kernel - Implement CPU localization hinting for low level page allocations
[dragonfly.git] / sys / vm / vm_map.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  *
62  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
63  */
64
65 /*
66  *      Virtual memory mapping module.
67  */
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/proc.h>
73 #include <sys/serialize.h>
74 #include <sys/lock.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/resourcevar.h>
79 #include <sys/shm.h>
80 #include <sys/tree.h>
81 #include <sys/malloc.h>
82 #include <sys/objcache.h>
83
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_zone.h>
95
96 #include <sys/thread2.h>
97 #include <sys/random.h>
98 #include <sys/sysctl.h>
99
100 /*
101  * Virtual memory maps provide for the mapping, protection, and sharing
102  * of virtual memory objects.  In addition, this module provides for an
103  * efficient virtual copy of memory from one map to another.
104  *
105  * Synchronization is required prior to most operations.
106  *
107  * Maps consist of an ordered doubly-linked list of simple entries.
108  * A hint and a RB tree is used to speed-up lookups.
109  *
110  * Callers looking to modify maps specify start/end addresses which cause
111  * the related map entry to be clipped if necessary, and then later
112  * recombined if the pieces remained compatible.
113  *
114  * Virtual copy operations are performed by copying VM object references
115  * from one map to another, and then marking both regions as copy-on-write.
116  */
117 static boolean_t vmspace_ctor(void *obj, void *privdata, int ocflags);
118 static void vmspace_dtor(void *obj, void *privdata);
119 static void vmspace_terminate(struct vmspace *vm, int final);
120
121 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
122 static struct objcache *vmspace_cache;
123
124 /*
125  * per-cpu page table cross mappings are initialized in early boot
126  * and might require a considerable number of vm_map_entry structures.
127  */
128 #define MAPENTRYBSP_CACHE       (MAXCPU+1)
129 #define MAPENTRYAP_CACHE        8
130
131 static struct vm_zone mapentzone_store;
132 static vm_zone_t mapentzone;
133 static struct vm_object mapentobj;
134
135 static struct vm_map_entry map_entry_init[MAX_MAPENT];
136 static struct vm_map_entry cpu_map_entry_init_bsp[MAPENTRYBSP_CACHE];
137 static struct vm_map_entry cpu_map_entry_init_ap[MAXCPU][MAPENTRYAP_CACHE];
138
139 static int randomize_mmap;
140 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
141     "Randomize mmap offsets");
142 static int vm_map_relock_enable = 1;
143 SYSCTL_INT(_vm, OID_AUTO, map_relock_enable, CTLFLAG_RW,
144            &vm_map_relock_enable, 0, "Randomize mmap offsets");
145
146 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref);
147 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
148 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
149 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
150 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
151 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
152 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
153 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
154                 vm_map_entry_t);
155 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
156
157 /*
158  * Initialize the vm_map module.  Must be called before any other vm_map
159  * routines.
160  *
161  * Map and entry structures are allocated from the general purpose
162  * memory pool with some exceptions:
163  *
164  *      - The kernel map is allocated statically.
165  *      - Initial kernel map entries are allocated out of a static pool.
166  *      - We must set ZONE_SPECIAL here or the early boot code can get
167  *        stuck if there are >63 cores.
168  *
169  *      These restrictions are necessary since malloc() uses the
170  *      maps and requires map entries.
171  *
172  * Called from the low level boot code only.
173  */
174 void
175 vm_map_startup(void)
176 {
177         mapentzone = &mapentzone_store;
178         zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
179                   map_entry_init, MAX_MAPENT);
180         mapentzone_store.zflags |= ZONE_SPECIAL;
181 }
182
183 /*
184  * Called prior to any vmspace allocations.
185  *
186  * Called from the low level boot code only.
187  */
188 void
189 vm_init2(void) 
190 {
191         vmspace_cache = objcache_create_mbacked(M_VMSPACE,
192                                                 sizeof(struct vmspace),
193                                                 0, ncpus * 4,
194                                                 vmspace_ctor, vmspace_dtor,
195                                                 NULL);
196         zinitna(mapentzone, &mapentobj, NULL, 0, 0, 
197                 ZONE_USE_RESERVE | ZONE_SPECIAL);
198         pmap_init2();
199         vm_object_init2();
200 }
201
202 /*
203  * objcache support.  We leave the pmap root cached as long as possible
204  * for performance reasons.
205  */
206 static
207 boolean_t
208 vmspace_ctor(void *obj, void *privdata, int ocflags)
209 {
210         struct vmspace *vm = obj;
211
212         bzero(vm, sizeof(*vm));
213         vm->vm_refcnt = (u_int)-1;
214
215         return 1;
216 }
217
218 static
219 void
220 vmspace_dtor(void *obj, void *privdata)
221 {
222         struct vmspace *vm = obj;
223
224         KKASSERT(vm->vm_refcnt == (u_int)-1);
225         pmap_puninit(vmspace_pmap(vm));
226 }
227
228 /*
229  * Red black tree functions
230  *
231  * The caller must hold the related map lock.
232  */
233 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
234 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
235
236 /* a->start is address, and the only field has to be initialized */
237 static int
238 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
239 {
240         if (a->start < b->start)
241                 return(-1);
242         else if (a->start > b->start)
243                 return(1);
244         return(0);
245 }
246
247 /*
248  * Initialize vmspace ref/hold counts vmspace0.  There is a holdcnt for
249  * every refcnt.
250  */
251 void
252 vmspace_initrefs(struct vmspace *vm)
253 {
254         vm->vm_refcnt = 1;
255         vm->vm_holdcnt = 1;
256 }
257
258 /*
259  * Allocate a vmspace structure, including a vm_map and pmap.
260  * Initialize numerous fields.  While the initial allocation is zerod,
261  * subsequence reuse from the objcache leaves elements of the structure
262  * intact (particularly the pmap), so portions must be zerod.
263  *
264  * Returns a referenced vmspace.
265  *
266  * No requirements.
267  */
268 struct vmspace *
269 vmspace_alloc(vm_offset_t min, vm_offset_t max)
270 {
271         struct vmspace *vm;
272
273         vm = objcache_get(vmspace_cache, M_WAITOK);
274
275         bzero(&vm->vm_startcopy,
276               (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
277         vm_map_init(&vm->vm_map, min, max, NULL);       /* initializes token */
278
279         /*
280          * NOTE: hold to acquires token for safety.
281          *
282          * On return vmspace is referenced (refs=1, hold=1).  That is,
283          * each refcnt also has a holdcnt.  There can be additional holds
284          * (holdcnt) above and beyond the refcnt.  Finalization is handled in
285          * two stages, one on refs 1->0, and the the second on hold 1->0.
286          */
287         KKASSERT(vm->vm_holdcnt == 0);
288         KKASSERT(vm->vm_refcnt == (u_int)-1);
289         vmspace_initrefs(vm);
290         vmspace_hold(vm);
291         pmap_pinit(vmspace_pmap(vm));           /* (some fields reused) */
292         vm->vm_map.pmap = vmspace_pmap(vm);     /* XXX */
293         vm->vm_shm = NULL;
294         vm->vm_flags = 0;
295         cpu_vmspace_alloc(vm);
296         vmspace_drop(vm);
297
298         return (vm);
299 }
300
301 /*
302  * NOTE: Can return -1 if the vmspace is exiting.
303  */
304 int
305 vmspace_getrefs(struct vmspace *vm)
306 {
307         return ((int)vm->vm_refcnt);
308 }
309
310 /*
311  * A vmspace object must already have a non-zero hold to be able to gain
312  * further holds on it.
313  */
314 static void
315 vmspace_hold_notoken(struct vmspace *vm)
316 {
317         KKASSERT(vm->vm_holdcnt != 0);
318         refcount_acquire(&vm->vm_holdcnt);
319 }
320
321 static void
322 vmspace_drop_notoken(struct vmspace *vm)
323 {
324         if (refcount_release(&vm->vm_holdcnt)) {
325                 if (vm->vm_refcnt == (u_int)-1) {
326                         vmspace_terminate(vm, 1);
327                 }
328         }
329 }
330
331 void
332 vmspace_hold(struct vmspace *vm)
333 {
334         vmspace_hold_notoken(vm);
335         lwkt_gettoken(&vm->vm_map.token);
336 }
337
338 void
339 vmspace_drop(struct vmspace *vm)
340 {
341         lwkt_reltoken(&vm->vm_map.token);
342         vmspace_drop_notoken(vm);
343 }
344
345 /*
346  * A vmspace object must not be in a terminated state to be able to obtain
347  * additional refs on it.
348  *
349  * Ref'ing a vmspace object also increments its hold count.
350  */
351 void
352 vmspace_ref(struct vmspace *vm)
353 {
354         KKASSERT((int)vm->vm_refcnt >= 0);
355         vmspace_hold_notoken(vm);
356         refcount_acquire(&vm->vm_refcnt);
357 }
358
359 /*
360  * Release a ref on the vmspace.  On the 1->0 transition we do stage-1
361  * termination of the vmspace.  Then, on the final drop of the hold we
362  * will do stage-2 final termination.
363  */
364 void
365 vmspace_rel(struct vmspace *vm)
366 {
367         if (refcount_release(&vm->vm_refcnt)) {
368                 vm->vm_refcnt = (u_int)-1;      /* no other refs possible */
369                 vmspace_terminate(vm, 0);
370         }
371         vmspace_drop_notoken(vm);
372 }
373
374 /*
375  * This is called during exit indicating that the vmspace is no
376  * longer in used by an exiting process, but the process has not yet
377  * been reaped.
378  *
379  * We release the refcnt but not the associated holdcnt.
380  *
381  * No requirements.
382  */
383 void
384 vmspace_relexit(struct vmspace *vm)
385 {
386         if (refcount_release(&vm->vm_refcnt)) {
387                 vm->vm_refcnt = (u_int)-1;      /* no other refs possible */
388                 vmspace_terminate(vm, 0);
389         }
390 }
391
392 /*
393  * Called during reap to disconnect the remainder of the vmspace from
394  * the process.  On the hold drop the vmspace termination is finalized.
395  *
396  * No requirements.
397  */
398 void
399 vmspace_exitfree(struct proc *p)
400 {
401         struct vmspace *vm;
402
403         vm = p->p_vmspace;
404         p->p_vmspace = NULL;
405         vmspace_drop_notoken(vm);
406 }
407
408 /*
409  * Called in two cases:
410  *
411  * (1) When the last refcnt is dropped and the vmspace becomes inactive,
412  *     called with final == 0.  refcnt will be (u_int)-1 at this point,
413  *     and holdcnt will still be non-zero.
414  *
415  * (2) When holdcnt becomes 0, called with final == 1.  There should no
416  *     longer be anyone with access to the vmspace.
417  *
418  * VMSPACE_EXIT1 flags the primary deactivation
419  * VMSPACE_EXIT2 flags the last reap
420  */
421 static void
422 vmspace_terminate(struct vmspace *vm, int final)
423 {
424         int count;
425
426         lwkt_gettoken(&vm->vm_map.token);
427         if (final == 0) {
428                 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) == 0);
429
430                 /*
431                  * Get rid of most of the resources.  Leave the kernel pmap
432                  * intact.
433                  *
434                  * If the pmap does not contain wired pages we can bulk-delete
435                  * the pmap as a performance optimization before removing the related mappings.
436                  *
437                  * If the pmap contains wired pages we cannot do this pre-optimization
438                  * because currently vm_fault_unwire() expects the pmap pages to exist
439                  * and will not decrement p->wire_count if they do not.
440                  */
441                 vm->vm_flags |= VMSPACE_EXIT1;
442                 shmexit(vm);
443                 if (vmspace_pmap(vm)->pm_stats.wired_count) {
444                         vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
445                                       VM_MAX_USER_ADDRESS);
446                         pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
447                                           VM_MAX_USER_ADDRESS);
448                 } else {
449                         pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
450                                           VM_MAX_USER_ADDRESS);
451                         vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
452                                       VM_MAX_USER_ADDRESS);
453                 }
454                 lwkt_reltoken(&vm->vm_map.token);
455         } else {
456                 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) != 0);
457                 KKASSERT((vm->vm_flags & VMSPACE_EXIT2) == 0);
458
459                 /*
460                  * Get rid of remaining basic resources.
461                  */
462                 vm->vm_flags |= VMSPACE_EXIT2;
463                 cpu_vmspace_free(vm);
464                 shmexit(vm);
465
466                 /*
467                  * Lock the map, to wait out all other references to it.
468                  * Delete all of the mappings and pages they hold, then call
469                  * the pmap module to reclaim anything left.
470                  */
471                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
472                 vm_map_lock(&vm->vm_map);
473                 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
474                               vm->vm_map.max_offset, &count);
475                 vm_map_unlock(&vm->vm_map);
476                 vm_map_entry_release(count);
477
478                 lwkt_gettoken(&vmspace_pmap(vm)->pm_token);
479                 pmap_release(vmspace_pmap(vm));
480                 lwkt_reltoken(&vmspace_pmap(vm)->pm_token);
481                 lwkt_reltoken(&vm->vm_map.token);
482                 objcache_put(vmspace_cache, vm);
483         }
484 }
485
486 /*
487  * Swap useage is determined by taking the proportional swap used by
488  * VM objects backing the VM map.  To make up for fractional losses,
489  * if the VM object has any swap use at all the associated map entries
490  * count for at least 1 swap page.
491  *
492  * No requirements.
493  */
494 vm_offset_t
495 vmspace_swap_count(struct vmspace *vm)
496 {
497         vm_map_t map = &vm->vm_map;
498         vm_map_entry_t cur;
499         vm_object_t object;
500         vm_offset_t count = 0;
501         vm_offset_t n;
502
503         vmspace_hold(vm);
504         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
505                 switch(cur->maptype) {
506                 case VM_MAPTYPE_NORMAL:
507                 case VM_MAPTYPE_VPAGETABLE:
508                         if ((object = cur->object.vm_object) == NULL)
509                                 break;
510                         if (object->swblock_count) {
511                                 n = (cur->end - cur->start) / PAGE_SIZE;
512                                 count += object->swblock_count *
513                                     SWAP_META_PAGES * n / object->size + 1;
514                         }
515                         break;
516                 default:
517                         break;
518                 }
519         }
520         vmspace_drop(vm);
521
522         return(count);
523 }
524
525 /*
526  * Calculate the approximate number of anonymous pages in use by
527  * this vmspace.  To make up for fractional losses, we count each
528  * VM object as having at least 1 anonymous page.
529  *
530  * No requirements.
531  */
532 vm_offset_t
533 vmspace_anonymous_count(struct vmspace *vm)
534 {
535         vm_map_t map = &vm->vm_map;
536         vm_map_entry_t cur;
537         vm_object_t object;
538         vm_offset_t count = 0;
539
540         vmspace_hold(vm);
541         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
542                 switch(cur->maptype) {
543                 case VM_MAPTYPE_NORMAL:
544                 case VM_MAPTYPE_VPAGETABLE:
545                         if ((object = cur->object.vm_object) == NULL)
546                                 break;
547                         if (object->type != OBJT_DEFAULT &&
548                             object->type != OBJT_SWAP) {
549                                 break;
550                         }
551                         count += object->resident_page_count;
552                         break;
553                 default:
554                         break;
555                 }
556         }
557         vmspace_drop(vm);
558
559         return(count);
560 }
561
562 /*
563  * Initialize an existing vm_map structure such as that in the vmspace
564  * structure.  The pmap is initialized elsewhere.
565  *
566  * No requirements.
567  */
568 void
569 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
570 {
571         map->header.next = map->header.prev = &map->header;
572         RB_INIT(&map->rb_root);
573         map->nentries = 0;
574         map->size = 0;
575         map->system_map = 0;
576         map->min_offset = min;
577         map->max_offset = max;
578         map->pmap = pmap;
579         map->first_free = &map->header;
580         map->hint = &map->header;
581         map->timestamp = 0;
582         map->flags = 0;
583         lwkt_token_init(&map->token, "vm_map");
584         lockinit(&map->lock, "vm_maplk", (hz + 9) / 10, 0);
585 }
586
587 /*
588  * Shadow the vm_map_entry's object.  This typically needs to be done when
589  * a write fault is taken on an entry which had previously been cloned by
590  * fork().  The shared object (which might be NULL) must become private so
591  * we add a shadow layer above it.
592  *
593  * Object allocation for anonymous mappings is defered as long as possible.
594  * When creating a shadow, however, the underlying object must be instantiated
595  * so it can be shared.
596  *
597  * If the map segment is governed by a virtual page table then it is
598  * possible to address offsets beyond the mapped area.  Just allocate
599  * a maximally sized object for this case.
600  *
601  * If addref is non-zero an additional reference is added to the returned
602  * entry.  This mechanic exists because the additional reference might have
603  * to be added atomically and not after return to prevent a premature
604  * collapse.
605  *
606  * The vm_map must be exclusively locked.
607  * No other requirements.
608  */
609 static
610 void
611 vm_map_entry_shadow(vm_map_entry_t entry, int addref)
612 {
613         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
614                 vm_object_shadow(&entry->object.vm_object, &entry->offset,
615                                  0x7FFFFFFF, addref);   /* XXX */
616         } else {
617                 vm_object_shadow(&entry->object.vm_object, &entry->offset,
618                                  atop(entry->end - entry->start), addref);
619         }
620         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
621 }
622
623 /*
624  * Allocate an object for a vm_map_entry.
625  *
626  * Object allocation for anonymous mappings is defered as long as possible.
