drm/i915: Add i915_gem_check_wedge()
[dragonfly.git] / sys / dev / drm / i915 / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  * $FreeBSD: head/sys/dev/drm2/i915/intel_ringbuffer.c 253709 2013-07-27 16:42:29Z kib $
29  */
30
31 #include <drm/drmP.h>
32 #include <drm/i915_drm.h>
33 #include "i915_drv.h"
34 #include "intel_drv.h"
35 #include "intel_ringbuffer.h"
36 #include <sys/sched.h>
37
38 /*
39  * 965+ support PIPE_CONTROL commands, which provide finer grained control
40  * over cache flushing.
41  */
42 struct pipe_control {
43         struct drm_i915_gem_object *obj;
44         volatile u32 *cpu_page;
45         u32 gtt_offset;
46 };
47
48 static inline int ring_space(struct intel_ring_buffer *ring)
49 {
50         int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
51         if (space < 0)
52                 space += ring->size;
53         return space;
54 }
55
56 static int
57 render_ring_flush(struct intel_ring_buffer *ring,
58                   uint32_t      invalidate_domains,
59                   uint32_t      flush_domains)
60 {
61         struct drm_device *dev = ring->dev;
62         uint32_t cmd;
63         int ret;
64
65         /*
66          * read/write caches:
67          *
68          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
69          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
70          * also flushed at 2d versus 3d pipeline switches.
71          *
72          * read-only caches:
73          *
74          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
75          * MI_READ_FLUSH is set, and is always flushed on 965.
76          *
77          * I915_GEM_DOMAIN_COMMAND may not exist?
78          *
79          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
80          * invalidated when MI_EXE_FLUSH is set.
81          *
82          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
83          * invalidated with every MI_FLUSH.
84          *
85          * TLBs:
86          *
87          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
88          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
89          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
90          * are flushed at any MI_FLUSH.
91          */
92
93         cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
94         if ((invalidate_domains|flush_domains) &
95             I915_GEM_DOMAIN_RENDER)
96                 cmd &= ~MI_NO_WRITE_FLUSH;
97         if (INTEL_INFO(dev)->gen < 4) {
98                 /*
99                  * On the 965, the sampler cache always gets flushed
100                  * and this bit is reserved.
101                  */
102                 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
103                         cmd |= MI_READ_FLUSH;
104         }
105         if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
106                 cmd |= MI_EXE_FLUSH;
107
108         if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
109             (IS_G4X(dev) || IS_GEN5(dev)))
110                 cmd |= MI_INVALIDATE_ISP;
111
112         ret = intel_ring_begin(ring, 2);
113         if (ret)
114                 return ret;
115
116         intel_ring_emit(ring, cmd);
117         intel_ring_emit(ring, MI_NOOP);
118         intel_ring_advance(ring);
119
120         return 0;
121 }
122
123 /**
124  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
125  * implementing two workarounds on gen6.  From section 1.4.7.1
126  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
127  *
128  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
129  * produced by non-pipelined state commands), software needs to first
130  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
131  * 0.
132  *
133  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
134  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
135  *
136  * And the workaround for these two requires this workaround first:
137  *
138  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
139  * BEFORE the pipe-control with a post-sync op and no write-cache
140  * flushes.
141  *
142  * And this last workaround is tricky because of the requirements on
143  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
144  * volume 2 part 1:
145  *
146  *     "1 of the following must also be set:
147  *      - Render Target Cache Flush Enable ([12] of DW1)
148  *      - Depth Cache Flush Enable ([0] of DW1)
149  *      - Stall at Pixel Scoreboard ([1] of DW1)
150  *      - Depth Stall ([13] of DW1)
151  *      - Post-Sync Operation ([13] of DW1)
152  *      - Notify Enable ([8] of DW1)"
153  *
154  * The cache flushes require the workaround flush that triggered this
155  * one, so we can't use it.  Depth stall would trigger the same.
156  * Post-sync nonzero is what triggered this second workaround, so we
157  * can't use that one either.  Notify enable is IRQs, which aren't
158  * really our business.  That leaves only stall at scoreboard.
159  */
160 static int
161 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
162 {
163         struct pipe_control *pc = ring->private;
164         u32 scratch_addr = pc->gtt_offset + 128;
165         int ret;
166
167
168         ret = intel_ring_begin(ring, 6);
169         if (ret)
170                 return ret;
171
172         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
173         intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
174                         PIPE_CONTROL_STALL_AT_SCOREBOARD);
175         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
176         intel_ring_emit(ring, 0); /* low dword */
177         intel_ring_emit(ring, 0); /* high dword */
178         intel_ring_emit(ring, MI_NOOP);
179         intel_ring_advance(ring);
180
181         ret = intel_ring_begin(ring, 6);
182         if (ret)
183                 return ret;
184
185         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
186         intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
187         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
188         intel_ring_emit(ring, 0);
189         intel_ring_emit(ring, 0);
190         intel_ring_emit(ring, MI_NOOP);
191         intel_ring_advance(ring);
192
193         return 0;
194 }
195
196 static int
197 gen6_render_ring_flush(struct intel_ring_buffer *ring,
198                          u32 invalidate_domains, u32 flush_domains)
199 {
200         u32 flags = 0;
201         struct pipe_control *pc = ring->private;
202         u32 scratch_addr = pc->gtt_offset + 128;
203         int ret;
204
205         /* Force SNB workarounds for PIPE_CONTROL flushes */
206         intel_emit_post_sync_nonzero_flush(ring);
207
208         /* Just flush everything.  Experiments have shown that reducing the
209          * number of bits based on the write domains has little performance
210          * impact.
