inet6: only mark autoconf addresses tentative if detached
[dragonfly.git] / sys / platform / pc64 / x86_64 / mp_machdep.c
CommitLineData
46d4e165
JG
1/*
2 * Copyright (c) 1996, by Steve Passe
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. The name of the developer may NOT be used to endorse or promote products
11 * derived from this software without specific prior written permission.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 * $FreeBSD: src/sys/i386/i386/mp_machdep.c,v 1.115.2.15 2003/03/14 21:22:35 jhb Exp $
46d4e165
JG
26 */
27
28#include "opt_cpu.h"
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/kernel.h>
33#include <sys/sysctl.h>
34#include <sys/malloc.h>
35#include <sys/memrange.h>
36#include <sys/cons.h> /* cngetc() */
37#include <sys/machintr.h>
0e9325d3 38#include <sys/cpu_topology.h>
46d4e165 39
684a93c4
MD
40#include <sys/mplock2.h>
41
46d4e165
JG
42#include <vm/vm.h>
43#include <vm/vm_param.h>
44#include <vm/pmap.h>
45#include <vm/vm_kern.h>
46#include <vm/vm_extern.h>
47#include <sys/lock.h>
48#include <vm/vm_map.h>
46d4e165
JG
49
50#include <machine/smp.h>
51#include <machine_base/apic/apicreg.h>
52#include <machine/atomic.h>
53#include <machine/cpufunc.h>
f77c018a 54#include <machine/cputypes.h>
2b6cd37e 55#include <machine_base/apic/lapic.h>
61452645 56#include <machine_base/apic/ioapic.h>
8005c0c8 57#include <machine_base/acpica/acpi_md_cpu.h>
46d4e165
JG
58#include <machine/psl.h>
59#include <machine/segments.h>
60#include <machine/tss.h>
61#include <machine/specialreg.h>
62#include <machine/globaldata.h>
4117f2fd 63#include <machine/pmap_inval.h>
1a5c7e0f 64#include <machine/clock.h>
46d4e165
JG
65
66#include <machine/md_var.h> /* setidt() */
57a9c56b 67#include <machine_base/icu/icu.h> /* IPIs */
3566408b 68#include <machine_base/icu/icu_var.h>
e0918665 69#include <machine_base/apic/ioapic_abi.h>
57a9c56b 70#include <machine/intr_machdep.h> /* IPIs */
46d4e165 71
46d4e165
JG
72#define WARMBOOT_TARGET 0
73#define WARMBOOT_OFF (KERNBASE + 0x0467)
74#define WARMBOOT_SEG (KERNBASE + 0x0469)
75
46d4e165
JG
76#define CMOS_REG (0x70)
77#define CMOS_DATA (0x71)
78#define BIOS_RESET (0x0f)
79#define BIOS_WARM (0x0a)
80
2d20c15f
MD
81#define INVLPG_TIMEOUT_DEFAULT 10
82#define INVLPG_TIMEOUT_VM 60
83
46d4e165
JG
84/*
85 * this code MUST be enabled here and in mpboot.s.
86 * it follows the very early stages of AP boot by placing values in CMOS ram.
87 * it NORMALLY will never be needed and thus the primitive method for enabling.
88 *
89 */
90#if defined(CHECK_POINTS)
91#define CHECK_READ(A) (outb(CMOS_REG, (A)), inb(CMOS_DATA))
92#define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
93
94#define CHECK_INIT(D); \
95 CHECK_WRITE(0x34, (D)); \
96 CHECK_WRITE(0x35, (D)); \
97 CHECK_WRITE(0x36, (D)); \
98 CHECK_WRITE(0x37, (D)); \
99 CHECK_WRITE(0x38, (D)); \
100 CHECK_WRITE(0x39, (D));
101
102#define CHECK_PRINT(S); \
103 kprintf("%s: %d, %d, %d, %d, %d, %d\n", \
104 (S), \
105 CHECK_READ(0x34), \
106 CHECK_READ(0x35), \
107 CHECK_READ(0x36), \
108 CHECK_READ(0x37), \
109 CHECK_READ(0x38), \
110 CHECK_READ(0x39));
111
112#else /* CHECK_POINTS */
113
114#define CHECK_INIT(D)
115#define CHECK_PRINT(S)
116
117#endif /* CHECK_POINTS */
118
119/*
120 * Values to send to the POST hardware.
121 */
122#define MP_BOOTADDRESS_POST 0x10
123#define MP_PROBE_POST 0x11
124#define MPTABLE_PASS1_POST 0x12
125
126#define MP_START_POST 0x13
127#define MP_ENABLE_POST 0x14
128#define MPTABLE_PASS2_POST 0x15
129
130#define START_ALL_APS_POST 0x16
131#define INSTALL_AP_TRAMP_POST 0x17
132#define START_AP_POST 0x18
133
134#define MP_ANNOUNCE_POST 0x19
135
46d4e165
JG
136/** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
137int current_postcode;
138
139/** XXX FIXME: what system files declare these??? */
46d4e165 140
637df2f6 141extern int naps;
1a923442 142extern int _udatasel;
46d4e165 143
46d4e165
JG
144int64_t tsc0_offset;
145extern int64_t tsc_offsets[];
146
46d4e165
JG
147/* AP uses this during bootstrap. Do not staticize. */
148char *bootSTK;
149static int bootAP;
150
46d4e165
JG
151struct pcb stoppcbs[MAXCPU];
152
153extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
154
46d4e165
JG
155/*
156 * Local data and functions.
157 */
158
46d4e165 159static u_int boot_address;
46d4e165 160static int mp_finish;
c6b1591c 161static int mp_finish_lapic;
46d4e165 162
46d4e165 163static int start_all_aps(u_int boot_addr);
bfc09ba0 164#if 0
46d4e165 165static void install_ap_tramp(u_int boot_addr);
bfc09ba0 166#endif
bb467734
MD
167static int start_ap(struct mdglobaldata *gd, u_int boot_addr, int smibest);
168static int smitest(void);
3a69c113 169static void mp_bsp_simple_setup(void);
46d4e165 170
c07315c4 171/* which cpus have been started */
36bbfccb 172__read_mostly static cpumask_t smp_startup_mask = CPUMASK_INITIALIZER_ONLYONE;
c07315c4 173/* which cpus have lapic been inited */
36bbfccb 174__read_mostly static cpumask_t smp_lapic_mask = CPUMASK_INITIALIZER_ONLYONE;
c07315c4 175/* which cpus are ready for IPIs etc? */
36bbfccb
MD
176__read_mostly cpumask_t smp_active_mask = CPUMASK_INITIALIZER_ONLYONE;
177__read_mostly cpumask_t smp_finalize_mask = CPUMASK_INITIALIZER_ONLYONE;
c07315c4 178
95be233a
SZ
179SYSCTL_OPAQUE(_machdep, OID_AUTO, smp_active, CTLFLAG_RD,
180 &smp_active_mask, sizeof(smp_active_mask), "LU", "");
46d4e165 181static u_int bootMP_size;
36bbfccb 182__read_mostly static u_int report_invlpg_src;
79f2da03
MD
183SYSCTL_INT(_machdep, OID_AUTO, report_invlpg_src, CTLFLAG_RW,
184 &report_invlpg_src, 0, "");
36bbfccb 185__read_mostly static u_int report_invltlb_src;
79f2da03
MD
186SYSCTL_INT(_machdep, OID_AUTO, report_invltlb_src, CTLFLAG_RW,
187 &report_invltlb_src, 0, "");
36bbfccb 188__read_mostly static int optimized_invltlb;
1a5c7e0f
MD
189SYSCTL_INT(_machdep, OID_AUTO, optimized_invltlb, CTLFLAG_RW,
190 &optimized_invltlb, 0, "");
36bbfccb 191__read_mostly static int all_but_self_ipi_enable = 1;
bba35d66
MD
192SYSCTL_INT(_machdep, OID_AUTO, all_but_self_ipi_enable, CTLFLAG_RW,
193 &all_but_self_ipi_enable, 0, "");
36bbfccb 194__read_mostly static int invlpg_timeout = INVLPG_TIMEOUT_DEFAULT;
2d20c15f
MD
195SYSCTL_INT(_machdep, OID_AUTO, invlpg_timeout, CTLFLAG_RW,
196 &invlpg_timeout, 0, "");
46d4e165 197
f77c018a
MC
198/* Local data for detecting CPU TOPOLOGY */
199static int core_bits = 0;
200static int logical_CPU_bits = 0;
201
202
46d4e165
JG
203/*
204 * Calculate usable address in base memory for AP trampoline code.
205 */
206u_int
207mp_bootaddress(u_int basemem)
208{
209 POSTCODE(MP_BOOTADDRESS_POST);
210
c855ebba
JG
211 bootMP_size = mptramp_end - mptramp_start;
212 boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
213 if (((basemem * 1024) - boot_address) < bootMP_size)
214 boot_address -= PAGE_SIZE; /* not enough, lower by 4k */
46d4e165
JG
215 /* 3 levels of page table pages */
216 mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
217
218 return mptramp_pagetables;
219}
220
46d4e165
JG
221/*
222 * Print various information about the SMP system hardware and setup.
223 */
224void
225mp_announce(void)
226{
227 int x;
228
229 POSTCODE(MP_ANNOUNCE_POST);
230
231 kprintf("DragonFly/MP: Multiprocessor motherboard\n");
fbac0dc4 232 kprintf(" cpu0 (BSP): apic id: %2d\n", CPUID_TO_APICID(0));
637df2f6 233 for (x = 1; x <= naps; ++x)
fbac0dc4 234 kprintf(" cpu%d (AP): apic id: %2d\n", x, CPUID_TO_APICID(x));
46d4e165 235
f45bfca0 236 if (!ioapic_enable)
7a603b36 237 kprintf(" Warning: APIC I/O disabled\n");
46d4e165
JG
238}
239
240/*
241 * AP cpu's call this to sync up protected mode.
242 *
ec073ddc 243 * WARNING! %gs is not set up on entry. This routine sets up %gs.
