drm/i915: Update to Linux 4.2
[dragonfly.git] / sys / dev / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <drm/drmP.h>
31 #include "i915_drv.h"
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 bool
37 intel_ring_initialized(struct intel_engine_cs *ring)
38 {
39         struct drm_device *dev = ring->dev;
40
41         if (!dev)
42                 return false;
43
44         if (i915.enable_execlists) {
45                 struct intel_context *dctx = ring->default_context;
46                 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48                 return ringbuf->obj;
49         } else
50                 return ring->buffer && ring->buffer->obj;
51 }
52
53 int __intel_ring_space(int head, int tail, int size)
54 {
55         int space = head - tail;
56         if (space <= 0)
57                 space += size;
58         return space - I915_RING_FREE_SPACE;
59 }
60
61 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62 {
63         if (ringbuf->last_retired_head != -1) {
64                 ringbuf->head = ringbuf->last_retired_head;
65                 ringbuf->last_retired_head = -1;
66         }
67
68         ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69                                             ringbuf->tail, ringbuf->size);
70 }
71
72 int intel_ring_space(struct intel_ringbuffer *ringbuf)
73 {
74         intel_ring_update_space(ringbuf);
75         return ringbuf->space;
76 }
77
78 bool intel_ring_stopped(struct intel_engine_cs *ring)
79 {
80         struct drm_i915_private *dev_priv = ring->dev->dev_private;
81         return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82 }
83
84 void __intel_ring_advance(struct intel_engine_cs *ring)
85 {
86         struct intel_ringbuffer *ringbuf = ring->buffer;
87         ringbuf->tail &= ringbuf->size - 1;
88         if (intel_ring_stopped(ring))
89                 return;
90         ring->write_tail(ring, ringbuf->tail);
91 }
92
93 static int
94 gen2_render_ring_flush(struct intel_engine_cs *ring,
95                        u32      invalidate_domains,
96                        u32      flush_domains)
97 {
98         u32 cmd;
99         int ret;
100
101         cmd = MI_FLUSH;
102         if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
103                 cmd |= MI_NO_WRITE_FLUSH;
104
105         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
106                 cmd |= MI_READ_FLUSH;
107
108         ret = intel_ring_begin(ring, 2);
109         if (ret)
110                 return ret;
111
112         intel_ring_emit(ring, cmd);
113         intel_ring_emit(ring, MI_NOOP);
114         intel_ring_advance(ring);
115
116         return 0;
117 }
118
119 static int
120 gen4_render_ring_flush(struct intel_engine_cs *ring,
121                        u32      invalidate_domains,
122                        u32      flush_domains)
123 {
124         struct drm_device *dev = ring->dev;
125         u32 cmd;
126         int ret;
127
128         /*
129          * read/write caches:
130          *
131          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
132          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
133          * also flushed at 2d versus 3d pipeline switches.
134          *
135          * read-only caches:
136          *
137          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
138          * MI_READ_FLUSH is set, and is always flushed on 965.
139          *
140          * I915_GEM_DOMAIN_COMMAND may not exist?
141          *
142          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
143          * invalidated when MI_EXE_FLUSH is set.
144          *
145          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
146          * invalidated with every MI_FLUSH.
147          *
148          * TLBs:
149          *
150          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
151          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
152          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
153          * are flushed at any MI_FLUSH.
154          */
155
156         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
157         if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
158                 cmd &= ~MI_NO_WRITE_FLUSH;
159         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
160                 cmd |= MI_EXE_FLUSH;
161
162         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
163             (IS_G4X(dev) || IS_GEN5(dev)))
164                 cmd |= MI_INVALIDATE_ISP;
165
166         ret = intel_ring_begin(ring, 2);
167         if (ret)
168                 return ret;
169
170         intel_ring_emit(ring, cmd);
171         intel_ring_emit(ring, MI_NOOP);
172         intel_ring_advance(ring);
173
174         return 0;
175 }
176
177 /**
178  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
179  * implementing two workarounds on gen6.  From section 1.4.7.1
180  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
181  *
182  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
183  * produced by non-pipelined state commands), software needs to first
184  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
185  * 0.
186  *
187  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
188  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
189  *
190  * And the workaround for these two requires this workaround first:
191  *
192  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
193  * BEFORE the pipe-control with a post-sync op and no write-cache
194  * flushes.
195  *
196  * And this last workaround is tricky because of the requirements on
197  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
198  * volume 2 part 1:
199  *
200  *     "1 of the following must also be set:
201  *      - Render Target Cache Flush Enable ([12] of DW1)
202  *      - Depth Cache Flush Enable ([0] of DW1)
203  *      - Stall at Pixel Scoreboard ([1] of DW1)
204  *      - Depth Stall ([13] of DW1)
205  *      - Post-Sync Operation ([13] of DW1)
206  *      - Notify Enable ([8] of DW1)"
207  *
208  * The cache flushes require the workaround flush that triggered this
209  * one, so we can't use it.  Depth stall would trigger the same.
210  * Post-sync nonzero is what triggered this second workaround, so we
211  * can't use that one either.  Notify enable is IRQs, which aren't
212  * really our business.  That leaves only stall at scoreboard.
213  */
214 static int
215 intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
216 {
217         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
218         int ret;
219
220
221         ret = intel_ring_begin(ring, 6);
222         if (ret)
223                 return ret;
224
225         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
226         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
227                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
228         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
229         intel_ring_emit(ring, 0); /* low dword */
230         intel_ring_emit(ring, 0); /* high dword */
231         intel_ring_emit(ring, MI_NOOP);
232         intel_ring_advance(ring);
233
234         ret = intel_ring_begin(ring, 6);
235         if (ret)
236                 return ret;
237
238         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
239         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
240         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
241         intel_ring_emit(ring, 0);
242         intel_ring_emit(ring, 0);
243         intel_ring_emit(ring, MI_NOOP);
244         intel_ring_advance(ring);
245
246         return 0;
247 }
248
249 static int
250 gen6_render_ring_flush(struct intel_engine_cs *ring,
251                          u32 invalidate_domains, u32 flush_domains)
252 {
253         u32 flags = 0;
254         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
255         int ret;
256
257         /* Force SNB workarounds for PIPE_CONTROL flushes */
258         ret = intel_emit_post_sync_nonzero_flush(ring);
259         if (ret)
260                 return ret;
261
262         /* Just flush everything.  Experiments have shown that reducing the
263          * number of bits based on the write domains has little performance
264          * impact.
265          */
266         if (flush_domains) {
267                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
268                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
269                 /*
270                  * Ensure that any following seqno writes only happen
271                  * when the render cache is indeed flushed.
272                  */
273                 flags |= PIPE_CONTROL_CS_STALL;
274         }
275         if (invalidate_domains) {
276                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
277                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
278                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
279                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
280                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
281                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
282                 /*
283                  * TLB invalidate requires a post-sync write.
284                  */
285                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
286         }
287
288         ret = intel_ring_begin(ring, 4);
289         if (ret)
290                 return ret;
291
292         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
293         intel_ring_emit(ring, flags);
294         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
295         intel_ring_emit(ring, 0);
296         intel_ring_advance(ring);
297
298         return 0;
299 }
300
301 static int
302 gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
303 {
304         int ret;
305
306         ret = intel_ring_begin(ring, 4);
307         if (ret)
308                 return ret;
309
310         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
311         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
312                               PIPE_CONTROL_STALL_AT_SCOREBOARD);
313         intel_ring_emit(ring, 0);
314         intel_ring_emit(ring, 0);
315         intel_ring_advance(ring);
316
317         return 0;
318 }
319
320 static int
321 gen7_render_ring_flush(struct intel_engine_cs *ring,
322                        u32 invalidate_domains, u32 flush_domains)
323 {
324         u32 flags = 0;
325         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
326         int ret;
327
328         /*
329          * Ensure that any following seqno writes only happen when the render
330          * cache is indeed flushed.
331          *
332          * Workaround: 4th PIPE_CONTROL command (except the ones with only
333          * read-cache invalidate bits set) must have the CS_STALL bit set. We
334          * don't try to be clever and just set it unconditionally.
335          */
336         flags |= PIPE_CONTROL_CS_STALL;
337
338         /* Just flush everything.  Experiments have shown that reducing the
339          * number of bits based on the write domains has little performance
340          * impact.
341          */
342         if (flush_domains) {
343                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
344                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
345         }
346         if (invalidate_domains) {
347                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
348                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
349                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
350                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
351                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
352                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
353                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
354                 /*
355                  * TLB invalidate requires a post-sync write.
356                  */
357                 flags |= PIPE_CONTROL_QW_WRITE;
358                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
359
360                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
361
362                 /* Workaround: we must issue a pipe_control with CS-stall bit
363                  * set before a pipe_control command that has the state cache
364                  * invalidate bit set. */
365                 gen7_render_ring_cs_stall_wa(ring);
366         }
367
368         ret = intel_ring_begin(ring, 4);
369         if (ret)
370                 return ret;
371
372         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
373         intel_ring_emit(ring, flags);
374         intel_ring_emit(ring, scratch_addr);
375         intel_ring_emit(ring, 0);
376         intel_ring_advance(ring);
377
378         return 0;
379 }
380
381 static int
382 gen8_emit_pipe_control(struct intel_engine_cs *ring,
383                        u32 flags, u32 scratch_addr)
384 {
385         int ret;
386
387         ret = intel_ring_begin(ring, 6);
388         if (ret)
389                 return ret;
390
391         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
392         intel_ring_emit(ring, flags);
393         intel_ring_emit(ring, scratch_addr);
394         intel_ring_emit(ring, 0);
395         intel_ring_emit(ring, 0);
396         intel_ring_emit(ring, 0);
397         intel_ring_advance(ring);
398
399         return 0;
400 }
401
402 static int
403 gen8_render_ring_flush(struct intel_engine_cs *ring,
404                        u32 invalidate_domains, u32 flush_domains)
405 {
406         u32 flags = 0;
407         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
408         int ret;
409
410         flags |= PIPE_CONTROL_CS_STALL;
411
412         if (flush_domains) {
413                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
414                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
415         }
416         if (invalidate_domains) {
417                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
418                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
419                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
420                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
421                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
422                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
423                 flags |= PIPE_CONTROL_QW_WRITE;
424                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
425
426                 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
427                 ret = gen8_emit_pipe_control(ring,
428                                              PIPE_CONTROL_CS_STALL |
429                                              PIPE_CONTROL_STALL_AT_SCOREBOARD,
430                                              0);
431                 if (ret)
432                         return ret;
433         }
434
435         return gen8_emit_pipe_control(ring, flags, scratch_addr);
436 }
437
438 static void ring_write_tail(struct intel_engine_cs *ring,
439                             u32 value)
440 {
441         struct drm_i915_private *dev_priv = ring->dev->dev_private;
442         I915_WRITE_TAIL(ring, value);
443 }
444
445 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
446 {
447         struct drm_i915_private *dev_priv = ring->dev->dev_private;
448         u64 acthd;
449
450         if (INTEL_INFO(ring->dev)->gen >= 8)
451                 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
452                                          RING_ACTHD_UDW(ring->mmio_base));
453         else if (INTEL_INFO(ring->dev)->gen >= 4)
454                 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
455         else
456                 acthd = I915_READ(ACTHD);
457
458         return acthd;
459 }
460
461 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
462 {
463         struct drm_i915_private *dev_priv = ring->dev->dev_private;
464         u32 addr;
465
466         addr = dev_priv->status_page_dmah->busaddr;
467         if (INTEL_INFO(ring->dev)->gen >= 4)
468                 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
469         I915_WRITE(HWS_PGA, addr);
470 }
471
472 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
473 {
474         struct drm_device *dev = ring->dev;
475         struct drm_i915_private *dev_priv = ring->dev->dev_private;
476         u32 mmio = 0;
477
478         /* The ring status page addresses are no longer next to the rest of
479          * the ring registers as of gen7.
