1329  *    - Create a new mapping from the old location to the new location
1330  *      (as a record in svr_new_segments).
1331  *    - Initiate a logical read zio to get the data off the removing disk.
1332  *    - In the read zio's done callback, initiate a logical write zio to
1333  *      write it to the new vdev.
1334  * Note that all of this will take effect when a particular TXG syncs.
1335  * The sync thread ensures that all the phys reads and writes for the syncing
1336  * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1337  * (see vdev_mapping_sync()).
1338  */
1339 static void
1340 spa_vdev_remove_thread(void *arg)
1341 {
1342         spa_t *spa = arg;
1343         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1344         vdev_copy_arg_t vca;
1345         uint64_t max_alloc = zfs_remove_max_segment;
1346         uint64_t last_txg = 0;
1347
1348         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1349         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1350         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1351         uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1352
1353         ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1354         ASSERT(vdev_is_concrete(vd));
1355         ASSERT(vd->vdev_removing);
1356         ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1357         ASSERT(vim != NULL);
1358
1359         mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1360         cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1361         vca.vca_outstanding_bytes = 0;
1362
1363         mutex_enter(&svr->svr_lock);
1364
1365         /*
1366          * Start from vim_max_offset so we pick up where we left off
1367          * if we are restarting the removal after opening the pool.
1368          */
1369         uint64_t msi;
1370         for (msi = start_offset >> vd->vdev_ms_shift;
1371             msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1372                 metaslab_t *msp = vd->vdev_ms[msi];
1373                 ASSERT3U(msi, <=, vd->vdev_ms_count);
1374
1375                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1376
1377                 mutex_enter(&msp->ms_sync_lock);
1378                 mutex_enter(&msp->ms_lock);
1379
1380                 /*
1381                  * Assert nothing in flight -- ms_*tree is empty.
1382                  */
1383                 for (int i = 0; i < TXG_SIZE; i++) {
1384                         ASSERT0(range_tree_space(msp->ms_allocating[i]));
1385                 }
1386
1387                 /*
1388                  * If the metaslab has ever been allocated from (ms_sm!=NULL),
1389                  * read the allocated segments from the space map object
1390                  * into svr_allocd_segs. Since we do this while holding
1391                  * svr_lock and ms_sync_lock, concurrent frees (which
1392                  * would have modified the space map) will wait for us
1393                  * to finish loading the spacemap, and then take the
1394                  * appropriate action (see free_from_removing_vdev()).
1395                  */
1396                 if (msp->ms_sm != NULL) {
1397                         VERIFY0(space_map_load(msp->ms_sm,
1398                             svr->svr_allocd_segs, SM_ALLOC));
1399
1400                         range_tree_walk(msp->ms_freeing,
1401                             range_tree_remove, svr->svr_allocd_segs);
1402
1403                         /*
1404                          * When we are resuming from a paused removal (i.e.
1405                          * when importing a pool with a removal in progress),
1406                          * discard any state that we have already processed.
1407                          */
1408                         range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1409                 }
1410                 mutex_exit(&msp->ms_lock);
1411                 mutex_exit(&msp->ms_sync_lock);
1412
1413                 vca.vca_msp = msp;
1414                 zfs_dbgmsg("copying %llu segments for metaslab %llu",
1415                     avl_numnodes(&svr->svr_allocd_segs->rt_root),
1416                     msp->ms_id);
1417
1418                 while (!svr->svr_thread_exit &&
1419                     !range_tree_is_empty(svr->svr_allocd_segs)) {
1420
1421                         mutex_exit(&svr->svr_lock);
1422
1423                         /*
1424                          * We need to periodically drop the config lock so that
1425                          * writers can get in.  Additionally, we can't wait
1426                          * for a txg to sync while holding a config lock
1427                          * (since a waiting writer could cause a 3-way deadlock
1428                          * with the sync thread, which also gets a config
1429                          * lock for reader).  So we can't hold the config lock
1430                          * while calling dmu_tx_assign().
1431                          */
1432                         spa_config_exit(spa, SCL_CONFIG, FTAG);
1433
1434                         /*
1435                          * This delay will pause the removal around the point
1436                          * specified by zfs_remove_max_bytes_pause. We do this
1437                          * solely from the test suite or during debugging.