46d4e165
JG
244 */
245void
246init_secondary(void)
247{
248 int gsel_tss;
249 int x, myid = bootAP;
250 u_int64_t msr, cr0;
251 struct mdglobaldata *md;
252 struct privatespace *ps;
31815141 253 struct user_segment_descriptor *gdt;
46d4e165 254
4864d541 255 ps = CPU_prvspace[myid];
31815141 256 gdt = ps->mdglobaldata.gd_gdt;
46d4e165 257
9e24b495 258 gdt_segs[GPROC0_SEL].ssd_base = (long)&ps->common_tss;
46d4e165
JG
259 ps->mdglobaldata.mi.gd_prvspace = ps;
260
261 /* We fill the 32-bit segment descriptors */
262 for (x = 0; x < NGDT; x++) {
263 if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
31815141 264 ssdtosd(&gdt_segs[x], &gdt[x]);
46d4e165
JG
265 }
266 /* And now a 64-bit one */
267 ssdtosyssd(&gdt_segs[GPROC0_SEL],
31815141 268 (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
46d4e165 269
31815141
MD
270 r_gdt.rd_limit = MAXGDT_LIMIT - 1;
271 r_gdt.rd_base = (long)(intptr_t)gdt;
46d4e165
JG
272 lgdt(&r_gdt); /* does magic intra-segment return */
273
ec073ddc
JG
274 /* lgdt() destroys the GSBASE value, so we load GSBASE after lgdt() */
275 wrmsr(MSR_FSBASE, 0); /* User value */
276 wrmsr(MSR_GSBASE, (u_int64_t)ps);
277 wrmsr(MSR_KGSBASE, 0); /* XXX User value while we're in the kernel */
278
8a06c6ee 279 lidt(&r_idt_arr[mdcpu->mi.gd_cpuid]);
46d4e165 280
1a923442
MD
281 load_ds(_udatasel);
282 load_es(_udatasel);
283 load_fs(_udatasel);
284
46d4e165
JG
285#if 0
286 lldt(_default_ldt);
287 mdcpu->gd_currentldt = _default_ldt;
288#endif
289
290 gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
31815141 291 gdt[GPROC0_SEL].sd_type = SDT_SYSTSS;
46d4e165
JG
292
293 md = mdcpu; /* loaded through %gs:0 (mdglobaldata.mi.gd_prvspace)*/
294
4611d87f 295 /*
fc921477
MD
296 * TSS entry point for interrupts, traps, and exceptions
297 * (sans NMI). This will always go to near the top of the pcpu
298 * trampoline area. Hardware-pushed data will be copied into
299 * the trap-frame on entry, and (if necessary) returned to the
300 * trampoline on exit.
301 *
302 * We store some pcb data for the trampoline code above the
303 * stack the cpu hw pushes into, and arrange things so the
304 * address of tr_pcb_rsp is the same as the desired top of
305 * stack.
4611d87f 306 */
9e24b495
MD
307 ps->common_tss.tss_rsp0 = (register_t)&ps->trampoline.tr_pcb_rsp;
308 ps->trampoline.tr_pcb_rsp = ps->common_tss.tss_rsp0;
85b33048
MD
309 ps->trampoline.tr_pcb_gs_kernel = (register_t)md;
310 ps->trampoline.tr_pcb_cr3 = KPML4phys; /* adj to user cr3 live */
311 ps->dbltramp.tr_pcb_gs_kernel = (register_t)md;
312 ps->dbltramp.tr_pcb_cr3 = KPML4phys;
313 ps->dbgtramp.tr_pcb_gs_kernel = (register_t)md;
314 ps->dbgtramp.tr_pcb_cr3 = KPML4phys;
fc921477 315
46d4e165 316#if 0 /* JG XXX */
9e24b495 317 ps->common_tss.tss_ioopt = (sizeof ps->common_tss) << 16;
46d4e165 318#endif
31815141 319 md->gd_tss_gdt = &gdt[GPROC0_SEL];
46d4e165 320 md->gd_common_tssd = *md->gd_tss_gdt;
093565f2
MD
321
322 /* double fault stack */
85b33048
MD
323 ps->common_tss.tss_ist1 = (register_t)&ps->dbltramp.tr_pcb_rsp;
324 ps->common_tss.tss_ist2 = (register_t)&ps->dbgtramp.tr_pcb_rsp;
093565f2 325
46d4e165
JG
326 ltr(gsel_tss);
327
46d4e165
JG
328 /*
329 * Set to a known state:
330 * Set by mpboot.s: CR0_PG, CR0_PE
331 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
332 */
333 cr0 = rcr0();
334 cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
335 load_cr0(cr0);
336
337 /* Set up the fast syscall stuff */
338 msr = rdmsr(MSR_EFER) | EFER_SCE;
339 wrmsr(MSR_EFER, msr);
340 wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
341 wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
342 msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
343 ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
344 wrmsr(MSR_STAR, msr);
921ef7b6 345 wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL|PSL_AC);
46d4e165
JG
346
347 pmap_set_opt(); /* PSE/4MB pages, etc */
b524ca76 348 pmap_init_pat(); /* Page Attribute Table */
46d4e165
JG
349
350 /* set up CPU registers and state */
351 cpu_setregs();
352
353 /* set up SSE/NX registers */
20a6d9db 354 initializecpu(myid);
46d4e165
JG
355
356 /* set up FPU state on the AP */
186c803f 357 npxinit();
ec073ddc 358
f89b4a45
SZ
359 /* If BSP is in the X2APIC mode, put the AP into the X2APIC mode. */
360 if (x2apic_enable)
361 lapic_x2apic_enter(FALSE);
362
ec073ddc 363 /* disable the APIC, just to be SURE */
8afc0c3d 364 LAPIC_WRITE(svr, (LAPIC_READ(svr) & ~APIC_SVR_ENABLE));
46d4e165
JG
365}
366
367/*******************************************************************
368 * local functions and data
369 */
370
371/*
3a69c113 372 * Start the SMP system
46d4e165
JG
373 */
374static void
3a69c113 375mp_start_aps(void *dummy __unused)
46d4e165 376{
2e0ed166
SZ
377 if (lapic_enable) {
378 /* start each Application Processor */
3a69c113 379 start_all_aps(boot_address);
2e0ed166 380 } else {
3a69c113 381 mp_bsp_simple_setup();
944562df 382 }
46d4e165 383}
f3f3eadb 384SYSINIT(startaps, SI_BOOT2_START_APS, SI_ORDER_FIRST, mp_start_aps, NULL);
46d4e165 385
46d4e165
JG
386/*
387 * start each AP in our list
388 */
389static int
390start_all_aps(u_int boot_addr)
391{
392 vm_offset_t va = boot_address + KERNBASE;
393 u_int64_t *pt4, *pt3, *pt2;
4864d541 394 int pssize;
77a4bf30 395 int x, i;
46d4e165 396 int shift;
bb467734
MD
397 int smicount;
398 int smibest;
399 int smilast;
46d4e165
JG
400 u_char mpbiosreason;
401 u_long mpbioswarmvec;
402 struct mdglobaldata *gd;
403 struct privatespace *ps;
1997b4c2 404 size_t ipiq_size;
46d4e165
JG
405
406 POSTCODE(START_ALL_APS_POST);
407
46d4e165
JG
408 /* install the AP 1st level boot code */
409 pmap_kenter(va, boot_address);
bfc09ba0 410 cpu_invlpg((void *)va); /* JG XXX */
46d4e165
JG
411 bcopy(mptramp_start, (void *)va, bootMP_size);
412
413 /* Locate the page tables, they'll be below the trampoline */
414 pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
415 pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
416 pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
417
418 /* Create the initial 1GB replicated page tables */
419 for (i = 0; i < 512; i++) {
420 /* Each slot of the level 4 pages points to the same level 3 page */
421 pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
c713db65
AL
422 pt4[i] |= kernel_pmap->pmap_bits[PG_V_IDX] |
423 kernel_pmap->pmap_bits[PG_RW_IDX] |
424 kernel_pmap->pmap_bits[PG_U_IDX];
46d4e165
JG
425
426 /* Each slot of the level 3 pages points to the same level 2 page */
427 pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
c713db65
AL
428 pt3[i] |= kernel_pmap->pmap_bits[PG_V_IDX] |
429 kernel_pmap->pmap_bits[PG_RW_IDX] |
430 kernel_pmap->pmap_bits[PG_U_IDX];
46d4e165
JG
431
432 /* The level 2 page slots are mapped with 2MB pages for 1GB. */
433 pt2[i] = i * (2 * 1024 * 1024);
c713db65
AL
434 pt2[i] |= kernel_pmap->pmap_bits[PG_V_IDX] |
435 kernel_pmap->pmap_bits[PG_RW_IDX] |
436 kernel_pmap->pmap_bits[PG_PS_IDX] |
437 kernel_pmap->pmap_bits[PG_U_IDX];
46d4e165
JG
438 }
439
440 /* save the current value of the warm-start vector */
441 mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
442 outb(CMOS_REG, BIOS_RESET);
443 mpbiosreason = inb(CMOS_DATA);
444
445 /* setup a vector to our boot code */
446 *((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
447 *((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
448 outb(CMOS_REG, BIOS_RESET);
449 outb(CMOS_DATA, BIOS_WARM); /* 'warm-start' */
450
bb467734
MD
451 /*
452 * If we have a TSC we can figure out the SMI interrupt rate.
453 * The SMI does not necessarily use a constant rate. Spend
454 * up to 250ms trying to figure it out.