480          */
481         if (IS_GEN7(dev)) {
482                 switch (ring->id) {
483                 case RCS:
484                         mmio = RENDER_HWS_PGA_GEN7;
485                         break;
486                 case BCS:
487                         mmio = BLT_HWS_PGA_GEN7;
488                         break;
489                 /*
490                  * VCS2 actually doesn't exist on Gen7. Only shut up
491                  * gcc switch check warning
492                  */
493                 case VCS2:
494                 case VCS:
495                         mmio = BSD_HWS_PGA_GEN7;
496                         break;
497                 case VECS:
498                         mmio = VEBOX_HWS_PGA_GEN7;
499                         break;
500                 }
501         } else if (IS_GEN6(ring->dev)) {
502                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
503         } else {
504                 /* XXX: gen8 returns to sanity */
505                 mmio = RING_HWS_PGA(ring->mmio_base);
506         }
507
508         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
509         POSTING_READ(mmio);
510
511         /*
512          * Flush the TLB for this page
513          *
514          * FIXME: These two bits have disappeared on gen8, so a question
515          * arises: do we still need this and if so how should we go about
516          * invalidating the TLB?
517          */
518         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
519                 u32 reg = RING_INSTPM(ring->mmio_base);
520
521                 /* ring should be idle before issuing a sync flush*/
522                 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
523
524                 I915_WRITE(reg,
525                            _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
526                                               INSTPM_SYNC_FLUSH));
527                 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
528                              1000))
529                         DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
530                                   ring->name);
531         }
532 }
533
534 static bool stop_ring(struct intel_engine_cs *ring)
535 {
536         struct drm_i915_private *dev_priv = to_i915(ring->dev);
537
538         if (!IS_GEN2(ring->dev)) {
539                 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
540                 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
541                         DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
542                         /* Sometimes we observe that the idle flag is not
543                          * set even though the ring is empty. So double
544                          * check before giving up.
545                          */
546                         if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
547                                 return false;
548                 }
549         }
550
551         I915_WRITE_CTL(ring, 0);
552         I915_WRITE_HEAD(ring, 0);
553         ring->write_tail(ring, 0);
554
555         if (!IS_GEN2(ring->dev)) {
556                 (void)I915_READ_CTL(ring);
557                 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
558         }
559
560         return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
561 }
562
563 static int init_ring_common(struct intel_engine_cs *ring)
564 {
565         struct drm_device *dev = ring->dev;
566         struct drm_i915_private *dev_priv = dev->dev_private;
567         struct intel_ringbuffer *ringbuf = ring->buffer;
568         struct drm_i915_gem_object *obj = ringbuf->obj;
569         int ret = 0;
570
571         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
572
573         if (!stop_ring(ring)) {
574                 /* G45 ring initialization often fails to reset head to zero */
575                 DRM_DEBUG_KMS("%s head not reset to zero "
576                               "ctl %08x head %08x tail %08x start %08x\n",
577                               ring->name,
578                               I915_READ_CTL(ring),
579                               I915_READ_HEAD(ring),
580                               I915_READ_TAIL(ring),
581                               I915_READ_START(ring));
582
583                 if (!stop_ring(ring)) {
584                         DRM_ERROR("failed to set %s head to zero "
585                                   "ctl %08x head %08x tail %08x start %08x\n",
586                                   ring->name,
587                                   I915_READ_CTL(ring),
588                                   I915_READ_HEAD(ring),
589                                   I915_READ_TAIL(ring),
590                                   I915_READ_START(ring));
591                         ret = -EIO;
592                         goto out;
593                 }
594         }
595
596         if (I915_NEED_GFX_HWS(dev))
597                 intel_ring_setup_status_page(ring);
598         else
599                 ring_setup_phys_status_page(ring);
600
601         /* Enforce ordering by reading HEAD register back */
602         I915_READ_HEAD(ring);
603
604         /* Initialize the ring. This must happen _after_ we've cleared the ring
605          * registers with the above sequence (the readback of the HEAD registers
606          * also enforces ordering), otherwise the hw might lose the new ring
607          * register values. */
608         I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
609
610         /* WaClearRingBufHeadRegAtInit:ctg,elk */
611         if (I915_READ_HEAD(ring))
612                 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
613                           ring->name, I915_READ_HEAD(ring));
614         I915_WRITE_HEAD(ring, 0);
615         (void)I915_READ_HEAD(ring);
616
617         I915_WRITE_CTL(ring,
618                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
619                         | RING_VALID);
620
621         /* If the head is still not zero, the ring is dead */
622         if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
623                      I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
624                      (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
625                 DRM_ERROR("%s initialization failed "
626                           "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
627                           ring->name,
628                           I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
629                           I915_READ_HEAD(ring), I915_READ_TAIL(ring),
630                           I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
631                 ret = -EIO;
632                 goto out;
633         }
634
635         ringbuf->last_retired_head = -1;
636         ringbuf->head = I915_READ_HEAD(ring);
637         ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
638         intel_ring_update_space(ringbuf);
639
640         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
641
642 out:
643         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
644
645         return ret;
646 }
647
648 void
649 intel_fini_pipe_control(struct intel_engine_cs *ring)
650 {
651         struct drm_device *dev = ring->dev;
652
653         if (ring->scratch.obj == NULL)
654                 return;
655
656         if (INTEL_INFO(dev)->gen >= 5) {
657                 kunmap(ring->scratch.obj->pages[0]);
658                 i915_gem_object_ggtt_unpin(ring->scratch.obj);
659         }
660
661         drm_gem_object_unreference(&ring->scratch.obj->base);
662         ring->scratch.obj = NULL;
663 }
664
665 int
666 intel_init_pipe_control(struct intel_engine_cs *ring)
667 {
668         int ret;
669
670         WARN_ON(ring->scratch.obj);
671
672         ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
673         if (ring->scratch.obj == NULL) {
674                 DRM_ERROR("Failed to allocate seqno page\n");
675                 ret = -ENOMEM;
676                 goto err;
677         }
678
679         ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
680         if (ret)
681                 goto err_unref;
682
683         ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
684         if (ret)
685                 goto err_unref;
686
687         ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
688         ring->scratch.cpu_page = kmap(ring->scratch.obj->pages[0]);
689         if (ring->scratch.cpu_page == NULL) {
690                 ret = -ENOMEM;
691                 goto err_unpin;
692         }
693
694         DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
695                          ring->name, ring->scratch.gtt_offset);
696         return 0;
697
698 err_unpin:
699         i915_gem_object_ggtt_unpin(ring->scratch.obj);
700 err_unref:
701         drm_gem_object_unreference(&ring->scratch.obj->base);
702 err:
703         return ret;
704 }
705
706 static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
707                                        struct intel_context *ctx)
708 {
709         int ret, i;
710         struct drm_device *dev = ring->dev;
711         struct drm_i915_private *dev_priv = dev->dev_private;
712         struct i915_workarounds *w = &dev_priv->workarounds;
713
714         if (WARN_ON_ONCE(w->count == 0))
715                 return 0;
716
717         ring->gpu_caches_dirty = true;
718         ret = intel_ring_flush_all_caches(ring);
719         if (ret)
720                 return ret;
721
722         ret = intel_ring_begin(ring, (w->count * 2 + 2));
723         if (ret)
724                 return ret;
725
726         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
727         for (i = 0; i < w->count; i++) {
728                 intel_ring_emit(ring, w->reg[i].addr);
729                 intel_ring_emit(ring, w->reg[i].value);
730         }
731         intel_ring_emit(ring, MI_NOOP);
732
733         intel_ring_advance(ring);
734
735         ring->gpu_caches_dirty = true;
736         ret = intel_ring_flush_all_caches(ring);
737         if (ret)
738                 return ret;
739
740         DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
741
742         return 0;
743 }
744
745 static int intel_rcs_ctx_init(struct intel_engine_cs *ring,
746                               struct intel_context *ctx)
747 {
748         int ret;
749
750         ret = intel_ring_workarounds_emit(ring, ctx);
751         if (ret != 0)
752                 return ret;
753
754         ret = i915_gem_render_state_init(ring);
755         if (ret)
756                 DRM_ERROR("init render state: %d\n", ret);
757
758         return ret;
759 }
760
761 static int wa_add(struct drm_i915_private *dev_priv,
762                   const u32 addr, const u32 mask, const u32 val)
763 {
764         const u32 idx = dev_priv->workarounds.count;
765
766         if (WARN_ON(idx >= I915_MAX_WA_REGS))
767                 return -ENOSPC;
768
769         dev_priv->workarounds.reg[idx].addr = addr;
770         dev_priv->workarounds.reg[idx].value = val;
771         dev_priv->workarounds.reg[idx].mask = mask;
772
773         dev_priv->workarounds.count++;
774
775         return 0;
776 }
777
778 #define WA_REG(addr, mask, val) { \
779                 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
780                 if (r) \
781                         return r; \
782         }
783
784 #define WA_SET_BIT_MASKED(addr, mask) \
785         WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
786
787 #define WA_CLR_BIT_MASKED(addr, mask) \
788         WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
789
790 #define WA_SET_FIELD_MASKED(addr, mask, value) \
791         WA_REG(addr, mask, _MASKED_FIELD(mask, value))
792
793 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
794 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
795
796 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
797
798 static int bdw_init_workarounds(struct intel_engine_cs *ring)
799 {
800         struct drm_device *dev = ring->dev;
801         struct drm_i915_private *dev_priv = dev->dev_private;
802
803         /* WaDisablePartialInstShootdown:bdw */
804         /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
805         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
806                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
807                           STALL_DOP_GATING_DISABLE);
808
809         /* WaDisableDopClockGating:bdw */
810         WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
811                           DOP_CLOCK_GATING_DISABLE);
812
813         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
814                           GEN8_SAMPLER_POWER_BYPASS_DIS);
815
816         /* Use Force Non-Coherent whenever executing a 3D context. This is a
817          * workaround for for a possible hang in the unlikely event a TLB
818          * invalidation occurs during a PSD flush.