211          */
212         flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
213         flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
214         flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
215         flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
216         flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
217         flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
218         flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
219
220         ret = intel_ring_begin(ring, 6);
221         if (ret)
222                 return ret;
223
224         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
225         intel_ring_emit(ring, flags);
226         intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
227         intel_ring_emit(ring, 0); /* lower dword */
228         intel_ring_emit(ring, 0); /* uppwer dword */
229         intel_ring_emit(ring, MI_NOOP);
230         intel_ring_advance(ring);
231
232         return 0;
233 }
234
235 static void ring_write_tail(struct intel_ring_buffer *ring,
236                             uint32_t value)
237 {
238         drm_i915_private_t *dev_priv = ring->dev->dev_private;
239         I915_WRITE_TAIL(ring, value);
240 }
241
242 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
243 {
244         drm_i915_private_t *dev_priv = ring->dev->dev_private;
245         uint32_t acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
246                         RING_ACTHD(ring->mmio_base) : ACTHD;
247
248         return I915_READ(acthd_reg);
249 }
250
251 static int init_ring_common(struct intel_ring_buffer *ring)
252 {
253         drm_i915_private_t *dev_priv = ring->dev->dev_private;
254         struct drm_i915_gem_object *obj = ring->obj;
255         uint32_t head;
256
257         /* Stop the ring if it's running. */
258         I915_WRITE_CTL(ring, 0);
259         I915_WRITE_HEAD(ring, 0);
260         ring->write_tail(ring, 0);
261
262         /* Initialize the ring. */
263         I915_WRITE_START(ring, obj->gtt_offset);
264         head = I915_READ_HEAD(ring) & HEAD_ADDR;
265
266         /* G45 ring initialization fails to reset head to zero */
267         if (head != 0) {
268                 DRM_DEBUG("%s head not reset to zero "
269                               "ctl %08x head %08x tail %08x start %08x\n",
270                               ring->name,
271                               I915_READ_CTL(ring),
272                               I915_READ_HEAD(ring),
273                               I915_READ_TAIL(ring),
274                               I915_READ_START(ring));
275
276                 I915_WRITE_HEAD(ring, 0);
277
278                 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
279                         DRM_ERROR("failed to set %s head to zero "
280                                   "ctl %08x head %08x tail %08x start %08x\n",
281                                   ring->name,
282                                   I915_READ_CTL(ring),
283                                   I915_READ_HEAD(ring),
284                                   I915_READ_TAIL(ring),
285                                   I915_READ_START(ring));
286                 }
287         }
288
289         I915_WRITE_CTL(ring,
290                         ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
291                         | RING_VALID);
292
293         /* If the head is still not zero, the ring is dead */
294         if (_intel_wait_for(ring->dev,
295             (I915_READ_CTL(ring) & RING_VALID) != 0 &&
296              I915_READ_START(ring) == obj->gtt_offset &&
297              (I915_READ_HEAD(ring) & HEAD_ADDR) == 0,
298             50, 1, "915rii")) {
299                 DRM_ERROR("%s initialization failed "
300                                 "ctl %08x head %08x tail %08x start %08x\n",
301                                 ring->name,
302                                 I915_READ_CTL(ring),
303                                 I915_READ_HEAD(ring),
304                                 I915_READ_TAIL(ring),
305                                 I915_READ_START(ring));
306                 return -EIO;
307         }
308
309         if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
310                 i915_kernel_lost_context(ring->dev);
311         else {
312                 ring->head = I915_READ_HEAD(ring);
313                 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
314                 ring->space = ring_space(ring);
315         }
316
317         return 0;
318 }
319
320 static int
321 init_pipe_control(struct intel_ring_buffer *ring)
322 {
323         struct pipe_control *pc;
324         struct drm_i915_gem_object *obj;
325         int ret;
326
327         if (ring->private)
328                 return 0;
329
330         pc = kmalloc(sizeof(*pc), DRM_I915_GEM, M_WAITOK);
331         if (!pc)
332                 return -ENOMEM;
333
334         obj = i915_gem_alloc_object(ring->dev, 4096);
335         if (obj == NULL) {
336                 DRM_ERROR("Failed to allocate seqno page\n");
337                 ret = -ENOMEM;
338                 goto err;
339         }
340
341         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
342
343         ret = i915_gem_object_pin(obj, 4096, true);
344         if (ret)
345                 goto err_unref;
346
347         pc->gtt_offset = obj->gtt_offset;
348         pc->cpu_page = (uint32_t *)kmem_alloc_nofault(&kernel_map, PAGE_SIZE, PAGE_SIZE);
349         if (pc->cpu_page == NULL)
350                 goto err_unpin;
351         pmap_qenter((uintptr_t)pc->cpu_page, &obj->pages[0], 1);
352         pmap_invalidate_cache_range((vm_offset_t)pc->cpu_page,
353             (vm_offset_t)pc->cpu_page + PAGE_SIZE);
354
355         pc->obj = obj;
356         ring->private = pc;
357         return 0;
358
359 err_unpin:
360         i915_gem_object_unpin(obj);
361 err_unref:
362         drm_gem_object_unreference(&obj->base);
363 err:
364         drm_free(pc, DRM_I915_GEM);
365         return ret;
366 }
367
368 static void
369 cleanup_pipe_control(struct intel_ring_buffer *ring)
370 {
371         struct pipe_control *pc = ring->private;
372         struct drm_i915_gem_object *obj;
373
374         if (!ring->private)
375                 return;
376
377         obj = pc->obj;
378         pmap_qremove((vm_offset_t)pc->cpu_page, 1);
379         kmem_free(&kernel_map, (uintptr_t)pc->cpu_page, PAGE_SIZE);
380         i915_gem_object_unpin(obj);
381         drm_gem_object_unreference(&obj->base);
382
383         drm_free(pc, DRM_I915_GEM);
384         ring->private = NULL;
385 }
386
387 static int init_render_ring(struct intel_ring_buffer *ring)
388 {
389         struct drm_device *dev = ring->dev;
390         struct drm_i915_private *dev_priv = dev->dev_private;
391         int ret = init_ring_common(ring);
392
393         if (INTEL_INFO(dev)->gen > 3)
394                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
395
396         /* We need to disable the AsyncFlip performance optimisations in order
397          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
398          * programmed to '1' on all products.
399          */
400         if (INTEL_INFO(dev)->gen >= 6)
401                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
402
403         /* Required for the hardware to program scanline values for waiting */
404         if (INTEL_INFO(dev)->gen == 6)
405                 I915_WRITE(GFX_MODE,
406                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
407
408         if (IS_GEN7(dev))
409                 I915_WRITE(GFX_MODE_GEN7,
410                            _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
411                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
412
413         if (INTEL_INFO(dev)->gen >= 5) {
414                 ret = init_pipe_control(ring);
415                 if (ret)
416                         return ret;
417         }
418
419         if (IS_GEN6(dev)) {
420                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
421                  * "If this bit is set, STCunit will have LRA as replacement
422                  *  policy. [...] This bit must be reset.  LRA replacement
423                  *  policy is not supported."