627  * This function is called when we can defer no longer, generally when a map
628  * entry might be split or forked or takes a page fault.
629  *
630  * If the map segment is governed by a virtual page table then it is
631  * possible to address offsets beyond the mapped area.  Just allocate
632  * a maximally sized object for this case.
633  *
634  * The vm_map must be exclusively locked.
635  * No other requirements.
636  */
637 void 
638 vm_map_entry_allocate_object(vm_map_entry_t entry)
639 {
640         vm_object_t obj;
641
642         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
643                 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
644         } else {
645                 obj = vm_object_allocate(OBJT_DEFAULT,
646                                          atop(entry->end - entry->start));
647         }
648         entry->object.vm_object = obj;
649         entry->offset = 0;
650 }
651
652 /*
653  * Set an initial negative count so the first attempt to reserve
654  * space preloads a bunch of vm_map_entry's for this cpu.  Also
655  * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
656  * map a new page for vm_map_entry structures.  SMP systems are
657  * particularly sensitive.
658  *
659  * This routine is called in early boot so we cannot just call
660  * vm_map_entry_reserve().
661  *
662  * Called from the low level boot code only (for each cpu)
663  *
664  * WARNING! Take care not to have too-big a static/BSS structure here
665  *          as MAXCPU can be 256+, otherwise the loader's 64MB heap
666  *          can get blown out by the kernel plus the initrd image.
667  */
668 void
669 vm_map_entry_reserve_cpu_init(globaldata_t gd)
670 {
671         vm_map_entry_t entry;
672         int count;
673         int i;
674
675         gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
676         if (gd->gd_cpuid == 0) {
677                 entry = &cpu_map_entry_init_bsp[0];
678                 count = MAPENTRYBSP_CACHE;
679         } else {
680                 entry = &cpu_map_entry_init_ap[gd->gd_cpuid][0];
681                 count = MAPENTRYAP_CACHE;
682         }
683         for (i = 0; i < count; ++i, ++entry) {
684                 entry->next = gd->gd_vme_base;
685                 gd->gd_vme_base = entry;
686         }
687 }
688
689 /*
690  * Reserves vm_map_entry structures so code later on can manipulate
691  * map_entry structures within a locked map without blocking trying
692  * to allocate a new vm_map_entry.
693  *
694  * No requirements.
695  */
696 int
697 vm_map_entry_reserve(int count)
698 {
699         struct globaldata *gd = mycpu;
700         vm_map_entry_t entry;
701
702         /*
703          * Make sure we have enough structures in gd_vme_base to handle
704          * the reservation request.
705          *
706          * The critical section protects access to the per-cpu gd.
707          */
708         crit_enter();
709         while (gd->gd_vme_avail < count) {
710                 entry = zalloc(mapentzone);
711                 entry->next = gd->gd_vme_base;
712                 gd->gd_vme_base = entry;
713                 ++gd->gd_vme_avail;
714         }
715         gd->gd_vme_avail -= count;
716         crit_exit();
717
718         return(count);
719 }
720
721 /*
722  * Releases previously reserved vm_map_entry structures that were not
723  * used.  If we have too much junk in our per-cpu cache clean some of
724  * it out.
725  *
726  * No requirements.
727  */
728 void
729 vm_map_entry_release(int count)
730 {
731         struct globaldata *gd = mycpu;
732         vm_map_entry_t entry;
733
734         crit_enter();
735         gd->gd_vme_avail += count;
736         while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
737                 entry = gd->gd_vme_base;
738                 KKASSERT(entry != NULL);
739                 gd->gd_vme_base = entry->next;
740                 --gd->gd_vme_avail;
741                 crit_exit();
742                 zfree(mapentzone, entry);
743                 crit_enter();
744         }
745         crit_exit();
746 }
747
748 /*
749  * Reserve map entry structures for use in kernel_map itself.  These
750  * entries have *ALREADY* been reserved on a per-cpu basis when the map
751  * was inited.  This function is used by zalloc() to avoid a recursion
752  * when zalloc() itself needs to allocate additional kernel memory.
753  *
754  * This function works like the normal reserve but does not load the
755  * vm_map_entry cache (because that would result in an infinite
756  * recursion).  Note that gd_vme_avail may go negative.  This is expected.
757  *
758  * Any caller of this function must be sure to renormalize after
759  * potentially eating entries to ensure that the reserve supply
760  * remains intact.
761  *
762  * No requirements.
763  */
764 int
765 vm_map_entry_kreserve(int count)
766 {
767         struct globaldata *gd = mycpu;
768
769         crit_enter();
770         gd->gd_vme_avail -= count;
771         crit_exit();
772         KASSERT(gd->gd_vme_base != NULL,
773                 ("no reserved entries left, gd_vme_avail = %d",
774                 gd->gd_vme_avail));
775         return(count);
776 }
777
778 /*
779  * Release previously reserved map entries for kernel_map.  We do not
780  * attempt to clean up like the normal release function as this would
781  * cause an unnecessary (but probably not fatal) deep procedure call.
782  *
783  * No requirements.
784  */
785 void
786 vm_map_entry_krelease(int count)
787 {
788         struct globaldata *gd = mycpu;
789
790         crit_enter();
791         gd->gd_vme_avail += count;
792         crit_exit();
793 }
794
795 /*
796  * Allocates a VM map entry for insertion.  No entry fields are filled in.
797  *
798  * The entries should have previously been reserved.  The reservation count
799  * is tracked in (*countp).
800  *
801  * No requirements.
802  */
803 static vm_map_entry_t
804 vm_map_entry_create(vm_map_t map, int *countp)
805 {
806         struct globaldata *gd = mycpu;
807         vm_map_entry_t entry;
808
809         KKASSERT(*countp > 0);
810         --*countp;
811         crit_enter();
812         entry = gd->gd_vme_base;
813         KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
814         gd->gd_vme_base = entry->next;
815         crit_exit();
816
817         return(entry);
818 }
819
820 /*
821  * Dispose of a vm_map_entry that is no longer being referenced.
822  *
823  * No requirements.
824  */
825 static void
826 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
827 {
828         struct globaldata *gd = mycpu;
829
830         KKASSERT(map->hint != entry);
831         KKASSERT(map->first_free != entry);
832
833         ++*countp;
834         crit_enter();
835         entry->next = gd->gd_vme_base;
836         gd->gd_vme_base = entry;
837         crit_exit();
838 }
839
840
841 /*
842  * Insert/remove entries from maps.
843  *
844  * The related map must be exclusively locked.
845  * The caller must hold map->token
846  * No other requirements.
847  */
848 static __inline void
849 vm_map_entry_link(vm_map_t map,
850                   vm_map_entry_t after_where,
851                   vm_map_entry_t entry)
852 {
853         ASSERT_VM_MAP_LOCKED(map);
854
855         map->nentries++;
856         entry->prev = after_where;
857         entry->next = after_where->next;
858         entry->next->prev = entry;
859         after_where->next = entry;
860         if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
861                 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
862 }
863
864 static __inline void
865 vm_map_entry_unlink(vm_map_t map,
866                     vm_map_entry_t entry)
867 {
868         vm_map_entry_t prev;
869         vm_map_entry_t next;
870
871         ASSERT_VM_MAP_LOCKED(map);
872
873         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
874                 panic("vm_map_entry_unlink: attempt to mess with "
875                       "locked entry! %p", entry);
876         }
877         prev = entry->prev;
878         next = entry->next;
879         next->prev = prev;
880         prev->next = next;
881         vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
882         map->nentries--;
883 }
884
885 /*
886  * Finds the map entry containing (or immediately preceding) the specified
887  * address in the given map.  The entry is returned in (*entry).
888  *
889  * The boolean result indicates whether the address is actually contained
890  * in the map.
891  *
892  * The related map must be locked.
893  * No other requirements.
894  */
895 boolean_t
896 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
897 {
898         vm_map_entry_t tmp;
899         vm_map_entry_t last;
900
901         ASSERT_VM_MAP_LOCKED(map);
902 #if 0
903         /*
904          * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
905          * the hint code with the red-black lookup meets with system crashes
906          * and lockups.  We do not yet know why.
907          *
908          * It is possible that the problem is related to the setting
909          * of the hint during map_entry deletion, in the code specified
910          * at the GGG comment later on in this file.
911          *
912          * YYY More likely it's because this function can be called with
913          * a shared lock on the map, resulting in map->hint updates possibly
914          * racing.  Fixed now but untested.
915          */
916         /*
917          * Quickly check the cached hint, there's a good chance of a match.
918          */
919         tmp = map->hint;
920         cpu_ccfence();
921         if (tmp != &map->header) {
922                 if (address >= tmp->start && address < tmp->end) {
923                         *entry = tmp;
924                         return(TRUE);
925                 }
926         }
927 #endif
928
929         /*
930          * Locate the record from the top of the tree.  'last' tracks the
931          * closest prior record and is returned if no match is found, which
932          * in binary tree terms means tracking the most recent right-branch
933          * taken.  If there is no prior record, &map->header is returned.
934          */
935         last = &map->header;
936         tmp = RB_ROOT(&map->rb_root);
937
938         while (tmp) {
939                 if (address >= tmp->start) {
940                         if (address < tmp->end) {
941                                 *entry = tmp;
942                                 map->hint = tmp;
943                                 return(TRUE);
944                         }
945                         last = tmp;
946                         tmp = RB_RIGHT(tmp, rb_entry);
947                 } else {
948                         tmp = RB_LEFT(tmp, rb_entry);
949                 }
950         }
951         *entry = last;
952         return (FALSE);
953 }
954
955 /*
956  * Inserts the given whole VM object into the target map at the specified
957  * address range.  The object's size should match that of the address range.
958  *
959  * The map must be exclusively locked.
960  * The object must be held.
961  * The caller must have reserved sufficient vm_map_entry structures.
962  *
963  * If object is non-NULL, ref count must be bumped by caller prior to
964  * making call to account for the new entry.
965  */
966 int
967 vm_map_insert(vm_map_t map, int *countp, void *map_object, void *map_aux,
968               vm_ooffset_t offset, vm_offset_t start, vm_offset_t end,
969               vm_maptype_t maptype, vm_subsys_t id,
970               vm_prot_t prot, vm_prot_t max, int cow)
971 {
972         vm_map_entry_t new_entry;
973         vm_map_entry_t prev_entry;
974         vm_map_entry_t temp_entry;
975         vm_eflags_t protoeflags;
976         int must_drop = 0;
977         vm_object_t object;
978
979         if (maptype == VM_MAPTYPE_UKSMAP)
980                 object = NULL;
981         else
982                 object = map_object;
983
984         ASSERT_VM_MAP_LOCKED(map);
985         if (object)
986                 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
987
988         /*
989          * Check that the start and end points are not bogus.
990          */
991         if ((start < map->min_offset) || (end > map->max_offset) ||
992             (start >= end))
993                 return (KERN_INVALID_ADDRESS);
994
995         /*
996          * Find the entry prior to the proposed starting address; if it's part
997          * of an existing entry, this range is bogus.
998          */
999         if (vm_map_lookup_entry(map, start, &temp_entry))
1000                 return (KERN_NO_SPACE);
1001
1002         prev_entry = temp_entry;
1003
1004         /*
1005          * Assert that the next entry doesn't overlap the end point.
1006          */
1007
1008         if ((prev_entry->next != &map->header) &&
1009             (prev_entry->next->start < end))
1010                 return (KERN_NO_SPACE);
1011
1012         protoeflags = 0;
1013
1014         if (cow & MAP_COPY_ON_WRITE)
1015                 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1016
1017         if (cow & MAP_NOFAULT) {
1018                 protoeflags |= MAP_ENTRY_NOFAULT;
1019
1020                 KASSERT(object == NULL,
1021                         ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1022         }
1023         if (cow & MAP_DISABLE_SYNCER)
1024                 protoeflags |= MAP_ENTRY_NOSYNC;
1025         if (cow & MAP_DISABLE_COREDUMP)
1026                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1027         if (cow & MAP_IS_STACK)
1028                 protoeflags |= MAP_ENTRY_STACK;
1029         if (cow & MAP_IS_KSTACK)
1030                 protoeflags |= MAP_ENTRY_KSTACK;
1031
1032         lwkt_gettoken(&map->token);
1033
1034         if (object) {
1035                 /*
1036                  * When object is non-NULL, it could be shared with another
1037                  * process.  We have to set or clear OBJ_ONEMAPPING 
1038                  * appropriately.
1039                  *
1040                  * NOTE: This flag is only applicable to DEFAULT and SWAP
1041                  *       objects and will already be clear in other types
1042                  *       of objects, so a shared object lock is ok for
1043                  *       VNODE objects.
1044                  */
1045                 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
1046                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1047                 }
1048         }
1049         else if ((prev_entry != &map->header) &&
1050                  (prev_entry->eflags == protoeflags) &&
1051                  (prev_entry->end == start) &&
1052                  (prev_entry->wired_count == 0) &&
1053                  (prev_entry->id == id) &&
1054                  prev_entry->maptype == maptype &&
1055                  maptype == VM_MAPTYPE_NORMAL &&
1056                  ((prev_entry->object.vm_object == NULL) ||
1057                   vm_object_coalesce(prev_entry->object.vm_object,
1058                                      OFF_TO_IDX(prev_entry->offset),
1059                                      (vm_size_t)(prev_entry->end - prev_entry->start),
1060                                      (vm_size_t)(end - prev_entry->end)))) {
1061                 /*
1062                  * We were able to extend the object.  Determine if we
1063                  * can extend the previous map entry to include the 
1064                  * new range as well.
1065                  */
1066                 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1067                     (prev_entry->protection == prot) &&
1068                     (prev_entry->max_protection == max)) {
1069                         map->size += (end - prev_entry->end);
1070                         prev_entry->end = end;
1071                         vm_map_simplify_entry(map, prev_entry, countp);
1072                         lwkt_reltoken(&map->token);
1073                         return (KERN_SUCCESS);
1074                 }
1075
1076                 /*
1077                  * If we can extend the object but cannot extend the
1078                  * map entry, we have to create a new map entry.  We
1079                  * must bump the ref count on the extended object to
1080                  * account for it.  object may be NULL.
1081                  *
1082                  * XXX if object is NULL should we set offset to 0 here ?
1083                  */
1084                 object = prev_entry->object.vm_object;
1085                 offset = prev_entry->offset +
1086                         (prev_entry->end - prev_entry->start);
1087                 if (object) {
1088                         vm_object_hold(object);
1089                         vm_object_chain_wait(object, 0);
1090                         vm_object_reference_locked(object);
1091                         must_drop = 1;
1092                         map_object = object;
1093                 }
1094         }
1095
1096         /*
1097          * NOTE: if conditionals fail, object can be NULL here.  This occurs
1098          * in things like the buffer map where we manage kva but do not manage
1099          * backing objects.
1100          */
1101
1102         /*
1103          * Create a new entry
1104          */
1105
1106         new_entry = vm_map_entry_create(map, countp);
1107         new_entry->start = start;
1108         new_entry->end = end;
1109         new_entry->id = id;
1110
1111         new_entry->maptype = maptype;
1112         new_entry->eflags = protoeflags;
1113         new_entry->object.map_object = map_object;
1114         new_entry->aux.master_pde = 0;          /* in case size is different */
1115         new_entry->aux.map_aux = map_aux;
1116         new_entry->offset = offset;
1117
1118         new_entry->inheritance = VM_INHERIT_DEFAULT;
1119         new_entry->protection = prot;
1120         new_entry->max_protection = max;
1121         new_entry->wired_count = 0;
1122
1123         /*
1124          * Insert the new entry into the list
1125          */
1126
1127         vm_map_entry_link(map, prev_entry, new_entry);
1128         map->size += new_entry->end - new_entry->start;
1129
1130         /*
1131          * Update the free space hint.  Entries cannot overlap.
1132          * An exact comparison is needed to avoid matching
1133          * against the map->header.
1134          */
1135         if ((map->first_free == prev_entry) &&
1136             (prev_entry->end == new_entry->start)) {
1137                 map->first_free = new_entry;
1138         }
1139
1140 #if 0
1141         /*
1142          * Temporarily removed to avoid MAP_STACK panic, due to
1143          * MAP_STACK being a huge hack.  Will be added back in
1144          * when MAP_STACK (and the user stack mapping) is fixed.
1145          */
1146         /*
1147          * It may be possible to simplify the entry
1148          */
1149         vm_map_simplify_entry(map, new_entry, countp);
1150 #endif
1151
1152         /*
1153          * Try to pre-populate the page table.  Mappings governed by virtual
1154          * page tables cannot be prepopulated without a lot of work, so
1155          * don't try.
1156          */
1157         if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1158             maptype != VM_MAPTYPE_VPAGETABLE &&
1159             maptype != VM_MAPTYPE_UKSMAP) {
1160                 int dorelock = 0;
1161                 if (vm_map_relock_enable && (cow & MAP_PREFAULT_RELOCK)) {
1162                         dorelock = 1;
1163                         vm_object_lock_swap();
1164                         vm_object_drop(object);
1165                 }
1166                 pmap_object_init_pt(map->pmap, start, prot,
1167                                     object, OFF_TO_IDX(offset), end - start,
1168                                     cow & MAP_PREFAULT_PARTIAL);
1169                 if (dorelock) {
1170                         vm_object_hold(object);
1171                         vm_object_lock_swap();
1172                 }
1173         }
1174         if (must_drop)
1175                 vm_object_drop(object);
1176
1177         lwkt_reltoken(&map->token);
1178         return (KERN_SUCCESS);
1179 }
1180
1181 /*
1182  * Find sufficient space for `length' bytes in the given map, starting at
1183  * `start'.  Returns 0 on success, 1 on no space.