819          */
820         WA_SET_BIT_MASKED(HDC_CHICKEN0,
821                           /* WaForceEnableNonCoherent:bdw */
822                           HDC_FORCE_NON_COHERENT |
823                           /* WaForceContextSaveRestoreNonCoherent:bdw */
824                           HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
825                           /* WaHdcDisableFetchWhenMasked:bdw */
826                           HDC_DONOT_FETCH_MEM_WHEN_MASKED |
827                           /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
828                           (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
829
830         /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
831          * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
832          *  polygons in the same 8x4 pixel/sample area to be processed without
833          *  stalling waiting for the earlier ones to write to Hierarchical Z
834          *  buffer."
835          *
836          * This optimization is off by default for Broadwell; turn it on.
837          */
838         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
839
840         /* Wa4x4STCOptimizationDisable:bdw */
841         WA_SET_BIT_MASKED(CACHE_MODE_1,
842                           GEN8_4x4_STC_OPTIMIZATION_DISABLE);
843
844         /*
845          * BSpec recommends 8x4 when MSAA is used,
846          * however in practice 16x4 seems fastest.
847          *
848          * Note that PS/WM thread counts depend on the WIZ hashing
849          * disable bit, which we don't touch here, but it's good
850          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
851          */
852         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
853                             GEN6_WIZ_HASHING_MASK,
854                             GEN6_WIZ_HASHING_16x4);
855
856         return 0;
857 }
858
859 static int chv_init_workarounds(struct intel_engine_cs *ring)
860 {
861         struct drm_device *dev = ring->dev;
862         struct drm_i915_private *dev_priv = dev->dev_private;
863
864         /* WaDisablePartialInstShootdown:chv */
865         /* WaDisableThreadStallDopClockGating:chv */
866         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
867                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
868                           STALL_DOP_GATING_DISABLE);
869
870         /* Use Force Non-Coherent whenever executing a 3D context. This is a
871          * workaround for a possible hang in the unlikely event a TLB
872          * invalidation occurs during a PSD flush.
873          */
874         /* WaForceEnableNonCoherent:chv */
875         /* WaHdcDisableFetchWhenMasked:chv */
876         WA_SET_BIT_MASKED(HDC_CHICKEN0,
877                           HDC_FORCE_NON_COHERENT |
878                           HDC_DONOT_FETCH_MEM_WHEN_MASKED);
879
880         /* According to the CACHE_MODE_0 default value documentation, some
881          * CHV platforms disable this optimization by default.  Turn it on.
882          */
883         WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
884
885         /* Wa4x4STCOptimizationDisable:chv */
886         WA_SET_BIT_MASKED(CACHE_MODE_1,
887                           GEN8_4x4_STC_OPTIMIZATION_DISABLE);
888
889         /* Improve HiZ throughput on CHV. */
890         WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
891
892         /*
893          * BSpec recommends 8x4 when MSAA is used,
894          * however in practice 16x4 seems fastest.
895          *
896          * Note that PS/WM thread counts depend on the WIZ hashing
897          * disable bit, which we don't touch here, but it's good
898          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
899          */
900         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
901                             GEN6_WIZ_HASHING_MASK,
902                             GEN6_WIZ_HASHING_16x4);
903
904         return 0;
905 }
906
907 static int gen9_init_workarounds(struct intel_engine_cs *ring)
908 {
909         struct drm_device *dev = ring->dev;
910         struct drm_i915_private *dev_priv = dev->dev_private;
911         uint32_t tmp;
912
913         /* WaDisablePartialInstShootdown:skl,bxt */
914         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
915                           PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
916
917         /* Syncing dependencies between camera and graphics:skl,bxt */
918         WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
919                           GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
920
921         if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
922             INTEL_REVID(dev) == SKL_REVID_B0)) ||
923             (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
924                 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
925                 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
926                                   GEN9_DG_MIRROR_FIX_ENABLE);
927         }
928
929         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
930             (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
931                 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
932                 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
933                                   GEN9_RHWO_OPTIMIZATION_DISABLE);
934                 WA_SET_BIT_MASKED(GEN9_SLICE_COMMON_ECO_CHICKEN0,
935                                   DISABLE_PIXEL_MASK_CAMMING);
936         }
937
938         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
939             IS_BROXTON(dev)) {
940                 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
941                 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
942                                   GEN9_ENABLE_YV12_BUGFIX);
943         }
944
945         /* Wa4x4STCOptimizationDisable:skl,bxt */
946         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
947
948         /* WaDisablePartialResolveInVc:skl,bxt */
949         WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
950
951         /* WaCcsTlbPrefetchDisable:skl,bxt */
952         WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
953                           GEN9_CCS_TLB_PREFETCH_ENABLE);
954
955         /* WaDisableMaskBasedCammingInRCC:skl,bxt */
956         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
957             (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
958                 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
959                                   PIXEL_MASK_CAMMING_DISABLE);
960
961         /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
962         tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
963         if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
964             (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
965                 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
966         WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
967
968         return 0;
969 }
970
971 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
972 {
973         struct drm_device *dev = ring->dev;
974         struct drm_i915_private *dev_priv = dev->dev_private;
975         u8 vals[3] = { 0, 0, 0 };
976         unsigned int i;
977
978         for (i = 0; i < 3; i++) {
979                 u8 ss;
980
981                 /*
982                  * Only consider slices where one, and only one, subslice has 7
983                  * EUs
984                  */
985                 if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
986                         continue;
987
988                 /*
989                  * subslice_7eu[i] != 0 (because of the check above) and
990                  * ss_max == 4 (maximum number of subslices possible per slice)
991                  *
992                  * ->    0 <= ss <= 3;
993                  */
994                 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
995                 vals[i] = 3 - ss;
996         }
997
998         if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
999                 return 0;
1000
1001         /* Tune IZ hashing. See intel_device_info_runtime_init() */
1002         WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1003                             GEN9_IZ_HASHING_MASK(2) |
1004                             GEN9_IZ_HASHING_MASK(1) |
1005                             GEN9_IZ_HASHING_MASK(0),
1006                             GEN9_IZ_HASHING(2, vals[2]) |
1007                             GEN9_IZ_HASHING(1, vals[1]) |
1008                             GEN9_IZ_HASHING(0, vals[0]));
1009
1010         return 0;
1011 }
1012
1013
1014 static int skl_init_workarounds(struct intel_engine_cs *ring)
1015 {
1016         struct drm_device *dev = ring->dev;
1017         struct drm_i915_private *dev_priv = dev->dev_private;
1018
1019         gen9_init_workarounds(ring);
1020
1021         /* WaDisablePowerCompilerClockGating:skl */
1022         if (INTEL_REVID(dev) == SKL_REVID_B0)
1023                 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1024                                   BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1025
1026         if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1027             INTEL_REVID(dev) == SKL_REVID_D0)
1028                 /* WaBarrierPerformanceFixDisable:skl */
1029                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1030                                   HDC_FENCE_DEST_SLM_DISABLE |
1031                                   HDC_BARRIER_PERFORMANCE_DISABLE);
1032
1033         if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1034                 /*
1035                  *Use Force Non-Coherent whenever executing a 3D context. This
1036                  * is a workaround for a possible hang in the unlikely event
1037                  * a TLB invalidation occurs during a PSD flush.
1038                  */
1039                 /* WaForceEnableNonCoherent:skl */
1040                 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1041                                   HDC_FORCE_NON_COHERENT);
1042         }
1043
1044         return skl_tune_iz_hashing(ring);
1045 }
1046
1047 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1048 {
1049         struct drm_device *dev = ring->dev;
1050         struct drm_i915_private *dev_priv = dev->dev_private;
1051
1052         gen9_init_workarounds(ring);
1053
1054         /* WaDisableThreadStallDopClockGating:bxt */
1055         WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1056                           STALL_DOP_GATING_DISABLE);
1057
1058         /* WaDisableSbeCacheDispatchPortSharing:bxt */
1059         if (INTEL_REVID(dev) <= BXT_REVID_B0) {
1060                 WA_SET_BIT_MASKED(
1061                         GEN7_HALF_SLICE_CHICKEN1,
1062                         GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1063         }
1064
1065         return 0;
1066 }
1067
1068 int init_workarounds_ring(struct intel_engine_cs *ring)
1069 {
1070         struct drm_device *dev = ring->dev;
1071         struct drm_i915_private *dev_priv = dev->dev_private;
1072
1073         WARN_ON(ring->id != RCS);
1074
1075         dev_priv->workarounds.count = 0;
1076
1077         if (IS_BROADWELL(dev))
1078                 return bdw_init_workarounds(ring);
1079
1080         if (IS_CHERRYVIEW(dev))
1081                 return chv_init_workarounds(ring);
1082
1083         if (IS_SKYLAKE(dev))
1084                 return skl_init_workarounds(ring);
1085
1086         if (IS_BROXTON(dev))
1087                 return bxt_init_workarounds(ring);
1088
1089         return 0;
1090 }
1091
1092 static int init_render_ring(struct intel_engine_cs *ring)
1093 {
1094         struct drm_device *dev = ring->dev;
1095         struct drm_i915_private *dev_priv = dev->dev_private;
1096         int ret = init_ring_common(ring);
1097         if (ret)
1098                 return ret;
1099
1100         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1101         if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1102                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1103
1104         /* We need to disable the AsyncFlip performance optimisations in order
1105          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1106          * programmed to '1' on all products.
1107          *
1108          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1109          */
1110         if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
1111                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1112
1113         /* Required for the hardware to program scanline values for waiting */
1114         /* WaEnableFlushTlbInvalidationMode:snb */
1115         if (INTEL_INFO(dev)->gen == 6)
1116                 I915_WRITE(GFX_MODE,
1117                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1118
1119         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1120         if (IS_GEN7(dev))
1121                 I915_WRITE(GFX_MODE_GEN7,
1122                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1123                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1124
1125         if (IS_GEN6(dev)) {
1126                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1127                  * "If this bit is set, STCunit will have LRA as replacement
1128                  *  policy. [...] This bit must be reset.  LRA replacement
1129                  *  policy is not supported."