455 */
456 smibest = 0;
457 if (cpu_feature & CPUID_TSC) {
458 set_apic_timer(275000);
459 smilast = read_apic_timer();
460 for (x = 0; x < 20 && read_apic_timer(); ++x) {
461 smicount = smitest();
462 if (smibest == 0 || smilast - smicount < smibest)
463 smibest = smilast - smicount;
464 smilast = smicount;
465 }
466 if (smibest > 250000)
467 smibest = 0;
bb467734
MD
468 }
469 if (smibest)
470 kprintf("SMI Frequency (worst case): %d Hz (%d us)\n",
471 1000000 / smibest, smibest);
472
2d20c15f
MD
473 /*
474 * This is nasty but if we are a guest in a virtual machine,
475 * give the smpinvl synchronization code up to 60 seconds
476 */
477
478 if (vmm_guest != VMM_GUEST_NONE)
479 invlpg_timeout = INVLPG_TIMEOUT_VM;
480
46d4e165 481 /* start each AP */
637df2f6 482 for (x = 1; x <= naps; ++x) {
46d4e165
JG
483 /* This is a bit verbose, it will go away soon. */
484
4864d541 485 pssize = sizeof(struct privatespace);
31815141
MD
486 ps = (void *)
487 kmem_alloc3(kernel_map, pssize, VM_SUBSYS_GD,
488 KM_CPU(x));
489 bzero(ps, pssize);
4864d541 490 CPU_prvspace[x] = ps;
31815141
MD
491 gd = &ps->mdglobaldata;
492 gd->mi.gd_prvspace = ps;
493 gd->gd_gdt = (void *)
494 kmem_alloc3(kernel_map, MAXGDT_LIMIT, VM_SUBSYS_GD,
495 KM_CPU(x));
496 bzero(gd->gd_gdt, MAXGDT_LIMIT);
497
1997b4c2 498#if 0
4864d541 499 kprintf("ps %d %p %d\n", x, ps, pssize);
1997b4c2 500#endif
46d4e165
JG
501
502 /* prime data page for it to use */
503 mi_gdinit(&gd->mi, x);
504 cpu_gdinit(gd, x);
1997b4c2 505 ipiq_size = sizeof(struct lwkt_ipiq) * (naps + 1);
1eeaf6b2 506 gd->mi.gd_ipiq = (void *)kmem_alloc3(kernel_map, ipiq_size,
0ffdc451 507 VM_SUBSYS_IPIQ, KM_CPU(x));
1997b4c2 508 bzero(gd->mi.gd_ipiq, ipiq_size);
46d4e165 509
8005c0c8
SZ
510 gd->gd_acpi_id = CPUID_TO_ACPIID(gd->mi.gd_cpuid);
511
cc3685b0
SZ
512 /* initialize arc4random. */
513 arc4_init_pcpu(x);
514
46d4e165
JG
515 /* setup a vector to our boot code */
516 *((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
517 *((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
518 outb(CMOS_REG, BIOS_RESET);
519 outb(CMOS_DATA, BIOS_WARM); /* 'warm-start' */
520
521 /*
522 * Setup the AP boot stack
523 */
1997b4c2 524 bootSTK = &ps->idlestack[UPAGES * PAGE_SIZE - PAGE_SIZE];
46d4e165
JG
525 bootAP = x;
526
527 /* attempt to start the Application Processor */
528 CHECK_INIT(99); /* setup checkpoints */
bb467734 529 if (!start_ap(gd, boot_addr, smibest)) {
ea96e50f 530 kprintf("\nAP #%d (PHY# %d) failed!\n",
fbac0dc4 531 x, CPUID_TO_APICID(x));
46d4e165
JG
532 CHECK_PRINT("trace"); /* show checkpoints */
533 /* better panic as the AP may be running loose */
534 kprintf("panic y/n? [y] ");
ce7866b8 535 cnpoll(TRUE);
46d4e165
JG
536 if (cngetc() != 'n')
537 panic("bye-bye");
ce7866b8 538 cnpoll(FALSE);
46d4e165
JG
539 }
540 CHECK_PRINT("trace"); /* show checkpoints */
46d4e165
JG
541 }
542
543 /* set ncpus to 1 + highest logical cpu. Not all may have come up */
544 ncpus = x;
545
46d4e165
JG
546 for (shift = 0; (1 << shift) <= ncpus; ++shift)
547 ;
548 --shift;
46d4e165
JG
549
550 /* ncpus_fit -- ncpus rounded up to the nearest power of 2 */
551 if ((1 << shift) < ncpus)
552 ++shift;
553 ncpus_fit = 1 << shift;
554 ncpus_fit_mask = ncpus_fit - 1;
555
556 /* build our map of 'other' CPUs */
c07315c4
MD
557 mycpu->gd_other_cpus = smp_startup_mask;
558 CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
1997b4c2 559
3ab3ae18
MD
560 malloc_reinit_ncpus();
561
8005c0c8
SZ
562 gd = (struct mdglobaldata *)mycpu;
563 gd->gd_acpi_id = CPUID_TO_ACPIID(mycpu->gd_cpuid);
564
1997b4c2 565 ipiq_size = sizeof(struct lwkt_ipiq) * ncpus;
1eeaf6b2 566 mycpu->gd_ipiq = (void *)kmem_alloc3(kernel_map, ipiq_size,
0ffdc451 567 VM_SUBSYS_IPIQ, KM_CPU(0));
1997b4c2 568 bzero(mycpu->gd_ipiq, ipiq_size);
46d4e165 569
cc3685b0
SZ
570 /* initialize arc4random. */
571 arc4_init_pcpu(0);
572
46d4e165
JG
573 /* restore the warmstart vector */
574 *(u_long *) WARMBOOT_OFF = mpbioswarmvec;
575 outb(CMOS_REG, BIOS_RESET);
576 outb(CMOS_DATA, mpbiosreason);
577
578 /*
579 * NOTE! The idlestack for the BSP was setup by locore. Finish
580 * up, clean out the P==V mapping we did earlier.
581 */
46d4e165
JG
582 pmap_set_opt();
583
c6b1591c
SZ
584 /*
585 * Wait all APs to finish initializing LAPIC
586 */
c6b1591c
SZ
587 if (bootverbose)
588 kprintf("SMP: Waiting APs LAPIC initialization\n");
589 if (cpu_feature & CPUID_TSC)
590 tsc0_offset = rdtsc();
591 tsc_offsets[0] = 0;
1997b4c2 592 mp_finish_lapic = 1;
c6b1591c 593 rel_mplock();
1997b4c2 594
c07315c4 595 while (CPUMASK_CMPMASKNEQ(smp_lapic_mask, smp_startup_mask)) {
06c66eb2 596 cpu_pause();
c6b1591c
SZ
597 cpu_lfence();
598 if (cpu_feature & CPUID_TSC)
599 tsc0_offset = rdtsc();
600 }
06c66eb2
MD
601 while (try_mplock() == 0) {
602 cpu_pause();
603 cpu_lfence();
604 }
c6b1591c 605
46d4e165
JG
606 /* number of APs actually started */
607 return ncpus - 1;
608}
609
610
611/*
612 * load the 1st level AP boot code into base memory.
613 */
614
615/* targets for relocation */
616extern void bigJump(void);
617extern void bootCodeSeg(void);
618extern void bootDataSeg(void);
619extern void MPentry(void);
620extern u_int MP_GDT;
621extern u_int mp_gdtbase;
622
bfc09ba0
MD
623#if 0
624
46d4e165
JG
625static void
626install_ap_tramp(u_int boot_addr)
627{
628 int x;
629 int size = *(int *) ((u_long) & bootMP_size);
630 u_char *src = (u_char *) ((u_long) bootMP);
631 u_char *dst = (u_char *) boot_addr + KERNBASE;
632 u_int boot_base = (u_int) bootMP;
633 u_int8_t *dst8;
634 u_int16_t *dst16;
635 u_int32_t *dst32;
636
637 POSTCODE(INSTALL_AP_TRAMP_POST);
638
639 for (x = 0; x < size; ++x)
640 *dst++ = *src++;
641
642 /*
643 * modify addresses in code we just moved to basemem. unfortunately we
644 * need fairly detailed info about mpboot.s for this to work. changes
645 * to mpboot.s might require changes here.
646 */
647
648 /* boot code is located in KERNEL space */
649 dst = (u_char *) boot_addr + KERNBASE;
650
651 /* modify the lgdt arg */
652 dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
653 *dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
654
655 /* modify the ljmp target for MPentry() */
656 dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
657 *dst32 = ((u_int) MPentry - KERNBASE);
658
659 /* modify the target for boot code segment */
660 dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
661 dst8 = (u_int8_t *) (dst16 + 1);
662 *dst16 = (u_int) boot_addr & 0xffff;
663 *dst8 = ((u_int) boot_addr >> 16) & 0xff;
664
665 /* modify the target for boot data segment */
666 dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
667 dst8 = (u_int8_t *) (dst16 + 1);
668 *dst16 = (u_int) boot_addr & 0xffff;
669 *dst8 = ((u_int) boot_addr >> 16) & 0xff;
670}
671
bfc09ba0 672#endif
46d4e165
JG
673
674/*
bb467734 675 * This function starts the AP (application processor) identified
46d4e165
JG
676 * by the APIC ID 'physicalCpu'. It does quite a "song and dance"
677 * to accomplish this. This is necessary because of the nuances
678 * of the different hardware we might encounter. It ain't pretty,
679 * but it seems to work.
680 *
681 * NOTE: eventually an AP gets to ap_init(), which is called just
682 * before the AP goes into the LWKT scheduler's idle loop.
683 */
684static int
bb467734 685start_ap(struct mdglobaldata *gd, u_int boot_addr, int smibest)
46d4e165
JG
686{
687 int physical_cpu;
688 int vector;
46d4e165
JG
689
690 POSTCODE(START_AP_POST);
691
692 /* get the PHYSICAL APIC ID# */
fbac0dc4 693 physical_cpu = CPUID_TO_APICID(gd->mi.gd_cpuid);
46d4e165
JG
694
695 /* calculate the vector */
696 vector = (boot_addr >> 12) & 0xff;
697
bb467734
MD
698 /* We don't want anything interfering */
699 cpu_disable_intr();
700
46d4e165
JG
701 /* Make sure the target cpu sees everything */
702 wbinvd();
703
bb467734
MD
704 /*
705 * Try to detect when a SMI has occurred, wait up to 200ms.
706 *
707 * If a SMI occurs during an AP reset but before we issue
708 * the STARTUP command, the AP may brick. To work around
709 * this problem we hold off doing the AP startup until
710 * after we have detected the SMI. Hopefully another SMI
711 * will not occur before we finish the AP startup.
712 *
713 * Retries don't seem to help. SMIs have a window of opportunity
714 * and if USB->legacy keyboard emulation is enabled in the BIOS
715 * the interrupt rate can be quite high.
716 *
717 * NOTE: Don't worry about the L1 cache load, it might bloat
718 * ldelta a little but ndelta will be so huge when the SMI
719 * occurs the detection logic will still work fine.
720 */
721 if (smibest) {
722 set_apic_timer(200000);
723 smitest();
724 }
725
46d4e165
JG
726 /*
727 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
728 * and running the target CPU. OR this INIT IPI might be latched (P5
729 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
730 * ignored.
bb467734
MD
731 *
732 * see apic/apicreg.h for icr bit definitions.
733 *
734 * TIME CRITICAL CODE, DO NOT DO ANY KPRINTFS IN THE HOT PATH.
