drm/i915: Update to Linux 3.17
[dragonfly.git] / sys / dev / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  * Copyright (c) 2011 The FreeBSD Foundation
27  * All rights reserved.
28  *
29  * This software was developed by Konstantin Belousov under sponsorship from
30  * the FreeBSD Foundation.
31  *
32  * Redistribution and use in source and binary forms, with or without
33  * modification, are permitted provided that the following conditions
34  * are met:
35  * 1. Redistributions of source code must retain the above copyright
36  *    notice, this list of conditions and the following disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  */
54
55 #include <machine/md_var.h>
56
57 #include <drm/drmP.h>
58 #include <drm/drm_vma_manager.h>
59 #include <drm/i915_drm.h>
60 #include "i915_drv.h"
61 #include "i915_trace.h"
62 #include "intel_drv.h"
63 #include <linux/shmem_fs.h>
64 #include <linux/slab.h>
65 #include <linux/swap.h>
66 #include <linux/pci.h>
67
68 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
69 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
70                                                    bool force);
71 static __must_check int
72 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
73                                bool readonly);
74 static void
75 i915_gem_object_retire(struct drm_i915_gem_object *obj);
76
77 static void i915_gem_write_fence(struct drm_device *dev, int reg,
78                                  struct drm_i915_gem_object *obj);
79 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
80                                          struct drm_i915_fence_reg *fence,
81                                          bool enable);
82
83 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
84 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
85
86 static bool cpu_cache_is_coherent(struct drm_device *dev,
87                                   enum i915_cache_level level)
88 {
89         return HAS_LLC(dev) || level != I915_CACHE_NONE;
90 }
91
92 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
93 {
94         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
95                 return true;
96
97         return obj->pin_display;
98 }
99
100 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
101 {
102         if (obj->tiling_mode)
103                 i915_gem_release_mmap(obj);
104
105         /* As we do not have an associated fence register, we will force
106          * a tiling change if we ever need to acquire one.
107          */
108         obj->fence_dirty = false;
109         obj->fence_reg = I915_FENCE_REG_NONE;
110 }
111
112 /* some bookkeeping */
113 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
114                                   size_t size)
115 {
116         spin_lock(&dev_priv->mm.object_stat_lock);
117         dev_priv->mm.object_count++;
118         dev_priv->mm.object_memory += size;
119         spin_unlock(&dev_priv->mm.object_stat_lock);
120 }
121
122 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
123                                      size_t size)
124 {
125         spin_lock(&dev_priv->mm.object_stat_lock);
126         dev_priv->mm.object_count--;
127         dev_priv->mm.object_memory -= size;
128         spin_unlock(&dev_priv->mm.object_stat_lock);
129 }
130
131 static int
132 i915_gem_wait_for_error(struct i915_gpu_error *error)
133 {
134         int ret;
135
136 #define EXIT_COND (!i915_reset_in_progress(error) || \
137                    i915_terminally_wedged(error))
138         if (EXIT_COND)
139                 return 0;
140
141         /*
142          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
143          * userspace. If it takes that long something really bad is going on and
144          * we should simply try to bail out and fail as gracefully as possible.
145          */
146         ret = wait_event_interruptible_timeout(error->reset_queue,
147                                                EXIT_COND,
148                                                10*HZ);
149         if (ret == 0) {
150                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
151                 return -EIO;
152         } else if (ret < 0) {
153                 return ret;
154         }
155 #undef EXIT_COND
156
157         return 0;
158 }
159
160 int i915_mutex_lock_interruptible(struct drm_device *dev)
161 {
162         struct drm_i915_private *dev_priv = dev->dev_private;
163         int ret;
164
165         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
166         if (ret)
167                 return ret;
168
169         ret = mutex_lock_interruptible(&dev->struct_mutex);
170         if (ret)
171                 return ret;
172
173         WARN_ON(i915_verify_lists(dev));
174         return 0;
175 }
176
177 static inline bool
178 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
179 {
180         return i915_gem_obj_bound_any(obj) && !obj->active;
181 }
182
183 int
184 i915_gem_init_ioctl(struct drm_device *dev, void *data,
185                     struct drm_file *file)
186 {
187         struct drm_i915_private *dev_priv = dev->dev_private;
188         struct drm_i915_gem_init *args = data;
189
190         if (drm_core_check_feature(dev, DRIVER_MODESET))
191                 return -ENODEV;
192
193         if (args->gtt_start >= args->gtt_end ||
194             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
