Merge branches 'hammer2' and 'master' of ssh://crater.dragonflybsd.org/repository...
[dragonfly.git] / sys / dev / netif / re / if_re.c
1 /*
2  * Copyright (c) 2004
3  *      Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
4  *
5  * Copyright (c) 1997, 1998-2003
6  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
36  */
37
38 /*
39  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
40  *
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Networking Software Engineer
43  * Wind River Systems
44  */
45
46 /*
47  * This driver is designed to support RealTek's next generation of
48  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
50  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
51  *
52  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53  * with the older 8139 family, however it also supports a special
54  * C+ mode of operation that provides several new performance enhancing
55  * features. These include:
56  *
57  *      o Descriptor based DMA mechanism. Each descriptor represents
58  *        a single packet fragment. Data buffers may be aligned on
59  *        any byte boundary.
60  *
61  *      o 64-bit DMA
62  *
63  *      o TCP/IP checksum offload for both RX and TX
64  *
65  *      o High and normal priority transmit DMA rings
66  *
67  *      o VLAN tag insertion and extraction
68  *
69  *      o TCP large send (segmentation offload)
70  *
71  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72  * programming API is fairly straightforward. The RX filtering, EEPROM
73  * access and PHY access is the same as it is on the older 8139 series
74  * chips.
75  *
76  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77  * same programming API and feature set as the 8139C+ with the following
78  * differences and additions:
79  *
80  *      o 1000Mbps mode
81  *
82  *      o Jumbo frames
83  *
84  *      o GMII and TBI ports/registers for interfacing with copper
85  *        or fiber PHYs
86  *
87  *      o RX and TX DMA rings can have up to 1024 descriptors
88  *        (the 8139C+ allows a maximum of 64)
89  *
90  *      o Slight differences in register layout from the 8139C+
91  *
92  * The TX start and timer interrupt registers are at different locations
93  * on the 8169 than they are on the 8139C+. Also, the status word in the
94  * RX descriptor has a slightly different bit layout. The 8169 does not
95  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96  * copper gigE PHY.
97  *
98  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99  * (the 'S' stands for 'single-chip'). These devices have the same
100  * programming API as the older 8169, but also have some vendor-specific
101  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103  * 
104  * This driver takes advantage of the RX and TX checksum offload and
105  * VLAN tag insertion/extraction features. It also implements TX
106  * interrupt moderation using the timer interrupt registers, which
107  * significantly reduces TX interrupt load. There is also support
108  * for jumbo frames, however the 8169/8169S/8110S can not transmit
109  * jumbo frames larger than 7440, so the max MTU possible with this
110  * driver is 7422 bytes.
111  */
112
113 #define _IP_VHL
114
115 #include "opt_polling.h"
116
117 #include <sys/param.h>
118 #include <sys/bus.h>
119 #include <sys/endian.h>
120 #include <sys/kernel.h>
121 #include <sys/in_cksum.h>
122 #include <sys/interrupt.h>
123 #include <sys/malloc.h>
124 #include <sys/mbuf.h>
125 #include <sys/rman.h>
126 #include <sys/serialize.h>
127 #include <sys/socket.h>
128 #include <sys/sockio.h>
129 #include <sys/sysctl.h>
130
131 #include <net/bpf.h>
132 #include <net/ethernet.h>
133 #include <net/if.h>
134 #include <net/ifq_var.h>
135 #include <net/if_arp.h>
136 #include <net/if_dl.h>
137 #include <net/if_media.h>
138 #include <net/if_types.h>
139 #include <net/vlan/if_vlan_var.h>
140 #include <net/vlan/if_vlan_ether.h>
141
142 #include <netinet/ip.h>
143
144 #include <dev/netif/mii_layer/mii.h>
145 #include <dev/netif/mii_layer/miivar.h>
146
147 #include <bus/pci/pcidevs.h>
148 #include <bus/pci/pcireg.h>
149 #include <bus/pci/pcivar.h>
150
151 /* "device miibus" required.  See GENERIC if you get errors here. */
152 #include "miibus_if.h"
153
154 #include <dev/netif/re/if_rereg.h>
155 #include <dev/netif/re/if_revar.h>
156
157 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
158
159 /*
160  * Various supported device vendors/types and their names.
161  */
162 static const struct re_type {
163         uint16_t        re_vid;
164         uint16_t        re_did;
165         const char      *re_name;
166 } re_devs[] = {
167         { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE528T,
168           "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
169
170         { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139,
171           "RealTek 8139C+ 10/100BaseTX" },
172
173         { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8101E,
174           "RealTek 810x PCIe 10/100baseTX" },
175
176         { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168,
177           "RealTek 8111/8168 PCIe Gigabit Ethernet" },
178
179         { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169,
180           "RealTek 8110/8169 Gigabit Ethernet" },
181
182         { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169SC,
183           "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
184
185         { PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CG_LAPCIGT,
186           "Corega CG-LAPCIGT Gigabit Ethernet" },
187
188         { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032,
189           "Linksys EG1032 Gigabit Ethernet" },
190
191         { PCI_VENDOR_USR2, PCI_PRODUCT_USR2_997902,
192           "US Robotics 997902 Gigabit Ethernet" },
193
194         { PCI_VENDOR_TTTECH, PCI_PRODUCT_TTTECH_MC322,
195           "TTTech MC322 Gigabit Ethernet" },
196
197         { 0, 0, NULL }
198 };
199
200 static const struct re_hwrev re_hwrevs[] = {
201         { RE_HWREV_8139CPLUS,   RE_MACVER_UNKN,         ETHERMTU,
202           RE_C_HWCSUM | RE_C_8139CP | RE_C_FASTE },
203
204         { RE_HWREV_8169,        RE_MACVER_UNKN,         ETHERMTU,
205           RE_C_HWCSUM | RE_C_8169 },
206
207         { RE_HWREV_8110S,       RE_MACVER_03,           RE_MTU_6K,
208           RE_C_HWCSUM | RE_C_8169 },
209
210         { RE_HWREV_8169S,       RE_MACVER_03,           RE_MTU_6K,
211           RE_C_HWCSUM | RE_C_8169 },
212
213         { RE_HWREV_8169SB,      RE_MACVER_04,           RE_MTU_6K,
214           RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
215
216         { RE_HWREV_8169SC1,     RE_MACVER_05,           RE_MTU_6K,
217           RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
218
219         { RE_HWREV_8169SC2,     RE_MACVER_06,           RE_MTU_6K,
220           RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_8169 },
221
222         { RE_HWREV_8168B1,      RE_MACVER_21,           RE_MTU_6K,
223           RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT },
224
225         { RE_HWREV_8168B2,      RE_MACVER_23,           RE_MTU_6K,
226           RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
227
228         { RE_HWREV_8168B3,      RE_MACVER_23,           RE_MTU_6K,
229           RE_C_HWIM | RE_C_HWCSUM | RE_C_PHYPMGT | RE_C_AUTOPAD },
230
231         { RE_HWREV_8168C,       RE_MACVER_29,           RE_MTU_6K,
232           RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
233           RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
234
235         { RE_HWREV_8168CP,      RE_MACVER_2B,           RE_MTU_6K,
236           RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
237           RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
238
239         { RE_HWREV_8168D,       RE_MACVER_2A,           RE_MTU_9K,
240           RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
241           RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
242
243         { RE_HWREV_8168DP,      RE_MACVER_2D,           RE_MTU_9K,
244           RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
245           RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
246
247         { RE_HWREV_8168E,       RE_MACVER_UNKN,         RE_MTU_9K,
248           RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
249           RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
250
251         { RE_HWREV_8168F,       RE_MACVER_UNKN,         RE_MTU_9K,
252           RE_C_HWIM | RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT |
253           RE_C_AUTOPAD | RE_C_CONTIGRX | RE_C_STOP_RXTX },
254
255         { RE_HWREV_8100E,       RE_MACVER_UNKN,         ETHERMTU,
256           RE_C_HWCSUM | RE_C_FASTE },
257
258         { RE_HWREV_8101E1,      RE_MACVER_16,           ETHERMTU,
259           RE_C_HWCSUM | RE_C_FASTE },
260
261         { RE_HWREV_8101E2,      RE_MACVER_16,           ETHERMTU,
262           RE_C_HWCSUM | RE_C_FASTE },
263
264         { RE_HWREV_8102E,       RE_MACVER_15,           ETHERMTU,
265           RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
266           RE_C_FASTE },
267
268         { RE_HWREV_8102EL,      RE_MACVER_15,           ETHERMTU,
269           RE_C_HWCSUM | RE_C_MAC2 | RE_C_AUTOPAD | RE_C_STOP_RXTX |
270           RE_C_FASTE },
271
272         { RE_HWREV_8105E,       RE_MACVER_UNKN,         ETHERMTU,
273           RE_C_HWCSUM | RE_C_MAC2 | RE_C_PHYPMGT | RE_C_AUTOPAD |
274           RE_C_STOP_RXTX | RE_C_FASTE },
275
276         { RE_HWREV_NULL, 0, 0, 0 }
277 };
278
279 static int      re_probe(device_t);
280 static int      re_attach(device_t);
281 static int      re_detach(device_t);
282 static int      re_suspend(device_t);
283 static int      re_resume(device_t);
284 static void     re_shutdown(device_t);
285
286 static int      re_allocmem(device_t);
287 static void     re_freemem(device_t);
288 static void     re_freebufmem(struct re_softc *, int, int);
289 static int      re_encap(struct re_softc *, struct mbuf **, int *);
290 static int      re_newbuf_std(struct re_softc *, int, int);
291 static int      re_newbuf_jumbo(struct re_softc *, int, int);
292 static void     re_setup_rxdesc(struct re_softc *, int);
293 static int      re_rx_list_init(struct re_softc *);
294 static int      re_tx_list_init(struct re_softc *);
295 static int      re_rxeof(struct re_softc *);
296 static int      re_txeof(struct re_softc *);
297 static int      re_tx_collect(struct re_softc *);
298 static void     re_intr(void *);
299 static void     re_tick(void *);
300 static void     re_tick_serialized(void *);
301
302 static void     re_start(struct ifnet *);
303 static int      re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
304 static void     re_init(void *);
305 static void     re_stop(struct re_softc *);
306 static void     re_watchdog(struct ifnet *);
307 static int      re_ifmedia_upd(struct ifnet *);
308 static void     re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
309
310 static void     re_eeprom_putbyte(struct re_softc *, int);
311 static void     re_eeprom_getword(struct re_softc *, int, u_int16_t *);
312 static void     re_read_eeprom(struct re_softc *, caddr_t, int, int);
313 static void     re_get_eewidth(struct re_softc *);
314
315 static int      re_gmii_readreg(device_t, int, int);
316 static int      re_gmii_writereg(device_t, int, int, int);
317
318 static int      re_miibus_readreg(device_t, int, int);
319 static int      re_miibus_writereg(device_t, int, int, int);
320 static void     re_miibus_statchg(device_t);
321
322 static void     re_setmulti(struct re_softc *);
323 static void     re_reset(struct re_softc *, int);
324 static void     re_get_eaddr(struct re_softc *, uint8_t *);
325
326 static void     re_setup_hw_im(struct re_softc *);
327 static void     re_setup_sim_im(struct re_softc *);
328 static void     re_disable_hw_im(struct re_softc *);
329 static void     re_disable_sim_im(struct re_softc *);
330 static void     re_config_imtype(struct re_softc *, int);
331 static void     re_setup_intr(struct re_softc *, int, int);
332
333 static int      re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *);
334 static int      re_sysctl_rxtime(SYSCTL_HANDLER_ARGS);
335 static int      re_sysctl_txtime(SYSCTL_HANDLER_ARGS);
336 static int      re_sysctl_simtime(SYSCTL_HANDLER_ARGS);
337 static int      re_sysctl_imtype(SYSCTL_HANDLER_ARGS);
338
339 static int      re_jpool_alloc(struct re_softc *);
340 static void     re_jpool_free(struct re_softc *);
341 static struct re_jbuf *re_jbuf_alloc(struct re_softc *);
342 static void     re_jbuf_free(void *);
343 static void     re_jbuf_ref(void *);
344
345 #ifdef RE_DIAG
346 static int      re_diag(struct re_softc *);
347 #endif
348
349 #ifdef DEVICE_POLLING
350 static void     re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
351 #endif
352
353 static device_method_t re_methods[] = {
354         /* Device interface */
355         DEVMETHOD(device_probe,         re_probe),
356         DEVMETHOD(device_attach,        re_attach),
357         DEVMETHOD(device_detach,        re_detach),
358         DEVMETHOD(device_suspend,       re_suspend),
359         DEVMETHOD(device_resume,        re_resume),
360         DEVMETHOD(device_shutdown,      re_shutdown),
361
362         /* bus interface */
363         DEVMETHOD(bus_print_child,      bus_generic_print_child),
364         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
365
366         /* MII interface */
367         DEVMETHOD(miibus_readreg,       re_miibus_readreg),
368         DEVMETHOD(miibus_writereg,      re_miibus_writereg),
369         DEVMETHOD(miibus_statchg,       re_miibus_statchg),
370
371         { 0, 0 }
372 };
373
374 static driver_t re_driver = {
375         "re",
376         re_methods,
377         sizeof(struct re_softc)
378 };
379
380 static devclass_t re_devclass;
381
382 DECLARE_DUMMY_MODULE(if_re);
383 MODULE_DEPEND(if_re, miibus, 1, 1, 1);
384 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, NULL, NULL);
385 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, NULL, NULL);
386 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, NULL, NULL);
387
388 static int      re_rx_desc_count = RE_RX_DESC_CNT_DEF;
389 static int      re_tx_desc_count = RE_TX_DESC_CNT_DEF;
390 static int      re_msi_enable = 0;
391
392 TUNABLE_INT("hw.re.rx_desc_count", &re_rx_desc_count);
393 TUNABLE_INT("hw.re.tx_desc_count", &re_tx_desc_count);
394 TUNABLE_INT("hw.re.msi.enable", &re_msi_enable);
395
396 #define EE_SET(x)       \
397         CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
398
399 #define EE_CLR(x)       \
400         CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
401
402 static __inline void
403 re_free_rxchain(struct re_softc *sc)
404 {
405         if (sc->re_head != NULL) {
406                 m_freem(sc->re_head);
407                 sc->re_head = sc->re_tail = NULL;
408         }
409 }
410
411 /*
412  * Send a read command and address to the EEPROM, check for ACK.
413  */
414 static void
415 re_eeprom_putbyte(struct re_softc *sc, int addr)
416 {
417         int d, i;
418
419         d = addr | (RE_9346_READ << sc->re_eewidth);
420
421         /*
422          * Feed in each bit and strobe the clock.
423          */
424         for (i = 1 << (sc->re_eewidth + 3); i; i >>= 1) {
425                 if (d & i)
426                         EE_SET(RE_EE_DATAIN);
427                 else
428                         EE_CLR(RE_EE_DATAIN);
429                 DELAY(100);
430                 EE_SET(RE_EE_CLK);
431                 DELAY(150);
432                 EE_CLR(RE_EE_CLK);
433                 DELAY(100);
434         }
435 }
436
437 /*
438  * Read a word of data stored in the EEPROM at address 'addr.'
439  */
440 static void
441 re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
442 {
443         int i;
444         uint16_t word = 0;
445
446         /*
447          * Send address of word we want to read.