1184  *
1185  * This function will returned an arbitrarily aligned pointer.  If no
1186  * particular alignment is required you should pass align as 1.  Note that
1187  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1188  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1189  * argument.
1190  *
1191  * 'align' should be a power of 2 but is not required to be.
1192  *
1193  * The map must be exclusively locked.
1194  * No other requirements.
1195  */
1196 int
1197 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1198                  vm_size_t align, int flags, vm_offset_t *addr)
1199 {
1200         vm_map_entry_t entry, next;
1201         vm_offset_t end;
1202         vm_offset_t align_mask;
1203
1204         if (start < map->min_offset)
1205                 start = map->min_offset;
1206         if (start > map->max_offset)
1207                 return (1);
1208
1209         /*
1210          * If the alignment is not a power of 2 we will have to use
1211          * a mod/division, set align_mask to a special value.
1212          */
1213         if ((align | (align - 1)) + 1 != (align << 1))
1214                 align_mask = (vm_offset_t)-1;
1215         else
1216                 align_mask = align - 1;
1217
1218         /*
1219          * Look for the first possible address; if there's already something
1220          * at this address, we have to start after it.
1221          */
1222         if (start == map->min_offset) {
1223                 if ((entry = map->first_free) != &map->header)
1224                         start = entry->end;
1225         } else {
1226                 vm_map_entry_t tmp;
1227
1228                 if (vm_map_lookup_entry(map, start, &tmp))
1229                         start = tmp->end;
1230                 entry = tmp;
1231         }
1232
1233         /*
1234          * Look through the rest of the map, trying to fit a new region in the
1235          * gap between existing regions, or after the very last region.
1236          */
1237         for (;; start = (entry = next)->end) {
1238                 /*
1239                  * Adjust the proposed start by the requested alignment,
1240                  * be sure that we didn't wrap the address.
1241                  */
1242                 if (align_mask == (vm_offset_t)-1)
1243                         end = roundup(start, align);
1244                 else
1245                         end = (start + align_mask) & ~align_mask;
1246                 if (end < start)
1247                         return (1);
1248                 start = end;
1249                 /*
1250                  * Find the end of the proposed new region.  Be sure we didn't
1251                  * go beyond the end of the map, or wrap around the address.
1252                  * Then check to see if this is the last entry or if the 
1253                  * proposed end fits in the gap between this and the next
1254                  * entry.
1255                  */
1256                 end = start + length;
1257                 if (end > map->max_offset || end < start)
1258                         return (1);
1259                 next = entry->next;
1260
1261                 /*
1262                  * If the next entry's start address is beyond the desired
1263                  * end address we may have found a good entry.
1264                  *
1265                  * If the next entry is a stack mapping we do not map into
1266                  * the stack's reserved space.
1267                  *
1268                  * XXX continue to allow mapping into the stack's reserved
1269                  * space if doing a MAP_STACK mapping inside a MAP_STACK
1270                  * mapping, for backwards compatibility.  But the caller
1271                  * really should use MAP_STACK | MAP_TRYFIXED if they
1272                  * want to do that.
1273                  */
1274                 if (next == &map->header)
1275                         break;
1276                 if (next->start >= end) {
1277                         if ((next->eflags & MAP_ENTRY_STACK) == 0)
1278                                 break;
1279                         if (flags & MAP_STACK)
1280                                 break;
1281                         if (next->start - next->aux.avail_ssize >= end)
1282                                 break;
1283                 }
1284         }
1285         map->hint = entry;
1286
1287         /*
1288          * Grow the kernel_map if necessary.  pmap_growkernel() will panic
1289          * if it fails.  The kernel_map is locked and nothing can steal
1290          * our address space if pmap_growkernel() blocks.
1291          *
1292          * NOTE: This may be unconditionally called for kldload areas on
1293          *       x86_64 because these do not bump kernel_vm_end (which would
1294          *       fill 128G worth of page tables!).  Therefore we must not
1295          *       retry.
1296          */
1297         if (map == &kernel_map) {
1298                 vm_offset_t kstop;
1299
1300                 kstop = round_page(start + length);
1301                 if (kstop > kernel_vm_end)
1302                         pmap_growkernel(start, kstop);
1303         }
1304         *addr = start;
1305         return (0);
1306 }
1307
1308 /*
1309  * vm_map_find finds an unallocated region in the target address map with
1310  * the given length and allocates it.  The search is defined to be first-fit
1311  * from the specified address; the region found is returned in the same
1312  * parameter.
1313  *
1314  * If object is non-NULL, ref count must be bumped by caller
1315  * prior to making call to account for the new entry.
1316  *
1317  * No requirements.  This function will lock the map temporarily.
1318  */
1319 int
1320 vm_map_find(vm_map_t map, void *map_object, void *map_aux,
1321             vm_ooffset_t offset, vm_offset_t *addr,
1322             vm_size_t length, vm_size_t align, boolean_t fitit,
1323             vm_maptype_t maptype, vm_subsys_t id,
1324             vm_prot_t prot, vm_prot_t max, int cow)
1325 {
1326         vm_offset_t start;
1327         vm_object_t object;
1328         int result;
1329         int count;
1330
1331         if (maptype == VM_MAPTYPE_UKSMAP)
1332                 object = NULL;
1333         else
1334                 object = map_object;
1335
1336         start = *addr;
1337
1338         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1339         vm_map_lock(map);
1340         if (object)
1341                 vm_object_hold_shared(object);
1342         if (fitit) {
1343                 if (vm_map_findspace(map, start, length, align, 0, addr)) {
1344                         if (object)
1345                                 vm_object_drop(object);
1346                         vm_map_unlock(map);
1347                         vm_map_entry_release(count);
1348                         return (KERN_NO_SPACE);
1349                 }
1350                 start = *addr;
1351         }
1352         result = vm_map_insert(map, &count, map_object, map_aux,
1353                                offset, start, start + length,
1354                                maptype, id, prot, max, cow);
1355         if (object)
1356                 vm_object_drop(object);
1357         vm_map_unlock(map);
1358         vm_map_entry_release(count);
1359
1360         return (result);
1361 }
1362
1363 /*
1364  * Simplify the given map entry by merging with either neighbor.  This
1365  * routine also has the ability to merge with both neighbors.
1366  *
1367  * This routine guarentees that the passed entry remains valid (though
1368  * possibly extended).  When merging, this routine may delete one or
1369  * both neighbors.  No action is taken on entries which have their
1370  * in-transition flag set.
1371  *
1372  * The map must be exclusively locked.
1373  */
1374 void
1375 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1376 {
1377         vm_map_entry_t next, prev;
1378         vm_size_t prevsize, esize;
1379
1380         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1381                 ++mycpu->gd_cnt.v_intrans_coll;
1382                 return;
1383         }
1384
1385         if (entry->maptype == VM_MAPTYPE_SUBMAP)
1386                 return;
1387         if (entry->maptype == VM_MAPTYPE_UKSMAP)
1388                 return;
1389
1390         prev = entry->prev;
1391         if (prev != &map->header) {
1392                 prevsize = prev->end - prev->start;
1393                 if ( (prev->end == entry->start) &&
1394                      (prev->maptype == entry->maptype) &&
1395                      (prev->object.vm_object == entry->object.vm_object) &&
1396                      (!prev->object.vm_object ||
1397                         (prev->offset + prevsize == entry->offset)) &&
1398                      (prev->eflags == entry->eflags) &&
1399                      (prev->protection == entry->protection) &&
1400                      (prev->max_protection == entry->max_protection) &&
1401                      (prev->inheritance == entry->inheritance) &&
1402                      (prev->id == entry->id) &&
1403                      (prev->wired_count == entry->wired_count)) {
1404                         if (map->first_free == prev)
1405                                 map->first_free = entry;
1406                         if (map->hint == prev)
1407                                 map->hint = entry;
1408                         vm_map_entry_unlink(map, prev);
1409                         entry->start = prev->start;
1410                         entry->offset = prev->offset;
1411                         if (prev->object.vm_object)
1412                                 vm_object_deallocate(prev->object.vm_object);
1413                         vm_map_entry_dispose(map, prev, countp);
1414                 }
1415         }
1416
1417         next = entry->next;
1418         if (next != &map->header) {
1419                 esize = entry->end - entry->start;
1420                 if ((entry->end == next->start) &&
1421                     (next->maptype == entry->maptype) &&
1422                     (next->object.vm_object == entry->object.vm_object) &&
1423                      (!entry->object.vm_object ||
1424                         (entry->offset + esize == next->offset)) &&
1425                     (next->eflags == entry->eflags) &&
1426                     (next->protection == entry->protection) &&
1427                     (next->max_protection == entry->max_protection) &&
1428                     (next->inheritance == entry->inheritance) &&
1429                     (next->id == entry->id) &&
1430                     (next->wired_count == entry->wired_count)) {
1431                         if (map->first_free == next)
1432                                 map->first_free = entry;
1433                         if (map->hint == next)
1434                                 map->hint = entry;
1435                         vm_map_entry_unlink(map, next);
1436                         entry->end = next->end;
1437                         if (next->object.vm_object)
1438                                 vm_object_deallocate(next->object.vm_object);
1439                         vm_map_entry_dispose(map, next, countp);
1440                 }
1441         }
1442 }
1443
1444 /*
1445  * Asserts that the given entry begins at or after the specified address.
1446  * If necessary, it splits the entry into two.
1447  */
1448 #define vm_map_clip_start(map, entry, startaddr, countp)                \
1449 {                                                                       \
1450         if (startaddr > entry->start)                                   \
1451                 _vm_map_clip_start(map, entry, startaddr, countp);      \
1452 }
1453
1454 /*
1455  * This routine is called only when it is known that the entry must be split.
1456  *
1457  * The map must be exclusively locked.
1458  */
1459 static void
1460 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1461                    int *countp)
1462 {
1463         vm_map_entry_t new_entry;
1464
1465         /*
1466          * Split off the front portion -- note that we must insert the new
1467          * entry BEFORE this one, so that this entry has the specified
1468          * starting address.
1469          */
1470
1471         vm_map_simplify_entry(map, entry, countp);
1472
1473         /*
1474          * If there is no object backing this entry, we might as well create
1475          * one now.  If we defer it, an object can get created after the map
1476          * is clipped, and individual objects will be created for the split-up
1477          * map.  This is a bit of a hack, but is also about the best place to
1478          * put this improvement.
1479          */
1480         if (entry->object.vm_object == NULL && !map->system_map) {
1481                 vm_map_entry_allocate_object(entry);
1482         }
1483
1484         new_entry = vm_map_entry_create(map, countp);
1485         *new_entry = *entry;
1486
1487         new_entry->end = start;
1488         entry->offset += (start - entry->start);
1489         entry->start = start;
1490
1491         vm_map_entry_link(map, entry->prev, new_entry);
1492
1493         switch(entry->maptype) {
1494         case VM_MAPTYPE_NORMAL:
1495         case VM_MAPTYPE_VPAGETABLE:
1496                 if (new_entry->object.vm_object) {
1497                         vm_object_hold(new_entry->object.vm_object);
1498                         vm_object_chain_wait(new_entry->object.vm_object, 0);
1499                         vm_object_reference_locked(new_entry->object.vm_object);
1500                         vm_object_drop(new_entry->object.vm_object);
1501                 }
1502                 break;
1503         default:
1504                 break;
1505         }
1506 }
1507
1508 /*
1509  * Asserts that the given entry ends at or before the specified address.
1510  * If necessary, it splits the entry into two.
1511  *
1512  * The map must be exclusively locked.
1513  */
1514 #define vm_map_clip_end(map, entry, endaddr, countp)            \
1515 {                                                               \
1516         if (endaddr < entry->end)                               \
1517                 _vm_map_clip_end(map, entry, endaddr, countp);  \
1518 }
1519
1520 /*
1521  * This routine is called only when it is known that the entry must be split.
1522  *
1523  * The map must be exclusively locked.
1524  */
1525 static void
1526 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1527                  int *countp)
1528 {
1529         vm_map_entry_t new_entry;
1530
1531         /*
1532          * If there is no object backing this entry, we might as well create
1533          * one now.  If we defer it, an object can get created after the map
1534          * is clipped, and individual objects will be created for the split-up
1535          * map.  This is a bit of a hack, but is also about the best place to
1536          * put this improvement.
1537          */
1538
1539         if (entry->object.vm_object == NULL && !map->system_map) {
1540                 vm_map_entry_allocate_object(entry);
1541         }
1542
1543         /*
1544          * Create a new entry and insert it AFTER the specified entry
1545          */
1546
1547         new_entry = vm_map_entry_create(map, countp);
1548         *new_entry = *entry;
1549
1550         new_entry->start = entry->end = end;
1551         new_entry->offset += (end - entry->start);
1552
1553         vm_map_entry_link(map, entry, new_entry);
1554
1555         switch(entry->maptype) {
1556         case VM_MAPTYPE_NORMAL:
1557         case VM_MAPTYPE_VPAGETABLE:
1558                 if (new_entry->object.vm_object) {
1559                         vm_object_hold(new_entry->object.vm_object);
1560                         vm_object_chain_wait(new_entry->object.vm_object, 0);
1561                         vm_object_reference_locked(new_entry->object.vm_object);
1562                         vm_object_drop(new_entry->object.vm_object);
1563                 }
1564                 break;
1565         default:
1566                 break;
1567         }
1568 }
1569
1570 /*
1571  * Asserts that the starting and ending region addresses fall within the
1572  * valid range for the map.
1573  */
1574 #define VM_MAP_RANGE_CHECK(map, start, end)     \
1575 {                                               \
1576         if (start < vm_map_min(map))            \
1577                 start = vm_map_min(map);        \
1578         if (end > vm_map_max(map))              \
1579                 end = vm_map_max(map);          \
1580         if (start > end)                        \
1581                 start = end;                    \
1582 }
1583
1584 /*
1585  * Used to block when an in-transition collison occurs.  The map
1586  * is unlocked for the sleep and relocked before the return.
1587  */
1588 void
1589 vm_map_transition_wait(vm_map_t map)
1590 {
1591         tsleep_interlock(map, 0);
1592         vm_map_unlock(map);
1593         tsleep(map, PINTERLOCKED, "vment", 0);
1594         vm_map_lock(map);
1595 }
1596
1597 /*
1598  * When we do blocking operations with the map lock held it is
1599  * possible that a clip might have occured on our in-transit entry,
1600  * requiring an adjustment to the entry in our loop.  These macros
1601  * help the pageable and clip_range code deal with the case.  The
1602  * conditional costs virtually nothing if no clipping has occured.
1603  */
1604
1605 #define CLIP_CHECK_BACK(entry, save_start)              \
1606     do {                                                \
1607             while (entry->start != save_start) {        \
1608                     entry = entry->prev;                \
1609                     KASSERT(entry != &map->header, ("bad entry clip")); \
1610             }                                           \
1611     } while(0)
1612
1613 #define CLIP_CHECK_FWD(entry, save_end)                 \
1614     do {                                                \
1615             while (entry->end != save_end) {            \
1616                     entry = entry->next;                \
1617                     KASSERT(entry != &map->header, ("bad entry clip")); \
1618             }                                           \
1619     } while(0)
1620
1621
1622 /*
1623  * Clip the specified range and return the base entry.  The
1624  * range may cover several entries starting at the returned base
1625  * and the first and last entry in the covering sequence will be
1626  * properly clipped to the requested start and end address.
1627  *
1628  * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1629  * flag.
1630  *
1631  * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1632  * covered by the requested range.
1633  *
1634  * The map must be exclusively locked on entry and will remain locked
1635  * on return. If no range exists or the range contains holes and you
1636  * specified that no holes were allowed, NULL will be returned.  This
1637  * routine may temporarily unlock the map in order avoid a deadlock when
1638  * sleeping.
1639  */
1640 static
1641 vm_map_entry_t
1642 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 
1643                   int *countp, int flags)
1644 {
1645         vm_map_entry_t start_entry;
1646         vm_map_entry_t entry;
1647
1648         /*
1649          * Locate the entry and effect initial clipping.  The in-transition
1650          * case does not occur very often so do not try to optimize it.
1651          */
1652 again:
1653         if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1654                 return (NULL);
1655         entry = start_entry;
1656         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1657                 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1658                 ++mycpu->gd_cnt.v_intrans_coll;
1659                 ++mycpu->gd_cnt.v_intrans_wait;
1660                 vm_map_transition_wait(map);
1661                 /*
1662                  * entry and/or start_entry may have been clipped while
1663                  * we slept, or may have gone away entirely.  We have
1664                  * to restart from the lookup.
1665                  */
1666                 goto again;
1667         }
1668
1669         /*
1670          * Since we hold an exclusive map lock we do not have to restart
1671          * after clipping, even though clipping may block in zalloc.
1672          */
1673         vm_map_clip_start(map, entry, start, countp);
1674         vm_map_clip_end(map, entry, end, countp);
1675         entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1676
1677         /*
1678          * Scan entries covered by the range.  When working on the next
1679          * entry a restart need only re-loop on the current entry which
1680          * we have already locked, since 'next' may have changed.  Also,
1681          * even though entry is safe, it may have been clipped so we
1682          * have to iterate forwards through the clip after sleeping.