195                 return -EINVAL;
196
197         /* GEM with user mode setting was never supported on ilk and later. */
198         if (INTEL_INFO(dev)->gen >= 5)
199                 return -ENODEV;
200
201         mutex_lock(&dev->struct_mutex);
202         kprintf("INITGLOBALGTT GTT_START %016jx\n", (uintmax_t)args->gtt_start);
203         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
204                                   args->gtt_end);
205         dev_priv->gtt.mappable_end = args->gtt_end;
206         mutex_unlock(&dev->struct_mutex);
207
208         return 0;
209 }
210
211 int
212 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
213                             struct drm_file *file)
214 {
215         struct drm_i915_private *dev_priv = dev->dev_private;
216         struct drm_i915_gem_get_aperture *args = data;
217         struct drm_i915_gem_object *obj;
218         size_t pinned;
219
220         pinned = 0;
221         mutex_lock(&dev->struct_mutex);
222         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
223                 if (i915_gem_obj_is_pinned(obj))
224                         pinned += i915_gem_obj_ggtt_size(obj);
225         mutex_unlock(&dev->struct_mutex);
226
227         args->aper_size = dev_priv->gtt.base.total;
228         args->aper_available_size = args->aper_size - pinned;
229
230         return 0;
231 }
232
233 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
234 {
235         drm_dma_handle_t *phys = obj->phys_handle;
236
237         if (!phys)
238                 return;
239
240         if (obj->madv == I915_MADV_WILLNEED) {
241                 struct vm_object *mapping = obj->base.vm_obj;
242                 char *vaddr = phys->vaddr;
243                 int i;
244
245                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
246                         struct vm_page *page = shmem_read_mapping_page(mapping, i);
247                         if (!IS_ERR(page)) {
248                                 char *dst = kmap_atomic(page);
249                                 memcpy(dst, vaddr, PAGE_SIZE);
250                                 drm_clflush_virt_range(dst, PAGE_SIZE);
251                                 kunmap_atomic(dst);
252
253                                 set_page_dirty(page);
254                                 mark_page_accessed(page);
255 #if 0
256                                 page_cache_release(page);
257 #endif
258                         }
259                         vaddr += PAGE_SIZE;
260                 }
261                 i915_gem_chipset_flush(obj->base.dev);
262         }
263
264 #ifdef CONFIG_X86
265         set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
266 #endif
267         drm_pci_free(obj->base.dev, phys);
268         obj->phys_handle = NULL;
269 }
270
271 int
272 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
273                             int align)
274 {
275         drm_dma_handle_t *phys;
276         struct vm_object *mapping;
277         char *vaddr;
278         int i;
279
280         if (obj->phys_handle) {
281                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
282                         return -EBUSY;
283
284                 return 0;
285         }
286
287         if (obj->madv != I915_MADV_WILLNEED)
288                 return -EFAULT;
289
290 #if 0
291         if (obj->base.filp == NULL)
292                 return -EINVAL;
293 #endif
294
295         /* create a new object */
296         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
297         if (!phys)
298                 return -ENOMEM;
299
300         vaddr = phys->vaddr;
301 #ifdef CONFIG_X86
302         set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
303 #endif
304         mapping = obj->base.vm_obj;
305         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
306                 struct vm_page *page;
307                 char *src;
308
309                 page = shmem_read_mapping_page(mapping, i);
310                 if (IS_ERR(page)) {
311 #ifdef CONFIG_X86
312                         set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
313 #endif
314                         drm_pci_free(obj->base.dev, phys);
315                         return PTR_ERR(page);
316                 }
317
318                 src = kmap_atomic(page);
319                 memcpy(vaddr, src, PAGE_SIZE);
320                 kunmap_atomic(src);
321
322                 mark_page_accessed(page);
323 #if 0
324                 page_cache_release(page);
325 #endif
326
327                 vaddr += PAGE_SIZE;
328         }
329
330         obj->phys_handle = phys;
331         return 0;
332 }
333
334 static int
335 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
336                      struct drm_i915_gem_pwrite *args,
337                      struct drm_file *file_priv)
338 {
339         struct drm_device *dev = obj->base.dev;
340         void *vaddr = (char *)obj->phys_handle->vaddr + args->offset;
341         char __user *user_data = to_user_ptr(args->data_ptr);
342
343         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
344                 unsigned long unwritten;
345
346                 /* The physical object once assigned is fixed for the lifetime
347                  * of the obj, so we can safely drop the lock and continue
348                  * to access vaddr.