448          */
449         re_eeprom_putbyte(sc, addr);
450
451         /*
452          * Start reading bits from EEPROM.
453          */
454         for (i = 0x8000; i != 0; i >>= 1) {
455                 EE_SET(RE_EE_CLK);
456                 DELAY(100);
457                 if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
458                         word |= i;
459                 EE_CLR(RE_EE_CLK);
460                 DELAY(100);
461         }
462
463         *dest = word;
464 }
465
466 /*
467  * Read a sequence of words from the EEPROM.
468  */
469 static void
470 re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt)
471 {
472         int i;
473         uint16_t word = 0, *ptr;
474
475         CSR_SETBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
476         DELAY(100);
477
478         for (i = 0; i < cnt; i++) {
479                 CSR_SETBIT_1(sc, RE_EECMD, RE_EE_SEL);
480                 re_eeprom_getword(sc, off + i, &word);
481                 CSR_CLRBIT_1(sc, RE_EECMD, RE_EE_SEL);
482                 ptr = (uint16_t *)(dest + (i * 2));
483                 *ptr = word;
484         }
485
486         CSR_CLRBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
487 }
488
489 static void
490 re_get_eewidth(struct re_softc *sc)
491 {
492         uint16_t re_did = 0;
493
494         sc->re_eewidth = 6;
495         re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
496         if (re_did != 0x8129)
497                 sc->re_eewidth = 8;
498 }
499
500 static int
501 re_gmii_readreg(device_t dev, int phy, int reg)
502 {
503         struct re_softc *sc = device_get_softc(dev);
504         u_int32_t rval;
505         int i;
506
507         if (phy != 1)
508                 return(0);
509
510         /* Let the rgephy driver read the GMEDIASTAT register */
511
512         if (reg == RE_GMEDIASTAT)
513                 return(CSR_READ_1(sc, RE_GMEDIASTAT));
514
515         CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
516         DELAY(1000);
517
518         for (i = 0; i < RE_TIMEOUT; i++) {
519                 rval = CSR_READ_4(sc, RE_PHYAR);
520                 if (rval & RE_PHYAR_BUSY)
521                         break;
522                 DELAY(100);
523         }
524
525         if (i == RE_TIMEOUT) {
526                 device_printf(dev, "PHY read failed\n");
527                 return(0);
528         }
529
530         return(rval & RE_PHYAR_PHYDATA);
531 }
532
533 static int
534 re_gmii_writereg(device_t dev, int phy, int reg, int data)
535 {
536         struct re_softc *sc = device_get_softc(dev);
537         uint32_t rval;
538         int i;
539
540         CSR_WRITE_4(sc, RE_PHYAR,
541                     (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
542         DELAY(1000);
543
544         for (i = 0; i < RE_TIMEOUT; i++) {
545                 rval = CSR_READ_4(sc, RE_PHYAR);
546                 if ((rval & RE_PHYAR_BUSY) == 0)
547                         break;
548                 DELAY(100);
549         }
550
551         if (i == RE_TIMEOUT)
552                 device_printf(dev, "PHY write failed\n");
553
554         return(0);
555 }
556
557 static int
558 re_miibus_readreg(device_t dev, int phy, int reg)
559 {
560         struct re_softc *sc = device_get_softc(dev);
561         uint16_t rval = 0;
562         uint16_t re8139_reg = 0;
563
564         if (!RE_IS_8139CP(sc)) {
565                 rval = re_gmii_readreg(dev, phy, reg);
566                 return(rval);
567         }
568
569         /* Pretend the internal PHY is only at address 0 */
570         if (phy)
571                 return(0);
572
573         switch(reg) {
574         case MII_BMCR:
575                 re8139_reg = RE_BMCR;
576                 break;
577         case MII_BMSR:
578                 re8139_reg = RE_BMSR;
579                 break;
580         case MII_ANAR:
581                 re8139_reg = RE_ANAR;
582                 break;
583         case MII_ANER:
584                 re8139_reg = RE_ANER;
585                 break;
586         case MII_ANLPAR:
587                 re8139_reg = RE_LPAR;
588                 break;
589         case MII_PHYIDR1:
590         case MII_PHYIDR2:
591                 return(0);
592         /*
593          * Allow the rlphy driver to read the media status
594          * register. If we have a link partner which does not
595          * support NWAY, this is the register which will tell
596          * us the results of parallel detection.
597          */
598         case RE_MEDIASTAT:
599                 return(CSR_READ_1(sc, RE_MEDIASTAT));
600         default:
601                 device_printf(dev, "bad phy register\n");
602                 return(0);
603         }
604         rval = CSR_READ_2(sc, re8139_reg);
605         if (re8139_reg == RE_BMCR) {
606                 /* 8139C+ has different bit layout. */
607                 rval &= ~(BMCR_LOOP | BMCR_ISO);
608         }
609         return(rval);
610 }
611
612 static int
613 re_miibus_writereg(device_t dev, int phy, int reg, int data)
614 {
615         struct re_softc *sc= device_get_softc(dev);
616         u_int16_t re8139_reg = 0;
617
618         if (!RE_IS_8139CP(sc))
619                 return(re_gmii_writereg(dev, phy, reg, data));
620
621         /* Pretend the internal PHY is only at address 0 */
622         if (phy)
623                 return(0);
624
625         switch(reg) {
626         case MII_BMCR:
627                 re8139_reg = RE_BMCR;
628                 /* 8139C+ has different bit layout. */
629                 data &= ~(BMCR_LOOP | BMCR_ISO);
630                 break;
631         case MII_BMSR:
632                 re8139_reg = RE_BMSR;
633                 break;
634         case MII_ANAR:
635                 re8139_reg = RE_ANAR;
636                 break;
637         case MII_ANER:
638                 re8139_reg = RE_ANER;
639                 break;
640         case MII_ANLPAR:
641                 re8139_reg = RE_LPAR;
642                 break;
643         case MII_PHYIDR1:
644         case MII_PHYIDR2:
645                 return(0);
646         default:
647                 device_printf(dev, "bad phy register\n");
648                 return(0);
649         }
650         CSR_WRITE_2(sc, re8139_reg, data);
651         return(0);
652 }
653
654 static void
655 re_miibus_statchg(device_t dev)
656 {
657 }
658
659 /*
660  * Program the 64-bit multicast hash filter.
661  */
662 static void
663 re_setmulti(struct re_softc *sc)
664 {
665         struct ifnet *ifp = &sc->arpcom.ac_if;
666         int h = 0;
667         uint32_t hashes[2] = { 0, 0 };
668         struct ifmultiaddr *ifma;
669         uint32_t rxfilt;
670         int mcnt = 0;
671
672         rxfilt = CSR_READ_4(sc, RE_RXCFG);
673
674         /* Set the individual bit to receive frames for this host only. */
675         rxfilt |= RE_RXCFG_RX_INDIV;
676         /* Set capture broadcast bit to capture broadcast frames. */
677         rxfilt |= RE_RXCFG_RX_BROAD;
678
679         rxfilt &= ~(RE_RXCFG_RX_ALLPHYS | RE_RXCFG_RX_MULTI);
680         if ((ifp->if_flags & IFF_ALLMULTI) || (ifp->if_flags & IFF_PROMISC)) {
681                 rxfilt |= RE_RXCFG_RX_MULTI;
682
683                 /* If we want promiscuous mode, set the allframes bit. */
684                 if (ifp->if_flags & IFF_PROMISC)
685                         rxfilt |= RE_RXCFG_RX_ALLPHYS;
686
687                 CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
688                 CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
689                 CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
690                 return;
691         }
692
693         /* first, zot all the existing hash bits */
694         CSR_WRITE_4(sc, RE_MAR0, 0);
695         CSR_WRITE_4(sc, RE_MAR4, 0);
696
697         /* now program new ones */
698         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
699                 if (ifma->ifma_addr->sa_family != AF_LINK)
700                         continue;
701                 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
702                     ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
703                 if (h < 32)
704                         hashes[0] |= (1 << h);
705                 else
706                         hashes[1] |= (1 << (h - 32));
707                 mcnt++;
708         }
709
710         if (mcnt)
711                 rxfilt |= RE_RXCFG_RX_MULTI;
712         else
713                 rxfilt &= ~RE_RXCFG_RX_MULTI;
714
715         CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
716
717         /*
718          * For some unfathomable reason, RealTek decided to reverse
719          * the order of the multicast hash registers in the PCI Express
720          * parts. This means we have to write the hash pattern in reverse
721          * order for those devices.
722          */
723         if (sc->re_caps & RE_C_PCIE) {
724                 CSR_WRITE_4(sc, RE_MAR0, bswap32(hashes[1]));
725                 CSR_WRITE_4(sc, RE_MAR4, bswap32(hashes[0]));
726         } else {
727                 CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
728                 CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
729         }
730 }
731
732 static void
733 re_reset(struct re_softc *sc, int running)
734 {
735         int i;
736
737         if ((sc->re_caps & RE_C_STOP_RXTX) && running) {
738                 CSR_WRITE_1(sc, RE_COMMAND,
739                             RE_CMD_STOPREQ | RE_CMD_TX_ENB | RE_CMD_RX_ENB);
740                 DELAY(100);
741         }
742
743         CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
744
745         for (i = 0; i < RE_TIMEOUT; i++) {
746                 DELAY(10);
747                 if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
748                         break;
749         }
750         if (i == RE_TIMEOUT)
751                 if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
752 }
753
754 #ifdef RE_DIAG
755 /*
756  * The following routine is designed to test for a defect on some
757  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
758  * lines connected to the bus, however for a 32-bit only card, they
759  * should be pulled high. The result of this defect is that the
760  * NIC will not work right if you plug it into a 64-bit slot: DMA
761  * operations will be done with 64-bit transfers, which will fail
762  * because the 64-bit data lines aren't connected.
763  *
764  * There's no way to work around this (short of talking a soldering
765  * iron to the board), however we can detect it. The method we use
766  * here is to put the NIC into digital loopback mode, set the receiver
767  * to promiscuous mode, and then try to send a frame. We then compare
768  * the frame data we sent to what was received. If the data matches,
769  * then the NIC is working correctly, otherwise we know the user has
770  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
771  * slot. In the latter case, there's no way the NIC can work correctly,
772  * so we print out a message on the console and abort the device attach.
773  */
774
775 static int
776 re_diag(struct re_softc *sc)
777 {
778         struct ifnet *ifp = &sc->arpcom.ac_if;
779         struct mbuf *m0;
780         struct ether_header *eh;
781         struct re_desc *cur_rx;
782         uint16_t status;
783         uint32_t rxstat;
784         int total_len, i, error = 0, phyaddr;
785         uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
786         uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
787
788         /* Allocate a single mbuf */
789
790         MGETHDR(m0, MB_DONTWAIT, MT_DATA);
791         if (m0 == NULL)
792                 return(ENOBUFS);
793
794         /*
795          * Initialize the NIC in test mode. This sets the chip up
796          * so that it can send and receive frames, but performs the
797          * following special functions:
798          * - Puts receiver in promiscuous mode
799          * - Enables digital loopback mode
800          * - Leaves interrupts turned off
801          */
802
803         ifp->if_flags |= IFF_PROMISC;
804         sc->re_flags |= RE_F_TESTMODE;
805         re_init(sc);
806         sc->re_flags |= RE_F_LINKED;
807         if (!RE_IS_8139CP(sc))
808                 phyaddr = 1;
809         else
810                 phyaddr = 0;
811
812         re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_RESET);
813         for (i = 0; i < RE_TIMEOUT; i++) {
814                 status = re_miibus_readreg(sc->re_dev, phyaddr, MII_BMCR);
815                 if (!(status & BMCR_RESET))
816                         break;
817         }
818
819         re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_LOOP);
820         CSR_WRITE_2(sc, RE_ISR, RE_INTRS_DIAG);
821
822         DELAY(100000);
823
824         /* Put some data in the mbuf */
825
826         eh = mtod(m0, struct ether_header *);
827         bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
828         bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
829         eh->ether_type = htons(ETHERTYPE_IP);
830         m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
831
832         /*
833          * Queue the packet, start transmission.
834          * Note: ifq_handoff() ultimately calls re_start() for us.
835          */
836
837         CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
838         error = ifq_handoff(ifp, m0, NULL);
839         if (error) {
840                 m0 = NULL;
841                 goto done;
842         }
843         m0 = NULL;
844
845         /* Wait for it to propagate through the chip */
846
847         DELAY(100000);
848         for (i = 0; i < RE_TIMEOUT; i++) {
849                 status = CSR_READ_2(sc, RE_ISR);
850                 CSR_WRITE_2(sc, RE_ISR, status);
851                 if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
852                     (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
853                         break;
854                 DELAY(10);
855         }
856
857         if (i == RE_TIMEOUT) {
858                 if_printf(ifp, "diagnostic failed to receive packet "
859                           "in loopback mode\n");
860                 error = EIO;
861                 goto done;
862         }
863
864         /*
865          * The packet should have been dumped into the first
866          * entry in the RX DMA ring. Grab it from there.
867          */
868
869         bus_dmamap_sync(sc->re_ldata.re_rx_mtag, sc->re_ldata.re_rx_dmamap[0],
870                         BUS_DMASYNC_POSTREAD);
871         bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
872                           sc->re_ldata.re_rx_dmamap[0]);
873
874         m0 = sc->re_ldata.re_rx_mbuf[0];
875         sc->re_ldata.re_rx_mbuf[0] = NULL;
876         eh = mtod(m0, struct ether_header *);
877
878         cur_rx = &sc->re_ldata.re_rx_list[0];
879         total_len = RE_RXBYTES(cur_rx);
880         rxstat = le32toh(cur_rx->re_cmdstat);
881
882         if (total_len != ETHER_MIN_LEN) {
883                 if_printf(ifp, "diagnostic failed, received short packet\n");
884                 error = EIO;
885                 goto done;
886         }
887
888         /* Test that the received packet data matches what we sent. */
889
890         if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
891             bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
892             be16toh(eh->ether_type) != ETHERTYPE_IP) {
893                 if_printf(ifp, "WARNING, DMA FAILURE!\n");
894                 if_printf(ifp, "expected TX data: %6D/%6D/0x%x\n",
895                     dst, ":", src, ":", ETHERTYPE_IP);
896                 if_printf(ifp, "received RX data: %6D/%6D/0x%x\n",
897                     eh->ether_dhost, ":",  eh->ether_shost, ":",
898                     ntohs(eh->ether_type));
899                 if_printf(ifp, "You may have a defective 32-bit NIC plugged "
900                     "into a 64-bit PCI slot.\n");
901                 if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
902                     "for proper operation.\n");
903                 if_printf(ifp, "Read the re(4) man page for more details.\n");
904                 error = EIO;
905         }
906
907 done:
908         /* Turn interface off, release resources */
909
910         sc->re_flags &= ~(RE_F_LINKED | RE_F_TESTMODE);
911         ifp->if_flags &= ~IFF_PROMISC;
912         re_stop(sc);
913         if (m0 != NULL)
914                 m_freem(m0);
915
916         return (error);
917 }
918 #endif  /* RE_DIAG */
919
920 /*
921  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
922  * IDs against our list and return a device name if we find a match.