1683          */
1684         while (entry->next != &map->header && entry->next->start < end) {
1685                 vm_map_entry_t next = entry->next;
1686
1687                 if (flags & MAP_CLIP_NO_HOLES) {
1688                         if (next->start > entry->end) {
1689                                 vm_map_unclip_range(map, start_entry,
1690                                         start, entry->end, countp, flags);
1691                                 return(NULL);
1692                         }
1693                 }
1694
1695                 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1696                         vm_offset_t save_end = entry->end;
1697                         next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1698                         ++mycpu->gd_cnt.v_intrans_coll;
1699                         ++mycpu->gd_cnt.v_intrans_wait;
1700                         vm_map_transition_wait(map);
1701
1702                         /*
1703                          * clips might have occured while we blocked.
1704                          */
1705                         CLIP_CHECK_FWD(entry, save_end);
1706                         CLIP_CHECK_BACK(start_entry, start);
1707                         continue;
1708                 }
1709                 /*
1710                  * No restart necessary even though clip_end may block, we
1711                  * are holding the map lock.
1712                  */
1713                 vm_map_clip_end(map, next, end, countp);
1714                 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1715                 entry = next;
1716         }
1717         if (flags & MAP_CLIP_NO_HOLES) {
1718                 if (entry->end != end) {
1719                         vm_map_unclip_range(map, start_entry,
1720                                 start, entry->end, countp, flags);
1721                         return(NULL);
1722                 }
1723         }
1724         return(start_entry);
1725 }
1726
1727 /*
1728  * Undo the effect of vm_map_clip_range().  You should pass the same
1729  * flags and the same range that you passed to vm_map_clip_range().
1730  * This code will clear the in-transition flag on the entries and
1731  * wake up anyone waiting.  This code will also simplify the sequence
1732  * and attempt to merge it with entries before and after the sequence.
1733  *
1734  * The map must be locked on entry and will remain locked on return.
1735  *
1736  * Note that you should also pass the start_entry returned by
1737  * vm_map_clip_range().  However, if you block between the two calls
1738  * with the map unlocked please be aware that the start_entry may
1739  * have been clipped and you may need to scan it backwards to find
1740  * the entry corresponding with the original start address.  You are
1741  * responsible for this, vm_map_unclip_range() expects the correct
1742  * start_entry to be passed to it and will KASSERT otherwise.
1743  */
1744 static
1745 void
1746 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1747                     vm_offset_t start, vm_offset_t end,
1748                     int *countp, int flags)
1749 {
1750         vm_map_entry_t entry;
1751
1752         entry = start_entry;
1753
1754         KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1755         while (entry != &map->header && entry->start < end) {
1756                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1757                         ("in-transition flag not set during unclip on: %p",
1758                         entry));
1759                 KASSERT(entry->end <= end,
1760                         ("unclip_range: tail wasn't clipped"));
1761                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1762                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1763                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1764                         wakeup(map);
1765                 }
1766                 entry = entry->next;
1767         }
1768
1769         /*
1770          * Simplification does not block so there is no restart case.
1771          */
1772         entry = start_entry;
1773         while (entry != &map->header && entry->start < end) {
1774                 vm_map_simplify_entry(map, entry, countp);
1775                 entry = entry->next;
1776         }
1777 }
1778
1779 /*
1780  * Mark the given range as handled by a subordinate map.
1781  *
1782  * This range must have been created with vm_map_find(), and no other
1783  * operations may have been performed on this range prior to calling
1784  * vm_map_submap().
1785  *
1786  * Submappings cannot be removed.
1787  *
1788  * No requirements.
1789  */
1790 int
1791 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1792 {
1793         vm_map_entry_t entry;
1794         int result = KERN_INVALID_ARGUMENT;
1795         int count;
1796
1797         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1798         vm_map_lock(map);
1799
1800         VM_MAP_RANGE_CHECK(map, start, end);
1801
1802         if (vm_map_lookup_entry(map, start, &entry)) {
1803                 vm_map_clip_start(map, entry, start, &count);
1804         } else {
1805                 entry = entry->next;
1806         }
1807
1808         vm_map_clip_end(map, entry, end, &count);
1809
1810         if ((entry->start == start) && (entry->end == end) &&
1811             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1812             (entry->object.vm_object == NULL)) {
1813                 entry->object.sub_map = submap;
1814                 entry->maptype = VM_MAPTYPE_SUBMAP;
1815                 result = KERN_SUCCESS;
1816         }
1817         vm_map_unlock(map);
1818         vm_map_entry_release(count);
1819
1820         return (result);
1821 }
1822
1823 /*
1824  * Sets the protection of the specified address region in the target map. 
1825  * If "set_max" is specified, the maximum protection is to be set;
1826  * otherwise, only the current protection is affected.
1827  *
1828  * The protection is not applicable to submaps, but is applicable to normal
1829  * maps and maps governed by virtual page tables.  For example, when operating
1830  * on a virtual page table our protection basically controls how COW occurs
1831  * on the backing object, whereas the virtual page table abstraction itself
1832  * is an abstraction for userland.
1833  *
1834  * No requirements.
1835  */
1836 int
1837 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1838                vm_prot_t new_prot, boolean_t set_max)
1839 {
1840         vm_map_entry_t current;
1841         vm_map_entry_t entry;
1842         int count;
1843
1844         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1845         vm_map_lock(map);
1846
1847         VM_MAP_RANGE_CHECK(map, start, end);
1848
1849         if (vm_map_lookup_entry(map, start, &entry)) {
1850                 vm_map_clip_start(map, entry, start, &count);
1851         } else {
1852                 entry = entry->next;
1853         }
1854
1855         /*
1856          * Make a first pass to check for protection violations.
1857          */
1858         current = entry;
1859         while ((current != &map->header) && (current->start < end)) {
1860                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
1861                         vm_map_unlock(map);
1862                         vm_map_entry_release(count);
1863                         return (KERN_INVALID_ARGUMENT);
1864                 }
1865                 if ((new_prot & current->max_protection) != new_prot) {
1866                         vm_map_unlock(map);
1867                         vm_map_entry_release(count);
1868                         return (KERN_PROTECTION_FAILURE);
1869                 }
1870                 current = current->next;
1871         }
1872
1873         /*
1874          * Go back and fix up protections. [Note that clipping is not
1875          * necessary the second time.]
1876          */
1877         current = entry;
1878
1879         while ((current != &map->header) && (current->start < end)) {
1880                 vm_prot_t old_prot;
1881
1882                 vm_map_clip_end(map, current, end, &count);
1883
1884                 old_prot = current->protection;
1885                 if (set_max) {
1886                         current->protection =
1887                             (current->max_protection = new_prot) &
1888                             old_prot;
1889                 } else {
1890                         current->protection = new_prot;
1891                 }
1892
1893                 /*
1894                  * Update physical map if necessary. Worry about copy-on-write
1895                  * here -- CHECK THIS XXX
1896                  */
1897
1898                 if (current->protection != old_prot) {
1899 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1900                                                         VM_PROT_ALL)
1901
1902                         pmap_protect(map->pmap, current->start,
1903                             current->end,
1904                             current->protection & MASK(current));
1905 #undef  MASK
1906                 }
1907
1908                 vm_map_simplify_entry(map, current, &count);
1909
1910                 current = current->next;
1911         }
1912
1913         vm_map_unlock(map);
1914         vm_map_entry_release(count);
1915         return (KERN_SUCCESS);
1916 }
1917
1918 /*
1919  * This routine traverses a processes map handling the madvise
1920  * system call.  Advisories are classified as either those effecting
1921  * the vm_map_entry structure, or those effecting the underlying
1922  * objects.
1923  *
1924  * The <value> argument is used for extended madvise calls.
1925  *
1926  * No requirements.
1927  */
1928 int
1929 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1930                int behav, off_t value)
1931 {
1932         vm_map_entry_t current, entry;
1933         int modify_map = 0;
1934         int error = 0;
1935         int count;
1936
1937         /*
1938          * Some madvise calls directly modify the vm_map_entry, in which case
1939          * we need to use an exclusive lock on the map and we need to perform 
1940          * various clipping operations.  Otherwise we only need a read-lock
1941          * on the map.
1942          */
1943
1944         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1945
1946         switch(behav) {
1947         case MADV_NORMAL:
1948         case MADV_SEQUENTIAL:
1949         case MADV_RANDOM:
1950         case MADV_NOSYNC:
1951         case MADV_AUTOSYNC:
1952         case MADV_NOCORE:
1953         case MADV_CORE:
1954         case MADV_SETMAP:
1955         case MADV_INVAL:
1956                 modify_map = 1;
1957                 vm_map_lock(map);
1958                 break;
1959         case MADV_WILLNEED:
1960         case MADV_DONTNEED:
1961         case MADV_FREE:
1962                 vm_map_lock_read(map);
1963                 break;
1964         default:
1965                 vm_map_entry_release(count);
1966                 return (EINVAL);
1967         }
1968
1969         /*
1970          * Locate starting entry and clip if necessary.
1971          */
1972
1973         VM_MAP_RANGE_CHECK(map, start, end);
1974
1975         if (vm_map_lookup_entry(map, start, &entry)) {
1976                 if (modify_map)
1977                         vm_map_clip_start(map, entry, start, &count);
1978         } else {
1979                 entry = entry->next;
1980         }
1981
1982         if (modify_map) {
1983                 /*
1984                  * madvise behaviors that are implemented in the vm_map_entry.
1985                  *
1986                  * We clip the vm_map_entry so that behavioral changes are
1987                  * limited to the specified address range.
1988                  */
1989                 for (current = entry;
1990                      (current != &map->header) && (current->start < end);
1991                      current = current->next
1992                 ) {
1993                         if (current->maptype == VM_MAPTYPE_SUBMAP)
1994                                 continue;
1995
1996                         vm_map_clip_end(map, current, end, &count);
1997
1998                         switch (behav) {
1999                         case MADV_NORMAL:
2000                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2001                                 break;
2002                         case MADV_SEQUENTIAL:
2003                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2004                                 break;
2005                         case MADV_RANDOM:
2006                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2007                                 break;
2008                         case MADV_NOSYNC:
2009                                 current->eflags |= MAP_ENTRY_NOSYNC;
2010                                 break;
2011                         case MADV_AUTOSYNC:
2012                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
2013                                 break;
2014                         case MADV_NOCORE:
2015                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2016                                 break;
2017                         case MADV_CORE:
2018                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2019                                 break;
2020                         case MADV_INVAL:
2021                                 /*
2022                                  * Invalidate the related pmap entries, used
2023                                  * to flush portions of the real kernel's
2024                                  * pmap when the caller has removed or
2025                                  * modified existing mappings in a virtual
2026                                  * page table.
2027                                  */
2028                                 pmap_remove(map->pmap,
2029                                             current->start, current->end);
2030                                 break;
2031                         case MADV_SETMAP:
2032                                 /*
2033                                  * Set the page directory page for a map
2034                                  * governed by a virtual page table.  Mark
2035                                  * the entry as being governed by a virtual
2036                                  * page table if it is not.
2037                                  *
2038                                  * XXX the page directory page is stored
2039                                  * in the avail_ssize field if the map_entry.
2040                                  *
2041                                  * XXX the map simplification code does not
2042                                  * compare this field so weird things may
2043                                  * happen if you do not apply this function
2044                                  * to the entire mapping governed by the
2045                                  * virtual page table.
2046                                  */
2047                                 if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
2048                                         error = EINVAL;
2049                                         break;
2050                                 }
2051                                 current->aux.master_pde = value;
2052                                 pmap_remove(map->pmap,
2053                                             current->start, current->end);
2054                                 break;
2055                         default:
2056                                 error = EINVAL;
2057                                 break;
2058                         }
2059                         vm_map_simplify_entry(map, current, &count);
2060                 }
2061                 vm_map_unlock(map);
2062         } else {
2063                 vm_pindex_t pindex;
2064                 int count;
2065
2066                 /*
2067                  * madvise behaviors that are implemented in the underlying
2068                  * vm_object.
2069                  *
2070                  * Since we don't clip the vm_map_entry, we have to clip
2071                  * the vm_object pindex and count.
2072                  *
2073                  * NOTE!  We currently do not support these functions on
2074                  * virtual page tables.
2075                  */
2076                 for (current = entry;
2077                      (current != &map->header) && (current->start < end);
2078                      current = current->next
2079                 ) {
2080                         vm_offset_t useStart;
2081
2082                         if (current->maptype != VM_MAPTYPE_NORMAL)
2083                                 continue;
2084
2085                         pindex = OFF_TO_IDX(current->offset);
2086                         count = atop(current->end - current->start);
2087                         useStart = current->start;
2088
2089                         if (current->start < start) {
2090                                 pindex += atop(start - current->start);
2091                                 count -= atop(start - current->start);
2092                                 useStart = start;
2093                         }
2094                         if (current->end > end)
2095                                 count -= atop(current->end - end);
2096
2097                         if (count <= 0)
2098                                 continue;
2099
2100                         vm_object_madvise(current->object.vm_object,
2101                                           pindex, count, behav);
2102
2103                         /*
2104                          * Try to populate the page table.  Mappings governed
2105                          * by virtual page tables cannot be pre-populated
2106                          * without a lot of work so don't try.
2107                          */
2108                         if (behav == MADV_WILLNEED &&
2109                             current->maptype != VM_MAPTYPE_VPAGETABLE) {
2110                                 pmap_object_init_pt(
2111                                     map->pmap, 
2112                                     useStart,
2113                                     current->protection,
2114                                     current->object.vm_object,
2115                                     pindex, 
2116                                     (count << PAGE_SHIFT),
2117                                     MAP_PREFAULT_MADVISE
2118                                 );
2119                         }
2120                 }
2121                 vm_map_unlock_read(map);
2122         }
2123         vm_map_entry_release(count);
2124         return(error);
2125 }       
2126
2127
2128 /*
2129  * Sets the inheritance of the specified address range in the target map.
2130  * Inheritance affects how the map will be shared with child maps at the
2131  * time of vm_map_fork.
2132  */
2133 int
2134 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2135                vm_inherit_t new_inheritance)
2136 {
2137         vm_map_entry_t entry;
2138         vm_map_entry_t temp_entry;
2139         int count;
2140
2141         switch (new_inheritance) {
2142         case VM_INHERIT_NONE:
2143         case VM_INHERIT_COPY:
2144         case VM_INHERIT_SHARE:
2145                 break;
2146         default:
2147                 return (KERN_INVALID_ARGUMENT);
2148         }
2149
2150         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2151         vm_map_lock(map);
2152
2153         VM_MAP_RANGE_CHECK(map, start, end);
2154
2155         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2156                 entry = temp_entry;
2157                 vm_map_clip_start(map, entry, start, &count);
2158         } else
2159                 entry = temp_entry->next;
2160
2161         while ((entry != &map->header) && (entry->start < end)) {
2162                 vm_map_clip_end(map, entry, end, &count);
2163
2164                 entry->inheritance = new_inheritance;
2165
2166                 vm_map_simplify_entry(map, entry, &count);
2167
2168                 entry = entry->next;
2169         }
2170         vm_map_unlock(map);
2171         vm_map_entry_release(count);
2172         return (KERN_SUCCESS);
2173 }
2174
2175 /*
2176  * Implement the semantics of mlock
2177  */
2178 int
2179 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2180               boolean_t new_pageable)
2181 {
2182         vm_map_entry_t entry;
2183         vm_map_entry_t start_entry;
2184         vm_offset_t end;
2185         int rv = KERN_SUCCESS;
2186         int count;
2187
2188         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2189         vm_map_lock(map);
2190         VM_MAP_RANGE_CHECK(map, start, real_end);
2191         end = real_end;
2192
2193         start_entry = vm_map_clip_range(map, start, end, &count,
2194                                         MAP_CLIP_NO_HOLES);
2195         if (start_entry == NULL) {
2196                 vm_map_unlock(map);
2197                 vm_map_entry_release(count);
2198                 return (KERN_INVALID_ADDRESS);
2199         }
2200
2201         if (new_pageable == 0) {
2202                 entry = start_entry;
2203                 while ((entry != &map->header) && (entry->start < end)) {
2204                         vm_offset_t save_start;
2205                         vm_offset_t save_end;
2206
2207                         /*
2208                          * Already user wired or hard wired (trivial cases)
2209                          */
2210                         if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2211                                 entry = entry->next;
2212                                 continue;
2213                         }
2214                         if (entry->wired_count != 0) {
2215                                 entry->wired_count++;
2216                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2217                                 entry = entry->next;
2218                                 continue;
2219                         }
2220
2221                         /*
2222                          * A new wiring requires instantiation of appropriate
2223                          * management structures and the faulting in of the
2224                          * page.
2225                          */
2226                         if (entry->maptype == VM_MAPTYPE_NORMAL ||
2227                             entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2228                                 int copyflag = entry->eflags &
2229                                                MAP_ENTRY_NEEDS_COPY;
2230                                 if (copyflag && ((entry->protection &
2231                                                   VM_PROT_WRITE) != 0)) {
2232                                         vm_map_entry_shadow(entry, 0);
2233                                 } else if (entry->object.vm_object == NULL &&
2234                                            !map->system_map) {
2235                                         vm_map_entry_allocate_object(entry);
2236                                 }
2237                         }
2238                         entry->wired_count++;
2239                         entry->eflags |= MAP_ENTRY_USER_WIRED;
2240
2241                         /*
2242                          * Now fault in the area.  Note that vm_fault_wire()
2243                          * may release the map lock temporarily, it will be
2244                          * relocked on return.  The in-transition
2245                          * flag protects the entries. 