349                  */
350                 mutex_unlock(&dev->struct_mutex);
351                 unwritten = copy_from_user(vaddr, user_data, args->size);
352                 mutex_lock(&dev->struct_mutex);
353                 if (unwritten)
354                         return -EFAULT;
355         }
356
357         i915_gem_chipset_flush(dev);
358         return 0;
359 }
360
361 void *i915_gem_object_alloc(struct drm_device *dev)
362 {
363         return kmalloc(sizeof(struct drm_i915_gem_object),
364             M_DRM, M_WAITOK | M_ZERO);
365 }
366
367 void i915_gem_object_free(struct drm_i915_gem_object *obj)
368 {
369         kfree(obj);
370 }
371
372 static int
373 i915_gem_create(struct drm_file *file,
374                 struct drm_device *dev,
375                 uint64_t size,
376                 uint32_t *handle_p)
377 {
378         struct drm_i915_gem_object *obj;
379         int ret;
380         u32 handle;
381
382         size = roundup(size, PAGE_SIZE);
383         if (size == 0)
384                 return -EINVAL;
385
386         /* Allocate the new object */
387         obj = i915_gem_alloc_object(dev, size);
388         if (obj == NULL)
389                 return -ENOMEM;
390
391         ret = drm_gem_handle_create(file, &obj->base, &handle);
392         /* drop reference from allocate - handle holds it now */
393         drm_gem_object_unreference_unlocked(&obj->base);
394         if (ret)
395                 return ret;
396
397         *handle_p = handle;
398         return 0;
399 }
400
401 int
402 i915_gem_dumb_create(struct drm_file *file,
403                      struct drm_device *dev,
404                      struct drm_mode_create_dumb *args)
405 {
406         /* have to work out size/pitch and return them */
407         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
408         args->size = args->pitch * args->height;
409         return i915_gem_create(file, dev,
410                                args->size, &args->handle);
411 }
412
413 /**
414  * Creates a new mm object and returns a handle to it.
415  */
416 int
417 i915_gem_create_ioctl(struct drm_device *dev, void *data,
418                       struct drm_file *file)
419 {
420         struct drm_i915_gem_create *args = data;
421
422         return i915_gem_create(file, dev,
423                                args->size, &args->handle);
424 }
425
426 static inline int
427 __copy_to_user_swizzled(char __user *cpu_vaddr,
428                         const char *gpu_vaddr, int gpu_offset,
429                         int length)
430 {
431         int ret, cpu_offset = 0;
432
433         while (length > 0) {
434                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
435                 int this_length = min(cacheline_end - gpu_offset, length);
436                 int swizzled_gpu_offset = gpu_offset ^ 64;
437
438                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
439                                      gpu_vaddr + swizzled_gpu_offset,
440                                      this_length);
441                 if (ret)
442                         return ret + length;
443
444                 cpu_offset += this_length;
445                 gpu_offset += this_length;
446                 length -= this_length;
447         }
448
449         return 0;
450 }
451
452 static inline int
453 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
454                           const char __user *cpu_vaddr,
455                           int length)
456 {
457         int ret, cpu_offset = 0;
458
459         while (length > 0) {
460                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
461                 int this_length = min(cacheline_end - gpu_offset, length);
462                 int swizzled_gpu_offset = gpu_offset ^ 64;
463
464                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
465                                        cpu_vaddr + cpu_offset,
466                                        this_length);
467                 if (ret)
468                         return ret + length;
469
470                 cpu_offset += this_length;
471                 gpu_offset += this_length;
472                 length -= this_length;
473         }
474
475         return 0;
476 }
477
478 /*
479  * Pins the specified object's pages and synchronizes the object with
480  * GPU accesses. Sets needs_clflush to non-zero if the caller should
481  * flush the object from the CPU cache.
482  */
483 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
484                                     int *needs_clflush)
485 {
486         int ret;
487
488         *needs_clflush = 0;
489
490 #if 0
491         if (!obj->base.filp)
492                 return -EINVAL;
493 #endif
494
495         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496                 /* If we're not in the cpu read domain, set ourself into the gtt
497                  * read domain and manually flush cachelines (if required). This
498                  * optimizes for the case when the gpu will dirty the data
499                  * anyway again before the next pread happens. */
500                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501                                                         obj->cache_level);
502                 ret = i915_gem_object_wait_rendering(obj, true);
503                 if (ret)
504                         return ret;
505
506                 i915_gem_object_retire(obj);
507         }
508
509         ret = i915_gem_object_get_pages(obj);
510         if (ret)
511                 return ret;
512
513         i915_gem_object_pin_pages(obj);
514
515         return ret;
516 }
517
518 /* Per-page copy function for the shmem pread fastpath.