1130                  */
1131                 I915_WRITE(CACHE_MODE_0,
1132                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1133         }
1134
1135         if (INTEL_INFO(dev)->gen >= 6)
1136                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1137
1138         if (HAS_L3_DPF(dev))
1139                 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1140
1141         return init_workarounds_ring(ring);
1142 }
1143
1144 static void render_ring_cleanup(struct intel_engine_cs *ring)
1145 {
1146         struct drm_device *dev = ring->dev;
1147         struct drm_i915_private *dev_priv = dev->dev_private;
1148
1149         if (dev_priv->semaphore_obj) {
1150                 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1151                 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1152                 dev_priv->semaphore_obj = NULL;
1153         }
1154
1155         intel_fini_pipe_control(ring);
1156 }
1157
1158 static int gen8_rcs_signal(struct intel_engine_cs *signaller,
1159                            unsigned int num_dwords)
1160 {
1161 #define MBOX_UPDATE_DWORDS 8
1162         struct drm_device *dev = signaller->dev;
1163         struct drm_i915_private *dev_priv = dev->dev_private;
1164         struct intel_engine_cs *waiter;
1165         int i, ret, num_rings;
1166
1167         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1168         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1169 #undef MBOX_UPDATE_DWORDS
1170
1171         ret = intel_ring_begin(signaller, num_dwords);
1172         if (ret)
1173                 return ret;
1174
1175         for_each_ring(waiter, dev_priv, i) {
1176                 u32 seqno;
1177                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1178                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1179                         continue;
1180
1181                 seqno = i915_gem_request_get_seqno(
1182                                            signaller->outstanding_lazy_request);
1183                 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1184                 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1185                                            PIPE_CONTROL_QW_WRITE |
1186                                            PIPE_CONTROL_FLUSH_ENABLE);
1187                 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1188                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1189                 intel_ring_emit(signaller, seqno);
1190                 intel_ring_emit(signaller, 0);
1191                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1192                                            MI_SEMAPHORE_TARGET(waiter->id));
1193                 intel_ring_emit(signaller, 0);
1194         }
1195
1196         return 0;
1197 }
1198
1199 static int gen8_xcs_signal(struct intel_engine_cs *signaller,
1200                            unsigned int num_dwords)
1201 {
1202 #define MBOX_UPDATE_DWORDS 6
1203         struct drm_device *dev = signaller->dev;
1204         struct drm_i915_private *dev_priv = dev->dev_private;
1205         struct intel_engine_cs *waiter;
1206         int i, ret, num_rings;
1207
1208         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1209         num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1210 #undef MBOX_UPDATE_DWORDS
1211
1212         ret = intel_ring_begin(signaller, num_dwords);
1213         if (ret)
1214                 return ret;
1215
1216         for_each_ring(waiter, dev_priv, i) {
1217                 u32 seqno;
1218                 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1219                 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1220                         continue;
1221
1222                 seqno = i915_gem_request_get_seqno(
1223                                            signaller->outstanding_lazy_request);
1224                 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1225                                            MI_FLUSH_DW_OP_STOREDW);
1226                 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1227                                            MI_FLUSH_DW_USE_GTT);
1228                 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1229                 intel_ring_emit(signaller, seqno);
1230                 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1231                                            MI_SEMAPHORE_TARGET(waiter->id));
1232                 intel_ring_emit(signaller, 0);
1233         }
1234
1235         return 0;
1236 }
1237
1238 static int gen6_signal(struct intel_engine_cs *signaller,
1239                        unsigned int num_dwords)
1240 {
1241         struct drm_device *dev = signaller->dev;
1242         struct drm_i915_private *dev_priv = dev->dev_private;
1243         struct intel_engine_cs *useless;
1244         int i, ret, num_rings;
1245
1246 #define MBOX_UPDATE_DWORDS 3
1247         num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1248         num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1249 #undef MBOX_UPDATE_DWORDS
1250
1251         ret = intel_ring_begin(signaller, num_dwords);
1252         if (ret)
1253                 return ret;
1254
1255         for_each_ring(useless, dev_priv, i) {
1256                 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1257                 if (mbox_reg != GEN6_NOSYNC) {
1258                         u32 seqno = i915_gem_request_get_seqno(
1259                                            signaller->outstanding_lazy_request);
1260                         intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1261                         intel_ring_emit(signaller, mbox_reg);
1262                         intel_ring_emit(signaller, seqno);
1263                 }
1264         }
1265
1266         /* If num_dwords was rounded, make sure the tail pointer is correct */
1267         if (num_rings % 2 == 0)
1268                 intel_ring_emit(signaller, MI_NOOP);
1269
1270         return 0;
1271 }
1272
1273 /**
1274  * gen6_add_request - Update the semaphore mailbox registers
1275  * 
1276  * @ring - ring that is adding a request
1277  * @seqno - return seqno stuck into the ring
1278  *
1279  * Update the mailbox registers in the *other* rings with the current seqno.
1280  * This acts like a signal in the canonical semaphore.
1281  */
1282 static int
1283 gen6_add_request(struct intel_engine_cs *ring)
1284 {
1285         int ret;
1286
1287         if (ring->semaphore.signal)
1288                 ret = ring->semaphore.signal(ring, 4);
1289         else
1290                 ret = intel_ring_begin(ring, 4);
1291
1292         if (ret)
1293                 return ret;
1294
1295         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1296         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1297         intel_ring_emit(ring,
1298                     i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1299         intel_ring_emit(ring, MI_USER_INTERRUPT);
1300         __intel_ring_advance(ring);
1301
1302         return 0;
1303 }
1304
1305 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1306                                               u32 seqno)
1307 {
1308         struct drm_i915_private *dev_priv = dev->dev_private;
1309         return dev_priv->last_seqno < seqno;
1310 }
1311
1312 /**
1313  * intel_ring_sync - sync the waiter to the signaller on seqno
1314  *
1315  * @waiter - ring that is waiting
1316  * @signaller - ring which has, or will signal
1317  * @seqno - seqno which the waiter will block on
1318  */
1319
1320 static int
1321 gen8_ring_sync(struct intel_engine_cs *waiter,
1322                struct intel_engine_cs *signaller,
1323                u32 seqno)
1324 {
1325         struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1326         int ret;
1327
1328         ret = intel_ring_begin(waiter, 4);
1329         if (ret)
1330                 return ret;
1331
1332         intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1333                                 MI_SEMAPHORE_GLOBAL_GTT |
1334                                 MI_SEMAPHORE_POLL |
1335                                 MI_SEMAPHORE_SAD_GTE_SDD);
1336         intel_ring_emit(waiter, seqno);
1337         intel_ring_emit(waiter,
1338                         lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1339         intel_ring_emit(waiter,
1340                         upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1341         intel_ring_advance(waiter);
1342         return 0;
1343 }
1344
1345 static int
1346 gen6_ring_sync(struct intel_engine_cs *waiter,
1347                struct intel_engine_cs *signaller,
1348                u32 seqno)
1349 {
1350         u32 dw1 = MI_SEMAPHORE_MBOX |
1351                   MI_SEMAPHORE_COMPARE |
1352                   MI_SEMAPHORE_REGISTER;
1353         u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1354         int ret;
1355
1356         /* Throughout all of the GEM code, seqno passed implies our current
1357          * seqno is >= the last seqno executed. However for hardware the
1358          * comparison is strictly greater than.
1359          */
1360         seqno -= 1;
1361
1362         WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1363
1364         ret = intel_ring_begin(waiter, 4);
1365         if (ret)
1366                 return ret;
1367
1368         /* If seqno wrap happened, omit the wait with no-ops */
1369         if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1370                 intel_ring_emit(waiter, dw1 | wait_mbox);
1371                 intel_ring_emit(waiter, seqno);
1372                 intel_ring_emit(waiter, 0);
1373                 intel_ring_emit(waiter, MI_NOOP);
1374         } else {
1375                 intel_ring_emit(waiter, MI_NOOP);
1376                 intel_ring_emit(waiter, MI_NOOP);
1377                 intel_ring_emit(waiter, MI_NOOP);
1378                 intel_ring_emit(waiter, MI_NOOP);
1379         }
1380         intel_ring_advance(waiter);
1381
1382         return 0;
1383 }
1384
1385 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
1386 do {                                                                    \
1387         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
1388                  PIPE_CONTROL_DEPTH_STALL);                             \
1389         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
1390         intel_ring_emit(ring__, 0);                                                     \
1391         intel_ring_emit(ring__, 0);                                                     \
1392 } while (0)
1393
1394 static int
1395 pc_render_add_request(struct intel_engine_cs *ring)
1396 {
1397         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1398         int ret;
1399
1400         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1401          * incoherent with writes to memory, i.e. completely fubar,
1402          * so we need to use PIPE_NOTIFY instead.
1403          *
1404          * However, we also need to workaround the qword write
1405          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1406          * memory before requesting an interrupt.