2246                          */
2247                         save_start = entry->start;
2248                         save_end = entry->end;
2249                         rv = vm_fault_wire(map, entry, TRUE, 0);
2250                         if (rv) {
2251                                 CLIP_CHECK_BACK(entry, save_start);
2252                                 for (;;) {
2253                                         KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2254                                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2255                                         entry->wired_count = 0;
2256                                         if (entry->end == save_end)
2257                                                 break;
2258                                         entry = entry->next;
2259                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
2260                                 }
2261                                 end = save_start;       /* unwire the rest */
2262                                 break;
2263                         }
2264                         /*
2265                          * note that even though the entry might have been
2266                          * clipped, the USER_WIRED flag we set prevents
2267                          * duplication so we do not have to do a 
2268                          * clip check.
2269                          */
2270                         entry = entry->next;
2271                 }
2272
2273                 /*
2274                  * If we failed fall through to the unwiring section to
2275                  * unwire what we had wired so far.  'end' has already
2276                  * been adjusted.
2277                  */
2278                 if (rv)
2279                         new_pageable = 1;
2280
2281                 /*
2282                  * start_entry might have been clipped if we unlocked the
2283                  * map and blocked.  No matter how clipped it has gotten
2284                  * there should be a fragment that is on our start boundary.
2285                  */
2286                 CLIP_CHECK_BACK(start_entry, start);
2287         }
2288
2289         /*
2290          * Deal with the unwiring case.
2291          */
2292         if (new_pageable) {
2293                 /*
2294                  * This is the unwiring case.  We must first ensure that the
2295                  * range to be unwired is really wired down.  We know there
2296                  * are no holes.
2297                  */
2298                 entry = start_entry;
2299                 while ((entry != &map->header) && (entry->start < end)) {
2300                         if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2301                                 rv = KERN_INVALID_ARGUMENT;
2302                                 goto done;
2303                         }
2304                         KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2305                         entry = entry->next;
2306                 }
2307
2308                 /*
2309                  * Now decrement the wiring count for each region. If a region
2310                  * becomes completely unwired, unwire its physical pages and
2311                  * mappings.
2312                  */
2313                 /*
2314                  * The map entries are processed in a loop, checking to
2315                  * make sure the entry is wired and asserting it has a wired
2316                  * count. However, another loop was inserted more-or-less in
2317                  * the middle of the unwiring path. This loop picks up the
2318                  * "entry" loop variable from the first loop without first
2319                  * setting it to start_entry. Naturally, the secound loop
2320                  * is never entered and the pages backing the entries are
2321                  * never unwired. This can lead to a leak of wired pages.
2322                  */
2323                 entry = start_entry;
2324                 while ((entry != &map->header) && (entry->start < end)) {
2325                         KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2326                                 ("expected USER_WIRED on entry %p", entry));
2327                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2328                         entry->wired_count--;
2329                         if (entry->wired_count == 0)
2330                                 vm_fault_unwire(map, entry);
2331                         entry = entry->next;
2332                 }
2333         }
2334 done:
2335         vm_map_unclip_range(map, start_entry, start, real_end, &count,
2336                 MAP_CLIP_NO_HOLES);
2337         map->timestamp++;
2338         vm_map_unlock(map);
2339         vm_map_entry_release(count);
2340         return (rv);
2341 }
2342
2343 /*
2344  * Sets the pageability of the specified address range in the target map.
2345  * Regions specified as not pageable require locked-down physical
2346  * memory and physical page maps.
2347  *
2348  * The map must not be locked, but a reference must remain to the map
2349  * throughout the call.
2350  *
2351  * This function may be called via the zalloc path and must properly
2352  * reserve map entries for kernel_map.
2353  *
2354  * No requirements.
2355  */
2356 int
2357 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2358 {
2359         vm_map_entry_t entry;
2360         vm_map_entry_t start_entry;
2361         vm_offset_t end;
2362         int rv = KERN_SUCCESS;
2363         int count;
2364
2365         if (kmflags & KM_KRESERVE)
2366                 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2367         else
2368                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2369         vm_map_lock(map);
2370         VM_MAP_RANGE_CHECK(map, start, real_end);
2371         end = real_end;
2372
2373         start_entry = vm_map_clip_range(map, start, end, &count,
2374                                         MAP_CLIP_NO_HOLES);
2375         if (start_entry == NULL) {
2376                 vm_map_unlock(map);
2377                 rv = KERN_INVALID_ADDRESS;
2378                 goto failure;
2379         }
2380         if ((kmflags & KM_PAGEABLE) == 0) {
2381                 /*
2382                  * Wiring.  
2383                  *
2384                  * 1.  Holding the write lock, we create any shadow or zero-fill
2385                  * objects that need to be created. Then we clip each map
2386                  * entry to the region to be wired and increment its wiring
2387                  * count.  We create objects before clipping the map entries
2388                  * to avoid object proliferation.
2389                  *
2390                  * 2.  We downgrade to a read lock, and call vm_fault_wire to
2391                  * fault in the pages for any newly wired area (wired_count is
2392                  * 1).
2393                  *
2394                  * Downgrading to a read lock for vm_fault_wire avoids a 
2395                  * possible deadlock with another process that may have faulted
2396                  * on one of the pages to be wired (it would mark the page busy,
2397                  * blocking us, then in turn block on the map lock that we
2398                  * hold).  Because of problems in the recursive lock package,
2399                  * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2400                  * any actions that require the write lock must be done
2401                  * beforehand.  Because we keep the read lock on the map, the
2402                  * copy-on-write status of the entries we modify here cannot
2403                  * change.
2404                  */
2405                 entry = start_entry;
2406                 while ((entry != &map->header) && (entry->start < end)) {
2407                         /*
2408                          * Trivial case if the entry is already wired
2409                          */
2410                         if (entry->wired_count) {
2411                                 entry->wired_count++;
2412                                 entry = entry->next;
2413                                 continue;
2414                         }
2415
2416                         /*
2417                          * The entry is being newly wired, we have to setup
2418                          * appropriate management structures.  A shadow 
2419                          * object is required for a copy-on-write region,
2420                          * or a normal object for a zero-fill region.  We
2421                          * do not have to do this for entries that point to sub
2422                          * maps because we won't hold the lock on the sub map.
2423                          */
2424                         if (entry->maptype == VM_MAPTYPE_NORMAL ||
2425                             entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2426                                 int copyflag = entry->eflags &
2427                                                MAP_ENTRY_NEEDS_COPY;
2428                                 if (copyflag && ((entry->protection &
2429                                                   VM_PROT_WRITE) != 0)) {
2430                                         vm_map_entry_shadow(entry, 0);
2431                                 } else if (entry->object.vm_object == NULL &&
2432                                            !map->system_map) {
2433                                         vm_map_entry_allocate_object(entry);
2434                                 }
2435                         }
2436
2437                         entry->wired_count++;
2438                         entry = entry->next;
2439                 }
2440
2441                 /*
2442                  * Pass 2.
2443                  */
2444
2445                 /*
2446                  * HACK HACK HACK HACK
2447                  *
2448                  * vm_fault_wire() temporarily unlocks the map to avoid
2449                  * deadlocks.  The in-transition flag from vm_map_clip_range
2450                  * call should protect us from changes while the map is
2451                  * unlocked.  T
2452                  *
2453                  * NOTE: Previously this comment stated that clipping might
2454                  *       still occur while the entry is unlocked, but from
2455                  *       what I can tell it actually cannot.
2456                  *
2457                  *       It is unclear whether the CLIP_CHECK_*() calls
2458                  *       are still needed but we keep them in anyway.
2459                  *
2460                  * HACK HACK HACK HACK
2461                  */
2462
2463                 entry = start_entry;
2464                 while (entry != &map->header && entry->start < end) {
2465                         /*
2466                          * If vm_fault_wire fails for any page we need to undo
2467                          * what has been done.  We decrement the wiring count
2468                          * for those pages which have not yet been wired (now)
2469                          * and unwire those that have (later).
2470                          */
2471                         vm_offset_t save_start = entry->start;
2472                         vm_offset_t save_end = entry->end;
2473
2474                         if (entry->wired_count == 1)
2475                                 rv = vm_fault_wire(map, entry, FALSE, kmflags);
2476                         if (rv) {
2477                                 CLIP_CHECK_BACK(entry, save_start);
2478                                 for (;;) {
2479                                         KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2480                                         entry->wired_count = 0;
2481                                         if (entry->end == save_end)
2482                                                 break;
2483                                         entry = entry->next;
2484                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
2485                                 }
2486                                 end = save_start;
2487                                 break;
2488                         }
2489                         CLIP_CHECK_FWD(entry, save_end);
2490                         entry = entry->next;
2491                 }
2492
2493                 /*
2494                  * If a failure occured undo everything by falling through
2495                  * to the unwiring code.  'end' has already been adjusted
2496                  * appropriately.
2497                  */
2498                 if (rv)
2499                         kmflags |= KM_PAGEABLE;
2500
2501                 /*
2502                  * start_entry is still IN_TRANSITION but may have been 
2503                  * clipped since vm_fault_wire() unlocks and relocks the
2504                  * map.  No matter how clipped it has gotten there should
2505                  * be a fragment that is on our start boundary.
2506                  */
2507                 CLIP_CHECK_BACK(start_entry, start);
2508         }
2509
2510         if (kmflags & KM_PAGEABLE) {
2511                 /*
2512                  * This is the unwiring case.  We must first ensure that the
2513                  * range to be unwired is really wired down.  We know there
2514                  * are no holes.
2515                  */
2516                 entry = start_entry;
2517                 while ((entry != &map->header) && (entry->start < end)) {
2518                         if (entry->wired_count == 0) {
2519                                 rv = KERN_INVALID_ARGUMENT;
2520                                 goto done;
2521                         }
2522                         entry = entry->next;
2523                 }
2524
2525                 /*
2526                  * Now decrement the wiring count for each region. If a region
2527                  * becomes completely unwired, unwire its physical pages and
2528                  * mappings.
2529                  */
2530                 entry = start_entry;
2531                 while ((entry != &map->header) && (entry->start < end)) {
2532                         entry->wired_count--;
2533                         if (entry->wired_count == 0)
2534                                 vm_fault_unwire(map, entry);
2535                         entry = entry->next;
2536                 }
2537         }
2538 done:
2539         vm_map_unclip_range(map, start_entry, start, real_end,
2540                             &count, MAP_CLIP_NO_HOLES);
2541         map->timestamp++;
2542         vm_map_unlock(map);
2543 failure:
2544         if (kmflags & KM_KRESERVE)
2545                 vm_map_entry_krelease(count);
2546         else
2547                 vm_map_entry_release(count);
2548         return (rv);
2549 }
2550
2551 /*
2552  * Mark a newly allocated address range as wired but do not fault in
2553  * the pages.  The caller is expected to load the pages into the object.
2554  *
2555  * The map must be locked on entry and will remain locked on return.
2556  * No other requirements.
2557  */
2558 void
2559 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2560                        int *countp)
2561 {
2562         vm_map_entry_t scan;
2563         vm_map_entry_t entry;
2564
2565         entry = vm_map_clip_range(map, addr, addr + size,
2566                                   countp, MAP_CLIP_NO_HOLES);
2567         for (scan = entry;
2568              scan != &map->header && scan->start < addr + size;
2569              scan = scan->next) {
2570             KKASSERT(scan->wired_count == 0);
2571             scan->wired_count = 1;
2572         }
2573         vm_map_unclip_range(map, entry, addr, addr + size,
2574                             countp, MAP_CLIP_NO_HOLES);
2575 }
2576
2577 /*
2578  * Push any dirty cached pages in the address range to their pager.
2579  * If syncio is TRUE, dirty pages are written synchronously.
2580  * If invalidate is TRUE, any cached pages are freed as well.
2581  *
2582  * This routine is called by sys_msync()
2583  *
2584  * Returns an error if any part of the specified range is not mapped.
2585  *
2586  * No requirements.
2587  */
2588 int
2589 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2590              boolean_t syncio, boolean_t invalidate)
2591 {
2592         vm_map_entry_t current;
2593         vm_map_entry_t entry;
2594         vm_size_t size;
2595         vm_object_t object;
2596         vm_object_t tobj;
2597         vm_ooffset_t offset;
2598
2599         vm_map_lock_read(map);
2600         VM_MAP_RANGE_CHECK(map, start, end);
2601         if (!vm_map_lookup_entry(map, start, &entry)) {
2602                 vm_map_unlock_read(map);
2603                 return (KERN_INVALID_ADDRESS);
2604         }
2605         lwkt_gettoken(&map->token);
2606
2607         /*
2608          * Make a first pass to check for holes.
2609          */
2610         for (current = entry; current->start < end; current = current->next) {
2611                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2612                         lwkt_reltoken(&map->token);
2613                         vm_map_unlock_read(map);
2614                         return (KERN_INVALID_ARGUMENT);
2615                 }
2616                 if (end > current->end &&
2617                     (current->next == &map->header ||
2618                         current->end != current->next->start)) {
2619                         lwkt_reltoken(&map->token);
2620                         vm_map_unlock_read(map);
2621                         return (KERN_INVALID_ADDRESS);
2622                 }
2623         }
2624
2625         if (invalidate)
2626                 pmap_remove(vm_map_pmap(map), start, end);
2627
2628         /*
2629          * Make a second pass, cleaning/uncaching pages from the indicated
2630          * objects as we go.
2631          */
2632         for (current = entry; current->start < end; current = current->next) {
2633                 offset = current->offset + (start - current->start);
2634                 size = (end <= current->end ? end : current->end) - start;
2635
2636                 switch(current->maptype) {
2637                 case VM_MAPTYPE_SUBMAP:
2638                 {
2639                         vm_map_t smap;
2640                         vm_map_entry_t tentry;
2641                         vm_size_t tsize;
2642
2643                         smap = current->object.sub_map;
2644                         vm_map_lock_read(smap);
2645                         vm_map_lookup_entry(smap, offset, &tentry);
2646                         tsize = tentry->end - offset;
2647                         if (tsize < size)
2648                                 size = tsize;
2649                         object = tentry->object.vm_object;
2650                         offset = tentry->offset + (offset - tentry->start);
2651                         vm_map_unlock_read(smap);
2652                         break;
2653                 }
2654                 case VM_MAPTYPE_NORMAL:
2655                 case VM_MAPTYPE_VPAGETABLE:
2656                         object = current->object.vm_object;
2657                         break;
2658                 default:
2659                         object = NULL;
2660                         break;
2661                 }
2662
2663                 if (object)
2664                         vm_object_hold(object);
2665
2666                 /*
2667                  * Note that there is absolutely no sense in writing out
2668                  * anonymous objects, so we track down the vnode object
2669                  * to write out.
2670                  * We invalidate (remove) all pages from the address space
2671                  * anyway, for semantic correctness.
2672                  *
2673                  * note: certain anonymous maps, such as MAP_NOSYNC maps,
2674                  * may start out with a NULL object.
2675                  */
2676                 while (object && (tobj = object->backing_object) != NULL) {
2677                         vm_object_hold(tobj);
2678                         if (tobj == object->backing_object) {
2679                                 vm_object_lock_swap();
2680                                 offset += object->backing_object_offset;
2681                                 vm_object_drop(object);
2682                                 object = tobj;
2683                                 if (object->size < OFF_TO_IDX(offset + size))
2684                                         size = IDX_TO_OFF(object->size) -
2685                                                offset;
2686                                 break;
2687                         }
2688                         vm_object_drop(tobj);
2689                 }
2690                 if (object && (object->type == OBJT_VNODE) && 
2691                     (current->protection & VM_PROT_WRITE) &&
2692                     (object->flags & OBJ_NOMSYNC) == 0) {
2693                         /*
2694                          * Flush pages if writing is allowed, invalidate them
2695                          * if invalidation requested.  Pages undergoing I/O
2696                          * will be ignored by vm_object_page_remove().
2697                          *
2698                          * We cannot lock the vnode and then wait for paging
2699                          * to complete without deadlocking against vm_fault.
2700                          * Instead we simply call vm_object_page_remove() and
2701                          * allow it to block internally on a page-by-page 
2702                          * basis when it encounters pages undergoing async 
2703                          * I/O.
2704                          */
2705                         int flags;
2706
2707                         /* no chain wait needed for vnode objects */
2708                         vm_object_reference_locked(object);
2709                         vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2710                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2711                         flags |= invalidate ? OBJPC_INVAL : 0;
2712
2713                         /*
2714                          * When operating on a virtual page table just
2715                          * flush the whole object.  XXX we probably ought
2716                          * to 
2717                          */
2718                         switch(current->maptype) {
2719                         case VM_MAPTYPE_NORMAL:
2720                                 vm_object_page_clean(object,
2721                                     OFF_TO_IDX(offset),
2722                                     OFF_TO_IDX(offset + size + PAGE_MASK),
2723                                     flags);
2724                                 break;
2725                         case VM_MAPTYPE_VPAGETABLE:
2726                                 vm_object_page_clean(object, 0, 0, flags);
2727                                 break;
2728                         }
2729                         vn_unlock(((struct vnode *)object->handle));
2730                         vm_object_deallocate_locked(object);
2731                 }
2732                 if (object && invalidate &&
2733                    ((object->type == OBJT_VNODE) ||
2734                     (object->type == OBJT_DEVICE) ||
2735                     (object->type == OBJT_MGTDEVICE))) {
2736                         int clean_only = 
2737                                 ((object->type == OBJT_DEVICE) ||
2738                                 (object->type == OBJT_MGTDEVICE)) ? FALSE : TRUE;
2739                         /* no chain wait needed for vnode/device objects */
2740                         vm_object_reference_locked(object);
2741                         switch(current->maptype) {
2742                         case VM_MAPTYPE_NORMAL:
2743                                 vm_object_page_remove(object,
2744                                     OFF_TO_IDX(offset),
2745                                     OFF_TO_IDX(offset + size + PAGE_MASK),
2746                                     clean_only);
2747                                 break;
2748                         case VM_MAPTYPE_VPAGETABLE:
2749                                 vm_object_page_remove(object, 0, 0, clean_only);
2750                                 break;
2751                         }
2752                         vm_object_deallocate_locked(object);
2753                 }
2754                 start += size;
2755                 if (object)
2756                         vm_object_drop(object);
2757         }
2758
2759         lwkt_reltoken(&map->token);
2760         vm_map_unlock_read(map);
2761
2762         return (KERN_SUCCESS);
2763 }
2764
2765 /*
2766  * Make the region specified by this entry pageable.