1438                          */
1439                         uint64_t bytes_copied =
1440                             spa->spa_removing_phys.sr_copied;
1441                         for (int i = 0; i < TXG_SIZE; i++)
1442                                 bytes_copied += svr->svr_bytes_done[i];
1443                         while (zfs_remove_max_bytes_pause <= bytes_copied &&
1444                             !svr->svr_thread_exit)
1445                                 delay(hz);
1446
1447                         mutex_enter(&vca.vca_lock);
1448                         while (vca.vca_outstanding_bytes >
1449                             zfs_remove_max_copy_bytes) {
1450                                 cv_wait(&vca.vca_cv, &vca.vca_lock);
1451                         }
1452                         mutex_exit(&vca.vca_lock);
1453
1454                         dmu_tx_t *tx =
1455                             dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1456
1457                         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1458                         uint64_t txg = dmu_tx_get_txg(tx);
1459
1460                         /*
1461                          * Reacquire the vdev_config lock.  The vdev_t
1462                          * that we're removing may have changed, e.g. due
1463                          * to a vdev_attach or vdev_detach.
1464                          */
1465                         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1466                         vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1467
1468                         if (txg != last_txg)
1469                                 max_alloc = zfs_remove_max_segment;
1470                         last_txg = txg;
1471
1472                         spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1473
1474                         dmu_tx_commit(tx);
1475                         mutex_enter(&svr->svr_lock);
1476                 }
1477         }
1478
1479         mutex_exit(&svr->svr_lock);
1480
1481         spa_config_exit(spa, SCL_CONFIG, FTAG);
1482
1483         /*
1484          * Wait for all copies to finish before cleaning up the vca.
1485          */
1486         txg_wait_synced(spa->spa_dsl_pool, 0);
1487         ASSERT0(vca.vca_outstanding_bytes);
1488
1489         mutex_destroy(&vca.vca_lock);
1490         cv_destroy(&vca.vca_cv);
1491
1492         if (svr->svr_thread_exit) {
1493                 mutex_enter(&svr->svr_lock);
1494                 range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1495                 svr->svr_thread = NULL;
1496                 cv_broadcast(&svr->svr_cv);
1497                 mutex_exit(&svr->svr_lock);
1498         } else {
1499                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1500                 vdev_remove_complete(spa);
1501         }
1502         thread_exit();
1503 }
1504
1505 void
1506 spa_vdev_remove_suspend(spa_t *spa)
1507 {
1508         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1509
1510         if (svr == NULL)
1511                 return;
1512
1513         mutex_enter(&svr->svr_lock);
1514         svr->svr_thread_exit = B_TRUE;
1515         while (svr->svr_thread != NULL)
1516                 cv_wait(&svr->svr_cv, &svr->svr_lock);
1517         svr->svr_thread_exit = B_FALSE;
1518         mutex_exit(&svr->svr_lock);
1519 }
1520
1521 /* ARGSUSED */
1522 static int
1523 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1524 {
1525         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1526
1527         if (spa->spa_vdev_removal == NULL)
1528                 return (ESRCH);
1529         return (0);
1530 }
1531
1532 /*
1533  * Cancel a removal by freeing all entries from the partial mapping
1534  * and marking the vdev as no longer being removing.
1535  */
1536 /* ARGSUSED */
1537 static void
1538 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1539 {
1540         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1541         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1542         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1543         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1544         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1545         objset_t *mos = spa->spa_meta_objset;
1546
1547         ASSERT3P(svr->svr_thread, ==, NULL);
1548
1549         spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1550         if (vdev_obsolete_counts_are_precise(vd)) {
1551                 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1552                 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1553                     VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1554         }
1555
1556         if (vdev_obsolete_sm_object(vd) != 0) {
1557                 ASSERT(vd->vdev_obsolete_sm != NULL);
1558                 ASSERT3U(vdev_obsolete_sm_object(vd), ==,
1559                     space_map_object(vd->vdev_obsolete_sm));
1560
1561                 space_map_free(vd->vdev_obsolete_sm, tx);
1562                 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1563                     VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1564                 space_map_close(vd->vdev_obsolete_sm);
1565                 vd->vdev_obsolete_sm = NULL;
1566                 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1567         }
1568         for (int i = 0; i < TXG_SIZE; i++) {
1569                 ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1570                 ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1571                     vdev_indirect_mapping_max_offset(vim));
1572         }
1573
1574         for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1575                 metaslab_t *msp = vd->vdev_ms[msi];
1576
1577                 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1578                         break;
1579
1580                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1581
1582                 mutex_enter(&msp->ms_lock);
1583
1584                 /*
1585                  * Assert nothing in flight -- ms_*tree is empty.