46d4e165
JG
735 */
736
bb467734
MD
737 /*
738 * Do an INIT IPI: assert RESET
739 *
740 * Use edge triggered mode to assert INIT
741 */
8afc0c3d
SZ
742 lapic_seticr_sync(physical_cpu,
743 APIC_DESTMODE_PHY |
744 APIC_DEST_DESTFLD |
745 APIC_TRIGMOD_EDGE |
746 APIC_LEVEL_ASSERT |
747 APIC_DELMODE_INIT);
46d4e165 748
bb467734
MD
749 /*
750 * The spec calls for a 10ms delay but we may have to use a
751 * MUCH lower delay to avoid bricking an AP due to a fast SMI
752 * interrupt. We have other loops here too and dividing by 2
753 * doesn't seem to be enough even after subtracting 350us,
754 * so we divide by 4.
755 *
756 * Our minimum delay is 150uS, maximum is 10ms. If no SMI
757 * interrupt was detected we use the full 10ms.
758 */
759 if (smibest == 0)
760 u_sleep(10000);
761 else if (smibest < 150 * 4 + 350)
762 u_sleep(150);
763 else if ((smibest - 350) / 4 < 10000)
764 u_sleep((smibest - 350) / 4);
765 else
766 u_sleep(10000);
46d4e165 767
bb467734
MD
768 /*
769 * Do an INIT IPI: deassert RESET
770 *
771 * Use level triggered mode to deassert. It is unclear
772 * why we need to do this.
773 */
8afc0c3d
SZ
774 lapic_seticr_sync(physical_cpu,
775 APIC_DESTMODE_PHY |
776 APIC_DEST_DESTFLD |
777 APIC_TRIGMOD_LEVEL |
778 APIC_LEVEL_DEASSERT |
779 APIC_DELMODE_INIT);
bb467734 780 u_sleep(150); /* wait 150us */
46d4e165
JG
781
782 /*
bb467734 783 * Next we do a STARTUP IPI: the previous INIT IPI might still be
46d4e165
JG
784 * latched, (P5 bug) this 1st STARTUP would then terminate
785 * immediately, and the previously started INIT IPI would continue. OR
786 * the previous INIT IPI has already run. and this STARTUP IPI will
787 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
788 * will run.
8afc0c3d
SZ
789 *
790 * XXX set APIC_LEVEL_ASSERT
46d4e165 791 */
8afc0c3d
SZ
792 lapic_seticr_sync(physical_cpu,
793 APIC_DESTMODE_PHY |
794 APIC_DEST_DESTFLD |
795 APIC_DELMODE_STARTUP |
796 vector);
46d4e165
JG
797 u_sleep(200); /* wait ~200uS */
798
799 /*
bb467734 800 * Finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
46d4e165
JG
801 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
802 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
803 * recognized after hardware RESET or INIT IPI.
8afc0c3d
SZ
804 *
805 * XXX set APIC_LEVEL_ASSERT
46d4e165 806 */
8afc0c3d
SZ
807 lapic_seticr_sync(physical_cpu,
808 APIC_DESTMODE_PHY |
809 APIC_DEST_DESTFLD |
810 APIC_DELMODE_STARTUP |
811 vector);
bb467734
MD
812
813 /* Resume normal operation */
814 cpu_enable_intr();
46d4e165
JG
815
816 /* wait for it to start, see ap_init() */
817 set_apic_timer(5000000);/* == 5 seconds */
818 while (read_apic_timer()) {
c07315c4 819 if (CPUMASK_TESTBIT(smp_startup_mask, gd->mi.gd_cpuid))
46d4e165
JG
820 return 1; /* return SUCCESS */
821 }
bb467734 822
46d4e165
JG
823 return 0; /* return FAILURE */
824}
825
bb467734
MD
826static
827int
828smitest(void)
829{
830 int64_t ltsc;
831 int64_t ntsc;
832 int64_t ldelta;
833 int64_t ndelta;
834 int count;
835
836 ldelta = 0;
837 ndelta = 0;
838 while (read_apic_timer()) {
839 ltsc = rdtsc();
840 for (count = 0; count < 100; ++count)
841 ntsc = rdtsc(); /* force loop to occur */
842 if (ldelta) {
843 ndelta = ntsc - ltsc;
844 if (ldelta > ndelta)
845 ldelta = ndelta;
846 if (ndelta > ldelta * 2)
847 break;
848 } else {
849 ldelta = ntsc - ltsc;
850 }
851 }
852 return(read_apic_timer());
853}
46d4e165
JG
854
855/*
7d4d6fdb
MD
856 * Synchronously flush the TLB on all other CPU's. The current cpu's
857 * TLB is not flushed. If the caller wishes to flush the current cpu's
858 * TLB the caller must call cpu_invltlb() in addition to smp_invltlb().
46d4e165 859 *
79f2da03
MD
860 * This routine may be called concurrently from multiple cpus. When this
861 * happens, smp_invltlb() can wind up sticking around in the confirmation
862 * while() loop at the end as additional cpus are added to the global
863 * cpumask, until they are acknowledged by another IPI.
864 *
7d4d6fdb
MD
865 * NOTE: If for some reason we were unable to start all cpus we cannot
866 * safely use broadcast IPIs.
46d4e165 867 */
7d4d6fdb 868
79f2da03
MD
869cpumask_t smp_smurf_mask;
870static cpumask_t smp_invltlb_mask;
bba35d66 871#define LOOPRECOVER
67534613 872#define LOOPMASK_IN
79f2da03
MD
873#ifdef LOOPMASK_IN
874cpumask_t smp_in_mask;
875#endif
876cpumask_t smp_invmask;
877extern cpumask_t smp_idleinvl_mask;
878extern cpumask_t smp_idleinvl_reqs;
7d4d6fdb 879
79f2da03 880/*
ccd67bf6
MD
881 * Atomically OR bits in *mask to smp_smurf_mask. Adjust *mask to remove
882 * bits that do not need to be IPId. These bits are still part of the command,
883 * but the target cpus have already been signalled and do not need to be
884 * sigalled again.
79f2da03
MD
885 */
886#include <sys/spinlock.h>
887#include <sys/spinlock2.h>
888
889static __noinline
890void
e47e3dba 891smp_smurf_fetchset(cpumask_t *mask)
79f2da03 892{
ccd67bf6
MD
893 cpumask_t omask;
894 int i;
895 __uint64_t obits;
896 __uint64_t nbits;
897
898 i = 0;
899 while (i < CPUMASK_ELEMENTS) {
900 obits = smp_smurf_mask.ary[i];
901 cpu_ccfence();
902 nbits = obits | mask->ary[i];
903 if (atomic_cmpset_long(&smp_smurf_mask.ary[i], obits, nbits)) {
904 omask.ary[i] = obits;
905 ++i;
79f2da03 906 }
79f2da03 907 }
ccd67bf6 908 CPUMASK_NANDMASK(*mask, omask);
79f2da03
MD
909}
910
911/*
ccd67bf6
MD
912 * This is a mechanism which guarantees that cpu_invltlb() will be executed
913 * on idle cpus without having to signal or wake them up. The invltlb will be
914 * executed when they wake up, prior to any scheduling or interrupt thread.
79f2da03 915 *
ccd67bf6
MD
916 * (*mask) is modified to remove the cpus we successfully negotiate this
917 * function with. This function may only be used with semi-synchronous
918 * commands (typically invltlb's or semi-synchronous invalidations which
919 * are usually associated only with kernel memory).
79f2da03 920 */
79f2da03 921void
ccd67bf6 922smp_smurf_idleinvlclr(cpumask_t *mask)
79f2da03 923{
1a5c7e0f
MD
924 if (optimized_invltlb) {
925 ATOMIC_CPUMASK_ORMASK(smp_idleinvl_reqs, *mask);
926 /* cpu_lfence() not needed */
927 CPUMASK_NANDMASK(*mask, smp_idleinvl_mask);
928 }
79f2da03 929}
b4b1a37a 930
79f2da03
MD
931/*
932 * Issue cpu_invltlb() across all cpus except the current cpu.
ccd67bf6
MD
933 *
934 * This function will arrange to avoid idle cpus, but still gurantee that
935 * invltlb is run on them when they wake up prior to any scheduling or
936 * nominal interrupt.
79f2da03 937 */
46d4e165
JG
938void
939smp_invltlb(void)
940{
7d4d6fdb 941 struct mdglobaldata *md = mdcpu;
79f2da03 942 cpumask_t mask;
79f2da03 943 unsigned long rflags;
bba35d66 944#ifdef LOOPRECOVER
5b49787b 945 tsc_uclock_t tsc_base = rdtsc();
1a5c7e0f 946 int repeats = 0;
7d4d6fdb 947#endif
4117f2fd 948
79f2da03
MD
949 if (report_invltlb_src > 0) {
950 if (--report_invltlb_src <= 0)
951 print_backtrace(8);
952 }
1a5c7e0f 953
79f2da03
MD
954 /*
955 * Disallow normal interrupts, set all active cpus except our own
956 * in the global smp_invltlb_mask.
957 */
7d4d6fdb 958 ++md->mi.gd_cnt.v_smpinvltlb;
79f2da03
MD
959 crit_enter_gd(&md->mi);
960
961 /*
962 * Bits we want to set in smp_invltlb_mask. We do not want to signal
963 * our own cpu. Also try to remove bits associated with idle cpus
964 * that we can flag for auto-invltlb.
965 */
966 mask = smp_active_mask;
967 CPUMASK_NANDBIT(mask, md->mi.gd_cpuid);
ccd67bf6 968 smp_smurf_idleinvlclr(&mask);
79f2da03
MD
969
970 rflags = read_rflags();
971 cpu_disable_intr();
972 ATOMIC_CPUMASK_ORMASK(smp_invltlb_mask, mask);
973
974 /*
975 * IPI non-idle cpus represented by mask. The omask calculation
976 * removes cpus from the mask which already have a Xinvltlb IPI
977 * pending (avoid double-queueing the IPI).
978 *
979 * We must disable real interrupts when setting the smurf flags or
980 * we might race a XINVLTLB before we manage to send the ipi's for
981 * the bits we set.
982 *
983 * NOTE: We are not signalling ourselves, mask already does NOT
984 * include our own cpu.
985 */
e47e3dba 986 smp_smurf_fetchset(&mask);
79f2da03
MD
987
988 /*
989 * Issue the IPI. Note that the XINVLTLB IPI runs regardless of
990 * the critical section count on the target cpus.