2767  *
2768  * The vm_map must be exclusively locked.
2769  */
2770 static void 
2771 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2772 {
2773         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2774         entry->wired_count = 0;
2775         vm_fault_unwire(map, entry);
2776 }
2777
2778 /*
2779  * Deallocate the given entry from the target map.
2780  *
2781  * The vm_map must be exclusively locked.
2782  */
2783 static void
2784 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2785 {
2786         vm_map_entry_unlink(map, entry);
2787         map->size -= entry->end - entry->start;
2788
2789         switch(entry->maptype) {
2790         case VM_MAPTYPE_NORMAL:
2791         case VM_MAPTYPE_VPAGETABLE:
2792         case VM_MAPTYPE_SUBMAP:
2793                 vm_object_deallocate(entry->object.vm_object);
2794                 break;
2795         case VM_MAPTYPE_UKSMAP:
2796                 /* XXX TODO */
2797                 break;
2798         default:
2799                 break;
2800         }
2801
2802         vm_map_entry_dispose(map, entry, countp);
2803 }
2804
2805 /*
2806  * Deallocates the given address range from the target map.
2807  *
2808  * The vm_map must be exclusively locked.
2809  */
2810 int
2811 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2812 {
2813         vm_object_t object;
2814         vm_map_entry_t entry;
2815         vm_map_entry_t first_entry;
2816
2817         ASSERT_VM_MAP_LOCKED(map);
2818         lwkt_gettoken(&map->token);
2819 again:
2820         /*
2821          * Find the start of the region, and clip it.  Set entry to point
2822          * at the first record containing the requested address or, if no
2823          * such record exists, the next record with a greater address.  The
2824          * loop will run from this point until a record beyond the termination
2825          * address is encountered.
2826          *
2827          * map->hint must be adjusted to not point to anything we delete,
2828          * so set it to the entry prior to the one being deleted.
2829          *
2830          * GGG see other GGG comment.
2831          */
2832         if (vm_map_lookup_entry(map, start, &first_entry)) {
2833                 entry = first_entry;
2834                 vm_map_clip_start(map, entry, start, countp);
2835                 map->hint = entry->prev;        /* possible problem XXX */
2836         } else {
2837                 map->hint = first_entry;        /* possible problem XXX */
2838                 entry = first_entry->next;
2839         }
2840
2841         /*
2842          * If a hole opens up prior to the current first_free then
2843          * adjust first_free.  As with map->hint, map->first_free
2844          * cannot be left set to anything we might delete.
2845          */
2846         if (entry == &map->header) {
2847                 map->first_free = &map->header;
2848         } else if (map->first_free->start >= start) {
2849                 map->first_free = entry->prev;
2850         }
2851
2852         /*
2853          * Step through all entries in this region
2854          */
2855         while ((entry != &map->header) && (entry->start < end)) {
2856                 vm_map_entry_t next;
2857                 vm_offset_t s, e;
2858                 vm_pindex_t offidxstart, offidxend, count;
2859
2860                 /*
2861                  * If we hit an in-transition entry we have to sleep and
2862                  * retry.  It's easier (and not really slower) to just retry
2863                  * since this case occurs so rarely and the hint is already
2864                  * pointing at the right place.  We have to reset the
2865                  * start offset so as not to accidently delete an entry
2866                  * another process just created in vacated space.
2867                  */
2868                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2869                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2870                         start = entry->start;
2871                         ++mycpu->gd_cnt.v_intrans_coll;
2872                         ++mycpu->gd_cnt.v_intrans_wait;
2873                         vm_map_transition_wait(map);
2874                         goto again;
2875                 }
2876                 vm_map_clip_end(map, entry, end, countp);
2877
2878                 s = entry->start;
2879                 e = entry->end;
2880                 next = entry->next;
2881
2882                 offidxstart = OFF_TO_IDX(entry->offset);
2883                 count = OFF_TO_IDX(e - s);
2884
2885                 switch(entry->maptype) {
2886                 case VM_MAPTYPE_NORMAL:
2887                 case VM_MAPTYPE_VPAGETABLE:
2888                 case VM_MAPTYPE_SUBMAP:
2889                         object = entry->object.vm_object;
2890                         break;
2891                 default:
2892                         object = NULL;
2893                         break;
2894                 }
2895
2896                 /*
2897                  * Unwire before removing addresses from the pmap; otherwise,
2898                  * unwiring will put the entries back in the pmap.
2899                  */
2900                 if (entry->wired_count != 0)
2901                         vm_map_entry_unwire(map, entry);
2902
2903                 offidxend = offidxstart + count;
2904
2905                 if (object == &kernel_object) {
2906                         vm_object_hold(object);
2907                         vm_object_page_remove(object, offidxstart,
2908                                               offidxend, FALSE);
2909                         vm_object_drop(object);
2910                 } else if (object && object->type != OBJT_DEFAULT &&
2911                            object->type != OBJT_SWAP) {
2912                         /*
2913                          * vnode object routines cannot be chain-locked,
2914                          * but since we aren't removing pages from the
2915                          * object here we can use a shared hold.
2916                          */
2917                         vm_object_hold_shared(object);
2918                         pmap_remove(map->pmap, s, e);
2919                         vm_object_drop(object);
2920                 } else if (object) {
2921                         vm_object_hold(object);
2922                         vm_object_chain_acquire(object, 0);
2923                         pmap_remove(map->pmap, s, e);
2924
2925                         if (object != NULL &&
2926                             object->ref_count != 1 &&
2927                             (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
2928                              OBJ_ONEMAPPING &&
2929                             (object->type == OBJT_DEFAULT ||
2930                              object->type == OBJT_SWAP)) {
2931                                 vm_object_collapse(object, NULL);
2932                                 vm_object_page_remove(object, offidxstart,
2933                                                       offidxend, FALSE);
2934                                 if (object->type == OBJT_SWAP) {
2935                                         swap_pager_freespace(object,
2936                                                              offidxstart,
2937                                                              count);
2938                                 }
2939                                 if (offidxend >= object->size &&
2940                                     offidxstart < object->size) {
2941                                         object->size = offidxstart;
2942                                 }
2943                         }
2944                         vm_object_chain_release(object);
2945                         vm_object_drop(object);
2946                 } else if (entry->maptype == VM_MAPTYPE_UKSMAP) {
2947                         pmap_remove(map->pmap, s, e);
2948                 }
2949
2950                 /*
2951                  * Delete the entry (which may delete the object) only after
2952                  * removing all pmap entries pointing to its pages.
2953                  * (Otherwise, its page frames may be reallocated, and any
2954                  * modify bits will be set in the wrong object!)
2955                  */
2956                 vm_map_entry_delete(map, entry, countp);
2957                 entry = next;
2958         }
2959         lwkt_reltoken(&map->token);
2960         return (KERN_SUCCESS);
2961 }
2962
2963 /*
2964  * Remove the given address range from the target map.
2965  * This is the exported form of vm_map_delete.
2966  *
2967  * No requirements.
2968  */
2969 int
2970 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2971 {
2972         int result;
2973         int count;
2974
2975         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2976         vm_map_lock(map);
2977         VM_MAP_RANGE_CHECK(map, start, end);
2978         result = vm_map_delete(map, start, end, &count);
2979         vm_map_unlock(map);
2980         vm_map_entry_release(count);
2981
2982         return (result);
2983 }
2984
2985 /*
2986  * Assert that the target map allows the specified privilege on the
2987  * entire address region given.  The entire region must be allocated.
2988  *
2989  * The caller must specify whether the vm_map is already locked or not.
2990  */
2991 boolean_t
2992 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2993                         vm_prot_t protection, boolean_t have_lock)
2994 {
2995         vm_map_entry_t entry;
2996         vm_map_entry_t tmp_entry;
2997         boolean_t result;
2998
2999         if (have_lock == FALSE)
3000                 vm_map_lock_read(map);
3001
3002         if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
3003                 if (have_lock == FALSE)
3004                         vm_map_unlock_read(map);
3005                 return (FALSE);
3006         }
3007         entry = tmp_entry;
3008
3009         result = TRUE;
3010         while (start < end) {
3011                 if (entry == &map->header) {
3012                         result = FALSE;
3013                         break;
3014                 }
3015                 /*
3016                  * No holes allowed!
3017                  */
3018
3019                 if (start < entry->start) {
3020                         result = FALSE;
3021                         break;
3022                 }
3023                 /*
3024                  * Check protection associated with entry.
3025                  */
3026
3027                 if ((entry->protection & protection) != protection) {
3028                         result = FALSE;
3029                         break;
3030                 }
3031                 /* go to next entry */
3032
3033                 start = entry->end;
3034                 entry = entry->next;
3035         }
3036         if (have_lock == FALSE)
3037                 vm_map_unlock_read(map);
3038         return (result);
3039 }
3040
3041 /*
3042  * If appropriate this function shadows the original object with a new object
3043  * and moves the VM pages from the original object to the new object.
3044  * The original object will also be collapsed, if possible.
3045  *
3046  * We can only do this for normal memory objects with a single mapping, and
3047  * it only makes sense to do it if there are 2 or more refs on the original
3048  * object.  i.e. typically a memory object that has been extended into
3049  * multiple vm_map_entry's with non-overlapping ranges.
3050  *
3051  * This makes it easier to remove unused pages and keeps object inheritance
3052  * from being a negative impact on memory usage.
3053  *
3054  * On return the (possibly new) entry->object.vm_object will have an
3055  * additional ref on it for the caller to dispose of (usually by cloning
3056  * the vm_map_entry).  The additional ref had to be done in this routine
3057  * to avoid racing a collapse.  The object's ONEMAPPING flag will also be
3058  * cleared.
3059  *
3060  * The vm_map must be locked and its token held.
3061  */
3062 static void
3063 vm_map_split(vm_map_entry_t entry)
3064 {
3065         /* OPTIMIZED */
3066         vm_object_t oobject, nobject, bobject;
3067         vm_offset_t s, e;
3068         vm_page_t m;
3069         vm_pindex_t offidxstart, offidxend, idx;
3070         vm_size_t size;
3071         vm_ooffset_t offset;
3072         int useshadowlist;
3073
3074         /*
3075          * Optimize away object locks for vnode objects.  Important exit/exec
3076          * critical path.
3077          *
3078          * OBJ_ONEMAPPING doesn't apply to vnode objects but clear the flag
3079          * anyway.
3080          */
3081         oobject = entry->object.vm_object;
3082         if (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) {
3083                 vm_object_reference_quick(oobject);
3084                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3085                 return;
3086         }
3087
3088         /*
3089          * Setup.  Chain lock the original object throughout the entire
3090          * routine to prevent new page faults from occuring.
3091          *
3092          * XXX can madvise WILLNEED interfere with us too?
3093          */
3094         vm_object_hold(oobject);
3095         vm_object_chain_acquire(oobject, 0);
3096
3097         /*
3098          * Original object cannot be split?  Might have also changed state.
3099          */
3100         if (oobject->handle == NULL || (oobject->type != OBJT_DEFAULT &&
3101                                         oobject->type != OBJT_SWAP)) {
3102                 vm_object_chain_release(oobject);
3103                 vm_object_reference_locked(oobject);
3104                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3105                 vm_object_drop(oobject);
3106                 return;
3107         }
3108
3109         /*
3110          * Collapse original object with its backing store as an
3111          * optimization to reduce chain lengths when possible.
3112          *
3113          * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's
3114          * for oobject, so there's no point collapsing it.
3115          *
3116          * Then re-check whether the object can be split.
3117          */
3118         vm_object_collapse(oobject, NULL);
3119
3120         if (oobject->ref_count <= 1 ||
3121             (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) ||
3122             (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) {
3123                 vm_object_chain_release(oobject);
3124                 vm_object_reference_locked(oobject);
3125                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3126                 vm_object_drop(oobject);
3127                 return;
3128         }
3129
3130         /*
3131          * Acquire the chain lock on the backing object.
3132          *
3133          * Give bobject an additional ref count for when it will be shadowed
3134          * by nobject.
3135          */
3136         useshadowlist = 0;
3137         if ((bobject = oobject->backing_object) != NULL) {
3138                 if (bobject->type != OBJT_VNODE) {
3139                         useshadowlist = 1;
3140                         vm_object_hold(bobject);
3141                         vm_object_chain_wait(bobject, 0);
3142                         /* ref for shadowing below */
3143                         vm_object_reference_locked(bobject);
3144                         vm_object_chain_acquire(bobject, 0);
3145                         KKASSERT(bobject->backing_object == bobject);
3146                         KKASSERT((bobject->flags & OBJ_DEAD) == 0);
3147                 } else {
3148                         /*
3149                          * vnodes are not placed on the shadow list but
3150                          * they still get another ref for the backing_object
3151                          * reference.
3152                          */
3153                         vm_object_reference_quick(bobject);
3154                 }
3155         }
3156
3157         /*
3158          * Calculate the object page range and allocate the new object.
3159          */
3160         offset = entry->offset;
3161         s = entry->start;
3162         e = entry->end;
3163
3164         offidxstart = OFF_TO_IDX(offset);
3165         offidxend = offidxstart + OFF_TO_IDX(e - s);
3166         size = offidxend - offidxstart;
3167
3168         switch(oobject->type) {
3169         case OBJT_DEFAULT:
3170                 nobject = default_pager_alloc(NULL, IDX_TO_OFF(size),
3171                                               VM_PROT_ALL, 0);
3172                 break;
3173         case OBJT_SWAP:
3174                 nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size),
3175                                            VM_PROT_ALL, 0);
3176                 break;
3177         default:
3178                 /* not reached */
3179                 nobject = NULL;
3180                 KKASSERT(0);
3181         }
3182
3183         if (nobject == NULL) {
3184                 if (bobject) {
3185                         if (useshadowlist) {
3186                                 vm_object_chain_release(bobject);
3187                                 vm_object_deallocate(bobject);
3188                                 vm_object_drop(bobject);
3189                         } else {
3190                                 vm_object_deallocate(bobject);
3191                         }
3192                 }
3193                 vm_object_chain_release(oobject);
3194                 vm_object_reference_locked(oobject);
3195                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3196                 vm_object_drop(oobject);
3197                 return;
3198         }
3199
3200         /*
3201          * The new object will replace entry->object.vm_object so it needs
3202          * a second reference (the caller expects an additional ref).
3203          */
3204         vm_object_hold(nobject);
3205         vm_object_reference_locked(nobject);
3206         vm_object_chain_acquire(nobject, 0);
3207
3208         /*
3209          * nobject shadows bobject (oobject already shadows bobject).
3210          *
3211          * Adding an object to bobject's shadow list requires refing bobject
3212          * which we did above in the useshadowlist case.
3213          */
3214         if (bobject) {
3215                 nobject->backing_object_offset =
3216                     oobject->backing_object_offset + IDX_TO_OFF(offidxstart);
3217                 nobject->backing_object = bobject;
3218                 if (useshadowlist) {
3219                         bobject->shadow_count++;
3220                         bobject->generation++;
3221                         LIST_INSERT_HEAD(&bobject->shadow_head,
3222                                          nobject, shadow_list);
3223                         vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /*XXX*/
3224                         vm_object_chain_release(bobject);
3225                         vm_object_drop(bobject);
3226                         vm_object_set_flag(nobject, OBJ_ONSHADOW);
3227                 }
3228         }
3229
3230         /*
3231          * Move the VM pages from oobject to nobject
3232          */
3233         for (idx = 0; idx < size; idx++) {
3234                 vm_page_t m;
3235
3236                 m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3237                                              TRUE, "vmpg");
3238                 if (m == NULL)
3239                         continue;
3240
3241                 /*
3242                  * We must wait for pending I/O to complete before we can
3243                  * rename the page.
3244                  *
3245                  * We do not have to VM_PROT_NONE the page as mappings should
3246                  * not be changed by this operation.
3247                  *
3248                  * NOTE: The act of renaming a page updates chaingen for both
3249                  *       objects.
3250                  */
3251                 vm_page_rename(m, nobject, idx);
3252                 /* page automatically made dirty by rename and cache handled */
3253                 /* page remains busy */
3254         }
3255
3256         if (oobject->type == OBJT_SWAP) {
3257                 vm_object_pip_add(oobject, 1);
3258                 /*
3259                  * copy oobject pages into nobject and destroy unneeded
3260                  * pages in shadow object.
3261                  */
3262                 swap_pager_copy(oobject, nobject, offidxstart, 0);
3263                 vm_object_pip_wakeup(oobject);
3264         }
3265
3266         /*
3267          * Wakeup the pages we played with.  No spl protection is needed
3268          * for a simple wakeup.