1586                  */
1587                 for (int i = 0; i < TXG_SIZE; i++)
1588                         ASSERT0(range_tree_space(msp->ms_allocating[i]));
1589                 for (int i = 0; i < TXG_DEFER_SIZE; i++)
1590                         ASSERT0(range_tree_space(msp->ms_defer[i]));
1591                 ASSERT0(range_tree_space(msp->ms_freed));
1592
1593                 if (msp->ms_sm != NULL) {
1594                         mutex_enter(&svr->svr_lock);
1595                         VERIFY0(space_map_load(msp->ms_sm,
1596                             svr->svr_allocd_segs, SM_ALLOC));
1597                         range_tree_walk(msp->ms_freeing,
1598                             range_tree_remove, svr->svr_allocd_segs);
1599
1600                         /*
1601                          * Clear everything past what has been synced,
1602                          * because we have not allocated mappings for it yet.
1603                          */
1604                         uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1605                         uint64_t sm_end = msp->ms_sm->sm_start +
1606                             msp->ms_sm->sm_size;
1607                         if (sm_end > syncd)
1608                                 range_tree_clear(svr->svr_allocd_segs,
1609                                     syncd, sm_end - syncd);
1610
1611                         mutex_exit(&svr->svr_lock);
1612                 }
1613                 mutex_exit(&msp->ms_lock);
1614
1615                 mutex_enter(&svr->svr_lock);
1616                 range_tree_vacate(svr->svr_allocd_segs,
1617                     free_mapped_segment_cb, vd);
1618                 mutex_exit(&svr->svr_lock);
1619         }
1620
1621         /*
1622          * Note: this must happen after we invoke free_mapped_segment_cb,
1623          * because it adds to the obsolete_segments.
1624          */
1625         range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1626
1627         ASSERT3U(vic->vic_mapping_object, ==,
1628             vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1629         vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1630         vd->vdev_indirect_mapping = NULL;
1631         vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1632         vic->vic_mapping_object = 0;
1633
1634         ASSERT3U(vic->vic_births_object, ==,
1635             vdev_indirect_births_object(vd->vdev_indirect_births));
1636         vdev_indirect_births_close(vd->vdev_indirect_births);
1637         vd->vdev_indirect_births = NULL;
1638         vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1639         vic->vic_births_object = 0;
1640
1641         /*
1642          * We may have processed some frees from the removing vdev in this
1643          * txg, thus increasing svr_bytes_done; discard that here to
1644          * satisfy the assertions in spa_vdev_removal_destroy().
1645          * Note that future txg's can not have any bytes_done, because
1646          * future TXG's are only modified from open context, and we have
1647          * already shut down the copying thread.