424                  */
425                 I915_WRITE(CACHE_MODE_0,
426                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
427         }
428
429         if (INTEL_INFO(dev)->gen >= 6)
430                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
431
432         if (HAS_L3_GPU_CACHE(dev))
433                 I915_WRITE_IMR(ring, ~GEN6_RENDER_L3_PARITY_ERROR);
434
435         return ret;
436 }
437
438 static void render_ring_cleanup(struct intel_ring_buffer *ring)
439 {
440         if (!ring->private)
441                 return;
442
443         cleanup_pipe_control(ring);
444 }
445
446 static void
447 update_mboxes(struct intel_ring_buffer *ring,
448             u32 seqno,
449             u32 mmio_offset)
450 {
451         intel_ring_emit(ring, MI_SEMAPHORE_MBOX |
452                               MI_SEMAPHORE_GLOBAL_GTT |
453                               MI_SEMAPHORE_REGISTER |
454                               MI_SEMAPHORE_UPDATE);
455         intel_ring_emit(ring, seqno);
456         intel_ring_emit(ring, mmio_offset);
457 }
458
459 /**
460  * gen6_add_request - Update the semaphore mailbox registers
461  * 
462  * @ring - ring that is adding a request
463  * @seqno - return seqno stuck into the ring
464  *
465  * Update the mailbox registers in the *other* rings with the current seqno.
466  * This acts like a signal in the canonical semaphore.
467  */
468 static int
469 gen6_add_request(struct intel_ring_buffer *ring,
470                  u32 *seqno)
471 {
472         u32 mbox1_reg;
473         u32 mbox2_reg;
474         int ret;
475
476         ret = intel_ring_begin(ring, 10);
477         if (ret)
478                 return ret;
479
480         mbox1_reg = ring->signal_mbox[0];
481         mbox2_reg = ring->signal_mbox[1];
482
483         *seqno = i915_gem_next_request_seqno(ring);
484
485         update_mboxes(ring, *seqno, mbox1_reg);
486         update_mboxes(ring, *seqno, mbox2_reg);
487         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
488         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
489         intel_ring_emit(ring, *seqno);
490         intel_ring_emit(ring, MI_USER_INTERRUPT);
491         intel_ring_advance(ring);
492
493         return 0;
494 }
495
496 /**
497  * intel_ring_sync - sync the waiter to the signaller on seqno
498  *
499  * @waiter - ring that is waiting
500  * @signaller - ring which has, or will signal
501  * @seqno - seqno which the waiter will block on
502  */
503 static int
504 intel_ring_sync(struct intel_ring_buffer *waiter,
505                 struct intel_ring_buffer *signaller,
506                 int ring,
507                 u32 seqno)
508 {
509         int ret;
510         u32 dw1 = MI_SEMAPHORE_MBOX |
511                   MI_SEMAPHORE_COMPARE |
512                   MI_SEMAPHORE_REGISTER;
513
514         ret = intel_ring_begin(waiter, 4);
515         if (ret)
516                 return ret;
517
518         intel_ring_emit(waiter, dw1 | signaller->semaphore_register[ring]);
519         intel_ring_emit(waiter, seqno);
520         intel_ring_emit(waiter, 0);
521         intel_ring_emit(waiter, MI_NOOP);
522         intel_ring_advance(waiter);
523
524         return 0;
525 }
526
527 int render_ring_sync_to(struct intel_ring_buffer *waiter,
528     struct intel_ring_buffer *signaller, u32 seqno);
529 int gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
530     struct intel_ring_buffer *signaller, u32 seqno);
531 int gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
532     struct intel_ring_buffer *signaller, u32 seqno);
533
534 /* VCS->RCS (RVSYNC) or BCS->RCS (RBSYNC) */
535 int
536 render_ring_sync_to(struct intel_ring_buffer *waiter,
537                     struct intel_ring_buffer *signaller,
538                     u32 seqno)
539 {
540         KASSERT(signaller->semaphore_register[RCS] != MI_SEMAPHORE_SYNC_INVALID,
541             ("valid RCS semaphore"));
542         return intel_ring_sync(waiter,
543                                signaller,
544                                RCS,
545                                seqno);
546 }
547
548 /* RCS->VCS (VRSYNC) or BCS->VCS (VBSYNC) */
549 int
550 gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
551                       struct intel_ring_buffer *signaller,
552                       u32 seqno)
553 {
554         KASSERT(signaller->semaphore_register[VCS] != MI_SEMAPHORE_SYNC_INVALID,
555             ("Valid VCS semaphore"));
556         return intel_ring_sync(waiter,
557                                signaller,
558                                VCS,
559                                seqno);
560 }
561
562 /* RCS->BCS (BRSYNC) or VCS->BCS (BVSYNC) */
563 int
564 gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
565                       struct intel_ring_buffer *signaller,
566                       u32 seqno)
567 {
568         KASSERT(signaller->semaphore_register[BCS] != MI_SEMAPHORE_SYNC_INVALID,
569             ("Valid BCS semaphore"));
570         return intel_ring_sync(waiter,
571                                signaller,
572                                BCS,
573                                seqno);
574 }
575
576 #define PIPE_CONTROL_FLUSH(ring__, addr__)                                      \
577 do {                                                                    \
578         intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |                \
579                  PIPE_CONTROL_DEPTH_STALL);                             \
580         intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);                    \
581         intel_ring_emit(ring__, 0);                                                     \
582         intel_ring_emit(ring__, 0);                                                     \
583 } while (0)
584
585 static int
586 pc_render_add_request(struct intel_ring_buffer *ring,
587                       uint32_t *result)
588 {
589         u32 seqno = i915_gem_next_request_seqno(ring);
590         struct pipe_control *pc = ring->private;
591         u32 scratch_addr = pc->gtt_offset + 128;
592         int ret;
593
594         /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
595          * incoherent with writes to memory, i.e. completely fubar,
596          * so we need to use PIPE_NOTIFY instead.
597          *
598          * However, we also need to workaround the qword write
599          * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
600          * memory before requesting an interrupt.