923  */
924 static int
925 re_probe(device_t dev)
926 {
927         const struct re_type *t;
928         const struct re_hwrev *hw_rev;
929         struct re_softc *sc;
930         int rid;
931         uint32_t hwrev, macmode, txcfg;
932         uint16_t vendor, product;
933
934         vendor = pci_get_vendor(dev);
935         product = pci_get_device(dev);
936
937         /*
938          * Only attach to rev.3 of the Linksys EG1032 adapter.
939          * Rev.2 is supported by sk(4).
940          */
941         if (vendor == PCI_VENDOR_LINKSYS &&
942             product == PCI_PRODUCT_LINKSYS_EG1032 &&
943             pci_get_subdevice(dev) != PCI_SUBDEVICE_LINKSYS_EG1032_REV3)
944                 return ENXIO;
945
946         if (vendor == PCI_VENDOR_REALTEK &&
947             product == PCI_PRODUCT_REALTEK_RT8139 &&
948             pci_get_revid(dev) != PCI_REVID_REALTEK_RT8139CP) {
949                 /* Poor 8139 */
950                 return ENXIO;
951         }
952
953         for (t = re_devs; t->re_name != NULL; t++) {
954                 if (product == t->re_did && vendor == t->re_vid)
955                         break;
956         }
957
958         /*
959          * Check if we found a RealTek device.
960          */
961         if (t->re_name == NULL)
962                 return ENXIO;
963
964         /*
965          * Temporarily map the I/O space so we can read the chip ID register.
966          */
967         sc = kmalloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
968         rid = RE_PCI_LOIO;
969         sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
970                                             RF_ACTIVE);
971         if (sc->re_res == NULL) {
972                 device_printf(dev, "couldn't map ports/memory\n");
973                 kfree(sc, M_TEMP);
974                 return ENXIO;
975         }
976
977         sc->re_btag = rman_get_bustag(sc->re_res);
978         sc->re_bhandle = rman_get_bushandle(sc->re_res);
979
980         txcfg = CSR_READ_4(sc, RE_TXCFG);
981         hwrev = txcfg & RE_TXCFG_HWREV;
982         macmode = txcfg & RE_TXCFG_MACMODE;
983         bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
984         kfree(sc, M_TEMP);
985
986         /*
987          * and continue matching for the specific chip...
988          */
989         for (hw_rev = re_hwrevs; hw_rev->re_hwrev != RE_HWREV_NULL; hw_rev++) {
990                 if (hw_rev->re_hwrev == hwrev) {
991                         sc = device_get_softc(dev);
992
993                         sc->re_hwrev = hw_rev->re_hwrev;
994                         sc->re_macver = hw_rev->re_macver;
995                         sc->re_caps = hw_rev->re_caps;
996                         sc->re_maxmtu = hw_rev->re_maxmtu;
997
998                         /*
999                          * Apply chip property fixup
1000                          */
1001                         switch (sc->re_hwrev) {
1002                         case RE_HWREV_8101E1:
1003                         case RE_HWREV_8101E2:
1004                                 if (macmode == 0)
1005                                         sc->re_macver = RE_MACVER_11;
1006                                 else if (macmode == 0x200000)
1007                                         sc->re_macver = RE_MACVER_12;
1008                                 break;
1009                         case RE_HWREV_8102E:
1010                         case RE_HWREV_8102EL:
1011                                 if (macmode == 0)
1012                                         sc->re_macver = RE_MACVER_13;
1013                                 else if (macmode == 0x100000)
1014                                         sc->re_macver = RE_MACVER_14;
1015                                 break;
1016                         case RE_HWREV_8168B2:
1017                         case RE_HWREV_8168B3:
1018                                 if (macmode == 0)
1019                                         sc->re_macver = RE_MACVER_22;
1020                                 break;
1021                         case RE_HWREV_8168C:
1022                                 if (macmode == 0)
1023                                         sc->re_macver = RE_MACVER_24;
1024                                 else if (macmode == 0x200000)
1025                                         sc->re_macver = RE_MACVER_25;
1026                                 else if (macmode == 0x300000)
1027                                         sc->re_macver = RE_MACVER_27;
1028                                 break;
1029                         case RE_HWREV_8168CP:
1030                                 if (macmode == 0)
1031                                         sc->re_macver = RE_MACVER_26;
1032                                 else if (macmode == 0x100000)
1033                                         sc->re_macver = RE_MACVER_28;
1034                                 break;
1035                         case RE_HWREV_8168DP:
1036                                 if (macmode == 0)
1037                                         sc->re_macver = RE_MACVER_2B;
1038                                 else if (macmode == 0x200000)
1039                                         sc->re_macver = RE_MACVER_2C;
1040                                 break;
1041                         case RE_HWREV_8168E:
1042                                 if (macmode == 0x100000)
1043                                         sc->re_macver = RE_MACVER_2E;
1044                                 else if (macmode == 0x200000)
1045                                         sc->re_macver = RE_MACVER_2F;
1046                                 break;
1047                         case RE_HWREV_8168F:
1048                                 if (macmode == 0x000000)
1049                                         sc->re_macver = RE_MACVER_30;
1050                                 else if (macmode == 0x100000)
1051                                         sc->re_macver = RE_MACVER_31;
1052                                 break;
1053                         }
1054                         if (pci_is_pcie(dev))
1055                                 sc->re_caps |= RE_C_PCIE;
1056
1057                         device_set_desc(dev, t->re_name);
1058                         return 0;
1059                 }
1060         }
1061
1062         if (bootverbose) {
1063                 device_printf(dev, "unknown hwrev 0x%08x, macmode 0x%08x\n",
1064                               hwrev, macmode);
1065         }
1066         return ENXIO;
1067 }
1068
1069 static int
1070 re_allocmem(device_t dev)
1071 {
1072         struct re_softc *sc = device_get_softc(dev);
1073         bus_dmamem_t dmem;
1074         int error, i;
1075
1076         /*
1077          * Allocate list data
1078          */
1079         sc->re_ldata.re_tx_mbuf =
1080         kmalloc(sc->re_tx_desc_cnt * sizeof(struct mbuf *),
1081                 M_DEVBUF, M_ZERO | M_WAITOK);
1082
1083         sc->re_ldata.re_rx_mbuf =
1084         kmalloc(sc->re_rx_desc_cnt * sizeof(struct mbuf *),
1085                 M_DEVBUF, M_ZERO | M_WAITOK);
1086
1087         sc->re_ldata.re_rx_paddr =
1088         kmalloc(sc->re_rx_desc_cnt * sizeof(bus_addr_t),
1089                 M_DEVBUF, M_ZERO | M_WAITOK);
1090
1091         sc->re_ldata.re_tx_dmamap =
1092         kmalloc(sc->re_tx_desc_cnt * sizeof(bus_dmamap_t),
1093                 M_DEVBUF, M_ZERO | M_WAITOK);
1094
1095         sc->re_ldata.re_rx_dmamap =
1096         kmalloc(sc->re_rx_desc_cnt * sizeof(bus_dmamap_t),
1097                 M_DEVBUF, M_ZERO | M_WAITOK);
1098
1099         /*
1100          * Allocate the parent bus DMA tag appropriate for PCI.
1101          */
1102         error = bus_dma_tag_create(NULL,        /* parent */
1103                         1, 0,                   /* alignment, boundary */
1104                         BUS_SPACE_MAXADDR,      /* lowaddr */
1105                         BUS_SPACE_MAXADDR,      /* highaddr */
1106                         NULL, NULL,             /* filter, filterarg */
1107                         BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
1108                         0,                      /* nsegments */
1109                         BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1110                         0,                      /* flags */
1111                         &sc->re_parent_tag);
1112         if (error) {
1113                 device_printf(dev, "could not allocate parent dma tag\n");
1114                 return error;
1115         }
1116
1117         /* Allocate TX descriptor list. */
1118         error = bus_dmamem_coherent(sc->re_parent_tag,
1119                         RE_RING_ALIGN, 0,
1120                         BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1121                         RE_TX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1122                         &dmem);
1123         if (error) {
1124                 device_printf(dev, "could not allocate TX ring\n");
1125                 return error;
1126         }
1127         sc->re_ldata.re_tx_list_tag = dmem.dmem_tag;
1128         sc->re_ldata.re_tx_list_map = dmem.dmem_map;
1129         sc->re_ldata.re_tx_list = dmem.dmem_addr;
1130         sc->re_ldata.re_tx_list_addr = dmem.dmem_busaddr;
1131
1132         /* Allocate RX descriptor list. */
1133         error = bus_dmamem_coherent(sc->re_parent_tag,
1134                         RE_RING_ALIGN, 0,
1135                         BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1136                         RE_RX_LIST_SZ(sc), BUS_DMA_WAITOK | BUS_DMA_ZERO,
1137                         &dmem);
1138         if (error) {
1139                 device_printf(dev, "could not allocate RX ring\n");
1140                 return error;
1141         }
1142         sc->re_ldata.re_rx_list_tag = dmem.dmem_tag;
1143         sc->re_ldata.re_rx_list_map = dmem.dmem_map;
1144         sc->re_ldata.re_rx_list = dmem.dmem_addr;
1145         sc->re_ldata.re_rx_list_addr = dmem.dmem_busaddr;
1146
1147         /* Allocate maps for TX mbufs. */
1148         error = bus_dma_tag_create(sc->re_parent_tag,
1149                         1, 0,
1150                         BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1151                         NULL, NULL,
1152                         RE_FRAMELEN_MAX, RE_MAXSEGS, MCLBYTES,
1153                         BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1154                         &sc->re_ldata.re_tx_mtag);
1155         if (error) {
1156                 device_printf(dev, "could not allocate TX buf dma tag\n");
1157                 return(error);
1158         }
1159
1160         /* Create DMA maps for TX buffers */
1161         for (i = 0; i < sc->re_tx_desc_cnt; i++) {
1162                 error = bus_dmamap_create(sc->re_ldata.re_tx_mtag,
1163                                 BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1164                                 &sc->re_ldata.re_tx_dmamap[i]);
1165                 if (error) {
1166                         device_printf(dev, "can't create DMA map for TX buf\n");
1167                         re_freebufmem(sc, i, 0);
1168                         return(error);
1169                 }
1170         }
1171
1172         /* Allocate maps for RX mbufs. */
1173         error = bus_dma_tag_create(sc->re_parent_tag,
1174                         RE_RXBUF_ALIGN, 0,
1175                         BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1176                         NULL, NULL,
1177                         MCLBYTES, 1, MCLBYTES,
1178                         BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK | BUS_DMA_ALIGNED,
1179                         &sc->re_ldata.re_rx_mtag);
1180         if (error) {
1181                 device_printf(dev, "could not allocate RX buf dma tag\n");
1182                 return(error);
1183         }
1184
1185         /* Create spare DMA map for RX */
1186         error = bus_dmamap_create(sc->re_ldata.re_rx_mtag, BUS_DMA_WAITOK,
1187                         &sc->re_ldata.re_rx_spare);
1188         if (error) {
1189                 device_printf(dev, "can't create spare DMA map for RX\n");
1190                 bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1191                 sc->re_ldata.re_rx_mtag = NULL;
1192                 return error;
1193         }
1194
1195         /* Create DMA maps for RX buffers */
1196         for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1197                 error = bus_dmamap_create(sc->re_ldata.re_rx_mtag,
1198                                 BUS_DMA_WAITOK, &sc->re_ldata.re_rx_dmamap[i]);
1199                 if (error) {
1200                         device_printf(dev, "can't create DMA map for RX buf\n");
1201                         re_freebufmem(sc, sc->re_tx_desc_cnt, i);
1202                         return(error);
1203                 }
1204         }
1205
1206         /* Create jumbo buffer pool for RX if required */
1207         if (sc->re_caps & RE_C_CONTIGRX) {
1208                 error = re_jpool_alloc(sc);
1209                 if (error) {
1210                         re_jpool_free(sc);
1211                         /* Disable jumbo frame support */
1212                         sc->re_maxmtu = ETHERMTU;
1213                 }
1214         }
1215         return(0);
1216 }
1217
1218 static void
1219 re_freebufmem(struct re_softc *sc, int tx_cnt, int rx_cnt)
1220 {
1221         int i;
1222
1223         /* Destroy all the RX and TX buffer maps */
1224         if (sc->re_ldata.re_tx_mtag) {
1225                 for (i = 0; i < tx_cnt; i++) {
1226                         bus_dmamap_destroy(sc->re_ldata.re_tx_mtag,
1227                                            sc->re_ldata.re_tx_dmamap[i]);
1228                 }
1229                 bus_dma_tag_destroy(sc->re_ldata.re_tx_mtag);
1230                 sc->re_ldata.re_tx_mtag = NULL;
1231         }
1232
1233         if (sc->re_ldata.re_rx_mtag) {
1234                 for (i = 0; i < rx_cnt; i++) {
1235                         bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1236                                            sc->re_ldata.re_rx_dmamap[i]);
1237                 }
1238                 bus_dmamap_destroy(sc->re_ldata.re_rx_mtag,
1239                                    sc->re_ldata.re_rx_spare);
1240                 bus_dma_tag_destroy(sc->re_ldata.re_rx_mtag);
1241                 sc->re_ldata.re_rx_mtag = NULL;
1242         }
1243 }
1244
1245 static void
1246 re_freemem(device_t dev)
1247 {
1248         struct re_softc *sc = device_get_softc(dev);
1249
1250         /* Unload and free the RX DMA ring memory and map */
1251         if (sc->re_ldata.re_rx_list_tag) {
1252                 bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1253                                   sc->re_ldata.re_rx_list_map);
1254                 bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1255                                 sc->re_ldata.re_rx_list,
1256                                 sc->re_ldata.re_rx_list_map);
1257                 bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1258         }
1259
1260         /* Unload and free the TX DMA ring memory and map */
1261         if (sc->re_ldata.re_tx_list_tag) {
1262                 bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1263                                   sc->re_ldata.re_tx_list_map);
1264                 bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1265                                 sc->re_ldata.re_tx_list,
1266                                 sc->re_ldata.re_tx_list_map);
1267                 bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1268         }
1269
1270         /* Free RX/TX buf DMA stuffs */
1271         re_freebufmem(sc, sc->re_tx_desc_cnt, sc->re_rx_desc_cnt);
1272
1273         /* Unload and free the stats buffer and map */
1274         if (sc->re_ldata.re_stag) {
1275                 bus_dmamap_unload(sc->re_ldata.re_stag, sc->re_ldata.re_smap);
1276                 bus_dmamem_free(sc->re_ldata.re_stag,
1277                                 sc->re_ldata.re_stats,
1278                                 sc->re_ldata.re_smap);
1279                 bus_dma_tag_destroy(sc->re_ldata.re_stag);
1280         }
1281
1282         if (sc->re_caps & RE_C_CONTIGRX)
1283                 re_jpool_free(sc);
1284
1285         if (sc->re_parent_tag)
1286                 bus_dma_tag_destroy(sc->re_parent_tag);
1287
1288         if (sc->re_ldata.re_tx_mbuf != NULL)
1289                 kfree(sc->re_ldata.re_tx_mbuf, M_DEVBUF);
1290         if (sc->re_ldata.re_rx_mbuf != NULL)
1291                 kfree(sc->re_ldata.re_rx_mbuf, M_DEVBUF);
1292         if (sc->re_ldata.re_rx_paddr != NULL)
1293                 kfree(sc->re_ldata.re_rx_paddr, M_DEVBUF);
1294         if (sc->re_ldata.re_tx_dmamap != NULL)
1295                 kfree(sc->re_ldata.re_tx_dmamap, M_DEVBUF);
1296         if (sc->re_ldata.re_rx_dmamap != NULL)
1297                 kfree(sc->re_ldata.re_rx_dmamap, M_DEVBUF);
1298 }
1299
1300 /*
1301  * Attach the interface. Allocate softc structures, do ifmedia
1302  * setup and ethernet/BPF attach.