1648          */
1649         svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1650         spa_finish_removal(spa, DSS_CANCELED, tx);
1651
1652         vd->vdev_removing = B_FALSE;
1653         vdev_config_dirty(vd);
1654
1655         zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1656             vd->vdev_id, dmu_tx_get_txg(tx));
1657         spa_history_log_internal(spa, "vdev remove canceled", tx,
1658             "%s vdev %llu %s", spa_name(spa),
1659             vd->vdev_id, (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1660 }
1661
1662 int
1663 spa_vdev_remove_cancel(spa_t *spa)
1664 {
1665         spa_vdev_remove_suspend(spa);
1666
1667         if (spa->spa_vdev_removal == NULL)
1668                 return (ESRCH);
1669
1670         uint64_t vdid = spa->spa_vdev_removal->svr_vdev_id;
1671
1672         int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1673             spa_vdev_remove_cancel_sync, NULL, 0,
1674             ZFS_SPACE_CHECK_EXTRA_RESERVED);
1675
1676         if (error == 0) {
1677                 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1678                 vdev_t *vd = vdev_lookup_top(spa, vdid);
1679                 metaslab_group_activate(vd->vdev_mg);
1680                 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1681         }
1682
1683         return (error);
1684 }
1685
1686 void
1687 svr_sync(spa_t *spa, dmu_tx_t *tx)
1688 {
1689         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1690         int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1691
1692         /*
1693          * This check is necessary so that we do not dirty the
1694          * DIRECTORY_OBJECT via spa_sync_removing_state() when there
1695          * is nothing to do.  Dirtying it every time would prevent us
1696          * from syncing-to-convergence.
1697          */
1698         if (svr->svr_bytes_done[txgoff] == 0)
1699                 return;
1700
1701         /*
1702          * Update progress accounting.
1703          */
1704         spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
1705         svr->svr_bytes_done[txgoff] = 0;
1706
1707         spa_sync_removing_state(spa, tx);
1708 }
1709
1710 static void
1711 vdev_remove_make_hole_and_free(vdev_t *vd)
1712 {
1713         uint64_t id = vd->vdev_id;
1714         spa_t *spa = vd->vdev_spa;
1715         vdev_t *rvd = spa->spa_root_vdev;
1716         boolean_t last_vdev = (id == (rvd->vdev_children - 1));
1717
1718         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1719         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1720
1721         vdev_free(vd);
1722
1723         if (last_vdev) {
1724                 vdev_compact_children(rvd);
1725         } else {
1726                 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
1727                 vdev_add_child(rvd, vd);
1728         }
1729         vdev_config_dirty(rvd);
1730
1731         /*
1732          * Reassess the health of our root vdev.
1733          */
1734         vdev_reopen(rvd);
1735 }
1736
1737 /*
1738  * Remove a log device.  The config lock is held for the specified TXG.
1739  */
1740 static int
1741 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
1742 {
1743         metaslab_group_t *mg = vd->vdev_mg;
1744         spa_t *spa = vd->vdev_spa;
1745         int error = 0;
1746
1747         ASSERT(vd->vdev_islog);
1748         ASSERT(vd == vd->vdev_top);
1749         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1750
1751         /*
1752          * Stop allocating from this vdev.
1753          */
1754         metaslab_group_passivate(mg);
1755
1756         /*
1757          * Wait for the youngest allocations and frees to sync,
1758          * and then wait for the deferral of those frees to finish.
1759          */
1760         spa_vdev_config_exit(spa, NULL,
1761             *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1762
1763         /*
1764          * Evacuate the device.  We don't hold the config lock as
1765          * writer since we need to do I/O but we do keep the
1766          * spa_namespace_lock held.  Once this completes the device
1767          * should no longer have any blocks allocated on it.
1768          */
1769         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1770         if (vd->vdev_stat.vs_alloc != 0)
1771                 error = spa_reset_logs(spa);
1772
1773         *txg = spa_vdev_config_enter(spa);
1774
1775         if (error != 0) {
1776                 metaslab_group_activate(mg);
1777                 return (error);
1778         }
1779         ASSERT0(vd->vdev_stat.vs_alloc);
1780
1781         /*
1782          * The evacuation succeeded.  Remove any remaining MOS metadata
1783          * associated with this vdev, and wait for these changes to sync.