601          */
602         ret = intel_ring_begin(ring, 32);
603         if (ret)
604                 return ret;
605
606         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
607                         PIPE_CONTROL_WRITE_FLUSH |
608                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
609         intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
610         intel_ring_emit(ring, seqno);
611         intel_ring_emit(ring, 0);
612         PIPE_CONTROL_FLUSH(ring, scratch_addr);
613         scratch_addr += 128; /* write to separate cachelines */
614         PIPE_CONTROL_FLUSH(ring, scratch_addr);
615         scratch_addr += 128;
616         PIPE_CONTROL_FLUSH(ring, scratch_addr);
617         scratch_addr += 128;
618         PIPE_CONTROL_FLUSH(ring, scratch_addr);
619         scratch_addr += 128;
620         PIPE_CONTROL_FLUSH(ring, scratch_addr);
621         scratch_addr += 128;
622         PIPE_CONTROL_FLUSH(ring, scratch_addr);
623         intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
624                         PIPE_CONTROL_WRITE_FLUSH |
625                         PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
626                         PIPE_CONTROL_NOTIFY);
627         intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
628         intel_ring_emit(ring, seqno);
629         intel_ring_emit(ring, 0);
630         intel_ring_advance(ring);
631
632         *result = seqno;
633         return 0;
634 }
635
636 static int
637 render_ring_add_request(struct intel_ring_buffer *ring,
638                         uint32_t *result)
639 {
640         u32 seqno = i915_gem_next_request_seqno(ring);
641         int ret;
642
643         ret = intel_ring_begin(ring, 4);
644         if (ret)
645                 return ret;
646
647         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
648         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
649         intel_ring_emit(ring, seqno);
650         intel_ring_emit(ring, MI_USER_INTERRUPT);
651         intel_ring_advance(ring);
652
653         *result = seqno;
654         return 0;
655 }
656
657 static u32
658 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
659 {
660         /* Workaround to force correct ordering between irq and seqno writes on
661          * ivb (and maybe also on snb) by reading from a CS register (like
662          * ACTHD) before reading the status page. */
663         if (!lazy_coherency)
664                 intel_ring_get_active_head(ring);
665         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
666 }
667
668 static u32
669 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
670 {
671         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
672 }
673
674 static u32
675 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
676 {
677         struct pipe_control *pc = ring->private;
678         return pc->cpu_page[0];
679 }
680
681 static void
682 ironlake_enable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
683 {
684         dev_priv->gt_irq_mask &= ~mask;
685         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
686         POSTING_READ(GTIMR);
687 }
688
689 static void
690 ironlake_disable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
691 {
692         dev_priv->gt_irq_mask |= mask;
693         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
694         POSTING_READ(GTIMR);
695 }
696
697 static void
698 i915_enable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
699 {
700         dev_priv->irq_mask &= ~mask;
701         I915_WRITE(IMR, dev_priv->irq_mask);
702         POSTING_READ(IMR);
703 }
704
705 static void
706 i915_disable_irq(drm_i915_private_t *dev_priv, uint32_t mask)
707 {
708         dev_priv->irq_mask |= mask;
709         I915_WRITE(IMR, dev_priv->irq_mask);
710         POSTING_READ(IMR);
711 }
712
713 static bool
714 render_ring_get_irq(struct intel_ring_buffer *ring)
715 {
716         struct drm_device *dev = ring->dev;
717         drm_i915_private_t *dev_priv = dev->dev_private;
718
719         if (!dev->irq_enabled)
720                 return false;
721
722         KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
723         if (ring->irq_refcount++ == 0) {
724                 if (HAS_PCH_SPLIT(dev))
725                         ironlake_enable_irq(dev_priv,
726                                             GT_PIPE_NOTIFY | GT_USER_INTERRUPT);
727                 else
728                         i915_enable_irq(dev_priv, I915_USER_INTERRUPT);
729         }
730
731         return true;
732 }
733
734 static void
735 render_ring_put_irq(struct intel_ring_buffer *ring)
736 {
737         struct drm_device *dev = ring->dev;
738         drm_i915_private_t *dev_priv = dev->dev_private;
739
740         KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
741         if (--ring->irq_refcount == 0) {
742                 if (HAS_PCH_SPLIT(dev))
743                         ironlake_disable_irq(dev_priv,
744                                              GT_USER_INTERRUPT |
745                                              GT_PIPE_NOTIFY);
746                 else
747                         i915_disable_irq(dev_priv, I915_USER_INTERRUPT);
748         }
749 }
750
751 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
752 {
753         struct drm_device *dev = ring->dev;
754         drm_i915_private_t *dev_priv = dev->dev_private;
755         uint32_t mmio = 0;
756
757         /* The ring status page addresses are no longer next to the rest of
758          * the ring registers as of gen7.
759          */
760         if (IS_GEN7(dev)) {
761                 switch (ring->id) {
762                 case RCS:
763                         mmio = RENDER_HWS_PGA_GEN7;
764                         break;
765                 case BCS:
766                         mmio = BLT_HWS_PGA_GEN7;
767                         break;
768                 case VCS:
769                         mmio = BSD_HWS_PGA_GEN7;
770                         break;
771                 }
772         } else if (IS_GEN6(dev)) {
773                 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
774         } else {
775                 mmio = RING_HWS_PGA(ring->mmio_base);
776         }
777
778         I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
779         POSTING_READ(mmio);
780 }
781
782 static int
783 bsd_ring_flush(struct intel_ring_buffer *ring,
784                uint32_t     invalidate_domains,
785                uint32_t     flush_domains)
786 {
787         int ret;
788
789         ret = intel_ring_begin(ring, 2);
790         if (ret)
791                 return ret;
792
793         intel_ring_emit(ring, MI_FLUSH);
794         intel_ring_emit(ring, MI_NOOP);
795         intel_ring_advance(ring);
796         return 0;
797 }
798
799 static int
800 ring_add_request(struct intel_ring_buffer *ring,
801                  uint32_t *result)
802 {
803         uint32_t seqno;
804         int ret;
805
806         ret = intel_ring_begin(ring, 4);
807         if (ret)
808                 return ret;
809
810         seqno = i915_gem_next_request_seqno(ring);
811
812         intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
813         intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
814         intel_ring_emit(ring, seqno);
815         intel_ring_emit(ring, MI_USER_INTERRUPT);
816         intel_ring_advance(ring);
817
818         *result = seqno;
819         return 0;
820 }
821
822 static bool
823 gen6_ring_get_irq(struct intel_ring_buffer *ring, uint32_t gflag, uint32_t rflag)
824 {
825         struct drm_device *dev = ring->dev;
826         drm_i915_private_t *dev_priv = dev->dev_private;
827
828         if (!dev->irq_enabled)
829                return false;
830
831         gen6_gt_force_wake_get(dev_priv);
832
833         KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
834         if (ring->irq_refcount++ == 0) {
835                 ring->irq_mask &= ~rflag;
836                 I915_WRITE_IMR(ring, ring->irq_mask);
837                 ironlake_enable_irq(dev_priv, gflag);
838         }
839
840         return true;
841 }
842
843 static void