1407          */
1408         ret = intel_ring_begin(ring, 32);
1409         if (ret)
1410                 return ret;
1411
1412         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1413                         PIPE_CONTROL_WRITE_FLUSH |
1414                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1415         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1416         intel_ring_emit(ring,
1417                     i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1418         intel_ring_emit(ring, 0);
1419         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1420         scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1421         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1422         scratch_addr += 2 * CACHELINE_BYTES;
1423         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1424         scratch_addr += 2 * CACHELINE_BYTES;
1425         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1426         scratch_addr += 2 * CACHELINE_BYTES;
1427         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1428         scratch_addr += 2 * CACHELINE_BYTES;
1429         PIPE_CONTROL_FLUSH(ring, scratch_addr);
1430
1431         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1432                         PIPE_CONTROL_WRITE_FLUSH |
1433                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1434                         PIPE_CONTROL_NOTIFY);
1435         intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1436         intel_ring_emit(ring,
1437                     i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1438         intel_ring_emit(ring, 0);
1439         __intel_ring_advance(ring);
1440
1441         return 0;
1442 }
1443
1444 static u32
1445 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1446 {
1447         /* Workaround to force correct ordering between irq and seqno writes on
1448          * ivb (and maybe also on snb) by reading from a CS register (like
1449          * ACTHD) before reading the status page. */
1450         if (!lazy_coherency) {
1451                 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1452                 POSTING_READ(RING_ACTHD(ring->mmio_base));
1453         }
1454
1455         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1456 }
1457
1458 static u32
1459 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1460 {
1461         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1462 }
1463
1464 static void
1465 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1466 {
1467         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1468 }
1469
1470 static u32
1471 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1472 {
1473         return ring->scratch.cpu_page[0];
1474 }
1475
1476 static void
1477 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1478 {
1479         ring->scratch.cpu_page[0] = seqno;
1480 }
1481
1482 static bool
1483 gen5_ring_get_irq(struct intel_engine_cs *ring)
1484 {
1485         struct drm_device *dev = ring->dev;
1486         struct drm_i915_private *dev_priv = dev->dev_private;
1487
1488         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1489                 return false;
1490
1491         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1492         if (ring->irq_refcount++ == 0)
1493                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1494         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1495
1496         return true;
1497 }
1498
1499 static void
1500 gen5_ring_put_irq(struct intel_engine_cs *ring)
1501 {
1502         struct drm_device *dev = ring->dev;
1503         struct drm_i915_private *dev_priv = dev->dev_private;
1504
1505         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1506         if (--ring->irq_refcount == 0)
1507                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1508         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1509 }
1510
1511 static bool
1512 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1513 {
1514         struct drm_device *dev = ring->dev;
1515         struct drm_i915_private *dev_priv = dev->dev_private;
1516
1517         if (!intel_irqs_enabled(dev_priv))
1518                 return false;
1519
1520         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1521         if (ring->irq_refcount++ == 0) {
1522                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1523                 I915_WRITE(IMR, dev_priv->irq_mask);
1524                 POSTING_READ(IMR);
1525         }
1526         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1527
1528         return true;
1529 }
1530
1531 static void
1532 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1533 {
1534         struct drm_device *dev = ring->dev;
1535         struct drm_i915_private *dev_priv = dev->dev_private;
1536
1537         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1538         if (--ring->irq_refcount == 0) {
1539                 dev_priv->irq_mask |= ring->irq_enable_mask;
1540                 I915_WRITE(IMR, dev_priv->irq_mask);
1541                 POSTING_READ(IMR);
1542         }
1543         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1544 }
1545
1546 static bool
1547 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1548 {
1549         struct drm_device *dev = ring->dev;
1550         struct drm_i915_private *dev_priv = dev->dev_private;
1551
1552         if (!intel_irqs_enabled(dev_priv))
1553                 return false;
1554
1555         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1556         if (ring->irq_refcount++ == 0) {
1557                 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1558                 I915_WRITE16(IMR, dev_priv->irq_mask);
1559                 POSTING_READ16(IMR);
1560         }
1561         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1562
1563         return true;
1564 }
1565
1566 static void
1567 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1568 {
1569         struct drm_device *dev = ring->dev;
1570         struct drm_i915_private *dev_priv = dev->dev_private;
1571
1572         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1573         if (--ring->irq_refcount == 0) {
1574                 dev_priv->irq_mask |= ring->irq_enable_mask;
1575                 I915_WRITE16(IMR, dev_priv->irq_mask);
1576                 POSTING_READ16(IMR);
1577         }
1578         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1579 }
1580
1581 static int
1582 bsd_ring_flush(struct intel_engine_cs *ring,
1583                u32     invalidate_domains,
1584                u32     flush_domains)
1585 {
1586         int ret;
1587
1588         ret = intel_ring_begin(ring, 2);
1589         if (ret)
1590                 return ret;
1591
1592         intel_ring_emit(ring, MI_FLUSH);
1593         intel_ring_emit(ring, MI_NOOP);
1594         intel_ring_advance(ring);
1595         return 0;
1596 }
1597
1598 static int
1599 i9xx_add_request(struct intel_engine_cs *ring)
1600 {
1601         int ret;
1602
1603         ret = intel_ring_begin(ring, 4);
1604         if (ret)
1605                 return ret;
1606
1607         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1608         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1609         intel_ring_emit(ring,
1610                     i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1611         intel_ring_emit(ring, MI_USER_INTERRUPT);
1612         __intel_ring_advance(ring);
1613
1614         return 0;
1615 }
1616
1617 static bool
1618 gen6_ring_get_irq(struct intel_engine_cs *ring)
1619 {
1620         struct drm_device *dev = ring->dev;
1621         struct drm_i915_private *dev_priv = dev->dev_private;
1622
1623         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1624                 return false;
1625
1626         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1627         if (ring->irq_refcount++ == 0) {
1628                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1629                         I915_WRITE_IMR(ring,
1630                                        ~(ring->irq_enable_mask |
1631                                          GT_PARITY_ERROR(dev)));
1632                 else
1633                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1634                 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1635         }
1636         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1637
1638         return true;
1639 }
1640
1641 static void
1642 gen6_ring_put_irq(struct intel_engine_cs *ring)
1643 {
1644         struct drm_device *dev = ring->dev;
1645         struct drm_i915_private *dev_priv = dev->dev_private;
1646
1647         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1648         if (--ring->irq_refcount == 0) {
1649                 if (HAS_L3_DPF(dev) && ring->id == RCS)
1650                         I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1651                 else
1652                         I915_WRITE_IMR(ring, ~0);
1653                 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1654         }
1655         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1656 }
1657
1658 static bool
1659 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1660 {
1661         struct drm_device *dev = ring->dev;
1662         struct drm_i915_private *dev_priv = dev->dev_private;
1663
1664         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1665                 return false;
1666
1667         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1668         if (ring->irq_refcount++ == 0) {
1669                 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1670                 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1671         }
1672         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1673
1674         return true;
1675 }
1676
1677 static void
1678 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1679 {
1680         struct drm_device *dev = ring->dev;
1681         struct drm_i915_private *dev_priv = dev->dev_private;
1682
1683         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1684         if (--ring->irq_refcount == 0) {
1685                 I915_WRITE_IMR(ring, ~0);
1686                 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1687         }
1688         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1689 }
1690
1691 static bool
1692 gen8_ring_get_irq(struct intel_engine_cs *ring)
1693 {
1694         struct drm_device *dev = ring->dev;
1695         struct drm_i915_private *dev_priv = dev->dev_private;
1696
1697         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1698                 return false;
1699
1700         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1701         if (ring->irq_refcount++ == 0) {
1702                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1703                         I915_WRITE_IMR(ring,
1704                                        ~(ring->irq_enable_mask |
1705                                          GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1706                 } else {
1707                         I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1708                 }
1709                 POSTING_READ(RING_IMR(ring->mmio_base));
1710         }
1711         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1712
1713         return true;
1714 }
1715
1716 static void
1717 gen8_ring_put_irq(struct intel_engine_cs *ring)
1718 {
1719         struct drm_device *dev = ring->dev;
1720         struct drm_i915_private *dev_priv = dev->dev_private;
1721
1722         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
1723         if (--ring->irq_refcount == 0) {
1724                 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1725                         I915_WRITE_IMR(ring,
1726                                        ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1727                 } else {
1728                         I915_WRITE_IMR(ring, ~0);
1729                 }
1730                 POSTING_READ(RING_IMR(ring->mmio_base));
1731         }
1732         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
1733 }
1734
1735 static int
1736 i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1737                          u64 offset, u32 length,
1738                          unsigned dispatch_flags)
1739 {
1740         int ret;
1741
1742         ret = intel_ring_begin(ring, 2);
1743         if (ret)
1744                 return ret;
1745
1746         intel_ring_emit(ring,
1747                         MI_BATCH_BUFFER_START |
1748                         MI_BATCH_GTT |
1749                         (dispatch_flags & I915_DISPATCH_SECURE ?
1750                          0 : MI_BATCH_NON_SECURE_I965));
1751         intel_ring_emit(ring, offset);
1752         intel_ring_advance(ring);
1753
1754         return 0;
1755 }
1756
1757 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1758 #define I830_BATCH_LIMIT (256*1024)
1759 #define I830_TLB_ENTRIES (2)
1760 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1761 static int
1762 i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1763                          u64 offset, u32 len,
1764                          unsigned dispatch_flags)
1765 {
1766         u32 cs_offset = ring->scratch.gtt_offset;
1767         int ret;
1768
1769         ret = intel_ring_begin(ring, 6);
1770         if (ret)
1771                 return ret;
1772
1773         /* Evict the invalid PTE TLBs */
1774         intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1775         intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1776         intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1777         intel_ring_emit(ring, cs_offset);
1778         intel_ring_emit(ring, 0xdeadbeef);
1779         intel_ring_emit(ring, MI_NOOP);
1780         intel_ring_advance(ring);
1781
1782         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1783                 if (len > I830_BATCH_LIMIT)
1784                         return -ENOSPC;
1785
1786                 ret = intel_ring_begin(ring, 6 + 2);
1787                 if (ret)
1788                         return ret;
1789
1790                 /* Blit the batch (which has now all relocs applied) to the
1791                  * stable batch scratch bo area (so that the CS never
1792                  * stumbles over its tlb invalidation bug) ...
1793                  */
1794                 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1795                 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1796                 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1797                 intel_ring_emit(ring, cs_offset);
1798                 intel_ring_emit(ring, 4096);
1799                 intel_ring_emit(ring, offset);
1800
1801                 intel_ring_emit(ring, MI_FLUSH);
1802                 intel_ring_emit(ring, MI_NOOP);
1803                 intel_ring_advance(ring);
1804
1805                 /* ... and execute it. */
1806                 offset = cs_offset;
1807         }
1808
1809         ret = intel_ring_begin(ring, 4);
1810         if (ret)
1811                 return ret;
1812
1813         intel_ring_emit(ring, MI_BATCH_BUFFER);
1814         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1815                                         0 : MI_BATCH_NON_SECURE));
1816         intel_ring_emit(ring, offset + len - 8);
1817         intel_ring_emit(ring, MI_NOOP);
1818         intel_ring_advance(ring);
1819
1820         return 0;
1821 }
1822
1823 static int
1824 i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1825                          u64 offset, u32 len,
1826                          unsigned dispatch_flags)
1827 {
1828         int ret;
1829
1830         ret = intel_ring_begin(ring, 2);
1831         if (ret)
1832                 return ret;
1833
1834         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1835         intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1836                                         0 : MI_BATCH_NON_SECURE));
1837         intel_ring_advance(ring);
1838
1839         return 0;
1840 }
1841
1842 static void cleanup_status_page(struct intel_engine_cs *ring)
1843 {
1844         struct drm_i915_gem_object *obj;
1845
1846         obj = ring->status_page.obj;
1847         if (obj == NULL)
1848                 return;
1849
1850         kunmap(obj->pages[0]);
1851         i915_gem_object_ggtt_unpin(obj);
1852         drm_gem_object_unreference(&obj->base);
1853         ring->status_page.obj = NULL;
1854 }
1855
1856 static int init_status_page(struct intel_engine_cs *ring)
1857 {
1858         struct drm_i915_gem_object *obj;
1859
1860         if ((obj = ring->status_page.obj) == NULL) {
1861                 unsigned flags;
1862                 int ret;
1863
1864                 obj = i915_gem_alloc_object(ring->dev, 4096);
1865                 if (obj == NULL) {
1866                         DRM_ERROR("Failed to allocate status page\n");
1867                         return -ENOMEM;
1868                 }
1869
1870                 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1871                 if (ret)
1872                         goto err_unref;
1873
1874                 flags = 0;
1875                 if (!HAS_LLC(ring->dev))
1876                         /* On g33, we cannot place HWS above 256MiB, so
1877                          * restrict its pinning to the low mappable arena.