1784          */
1785         vd->vdev_removing = B_TRUE;
1786
1787         vdev_dirty_leaves(vd, VDD_DTL, *txg);
1788         vdev_config_dirty(vd);
1789
1790         vdev_metaslab_fini(vd);
1791
1792         spa_history_log_internal(spa, "vdev remove", NULL,
1793             "%s vdev %llu (log) %s", spa_name(spa), vd->vdev_id,
1794             (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1795
1796         /* Make sure these changes are sync'ed */
1797         spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
1798
1799         /* Stop initializing */
1800         (void) vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
1801
1802         *txg = spa_vdev_config_enter(spa);
1803
1804         sysevent_t *ev = spa_event_create(spa, vd, NULL,
1805             ESC_ZFS_VDEV_REMOVE_DEV);
1806         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1807         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1808
1809         /* The top ZAP should have been destroyed by vdev_remove_empty. */
1810         ASSERT0(vd->vdev_top_zap);
1811         /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
1812         ASSERT0(vd->vdev_leaf_zap);
1813
1814         (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1815
1816         if (list_link_active(&vd->vdev_state_dirty_node))
1817                 vdev_state_clean(vd);
1818         if (list_link_active(&vd->vdev_config_dirty_node))
1819                 vdev_config_clean(vd);
1820
1821         ASSERT0(vd->vdev_stat.vs_alloc);
1822
1823         /*
1824          * Clean up the vdev namespace.
1825          */
1826         vdev_remove_make_hole_and_free(vd);
1827
1828         if (ev != NULL)
1829                 spa_event_post(ev);
1830
1831         return (0);
1832 }
1833
1834 static int
1835 spa_vdev_remove_top_check(vdev_t *vd)
1836 {
1837         spa_t *spa = vd->vdev_spa;
1838
1839         if (vd != vd->vdev_top)
1840                 return (SET_ERROR(ENOTSUP));
1841
1842         if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
1843                 return (SET_ERROR(ENOTSUP));
1844
1845         /* available space in the pool's normal class */
1846         uint64_t available = dsl_dir_space_available(
1847             spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE);
1848
1849         metaslab_class_t *mc = vd->vdev_mg->mg_class;
1850
1851         /*
1852          * When removing a vdev from an allocation class that has
1853          * remaining vdevs, include available space from the class.
1854          */
1855         if (mc != spa_normal_class(spa) && mc->mc_groups > 1) {
1856                 uint64_t class_avail = metaslab_class_get_space(mc) -
1857                     metaslab_class_get_alloc(mc);
1858
1859                 /* add class space, adjusted for overhead */
1860                 available += (class_avail * 94) / 100;
1861         }
1862
1863         /*
1864          * There has to be enough free space to remove the
1865          * device and leave double the "slop" space (i.e. we
1866          * must leave at least 3% of the pool free, in addition to
1867          * the normal slop space).
1868          */
1869         if (available < vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) {
1870                 return (SET_ERROR(ENOSPC));
1871         }
1872
1873         /*
1874          * There can not be a removal in progress.
1875          */
1876         if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
1877                 return (SET_ERROR(EBUSY));
1878
1879         /*
1880          * The device must have all its data.
1881          */
1882         if (!vdev_dtl_empty(vd, DTL_MISSING) ||
1883             !vdev_dtl_empty(vd, DTL_OUTAGE))
1884                 return (SET_ERROR(EBUSY));
1885
1886         /*
1887          * The device must be healthy.
1888          */
1889         if (!vdev_readable(vd))
1890                 return (SET_ERROR(EIO));
1891
1892         /*
1893          * All vdevs in normal class must have the same ashift.
1894          */
1895         if (spa->spa_max_ashift != spa->spa_min_ashift) {
1896                 return (SET_ERROR(EINVAL));
1897         }
1898
1899         /*
1900          * All vdevs in normal class must have the same ashift
1901          * and not be raidz.
1902          */
1903         vdev_t *rvd = spa->spa_root_vdev;
1904         int num_indirect = 0;
1905         for (uint64_t id = 0; id < rvd->vdev_children; id++) {
1906                 vdev_t *cvd = rvd->vdev_child[id];
1907                 if (cvd->vdev_ashift != 0 && !cvd->vdev_islog)
1908                         ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
1909                 if (cvd->vdev_ops == &vdev_indirect_ops)
1910                         num_indirect++;
1911                 if (!vdev_is_concrete(cvd))
1912                         continue;
1913                 if (cvd->vdev_ops == &vdev_raidz_ops)
1914                         return (SET_ERROR(EINVAL));
1915                 /*
1916                  * Need the mirror to be mirror of leaf vdevs only
1917                  */
1918                 if (cvd->vdev_ops == &vdev_mirror_ops) {
1919                         for (uint64_t cid = 0;
1920                             cid < cvd->vdev_children; cid++) {
1921                                 vdev_t *tmp = cvd->vdev_child[cid];
1922                                 if (!tmp->vdev_ops->vdev_op_leaf)
1923                                         return (SET_ERROR(EINVAL));
1924                         }
1925                 }
1926         }
1927
1928         return (0);
1929 }
1930
1931 /*
1932  * Initiate removal of a top-level vdev, reducing the total space in the pool.