519  * Flushes invalid cachelines before reading the target if
520  * needs_clflush is set. */
521 static int
522 shmem_pread_fast(struct vm_page *page, int shmem_page_offset, int page_length,
523                  char __user *user_data,
524                  bool page_do_bit17_swizzling, bool needs_clflush)
525 {
526         char *vaddr;
527         int ret;
528
529         if (unlikely(page_do_bit17_swizzling))
530                 return -EINVAL;
531
532         vaddr = kmap_atomic(page);
533         if (needs_clflush)
534                 drm_clflush_virt_range(vaddr + shmem_page_offset,
535                                        page_length);
536         ret = __copy_to_user_inatomic(user_data,
537                                       vaddr + shmem_page_offset,
538                                       page_length);
539         kunmap_atomic(vaddr);
540
541         return ret ? -EFAULT : 0;
542 }
543
544 static void
545 shmem_clflush_swizzled_range(char *addr, unsigned long length,
546                              bool swizzled)
547 {
548         if (unlikely(swizzled)) {
549                 unsigned long start = (unsigned long) addr;
550                 unsigned long end = (unsigned long) addr + length;
551
552                 /* For swizzling simply ensure that we always flush both
553                  * channels. Lame, but simple and it works. Swizzled
554                  * pwrite/pread is far from a hotpath - current userspace
555                  * doesn't use it at all. */
556                 start = round_down(start, 128);
557                 end = round_up(end, 128);
558
559                 drm_clflush_virt_range((void *)start, end - start);
560         } else {
561                 drm_clflush_virt_range(addr, length);
562         }
563
564 }
565
566 /* Only difference to the fast-path function is that this can handle bit17
567  * and uses non-atomic copy and kmap functions. */
568 static int
569 shmem_pread_slow(struct vm_page *page, int shmem_page_offset, int page_length,
570                  char __user *user_data,
571                  bool page_do_bit17_swizzling, bool needs_clflush)
572 {
573         char *vaddr;
574         int ret;
575
576         vaddr = kmap(page);
577         if (needs_clflush)
578                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
579                                              page_length,
580                                              page_do_bit17_swizzling);
581
582         if (page_do_bit17_swizzling)
583                 ret = __copy_to_user_swizzled(user_data,
584                                               vaddr, shmem_page_offset,
585                                               page_length);
586         else
587                 ret = __copy_to_user(user_data,
588                                      vaddr + shmem_page_offset,
589                                      page_length);
590         kunmap(page);
591
592         return ret ? - EFAULT : 0;
593 }
594
595 static int
596 i915_gem_shmem_pread(struct drm_device *dev,
597                      struct drm_i915_gem_object *obj,
598                      struct drm_i915_gem_pread *args,
599                      struct drm_file *file)
600 {
601         char __user *user_data;
602         ssize_t remain;
603         loff_t offset;
604         int shmem_page_offset, page_length, ret = 0;
605         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
606         int prefaulted = 0;
607         int needs_clflush = 0;
608         int i;
609
610         user_data = to_user_ptr(args->data_ptr);
611         remain = args->size;
612
613         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
614
615         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
616         if (ret)
617                 return ret;
618
619         offset = args->offset;
620
621         for (i = 0; i < (obj->base.size >> PAGE_SHIFT); i++) {
622                 struct vm_page *page = obj->pages[i];
623
624                 if (remain <= 0)
625                         break;
626
627                 /* Operation in this page
628                  *
629                  * shmem_page_offset = offset within page in shmem file
630                  * page_length = bytes to copy for this page
631                  */
632                 shmem_page_offset = offset_in_page(offset);
633                 page_length = remain;
634                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
635                         page_length = PAGE_SIZE - shmem_page_offset;
636
637                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
638                         (page_to_phys(page) & (1 << 17)) != 0;
639
640                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
641                                        user_data, page_do_bit17_swizzling,
642                                        needs_clflush);
643                 if (ret == 0)
644                         goto next_page;
645
646                 mutex_unlock(&dev->struct_mutex);
647
648                 if (likely(!i915.prefault_disable) && !prefaulted) {
649                         ret = fault_in_multipages_writeable(user_data, remain);
650                         /* Userspace is tricking us, but we've already clobbered
651                          * its pages with the prefault and promised to write the
652                          * data up to the first fault. Hence ignore any errors
653                          * and just continue. */
654                         (void)ret;
655                         prefaulted = 1;
656                 }
657
658                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
659                                        user_data, page_do_bit17_swizzling,
660                                        needs_clflush);
661
662                 mutex_lock(&dev->struct_mutex);
663
664                 if (ret)
665                         goto out;
666
667 next_page:
668                 remain -= page_length;
669                 user_data += page_length;
670                 offset += page_length;
671         }
672
673 out:
674         i915_gem_object_unpin_pages(obj);
675
676         return ret;
677 }
678
679 /**
680  * Reads data from the object referenced by handle.
681  *
682  * On error, the contents of *data are undefined.