844 gen6_ring_put_irq(struct intel_ring_buffer *ring, uint32_t gflag, uint32_t rflag)
845 {
846         struct drm_device *dev = ring->dev;
847         drm_i915_private_t *dev_priv = dev->dev_private;
848
849         KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
850         if (--ring->irq_refcount == 0) {
851                 ring->irq_mask |= rflag;
852                 I915_WRITE_IMR(ring, ring->irq_mask);
853                 ironlake_disable_irq(dev_priv, gflag);
854         }
855
856         gen6_gt_force_wake_put(dev_priv);
857 }
858
859 static bool
860 bsd_ring_get_irq(struct intel_ring_buffer *ring)
861 {
862         struct drm_device *dev = ring->dev;
863         drm_i915_private_t *dev_priv = dev->dev_private;
864
865         if (!dev->irq_enabled)
866                 return false;
867
868         KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
869         if (ring->irq_refcount++ == 0) {
870                 if (IS_G4X(dev))
871                         i915_enable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
872                 else
873                         ironlake_enable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
874         }
875
876         return true;
877 }
878 static void
879 bsd_ring_put_irq(struct intel_ring_buffer *ring)
880 {
881         struct drm_device *dev = ring->dev;
882         drm_i915_private_t *dev_priv = dev->dev_private;
883
884         KKASSERT(lockstatus(&ring->irq_lock, curthread) != 0);
885         if (--ring->irq_refcount == 0) {
886                 if (IS_G4X(dev))
887                         i915_disable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
888                 else
889                         ironlake_disable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
890         }
891 }
892
893 static int
894 ring_dispatch_execbuffer(struct intel_ring_buffer *ring, uint32_t offset,
895     uint32_t length)
896 {
897         int ret;
898
899         ret = intel_ring_begin(ring, 2);
900         if (ret)
901                 return ret;
902
903         intel_ring_emit(ring,
904                         MI_BATCH_BUFFER_START | (2 << 6) |
905                         MI_BATCH_NON_SECURE_I965);
906         intel_ring_emit(ring, offset);
907         intel_ring_advance(ring);
908
909         return 0;
910 }
911
912 static int
913 render_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
914                                 uint32_t offset, uint32_t len)
915 {
916         struct drm_device *dev = ring->dev;
917         int ret;
918
919         if (IS_I830(dev) || IS_845G(dev)) {
920                 ret = intel_ring_begin(ring, 4);
921                 if (ret)
922                         return ret;
923
924                 intel_ring_emit(ring, MI_BATCH_BUFFER);
925                 intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
926                 intel_ring_emit(ring, offset + len - 8);
927                 intel_ring_emit(ring, 0);
928         } else {
929                 ret = intel_ring_begin(ring, 2);
930                 if (ret)
931                         return ret;
932
933                 if (INTEL_INFO(dev)->gen >= 4) {
934                         intel_ring_emit(ring,
935                                         MI_BATCH_BUFFER_START | (2 << 6) |
936                                         MI_BATCH_NON_SECURE_I965);
937                         intel_ring_emit(ring, offset);
938                 } else {
939                         intel_ring_emit(ring,
940                                         MI_BATCH_BUFFER_START | (2 << 6));
941                         intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
942                 }
943         }
944         intel_ring_advance(ring);
945
946         return 0;
947 }
948
949 static void cleanup_status_page(struct intel_ring_buffer *ring)
950 {
951         drm_i915_private_t *dev_priv = ring->dev->dev_private;
952         struct drm_i915_gem_object *obj;
953
954         obj = ring->status_page.obj;
955         if (obj == NULL)
956                 return;
957
958         pmap_qremove((vm_offset_t)ring->status_page.page_addr, 1);
959         kmem_free(&kernel_map, (vm_offset_t)ring->status_page.page_addr,
960             PAGE_SIZE);
961         i915_gem_object_unpin(obj);
962         drm_gem_object_unreference(&obj->base);
963         ring->status_page.obj = NULL;
964
965         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
966 }
967
968 static int init_status_page(struct intel_ring_buffer *ring)
969 {
970         struct drm_device *dev = ring->dev;
971         drm_i915_private_t *dev_priv = dev->dev_private;
972         struct drm_i915_gem_object *obj;
973         int ret;
974
975         obj = i915_gem_alloc_object(dev, 4096);
976         if (obj == NULL) {
977                 DRM_ERROR("Failed to allocate status page\n");
978                 ret = -ENOMEM;
979                 goto err;
980         }
981
982         i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
983
984         ret = i915_gem_object_pin(obj, 4096, true);
985         if (ret != 0) {
986                 goto err_unref;
987         }
988
989         ring->status_page.gfx_addr = obj->gtt_offset;
990         ring->status_page.page_addr = (void *)kmem_alloc_nofault(&kernel_map,
991             PAGE_SIZE, PAGE_SIZE);
992         if (ring->status_page.page_addr == NULL) {
993                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
994                 goto err_unpin;
995         }
996         pmap_qenter((vm_offset_t)ring->status_page.page_addr, &obj->pages[0],
997             1);
998         pmap_invalidate_cache_range((vm_offset_t)ring->status_page.page_addr,
999             (vm_offset_t)ring->status_page.page_addr + PAGE_SIZE);
1000         ring->status_page.obj = obj;
1001         memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1002
1003         intel_ring_setup_status_page(ring);
1004         DRM_DEBUG("i915: init_status_page %s hws offset: 0x%08x\n",
1005                         ring->name, ring->status_page.gfx_addr);
1006
1007         return 0;
1008
1009 err_unpin:
1010         i915_gem_object_unpin(obj);
1011 err_unref:
1012         drm_gem_object_unreference(&obj->base);
1013 err:
1014         return ret;
1015 }
1016
1017 static int intel_init_ring_buffer(struct drm_device *dev,
1018                                   struct intel_ring_buffer *ring)
1019 {
1020         struct drm_i915_gem_object *obj;
1021         int ret;
1022
1023         ring->dev = dev;
1024         INIT_LIST_HEAD(&ring->active_list);
1025         INIT_LIST_HEAD(&ring->request_list);
1026         INIT_LIST_HEAD(&ring->gpu_write_list);
1027
1028         lockinit(&ring->irq_lock, "ringb", 0, LK_CANRECURSE);
1029         ring->irq_mask = ~0;
1030
1031         init_waitqueue_head(&ring->irq_queue);
1032
1033         if (I915_NEED_GFX_HWS(dev)) {
1034                 ret = init_status_page(ring);
1035                 if (ret)
1036                         return ret;
1037         }
1038
1039         obj = i915_gem_alloc_object(dev, ring->size);
1040         if (obj == NULL) {
1041                 DRM_ERROR("Failed to allocate ringbuffer\n");
1042                 ret = -ENOMEM;
1043                 goto err_hws;
1044         }
1045
1046         ring->obj = obj;
1047
1048         ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
1049         if (ret)
1050                 goto err_unref;
1051
1052         ring->map.size = ring->size;
1053         ring->map.offset = dev->agp->base + obj->gtt_offset;
1054         ring->map.type = 0;
1055         ring->map.flags = 0;
1056         ring->map.mtrr = 0;
1057
1058         drm_core_ioremap_wc(&ring->map, dev);
1059         if (ring->map.virtual == NULL) {
1060                 DRM_ERROR("Failed to map ringbuffer.\n");
1061                 ret = -EINVAL;
1062                 goto err_unpin;
1063         }
1064
1065         ring->virtual_start = ring->map.virtual;
1066         ret = ring->init(ring);
1067         if (ret)
1068                 goto err_unmap;
1069
1070         /* Workaround an erratum on the i830 which causes a hang if
1071          * the TAIL pointer points to within the last 2 cachelines
1072          * of the buffer.