1303  */
1304 static int
1305 re_attach(device_t dev)
1306 {
1307         struct re_softc *sc = device_get_softc(dev);
1308         struct ifnet *ifp;
1309         uint8_t eaddr[ETHER_ADDR_LEN];
1310         int error = 0, rid, qlen;
1311         u_int irq_flags;
1312
1313         callout_init(&sc->re_timer);
1314         sc->re_dev = dev;
1315
1316         if (RE_IS_8139CP(sc)) {
1317                 sc->re_rx_desc_cnt = RE_RX_DESC_CNT_8139CP;
1318                 sc->re_tx_desc_cnt = RE_TX_DESC_CNT_8139CP;
1319         } else {
1320                 sc->re_rx_desc_cnt = re_rx_desc_count;
1321                 if (sc->re_rx_desc_cnt > RE_RX_DESC_CNT_MAX)
1322                         sc->re_rx_desc_cnt = RE_RX_DESC_CNT_MAX;
1323
1324                 sc->re_tx_desc_cnt = re_tx_desc_count;
1325                 if (sc->re_tx_desc_cnt > RE_TX_DESC_CNT_MAX)
1326                         sc->re_tx_desc_cnt = RE_TX_DESC_CNT_MAX;
1327         }
1328
1329         qlen = RE_IFQ_MAXLEN;
1330         if (sc->re_tx_desc_cnt > qlen)
1331                 qlen = sc->re_tx_desc_cnt;
1332
1333         sc->re_rxbuf_size = MCLBYTES;
1334         sc->re_newbuf = re_newbuf_std;
1335
1336         sc->re_tx_time = 5;             /* 125us */
1337         sc->re_rx_time = 2;             /* 50us */
1338         if (sc->re_caps & RE_C_PCIE)
1339                 sc->re_sim_time = 75;   /* 75us */
1340         else
1341                 sc->re_sim_time = 125;  /* 125us */
1342         if (!RE_IS_8139CP(sc)) {
1343                 /* simulated interrupt moderation */
1344                 sc->re_imtype = RE_IMTYPE_SIM;
1345         } else {
1346                 sc->re_imtype = RE_IMTYPE_NONE;
1347         }
1348         re_config_imtype(sc, sc->re_imtype);
1349
1350         sysctl_ctx_init(&sc->re_sysctl_ctx);
1351         sc->re_sysctl_tree = SYSCTL_ADD_NODE(&sc->re_sysctl_ctx,
1352                                              SYSCTL_STATIC_CHILDREN(_hw),
1353                                              OID_AUTO,
1354                                              device_get_nameunit(dev),
1355                                              CTLFLAG_RD, 0, "");
1356         if (sc->re_sysctl_tree == NULL) {
1357                 device_printf(dev, "can't add sysctl node\n");
1358                 error = ENXIO;
1359                 goto fail;
1360         }
1361         SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1362                        SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1363                        "rx_desc_count", CTLFLAG_RD, &sc->re_rx_desc_cnt,
1364                        0, "RX desc count");
1365         SYSCTL_ADD_INT(&sc->re_sysctl_ctx,
1366                        SYSCTL_CHILDREN(sc->re_sysctl_tree), OID_AUTO,
1367                        "tx_desc_count", CTLFLAG_RD, &sc->re_tx_desc_cnt,
1368                        0, "TX desc count");
1369         SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1370                         SYSCTL_CHILDREN(sc->re_sysctl_tree),
1371                         OID_AUTO, "sim_time",
1372                         CTLTYPE_INT | CTLFLAG_RW,
1373                         sc, 0, re_sysctl_simtime, "I",
1374                         "Simulated interrupt moderation time (usec).");
1375         SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1376                         SYSCTL_CHILDREN(sc->re_sysctl_tree),
1377                         OID_AUTO, "imtype",
1378                         CTLTYPE_INT | CTLFLAG_RW,
1379                         sc, 0, re_sysctl_imtype, "I",
1380                         "Interrupt moderation type -- "
1381                         "0:disable, 1:simulated, "
1382                         "2:hardware(if supported)");
1383         if (sc->re_caps & RE_C_HWIM) {
1384                 SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1385                                 SYSCTL_CHILDREN(sc->re_sysctl_tree),
1386                                 OID_AUTO, "hw_rxtime",
1387                                 CTLTYPE_INT | CTLFLAG_RW,
1388                                 sc, 0, re_sysctl_rxtime, "I",
1389                                 "Hardware interrupt moderation time "
1390                                 "(unit: 25usec).");
1391                 SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1392                                 SYSCTL_CHILDREN(sc->re_sysctl_tree),
1393                                 OID_AUTO, "hw_txtime",
1394                                 CTLTYPE_INT | CTLFLAG_RW,
1395                                 sc, 0, re_sysctl_txtime, "I",
1396                                 "Hardware interrupt moderation time "
1397                                 "(unit: 25usec).");
1398         }
1399
1400 #ifndef BURN_BRIDGES
1401         /*
1402          * Handle power management nonsense.
1403          */
1404
1405         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1406                 uint32_t membase, irq;
1407
1408                 /* Save important PCI config data. */
1409                 membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
1410                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
1411
1412                 /* Reset the power state. */
1413                 device_printf(dev, "chip is in D%d power mode "
1414                     "-- setting to D0\n", pci_get_powerstate(dev));
1415
1416                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1417
1418                 /* Restore PCI config data. */
1419                 pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1420                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
1421         }
1422 #endif
1423         /*
1424          * Map control/status registers.
1425          */
1426         pci_enable_busmaster(dev);
1427
1428         rid = RE_PCI_LOIO;
1429         sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1430                                             RF_ACTIVE);
1431
1432         if (sc->re_res == NULL) {
1433                 device_printf(dev, "couldn't map ports\n");
1434                 error = ENXIO;
1435                 goto fail;
1436         }
1437
1438         sc->re_btag = rman_get_bustag(sc->re_res);
1439         sc->re_bhandle = rman_get_bushandle(sc->re_res);
1440
1441         /* Allocate interrupt */
1442         sc->re_irq_type = pci_alloc_1intr(dev, re_msi_enable,
1443                                            &sc->re_irq_rid, &irq_flags);
1444
1445         sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->re_irq_rid,
1446                                             irq_flags);
1447         if (sc->re_irq == NULL) {
1448                 device_printf(dev, "couldn't map interrupt\n");
1449                 error = ENXIO;
1450                 goto fail;
1451         }
1452
1453         /* Reset the adapter. */
1454         re_reset(sc, 0);
1455
1456         if (RE_IS_8139CP(sc)) {
1457                 sc->re_bus_speed = 33; /* XXX */
1458         } else if (sc->re_caps & RE_C_PCIE) {
1459                 sc->re_bus_speed = 125;
1460         } else {
1461                 uint8_t cfg2;
1462
1463                 cfg2 = CSR_READ_1(sc, RE_CFG2);
1464                 switch (cfg2 & RE_CFG2_PCICLK_MASK) {
1465                 case RE_CFG2_PCICLK_33MHZ:
1466                         sc->re_bus_speed = 33;
1467                         break;
1468                 case RE_CFG2_PCICLK_66MHZ:
1469                         sc->re_bus_speed = 66;
1470                         break;
1471                 default:
1472                         device_printf(dev, "unknown bus speed, assume 33MHz\n");
1473                         sc->re_bus_speed = 33;
1474                         break;
1475                 }
1476                 if (cfg2 & RE_CFG2_PCI64)
1477                         sc->re_caps |= RE_C_PCI64;
1478         }
1479         device_printf(dev, "Hardware rev. 0x%08x; MAC ver. 0x%02x; "
1480                       "PCI%s %dMHz\n",
1481                       sc->re_hwrev, sc->re_macver,
1482                       (sc->re_caps & RE_C_PCIE) ?
1483                       "-E" : ((sc->re_caps & RE_C_PCI64) ? "64" : "32"),
1484                       sc->re_bus_speed);
1485
1486         /*
1487          * NOTE:
1488          * DO NOT try to adjust config1 and config5 which was spotted in
1489          * Realtek's Linux drivers.  It will _permanently_ damage certain
1490          * cards EEPROM, e.g. one of my 8168B (0x38000000) card ...
1491          */
1492
1493         re_get_eaddr(sc, eaddr);
1494
1495         if (!RE_IS_8139CP(sc)) {
1496                 /* Set RX length mask */
1497                 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1498                 sc->re_txstart = RE_GTXSTART;
1499         } else {
1500                 /* Set RX length mask */
1501                 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1502                 sc->re_txstart = RE_TXSTART;
1503         }
1504
1505         /* Allocate DMA stuffs */
1506         error = re_allocmem(dev);
1507         if (error)
1508                 goto fail;
1509
1510         /*
1511          * Apply some magic PCI settings from Realtek ...
1512          */
1513         if (RE_IS_8169(sc)) {
1514                 CSR_WRITE_1(sc, 0x82, 1);
1515                 pci_write_config(dev, PCIR_CACHELNSZ, 0x8, 1);
1516         }
1517         pci_write_config(dev, PCIR_LATTIMER, 0x40, 1);
1518
1519         if (sc->re_caps & RE_C_MAC2) {
1520                 /*
1521                  * Following part is extracted from Realtek BSD driver v176.
1522                  * However, this does _not_ make much/any sense:
1523                  * 8168C's PCI Express device control is located at 0x78,
1524                  * so the reading from 0x79 (higher part of 0x78) and setting
1525                  * the 4~6bits intend to enlarge the "max read request size"
1526                  * (we will do it).  The content of the rest part of this
1527                  * register is not meaningful to other PCI registers, so
1528                  * writing the value to 0x54 could be completely wrong.
1529                  * 0x80 is the lower part of PCI Express device status, non-
1530                  * reserved bits are RW1C, writing 0 to them will not have
1531                  * any effect at all.
1532                  */
1533 #ifdef foo
1534                 uint8_t val;
1535
1536                 val = pci_read_config(dev, 0x79, 1);
1537                 val = (val & ~0x70) | 0x50;
1538                 pci_write_config(dev, 0x54, val, 1);
1539                 pci_write_config(dev, 0x80, 0, 1);
1540 #endif
1541         }
1542
1543         /*
1544          * Apply some PHY fixup from Realtek ...
1545          */
1546         if (sc->re_hwrev == RE_HWREV_8110S) {
1547                 CSR_WRITE_1(sc, 0x82, 1);
1548                 re_miibus_writereg(dev, 1, 0xb, 0);
1549         }
1550         if (sc->re_caps & RE_C_PHYPMGT) {
1551                 /* Power up PHY */
1552                 re_miibus_writereg(dev, 1, 0x1f, 0);
1553                 re_miibus_writereg(dev, 1, 0xe, 0);
1554         }
1555
1556         /* Do MII setup */
1557         if (mii_phy_probe(dev, &sc->re_miibus,
1558             re_ifmedia_upd, re_ifmedia_sts)) {
1559                 device_printf(dev, "MII without any phy!\n");
1560                 error = ENXIO;
1561                 goto fail;
1562         }
1563
1564         ifp = &sc->arpcom.ac_if;
1565         ifp->if_softc = sc;
1566         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1567         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1568         ifp->if_ioctl = re_ioctl;
1569         ifp->if_start = re_start;
1570 #ifdef DEVICE_POLLING
1571         ifp->if_poll = re_poll;
1572 #endif
1573         ifp->if_watchdog = re_watchdog;
1574         ifp->if_init = re_init;
1575         if (!RE_IS_8139CP(sc)) /* XXX */
1576                 ifp->if_baudrate = 1000000000;
1577         else
1578                 ifp->if_baudrate = 100000000;
1579         ifq_set_maxlen(&ifp->if_snd, qlen);
1580         ifq_set_ready(&ifp->if_snd);
1581
1582         ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1583         if (sc->re_caps & RE_C_HWCSUM)
1584                 ifp->if_capabilities |= IFCAP_HWCSUM;
1585
1586         ifp->if_capenable = ifp->if_capabilities;
1587         if (ifp->if_capabilities & IFCAP_HWCSUM)
1588                 ifp->if_hwassist = RE_CSUM_FEATURES;
1589         else
1590                 ifp->if_hwassist = 0;
1591
1592         /*
1593          * Call MI attach routine.
1594          */
1595         ether_ifattach(ifp, eaddr, NULL);
1596
1597 #ifdef RE_DIAG
1598         /*
1599          * Perform hardware diagnostic on the original RTL8169.
1600          * Some 32-bit cards were incorrectly wired and would
1601          * malfunction if plugged into a 64-bit slot.
1602          */
1603         if (sc->re_hwrev == RE_HWREV_8169) {
1604                 lwkt_serialize_enter(ifp->if_serializer);
1605                 error = re_diag(sc);
1606                 lwkt_serialize_exit(ifp->if_serializer);
1607
1608                 if (error) {
1609                         device_printf(dev, "hardware diagnostic failure\n");
1610                         ether_ifdetach(ifp);
1611                         goto fail;
1612                 }
1613         }
1614 #endif  /* RE_DIAG */
1615
1616         /* Hook interrupt last to avoid having to lock softc */
1617         error = bus_setup_intr(dev, sc->re_irq, INTR_MPSAFE, re_intr, sc,
1618                                &sc->re_intrhand, ifp->if_serializer);
1619
1620         if (error) {
1621                 device_printf(dev, "couldn't set up irq\n");
1622                 ether_ifdetach(ifp);
1623                 goto fail;
1624         }
1625
1626         ifp->if_cpuid = rman_get_cpuid(sc->re_irq);
1627         KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
1628
1629 fail:
1630         if (error)
1631                 re_detach(dev);
1632
1633         return (error);
1634 }
1635
1636 /*
1637  * Shutdown hardware and free up resources. This can be called any
1638  * time after the mutex has been initialized. It is called in both
1639  * the error case in attach and the normal detach case so it needs
1640  * to be careful about only freeing resources that have actually been
1641  * allocated.