683  */
684 int
685 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
686                      struct drm_file *file)
687 {
688         struct drm_i915_gem_pread *args = data;
689         struct drm_i915_gem_object *obj;
690         int ret = 0;
691
692         if (args->size == 0)
693                 return 0;
694
695         ret = i915_mutex_lock_interruptible(dev);
696         if (ret)
697                 return ret;
698
699         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
700         if (&obj->base == NULL) {
701                 ret = -ENOENT;
702                 goto unlock;
703         }
704
705         /* Bounds check source.  */
706         if (args->offset > obj->base.size ||
707             args->size > obj->base.size - args->offset) {
708                 ret = -EINVAL;
709                 goto out;
710         }
711
712         trace_i915_gem_object_pread(obj, args->offset, args->size);
713
714         ret = i915_gem_shmem_pread(dev, obj, args, file);
715
716 out:
717         drm_gem_object_unreference(&obj->base);
718 unlock:
719         mutex_unlock(&dev->struct_mutex);
720         return ret;
721 }
722
723 /* This is the fast write path which cannot handle
724  * page faults in the source data
725  */
726
727 #if 0   /* XXX: buggy on core2 machines */
728 static inline int
729 fast_user_write(struct io_mapping *mapping,
730                 loff_t page_base, int page_offset,
731                 char __user *user_data,
732                 int length)
733 {
734         void __iomem *vaddr_atomic;
735         void *vaddr;
736         unsigned long unwritten;
737
738         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
739         /* We can use the cpu mem copy function because this is X86. */
740         vaddr = (char __force*)vaddr_atomic + page_offset;
741         unwritten = __copy_from_user_inatomic_nocache(vaddr,
742                                                       user_data, length);
743         io_mapping_unmap_atomic(vaddr_atomic);
744         return unwritten;
745 }
746 #endif
747
748 static int
749 i915_gem_gtt_write(struct drm_device *dev, struct drm_i915_gem_object *obj,
750     uint64_t data_ptr, uint64_t size, uint64_t offset, struct drm_file *file)
751 {
752         vm_offset_t mkva;
753         int ret;
754
755         /*
756          * Pass the unaligned physical address and size to pmap_mapdev_attr()
757          * so it can properly calculate whether an extra page needs to be
758          * mapped or not to cover the requested range.  The function will
759          * add the page offset into the returned mkva for us.
760          */
761         mkva = (vm_offset_t)pmap_mapdev_attr(dev->agp->base +
762             i915_gem_obj_ggtt_offset(obj) + offset, size, PAT_WRITE_COMBINING);
763         ret = -copyin_nofault((void *)(uintptr_t)data_ptr, (char *)mkva, size);
764         pmap_unmapdev(mkva, size);
765         return ret;
766 }
767
768 /**
769  * This is the fast pwrite path, where we copy the data directly from the
770  * user into the GTT, uncached.
771  */
772 static int
773 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
774                          struct drm_i915_gem_object *obj,
775                          struct drm_i915_gem_pwrite *args,
776                          struct drm_file *file)
777 {
778         ssize_t remain;
779         loff_t offset, page_base;
780         char __user *user_data;
781         int page_offset, page_length, ret;
782
783         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
784         if (ret)
785                 goto out;
786
787         ret = i915_gem_object_set_to_gtt_domain(obj, true);
788         if (ret)
789                 goto out_unpin;
790
791         ret = i915_gem_object_put_fence(obj);
792         if (ret)
793                 goto out_unpin;
794
795         user_data = to_user_ptr(args->data_ptr);
796         remain = args->size;
797
798         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
799
800         while (remain > 0) {
801                 /* Operation in this page
802                  *
803                  * page_base = page offset within aperture
804                  * page_offset = offset within page
805                  * page_length = bytes to copy for this page
806                  */
807                 page_base = offset & ~PAGE_MASK;
808                 page_offset = offset_in_page(offset);
809                 page_length = remain;
810                 if ((page_offset + remain) > PAGE_SIZE)
811                         page_length = PAGE_SIZE - page_offset;
812
813                 /* If we get a fault while copying data, then (presumably) our
814                  * source page isn't available.  Return the error and we'll
815                  * retry in the slow path.
816                  */
817 #if 0
818                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
819                                     page_offset, user_data, page_length)) {
820 #else
821                 if (i915_gem_gtt_write(dev, obj, args->data_ptr, args->size, args->offset, file)) {
822 #endif
823                         ret = -EFAULT;
824                         goto out_unpin;
825                 }
826
827                 remain -= page_length;
828                 user_data += page_length;
829                 offset += page_length;
830         }
831
832 out_unpin:
833         i915_gem_object_ggtt_unpin(obj);
834 out:
835         return ret;
836 }
837
838 /* Per-page copy function for the shmem pwrite fastpath.