1073          */
1074         ring->effective_size = ring->size;
1075         if (IS_I830(ring->dev) || IS_845G(ring->dev))
1076                 ring->effective_size -= 128;
1077
1078         return 0;
1079
1080 err_unmap:
1081         drm_core_ioremapfree(&ring->map, dev);
1082 err_unpin:
1083         i915_gem_object_unpin(obj);
1084 err_unref:
1085         drm_gem_object_unreference(&obj->base);
1086         ring->obj = NULL;
1087 err_hws:
1088         cleanup_status_page(ring);
1089         return ret;
1090 }
1091
1092 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1093 {
1094         struct drm_i915_private *dev_priv;
1095         int ret;
1096
1097         if (ring->obj == NULL)
1098                 return;
1099
1100         /* Disable the ring buffer. The ring must be idle at this point */
1101         dev_priv = ring->dev->dev_private;
1102         ret = intel_ring_idle(ring);
1103         if (ret)
1104                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1105                           ring->name, ret);
1106
1107         I915_WRITE_CTL(ring, 0);
1108
1109         drm_core_ioremapfree(&ring->map, ring->dev);
1110
1111         i915_gem_object_unpin(ring->obj);
1112         drm_gem_object_unreference(&ring->obj->base);
1113         ring->obj = NULL;
1114
1115         if (ring->cleanup)
1116                 ring->cleanup(ring);
1117
1118         cleanup_status_page(ring);
1119 }
1120
1121 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1122 {
1123         int ret;
1124
1125         ret = i915_wait_seqno(ring, seqno);
1126         if (!ret)
1127                 i915_gem_retire_requests_ring(ring);
1128
1129         return ret;
1130 }
1131
1132 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1133 {
1134         struct drm_i915_gem_request *request;
1135         u32 seqno = 0;
1136         int ret;
1137
1138         i915_gem_retire_requests_ring(ring);
1139
1140         if (ring->last_retired_head != -1) {
1141                 ring->head = ring->last_retired_head;
1142                 ring->last_retired_head = -1;
1143                 ring->space = ring_space(ring);
1144                 if (ring->space >= n)
1145                         return 0;
1146         }
1147
1148         list_for_each_entry(request, &ring->request_list, list) {
1149                 int space;
1150
1151                 if (request->tail == -1)
1152                         continue;
1153
1154                 space = request->tail - (ring->tail + 8);
1155                 if (space < 0)
1156                         space += ring->size;
1157                 if (space >= n) {
1158                         seqno = request->seqno;
1159                         break;
1160                 }
1161
1162                 /* Consume this request in case we need more space than
1163                  * is available and so need to prevent a race between
1164                  * updating last_retired_head and direct reads of
1165                  * I915_RING_HEAD. It also provides a nice sanity check.
1166                  */
1167                 request->tail = -1;
1168         }
1169
1170         if (seqno == 0)
1171                 return -ENOSPC;
1172
1173         ret = intel_ring_wait_seqno(ring, seqno);
1174         if (ret)
1175                 return ret;
1176
1177         if (ring->last_retired_head == -1)
1178                 return -ENOSPC;
1179
1180         ring->head = ring->last_retired_head;
1181         ring->last_retired_head = -1;
1182         ring->space = ring_space(ring);
1183         if (ring->space < n)
1184                 return -ENOSPC;
1185
1186         return 0;
1187 }
1188
1189 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1190 {
1191         struct drm_device *dev = ring->dev;
1192         struct drm_i915_private *dev_priv = dev->dev_private;
1193         unsigned long end;
1194         int ret;
1195
1196         ret = intel_ring_wait_request(ring, n);
1197         if (ret != -ENOSPC)
1198                 return ret;
1199
1200         /* With GEM the hangcheck timer should kick us out of the loop,
1201          * leaving it early runs the risk of corrupting GEM state (due
1202          * to running on almost untested codepaths). But on resume
1203          * timers don't work yet, so prevent a complete hang in that
1204          * case by choosing an insanely large timeout. */
1205         end = ticks + 60 * hz;
1206
1207         do {
1208                 ring->head = I915_READ_HEAD(ring);
1209                 ring->space = ring_space(ring);
1210                 if (ring->space >= n) {
1211                         return 0;
1212                 }
1213
1214 #if 0
1215                 if (dev->primary->master) {
1216                         struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1217                         if (master_priv->sarea_priv)
1218                                 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1219                 }
1220 #else
1221                 if (dev_priv->sarea_priv)
1222                         dev_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1223 #endif
1224
1225                 DELAY(1000);
1226
1227                 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
1228                 if (ret)
1229                         return ret;
1230         } while (!time_after(ticks, end));
1231         return -EBUSY;
1232 }
1233
1234 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1235 {
1236         uint32_t __iomem *virt;
1237         int rem = ring->size - ring->tail;
1238
1239         if (ring->space < rem) {
1240                 int ret = ring_wait_for_space(ring, rem);
1241                 if (ret)
1242                         return ret;
1243         }
1244
1245         virt = (unsigned int *)((char *)ring->virtual_start + ring->tail);
1246         rem /= 4;
1247         while (rem--)
1248                 *virt++ = MI_NOOP;
1249
1250         ring->tail = 0;
1251         ring->space = ring_space(ring);
1252
1253         return 0;
1254 }
1255
1256 int intel_ring_idle(struct intel_ring_buffer *ring)
1257 {
1258         return ring_wait_for_space(ring, ring->size - 8);
1259 }
1260
1261 int intel_ring_begin(struct intel_ring_buffer *ring,
1262                      int num_dwords)
1263 {
1264         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1265         int n = 4*num_dwords;
1266         int ret;
1267
1268         ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
1269         if (ret)
1270                 return ret;
1271
1272         if (unlikely(ring->tail + n > ring->effective_size)) {
1273                 ret = intel_wrap_ring_buffer(ring);
1274                 if (unlikely(ret))
1275                         return ret;
1276         }
1277
1278         if (unlikely(ring->space < n)) {
1279                 ret = ring_wait_for_space(ring, n);