991 */
992 CPUMASK_ORMASK(mask, md->mi.gd_cpumask);
bba35d66 993 if (all_but_self_ipi_enable &&
67534613
MD
994 (all_but_self_ipi_enable >= 2 ||
995 CPUMASK_CMPMASKEQ(smp_startup_mask, mask))) {
46d4e165
JG
996 all_but_self_ipi(XINVLTLB_OFFSET);
997 } else {
79f2da03
MD
998 CPUMASK_NANDMASK(mask, md->mi.gd_cpumask);
999 selected_apic_ipi(mask, XINVLTLB_OFFSET, APIC_DELMODE_FIXED);
46d4e165 1000 }
2d910aaf 1001
79f2da03
MD
1002 /*
1003 * Wait for acknowledgement by all cpus. smp_inval_intr() will
1004 * temporarily enable interrupts to avoid deadlocking the lapic,
1005 * and will also handle running cpu_invltlb() and remote invlpg
1006 * command son our cpu if some other cpu requests it of us.
1007 *
1008 * WARNING! I originally tried to implement this as a hard loop
1009 * checking only smp_invltlb_mask (and issuing a local
1010 * cpu_invltlb() if requested), with interrupts enabled
1011 * and without calling smp_inval_intr(). This DID NOT WORK.
1012 * It resulted in weird races where smurf bits would get
1013 * cleared without any action being taken.
1014 */
1015 smp_inval_intr();
1016 CPUMASK_ASSZERO(mask);
1017 while (CPUMASK_CMPMASKNEQ(smp_invltlb_mask, mask)) {
1018 smp_inval_intr();
7d4d6fdb 1019 cpu_pause();
bba35d66 1020#ifdef LOOPRECOVER
1a5c7e0f 1021 if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
67534613
MD
1022 /*
1023 * cpuid - cpu doing the waiting
1024 * invltlb_mask - IPI in progress
1025 */
2d20c15f
MD
1026 kprintf("smp_invltlb %2d: WARNING blocked %d sec: "
1027 "inv=%08jx "
67534613
MD
1028 "smurf=%08jx "
1029#ifdef LOOPMASK_IN
1030 "in=%08jx "
1031#endif
1032 "idle=%08jx/%08jx\n",
1a5c7e0f 1033 md->mi.gd_cpuid,
2d20c15f 1034 repeats + 1,
1a5c7e0f 1035 smp_invltlb_mask.ary[0],
67534613
MD
1036 smp_smurf_mask.ary[0],
1037#ifdef LOOPMASK_IN
1038 smp_in_mask.ary[0],
1039#endif
1a5c7e0f
MD
1040 smp_idleinvl_mask.ary[0],
1041 smp_idleinvl_reqs.ary[0]);
79f2da03 1042 mdcpu->gd_xinvaltlb = 0;
bba35d66
MD
1043 ATOMIC_CPUMASK_NANDMASK(smp_smurf_mask,
1044 smp_invltlb_mask);
79f2da03 1045 smp_invlpg(&smp_active_mask);
2d20c15f
MD
1046
1047 /*
1048 * Reload tsc_base for retry, give up after
1049 * 10 seconds (60 seconds if in VM).
1050 */
1a5c7e0f 1051 tsc_base = rdtsc();
2d20c15f 1052 if (++repeats > invlpg_timeout) {
1a5c7e0f
MD
1053 kprintf("smp_invltlb: giving up\n");
1054 CPUMASK_ASSZERO(smp_invltlb_mask);
1055 }
e32d3244 1056 }
46d4e165 1057#endif
7d4d6fdb 1058 }
79f2da03 1059 write_rflags(rflags);
7d4d6fdb 1060 crit_exit_gd(&md->mi);
46d4e165
JG
1061}
1062
7d4d6fdb 1063/*
1a5c7e0f
MD
1064 * Called from a critical section with interrupts hard-disabled.
1065 * This function issues an XINVLTLB IPI and then executes any pending
1066 * command on the current cpu before returning.
7d4d6fdb
MD
1067 */
1068void
79f2da03 1069smp_invlpg(cpumask_t *cmdmask)
7d4d6fdb
MD
1070{
1071 struct mdglobaldata *md = mdcpu;
7d4d6fdb 1072 cpumask_t mask;
7d4d6fdb 1073
79f2da03
MD
1074 if (report_invlpg_src > 0) {
1075 if (--report_invlpg_src <= 0)
1076 print_backtrace(8);
1077 }
1078
1079 /*
1080 * Disallow normal interrupts, set all active cpus in the pmap,
1081 * plus our own for completion processing (it might or might not
1082 * be part of the set).
1083 */
79f2da03
MD
1084 mask = smp_active_mask;
1085 CPUMASK_ANDMASK(mask, *cmdmask);
1086 CPUMASK_ORMASK(mask, md->mi.gd_cpumask);
1087
1088 /*
1089 * Avoid double-queuing IPIs, which can deadlock us. We must disable
1090 * real interrupts when setting the smurf flags or we might race a
1091 * XINVLTLB before we manage to send the ipi's for the bits we set.
1092 *
1093 * NOTE: We might be including our own cpu in the smurf mask.
1094 */
e47e3dba 1095 smp_smurf_fetchset(&mask);
79f2da03
MD
1096
1097 /*
1098 * Issue the IPI. Note that the XINVLTLB IPI runs regardless of
1099 * the critical section count on the target cpus.
1100 *
1101 * We do not include our own cpu when issuing the IPI.
1102 */
bba35d66 1103 if (all_but_self_ipi_enable &&
67534613
MD
1104 (all_but_self_ipi_enable >= 2 ||
1105 CPUMASK_CMPMASKEQ(smp_startup_mask, mask))) {
79f2da03
MD
1106 all_but_self_ipi(XINVLTLB_OFFSET);
1107 } else {
1108 CPUMASK_NANDMASK(mask, md->mi.gd_cpumask);
1109 selected_apic_ipi(mask, XINVLTLB_OFFSET, APIC_DELMODE_FIXED);
7d4d6fdb 1110 }
79f2da03
MD
1111
1112 /*
1113 * This will synchronously wait for our command to complete,
1114 * as well as process commands from other cpus. It also handles
1115 * reentrancy.
1a5c7e0f
MD
1116 *
1117 * (interrupts are disabled and we are in a critical section here)
79f2da03 1118 */
79f2da03 1119 smp_inval_intr();
79f2da03
MD
1120}
1121
91dc43dd
MD
1122/*
1123 * Issue rip/rsp sniffs
1124 */
e32d3244
MD
1125void
1126smp_sniff(void)
1127{
1128 globaldata_t gd = mycpu;
1129 int dummy;
67534613 1130 register_t rflags;
e32d3244 1131
bba35d66
MD
1132 /*
1133 * Ignore all_but_self_ipi_enable here and just use it.
1134 */
67534613
MD
1135 rflags = read_rflags();
1136 cpu_disable_intr();
e32d3244
MD
1137 all_but_self_ipi(XSNIFF_OFFSET);
1138 gd->gd_sample_pc = smp_sniff;
1139 gd->gd_sample_sp = &dummy;
67534613
MD
1140 write_rflags(rflags);
1141}
1142
1143void
1144cpu_sniff(int dcpu)
1145{
1146 globaldata_t rgd = globaldata_find(dcpu);
1147 register_t rflags;
1148 int dummy;
1149
1150 /*
1151 * Ignore all_but_self_ipi_enable here and just use it.
1152 */
1153 rflags = read_rflags();
1154 cpu_disable_intr();
1155 single_apic_ipi(dcpu, XSNIFF_OFFSET, APIC_DELMODE_FIXED);
1156 rgd->gd_sample_pc = cpu_sniff;
1157 rgd->gd_sample_sp = &dummy;
1158 write_rflags(rflags);
e32d3244
MD
1159}
1160
79f2da03 1161/*
1a5c7e0f
MD
1162 * Called from Xinvltlb assembly with interrupts hard-disabled and in a
1163 * critical section. gd_intr_nesting_level may or may not be bumped
1164 * depending on entry.
79f2da03
MD
1165 *
1166 * THIS CODE IS INTENDED TO EXPLICITLY IGNORE THE CRITICAL SECTION COUNT.
1167 * THAT IS, THE INTERRUPT IS INTENDED TO FUNCTION EVEN WHEN MAINLINE CODE
1168 * IS IN A CRITICAL SECTION.
1169 */
1170void
1171smp_inval_intr(void)
1172{
1173 struct mdglobaldata *md = mdcpu;
1174 cpumask_t cpumask;
bba35d66 1175#ifdef LOOPRECOVER
5b49787b 1176 tsc_uclock_t tsc_base = rdtsc();
1a5c7e0f
MD
1177#endif
1178
1179#if 0
1180 /*
1181 * The idle code is in a critical section, but that doesn't stop
1182 * Xinvltlb from executing, so deal with the race which can occur
1183 * in that situation. Otherwise r-m-w operations by pmap_inval_intr()
1184 * may have problems.
1185 */
1186 if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs, md->mi.gd_cpuid)) {
1187 ATOMIC_CPUMASK_NANDBIT(smp_invltlb_mask, md->mi.gd_cpuid);
1188 cpu_invltlb();
1189 cpu_mfence();
1190 }
1191#endif
79f2da03
MD
1192
1193 /*
1194 * This is a real mess. I'd like to just leave interrupts disabled
1195 * but it can cause the lapic to deadlock if too many interrupts queue
1196 * to it, due to the idiotic design of the lapic. So instead we have
1197 * to enter a critical section so normal interrupts are made pending
1198 * and track whether this one was reentered.
1199 */
1200 if (md->gd_xinvaltlb) { /* reentrant on cpu */
1201 md->gd_xinvaltlb = 2;
1202 return;
1203 }
1204 md->gd_xinvaltlb = 1;
1205
1206 /*
1207 * Check only those cpus with active Xinvl* commands pending.
1208 *
1209 * We are going to enable interrupts so make sure we are in a
1210 * critical section. This is necessary to avoid deadlocking
ccd67bf6
MD
1211 * the lapic and to ensure that we execute our commands prior to
1212 * any nominal interrupt or preemption.
e47e3dba
MD
1213 *
1214 * WARNING! It is very important that we only clear out but in
1215 * smp_smurf_mask once for each interrupt we take. In
1216 * this case, we clear it on initial entry and only loop
1217 * on the reentrancy detect (caused by another interrupt).