3269          */
3270         for (idx = 0; idx < size; idx++) {
3271                 m = vm_page_lookup(nobject, idx);
3272                 if (m) {
3273                         KKASSERT(m->flags & PG_BUSY);
3274                         vm_page_wakeup(m);
3275                 }
3276         }
3277         entry->object.vm_object = nobject;
3278         entry->offset = 0LL;
3279
3280         /*
3281          * Cleanup
3282          *
3283          * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the
3284          *       related pages were moved and are no longer applicable to the
3285          *       original object.
3286          *
3287          * NOTE: Deallocate oobject (due to its entry->object.vm_object being
3288          *       replaced by nobject).
3289          */
3290         vm_object_chain_release(nobject);
3291         vm_object_drop(nobject);
3292         if (bobject && useshadowlist) {
3293                 vm_object_chain_release(bobject);
3294                 vm_object_drop(bobject);
3295         }
3296         vm_object_chain_release(oobject);
3297         /*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/
3298         vm_object_deallocate_locked(oobject);
3299         vm_object_drop(oobject);
3300 }
3301
3302 /*
3303  * Copies the contents of the source entry to the destination
3304  * entry.  The entries *must* be aligned properly.
3305  *
3306  * The vm_maps must be exclusively locked.
3307  * The vm_map's token must be held.
3308  *
3309  * Because the maps are locked no faults can be in progress during the
3310  * operation.
3311  */
3312 static void
3313 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
3314                   vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
3315 {
3316         vm_object_t src_object;
3317
3318         if (dst_entry->maptype == VM_MAPTYPE_SUBMAP ||
3319             dst_entry->maptype == VM_MAPTYPE_UKSMAP)
3320                 return;
3321         if (src_entry->maptype == VM_MAPTYPE_SUBMAP ||
3322             src_entry->maptype == VM_MAPTYPE_UKSMAP)
3323                 return;
3324
3325         if (src_entry->wired_count == 0) {
3326                 /*
3327                  * If the source entry is marked needs_copy, it is already
3328                  * write-protected.
3329                  */
3330                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3331                         pmap_protect(src_map->pmap,
3332                             src_entry->start,
3333                             src_entry->end,
3334                             src_entry->protection & ~VM_PROT_WRITE);
3335                 }
3336
3337                 /*
3338                  * Make a copy of the object.
3339                  *
3340                  * The object must be locked prior to checking the object type
3341                  * and for the call to vm_object_collapse() and vm_map_split().
3342                  * We cannot use *_hold() here because the split code will
3343                  * probably try to destroy the object.  The lock is a pool
3344                  * token and doesn't care.
3345                  *
3346                  * We must bump src_map->timestamp when setting
3347                  * MAP_ENTRY_NEEDS_COPY to force any concurrent fault
3348                  * to retry, otherwise the concurrent fault might improperly
3349                  * install a RW pte when its supposed to be a RO(COW) pte.
3350                  * This race can occur because a vnode-backed fault may have
3351                  * to temporarily release the map lock.
3352                  */
3353                 if (src_entry->object.vm_object != NULL) {
3354                         vm_map_split(src_entry);
3355                         src_object = src_entry->object.vm_object;
3356                         dst_entry->object.vm_object = src_object;
3357                         src_entry->eflags |= (MAP_ENTRY_COW |
3358                                               MAP_ENTRY_NEEDS_COPY);
3359                         dst_entry->eflags |= (MAP_ENTRY_COW |
3360                                               MAP_ENTRY_NEEDS_COPY);
3361                         dst_entry->offset = src_entry->offset;
3362                         ++src_map->timestamp;
3363                 } else {
3364                         dst_entry->object.vm_object = NULL;
3365                         dst_entry->offset = 0;
3366                 }
3367
3368                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3369                     dst_entry->end - dst_entry->start, src_entry->start);
3370         } else {
3371                 /*
3372                  * Of course, wired down pages can't be set copy-on-write.
3373                  * Cause wired pages to be copied into the new map by
3374                  * simulating faults (the new pages are pageable)
3375                  */
3376                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3377         }
3378 }
3379
3380 /*
3381  * vmspace_fork:
3382  * Create a new process vmspace structure and vm_map
3383  * based on those of an existing process.  The new map
3384  * is based on the old map, according to the inheritance
3385  * values on the regions in that map.
3386  *
3387  * The source map must not be locked.
3388  * No requirements.
3389  */
3390 static void vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3391                           vm_map_entry_t old_entry, int *countp);
3392 static void vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3393                           vm_map_entry_t old_entry, int *countp);
3394
3395 struct vmspace *
3396 vmspace_fork(struct vmspace *vm1)
3397 {
3398         struct vmspace *vm2;
3399         vm_map_t old_map = &vm1->vm_map;
3400         vm_map_t new_map;
3401         vm_map_entry_t old_entry;
3402         int count;
3403
3404         lwkt_gettoken(&vm1->vm_map.token);
3405         vm_map_lock(old_map);
3406
3407         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3408         lwkt_gettoken(&vm2->vm_map.token);
3409         bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3410             (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3411         new_map = &vm2->vm_map; /* XXX */
3412         new_map->timestamp = 1;
3413
3414         vm_map_lock(new_map);
3415
3416         count = 0;
3417         old_entry = old_map->header.next;
3418         while (old_entry != &old_map->header) {
3419                 ++count;
3420                 old_entry = old_entry->next;
3421         }
3422
3423         count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3424
3425         old_entry = old_map->header.next;
3426         while (old_entry != &old_map->header) {
3427                 switch(old_entry->maptype) {
3428                 case VM_MAPTYPE_SUBMAP:
3429                         panic("vm_map_fork: encountered a submap");
3430                         break;
3431                 case VM_MAPTYPE_UKSMAP:
3432                         vmspace_fork_uksmap_entry(old_map, new_map,
3433                                                   old_entry, &count);
3434                         break;
3435                 case VM_MAPTYPE_NORMAL:
3436                 case VM_MAPTYPE_VPAGETABLE:
3437                         vmspace_fork_normal_entry(old_map, new_map,
3438                                                   old_entry, &count);
3439                         break;
3440                 }
3441                 old_entry = old_entry->next;
3442         }
3443
3444         new_map->size = old_map->size;
3445         vm_map_unlock(old_map);
3446         vm_map_unlock(new_map);
3447         vm_map_entry_release(count);
3448
3449         lwkt_reltoken(&vm2->vm_map.token);
3450         lwkt_reltoken(&vm1->vm_map.token);
3451
3452         return (vm2);
3453 }
3454
3455 static
3456 void
3457 vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3458                           vm_map_entry_t old_entry, int *countp)
3459 {
3460         vm_map_entry_t new_entry;
3461         vm_object_t object;
3462
3463         switch (old_entry->inheritance) {
3464         case VM_INHERIT_NONE:
3465                 break;
3466         case VM_INHERIT_SHARE:
3467                 /*
3468                  * Clone the entry, creating the shared object if
3469                  * necessary.
3470                  */
3471                 if (old_entry->object.vm_object == NULL)
3472                         vm_map_entry_allocate_object(old_entry);
3473
3474                 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3475                         /*
3476                          * Shadow a map_entry which needs a copy,
3477                          * replacing its object with a new object
3478                          * that points to the old one.  Ask the
3479                          * shadow code to automatically add an
3480                          * additional ref.  We can't do it afterwords
3481                          * because we might race a collapse.  The call
3482                          * to vm_map_entry_shadow() will also clear
3483                          * OBJ_ONEMAPPING.
3484                          */
3485                         vm_map_entry_shadow(old_entry, 1);
3486                 } else if (old_entry->object.vm_object) {
3487                         /*
3488                          * We will make a shared copy of the object,
3489                          * and must clear OBJ_ONEMAPPING.
3490                          *
3491                          * Optimize vnode objects.  OBJ_ONEMAPPING
3492                          * is non-applicable but clear it anyway,
3493                          * and its terminal so we don'th ave to deal
3494                          * with chains.  Reduces SMP conflicts.
3495                          *
3496                          * XXX assert that object.vm_object != NULL
3497                          *     since we allocate it above.
3498                          */
3499                         object = old_entry->object.vm_object;
3500                         if (object->type == OBJT_VNODE) {
3501                                 vm_object_reference_quick(object);
3502                                 vm_object_clear_flag(object,
3503                                                      OBJ_ONEMAPPING);
3504                         } else {
3505                                 vm_object_hold(object);
3506                                 vm_object_chain_wait(object, 0);
3507                                 vm_object_reference_locked(object);
3508                                 vm_object_clear_flag(object,
3509                                                      OBJ_ONEMAPPING);
3510                                 vm_object_drop(object);
3511                         }
3512                 }
3513
3514                 /*
3515                  * Clone the entry.  We've already bumped the ref on
3516                  * any vm_object.
3517                  */
3518                 new_entry = vm_map_entry_create(new_map, countp);
3519                 *new_entry = *old_entry;
3520                 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3521                 new_entry->wired_count = 0;
3522
3523                 /*
3524                  * Insert the entry into the new map -- we know we're
3525                  * inserting at the end of the new map.
3526                  */
3527
3528                 vm_map_entry_link(new_map, new_map->header.prev,
3529                                   new_entry);
3530
3531                 /*
3532                  * Update the physical map
3533                  */
3534                 pmap_copy(new_map->pmap, old_map->pmap,
3535                           new_entry->start,
3536                           (old_entry->end - old_entry->start),
3537                           old_entry->start);
3538                 break;
3539         case VM_INHERIT_COPY:
3540                 /*
3541                  * Clone the entry and link into the map.
3542                  */
3543                 new_entry = vm_map_entry_create(new_map, countp);
3544                 *new_entry = *old_entry;
3545                 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3546                 new_entry->wired_count = 0;
3547                 new_entry->object.vm_object = NULL;
3548                 vm_map_entry_link(new_map, new_map->header.prev,
3549                                   new_entry);
3550                 vm_map_copy_entry(old_map, new_map, old_entry,
3551                                   new_entry);
3552                 break;
3553         }
3554 }
3555
3556 /*
3557  * When forking user-kernel shared maps, the map might change in the
3558  * child so do not try to copy the underlying pmap entries.
3559  */
3560 static
3561 void
3562 vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3563                           vm_map_entry_t old_entry, int *countp)
3564 {
3565         vm_map_entry_t new_entry;
3566
3567         new_entry = vm_map_entry_create(new_map, countp);
3568         *new_entry = *old_entry;
3569         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3570         new_entry->wired_count = 0;
3571         vm_map_entry_link(new_map, new_map->header.prev,
3572                           new_entry);
3573 }
3574
3575 /*
3576  * Create an auto-grow stack entry
3577  *
3578  * No requirements.
3579  */
3580 int
3581 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3582               int flags, vm_prot_t prot, vm_prot_t max, int cow)
3583 {
3584         vm_map_entry_t  prev_entry;
3585         vm_map_entry_t  new_stack_entry;
3586         vm_size_t       init_ssize;
3587         int             rv;
3588         int             count;
3589         vm_offset_t     tmpaddr;
3590
3591         cow |= MAP_IS_STACK;
3592
3593         if (max_ssize < sgrowsiz)
3594                 init_ssize = max_ssize;
3595         else
3596                 init_ssize = sgrowsiz;
3597
3598         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3599         vm_map_lock(map);
3600
3601         /*
3602          * Find space for the mapping
3603          */
3604         if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3605                 if (vm_map_findspace(map, addrbos, max_ssize, 1,
3606                                      flags, &tmpaddr)) {
3607                         vm_map_unlock(map);
3608                         vm_map_entry_release(count);
3609                         return (KERN_NO_SPACE);
3610                 }
3611                 addrbos = tmpaddr;
3612         }
3613
3614         /* If addr is already mapped, no go */
3615         if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3616                 vm_map_unlock(map);
3617                 vm_map_entry_release(count);
3618                 return (KERN_NO_SPACE);
3619         }
3620
3621 #if 0
3622         /* XXX already handled by kern_mmap() */
3623         /* If we would blow our VMEM resource limit, no go */
3624         if (map->size + init_ssize >
3625             curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3626                 vm_map_unlock(map);
3627                 vm_map_entry_release(count);
3628                 return (KERN_NO_SPACE);
3629         }
3630 #endif
3631
3632         /*
3633          * If we can't accomodate max_ssize in the current mapping,
3634          * no go.  However, we need to be aware that subsequent user
3635          * mappings might map into the space we have reserved for
3636          * stack, and currently this space is not protected.  
3637          * 
3638          * Hopefully we will at least detect this condition 
3639          * when we try to grow the stack.
3640          */
3641         if ((prev_entry->next != &map->header) &&
3642             (prev_entry->next->start < addrbos + max_ssize)) {
3643                 vm_map_unlock(map);
3644                 vm_map_entry_release(count);
3645                 return (KERN_NO_SPACE);
3646         }
3647
3648         /*
3649          * We initially map a stack of only init_ssize.  We will
3650          * grow as needed later.  Since this is to be a grow 
3651          * down stack, we map at the top of the range.
3652          *
3653          * Note: we would normally expect prot and max to be
3654          * VM_PROT_ALL, and cow to be 0.  Possibly we should
3655          * eliminate these as input parameters, and just
3656          * pass these values here in the insert call.
3657          */
3658         rv = vm_map_insert(map, &count, NULL, NULL,
3659                            0, addrbos + max_ssize - init_ssize,
3660                            addrbos + max_ssize,
3661                            VM_MAPTYPE_NORMAL,
3662                            VM_SUBSYS_STACK, prot, max, cow);
3663
3664         /* Now set the avail_ssize amount */
3665         if (rv == KERN_SUCCESS) {
3666                 if (prev_entry != &map->header)
3667                         vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3668                 new_stack_entry = prev_entry->next;
3669                 if (new_stack_entry->end   != addrbos + max_ssize ||
3670                     new_stack_entry->start != addrbos + max_ssize - init_ssize)
3671                         panic ("Bad entry start/end for new stack entry");
3672                 else 
3673                         new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3674         }
3675
3676         vm_map_unlock(map);
3677         vm_map_entry_release(count);
3678         return (rv);
3679 }
3680
3681 /*
3682  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3683  * desired address is already mapped, or if we successfully grow
3684  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3685  * stack range (this is strange, but preserves compatibility with
3686  * the grow function in vm_machdep.c).
3687  *
3688  * No requirements.
3689  */
3690 int
3691 vm_map_growstack (struct proc *p, vm_offset_t addr)
3692 {
3693         vm_map_entry_t prev_entry;
3694         vm_map_entry_t stack_entry;
3695         vm_map_entry_t new_stack_entry;
3696         struct vmspace *vm = p->p_vmspace;
3697         vm_map_t map = &vm->vm_map;
3698         vm_offset_t    end;
3699         int grow_amount;
3700         int rv = KERN_SUCCESS;
3701         int is_procstack;
3702         int use_read_lock = 1;
3703         int count;
3704
3705         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3706 Retry:
3707         if (use_read_lock)
3708                 vm_map_lock_read(map);
3709         else
3710                 vm_map_lock(map);
3711
3712         /* If addr is already in the entry range, no need to grow.*/
3713         if (vm_map_lookup_entry(map, addr, &prev_entry))
3714                 goto done;
3715
3716         if ((stack_entry = prev_entry->next) == &map->header)
3717                 goto done;
3718         if (prev_entry == &map->header) 
3719                 end = stack_entry->start - stack_entry->aux.avail_ssize;
3720         else
3721                 end = prev_entry->end;
3722
3723         /*
3724          * This next test mimics the old grow function in vm_machdep.c.
3725          * It really doesn't quite make sense, but we do it anyway
3726          * for compatibility.
3727          *
3728          * If not growable stack, return success.  This signals the
3729          * caller to proceed as he would normally with normal vm.
3730          */
3731         if (stack_entry->aux.avail_ssize < 1 ||
3732             addr >= stack_entry->start ||
3733             addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3734                 goto done;
3735         } 
3736         
3737         /* Find the minimum grow amount */
3738         grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3739         if (grow_amount > stack_entry->aux.avail_ssize) {
3740                 rv = KERN_NO_SPACE;
3741                 goto done;
3742         }
3743
3744         /*
3745          * If there is no longer enough space between the entries
3746          * nogo, and adjust the available space.  Note: this 
3747          * should only happen if the user has mapped into the
3748          * stack area after the stack was created, and is
3749          * probably an error.
3750          *
3751          * This also effectively destroys any guard page the user
3752          * might have intended by limiting the stack size.
3753          */
3754         if (grow_amount > stack_entry->start - end) {
3755                 if (use_read_lock && vm_map_lock_upgrade(map)) {
3756                         /* lost lock */
3757                         use_read_lock = 0;
3758                         goto Retry;
3759                 }
3760                 use_read_lock = 0;
3761                 stack_entry->aux.avail_ssize = stack_entry->start - end;
3762                 rv = KERN_NO_SPACE;
3763                 goto done;
3764         }
3765
3766         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3767
3768         /* If this is the main process stack, see if we're over the 
3769          * stack limit.