839  * Flushes invalid cachelines before writing to the target if
840  * needs_clflush_before is set and flushes out any written cachelines after
841  * writing if needs_clflush is set. */
842 static int
843 shmem_pwrite_fast(struct vm_page *page, int shmem_page_offset, int page_length,
844                   char __user *user_data,
845                   bool page_do_bit17_swizzling,
846                   bool needs_clflush_before,
847                   bool needs_clflush_after)
848 {
849         char *vaddr;
850         int ret;
851
852         if (unlikely(page_do_bit17_swizzling))
853                 return -EINVAL;
854
855         vaddr = kmap_atomic(page);
856         if (needs_clflush_before)
857                 drm_clflush_virt_range(vaddr + shmem_page_offset,
858                                        page_length);
859         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
860                                         user_data, page_length);
861         if (needs_clflush_after)
862                 drm_clflush_virt_range(vaddr + shmem_page_offset,
863                                        page_length);
864         kunmap_atomic(vaddr);
865
866         return ret ? -EFAULT : 0;
867 }
868
869 /* Only difference to the fast-path function is that this can handle bit17
870  * and uses non-atomic copy and kmap functions. */
871 static int
872 shmem_pwrite_slow(struct vm_page *page, int shmem_page_offset, int page_length,
873                   char __user *user_data,
874                   bool page_do_bit17_swizzling,
875                   bool needs_clflush_before,
876                   bool needs_clflush_after)
877 {
878         char *vaddr;
879         int ret;
880
881         vaddr = kmap(page);
882         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
883                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
884                                              page_length,
885                                              page_do_bit17_swizzling);
886         if (page_do_bit17_swizzling)
887                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
888                                                 user_data,
889                                                 page_length);
890         else
891                 ret = __copy_from_user(vaddr + shmem_page_offset,
892                                        user_data,
893                                        page_length);
894         if (needs_clflush_after)
895                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
896                                              page_length,
897                                              page_do_bit17_swizzling);
898         kunmap(page);
899
900         return ret ? -EFAULT : 0;
901 }
902
903 static int
904 i915_gem_shmem_pwrite(struct drm_device *dev,
905                       struct drm_i915_gem_object *obj,
906                       struct drm_i915_gem_pwrite *args,
907                       struct drm_file *file)
908 {
909         ssize_t remain;
910         loff_t offset;
911         char __user *user_data;
912         int shmem_page_offset, page_length, ret = 0;
913         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
914         int hit_slowpath = 0;
915         int needs_clflush_after = 0;
916         int needs_clflush_before = 0;
917         int i;
918
919         user_data = to_user_ptr(args->data_ptr);
920         remain = args->size;
921
922         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
923
924         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
925                 /* If we're not in the cpu write domain, set ourself into the gtt
926                  * write domain and manually flush cachelines (if required). This
927                  * optimizes for the case when the gpu will use the data
928                  * right away and we therefore have to clflush anyway. */
929                 needs_clflush_after = cpu_write_needs_clflush(obj);
930                 ret = i915_gem_object_wait_rendering(obj, false);
931                 if (ret)
932                         return ret;
933
934                 i915_gem_object_retire(obj);
935         }
936         /* Same trick applies to invalidate partially written cachelines read
937          * before writing. */
938         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
939                 needs_clflush_before =
940                         !cpu_cache_is_coherent(dev, obj->cache_level);
941
942         ret = i915_gem_object_get_pages(obj);
943         if (ret)
944                 return ret;
945
946         i915_gem_object_pin_pages(obj);
947
948         offset = args->offset;
949         obj->dirty = 1;
950
951         VM_OBJECT_LOCK(obj->base.vm_obj);
952         vm_object_pip_add(obj->base.vm_obj, 1);
953         for (i = 0; i < (obj->base.size >> PAGE_SHIFT); i++) {
954                 struct vm_page *page = obj->pages[i];
955                 int partial_cacheline_write;
956
957                 if (i < offset >> PAGE_SHIFT)
958                         continue;
959
960                 if (remain <= 0)
961                         break;
962
963                 /* Operation in this page
964                  *
965                  * shmem_page_offset = offset within page in shmem file
966                  * page_length = bytes to copy for this page
967                  */
968                 shmem_page_offset = offset_in_page(offset);
969
970                 page_length = remain;
971                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
972                         page_length = PAGE_SIZE - shmem_page_offset;
973
974                 /* If we don't overwrite a cacheline completely we need to be
975                  * careful to have up-to-date data by first clflushing. Don't
976                  * overcomplicate things and flush the entire patch. */
977                 partial_cacheline_write = needs_clflush_before &&
978                         ((shmem_page_offset | page_length)
979                                 & (cpu_clflush_line_size - 1));
980
981                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
982                         (page_to_phys(page) & (1 << 17)) != 0;
983
984                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
985                                         user_data, page_do_bit17_swizzling,
986                                         partial_cacheline_write,
987                                         needs_clflush_after);
988                 if (ret == 0)
989                         goto next_page;
990
991                 hit_slowpath = 1;
992                 mutex_unlock(&dev->struct_mutex);
993                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
994                                         user_data, page_do_bit17_swizzling,
995                                         partial_cacheline_write,
996                                         needs_clflush_after);
997
998                 mutex_lock(&dev->struct_mutex);
999  
1000                 if (ret)
1001                         goto out;
1002
1003 next_page:
1004                 remain -= page_length;
1005                 user_data += page_length;
1006                 offset += page_length;
1007         }
1008         vm_object_pip_wakeup(obj->base.vm_obj);
1009         VM_OBJECT_UNLOCK(obj->base.vm_obj);
1010
1011 out:
1012         i915_gem_object_unpin_pages(obj);
1013
1014         if (hit_slowpath) {
1015                 /*
1016                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1017                  * cachelines in-line while writing and the object moved
1018                  * out of the cpu write domain while we've dropped the lock.