1280                 if (unlikely(ret))
1281                         return ret;
1282         }
1283
1284         ring->space -= n;
1285         return 0;
1286 }
1287
1288 void intel_ring_advance(struct intel_ring_buffer *ring)
1289 {
1290         ring->tail &= ring->size - 1;
1291         ring->write_tail(ring, ring->tail);
1292 }
1293
1294 static const struct intel_ring_buffer render_ring = {
1295         .name                   = "render ring",
1296         .id                     = RCS,
1297         .mmio_base              = RENDER_RING_BASE,
1298         .size                   = 32 * PAGE_SIZE,
1299         .init                   = init_render_ring,
1300         .write_tail             = ring_write_tail,
1301         .flush                  = render_ring_flush,
1302         .add_request            = render_ring_add_request,
1303         .get_seqno              = ring_get_seqno,
1304         .irq_get                = render_ring_get_irq,
1305         .irq_put                = render_ring_put_irq,
1306         .dispatch_execbuffer    = render_ring_dispatch_execbuffer,
1307         .cleanup                = render_ring_cleanup,
1308         .sync_to                = render_ring_sync_to,
1309         .semaphore_register     = {MI_SEMAPHORE_SYNC_INVALID,
1310                                    MI_SEMAPHORE_SYNC_RV,
1311                                    MI_SEMAPHORE_SYNC_RB},
1312         .signal_mbox            = {GEN6_VRSYNC, GEN6_BRSYNC},
1313 };
1314
1315 /* ring buffer for bit-stream decoder */
1316
1317 static const struct intel_ring_buffer bsd_ring = {
1318         .name                   = "bsd ring",
1319         .id                     = VCS,
1320         .mmio_base              = BSD_RING_BASE,
1321         .size                   = 32 * PAGE_SIZE,
1322         .init                   = init_ring_common,
1323         .write_tail             = ring_write_tail,
1324         .flush                  = bsd_ring_flush,
1325         .add_request            = ring_add_request,
1326         .get_seqno              = ring_get_seqno,
1327         .irq_get                = bsd_ring_get_irq,
1328         .irq_put                = bsd_ring_put_irq,
1329         .dispatch_execbuffer    = ring_dispatch_execbuffer,
1330 };
1331
1332
1333 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1334                                      u32 value)
1335 {
1336         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1337
1338        /* Every tail move must follow the sequence below */
1339
1340         /* Disable notification that the ring is IDLE. The GT
1341          * will then assume that it is busy and bring it out of rc6.
1342          */
1343         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1344                    _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1345
1346         /* Clear the context id. Here be magic! */
1347         I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1348
1349         /* Wait for the ring not to be idle, i.e. for it to wake up. */
1350         if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1351                       GEN6_BSD_SLEEP_INDICATOR) == 0,
1352                      50))
1353                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1354
1355         /* Now that the ring is fully powered up, update the tail */
1356         I915_WRITE_TAIL(ring, value);
1357         POSTING_READ(RING_TAIL(ring->mmio_base));
1358
1359         /* Let the ring send IDLE messages to the GT again,
1360          * and so let it sleep to conserve power when idle.
1361          */
1362         I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1363                    _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1364 }
1365
1366 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1367                            uint32_t invalidate, uint32_t flush)
1368 {
1369         uint32_t cmd;
1370         int ret;
1371
1372         ret = intel_ring_begin(ring, 4);
1373         if (ret)
1374                 return ret;
1375
1376         cmd = MI_FLUSH_DW;
1377         if (invalidate & I915_GEM_GPU_DOMAINS)
1378                 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
1379         intel_ring_emit(ring, cmd);
1380         intel_ring_emit(ring, 0);
1381         intel_ring_emit(ring, 0);
1382         intel_ring_emit(ring, MI_NOOP);
1383         intel_ring_advance(ring);
1384         return 0;
1385 }
1386
1387 static int
1388 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1389                               uint32_t offset, uint32_t len)
1390 {
1391         int ret;
1392
1393         ret = intel_ring_begin(ring, 2);
1394         if (ret)
1395                 return ret;
1396
1397         intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965);
1398         /* bit0-7 is the length on GEN6+ */
1399         intel_ring_emit(ring, offset);
1400         intel_ring_advance(ring);
1401
1402         return 0;
1403 }
1404
1405 static bool
1406 gen6_render_ring_get_irq(struct intel_ring_buffer *ring)
1407 {
1408         return gen6_ring_get_irq(ring,
1409                                  GT_USER_INTERRUPT,
1410                                  GEN6_RENDER_USER_INTERRUPT);
1411 }
1412
1413 static void
1414 gen6_render_ring_put_irq(struct intel_ring_buffer *ring)
1415 {
1416         return gen6_ring_put_irq(ring,
1417                                  GT_USER_INTERRUPT,
1418                                  GEN6_RENDER_USER_INTERRUPT);
1419 }
1420
1421 static bool
1422 gen6_bsd_ring_get_irq(struct intel_ring_buffer *ring)
1423 {
1424         return gen6_ring_get_irq(ring,
1425                                  GT_GEN6_BSD_USER_INTERRUPT,
1426                                  GEN6_BSD_USER_INTERRUPT);
1427 }
1428
1429 static void
1430 gen6_bsd_ring_put_irq(struct intel_ring_buffer *ring)
1431 {
1432         return gen6_ring_put_irq(ring,
1433                                  GT_GEN6_BSD_USER_INTERRUPT,
1434                                  GEN6_BSD_USER_INTERRUPT);
1435 }
1436
1437 /* ring buffer for Video Codec for Gen6+ */
1438 static const struct intel_ring_buffer gen6_bsd_ring = {
1439         .name                   = "gen6 bsd ring",
1440         .id                     = VCS,
1441         .mmio_base              = GEN6_BSD_RING_BASE,
1442         .size                   = 32 * PAGE_SIZE,
1443         .init                   = init_ring_common,
1444         .write_tail             = gen6_bsd_ring_write_tail,
1445         .flush                  = gen6_ring_flush,
1446         .add_request            = gen6_add_request,
1447         .get_seqno              = gen6_ring_get_seqno,
1448         .irq_get                = gen6_bsd_ring_get_irq,
1449         .irq_put                = gen6_bsd_ring_put_irq,
1450         .dispatch_execbuffer    = gen6_ring_dispatch_execbuffer,