1642  */
1643 static int
1644 re_detach(device_t dev)
1645 {
1646         struct re_softc *sc = device_get_softc(dev);
1647         struct ifnet *ifp = &sc->arpcom.ac_if;
1648
1649         /* These should only be active if attach succeeded */
1650         if (device_is_attached(dev)) {
1651                 lwkt_serialize_enter(ifp->if_serializer);
1652                 re_stop(sc);
1653                 bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1654                 lwkt_serialize_exit(ifp->if_serializer);
1655
1656                 ether_ifdetach(ifp);
1657         }
1658         if (sc->re_miibus)
1659                 device_delete_child(dev, sc->re_miibus);
1660         bus_generic_detach(dev);
1661
1662         if (sc->re_sysctl_tree != NULL)
1663                 sysctl_ctx_free(&sc->re_sysctl_ctx);
1664
1665         if (sc->re_irq)
1666                 bus_release_resource(dev, SYS_RES_IRQ, sc->re_irq_rid,
1667                                      sc->re_irq);
1668
1669         if (sc->re_irq_type == PCI_INTR_TYPE_MSI)
1670                 pci_release_msi(dev);
1671
1672         if (sc->re_res) {
1673                 bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO,
1674                                      sc->re_res);
1675         }
1676
1677         /* Free DMA stuffs */
1678         re_freemem(dev);
1679
1680         return(0);
1681 }
1682
1683 static void
1684 re_setup_rxdesc(struct re_softc *sc, int idx)
1685 {
1686         bus_addr_t paddr;
1687         uint32_t cmdstat;
1688         struct re_desc *d;
1689
1690         paddr = sc->re_ldata.re_rx_paddr[idx];
1691         d = &sc->re_ldata.re_rx_list[idx];
1692
1693         d->re_bufaddr_lo = htole32(RE_ADDR_LO(paddr));
1694         d->re_bufaddr_hi = htole32(RE_ADDR_HI(paddr));
1695
1696         cmdstat = sc->re_rxbuf_size | RE_RDESC_CMD_OWN;
1697         if (idx == (sc->re_rx_desc_cnt - 1))
1698                 cmdstat |= RE_RDESC_CMD_EOR;
1699         d->re_cmdstat = htole32(cmdstat);
1700 }
1701
1702 static int
1703 re_newbuf_std(struct re_softc *sc, int idx, int init)
1704 {
1705         bus_dma_segment_t seg;
1706         bus_dmamap_t map;
1707         struct mbuf *m;
1708         int error, nsegs;
1709
1710         m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1711         if (m == NULL) {
1712                 error = ENOBUFS;
1713
1714                 if (init) {
1715                         if_printf(&sc->arpcom.ac_if, "m_getcl failed\n");
1716                         return error;
1717                 } else {
1718                         goto back;
1719                 }
1720         }
1721         m->m_len = m->m_pkthdr.len = MCLBYTES;
1722
1723         /*
1724          * NOTE:
1725          * re(4) chips need address of the receive buffer to be 8-byte
1726          * aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1727          */
1728
1729         error = bus_dmamap_load_mbuf_segment(sc->re_ldata.re_rx_mtag,
1730                         sc->re_ldata.re_rx_spare, m,
1731                         &seg, 1, &nsegs, BUS_DMA_NOWAIT);
1732         if (error) {
1733                 m_freem(m);
1734                 if (init) {
1735                         if_printf(&sc->arpcom.ac_if, "can't load RX mbuf\n");
1736                         return error;
1737                 } else {
1738                         goto back;
1739                 }
1740         }
1741
1742         if (!init) {
1743                 bus_dmamap_sync(sc->re_ldata.re_rx_mtag,
1744                                 sc->re_ldata.re_rx_dmamap[idx],
1745                                 BUS_DMASYNC_POSTREAD);
1746                 bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
1747                                   sc->re_ldata.re_rx_dmamap[idx]);
1748         }
1749         sc->re_ldata.re_rx_mbuf[idx] = m;
1750         sc->re_ldata.re_rx_paddr[idx] = seg.ds_addr;
1751
1752         map = sc->re_ldata.re_rx_dmamap[idx];
1753         sc->re_ldata.re_rx_dmamap[idx] = sc->re_ldata.re_rx_spare;
1754         sc->re_ldata.re_rx_spare = map;
1755 back:
1756         re_setup_rxdesc(sc, idx);
1757         return error;
1758 }
1759
1760 static int
1761 re_newbuf_jumbo(struct re_softc *sc, int idx, int init)
1762 {
1763         struct mbuf *m;
1764         struct re_jbuf *jbuf;
1765         int error = 0;
1766
1767         MGETHDR(m, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1768         if (m == NULL) {
1769                 error = ENOBUFS;
1770                 if (init) {
1771                         if_printf(&sc->arpcom.ac_if, "MGETHDR failed\n");
1772                         return error;
1773                 } else {
1774                         goto back;
1775                 }
1776         }
1777
1778         jbuf = re_jbuf_alloc(sc);
1779         if (jbuf == NULL) {
1780                 m_freem(m);
1781
1782                 error = ENOBUFS;
1783                 if (init) {
1784                         if_printf(&sc->arpcom.ac_if, "jpool is empty\n");
1785                         return error;
1786                 } else {
1787                         goto back;
1788                 }
1789         }
1790
1791         m->m_ext.ext_arg = jbuf;
1792         m->m_ext.ext_buf = jbuf->re_buf;
1793         m->m_ext.ext_free = re_jbuf_free;
1794         m->m_ext.ext_ref = re_jbuf_ref;
1795         m->m_ext.ext_size = sc->re_rxbuf_size;
1796
1797         m->m_data = m->m_ext.ext_buf;
1798         m->m_flags |= M_EXT;
1799         m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1800
1801         /*
1802          * NOTE:
1803          * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1804          * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1805          */
1806
1807         sc->re_ldata.re_rx_mbuf[idx] = m;
1808         sc->re_ldata.re_rx_paddr[idx] = jbuf->re_paddr;
1809 back:
1810         re_setup_rxdesc(sc, idx);
1811         return error;
1812 }
1813
1814 static int
1815 re_tx_list_init(struct re_softc *sc)
1816 {
1817         bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
1818
1819         sc->re_ldata.re_tx_prodidx = 0;
1820         sc->re_ldata.re_tx_considx = 0;
1821         sc->re_ldata.re_tx_free = sc->re_tx_desc_cnt;
1822
1823         return(0);
1824 }
1825
1826 static int
1827 re_rx_list_init(struct re_softc *sc)
1828 {
1829         int i, error;
1830
1831         bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ(sc));
1832
1833         for (i = 0; i < sc->re_rx_desc_cnt; i++) {
1834                 error = sc->re_newbuf(sc, i, 1);
1835                 if (error)
1836                         return(error);
1837         }
1838
1839         sc->re_ldata.re_rx_prodidx = 0;
1840         sc->re_head = sc->re_tail = NULL;
1841
1842         return(0);
1843 }
1844
1845 #define RE_IP4_PACKET   0x1
1846 #define RE_TCP_PACKET   0x2
1847 #define RE_UDP_PACKET   0x4
1848
1849 static __inline uint8_t
1850 re_packet_type(struct re_softc *sc, uint32_t rxstat, uint32_t rxctrl)
1851 {
1852         uint8_t packet_type = 0;
1853
1854         if (sc->re_caps & RE_C_MAC2) {
1855                 if (rxctrl & RE_RDESC_CTL_PROTOIP4)
1856                         packet_type |= RE_IP4_PACKET;
1857         } else {
1858                 if (rxstat & RE_RDESC_STAT_PROTOID)
1859                         packet_type |= RE_IP4_PACKET;
1860         }
1861         if (RE_TCPPKT(rxstat))
1862                 packet_type |= RE_TCP_PACKET;
1863         else if (RE_UDPPKT(rxstat))
1864                 packet_type |= RE_UDP_PACKET;
1865         return packet_type;
1866 }
1867
1868 /*
1869  * RX handler for C+ and 8169. For the gigE chips, we support
1870  * the reception of jumbo frames that have been fragmented
1871  * across multiple 2K mbuf cluster buffers.
1872  */
1873 static int
1874 re_rxeof(struct re_softc *sc)
1875 {
1876         struct ifnet *ifp = &sc->arpcom.ac_if;
1877         struct mbuf *m;
1878         struct re_desc  *cur_rx;
1879         uint32_t rxstat, rxctrl;
1880         int i, total_len, rx = 0;
1881
1882         for (i = sc->re_ldata.re_rx_prodidx;
1883              RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0; RE_RXDESC_INC(sc, i)) {
1884                 cur_rx = &sc->re_ldata.re_rx_list[i];
1885                 m = sc->re_ldata.re_rx_mbuf[i];
1886                 total_len = RE_RXBYTES(cur_rx);
1887                 rxstat = le32toh(cur_rx->re_cmdstat);
1888                 rxctrl = le32toh(cur_rx->re_control);
1889
1890                 rx = 1;
1891
1892 #ifdef INVARIANTS
1893                 if (sc->re_flags & RE_F_USE_JPOOL)
1894                         KKASSERT(rxstat & RE_RDESC_STAT_EOF);
1895 #endif
1896
1897                 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1898                         if (sc->re_flags & RE_F_DROP_RXFRAG) {
1899                                 re_setup_rxdesc(sc, i);
1900                                 continue;
1901                         }
1902
1903                         if (sc->re_newbuf(sc, i, 0)) {
1904                                 /* Drop upcoming fragments */
1905                                 sc->re_flags |= RE_F_DROP_RXFRAG;
1906                                 continue;
1907                         }
1908
1909                         m->m_len = MCLBYTES;
1910                         if (sc->re_head == NULL) {
1911                                 sc->re_head = sc->re_tail = m;
1912                         } else {
1913                                 sc->re_tail->m_next = m;
1914                                 sc->re_tail = m;
1915                         }
1916                         continue;
1917                 } else if (sc->re_flags & RE_F_DROP_RXFRAG) {
1918                         /*
1919                          * Last fragment of a multi-fragment packet.
1920                          *
1921                          * Since error already happened, this fragment
1922                          * must be dropped as well as the fragment chain.
1923                          */
1924                         re_setup_rxdesc(sc, i);
1925                         re_free_rxchain(sc);
1926                         sc->re_flags &= ~RE_F_DROP_RXFRAG;
1927                         continue;
1928                 }
1929
1930                 /*
1931                  * NOTE: for the 8139C+, the frame length field
1932                  * is always 12 bits in size, but for the gigE chips,
1933                  * it is 13 bits (since the max RX frame length is 16K).
1934                  * Unfortunately, all 32 bits in the status word
1935                  * were already used, so to make room for the extra
1936                  * length bit, RealTek took out the 'frame alignment
1937                  * error' bit and shifted the other status bits
1938                  * over one slot. The OWN, EOR, FS and LS bits are
1939                  * still in the same places. We have already extracted
1940                  * the frame length and checked the OWN bit, so rather
1941                  * than using an alternate bit mapping, we shift the
1942                  * status bits one space to the right so we can evaluate
1943                  * them using the 8169 status as though it was in the
1944                  * same format as that of the 8139C+.
1945                  */
1946                 if (!RE_IS_8139CP(sc))
1947                         rxstat >>= 1;
1948
1949                 if (rxstat & RE_RDESC_STAT_RXERRSUM) {
1950                         ifp->if_ierrors++;
1951                         /*
1952                          * If this is part of a multi-fragment packet,
1953                          * discard all the pieces.
1954                          */
1955                         re_free_rxchain(sc);
1956                         re_setup_rxdesc(sc, i);
1957                         continue;
1958                 }
1959
1960                 /*
1961                  * If allocating a replacement mbuf fails,
1962                  * reload the current one.
1963                  */
1964
1965                 if (sc->re_newbuf(sc, i, 0)) {
1966                         ifp->if_ierrors++;
1967                         continue;
1968                 }
1969
1970                 if (sc->re_head != NULL) {
1971                         m->m_len = total_len % MCLBYTES;
1972                         /* 
1973                          * Special case: if there's 4 bytes or less
1974                          * in this buffer, the mbuf can be discarded:
1975                          * the last 4 bytes is the CRC, which we don't
1976                          * care about anyway.
1977                          */
1978                         if (m->m_len <= ETHER_CRC_LEN) {
1979                                 sc->re_tail->m_len -=
1980                                     (ETHER_CRC_LEN - m->m_len);
1981                                 m_freem(m);
1982                         } else {
1983                                 m->m_len -= ETHER_CRC_LEN;
1984                                 sc->re_tail->m_next = m;
1985                         }
1986                         m = sc->re_head;
1987                         sc->re_head = sc->re_tail = NULL;
1988                         m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1989                 } else {
1990                         m->m_pkthdr.len = m->m_len =
1991                             (total_len - ETHER_CRC_LEN);
1992                 }
1993
1994                 ifp->if_ipackets++;
1995                 m->m_pkthdr.rcvif = ifp;
1996
1997                 /* Do RX checksumming if enabled */
1998
1999                 if (ifp->if_capenable & IFCAP_RXCSUM) {
2000                         uint8_t packet_type;
2001
2002                         packet_type = re_packet_type(sc, rxstat, rxctrl);
2003
2004                         /* Check IP header checksum */
2005                         if (packet_type & RE_IP4_PACKET) {
2006                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2007                                 if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
2008                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2009                         }
2010
2011                         /* Check TCP/UDP checksum */
2012                         if (((packet_type & RE_TCP_PACKET) &&
2013                              (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
2014                             ((packet_type & RE_UDP_PACKET) &&
2015                              (rxstat & RE_RDESC_STAT_UDPSUMBAD) == 0)) {
2016                                 m->m_pkthdr.csum_flags |=
2017                                     CSUM_DATA_VALID|CSUM_PSEUDO_HDR|
2018                                     CSUM_FRAG_NOT_CHECKED;
2019                                 m->m_pkthdr.csum_data = 0xffff;
2020                         }
2021                 }
2022
2023                 if (rxctrl & RE_RDESC_CTL_HASTAG) {
2024                         m->m_flags |= M_VLANTAG;
2025                         m->m_pkthdr.ether_vlantag =
2026                                 be16toh((rxctrl & RE_RDESC_CTL_TAGDATA));
2027                 }
2028                 ifp->if_input(ifp, m);
2029         }
2030
2031         sc->re_ldata.re_rx_prodidx = i;
2032
2033         return rx;
2034 }
2035
2036 #undef RE_IP4_PACKET
2037 #undef RE_TCP_PACKET
2038 #undef RE_UDP_PACKET
2039
2040 static int
2041 re_tx_collect(struct re_softc *sc)
2042 {
2043         struct ifnet *ifp = &sc->arpcom.ac_if;
2044         uint32_t txstat;
2045         int idx, tx = 0;
2046
2047         for (idx = sc->re_ldata.re_tx_considx;
2048              sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt;
2049              RE_TXDESC_INC(sc, idx)) {
2050                 txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
2051                 if (txstat & RE_TDESC_CMD_OWN)
2052                         break;
2053
2054                 tx = 1;
2055
2056                 sc->re_ldata.re_tx_list[idx].re_bufaddr_lo = 0;
2057
2058                 /*
2059                  * We only stash mbufs in the last descriptor
2060                  * in a fragment chain, which also happens to
2061                  * be the only place where the TX status bits
2062                  * are valid.
2063                  */
2064                 if (txstat & RE_TDESC_CMD_EOF) {
2065                         bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2066                             sc->re_ldata.re_tx_dmamap[idx]);
2067                         m_freem(sc->re_ldata.re_tx_mbuf[idx]);
2068                         sc->re_ldata.re_tx_mbuf[idx] = NULL;
2069                         if (txstat & (RE_TDESC_STAT_EXCESSCOL|
2070                             RE_TDESC_STAT_COLCNT))
2071                                 ifp->if_collisions++;
2072                         if (txstat & RE_TDESC_STAT_TXERRSUM)
2073                                 ifp->if_oerrors++;
2074                         else
2075                                 ifp->if_opackets++;
2076                 }
2077                 sc->re_ldata.re_tx_free++;
2078         }
2079         sc->re_ldata.re_tx_considx = idx;
2080
2081         return tx;
2082 }
2083
2084 static int
2085 re_txeof(struct re_softc *sc)
2086 {
2087         struct ifnet *ifp = &sc->arpcom.ac_if;
2088         int tx;
2089
2090         tx = re_tx_collect(sc);
2091
2092         /* There is enough free TX descs */
2093         if (sc->re_ldata.re_tx_free > RE_TXDESC_SPARE)
2094                 ifp->if_flags &= ~IFF_OACTIVE;
2095
2096         /*
2097          * Some chips will ignore a second TX request issued while an
2098          * existing transmission is in progress. If the transmitter goes
2099          * idle but there are still packets waiting to be sent, we need
2100          * to restart the channel here to flush them out. This only seems
2101          * to be required with the PCIe devices.