1933  * The config lock is held for the specified TXG.  Once initiated,
1934  * evacuation of all allocated space (copying it to other vdevs) happens
1935  * in the background (see spa_vdev_remove_thread()), and can be canceled
1936  * (see spa_vdev_remove_cancel()).  If successful, the vdev will
1937  * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
1938  */
1939 static int
1940 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
1941 {
1942         spa_t *spa = vd->vdev_spa;
1943         int error;
1944
1945         /*
1946          * Check for errors up-front, so that we don't waste time
1947          * passivating the metaslab group and clearing the ZIL if there
1948          * are errors.
1949          */
1950         error = spa_vdev_remove_top_check(vd);
1951         if (error != 0)
1952                 return (error);
1953
1954         /*
1955          * Stop allocating from this vdev.  Note that we must check
1956          * that this is not the only device in the pool before
1957          * passivating, otherwise we will not be able to make
1958          * progress because we can't allocate from any vdevs.
1959          * The above check for sufficient free space serves this
1960          * purpose.
1961          */
1962         metaslab_group_t *mg = vd->vdev_mg;
1963         metaslab_group_passivate(mg);
1964
1965         /*
1966          * Wait for the youngest allocations and frees to sync,
1967          * and then wait for the deferral of those frees to finish.
1968          */
1969         spa_vdev_config_exit(spa, NULL,
1970             *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1971
1972         /*
1973          * We must ensure that no "stubby" log blocks are allocated
1974          * on the device to be removed.  These blocks could be
1975          * written at any time, including while we are in the middle
1976          * of copying them.
1977          */
1978         error = spa_reset_logs(spa);
1979
1980         /*
1981          * We stop any initializing that is currently in progress but leave
1982          * the state as "active". This will allow the initializing to resume
1983          * if the removal is canceled sometime later.
1984          */
1985         vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
1986
1987         *txg = spa_vdev_config_enter(spa);
1988
1989         /*
1990          * Things might have changed while the config lock was dropped
1991          * (e.g. space usage).  Check for errors again.
1992          */
1993         if (error == 0)
1994                 error = spa_vdev_remove_top_check(vd);
1995
1996         if (error != 0) {
1997                 metaslab_group_activate(mg);
1998                 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
1999                 return (error);
2000         }
2001
2002         vd->vdev_removing = B_TRUE;
2003
2004         vdev_dirty_leaves(vd, VDD_DTL, *txg);
2005         vdev_config_dirty(vd);
2006         dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2007         dsl_sync_task_nowait(spa->spa_dsl_pool,
2008             vdev_remove_initiate_sync,
2009             (void *)(uintptr_t)vd->vdev_id, 0, ZFS_SPACE_CHECK_NONE, tx);
2010         dmu_tx_commit(tx);
2011
2012         return (0);
2013 }
2014
2015 /*
2016  * Remove a device from the pool.
2017  *
2018  * Removing a device from the vdev namespace requires several steps
2019  * and can take a significant amount of time.  As a result we use
2020  * the spa_vdev_config_[enter/exit] functions which allow us to
2021  * grab and release the spa_config_lock while still holding the namespace
2022  * lock.  During each step the configuration is synced out.
2023  */
2024 int
2025 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2026 {
2027         vdev_t *vd;
2028         nvlist_t **spares, **l2cache, *nv;
2029         uint64_t txg = 0;
2030         uint_t nspares, nl2cache;
2031         int error = 0;
2032         boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2033         sysevent_t *ev = NULL;
2034
2035         ASSERT(spa_writeable(spa));
2036
2037         if (!locked)
2038                 txg = spa_vdev_enter(spa);
2039
2040         ASSERT(MUTEX_HELD(&spa_namespace_lock));
2041         if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2042                 error = (spa_has_checkpoint(spa)) ?