79f2da03
MD
1218 */
1219 cpumask = smp_invmask;
79f2da03
MD
1220#ifdef LOOPMASK_IN
1221 ATOMIC_CPUMASK_ORBIT(smp_in_mask, md->mi.gd_cpuid);
1222#endif
67534613
MD
1223loop:
1224 cpu_enable_intr();
79f2da03
MD
1225 ATOMIC_CPUMASK_NANDBIT(smp_smurf_mask, md->mi.gd_cpuid);
1226
1227 /*
1228 * Specific page request(s), and we can't return until all bits
1229 * are zero.
79f2da03
MD
1230 */
1231 for (;;) {
1a5c7e0f
MD
1232 int toolong;
1233
1234 /*
1235 * Also execute any pending full invalidation request in
1236 * this loop.
1237 */
1238 if (CPUMASK_TESTBIT(smp_invltlb_mask, md->mi.gd_cpuid)) {
1239 ATOMIC_CPUMASK_NANDBIT(smp_invltlb_mask,
1240 md->mi.gd_cpuid);
1241 cpu_invltlb();
1242 cpu_mfence();
1243 }
1244
bba35d66 1245#ifdef LOOPRECOVER
1a5c7e0f 1246 if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
67534613
MD
1247 /*
1248 * cpuid - cpu doing the waiting
1249 * invmask - IPI in progress
1250 * invltlb_mask - which ones are TLB invalidations?
1251 */
ab4aa0bb
MD
1252 kprintf("smp_inval_intr %2d, WARNING blocked >1 sec "
1253 "inv=%08jx tlbm=%08jx "
67534613
MD
1254 "smurf=%08jx "
1255#ifdef LOOPMASK_IN
1256 "in=%08jx "
1257#endif
1a5c7e0f
MD
1258 "idle=%08jx/%08jx\n",
1259 md->mi.gd_cpuid,
1260 smp_invmask.ary[0],
1261 smp_invltlb_mask.ary[0],
67534613
MD
1262 smp_smurf_mask.ary[0],
1263#ifdef LOOPMASK_IN
1264 smp_in_mask.ary[0],
1265#endif
1a5c7e0f
MD
1266 smp_idleinvl_mask.ary[0],
1267 smp_idleinvl_reqs.ary[0]);
1268 tsc_base = rdtsc();
1269 toolong = 1;
1270 } else {
1271 toolong = 0;
1272 }
1273#else
1274 toolong = 0;
1275#endif
1276
79f2da03
MD
1277 /*
1278 * We can only add bits to the cpumask to test during the
1279 * loop because the smp_invmask bit is cleared once the
1280 * originator completes the command (the targets may still
1281 * be cycling their own completions in this loop, afterwords).
1282 *
1283 * lfence required prior to all tests as this Xinvltlb
1284 * interrupt could race the originator (already be in progress
1285 * wnen the originator decides to issue, due to an issue by
1286 * another cpu).
1287 */
1288 cpu_lfence();
1289 CPUMASK_ORMASK(cpumask, smp_invmask);
1a5c7e0f 1290 /*cpumask = smp_active_mask;*/ /* XXX */
95270b7e 1291 cpu_lfence();
1a5c7e0f
MD
1292
1293 if (pmap_inval_intr(&cpumask, toolong) == 0) {
79f2da03
MD
1294 /*
1295 * Clear our smurf mask to allow new IPIs, but deal
1296 * with potential races.
1297 */
1298 break;
79f2da03
MD
1299 }
1300
1301 /*
1302 * Test if someone sent us another invalidation IPI, break
1303 * out so we can take it to avoid deadlocking the lapic
1304 * interrupt queue (? stupid intel, amd).
1305 */
1306 if (md->gd_xinvaltlb == 2)
1307 break;
1308 /*
1309 if (CPUMASK_TESTBIT(smp_smurf_mask, md->mi.gd_cpuid))
1310 break;
1311 */
1312 }
1313
1314 /*
1315 * Full invalidation request
1316 */
1317 if (CPUMASK_TESTBIT(smp_invltlb_mask, md->mi.gd_cpuid)) {
1318 ATOMIC_CPUMASK_NANDBIT(smp_invltlb_mask,
1319 md->mi.gd_cpuid);
1320 cpu_invltlb();
1321 cpu_mfence();
1322 }
1a5c7e0f 1323
79f2da03
MD
1324 /*
1325 * Check to see if another Xinvltlb interrupt occurred and loop up
1326 * if it did.
1327 */
1328 cpu_disable_intr();
1329 if (md->gd_xinvaltlb == 2) {
1330 md->gd_xinvaltlb = 1;
1331 goto loop;
1332 }
67534613
MD
1333#ifdef LOOPMASK_IN
1334 ATOMIC_CPUMASK_NANDBIT(smp_in_mask, md->mi.gd_cpuid);
1335#endif
79f2da03 1336 md->gd_xinvaltlb = 0;
7d4d6fdb
MD
1337}
1338
3c8aa76f
FT
1339void
1340cpu_wbinvd_on_all_cpus_callback(void *arg)
1341{
79f2da03 1342 wbinvd();
3c8aa76f
FT
1343}
1344
46d4e165
JG
1345/*
1346 * When called the executing CPU will send an IPI to all other CPUs
67534613 1347 * requesting that they halt execution.
46d4e165
JG
1348 *
1349 * Usually (but not necessarily) called with 'other_cpus' as its arg.
1350 *
1351 * - Signals all CPUs in map to stop.
1352 * - Waits for each to stop.
1353 *
1354 * Returns:
1355 * -1: error
1356 * 0: NA
1357 * 1: ok
1358 *
1359 * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
1360 * from executing at same time.
1361 */
1362int
da23a592 1363stop_cpus(cpumask_t map)
46d4e165 1364{
c07315c4
MD
1365 cpumask_t mask;
1366
1367 CPUMASK_ANDMASK(map, smp_active_mask);
46d4e165
JG
1368
1369 /* send the Xcpustop IPI to all CPUs in map */
1370 selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
c07315c4
MD
1371
1372 do {
1373 mask = stopped_cpus;
1374 CPUMASK_ANDMASK(mask, map);
1375 /* spin */
1376 } while (CPUMASK_CMPMASKNEQ(mask, map));
46d4e165
JG
1377
1378 return 1;
1379}
1380
1381
1382/*
1383 * Called by a CPU to restart stopped CPUs.
1384 *
1385 * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
1386 *
1387 * - Signals all CPUs in map to restart.
1388 * - Waits for each to restart.
1389 *
1390 * Returns:
1391 * -1: error
1392 * 0: NA
1393 * 1: ok
1394 */
1395int
da23a592 1396restart_cpus(cpumask_t map)
46d4e165 1397{
c07315c4 1398 cpumask_t mask;
46d4e165 1399
c07315c4
MD
1400 /* signal other cpus to restart */
1401 mask = map;
1402 CPUMASK_ANDMASK(mask, smp_active_mask);
1403 cpu_ccfence();
1404 started_cpus = mask;
1405 cpu_ccfence();
1406
1407 /* wait for each to clear its bit */
1408 while (CPUMASK_CMPMASKNEQ(stopped_cpus, map))
1409 cpu_pause();
46d4e165
JG
1410
1411 return 1;
1412}
1413
1414/*
1415 * This is called once the mpboot code has gotten us properly relocated
1416 * and the MMU turned on, etc. ap_init() is actually the idle thread,
1417 * and when it returns the scheduler will call the real cpu_idle() main
1418 * loop for the idlethread. Interrupts are disabled on entry and should
1419 * remain disabled at return.
1420 */
1421void
1422ap_init(void)
1423{
fbac0dc4 1424 int cpu_id;
46d4e165
JG
1425
1426 /*
1427 * Adjust smp_startup_mask to signal the BSP that we have started
1428 * up successfully. Note that we do not yet hold the BGL. The BSP
1429 * is waiting for our signal.
1430 *
1431 * We can't set our bit in smp_active_mask yet because we are holding
1432 * interrupts physically disabled and remote cpus could deadlock
1433 * trying to send us an IPI.
1434 */
c07315c4 1435 ATOMIC_CPUMASK_ORBIT(smp_startup_mask, mycpu->gd_cpuid);
46d4e165
JG
1436 cpu_mfence();
1437
1438 /*
c6b1591c
SZ
1439 * Interlock for LAPIC initialization. Wait until mp_finish_lapic is
1440 * non-zero, then get the MP lock.
46d4e165
JG
1441 *
1442 * Note: We are in a critical section.
1443 *
46d4e165
JG
1444 * Note: we are the idle thread, we can only spin.
1445 *
1446 * Note: The load fence is memory volatile and prevents the compiler
c6b1591c 1447 * from improperly caching mp_finish_lapic, and the cpu from improperly
46d4e165
JG
1448 * caching it.
1449 */
06c66eb2
MD
1450 while (mp_finish_lapic == 0) {
1451 cpu_pause();
b5d16701 1452 cpu_lfence();
06c66eb2 1453 }
1997b4c2 1454#if 0
06c66eb2
MD
1455 while (try_mplock() == 0) {
1456 cpu_pause();
1457 cpu_lfence();
1458 }
1997b4c2 1459#endif
46d4e165
JG
1460
1461 if (cpu_feature & CPUID_TSC) {
b5d16701
MD
1462 /*
1463 * The BSP is constantly updating tsc0_offset, figure out
1464 * the relative difference to synchronize ktrdump.