2102          */
2103         if (sc->re_ldata.re_tx_free < sc->re_tx_desc_cnt)
2104                 CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2105         else
2106                 ifp->if_timer = 0;
2107
2108         return tx;
2109 }
2110
2111 static void
2112 re_tick(void *xsc)
2113 {
2114         struct re_softc *sc = xsc;
2115
2116         lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
2117         re_tick_serialized(xsc);
2118         lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
2119 }
2120
2121 static void
2122 re_tick_serialized(void *xsc)
2123 {
2124         struct re_softc *sc = xsc;
2125         struct ifnet *ifp = &sc->arpcom.ac_if;
2126         struct mii_data *mii;
2127
2128         ASSERT_SERIALIZED(ifp->if_serializer);
2129
2130         mii = device_get_softc(sc->re_miibus);
2131         mii_tick(mii);
2132         if (sc->re_flags & RE_F_LINKED) {
2133                 if (!(mii->mii_media_status & IFM_ACTIVE))
2134                         sc->re_flags &= ~RE_F_LINKED;
2135         } else {
2136                 if (mii->mii_media_status & IFM_ACTIVE &&
2137                     IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2138                         sc->re_flags |= RE_F_LINKED;
2139                         if (!ifq_is_empty(&ifp->if_snd))
2140                                 if_devstart(ifp);
2141                 }
2142         }
2143
2144         callout_reset(&sc->re_timer, hz, re_tick, sc);
2145 }
2146
2147 #ifdef DEVICE_POLLING
2148
2149 static void
2150 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2151 {
2152         struct re_softc *sc = ifp->if_softc;
2153
2154         ASSERT_SERIALIZED(ifp->if_serializer);
2155
2156         switch(cmd) {
2157         case POLL_REGISTER:
2158                 /* disable interrupts */
2159                 re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2160                 break;
2161
2162         case POLL_DEREGISTER:
2163                 /* enable interrupts */
2164                 re_setup_intr(sc, 1, sc->re_imtype);
2165                 break;
2166
2167         default:
2168                 sc->rxcycles = count;
2169                 re_rxeof(sc);
2170                 re_txeof(sc);
2171
2172                 if (!ifq_is_empty(&ifp->if_snd))
2173                         if_devstart(ifp);
2174
2175                 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2176                         uint16_t       status;
2177
2178                         status = CSR_READ_2(sc, RE_ISR);
2179                         if (status == 0xffff)
2180                                 return;
2181                         if (status)
2182                                 CSR_WRITE_2(sc, RE_ISR, status);
2183
2184                         /*
2185                          * XXX check behaviour on receiver stalls.
2186                          */
2187
2188                         if (status & RE_ISR_SYSTEM_ERR)
2189                                 re_init(sc);
2190                 }
2191                 break;
2192         }
2193 }
2194 #endif /* DEVICE_POLLING */
2195
2196 static void
2197 re_intr(void *arg)
2198 {
2199         struct re_softc *sc = arg;
2200         struct ifnet *ifp = &sc->arpcom.ac_if;
2201         uint16_t status;
2202         int rx, tx;
2203
2204         ASSERT_SERIALIZED(ifp->if_serializer);
2205
2206         if ((sc->re_flags & RE_F_SUSPENDED) ||
2207             (ifp->if_flags & IFF_RUNNING) == 0)
2208                 return;
2209
2210         rx = tx = 0;
2211         for (;;) {
2212                 status = CSR_READ_2(sc, RE_ISR);
2213                 /* If the card has gone away the read returns 0xffff. */
2214                 if (status == 0xffff)
2215                         break;
2216                 if (status)
2217                         CSR_WRITE_2(sc, RE_ISR, status);
2218
2219                 if ((status & sc->re_intrs) == 0)
2220                         break;
2221
2222                 if (status & (sc->re_rx_ack | RE_ISR_RX_ERR))
2223                         rx |= re_rxeof(sc);
2224
2225                 if (status & (sc->re_tx_ack | RE_ISR_TX_ERR))
2226                         tx |= re_txeof(sc);
2227
2228                 if (status & RE_ISR_SYSTEM_ERR)
2229                         re_init(sc);
2230
2231                 if (status & RE_ISR_LINKCHG) {
2232                         callout_stop(&sc->re_timer);
2233                         re_tick_serialized(sc);
2234                 }
2235         }
2236
2237         if (sc->re_imtype == RE_IMTYPE_SIM) {
2238                 if ((sc->re_flags & RE_F_TIMER_INTR)) {
2239                         if ((tx | rx) == 0) {
2240                                 /*
2241                                  * Nothing needs to be processed, fallback
2242                                  * to use TX/RX interrupts.
2243                                  */
2244                                 re_setup_intr(sc, 1, RE_IMTYPE_NONE);
2245
2246                                 /*
2247                                  * Recollect, mainly to avoid the possible
2248                                  * race introduced by changing interrupt
2249                                  * masks.
2250                                  */
2251                                 re_rxeof(sc);
2252                                 tx = re_txeof(sc);
2253                         } else {
2254                                 CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
2255                         }
2256                 } else if (tx | rx) {
2257                         /*
2258                          * Assume that using simulated interrupt moderation
2259                          * (hardware timer based) could reduce the interript
2260                          * rate.
2261                          */
2262                         re_setup_intr(sc, 1, RE_IMTYPE_SIM);
2263                 }
2264         }
2265
2266         if (tx && !ifq_is_empty(&ifp->if_snd))
2267                 if_devstart(ifp);
2268 }
2269
2270 static int
2271 re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx0)
2272 {
2273         struct mbuf *m = *m_head;
2274         bus_dma_segment_t segs[RE_MAXSEGS];
2275         bus_dmamap_t map;
2276         int error, maxsegs, idx, i, nsegs;
2277         struct re_desc *d, *tx_ring;
2278         uint32_t cmd_csum, ctl_csum, vlantag;
2279
2280         KASSERT(sc->re_ldata.re_tx_free > RE_TXDESC_SPARE,
2281                 ("not enough free TX desc"));
2282
2283         map = sc->re_ldata.re_tx_dmamap[*idx0];
2284
2285         /*
2286          * Set up checksum offload. Note: checksum offload bits must
2287          * appear in all descriptors of a multi-descriptor transmit
2288          * attempt. (This is according to testing done with an 8169
2289          * chip. I'm not sure if this is a requirement or a bug.)
2290          */
2291         cmd_csum = ctl_csum = 0;
2292         if (m->m_pkthdr.csum_flags & CSUM_IP) {
2293                 cmd_csum |= RE_TDESC_CMD_IPCSUM;
2294                 ctl_csum |= RE_TDESC_CTL_IPCSUM;
2295         }
2296         if (m->m_pkthdr.csum_flags & CSUM_TCP) {
2297                 cmd_csum |= RE_TDESC_CMD_TCPCSUM;
2298                 ctl_csum |= RE_TDESC_CTL_TCPCSUM;
2299         }
2300         if (m->m_pkthdr.csum_flags & CSUM_UDP) {
2301                 cmd_csum |= RE_TDESC_CMD_UDPCSUM;
2302                 ctl_csum |= RE_TDESC_CTL_UDPCSUM;
2303         }
2304
2305         /* For MAC2 chips, csum flags are set on re_control */
2306         if (sc->re_caps & RE_C_MAC2)
2307                 cmd_csum = 0;
2308         else
2309                 ctl_csum = 0;
2310
2311         if ((sc->re_caps & RE_C_AUTOPAD) == 0) {
2312                 /*
2313                  * With some of the RealTek chips, using the checksum offload
2314                  * support in conjunction with the autopadding feature results
2315                  * in the transmission of corrupt frames. For example, if we
2316                  * need to send a really small IP fragment that's less than 60
2317                  * bytes in size, and IP header checksumming is enabled, the
2318                  * resulting ethernet frame that appears on the wire will
2319                  * have garbled payload. To work around this, if TX checksum
2320                  * offload is enabled, we always manually pad short frames out
2321                  * to the minimum ethernet frame size.
2322                  *
2323                  * Note: this appears unnecessary for TCP, and doing it for TCP
2324                  * with PCIe adapters seems to result in bad checksums.
2325                  */
2326                 if ((m->m_pkthdr.csum_flags &
2327                      (CSUM_DELAY_IP | CSUM_DELAY_DATA)) &&
2328                     (m->m_pkthdr.csum_flags & CSUM_TCP) == 0 &&
2329                     m->m_pkthdr.len < RE_MIN_FRAMELEN) {
2330                         error = m_devpad(m, RE_MIN_FRAMELEN);
2331                         if (error)
2332                                 goto back;
2333                 }
2334         }
2335
2336         vlantag = 0;
2337         if (m->m_flags & M_VLANTAG) {
2338                 vlantag = htobe16(m->m_pkthdr.ether_vlantag) |
2339                           RE_TDESC_CTL_INSTAG;
2340         }
2341
2342         maxsegs = sc->re_ldata.re_tx_free;
2343         if (maxsegs > RE_MAXSEGS)
2344                 maxsegs = RE_MAXSEGS;
2345
2346         error = bus_dmamap_load_mbuf_defrag(sc->re_ldata.re_tx_mtag, map,
2347                         m_head, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2348         if (error)
2349                 goto back;
2350
2351         m = *m_head;
2352         bus_dmamap_sync(sc->re_ldata.re_tx_mtag, map, BUS_DMASYNC_PREWRITE);
2353
2354         /*
2355          * Map the segment array into descriptors.  We also keep track
2356          * of the end of the ring and set the end-of-ring bits as needed,
2357          * and we set the ownership bits in all except the very first
2358          * descriptor, whose ownership bits will be turned on later.
2359          */
2360         tx_ring = sc->re_ldata.re_tx_list;
2361         idx = *idx0;
2362         i = 0;
2363         for (;;) {
2364                 uint32_t cmdstat;
2365
2366                 d = &tx_ring[idx];
2367
2368                 cmdstat = segs[i].ds_len;
2369                 d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
2370                 d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
2371                 if (i == 0)
2372                         cmdstat |= RE_TDESC_CMD_SOF;
2373                 else
2374                         cmdstat |= RE_TDESC_CMD_OWN;
2375                 if (idx == (sc->re_tx_desc_cnt - 1))
2376                         cmdstat |= RE_TDESC_CMD_EOR;
2377                 d->re_cmdstat = htole32(cmdstat | cmd_csum);
2378                 d->re_control = htole32(ctl_csum | vlantag);
2379
2380                 i++;
2381                 if (i == nsegs)
2382                         break;
2383                 RE_TXDESC_INC(sc, idx);
2384         }
2385         d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
2386
2387         /* Transfer ownership of packet to the chip. */
2388         d->re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2389         if (*idx0 != idx)
2390                 tx_ring[*idx0].re_cmdstat |= htole32(RE_TDESC_CMD_OWN);
2391
2392         /*
2393          * Insure that the map for this transmission
2394          * is placed at the array index of the last descriptor
2395          * in this chain.
2396          */
2397         sc->re_ldata.re_tx_dmamap[*idx0] = sc->re_ldata.re_tx_dmamap[idx];
2398         sc->re_ldata.re_tx_dmamap[idx] = map;
2399
2400         sc->re_ldata.re_tx_mbuf[idx] = m;
2401         sc->re_ldata.re_tx_free -= nsegs;
2402
2403         RE_TXDESC_INC(sc, idx);
2404         *idx0 = idx;
2405 back:
2406         if (error) {
2407                 m_freem(*m_head);
2408                 *m_head = NULL;
2409         }
2410         return error;
2411 }
2412
2413 /*
2414  * Main transmit routine for C+ and gigE NICs.
2415  */
2416
2417 static void
2418 re_start(struct ifnet *ifp)
2419 {
2420         struct re_softc *sc = ifp->if_softc;
2421         struct mbuf *m_head;
2422         int idx, need_trans, oactive, error;
2423
2424         ASSERT_SERIALIZED(ifp->if_serializer);
2425
2426         if ((sc->re_flags & RE_F_LINKED) == 0) {
2427                 ifq_purge(&ifp->if_snd);
2428                 return;
2429         }
2430
2431         if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
2432                 return;
2433
2434         idx = sc->re_ldata.re_tx_prodidx;
2435
2436         need_trans = 0;
2437         oactive = 0;
2438         while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
2439                 if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2440                         if (!oactive) {
2441                                 if (re_tx_collect(sc)) {
2442                                         oactive = 1;
2443                                         continue;
2444                                 }
2445                         }
2446                         ifp->if_flags |= IFF_OACTIVE;
2447                         break;
2448                 }
2449
2450                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
2451                 if (m_head == NULL)
2452                         break;
2453
2454                 error = re_encap(sc, &m_head, &idx);
2455                 if (error) {
2456                         /* m_head is freed by re_encap(), if we reach here */
2457                         ifp->if_oerrors++;
2458
2459                         if (error == EFBIG && !oactive) {
2460                                 if (re_tx_collect(sc)) {
2461                                         oactive = 1;
2462                                         continue;
2463                                 }
2464                         }
2465                         ifp->if_flags |= IFF_OACTIVE;
2466                         break;
2467                 }
2468
2469                 oactive = 0;
2470                 need_trans = 1;
2471
2472                 /*
2473                  * If there's a BPF listener, bounce a copy of this frame
2474                  * to him.
2475                  */
2476                 ETHER_BPF_MTAP(ifp, m_head);
2477         }
2478
2479         /*
2480          * If sc->re_ldata.re_tx_mbuf[idx] is not NULL it is possible
2481          * for IFF_OACTIVE to not be properly set when we also do not
2482          * have sufficient free tx descriptors, leaving packet in
2483          * ifp->if_send.  This can cause if_start_dispatch() to loop
2484          * infinitely so make sure IFF_OACTIVE is set properly.
2485          */
2486         if (sc->re_ldata.re_tx_free <= RE_TXDESC_SPARE) {
2487                 if ((ifp->if_flags & IFF_OACTIVE) == 0) {
2488                         device_printf(sc->re_dev,
2489                                       "Debug: IFF_OACTIVE was not set when"
2490                                       " re_tx_free was below minimum!\n");
2491                         ifp->if_flags |= IFF_OACTIVE;
2492                 }
2493         }
2494         if (!need_trans)
2495                 return;
2496
2497         sc->re_ldata.re_tx_prodidx = idx;
2498
2499         /*
2500          * RealTek put the TX poll request register in a different
2501          * location on the 8169 gigE chip. I don't know why.
2502          */
2503         CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2504
2505         /*
2506          * Set a timeout in case the chip goes out to lunch.
2507          */
2508         ifp->if_timer = 5;
2509 }
2510
2511 static void
2512 re_init(void *xsc)
2513 {
2514         struct re_softc *sc = xsc;
2515         struct ifnet *ifp = &sc->arpcom.ac_if;
2516         struct mii_data *mii;
2517         int error, framelen;
2518
2519         ASSERT_SERIALIZED(ifp->if_serializer);
2520
2521         mii = device_get_softc(sc->re_miibus);
2522
2523         /*
2524          * Cancel pending I/O and free all RX/TX buffers.