1019                  */
1020                 if (!needs_clflush_after &&
1021                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1022                         if (i915_gem_clflush_object(obj, obj->pin_display))
1023                                 i915_gem_chipset_flush(dev);
1024                 }
1025         }
1026
1027         if (needs_clflush_after)
1028                 i915_gem_chipset_flush(dev);
1029
1030         return ret;
1031 }
1032
1033 /**
1034  * Writes data to the object referenced by handle.
1035  *
1036  * On error, the contents of the buffer that were to be modified are undefined.
1037  */
1038 int
1039 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1040                       struct drm_file *file)
1041 {
1042         struct drm_i915_gem_pwrite *args = data;
1043         struct drm_i915_gem_object *obj;
1044         int ret;
1045
1046         if (args->size == 0)
1047                 return 0;
1048
1049         if (likely(!i915.prefault_disable)) {
1050                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1051                                                    args->size);
1052                 if (ret)
1053                         return -EFAULT;
1054         }
1055
1056         ret = i915_mutex_lock_interruptible(dev);
1057         if (ret)
1058                 return ret;
1059
1060         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1061         if (&obj->base == NULL) {
1062                 ret = -ENOENT;
1063                 goto unlock;
1064         }
1065
1066         /* Bounds check destination. */
1067         if (args->offset > obj->base.size ||
1068             args->size > obj->base.size - args->offset) {
1069                 ret = -EINVAL;
1070                 goto out;
1071         }
1072
1073         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1074
1075         ret = -EFAULT;
1076         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1077          * it would end up going through the fenced access, and we'll get
1078          * different detiling behavior between reading and writing.
1079          * pread/pwrite currently are reading and writing from the CPU
1080          * perspective, requiring manual detiling by the client.
1081          */
1082         if (obj->phys_handle) {
1083                 ret = i915_gem_phys_pwrite(obj, args, file);
1084                 goto out;
1085         }
1086
1087         if (obj->tiling_mode == I915_TILING_NONE &&
1088             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1089             cpu_write_needs_clflush(obj)) {
1090                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1091                 /* Note that the gtt paths might fail with non-page-backed user
1092                  * pointers (e.g. gtt mappings when moving data between
1093                  * textures). Fallback to the shmem path in that case. */
1094         }
1095
1096         if (ret == -EFAULT || ret == -ENOSPC)
1097                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1098
1099 out:
1100         drm_gem_object_unreference(&obj->base);
1101 unlock:
1102         mutex_unlock(&dev->struct_mutex);
1103         return ret;
1104 }
1105
1106 int
1107 i915_gem_check_wedge(struct i915_gpu_error *error,
1108                      bool interruptible)
1109 {
1110         if (i915_reset_in_progress(error)) {
1111                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1112                  * -EIO unconditionally for these. */
1113                 if (!interruptible)
1114                         return -EIO;
1115
1116                 /* Recovery complete, but the reset failed ... */
1117                 if (i915_terminally_wedged(error))
1118                         return -EIO;
1119
1120                 return -EAGAIN;
1121         }
1122
1123         return 0;
1124 }
1125
1126 /*
1127  * Compare seqno against outstanding lazy request. Emit a request if they are
1128  * equal.