1465 */
1466 tsc_offsets[mycpu->gd_cpuid] = rdtsc() - tsc0_offset;
46d4e165
JG
1467 }
1468
1469 /* BSP may have changed PTD while we're waiting for the lock */
1470 cpu_invltlb();
1471
46d4e165 1472 /* Build our map of 'other' CPUs. */
c07315c4 1473 mycpu->gd_other_cpus = smp_startup_mask;
1997b4c2 1474 ATOMIC_CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
46d4e165 1475
46d4e165 1476 /* A quick check from sanity claus */
8afc0c3d 1477 cpu_id = APICID_TO_CPUID(LAPIC_READID);
fbac0dc4
SZ
1478 if (mycpu->gd_cpuid != cpu_id) {
1479 kprintf("SMP: assigned cpuid = %d\n", mycpu->gd_cpuid);
1480 kprintf("SMP: actual cpuid = %d lapicid %d\n",
8afc0c3d 1481 cpu_id, LAPIC_READID);
32d3bd25 1482#if 0 /* JGXXX */
46d4e165
JG
1483 kprintf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
1484#endif
1485 panic("cpuid mismatch! boom!!");
1486 }
1487
1488 /* Initialize AP's local APIC for irq's */
5ddeabb9 1489 lapic_init(FALSE);
46d4e165 1490
c6b1591c 1491 /* LAPIC initialization is done */
1997b4c2 1492 ATOMIC_CPUMASK_ORBIT(smp_lapic_mask, mycpu->gd_cpuid);
c6b1591c
SZ
1493 cpu_mfence();
1494
1997b4c2 1495#if 0
c6b1591c
SZ
1496 /* Let BSP move onto the next initialization stage */
1497 rel_mplock();
1997b4c2 1498#endif
c6b1591c
SZ
1499
1500 /*
1501 * Interlock for finalization. Wait until mp_finish is non-zero,
1502 * then get the MP lock.
1503 *
1504 * Note: We are in a critical section.
1505 *
1506 * Note: we are the idle thread, we can only spin.
1507 *
1508 * Note: The load fence is memory volatile and prevents the compiler
1509 * from improperly caching mp_finish, and the cpu from improperly
1510 * caching it.
1511 */
06c66eb2
MD
1512 while (mp_finish == 0) {
1513 cpu_pause();
c6b1591c 1514 cpu_lfence();
06c66eb2 1515 }
c6b1591c
SZ
1516
1517 /* BSP may have changed PTD while we're waiting for the lock */
1518 cpu_invltlb();
1519
46d4e165
JG
1520 /* Set memory range attributes for this CPU to match the BSP */
1521 mem_range_AP_init();
1522
1523 /*
1524 * Once we go active we must process any IPIQ messages that may
1525 * have been queued, because no actual IPI will occur until we
1526 * set our bit in the smp_active_mask. If we don't the IPI
1527 * message interlock could be left set which would also prevent
1528 * further IPIs.
1529 *
1530 * The idle loop doesn't expect the BGL to be held and while
1531 * lwkt_switch() normally cleans things up this is a special case
1532 * because we returning almost directly into the idle loop.
1533 *
1534 * The idle thread is never placed on the runq, make sure
1535 * nothing we've done put it there.
1536 */
46d4e165
JG
1537
1538 /*
1997b4c2
MD
1539 * Hold a critical section and allow real interrupts to occur. Zero
1540 * any spurious interrupts which have accumulated, then set our
1541 * smp_active_mask indicating that we are fully operational.
46d4e165 1542 */
1997b4c2 1543 crit_enter();
46d4e165 1544 __asm __volatile("sti; pause; pause"::);
9611ff20 1545 bzero(mdcpu->gd_ipending, sizeof(mdcpu->gd_ipending));
1997b4c2 1546 ATOMIC_CPUMASK_ORBIT(smp_active_mask, mycpu->gd_cpuid);
46d4e165 1547
1997b4c2
MD
1548 /*
1549 * Wait until all cpus have set their smp_active_mask and have fully
1550 * operational interrupts before proceeding.
1551 *
1552 * We need a final cpu_invltlb() because we would not have received
1553 * any until we set our bit in smp_active_mask.
1554 */
1555 while (mp_finish == 1) {
1556 cpu_pause();
1557 cpu_lfence();
1558 }
1559 cpu_invltlb();
1560
1561 /*
1562 * Initialize per-cpu clocks and do other per-cpu initialization.
1563 * At this point code is expected to be able to use the full kernel
1564 * API.
1565 */
46d4e165 1566 initclocks_pcpu(); /* clock interrupts (via IPIs) */
46d4e165
JG
1567
1568 /*
1997b4c2
MD
1569 * Since we may have cleaned up the interrupt triggers, manually
1570 * process any pending IPIs before exiting our critical section.
1571 * Once the critical section has exited, normal interrupt processing
1572 * may occur.
46d4e165 1573 */
e47e3dba 1574 atomic_swap_int(&mycpu->gd_npoll, 0);
1997b4c2 1575 lwkt_process_ipiq();
e47e3dba 1576 crit_exit();
06c66eb2 1577
06c66eb2 1578 /*
1997b4c2
MD
1579 * Final final, allow the waiting BSP to resume the boot process,
1580 * return 'into' the idle thread bootstrap.
06c66eb2 1581 */
1997b4c2
MD
1582 ATOMIC_CPUMASK_ORBIT(smp_finalize_mask, mycpu->gd_cpuid);
1583 KKASSERT((curthread->td_flags & TDF_RUNQ) == 0);
46d4e165
JG
1584}
1585
1586/*
1587 * Get SMP fully working before we start initializing devices.
1588 */
1589static
1590void
1591ap_finish(void)
1592{
46d4e165
JG
1593 if (bootverbose)
1594 kprintf("Finish MP startup\n");
46d4e165 1595 rel_mplock();
06c66eb2 1596
1997b4c2
MD
1597 /*
1598 * Wait for the active mask to complete, after which all cpus will
1599 * be accepting interrupts.
1600 */
1601 mp_finish = 1;
c07315c4 1602 while (CPUMASK_CMPMASKNEQ(smp_active_mask, smp_startup_mask)) {
06c66eb2 1603 cpu_pause();
46d4e165 1604 cpu_lfence();
06c66eb2 1605 }
1997b4c2
MD
1606
1607 /*
1608 * Wait for the finalization mask to complete, after which all cpus
1609 * have completely finished initializing and are entering or are in
1610 * their idle thread.
1611 *
1612 * BSP should have received all required invltlbs but do another
1613 * one just in case.
1614 */
1615 cpu_invltlb();
1616 mp_finish = 2;
1617 while (CPUMASK_CMPMASKNEQ(smp_finalize_mask, smp_startup_mask)) {
1618 cpu_pause();
1619 cpu_lfence();
1620 }
1621
06c66eb2 1622 while (try_mplock() == 0) {
c07315c4 1623 cpu_pause();
06c66eb2 1624 cpu_lfence();
c07315c4 1625 }
06c66eb2 1626
da23a592
MD
1627 if (bootverbose) {
1628 kprintf("Active CPU Mask: %016jx\n",
c07315c4 1629 (uintmax_t)CPUMASK_LOWMASK(smp_active_mask));
da23a592 1630 }
46d4e165
JG
1631}
1632
f3f3eadb 1633SYSINIT(finishsmp, SI_BOOT2_FINISH_SMP, SI_ORDER_FIRST, ap_finish, NULL);
46d4e165 1634
67534613
MD
1635/*
1636 * Interrupts must be hard-disabled by caller
1637 */
46d4e165
JG
1638void
1639cpu_send_ipiq(int dcpu)
1640{
c07315c4 1641 if (CPUMASK_TESTBIT(smp_active_mask, dcpu))
46d4e165
JG
1642 single_apic_ipi(dcpu, XIPIQ_OFFSET, APIC_DELMODE_FIXED);
1643}
1644
1645#if 0 /* single_apic_ipi_passive() not working yet */
1646/*
1647 * Returns 0 on failure, 1 on success
1648 */
1649int
1650cpu_send_ipiq_passive(int dcpu)
1651{
1652 int r = 0;
c07315c4 1653 if (CPUMASK_TESTBIT(smp_active_mask, dcpu)) {
46d4e165
JG
1654 r = single_apic_ipi_passive(dcpu, XIPIQ_OFFSET,
1655 APIC_DELMODE_FIXED);
1656 }
1657 return(r);
1658}
1659#endif
3566408b
SZ
1660
1661static void
3a69c113 1662mp_bsp_simple_setup(void)
3566408b 1663{
8005c0c8 1664 struct mdglobaldata *gd;
1997b4c2
MD
1665 size_t ipiq_size;
1666
3566408b 1667 /* build our map of 'other' CPUs */
c07315c4
MD
1668 mycpu->gd_other_cpus = smp_startup_mask;
1669 CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
1997b4c2 1670
8005c0c8
SZ
1671 gd = (struct mdglobaldata *)mycpu;
1672 gd->gd_acpi_id = CPUID_TO_ACPIID(mycpu->gd_cpuid);
1673
1997b4c2 1674 ipiq_size = sizeof(struct lwkt_ipiq) * ncpus;
1eeaf6b2 1675 mycpu->gd_ipiq = (void *)kmem_alloc(kernel_map, ipiq_size,
3091de50 1676 VM_SUBSYS_IPIQ);
1997b4c2 1677 bzero(mycpu->gd_ipiq, ipiq_size);
3566408b 1678
cc3685b0
SZ
1679 /* initialize arc4random. */
1680 arc4_init_pcpu(0);
1681
3566408b
SZ
1682 pmap_set_opt();
1683
1684 if (cpu_feature & CPUID_TSC)
1685 tsc0_offset = rdtsc();
1686}
f77c018a
MC
1687
1688
1689/*
1690 * CPU TOPOLOGY DETECTION FUNCTIONS
1691 */
1692
1693/* Detect intel topology using CPUID
1694 * Ref: http://www.intel.com/Assets/PDF/appnote/241618.pdf, pg 41
1695 */
1696static void
1697detect_intel_topology(int count_htt_cores)
1698{
1699 int shift = 0;
1700 int ecx_index = 0;
1701 int core_plus_logical_bits = 0;
1702 int cores_per_package;
1703 int logical_per_package;
1704 int logical_per_core;