1451         .sync_to                = gen6_bsd_ring_sync_to,
1452         .semaphore_register     = {MI_SEMAPHORE_SYNC_VR,
1453                                    MI_SEMAPHORE_SYNC_INVALID,
1454                                    MI_SEMAPHORE_SYNC_VB},
1455         .signal_mbox            = {GEN6_RVSYNC, GEN6_BVSYNC},
1456 };
1457
1458 /* Blitter support (SandyBridge+) */
1459
1460 static bool
1461 blt_ring_get_irq(struct intel_ring_buffer *ring)
1462 {
1463         return gen6_ring_get_irq(ring,
1464                                  GT_GEN6_BLT_USER_INTERRUPT,
1465                                  GEN6_BLITTER_USER_INTERRUPT);
1466 }
1467
1468 static void
1469 blt_ring_put_irq(struct intel_ring_buffer *ring)
1470 {
1471         gen6_ring_put_irq(ring,
1472                           GT_GEN6_BLT_USER_INTERRUPT,
1473                           GEN6_BLITTER_USER_INTERRUPT);
1474 }
1475
1476 static int blt_ring_flush(struct intel_ring_buffer *ring,
1477                           uint32_t invalidate, uint32_t flush)
1478 {
1479         uint32_t cmd;
1480         int ret;
1481
1482         ret = intel_ring_begin(ring, 4);
1483         if (ret)
1484                 return ret;
1485
1486         cmd = MI_FLUSH_DW;
1487         if (invalidate & I915_GEM_DOMAIN_RENDER)
1488                 cmd |= MI_INVALIDATE_TLB;
1489         intel_ring_emit(ring, cmd);
1490         intel_ring_emit(ring, 0);
1491         intel_ring_emit(ring, 0);
1492         intel_ring_emit(ring, MI_NOOP);
1493         intel_ring_advance(ring);
1494         return 0;
1495 }
1496
1497 static const struct intel_ring_buffer gen6_blt_ring = {
1498         .name                   = "blt ring",
1499         .id                     = BCS,
1500         .mmio_base              = BLT_RING_BASE,
1501         .size                   = 32 * PAGE_SIZE,
1502         .init                   = init_ring_common,
1503         .write_tail             = ring_write_tail,
1504         .flush                  = blt_ring_flush,
1505         .add_request            = gen6_add_request,
1506         .get_seqno              = gen6_ring_get_seqno,
1507         .irq_get                = blt_ring_get_irq,
1508         .irq_put                = blt_ring_put_irq,
1509         .dispatch_execbuffer    = gen6_ring_dispatch_execbuffer,
1510         .sync_to                = gen6_blt_ring_sync_to,
1511         .semaphore_register     = {MI_SEMAPHORE_SYNC_BR,
1512                                    MI_SEMAPHORE_SYNC_BV,
1513                                    MI_SEMAPHORE_SYNC_INVALID},
1514         .signal_mbox            = {GEN6_RBSYNC, GEN6_VBSYNC},
1515 };
1516
1517 int intel_init_render_ring_buffer(struct drm_device *dev)
1518 {
1519         drm_i915_private_t *dev_priv = dev->dev_private;
1520         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1521
1522         *ring = render_ring;
1523         if (INTEL_INFO(dev)->gen >= 6) {
1524                 ring->add_request = gen6_add_request;
1525                 ring->flush = gen6_render_ring_flush;
1526                 ring->irq_get = gen6_render_ring_get_irq;
1527                 ring->irq_put = gen6_render_ring_put_irq;
1528                 ring->get_seqno = gen6_ring_get_seqno;
1529         } else if (IS_GEN5(dev)) {
1530                 ring->add_request = pc_render_add_request;
1531                 ring->get_seqno = pc_render_get_seqno;
1532         }
1533
1534         if (!I915_NEED_GFX_HWS(dev)) {
1535                 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1536                 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1537         }
1538
1539         return intel_init_ring_buffer(dev, ring);
1540 }
1541
1542 int intel_render_ring_init_dri(struct drm_device *dev, uint64_t start,
1543     uint32_t size)
1544 {
1545         drm_i915_private_t *dev_priv = dev->dev_private;
1546         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1547
1548         *ring = render_ring;
1549         if (INTEL_INFO(dev)->gen >= 6) {
1550                 ring->add_request = gen6_add_request;
1551                 ring->irq_get = gen6_render_ring_get_irq;
1552                 ring->irq_put = gen6_render_ring_put_irq;
1553         } else if (IS_GEN5(dev)) {
1554                 ring->add_request = pc_render_add_request;
1555                 ring->get_seqno = pc_render_get_seqno;
1556         }
1557
1558         ring->dev = dev;
1559         INIT_LIST_HEAD(&ring->active_list);
1560         INIT_LIST_HEAD(&ring->request_list);
1561         INIT_LIST_HEAD(&ring->gpu_write_list);
1562
1563         ring->size = size;
1564         ring->effective_size = ring->size;
1565         if (IS_I830(ring->dev))
1566                 ring->effective_size -= 128;
1567
1568         ring->map.offset = start;
1569         ring->map.size = size;
1570         ring->map.type = 0;
1571         ring->map.flags = 0;
1572         ring->map.mtrr = 0;
1573
1574         drm_core_ioremap_wc(&ring->map, dev);
1575         if (ring->map.virtual == NULL) {
1576                 DRM_ERROR("can not ioremap virtual address for"
1577                           " ring buffer\n");
1578                 return -ENOMEM;
1579         }
1580
1581         ring->virtual_start = (void *)ring->map.virtual;
1582         return 0;
1583 }
1584
1585 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1586 {
1587         drm_i915_private_t *dev_priv = dev->dev_private;
1588         struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1589
1590         if (IS_GEN6(dev) || IS_GEN7(dev))
1591                 *ring = gen6_bsd_ring;
1592         else
1593                 *ring = bsd_ring;
1594
1595         return intel_init_ring_buffer(dev, ring);
1596 }
1597
1598 int intel_init_blt_ring_buffer(struct drm_device *dev)
1599 {
1600         drm_i915_private_t *dev_priv = dev->dev_private;
1601         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1602
1603         *ring = gen6_blt_ring;
1604
1605         return intel_init_ring_buffer(dev, ring);
1606 }
1607
1608 int
1609 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
1610 {
1611         int ret;
1612
1613         if (!ring->gpu_caches_dirty)
1614                 return 0;
1615
1616         ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
1617         if (ret)
1618                 return ret;
1619
1620         ring->gpu_caches_dirty = false;
1621         return 0;
1622 }
1623
1624 int
1625 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
1626 {
1627         uint32_t flush_domains;
1628         int ret;
1629
1630         flush_domains = 0;
1631         if (ring->gpu_caches_dirty)
1632                 flush_domains = I915_GEM_GPU_DOMAINS;
1633
1634         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
1635         if (ret)
1636                 return ret;
1637
1638         ring->gpu_caches_dirty = false;
1639         return 0;
1640 }