2525          */
2526         re_stop(sc);
2527
2528         if (sc->re_caps & RE_C_CONTIGRX) {
2529                 if (ifp->if_mtu > ETHERMTU) {
2530                         KKASSERT(sc->re_ldata.re_jbuf != NULL);
2531                         sc->re_flags |= RE_F_USE_JPOOL;
2532                         sc->re_rxbuf_size = RE_FRAMELEN_MAX;
2533                         sc->re_newbuf = re_newbuf_jumbo;
2534                 } else {
2535                         sc->re_flags &= ~RE_F_USE_JPOOL;
2536                         sc->re_rxbuf_size = MCLBYTES;
2537                         sc->re_newbuf = re_newbuf_std;
2538                 }
2539         }
2540
2541         /*
2542          * Adjust max read request size according to MTU; mainly to
2543          * improve TX performance for common case (ETHERMTU) on GigE
2544          * NICs.  However, this could _not_ be done on 10/100 only
2545          * NICs; their DMA engines will malfunction using non-default
2546          * max read request size.
2547          */
2548         if ((sc->re_caps & (RE_C_PCIE | RE_C_FASTE)) == RE_C_PCIE) {
2549                 if (ifp->if_mtu > ETHERMTU) {
2550                         /*
2551                          * 512 seems to be the only value that works
2552                          * reliably with jumbo frame
2553                          */
2554                         pcie_set_max_readrq(sc->re_dev,
2555                                 PCIEM_DEVCTL_MAX_READRQ_512);
2556                 } else {
2557                         pcie_set_max_readrq(sc->re_dev,
2558                                 PCIEM_DEVCTL_MAX_READRQ_4096);
2559                 }
2560         }
2561
2562         /*
2563          * Enable C+ RX and TX mode, as well as VLAN stripping and
2564          * RX checksum offload. We must configure the C+ register
2565          * before all others.
2566          */
2567         CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
2568                     RE_CPLUSCMD_PCI_MRW |
2569                     (ifp->if_capenable & IFCAP_VLAN_HWTAGGING ?
2570                      RE_CPLUSCMD_VLANSTRIP : 0) |
2571                     (ifp->if_capenable & IFCAP_RXCSUM ?
2572                      RE_CPLUSCMD_RXCSUM_ENB : 0));
2573
2574         /*
2575          * Init our MAC address.  Even though the chipset
2576          * documentation doesn't mention it, we need to enter "Config
2577          * register write enable" mode to modify the ID registers.
2578          */
2579         CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
2580         CSR_WRITE_4(sc, RE_IDR0,
2581             htole32(*(uint32_t *)(&sc->arpcom.ac_enaddr[0])));
2582         CSR_WRITE_2(sc, RE_IDR4,
2583             htole16(*(uint16_t *)(&sc->arpcom.ac_enaddr[4])));
2584         CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
2585
2586         /*
2587          * For C+ mode, initialize the RX descriptors and mbufs.
2588          */
2589         error = re_rx_list_init(sc);
2590         if (error) {
2591                 re_stop(sc);
2592                 return;
2593         }
2594         error = re_tx_list_init(sc);
2595         if (error) {
2596                 re_stop(sc);
2597                 return;
2598         }
2599
2600         /*
2601          * Load the addresses of the RX and TX lists into the chip.
2602          */
2603         CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
2604             RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
2605         CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
2606             RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
2607
2608         CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
2609             RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
2610         CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
2611             RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
2612
2613         /*
2614          * Enable transmit and receive.
2615          */
2616         CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2617
2618         /*
2619          * Set the initial TX and RX configuration.
2620          */
2621         if (sc->re_flags & RE_F_TESTMODE) {
2622                 if (!RE_IS_8139CP(sc))
2623                         CSR_WRITE_4(sc, RE_TXCFG,
2624                                     RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
2625                 else
2626                         CSR_WRITE_4(sc, RE_TXCFG,
2627                                     RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
2628         } else
2629                 CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
2630
2631         framelen = RE_FRAMELEN(ifp->if_mtu);
2632         if (framelen < MCLBYTES)
2633                 CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(MCLBYTES, 128));
2634         else
2635                 CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, howmany(framelen, 128));
2636
2637         CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
2638
2639         /*
2640          * Program the multicast filter, if necessary.
2641          */
2642         re_setmulti(sc);
2643
2644 #ifdef DEVICE_POLLING
2645         /*
2646          * Disable interrupts if we are polling.
2647          */
2648         if (ifp->if_flags & IFF_POLLING)
2649                 re_setup_intr(sc, 0, RE_IMTYPE_NONE);
2650         else    /* otherwise ... */
2651 #endif /* DEVICE_POLLING */
2652         /*
2653          * Enable interrupts.
2654          */
2655         if (sc->re_flags & RE_F_TESTMODE)
2656                 CSR_WRITE_2(sc, RE_IMR, 0);
2657         else
2658                 re_setup_intr(sc, 1, sc->re_imtype);
2659         CSR_WRITE_2(sc, RE_ISR, sc->re_intrs);
2660
2661         /* Start RX/TX process. */
2662         CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
2663
2664 #ifdef notdef
2665         /* Enable receiver and transmitter. */
2666         CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2667 #endif
2668
2669         /*
2670          * For 8169 gigE NICs, set the max allowed RX packet
2671          * size so we can receive jumbo frames.
2672          */
2673         if (!RE_IS_8139CP(sc)) {
2674                 if (sc->re_caps & RE_C_CONTIGRX)
2675                         CSR_WRITE_2(sc, RE_MAXRXPKTLEN, sc->re_rxbuf_size);
2676                 else
2677                         CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2678         }
2679
2680         if (sc->re_flags & RE_F_TESTMODE)
2681                 return;
2682
2683         mii_mediachg(mii);
2684
2685         CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2686
2687         ifp->if_flags |= IFF_RUNNING;
2688         ifp->if_flags &= ~IFF_OACTIVE;
2689
2690         callout_reset(&sc->re_timer, hz, re_tick, sc);
2691 }
2692
2693 /*
2694  * Set media options.
2695  */
2696 static int
2697 re_ifmedia_upd(struct ifnet *ifp)
2698 {
2699         struct re_softc *sc = ifp->if_softc;
2700         struct mii_data *mii;
2701
2702         ASSERT_SERIALIZED(ifp->if_serializer);
2703
2704         mii = device_get_softc(sc->re_miibus);
2705         mii_mediachg(mii);
2706
2707         return(0);
2708 }
2709
2710 /*
2711  * Report current media status.
2712  */
2713 static void
2714 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2715 {
2716         struct re_softc *sc = ifp->if_softc;
2717         struct mii_data *mii;
2718
2719         ASSERT_SERIALIZED(ifp->if_serializer);
2720
2721         mii = device_get_softc(sc->re_miibus);
2722
2723         mii_pollstat(mii);
2724         ifmr->ifm_active = mii->mii_media_active;
2725         ifmr->ifm_status = mii->mii_media_status;
2726 }
2727
2728 static int
2729 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2730 {
2731         struct re_softc *sc = ifp->if_softc;
2732         struct ifreq *ifr = (struct ifreq *) data;
2733         struct mii_data *mii;
2734         int error = 0, mask;
2735
2736         ASSERT_SERIALIZED(ifp->if_serializer);
2737
2738         switch(command) {
2739         case SIOCSIFMTU:
2740                 if (ifr->ifr_mtu > sc->re_maxmtu) {
2741                         error = EINVAL;
2742                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
2743                         ifp->if_mtu = ifr->ifr_mtu;
2744                         if (ifp->if_flags & IFF_RUNNING)
2745                                 ifp->if_init(sc);
2746                 }
2747                 break;
2748
2749         case SIOCSIFFLAGS:
2750                 if (ifp->if_flags & IFF_UP) {
2751                         if (ifp->if_flags & IFF_RUNNING) {
2752                                 if ((ifp->if_flags ^ sc->re_if_flags) &
2753                                     (IFF_PROMISC | IFF_ALLMULTI))
2754                                         re_setmulti(sc);
2755                         } else {
2756                                 re_init(sc);
2757                         }
2758                 } else if (ifp->if_flags & IFF_RUNNING) {
2759                         re_stop(sc);
2760                 }
2761                 sc->re_if_flags = ifp->if_flags;
2762                 break;
2763
2764         case SIOCADDMULTI:
2765         case SIOCDELMULTI:
2766                 re_setmulti(sc);
2767                 break;
2768
2769         case SIOCGIFMEDIA:
2770         case SIOCSIFMEDIA:
2771                 mii = device_get_softc(sc->re_miibus);
2772                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2773                 break;
2774
2775         case SIOCSIFCAP:
2776                 mask = (ifr->ifr_reqcap ^ ifp->if_capenable) &
2777                        ifp->if_capabilities;
2778                 ifp->if_capenable ^= mask;
2779
2780                 if (mask & IFCAP_HWCSUM) {
2781                         if (ifp->if_capenable & IFCAP_TXCSUM)
2782                                 ifp->if_hwassist = RE_CSUM_FEATURES;
2783                         else
2784                                 ifp->if_hwassist = 0;
2785                 }
2786                 if (mask && (ifp->if_flags & IFF_RUNNING))
2787                         re_init(sc);
2788                 break;
2789
2790         default:
2791                 error = ether_ioctl(ifp, command, data);
2792                 break;
2793         }
2794         return(error);
2795 }
2796
2797 static void
2798 re_watchdog(struct ifnet *ifp)
2799 {
2800         struct re_softc *sc = ifp->if_softc;
2801
2802         ASSERT_SERIALIZED(ifp->if_serializer);
2803
2804         if_printf(ifp, "watchdog timeout\n");
2805
2806         ifp->if_oerrors++;
2807
2808         re_txeof(sc);
2809         re_rxeof(sc);
2810
2811         re_init(sc);
2812
2813         if (!ifq_is_empty(&ifp->if_snd))
2814                 if_devstart(ifp);
2815 }
2816
2817 /*
2818  * Stop the adapter and free any mbufs allocated to the
2819  * RX and TX lists.
2820  */
2821 static void
2822 re_stop(struct re_softc *sc)
2823 {
2824         struct ifnet *ifp = &sc->arpcom.ac_if;
2825         int i;
2826
2827         ASSERT_SERIALIZED(ifp->if_serializer);
2828
2829         /* Reset the adapter. */
2830         re_reset(sc, ifp->if_flags & IFF_RUNNING);
2831
2832         ifp->if_timer = 0;
2833         callout_stop(&sc->re_timer);
2834
2835         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2836         sc->re_flags &= ~(RE_F_TIMER_INTR | RE_F_DROP_RXFRAG | RE_F_LINKED);
2837
2838         CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2839         CSR_WRITE_2(sc, RE_IMR, 0x0000);
2840         CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
2841
2842         re_free_rxchain(sc);
2843
2844         /* Free the TX list buffers. */
2845         for (i = 0; i < sc->re_tx_desc_cnt; i++) {
2846                 if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2847                         bus_dmamap_unload(sc->re_ldata.re_tx_mtag,
2848                                           sc->re_ldata.re_tx_dmamap[i]);
2849                         m_freem(sc->re_ldata.re_tx_mbuf[i]);
2850                         sc->re_ldata.re_tx_mbuf[i] = NULL;
2851                 }
2852         }
2853
2854         /* Free the RX list buffers. */
2855         for (i = 0; i < sc->re_rx_desc_cnt; i++) {
2856                 if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2857                         if ((sc->re_flags & RE_F_USE_JPOOL) == 0) {
2858                                 bus_dmamap_unload(sc->re_ldata.re_rx_mtag,
2859                                                   sc->re_ldata.re_rx_dmamap[i]);
2860                         }
2861                         m_freem(sc->re_ldata.re_rx_mbuf[i]);
2862                         sc->re_ldata.re_rx_mbuf[i] = NULL;
2863                 }
2864         }
2865 }
2866
2867 /*
2868  * Device suspend routine.  Stop the interface and save some PCI
2869  * settings in case the BIOS doesn't restore them properly on
2870  * resume.
2871  */
2872 static int
2873 re_suspend(device_t dev)
2874 {
2875 #ifndef BURN_BRIDGES
2876         int i;
2877 #endif
2878         struct re_softc *sc = device_get_softc(dev);
2879         struct ifnet *ifp = &sc->arpcom.ac_if;
2880
2881         lwkt_serialize_enter(ifp->if_serializer);
2882
2883         re_stop(sc);
2884
2885 #ifndef BURN_BRIDGES
2886         for (i = 0; i < 5; i++)
2887                 sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2888         sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2889         sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2890         sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2891         sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2892 #endif
2893
2894         sc->re_flags |= RE_F_SUSPENDED;
2895
2896         lwkt_serialize_exit(ifp->if_serializer);
2897
2898         return (0);
2899 }
2900
2901 /*
2902  * Device resume routine.  Restore some PCI settings in case the BIOS
2903  * doesn't, re-enable busmastering, and restart the interface if
2904  * appropriate.
2905  */
2906 static int
2907 re_resume(device_t dev)
2908 {
2909         struct re_softc *sc = device_get_softc(dev);
2910         struct ifnet *ifp = &sc->arpcom.ac_if;
2911 #ifndef BURN_BRIDGES
2912         int i;
2913 #endif
2914
2915         lwkt_serialize_enter(ifp->if_serializer);
2916
2917 #ifndef BURN_BRIDGES
2918         /* better way to do this? */
2919         for (i = 0; i < 5; i++)
2920                 pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2921         pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2922         pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2923         pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2924         pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2925
2926         /* reenable busmastering */
2927         pci_enable_busmaster(dev);
2928         pci_enable_io(dev, SYS_RES_IOPORT);
2929 #endif
2930
2931         /* reinitialize interface if necessary */
2932         if (ifp->if_flags & IFF_UP)
2933                 re_init(sc);
2934
2935         sc->re_flags &= ~RE_F_SUSPENDED;
2936
2937         lwkt_serialize_exit(ifp->if_serializer);
2938
2939         return (0);
2940 }
2941
2942 /*
2943  * Stop all chip I/O so that the kernel's probe routines don't
2944  * get confused by errant DMAs when rebooting.