1878                          * Though this restriction is not documented for
1879                          * gen4, gen5, or byt, they also behave similarly
1880                          * and hang if the HWS is placed at the top of the
1881                          * GTT. To generalise, it appears that all !llc
1882                          * platforms have issues with us placing the HWS
1883                          * above the mappable region (even though we never
1884                          * actualy map it).
1885                          */
1886                         flags |= PIN_MAPPABLE;
1887                 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1888                 if (ret) {
1889 err_unref:
1890                         drm_gem_object_unreference(&obj->base);
1891                         return ret;
1892                 }
1893
1894                 ring->status_page.obj = obj;
1895         }
1896
1897         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1898         ring->status_page.page_addr = kmap(obj->pages[0]);
1899         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1900
1901         DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1902                         ring->name, ring->status_page.gfx_addr);
1903
1904         return 0;
1905 }
1906
1907 static int init_phys_status_page(struct intel_engine_cs *ring)
1908 {
1909         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1910
1911         if (!dev_priv->status_page_dmah) {
1912                 dev_priv->status_page_dmah =
1913                         drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1914                 if (!dev_priv->status_page_dmah)
1915                         return -ENOMEM;
1916         }
1917
1918         ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1919         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1920
1921         return 0;
1922 }
1923
1924 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1925 {
1926         iounmap(ringbuf->virtual_start, ringbuf->size);
1927         ringbuf->virtual_start = NULL;
1928         i915_gem_object_ggtt_unpin(ringbuf->obj);
1929 }
1930
1931 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1932                                      struct intel_ringbuffer *ringbuf)
1933 {
1934         struct drm_i915_private *dev_priv = to_i915(dev);
1935         struct drm_i915_gem_object *obj = ringbuf->obj;
1936         int ret;
1937
1938         ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1939         if (ret)
1940                 return ret;
1941
1942         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1943         if (ret) {
1944                 i915_gem_object_ggtt_unpin(obj);
1945                 return ret;
1946         }
1947
1948         ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1949                         i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1950         if (ringbuf->virtual_start == NULL) {
1951                 i915_gem_object_ggtt_unpin(obj);
1952                 return -EINVAL;
1953         }
1954
1955         return 0;
1956 }
1957
1958 void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1959 {
1960         drm_gem_object_unreference(&ringbuf->obj->base);
1961         ringbuf->obj = NULL;
1962 }
1963
1964 int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1965                                struct intel_ringbuffer *ringbuf)
1966 {
1967         struct drm_i915_gem_object *obj;
1968
1969         obj = NULL;
1970         if (!HAS_LLC(dev))
1971                 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1972         if (obj == NULL)
1973                 obj = i915_gem_alloc_object(dev, ringbuf->size);
1974         if (obj == NULL)
1975                 return -ENOMEM;
1976
1977         /* mark ring buffers as read-only from GPU side by default */
1978         obj->gt_ro = 1;
1979
1980         ringbuf->obj = obj;
1981
1982         return 0;
1983 }
1984
1985 static int intel_init_ring_buffer(struct drm_device *dev,
1986                                   struct intel_engine_cs *ring)
1987 {
1988         struct intel_ringbuffer *ringbuf;
1989         int ret;
1990
1991         WARN_ON(ring->buffer);
1992
1993         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1994         if (!ringbuf)
1995                 return -ENOMEM;
1996         ring->buffer = ringbuf;
1997
1998         ring->dev = dev;
1999         INIT_LIST_HEAD(&ring->active_list);
2000         INIT_LIST_HEAD(&ring->request_list);
2001         INIT_LIST_HEAD(&ring->execlist_queue);
2002         i915_gem_batch_pool_init(dev, &ring->batch_pool);
2003         ringbuf->size = 32 * PAGE_SIZE;
2004         ringbuf->ring = ring;
2005         memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2006
2007         init_waitqueue_head(&ring->irq_queue);
2008
2009         if (I915_NEED_GFX_HWS(dev)) {
2010                 ret = init_status_page(ring);
2011                 if (ret)
2012                         goto error;
2013         } else {
2014                 BUG_ON(ring->id != RCS);
2015                 ret = init_phys_status_page(ring);
2016                 if (ret)
2017                         goto error;
2018         }
2019
2020         WARN_ON(ringbuf->obj);
2021
2022         ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
2023         if (ret) {
2024                 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2025                                 ring->name, ret);
2026                 goto error;
2027         }
2028
2029         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2030         if (ret) {
2031                 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2032                                 ring->name, ret);
2033                 intel_destroy_ringbuffer_obj(ringbuf);
2034                 goto error;
2035         }
2036
2037         /* Workaround an erratum on the i830 which causes a hang if
2038          * the TAIL pointer points to within the last 2 cachelines
2039          * of the buffer.
2040          */
2041         ringbuf->effective_size = ringbuf->size;
2042         if (IS_I830(dev) || IS_845G(dev))
2043                 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2044
2045         ret = i915_cmd_parser_init_ring(ring);
2046         if (ret)
2047                 goto error;
2048
2049         return 0;
2050
2051 error:
2052         kfree(ringbuf);
2053         ring->buffer = NULL;
2054         return ret;
2055 }
2056
2057 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2058 {
2059         struct drm_i915_private *dev_priv;
2060         struct intel_ringbuffer *ringbuf;
2061
2062         if (!intel_ring_initialized(ring))
2063                 return;
2064
2065         dev_priv = to_i915(ring->dev);
2066         ringbuf = ring->buffer;
2067
2068         intel_stop_ring_buffer(ring);
2069         WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2070
2071         intel_unpin_ringbuffer_obj(ringbuf);
2072         intel_destroy_ringbuffer_obj(ringbuf);
2073         i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2074
2075         if (ring->cleanup)
2076                 ring->cleanup(ring);
2077
2078         cleanup_status_page(ring);
2079
2080         i915_cmd_parser_fini_ring(ring);
2081         i915_gem_batch_pool_fini(&ring->batch_pool);
2082
2083         kfree(ringbuf);
2084         ring->buffer = NULL;
2085 }
2086
2087 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2088 {
2089         struct intel_ringbuffer *ringbuf = ring->buffer;
2090         struct drm_i915_gem_request *request;
2091         unsigned space;
2092         int ret;
2093
2094         if (intel_ring_space(ringbuf) >= n)
2095                 return 0;
2096
2097         list_for_each_entry(request, &ring->request_list, list) {
2098                 space = __intel_ring_space(request->postfix, ringbuf->tail,
2099                                            ringbuf->size);
2100                 if (space >= n)
2101                         break;
2102         }
2103
2104         if (WARN_ON(&request->list == &ring->request_list))
2105                 return -ENOSPC;
2106
2107         ret = i915_wait_request(request);
2108         if (ret)
2109                 return ret;
2110
2111         ringbuf->space = space;
2112         return 0;
2113 }
2114
2115 static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
2116 {
2117         uint32_t __iomem *virt;
2118         struct intel_ringbuffer *ringbuf = ring->buffer;
2119         int rem = ringbuf->size - ringbuf->tail;
2120
2121         if (ringbuf->space < rem) {
2122                 int ret = ring_wait_for_space(ring, rem);
2123                 if (ret)
2124                         return ret;
2125         }
2126
2127         virt = (unsigned int *)((char *)ringbuf->virtual_start + ringbuf->tail);
2128         rem /= 4;
2129         while (rem--)
2130                 iowrite32(MI_NOOP, virt++);
2131
2132         ringbuf->tail = 0;
2133         intel_ring_update_space(ringbuf);
2134
2135         return 0;
2136 }
2137
2138 int intel_ring_idle(struct intel_engine_cs *ring)
2139 {
2140         struct drm_i915_gem_request *req;
2141         int ret;
2142
2143         /* We need to add any requests required to flush the objects and ring */
2144         if (ring->outstanding_lazy_request) {
2145                 ret = i915_add_request(ring);
2146                 if (ret)
2147                         return ret;
2148         }
2149
2150         /* Wait upon the last request to be completed */
2151         if (list_empty(&ring->request_list))
2152                 return 0;
2153
2154         req = list_entry(ring->request_list.prev,
2155                         struct drm_i915_gem_request,
2156                         list);
2157
2158         /* Make sure we do not trigger any retires */
2159         return __i915_wait_request(req,
2160                                    atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2161                                    to_i915(ring->dev)->mm.interruptible,
2162                                    NULL, NULL);
2163 }
2164
2165 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2166 {
2167         request->ringbuf = request->ring->buffer;
2168         return 0;
2169 }
2170
2171 static int __intel_ring_prepare(struct intel_engine_cs *ring,
2172                                 int bytes)
2173 {
2174         struct intel_ringbuffer *ringbuf = ring->buffer;
2175         int ret;
2176
2177         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2178                 ret = intel_wrap_ring_buffer(ring);
2179                 if (unlikely(ret))
2180                         return ret;
2181         }
2182
2183         if (unlikely(ringbuf->space < bytes)) {
2184                 ret = ring_wait_for_space(ring, bytes);
2185                 if (unlikely(ret))
2186                         return ret;
2187         }
2188
2189         return 0;
2190 }
2191
2192 int intel_ring_begin(struct intel_engine_cs *ring,
2193                      int num_dwords)
2194 {
2195         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2196         int ret;
2197
2198         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2199                                    dev_priv->mm.interruptible);
2200         if (ret)
2201                 return ret;
2202
2203         ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2204         if (ret)
2205                 return ret;
2206
2207         /* Preallocate the olr before touching the ring */
2208         ret = i915_gem_request_alloc(ring, ring->default_context);
2209         if (ret)
2210                 return ret;
2211
2212         ring->buffer->space -= num_dwords * sizeof(uint32_t);
2213         return 0;
2214 }
2215
2216 /* Align the ring tail to a cacheline boundary */
2217 int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2218 {
2219         int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2220         int ret;
2221
2222         if (num_dwords == 0)
2223                 return 0;
2224
2225         num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2226         ret = intel_ring_begin(ring, num_dwords);
2227         if (ret)
2228                 return ret;
2229
2230         while (num_dwords--)
2231                 intel_ring_emit(ring, MI_NOOP);
2232
2233         intel_ring_advance(ring);
2234
2235         return 0;
2236 }
2237
2238 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2239 {
2240         struct drm_device *dev = ring->dev;
2241         struct drm_i915_private *dev_priv = dev->dev_private;
2242
2243         BUG_ON(ring->outstanding_lazy_request);
2244
2245         if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2246                 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2247                 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2248                 if (HAS_VEBOX(dev))
2249                         I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2250         }
2251
2252         ring->set_seqno(ring, seqno);
2253         ring->hangcheck.seqno = seqno;
2254 }
2255
2256 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2257                                      u32 value)
2258 {
2259         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2260
2261        /* Every tail move must follow the sequence below */
2262
2263         /* Disable notification that the ring is IDLE. The GT
2264          * will then assume that it is busy and bring it out of rc6.