2043                     ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2044
2045                 if (!locked)
2046                         return (spa_vdev_exit(spa, NULL, txg, error));
2047
2048                 return (error);
2049         }
2050
2051         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2052
2053         if (spa->spa_spares.sav_vdevs != NULL &&
2054             nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2055             ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2056             (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2057                 /*
2058                  * Only remove the hot spare if it's not currently in use
2059                  * in this pool.
2060                  */
2061                 if (vd == NULL || unspare) {
2062                         char *nvstr = fnvlist_lookup_string(nv,
2063                             ZPOOL_CONFIG_PATH);
2064                         spa_history_log_internal(spa, "vdev remove", NULL,
2065                             "%s vdev (%s) %s", spa_name(spa),
2066                             VDEV_TYPE_SPARE, nvstr);
2067                         if (vd == NULL)
2068                                 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2069                         ev = spa_event_create(spa, vd, NULL,
2070                             ESC_ZFS_VDEV_REMOVE_AUX);
2071                         spa_vdev_remove_aux(spa->spa_spares.sav_config,
2072                             ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2073                         spa_load_spares(spa);
2074                         spa->spa_spares.sav_sync = B_TRUE;
2075                 } else {
2076                         error = SET_ERROR(EBUSY);
2077                 }
2078         } else if (spa->spa_l2cache.sav_vdevs != NULL &&
2079             nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2080             ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2081             (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2082                 char *nvstr = fnvlist_lookup_string(nv, ZPOOL_CONFIG_PATH);
2083                 spa_history_log_internal(spa, "vdev remove", NULL,
2084                     "%s vdev (%s) %s", spa_name(spa), VDEV_TYPE_L2CACHE, nvstr);
2085                 /*
2086                  * Cache devices can always be removed.
2087                  */
2088                 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2089                 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2090                 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2091                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2092                 spa_load_l2cache(spa);
2093                 spa->spa_l2cache.sav_sync = B_TRUE;
2094         } else if (vd != NULL && vd->vdev_islog) {
2095                 ASSERT(!locked);
2096                 error = spa_vdev_remove_log(vd, &txg);
2097         } else if (vd != NULL) {
2098                 ASSERT(!locked);
2099                 error = spa_vdev_remove_top(vd, &txg);
2100         } else {
2101                 /*
2102                  * There is no vdev of any kind with the specified guid.
2103                  */
2104                 error = SET_ERROR(ENOENT);
2105         }
2106
2107         if (!locked)
2108                 error = spa_vdev_exit(spa, NULL, txg, error);
2109
2110         if (ev != NULL) {
2111                 if (error != 0) {
2112                         spa_event_discard(ev);
2113                 } else {
2114                         spa_event_post(ev);
2115                 }
2116         }
2117
2118         return (error);
2119 }
2120
2121 int
2122 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2123 {
2124         prs->prs_state = spa->spa_removing_phys.sr_state;
2125
2126         if (prs->prs_state == DSS_NONE)
2127                 return (SET_ERROR(ENOENT));
2128
2129         prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2130         prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2131         prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2132         prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2133         prs->prs_copied = spa->spa_removing_phys.sr_copied;
2134
2135         if (spa->spa_vdev_removal != NULL) {
2136                 for (int i = 0; i < TXG_SIZE; i++) {
2137                         prs->prs_copied +=
2138                             spa->spa_vdev_removal->svr_bytes_done[i];
2139                 }
2140         }
2141
2142         prs->prs_mapping_memory = 0;
2143         uint64_t indirect_vdev_id =
2144             spa->spa_removing_phys.sr_prev_indirect_vdev;
2145         while (indirect_vdev_id != -1) {
2146                 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2147                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2148                 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2149
2150                 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2151                 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2152                 indirect_vdev_id = vic->vic_prev_indirect_vdev;
2153         }
2154
2155         return (0);
2156 }