1705 unsigned int p[4];
1706
1707 if (cpu_high >= 0xb) {
1708 goto FUNC_B;
1709
1710 } else if (cpu_high >= 0x4) {
1711 goto FUNC_4;
1712
1713 } else {
1714 core_bits = 0;
1715 for (shift = 0; (1 << shift) < count_htt_cores; ++shift)
1716 ;
1717 logical_CPU_bits = 1 << shift;
1718 return;
1719 }
1720
1721FUNC_B:
1722 cpuid_count(0xb, FUNC_B_THREAD_LEVEL, p);
1723
1724 /* if 0xb not supported - fallback to 0x4 */
1725 if (p[1] == 0 || (FUNC_B_TYPE(p[2]) != FUNC_B_THREAD_TYPE)) {
1726 goto FUNC_4;
1727 }
1728
1729 logical_CPU_bits = FUNC_B_BITS_SHIFT_NEXT_LEVEL(p[0]);
1730
1731 ecx_index = FUNC_B_THREAD_LEVEL + 1;
1732 do {
1733 cpuid_count(0xb, ecx_index, p);
1734
1735 /* Check for the Core type in the implemented sub leaves. */
1736 if (FUNC_B_TYPE(p[2]) == FUNC_B_CORE_TYPE) {
1737 core_plus_logical_bits = FUNC_B_BITS_SHIFT_NEXT_LEVEL(p[0]);
1738 break;
1739 }
1740
1741 ecx_index++;
1742
1743 } while (FUNC_B_TYPE(p[2]) != FUNC_B_INVALID_TYPE);
1744
1745 core_bits = core_plus_logical_bits - logical_CPU_bits;
1746
1747 return;
1748
1749FUNC_4:
1750 cpuid_count(0x4, 0, p);
1751 cores_per_package = FUNC_4_MAX_CORE_NO(p[0]) + 1;
1752
1753 logical_per_package = count_htt_cores;
1754 logical_per_core = logical_per_package / cores_per_package;
1755
1756 for (shift = 0; (1 << shift) < logical_per_core; ++shift)
1757 ;
1758 logical_CPU_bits = shift;
1759
1760 for (shift = 0; (1 << shift) < cores_per_package; ++shift)
1761 ;
1762 core_bits = shift;
1763
1764 return;
1765}
1766
1767/* Detect AMD topology using CPUID
1768 * Ref: http://support.amd.com/us/Embedded_TechDocs/25481.pdf, last page
1769 */
1770static void
1771detect_amd_topology(int count_htt_cores)
1772{
1773 int shift = 0;
c91894e0 1774 if ((cpu_feature & CPUID_HTT) && (amd_feature2 & AMDID2_CMP)) {
f77c018a 1775 if (cpu_procinfo2 & AMDID_COREID_SIZE) {
c91894e0
MD
1776 core_bits = (cpu_procinfo2 & AMDID_COREID_SIZE) >>
1777 AMDID_COREID_SIZE_SHIFT;
f77c018a
MC
1778 } else {
1779 core_bits = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
1780 for (shift = 0; (1 << shift) < core_bits; ++shift)
1781 ;
1782 core_bits = shift;
1783 }
c70d4562
MD
1784 logical_CPU_bits = count_htt_cores >> core_bits;
1785 for (shift = 0; (1 << shift) < logical_CPU_bits; ++shift)
1786 ;
1787 logical_CPU_bits = shift;
1788
1789 kprintf("core_bits %d logical_CPU_bits %d\n",
1790 core_bits - logical_CPU_bits, logical_CPU_bits);
f77c018a 1791
c70d4562
MD
1792 if (amd_feature2 & AMDID2_TOPOEXT) {
1793 u_int p[4]; /* eax,ebx,ecx,edx */
1794 int nodes;
1795
1796 cpuid_count(0x8000001e, 0, p);
1797
1798 switch(((p[1] >> 8) & 3) + 1) {
1799 case 1:
1800 logical_CPU_bits = 0;
1801 break;
1802 case 2:
1803 logical_CPU_bits = 1;
1804 break;
1805 case 3:
1806 case 4:
1807 logical_CPU_bits = 2;
1808 break;
1809 }
1810
1811 /*
1812 * Nodes are kind of a stand-in for packages*sockets,
1813 * but can be thought of in terms of Numa domains.
1814 */
1815 nodes = ((p[2] >> 8) & 7) + 1;
1816 switch(nodes) {
1817 case 8:
1818 case 7:
1819 case 6:
1820 case 5:
1821 --core_bits;
1822 /* fallthrough */
1823 case 4:
1824 case 3:
1825 --core_bits;
1826 /* fallthrough */
1827 case 2:
1828 --core_bits;
1829 /* fallthrough */
1830 case 1:
1831 break;
1832 }
1833 core_bits -= logical_CPU_bits;
1834 kprintf("%d-way htt, %d Nodes, %d cores/node\n",
1835 (int)(((p[1] >> 8) & 3) + 1),
1836 nodes,
1837 1 << core_bits);
1838
1839 }
1840#if 0
eb77e726
MD
1841 if (amd_feature2 & AMDID2_TOPOEXT) {
1842 u_int p[4];
1843 int i;
1844 int type;
1845 int level;
1846 int share_count;
c70d4562
MD
1847
1848 logical_CPU_bits = 0;
1849 core_bits = 0;
1850
eb77e726
MD
1851 for (i = 0; i < 256; ++i) {
1852 cpuid_count(0x8000001d, i, p);
1853 type = p[0] & 0x1f;
1854 level = (p[0] >> 5) & 0x7;
1855 share_count = 1 + ((p[0] >> 14) & 0xfff);
1856
1857 if (type == 0)
1858 break;
c70d4562
MD
1859 kprintf("Topology probe i=%2d type=%d "
1860 "level=%d share_count=%d\n",
1861 i, type, level, share_count);
1862 shift = 0;
1863 while ((1 << shift) < share_count)
1864 ++shift;
1865
1866 switch(type) {
1867 case 1:
1868 /*
1869 * CPUID_TYPE_SMT
1870 *
1871 * Logical CPU (SMT)
1872 */
1873 logical_CPU_bits = shift;
1874 break;
1875 case 2:
1876 /*
1877 * CPUID_TYPE_CORE
1878 *
1879 * Physical subdivision of a package
1880 */
1881 core_bits = logical_CPU_bits +
1882 shift;
1883 break;
1884 case 3:
1885 /*
1886 * CPUID_TYPE_CACHE
1887 *
1888 * CPU L1/L2/L3 cache
1889 */
1890 break;
1891 case 4:
1892 /*
1893 * CPUID_TYPE_PKG
1894 *
1895 * Package aka chip, equivalent to
1896 * socket
1897 */
eb77e726
MD
1898 break;
1899 }
1900 }
1901 }
c70d4562 1902#endif
f77c018a
MC
1903 } else {
1904 for (shift = 0; (1 << shift) < count_htt_cores; ++shift)
1905 ;
1906 core_bits = shift;
1907 logical_CPU_bits = 0;
1908 }
1909}
1910
0e9325d3
MC
1911static void
1912amd_get_compute_unit_id(void *arg)
1913{
1914 u_int regs[4];
1915
1916 do_cpuid(0x8000001e, regs);
1917 cpu_node_t * mynode = get_cpu_node_by_cpuid(mycpuid);
c91894e0 1918
0e9325d3
MC
1919 /*
1920 * AMD - CPUID Specification September 2010
1921 * page 34 - //ComputeUnitID = ebx[0:7]//
1922 */
1923 mynode->compute_unit_id = regs[1] & 0xff;
1924}
1925
1926int
1927fix_amd_topology(void)
1928{
c07315c4
MD
1929 cpumask_t mask;
1930
0e9325d3
MC
1931 if (cpu_vendor_id != CPU_VENDOR_AMD)
1932 return -1;
1933 if ((amd_feature2 & AMDID2_TOPOEXT) == 0)
1934 return -1;
1935
c07315c4
MD
1936 CPUMASK_ASSALLONES(mask);
1937 lwkt_cpusync_simple(mask, amd_get_compute_unit_id, NULL);
0e9325d3
MC
1938
1939 kprintf("Compute unit iDS:\n");
1940 int i;
c07315c4
MD
1941 for (i = 0; i < ncpus; i++) {
1942 kprintf("%d-%d; \n",
1943 i, get_cpu_node_by_cpuid(i)->compute_unit_id);
1944 }
0e9325d3
MC
1945 return 0;
1946}
1947
c91894e0
MD
1948/*
1949 * Calculate
f77c018a
MC
1950 * - logical_CPU_bits
1951 * - core_bits
1952 * With the values above (for AMD or INTEL) we are able to generally
1953 * detect the CPU topology (number of cores for each level):
1954 * Ref: http://wiki.osdev.org/Detecting_CPU_Topology_(80x86)
1955 * Ref: http://www.multicoreinfo.com/research/papers/whitepapers/Intel-detect-topology.pdf
1956 */
1957void
1958detect_cpu_topology(void)
1959{
1960 static int topology_detected = 0;
1961 int count = 0;
1962
0c77d800 1963 if (topology_detected)
f77c018a 1964 goto OUT;
f77c018a
MC
1965 if ((cpu_feature & CPUID_HTT) == 0) {
1966 core_bits = 0;
1967 logical_CPU_bits = 0;
1968 goto OUT;
0c77d800
SW
1969 }
1970 count = (cpu_procinfo & CPUID_HTT_CORES) >> CPUID_HTT_CORE_SHIFT;
f77c018a 1971
0c77d800 1972 if (cpu_vendor_id == CPU_VENDOR_INTEL)
f77c018a 1973 detect_intel_topology(count);
0c77d800 1974 else if (cpu_vendor_id == CPU_VENDOR_AMD)
f77c018a 1975 detect_amd_topology(count);
0c77d800 1976 topology_detected = 1;
f77c018a
MC
1977
1978OUT:
c91894e0
MD
1979 if (bootverbose) {
1980 kprintf("Bits within APICID: logical_CPU_bits: %d; "
1981 "core_bits: %d\n",
1982 logical_CPU_bits, core_bits);
1983 }
f77c018a
MC
1984}
1985
c91894e0
MD
1986/*
1987 * Interface functions to calculate chip_ID,
f77c018a
MC
1988 * core_number and logical_number
1989 * Ref: http://wiki.osdev.org/Detecting_CPU_Topology_(80x86)
1990 */
1991int
1992get_chip_ID(int cpuid)
1993{
1994 return get_apicid_from_cpuid(cpuid) >>
1995 (logical_CPU_bits + core_bits);
1996}
1997
c7f9edd8
MD
1998int
1999get_chip_ID_from_APICID(int apicid)
2000{
2001 return apicid >> (logical_CPU_bits + core_bits);
2002}
2003
f77c018a
MC
2004int
2005get_core_number_within_chip(int cpuid)
2006{
c91894e0
MD
2007 return ((get_apicid_from_cpuid(cpuid) >> logical_CPU_bits) &
2008 ((1 << core_bits) - 1));
f77c018a
MC
2009}
2010
2011int
2012get_logical_CPU_number_within_core(int cpuid)
2013{
c91894e0
MD
2014 return (get_apicid_from_cpuid(cpuid) &
2015 ((1 << logical_CPU_bits) - 1));
f77c018a 2016}