2945  */
2946 static void
2947 re_shutdown(device_t dev)
2948 {
2949         struct re_softc *sc = device_get_softc(dev);
2950         struct ifnet *ifp = &sc->arpcom.ac_if;
2951
2952         lwkt_serialize_enter(ifp->if_serializer);
2953         re_stop(sc);
2954         lwkt_serialize_exit(ifp->if_serializer);
2955 }
2956
2957 static int
2958 re_sysctl_rxtime(SYSCTL_HANDLER_ARGS)
2959 {
2960         struct re_softc *sc = arg1;
2961
2962         return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_rx_time);
2963 }
2964
2965 static int
2966 re_sysctl_txtime(SYSCTL_HANDLER_ARGS)
2967 {
2968         struct re_softc *sc = arg1;
2969
2970         return re_sysctl_hwtime(oidp, arg1, arg2, req, &sc->re_tx_time);
2971 }
2972
2973 static int
2974 re_sysctl_hwtime(SYSCTL_HANDLER_ARGS, int *hwtime)
2975 {
2976         struct re_softc *sc = arg1;
2977         struct ifnet *ifp = &sc->arpcom.ac_if;
2978         int error, v;
2979
2980         lwkt_serialize_enter(ifp->if_serializer);
2981
2982         v = *hwtime;
2983         error = sysctl_handle_int(oidp, &v, 0, req);
2984         if (error || req->newptr == NULL)
2985                 goto back;
2986
2987         if (v <= 0) {
2988                 error = EINVAL;
2989                 goto back;
2990         }
2991
2992         if (v != *hwtime) {
2993                 *hwtime = v;
2994
2995                 if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
2996                     IFF_RUNNING && sc->re_imtype == RE_IMTYPE_HW)
2997                         re_setup_hw_im(sc);
2998         }
2999 back:
3000         lwkt_serialize_exit(ifp->if_serializer);
3001         return error;
3002 }
3003
3004 static int
3005 re_sysctl_simtime(SYSCTL_HANDLER_ARGS)
3006 {
3007         struct re_softc *sc = arg1;
3008         struct ifnet *ifp = &sc->arpcom.ac_if;
3009         int error, v;
3010
3011         lwkt_serialize_enter(ifp->if_serializer);
3012
3013         v = sc->re_sim_time;
3014         error = sysctl_handle_int(oidp, &v, 0, req);
3015         if (error || req->newptr == NULL)
3016                 goto back;
3017
3018         if (v <= 0) {
3019                 error = EINVAL;
3020                 goto back;
3021         }
3022
3023         if (v != sc->re_sim_time) {
3024                 sc->re_sim_time = v;
3025
3026                 if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
3027                     IFF_RUNNING && sc->re_imtype == RE_IMTYPE_SIM) {
3028 #ifdef foo
3029                         int reg;
3030
3031                         /*
3032                          * Following code causes various strange
3033                          * performance problems.  Hmm ...
3034                          */
3035                         CSR_WRITE_2(sc, RE_IMR, 0);
3036                         if (!RE_IS_8139CP(sc))
3037                                 reg = RE_TIMERINT_8169;
3038                         else
3039                                 reg = RE_TIMERINT;
3040                         CSR_WRITE_4(sc, reg, 0);
3041                         CSR_READ_4(sc, reg); /* flush */
3042
3043                         CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3044                         re_setup_sim_im(sc);
3045 #else
3046                         re_setup_intr(sc, 0, RE_IMTYPE_NONE);
3047                         DELAY(10);
3048                         re_setup_intr(sc, 1, RE_IMTYPE_SIM);
3049 #endif
3050                 }
3051         }
3052 back:
3053         lwkt_serialize_exit(ifp->if_serializer);
3054         return error;
3055 }
3056
3057 static int
3058 re_sysctl_imtype(SYSCTL_HANDLER_ARGS)
3059 {
3060         struct re_softc *sc = arg1;
3061         struct ifnet *ifp = &sc->arpcom.ac_if;
3062         int error, v;
3063
3064         lwkt_serialize_enter(ifp->if_serializer);
3065
3066         v = sc->re_imtype;
3067         error = sysctl_handle_int(oidp, &v, 0, req);
3068         if (error || req->newptr == NULL)
3069                 goto back;
3070
3071         if (v != RE_IMTYPE_HW && v != RE_IMTYPE_SIM && v != RE_IMTYPE_NONE) {
3072                 error = EINVAL;
3073                 goto back;
3074         }
3075         if (v == RE_IMTYPE_HW && (sc->re_caps & RE_C_HWIM) == 0) {
3076                 /* Can't do hardware interrupt moderation */
3077                 error = EOPNOTSUPP;
3078                 goto back;
3079         }
3080
3081         if (v != sc->re_imtype) {
3082                 sc->re_imtype = v;
3083                 if ((ifp->if_flags & (IFF_RUNNING | IFF_POLLING)) ==
3084                     IFF_RUNNING)
3085                         re_setup_intr(sc, 1, sc->re_imtype);
3086         }
3087 back:
3088         lwkt_serialize_exit(ifp->if_serializer);
3089         return error;
3090 }
3091
3092 static void
3093 re_setup_hw_im(struct re_softc *sc)
3094 {
3095         KKASSERT(sc->re_caps & RE_C_HWIM);
3096
3097         /*
3098          * Interrupt moderation
3099          *
3100          * 0xABCD
3101          * A - unknown (maybe TX related)
3102          * B - TX timer (unit: 25us)
3103          * C - unknown (maybe RX related)
3104          * D - RX timer (unit: 25us)
3105          *
3106          *
3107          * re(4)'s interrupt moderation is actually controlled by
3108          * two variables, like most other NICs (bge, bce etc.)
3109          * o  timer
3110          * o  number of packets [P]
3111          *
3112          * The logic relationship between these two variables is
3113          * similar to other NICs too:
3114          * if (timer expire || packets > [P])
3115          *     Interrupt is delivered
3116          *
3117          * Currently we only know how to set 'timer', but not
3118          * 'number of packets', which should be ~30, as far as I
3119          * tested (sink ~900Kpps, interrupt rate is 30KHz)
3120          */
3121         CSR_WRITE_2(sc, RE_IM,
3122                     RE_IM_RXTIME(sc->re_rx_time) |
3123                     RE_IM_TXTIME(sc->re_tx_time) |
3124                     RE_IM_MAGIC);
3125 }
3126
3127 static void
3128 re_disable_hw_im(struct re_softc *sc)
3129 {
3130         if (sc->re_caps & RE_C_HWIM)
3131                 CSR_WRITE_2(sc, RE_IM, 0);
3132 }
3133
3134 static void
3135 re_setup_sim_im(struct re_softc *sc)
3136 {
3137         if (!RE_IS_8139CP(sc)) {
3138                 uint32_t ticks;
3139
3140                 /*
3141                  * Datasheet says tick decreases at bus speed,
3142                  * but it seems the clock runs a little bit
3143                  * faster, so we do some compensation here.
3144                  */
3145                 ticks = (sc->re_sim_time * sc->re_bus_speed * 8) / 5;
3146                 CSR_WRITE_4(sc, RE_TIMERINT_8169, ticks);
3147         } else {
3148                 CSR_WRITE_4(sc, RE_TIMERINT, 0x400); /* XXX */
3149         }
3150         CSR_WRITE_4(sc, RE_TIMERCNT, 1); /* reload */
3151         sc->re_flags |= RE_F_TIMER_INTR;
3152 }
3153
3154 static void
3155 re_disable_sim_im(struct re_softc *sc)
3156 {
3157         if (!RE_IS_8139CP(sc))
3158                 CSR_WRITE_4(sc, RE_TIMERINT_8169, 0);
3159         else
3160                 CSR_WRITE_4(sc, RE_TIMERINT, 0);
3161         sc->re_flags &= ~RE_F_TIMER_INTR;
3162 }
3163
3164 static void
3165 re_config_imtype(struct re_softc *sc, int imtype)
3166 {
3167         switch (imtype) {
3168         case RE_IMTYPE_HW:
3169                 KKASSERT(sc->re_caps & RE_C_HWIM);
3170                 /* FALL THROUGH */
3171         case RE_IMTYPE_NONE:
3172                 sc->re_intrs = RE_INTRS;
3173                 sc->re_rx_ack = RE_ISR_RX_OK | RE_ISR_FIFO_OFLOW |
3174                                 RE_ISR_RX_OVERRUN;
3175                 sc->re_tx_ack = RE_ISR_TX_OK;
3176                 break;
3177
3178         case RE_IMTYPE_SIM:
3179                 sc->re_intrs = RE_INTRS_TIMER;
3180                 sc->re_rx_ack = RE_ISR_TIMEOUT_EXPIRED;
3181                 sc->re_tx_ack = RE_ISR_TIMEOUT_EXPIRED;
3182                 break;
3183
3184         default:
3185                 panic("%s: unknown imtype %d",
3186                       sc->arpcom.ac_if.if_xname, imtype);
3187         }
3188 }
3189
3190 static void
3191 re_setup_intr(struct re_softc *sc, int enable_intrs, int imtype)
3192 {
3193         re_config_imtype(sc, imtype);
3194
3195         if (enable_intrs)
3196                 CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
3197         else
3198                 CSR_WRITE_2(sc, RE_IMR, 0); 
3199
3200         switch (imtype) {
3201         case RE_IMTYPE_NONE:
3202                 re_disable_sim_im(sc);
3203                 re_disable_hw_im(sc);
3204                 break;
3205
3206         case RE_IMTYPE_HW:
3207                 KKASSERT(sc->re_caps & RE_C_HWIM);
3208                 re_disable_sim_im(sc);
3209                 re_setup_hw_im(sc);
3210                 break;
3211
3212         case RE_IMTYPE_SIM:
3213                 re_disable_hw_im(sc);
3214                 re_setup_sim_im(sc);
3215                 break;
3216
3217         default:
3218                 panic("%s: unknown imtype %d",
3219                       sc->arpcom.ac_if.if_xname, imtype);
3220         }
3221 }
3222
3223 static void
3224 re_get_eaddr(struct re_softc *sc, uint8_t *eaddr)
3225 {
3226         int i;
3227
3228         if (sc->re_macver == RE_MACVER_11 ||
3229             sc->re_macver == RE_MACVER_12 ||
3230             sc->re_macver == RE_MACVER_30 ||
3231             sc->re_macver == RE_MACVER_31) {
3232                 uint16_t re_did;
3233
3234                 re_get_eewidth(sc);
3235                 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
3236                 if (re_did == 0x8128) {
3237                         uint16_t as[ETHER_ADDR_LEN / 2];
3238                         int eaddr_off;
3239
3240                         if (sc->re_macver == RE_MACVER_30 ||
3241                             sc->re_macver == RE_MACVER_31)
3242                                 eaddr_off = RE_EE_EADDR1;
3243                         else
3244                                 eaddr_off = RE_EE_EADDR0;
3245
3246                         /*
3247                          * Get station address from the EEPROM.
3248                          */
3249                         re_read_eeprom(sc, (caddr_t)as, eaddr_off, 3);
3250                         for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
3251                                 as[i] = le16toh(as[i]);
3252                         bcopy(as, eaddr, ETHER_ADDR_LEN);
3253                         return;
3254                 }
3255         }
3256
3257         /*
3258          * Get station address from IDRx.
3259          */
3260         for (i = 0; i < ETHER_ADDR_LEN; ++i)
3261                 eaddr[i] = CSR_READ_1(sc, RE_IDR0 + i);
3262 }
3263
3264 static int
3265 re_jpool_alloc(struct re_softc *sc)
3266 {
3267         struct re_list_data *ldata = &sc->re_ldata;
3268         struct re_jbuf *jbuf;
3269         bus_addr_t paddr;
3270         bus_size_t jpool_size;
3271         bus_dmamem_t dmem;
3272         caddr_t buf;
3273         int i, error;
3274
3275         lwkt_serialize_init(&ldata->re_jbuf_serializer);
3276
3277         ldata->re_jbuf = kmalloc(sizeof(struct re_jbuf) * RE_JBUF_COUNT(sc),
3278                                  M_DEVBUF, M_WAITOK | M_ZERO);
3279
3280         jpool_size = RE_JBUF_COUNT(sc) * RE_JBUF_SIZE;
3281
3282         error = bus_dmamem_coherent(sc->re_parent_tag,
3283                         RE_RXBUF_ALIGN, 0,
3284                         BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3285                         jpool_size, BUS_DMA_WAITOK, &dmem);
3286         if (error) {
3287                 device_printf(sc->re_dev, "could not allocate jumbo memory\n");
3288                 return error;
3289         }
3290         ldata->re_jpool_tag = dmem.dmem_tag;
3291         ldata->re_jpool_map = dmem.dmem_map;
3292         ldata->re_jpool = dmem.dmem_addr;
3293         paddr = dmem.dmem_busaddr;
3294
3295         /* ..and split it into 9KB chunks */
3296         SLIST_INIT(&ldata->re_jbuf_free);
3297
3298         buf = ldata->re_jpool;
3299         for (i = 0; i < RE_JBUF_COUNT(sc); i++) {
3300                 jbuf = &ldata->re_jbuf[i];
3301
3302                 jbuf->re_sc = sc;
3303                 jbuf->re_inuse = 0;
3304                 jbuf->re_slot = i;
3305                 jbuf->re_buf = buf;
3306                 jbuf->re_paddr = paddr;
3307
3308                 SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3309
3310                 buf += RE_JBUF_SIZE;
3311                 paddr += RE_JBUF_SIZE;
3312         }
3313         return 0;
3314 }
3315
3316 static void
3317 re_jpool_free(struct re_softc *sc)
3318 {
3319         struct re_list_data *ldata = &sc->re_ldata;
3320
3321         if (ldata->re_jpool_tag != NULL) {
3322                 bus_dmamap_unload(ldata->re_jpool_tag, ldata->re_jpool_map);
3323                 bus_dmamem_free(ldata->re_jpool_tag, ldata->re_jpool,
3324                                 ldata->re_jpool_map);
3325                 bus_dma_tag_destroy(ldata->re_jpool_tag);
3326                 ldata->re_jpool_tag = NULL;
3327         }
3328
3329         if (ldata->re_jbuf != NULL) {
3330                 kfree(ldata->re_jbuf, M_DEVBUF);
3331                 ldata->re_jbuf = NULL;
3332         }
3333 }
3334
3335 static struct re_jbuf *
3336 re_jbuf_alloc(struct re_softc *sc)
3337 {
3338         struct re_list_data *ldata = &sc->re_ldata;
3339         struct re_jbuf *jbuf;
3340
3341         lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3342
3343         jbuf = SLIST_FIRST(&ldata->re_jbuf_free);
3344         if (jbuf != NULL) {
3345                 SLIST_REMOVE_HEAD(&ldata->re_jbuf_free, re_link);
3346                 jbuf->re_inuse = 1;
3347         }
3348
3349         lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3350
3351         return jbuf;
3352 }
3353
3354 static void
3355 re_jbuf_free(void *arg)
3356 {
3357         struct re_jbuf *jbuf = arg;
3358         struct re_softc *sc = jbuf->re_sc;
3359         struct re_list_data *ldata = &sc->re_ldata;
3360
3361         if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3362                 panic("%s: free wrong jumbo buffer",
3363                       sc->arpcom.ac_if.if_xname);
3364         } else if (jbuf->re_inuse == 0) {
3365                 panic("%s: jumbo buffer already freed",
3366                       sc->arpcom.ac_if.if_xname);
3367         }
3368
3369         lwkt_serialize_enter(&ldata->re_jbuf_serializer);
3370         atomic_subtract_int(&jbuf->re_inuse, 1);
3371         if (jbuf->re_inuse == 0)
3372                 SLIST_INSERT_HEAD(&ldata->re_jbuf_free, jbuf, re_link);
3373         lwkt_serialize_exit(&ldata->re_jbuf_serializer);
3374 }
3375
3376 static void
3377 re_jbuf_ref(void *arg)
3378 {
3379         struct re_jbuf *jbuf = arg;
3380         struct re_softc *sc = jbuf->re_sc;
3381         struct re_list_data *ldata = &sc->re_ldata;
3382
3383         if (&ldata->re_jbuf[jbuf->re_slot] != jbuf) {
3384                 panic("%s: ref wrong jumbo buffer",
3385                       sc->arpcom.ac_if.if_xname);
3386         } else if (jbuf->re_inuse == 0) {
3387                 panic("%s: jumbo buffer already freed",
3388                       sc->arpcom.ac_if.if_xname);
3389         }
3390         atomic_add_int(&jbuf->re_inuse, 1);
3391 }