3770          */
3771         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3772                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3773                 rv = KERN_NO_SPACE;
3774                 goto done;
3775         }
3776
3777         /* Round up the grow amount modulo SGROWSIZ */
3778         grow_amount = roundup (grow_amount, sgrowsiz);
3779         if (grow_amount > stack_entry->aux.avail_ssize) {
3780                 grow_amount = stack_entry->aux.avail_ssize;
3781         }
3782         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3783                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3784                 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3785                               ctob(vm->vm_ssize);
3786         }
3787
3788         /* If we would blow our VMEM resource limit, no go */
3789         if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3790                 rv = KERN_NO_SPACE;
3791                 goto done;
3792         }
3793
3794         if (use_read_lock && vm_map_lock_upgrade(map)) {
3795                 /* lost lock */
3796                 use_read_lock = 0;
3797                 goto Retry;
3798         }
3799         use_read_lock = 0;
3800
3801         /* Get the preliminary new entry start value */
3802         addr = stack_entry->start - grow_amount;
3803
3804         /* If this puts us into the previous entry, cut back our growth
3805          * to the available space.  Also, see the note above.
3806          */
3807         if (addr < end) {
3808                 stack_entry->aux.avail_ssize = stack_entry->start - end;
3809                 addr = end;
3810         }
3811
3812         rv = vm_map_insert(map, &count, NULL, NULL,
3813                            0, addr, stack_entry->start,
3814                            VM_MAPTYPE_NORMAL,
3815                            VM_SUBSYS_STACK, VM_PROT_ALL, VM_PROT_ALL, 0);
3816
3817         /* Adjust the available stack space by the amount we grew. */
3818         if (rv == KERN_SUCCESS) {
3819                 if (prev_entry != &map->header)
3820                         vm_map_clip_end(map, prev_entry, addr, &count);
3821                 new_stack_entry = prev_entry->next;
3822                 if (new_stack_entry->end   != stack_entry->start  ||
3823                     new_stack_entry->start != addr)
3824                         panic ("Bad stack grow start/end in new stack entry");
3825                 else {
3826                         new_stack_entry->aux.avail_ssize =
3827                                 stack_entry->aux.avail_ssize -
3828                                 (new_stack_entry->end - new_stack_entry->start);
3829                         if (is_procstack)
3830                                 vm->vm_ssize += btoc(new_stack_entry->end -
3831                                                      new_stack_entry->start);
3832                 }
3833
3834                 if (map->flags & MAP_WIREFUTURE)
3835                         vm_map_unwire(map, new_stack_entry->start,
3836                                       new_stack_entry->end, FALSE);
3837         }
3838
3839 done:
3840         if (use_read_lock)
3841                 vm_map_unlock_read(map);
3842         else
3843                 vm_map_unlock(map);
3844         vm_map_entry_release(count);
3845         return (rv);
3846 }
3847
3848 /*
3849  * Unshare the specified VM space for exec.  If other processes are
3850  * mapped to it, then create a new one.  The new vmspace is null.
3851  *
3852  * No requirements.
3853  */
3854 void
3855 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 
3856 {
3857         struct vmspace *oldvmspace = p->p_vmspace;
3858         struct vmspace *newvmspace;
3859         vm_map_t map = &p->p_vmspace->vm_map;
3860
3861         /*
3862          * If we are execing a resident vmspace we fork it, otherwise
3863          * we create a new vmspace.  Note that exitingcnt is not
3864          * copied to the new vmspace.
3865          */
3866         lwkt_gettoken(&oldvmspace->vm_map.token);
3867         if (vmcopy)  {
3868                 newvmspace = vmspace_fork(vmcopy);
3869                 lwkt_gettoken(&newvmspace->vm_map.token);
3870         } else {
3871                 newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3872                 lwkt_gettoken(&newvmspace->vm_map.token);
3873                 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3874                       (caddr_t)&oldvmspace->vm_endcopy -
3875                        (caddr_t)&oldvmspace->vm_startcopy);
3876         }
3877
3878         /*
3879          * Finish initializing the vmspace before assigning it
3880          * to the process.  The vmspace will become the current vmspace
3881          * if p == curproc.
3882          */
3883         pmap_pinit2(vmspace_pmap(newvmspace));
3884         pmap_replacevm(p, newvmspace, 0);
3885         lwkt_reltoken(&newvmspace->vm_map.token);
3886         lwkt_reltoken(&oldvmspace->vm_map.token);
3887         vmspace_rel(oldvmspace);
3888 }
3889
3890 /*
3891  * Unshare the specified VM space for forcing COW.  This
3892  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3893  */
3894 void
3895 vmspace_unshare(struct proc *p) 
3896 {
3897         struct vmspace *oldvmspace = p->p_vmspace;
3898         struct vmspace *newvmspace;
3899
3900         lwkt_gettoken(&oldvmspace->vm_map.token);
3901         if (vmspace_getrefs(oldvmspace) == 1) {
3902                 lwkt_reltoken(&oldvmspace->vm_map.token);
3903                 return;
3904         }
3905         newvmspace = vmspace_fork(oldvmspace);
3906         lwkt_gettoken(&newvmspace->vm_map.token);
3907         pmap_pinit2(vmspace_pmap(newvmspace));
3908         pmap_replacevm(p, newvmspace, 0);
3909         lwkt_reltoken(&newvmspace->vm_map.token);
3910         lwkt_reltoken(&oldvmspace->vm_map.token);
3911         vmspace_rel(oldvmspace);
3912 }
3913
3914 /*
3915  * vm_map_hint: return the beginning of the best area suitable for
3916  * creating a new mapping with "prot" protection.
3917  *
3918  * No requirements.
3919  */
3920 vm_offset_t
3921 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
3922 {
3923         struct vmspace *vms = p->p_vmspace;
3924
3925         if (!randomize_mmap || addr != 0) {
3926                 /*
3927                  * Set a reasonable start point for the hint if it was
3928                  * not specified or if it falls within the heap space.
3929                  * Hinted mmap()s do not allocate out of the heap space.
3930                  */
3931                 if (addr == 0 ||
3932                     (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
3933                      addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) {
3934                         addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz);
3935                 }
3936
3937                 return addr;
3938         }
3939         addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ;
3940         addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1);
3941
3942         return (round_page(addr));
3943 }
3944
3945 /*
3946  * Finds the VM object, offset, and protection for a given virtual address
3947  * in the specified map, assuming a page fault of the type specified.
3948  *
3949  * Leaves the map in question locked for read; return values are guaranteed
3950  * until a vm_map_lookup_done call is performed.  Note that the map argument
3951  * is in/out; the returned map must be used in the call to vm_map_lookup_done.
3952  *
3953  * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
3954  * that fast.
3955  *
3956  * If a lookup is requested with "write protection" specified, the map may
3957  * be changed to perform virtual copying operations, although the data
3958  * referenced will remain the same.
3959  *
3960  * No requirements.
3961  */
3962 int
3963 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
3964               vm_offset_t vaddr,
3965               vm_prot_t fault_typea,
3966               vm_map_entry_t *out_entry,        /* OUT */
3967               vm_object_t *object,              /* OUT */
3968               vm_pindex_t *pindex,              /* OUT */
3969               vm_prot_t *out_prot,              /* OUT */
3970               boolean_t *wired)                 /* OUT */
3971 {
3972         vm_map_entry_t entry;
3973         vm_map_t map = *var_map;
3974         vm_prot_t prot;
3975         vm_prot_t fault_type = fault_typea;
3976         int use_read_lock = 1;
3977         int rv = KERN_SUCCESS;
3978
3979 RetryLookup:
3980         if (use_read_lock)
3981                 vm_map_lock_read(map);
3982         else
3983                 vm_map_lock(map);
3984
3985         /*
3986          * If the map has an interesting hint, try it before calling full
3987          * blown lookup routine.
3988          */
3989         entry = map->hint;
3990         cpu_ccfence();
3991         *out_entry = entry;
3992         *object = NULL;
3993
3994         if ((entry == &map->header) ||
3995             (vaddr < entry->start) || (vaddr >= entry->end)) {
3996                 vm_map_entry_t tmp_entry;
3997
3998                 /*
3999                  * Entry was either not a valid hint, or the vaddr was not
4000                  * contained in the entry, so do a full lookup.
4001                  */
4002                 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
4003                         rv = KERN_INVALID_ADDRESS;
4004                         goto done;
4005                 }
4006
4007                 entry = tmp_entry;
4008                 *out_entry = entry;
4009         }
4010         
4011         /*
4012          * Handle submaps.
4013          */
4014         if (entry->maptype == VM_MAPTYPE_SUBMAP) {
4015                 vm_map_t old_map = map;
4016
4017                 *var_map = map = entry->object.sub_map;
4018                 if (use_read_lock)
4019                         vm_map_unlock_read(old_map);
4020                 else
4021                         vm_map_unlock(old_map);
4022                 use_read_lock = 1;
4023                 goto RetryLookup;
4024         }
4025
4026         /*
4027          * Check whether this task is allowed to have this page.
4028          * Note the special case for MAP_ENTRY_COW
4029          * pages with an override.  This is to implement a forced
4030          * COW for debuggers.
4031          */
4032
4033         if (fault_type & VM_PROT_OVERRIDE_WRITE)
4034                 prot = entry->max_protection;
4035         else
4036                 prot = entry->protection;
4037
4038         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
4039         if ((fault_type & prot) != fault_type) {
4040                 rv = KERN_PROTECTION_FAILURE;
4041                 goto done;
4042         }
4043
4044         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4045             (entry->eflags & MAP_ENTRY_COW) &&
4046             (fault_type & VM_PROT_WRITE) &&
4047             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
4048                 rv = KERN_PROTECTION_FAILURE;
4049                 goto done;
4050         }
4051
4052         /*
4053          * If this page is not pageable, we have to get it for all possible
4054          * accesses.
4055          */
4056         *wired = (entry->wired_count != 0);
4057         if (*wired)
4058                 prot = fault_type = entry->protection;
4059
4060         /*
4061          * Virtual page tables may need to update the accessed (A) bit
4062          * in a page table entry.  Upgrade the fault to a write fault for
4063          * that case if the map will support it.  If the map does not support
4064          * it the page table entry simply will not be updated.
4065          */
4066         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
4067                 if (prot & VM_PROT_WRITE)
4068                         fault_type |= VM_PROT_WRITE;
4069         }
4070
4071         if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
4072             pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
4073                 if ((prot & VM_PROT_WRITE) == 0)
4074                         fault_type |= VM_PROT_WRITE;
4075         }
4076
4077         /*
4078          * Only NORMAL and VPAGETABLE maps are object-based.  UKSMAPs are not.
4079          */
4080         if (entry->maptype != VM_MAPTYPE_NORMAL &&
4081             entry->maptype != VM_MAPTYPE_VPAGETABLE) {
4082                 *object = NULL;
4083                 goto skip;
4084         }
4085
4086         /*
4087          * If the entry was copy-on-write, we either ...
4088          */
4089         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4090                 /*
4091                  * If we want to write the page, we may as well handle that
4092                  * now since we've got the map locked.
4093                  *
4094                  * If we don't need to write the page, we just demote the
4095                  * permissions allowed.
4096                  */
4097
4098                 if (fault_type & VM_PROT_WRITE) {
4099                         /*
4100                          * Not allowed if TDF_NOFAULT is set as the shadowing
4101                          * operation can deadlock against the faulting
4102                          * function due to the copy-on-write.
4103                          */
4104                         if (curthread->td_flags & TDF_NOFAULT) {
4105                                 rv = KERN_FAILURE_NOFAULT;
4106                                 goto done;
4107                         }
4108
4109                         /*
4110                          * Make a new object, and place it in the object
4111                          * chain.  Note that no new references have appeared
4112                          * -- one just moved from the map to the new
4113                          * object.
4114                          */
4115
4116                         if (use_read_lock && vm_map_lock_upgrade(map)) {
4117                                 /* lost lock */
4118                                 use_read_lock = 0;
4119                                 goto RetryLookup;
4120                         }
4121                         use_read_lock = 0;
4122
4123                         vm_map_entry_shadow(entry, 0);
4124                 } else {
4125                         /*
4126                          * We're attempting to read a copy-on-write page --
4127                          * don't allow writes.
4128                          */
4129
4130                         prot &= ~VM_PROT_WRITE;
4131                 }
4132         }
4133
4134         /*
4135          * Create an object if necessary.
4136          */
4137         if (entry->object.vm_object == NULL && !map->system_map) {
4138                 if (use_read_lock && vm_map_lock_upgrade(map))  {
4139                         /* lost lock */
4140                         use_read_lock = 0;
4141                         goto RetryLookup;
4142                 }
4143                 use_read_lock = 0;
4144                 vm_map_entry_allocate_object(entry);
4145         }
4146
4147         /*
4148          * Return the object/offset from this entry.  If the entry was
4149          * copy-on-write or empty, it has been fixed up.
4150          */
4151         *object = entry->object.vm_object;
4152
4153 skip:
4154         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4155
4156         /*
4157          * Return whether this is the only map sharing this data.  On
4158          * success we return with a read lock held on the map.  On failure
4159          * we return with the map unlocked.
4160          */
4161         *out_prot = prot;
4162 done:
4163         if (rv == KERN_SUCCESS) {
4164                 if (use_read_lock == 0)
4165                         vm_map_lock_downgrade(map);
4166         } else if (use_read_lock) {
4167                 vm_map_unlock_read(map);
4168         } else {
4169                 vm_map_unlock(map);
4170         }
4171         return (rv);
4172 }
4173
4174 /*
4175  * Releases locks acquired by a vm_map_lookup()
4176  * (according to the handle returned by that lookup).
4177  *
4178  * No other requirements.
4179  */
4180 void
4181 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
4182 {
4183         /*
4184          * Unlock the main-level map
4185          */
4186         vm_map_unlock_read(map);
4187         if (count)
4188                 vm_map_entry_release(count);
4189 }
4190
4191 #include "opt_ddb.h"
4192 #ifdef DDB
4193 #include <sys/kernel.h>
4194
4195 #include <ddb/ddb.h>
4196
4197 /*
4198  * Debugging only
4199  */
4200 DB_SHOW_COMMAND(map, vm_map_print)
4201 {
4202         static int nlines;
4203         /* XXX convert args. */
4204         vm_map_t map = (vm_map_t)addr;
4205         boolean_t full = have_addr;
4206
4207         vm_map_entry_t entry;
4208
4209         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4210             (void *)map,
4211             (void *)map->pmap, map->nentries, map->timestamp);
4212         nlines++;
4213
4214         if (!full && db_indent)
4215                 return;
4216
4217         db_indent += 2;
4218         for (entry = map->header.next; entry != &map->header;
4219             entry = entry->next) {
4220                 db_iprintf("map entry %p: start=%p, end=%p\n",
4221                     (void *)entry, (void *)entry->start, (void *)entry->end);
4222                 nlines++;
4223                 {
4224                         static char *inheritance_name[4] =
4225                         {"share", "copy", "none", "donate_copy"};
4226
4227                         db_iprintf(" prot=%x/%x/%s",
4228                             entry->protection,
4229                             entry->max_protection,
4230                             inheritance_name[(int)(unsigned char)entry->inheritance]);
4231                         if (entry->wired_count != 0)
4232                                 db_printf(", wired");
4233                 }
4234                 switch(entry->maptype) {
4235                 case VM_MAPTYPE_SUBMAP:
4236                         /* XXX no %qd in kernel.  Truncate entry->offset. */
4237                         db_printf(", share=%p, offset=0x%lx\n",
4238                             (void *)entry->object.sub_map,
4239                             (long)entry->offset);
4240                         nlines++;
4241                         if ((entry->prev == &map->header) ||
4242                             (entry->prev->object.sub_map !=
4243                                 entry->object.sub_map)) {
4244                                 db_indent += 2;
4245                                 vm_map_print((db_expr_t)(intptr_t)
4246                                              entry->object.sub_map,
4247                                              full, 0, NULL);
4248                                 db_indent -= 2;
4249                         }
4250                         break;
4251                 case VM_MAPTYPE_NORMAL:
4252                 case VM_MAPTYPE_VPAGETABLE:
4253                         /* XXX no %qd in kernel.  Truncate entry->offset. */
4254                         db_printf(", object=%p, offset=0x%lx",
4255                             (void *)entry->object.vm_object,
4256                             (long)entry->offset);
4257                         if (entry->eflags & MAP_ENTRY_COW)
4258                                 db_printf(", copy (%s)",
4259                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4260                         db_printf("\n");
4261                         nlines++;
4262
4263                         if ((entry->prev == &map->header) ||
4264                             (entry->prev->object.vm_object !=
4265                                 entry->object.vm_object)) {
4266                                 db_indent += 2;
4267                                 vm_object_print((db_expr_t)(intptr_t)
4268                                                 entry->object.vm_object,
4269                                                 full, 0, NULL);
4270                                 nlines += 4;
4271                                 db_indent -= 2;
4272                         }
4273                         break;
4274                 case VM_MAPTYPE_UKSMAP:
4275                         db_printf(", uksmap=%p, offset=0x%lx",
4276                             (void *)entry->object.uksmap,
4277                             (long)entry->offset);
4278                         if (entry->eflags & MAP_ENTRY_COW)
4279                                 db_printf(", copy (%s)",
4280                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4281                         db_printf("\n");
4282                         nlines++;
4283                         break;
4284                 default:
4285                         break;
4286                 }
4287         }
4288         db_indent -= 2;
4289         if (db_indent == 0)
4290                 nlines = 0;
4291 }
4292
4293 /*
4294  * Debugging only
4295  */
4296 DB_SHOW_COMMAND(procvm, procvm)
4297 {
4298         struct proc *p;
4299
4300         if (have_addr) {
4301                 p = (struct proc *) addr;
4302         } else {
4303                 p = curproc;
4304         }
4305
4306         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4307             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4308             (void *)vmspace_pmap(p->p_vmspace));
4309
4310         vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4311 }
4312
4313 #endif /* DDB */