2265          */
2266         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2267                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2268
2269         /* Clear the context id. Here be magic! */
2270         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2271
2272         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2273         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2274                       GEN6_BSD_SLEEP_INDICATOR) == 0,
2275                      50))
2276                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2277
2278         /* Now that the ring is fully powered up, update the tail */
2279         I915_WRITE_TAIL(ring, value);
2280         POSTING_READ(RING_TAIL(ring->mmio_base));
2281
2282         /* Let the ring send IDLE messages to the GT again,
2283          * and so let it sleep to conserve power when idle.
2284          */
2285         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2286                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2287 }
2288
2289 static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2290                                u32 invalidate, u32 flush)
2291 {
2292         uint32_t cmd;
2293         int ret;
2294
2295         ret = intel_ring_begin(ring, 4);
2296         if (ret)
2297                 return ret;
2298
2299         cmd = MI_FLUSH_DW;
2300         if (INTEL_INFO(ring->dev)->gen >= 8)
2301                 cmd += 1;
2302
2303         /* We always require a command barrier so that subsequent
2304          * commands, such as breadcrumb interrupts, are strictly ordered
2305          * wrt the contents of the write cache being flushed to memory
2306          * (and thus being coherent from the CPU).
2307          */
2308         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2309
2310         /*
2311          * Bspec vol 1c.5 - video engine command streamer:
2312          * "If ENABLED, all TLBs will be invalidated once the flush
2313          * operation is complete. This bit is only valid when the
2314          * Post-Sync Operation field is a value of 1h or 3h."
2315          */
2316         if (invalidate & I915_GEM_GPU_DOMAINS)
2317                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2318
2319         intel_ring_emit(ring, cmd);
2320         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2321         if (INTEL_INFO(ring->dev)->gen >= 8) {
2322                 intel_ring_emit(ring, 0); /* upper addr */
2323                 intel_ring_emit(ring, 0); /* value */
2324         } else  {
2325                 intel_ring_emit(ring, 0);
2326                 intel_ring_emit(ring, MI_NOOP);
2327         }
2328         intel_ring_advance(ring);
2329         return 0;
2330 }
2331
2332 static int
2333 gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2334                               u64 offset, u32 len,
2335                               unsigned dispatch_flags)
2336 {
2337         bool ppgtt = USES_PPGTT(ring->dev) &&
2338                         !(dispatch_flags & I915_DISPATCH_SECURE);
2339         int ret;
2340
2341         ret = intel_ring_begin(ring, 4);
2342         if (ret)
2343                 return ret;
2344
2345         /* FIXME(BDW): Address space and security selectors. */
2346         intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2347         intel_ring_emit(ring, lower_32_bits(offset));
2348         intel_ring_emit(ring, upper_32_bits(offset));
2349         intel_ring_emit(ring, MI_NOOP);
2350         intel_ring_advance(ring);
2351
2352         return 0;
2353 }
2354
2355 static int
2356 hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2357                              u64 offset, u32 len,
2358                              unsigned dispatch_flags)
2359 {
2360         int ret;
2361
2362         ret = intel_ring_begin(ring, 2);
2363         if (ret)
2364                 return ret;
2365
2366         intel_ring_emit(ring,
2367                         MI_BATCH_BUFFER_START |
2368                         (dispatch_flags & I915_DISPATCH_SECURE ?
2369                          0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2370         /* bit0-7 is the length on GEN6+ */
2371         intel_ring_emit(ring, offset);
2372         intel_ring_advance(ring);
2373
2374         return 0;
2375 }
2376
2377 static int
2378 gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2379                               u64 offset, u32 len,
2380                               unsigned dispatch_flags)
2381 {
2382         int ret;
2383
2384         ret = intel_ring_begin(ring, 2);
2385         if (ret)
2386                 return ret;
2387
2388         intel_ring_emit(ring,
2389                         MI_BATCH_BUFFER_START |
2390                         (dispatch_flags & I915_DISPATCH_SECURE ?
2391                          0 : MI_BATCH_NON_SECURE_I965));
2392         /* bit0-7 is the length on GEN6+ */
2393         intel_ring_emit(ring, offset);
2394         intel_ring_advance(ring);
2395
2396         return 0;
2397 }
2398
2399 /* Blitter support (SandyBridge+) */
2400
2401 static int gen6_ring_flush(struct intel_engine_cs *ring,
2402                            u32 invalidate, u32 flush)
2403 {
2404         struct drm_device *dev = ring->dev;
2405         uint32_t cmd;
2406         int ret;
2407
2408         ret = intel_ring_begin(ring, 4);
2409         if (ret)
2410                 return ret;
2411
2412         cmd = MI_FLUSH_DW;
2413         if (INTEL_INFO(dev)->gen >= 8)
2414                 cmd += 1;
2415
2416         /* We always require a command barrier so that subsequent
2417          * commands, such as breadcrumb interrupts, are strictly ordered
2418          * wrt the contents of the write cache being flushed to memory
2419          * (and thus being coherent from the CPU).
2420          */
2421         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2422
2423         /*
2424          * Bspec vol 1c.3 - blitter engine command streamer:
2425          * "If ENABLED, all TLBs will be invalidated once the flush
2426          * operation is complete. This bit is only valid when the
2427          * Post-Sync Operation field is a value of 1h or 3h."
2428          */
2429         if (invalidate & I915_GEM_DOMAIN_RENDER)
2430                 cmd |= MI_INVALIDATE_TLB;
2431         intel_ring_emit(ring, cmd);
2432         intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2433         if (INTEL_INFO(dev)->gen >= 8) {
2434                 intel_ring_emit(ring, 0); /* upper addr */
2435                 intel_ring_emit(ring, 0); /* value */
2436         } else  {
2437                 intel_ring_emit(ring, 0);
2438                 intel_ring_emit(ring, MI_NOOP);
2439         }
2440         intel_ring_advance(ring);
2441
2442         return 0;
2443 }
2444
2445 int intel_init_render_ring_buffer(struct drm_device *dev)
2446 {
2447         struct drm_i915_private *dev_priv = dev->dev_private;
2448         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2449         struct drm_i915_gem_object *obj;
2450         int ret;
2451
2452         ring->name = "render ring";
2453         ring->id = RCS;
2454         ring->mmio_base = RENDER_RING_BASE;
2455
2456         if (INTEL_INFO(dev)->gen >= 8) {
2457                 if (i915_semaphore_is_enabled(dev)) {
2458                         obj = i915_gem_alloc_object(dev, 4096);
2459                         if (obj == NULL) {
2460                                 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2461                                 i915.semaphores = 0;
2462                         } else {
2463                                 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2464                                 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2465                                 if (ret != 0) {
2466                                         drm_gem_object_unreference(&obj->base);
2467                                         DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2468                                         i915.semaphores = 0;
2469                                 } else
2470                                         dev_priv->semaphore_obj = obj;
2471                         }
2472                 }
2473
2474                 ring->init_context = intel_rcs_ctx_init;
2475                 ring->add_request = gen6_add_request;
2476                 ring->flush = gen8_render_ring_flush;
2477                 ring->irq_get = gen8_ring_get_irq;
2478                 ring->irq_put = gen8_ring_put_irq;
2479                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2480                 ring->get_seqno = gen6_ring_get_seqno;
2481                 ring->set_seqno = ring_set_seqno;
2482                 if (i915_semaphore_is_enabled(dev)) {
2483                         WARN_ON(!dev_priv->semaphore_obj);
2484                         ring->semaphore.sync_to = gen8_ring_sync;
2485                         ring->semaphore.signal = gen8_rcs_signal;
2486                         GEN8_RING_SEMAPHORE_INIT;
2487                 }
2488         } else if (INTEL_INFO(dev)->gen >= 6) {
2489                 ring->add_request = gen6_add_request;
2490                 ring->flush = gen7_render_ring_flush;
2491                 if (INTEL_INFO(dev)->gen == 6)
2492                         ring->flush = gen6_render_ring_flush;
2493                 ring->irq_get = gen6_ring_get_irq;
2494                 ring->irq_put = gen6_ring_put_irq;
2495                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2496                 ring->get_seqno = gen6_ring_get_seqno;
2497                 ring->set_seqno = ring_set_seqno;
2498                 if (i915_semaphore_is_enabled(dev)) {
2499                         ring->semaphore.sync_to = gen6_ring_sync;
2500                         ring->semaphore.signal = gen6_signal;
2501                         /*
2502                          * The current semaphore is only applied on pre-gen8
2503                          * platform.  And there is no VCS2 ring on the pre-gen8
2504                          * platform. So the semaphore between RCS and VCS2 is
2505                          * initialized as INVALID.  Gen8 will initialize the
2506                          * sema between VCS2 and RCS later.
2507                          */
2508                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2509                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2510                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2511                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2512                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2513                         ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2514                         ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2515                         ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2516                         ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2517                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2518                 }
2519         } else if (IS_GEN5(dev)) {
2520                 ring->add_request = pc_render_add_request;
2521                 ring->flush = gen4_render_ring_flush;
2522                 ring->get_seqno = pc_render_get_seqno;
2523                 ring->set_seqno = pc_render_set_seqno;
2524                 ring->irq_get = gen5_ring_get_irq;
2525                 ring->irq_put = gen5_ring_put_irq;
2526                 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2527                                         GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2528         } else {
2529                 ring->add_request = i9xx_add_request;
2530                 if (INTEL_INFO(dev)->gen < 4)
2531                         ring->flush = gen2_render_ring_flush;
2532                 else
2533                         ring->flush = gen4_render_ring_flush;
2534                 ring->get_seqno = ring_get_seqno;
2535                 ring->set_seqno = ring_set_seqno;
2536                 if (IS_GEN2(dev)) {
2537                         ring->irq_get = i8xx_ring_get_irq;
2538                         ring->irq_put = i8xx_ring_put_irq;
2539                 } else {
2540                         ring->irq_get = i9xx_ring_get_irq;
2541                         ring->irq_put = i9xx_ring_put_irq;
2542                 }
2543                 ring->irq_enable_mask = I915_USER_INTERRUPT;
2544         }
2545         ring->write_tail = ring_write_tail;
2546
2547         if (IS_HASWELL(dev))
2548                 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2549         else if (IS_GEN8(dev))
2550                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2551         else if (INTEL_INFO(dev)->gen >= 6)
2552                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2553         else if (INTEL_INFO(dev)->gen >= 4)
2554                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2555         else if (IS_I830(dev) || IS_845G(dev))
2556                 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2557         else
2558                 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2559         ring->init_hw = init_render_ring;
2560         ring->cleanup = render_ring_cleanup;
2561
2562         /* Workaround batchbuffer to combat CS tlb bug. */
2563         if (HAS_BROKEN_CS_TLB(dev)) {
2564                 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2565                 if (obj == NULL) {
2566                         DRM_ERROR("Failed to allocate batch bo\n");
2567                         return -ENOMEM;
2568                 }
2569
2570                 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2571                 if (ret != 0) {
2572                         drm_gem_object_unreference(&obj->base);
2573                         DRM_ERROR("Failed to ping batch bo\n");
2574                         return ret;
2575                 }
2576
2577                 ring->scratch.obj = obj;
2578                 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2579         }
2580
2581         ret = intel_init_ring_buffer(dev, ring);
2582         if (ret)
2583                 return ret;
2584
2585         if (INTEL_INFO(dev)->gen >= 5) {
2586                 ret = intel_init_pipe_control(ring);
2587                 if (ret)
2588                         return ret;
2589         }
2590
2591         return 0;
2592 }
2593
2594 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2595 {
2596         struct drm_i915_private *dev_priv = dev->dev_private;
2597         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2598
2599         ring->name = "bsd ring";
2600         ring->id = VCS;
2601
2602         ring->write_tail = ring_write_tail;
2603         if (INTEL_INFO(dev)->gen >= 6) {
2604                 ring->mmio_base = GEN6_BSD_RING_BASE;
2605                 /* gen6 bsd needs a special wa for tail updates */
2606                 if (IS_GEN6(dev))
2607                         ring->write_tail = gen6_bsd_ring_write_tail;
2608                 ring->flush = gen6_bsd_ring_flush;
2609                 ring->add_request = gen6_add_request;
2610                 ring->get_seqno = gen6_ring_get_seqno;
2611                 ring->set_seqno = ring_set_seqno;
2612                 if (INTEL_INFO(dev)->gen >= 8) {
2613                         ring->irq_enable_mask =
2614                                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2615                         ring->irq_get = gen8_ring_get_irq;
2616                         ring->irq_put = gen8_ring_put_irq;
2617                         ring->dispatch_execbuffer =
2618                                 gen8_ring_dispatch_execbuffer;
2619                         if (i915_semaphore_is_enabled(dev)) {
2620                                 ring->semaphore.sync_to = gen8_ring_sync;
2621                                 ring->semaphore.signal = gen8_xcs_signal;
2622                                 GEN8_RING_SEMAPHORE_INIT;
2623                         }
2624                 } else {
2625                         ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2626                         ring->irq_get = gen6_ring_get_irq;
2627                         ring->irq_put = gen6_ring_put_irq;
2628                         ring->dispatch_execbuffer =
2629                                 gen6_ring_dispatch_execbuffer;
2630                         if (i915_semaphore_is_enabled(dev)) {
2631                                 ring->semaphore.sync_to = gen6_ring_sync;
2632                                 ring->semaphore.signal = gen6_signal;
2633                                 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2634                                 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2635                                 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2636                                 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2637                                 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2638                                 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2639                                 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2640                                 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2641                                 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2642                                 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2643                         }
2644                 }
2645         } else {
2646                 ring->mmio_base = BSD_RING_BASE;
2647                 ring->flush = bsd_ring_flush;
2648                 ring->add_request = i9xx_add_request;
2649                 ring->get_seqno = ring_get_seqno;
2650                 ring->set_seqno = ring_set_seqno;
2651                 if (IS_GEN5(dev)) {
2652                         ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2653                         ring->irq_get = gen5_ring_get_irq;
2654                         ring->irq_put = gen5_ring_put_irq;
2655                 } else {
2656                         ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2657                         ring->irq_get = i9xx_ring_get_irq;
2658                         ring->irq_put = i9xx_ring_put_irq;
2659                 }
2660                 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2661         }
2662         ring->init_hw = init_ring_common;
2663
2664         return intel_init_ring_buffer(dev, ring);
2665 }
2666
2667 /**
2668  * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2669  */
2670 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2671 {
2672         struct drm_i915_private *dev_priv = dev->dev_private;
2673         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2674
2675         ring->name = "bsd2 ring";
2676         ring->id = VCS2;
2677
2678         ring->write_tail = ring_write_tail;
2679         ring->mmio_base = GEN8_BSD2_RING_BASE;
2680         ring->flush = gen6_bsd_ring_flush;
2681         ring->add_request = gen6_add_request;
2682         ring->get_seqno = gen6_ring_get_seqno;
2683         ring->set_seqno = ring_set_seqno;
2684         ring->irq_enable_mask =
2685                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2686         ring->irq_get = gen8_ring_get_irq;
2687         ring->irq_put = gen8_ring_put_irq;
2688         ring->dispatch_execbuffer =
2689                         gen8_ring_dispatch_execbuffer;
2690         if (i915_semaphore_is_enabled(dev)) {
2691                 ring->semaphore.sync_to = gen8_ring_sync;
2692                 ring->semaphore.signal = gen8_xcs_signal;
2693                 GEN8_RING_SEMAPHORE_INIT;
2694         }
2695         ring->init_hw = init_ring_common;
2696
2697         return intel_init_ring_buffer(dev, ring);
2698 }
2699
2700 int intel_init_blt_ring_buffer(struct drm_device *dev)
2701 {
2702         struct drm_i915_private *dev_priv = dev->dev_private;
2703         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2704
2705         ring->name = "blitter ring";
2706         ring->id = BCS;
2707
2708         ring->mmio_base = BLT_RING_BASE;
2709         ring->write_tail = ring_write_tail;
2710         ring->flush = gen6_ring_flush;
2711         ring->add_request = gen6_add_request;
2712         ring->get_seqno = gen6_ring_get_seqno;
2713         ring->set_seqno = ring_set_seqno;
2714         if (INTEL_INFO(dev)->gen >= 8) {
2715                 ring->irq_enable_mask =
2716                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2717                 ring->irq_get = gen8_ring_get_irq;
2718                 ring->irq_put = gen8_ring_put_irq;
2719                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2720                 if (i915_semaphore_is_enabled(dev)) {
2721                         ring->semaphore.sync_to = gen8_ring_sync;
2722                         ring->semaphore.signal = gen8_xcs_signal;
2723                         GEN8_RING_SEMAPHORE_INIT;
2724                 }
2725         } else {
2726                 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2727                 ring->irq_get = gen6_ring_get_irq;
2728                 ring->irq_put = gen6_ring_put_irq;
2729                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2730                 if (i915_semaphore_is_enabled(dev)) {
2731                         ring->semaphore.signal = gen6_signal;
2732                         ring->semaphore.sync_to = gen6_ring_sync;
2733                         /*
2734                          * The current semaphore is only applied on pre-gen8
2735                          * platform.  And there is no VCS2 ring on the pre-gen8
2736                          * platform. So the semaphore between BCS and VCS2 is
2737                          * initialized as INVALID.  Gen8 will initialize the
2738                          * sema between BCS and VCS2 later.
2739                          */
2740                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2741                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2742                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2743                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2744                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2745                         ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2746                         ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2747                         ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2748                         ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2749                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2750                 }
2751         }
2752         ring->init_hw = init_ring_common;
2753
2754         return intel_init_ring_buffer(dev, ring);
2755 }
2756
2757 int intel_init_vebox_ring_buffer(struct drm_device *dev)
2758 {
2759         struct drm_i915_private *dev_priv = dev->dev_private;
2760         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2761
2762         ring->name = "video enhancement ring";
2763         ring->id = VECS;
2764
2765         ring->mmio_base = VEBOX_RING_BASE;
2766         ring->write_tail = ring_write_tail;
2767         ring->flush = gen6_ring_flush;
2768         ring->add_request = gen6_add_request;
2769         ring->get_seqno = gen6_ring_get_seqno;
2770         ring->set_seqno = ring_set_seqno;
2771
2772         if (INTEL_INFO(dev)->gen >= 8) {
2773                 ring->irq_enable_mask =
2774                         GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2775                 ring->irq_get = gen8_ring_get_irq;
2776                 ring->irq_put = gen8_ring_put_irq;
2777                 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2778                 if (i915_semaphore_is_enabled(dev)) {
2779                         ring->semaphore.sync_to = gen8_ring_sync;
2780                         ring->semaphore.signal = gen8_xcs_signal;
2781                         GEN8_RING_SEMAPHORE_INIT;
2782                 }
2783         } else {
2784                 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2785                 ring->irq_get = hsw_vebox_get_irq;
2786                 ring->irq_put = hsw_vebox_put_irq;
2787                 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2788                 if (i915_semaphore_is_enabled(dev)) {
2789                         ring->semaphore.sync_to = gen6_ring_sync;
2790                         ring->semaphore.signal = gen6_signal;
2791                         ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2792                         ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2793                         ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2794                         ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2795                         ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2796                         ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2797                         ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2798                         ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2799                         ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2800                         ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2801                 }
2802         }
2803         ring->init_hw = init_ring_common;
2804
2805         return intel_init_ring_buffer(dev, ring);
2806 }
2807
2808 int
2809 intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2810 {
2811         int ret;
2812
2813         if (!ring->gpu_caches_dirty)
2814                 return 0;
2815
2816         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2817         if (ret)
2818                 return ret;
2819
2820         trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2821
2822         ring->gpu_caches_dirty = false;
2823         return 0;
2824 }
2825
2826 int
2827 intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2828 {
2829         uint32_t flush_domains;
2830         int ret;
2831
2832         flush_domains = 0;
2833         if (ring->gpu_caches_dirty)
2834                 flush_domains = I915_GEM_GPU_DOMAINS;
2835
2836         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2837         if (ret)
2838                 return ret;
2839
2840         trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2841
2842         ring->gpu_caches_dirty = false;
2843         return 0;
2844 }
2845
2846 void
2847 intel_stop_ring_buffer(struct intel_engine_cs *ring)
2848 {
2849         int ret;
2850
2851         if (!intel_ring_initialized(ring))
2852                 return;
2853
2854         ret = intel_ring_idle(ring);
2855         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2856                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2857                           ring->name, ret);
2858
2859         stop_ring(ring);
2860 }