1129  */
1130 int
1131 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1132 {
1133         int ret;
1134
1135         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1136
1137         ret = 0;
1138         if (seqno == ring->outstanding_lazy_seqno)
1139                 ret = i915_add_request(ring, NULL);
1140
1141         return ret;
1142 }
1143
1144 #if 0
1145 static void fake_irq(unsigned long data)
1146 {
1147         wake_up_process((struct task_struct *)data);
1148 }
1149
1150 static bool missed_irq(struct drm_i915_private *dev_priv,
1151                        struct intel_engine_cs *ring)
1152 {
1153         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1154 }
1155
1156 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1157 {
1158         if (file_priv == NULL)
1159                 return true;
1160
1161         return !atomic_xchg(&file_priv->rps_wait_boost, true);
1162 }
1163 #endif
1164
1165 /**
1166  * __wait_seqno - wait until execution of seqno has finished
1167  * @ring: the ring expected to report seqno
1168  * @seqno: duh!
1169  * @reset_counter: reset sequence associated with the given seqno
1170  * @interruptible: do an interruptible wait (normally yes)
1171  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1172  *
1173  * Note: It is of utmost importance that the passed in seqno and reset_counter
1174  * values have been read by the caller in an smp safe manner. Where read-side
1175  * locks are involved, it is sufficient to read the reset_counter before
1176  * unlocking the lock that protects the seqno. For lockless tricks, the
1177  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1178  * inserted.
1179  *
1180  * Returns 0 if the seqno was found within the alloted time. Else returns the
1181  * errno with remaining time filled in timeout argument.
1182  */
1183 static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1184                         unsigned reset_counter,
1185                         bool interruptible,
1186                         struct timespec *timeout,
1187                         struct drm_i915_file_private *file_priv)
1188 {
1189         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1190         struct timespec before, now, wait_time={1,0};
1191         unsigned long timeout_jiffies;
1192         long end;
1193         bool wait_forever = true;
1194         int ret;
1195
1196         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1197
1198         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1199                 return 0;
1200
1201         if (timeout != NULL) {
1202                 wait_time = *timeout;
1203                 wait_forever = false;
1204         }
1205
1206         timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1207
1208         if (WARN_ON(!ring->irq_get(ring)))
1209                 return -ENODEV;
1210
1211         /* Record current time in case interrupted by signal, or wedged */
1212         trace_i915_gem_request_wait_begin(ring, seqno);
1213         getrawmonotonic(&before);
1214
1215 #define EXIT_COND \
1216         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1217          i915_reset_in_progress(&dev_priv->gpu_error) || \
1218          reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1219         do {
1220                 if (interruptible)
1221                         end = wait_event_interruptible_timeout(ring->irq_queue,
1222                                                                EXIT_COND,
1223                                                                timeout_jiffies);
1224                 else
1225                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1226                                                  timeout_jiffies);
1227
1228                 /* We need to check whether any gpu reset happened in between
1229                  * the caller grabbing the seqno and now ... */
1230                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1231                         end = -EAGAIN;
1232
1233                 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1234                  * gone. */
1235                 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1236                 if (ret)
1237                         end = ret;
1238         } while (end == 0 && wait_forever);
1239
1240         getrawmonotonic(&now);
1241
1242         ring->irq_put(ring);
1243         trace_i915_gem_request_wait_end(ring, seqno);
1244 #undef EXIT_COND
1245
1246         if (timeout) {
1247                 struct timespec sleep_time = timespec_sub(now, before);
1248                 *timeout = timespec_sub(*timeout, sleep_time);
1249                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1250                         set_normalized_timespec(timeout, 0, 0);
1251         }
1252
1253         switch (end) {
1254         case -EIO:
1255         case -EAGAIN: /* Wedged */
1256         case -ERESTARTSYS: /* Signal */
1257                 return (int)end;
1258         case 0: /* Timeout */
1259                 return -ETIMEDOUT;      /* -ETIME on Linux */
1260         default: /* Completed */
1261                 WARN_ON(end < 0); /* We're not aware of other errors */
1262                 return 0;
1263         }
1264 }
1265
1266 /**
1267  * Waits for a sequence number to be signaled, and cleans up the
1268  * request and object lists appropriately for that event.
1269  */
1270 int
1271 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1272 {
1273         struct drm_device *dev = ring->dev;
1274         struct drm_i915_private *dev_priv = dev->dev_private;
1275         bool interruptible = dev_priv->mm.interruptible;
1276         int ret;
1277
1278         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1279         BUG_ON(seqno == 0);
1280
1281         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1282         if (ret)
1283                 return ret;
1284
1285         ret = i915_gem_check_olr(ring, seqno);
1286         if (ret)
1287                 return ret;
1288
1289         return __wait_seqno(ring, seqno,
1290                             atomic_read(&dev_priv->gpu_error.reset_counter),
1291                             interruptible, NULL, NULL);
1292 }
1293
1294 static int
1295 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1296                                      struct intel_engine_cs *ring)
1297 {
1298         if (!obj->active)
1299                 return 0;
1300
1301         /* Manually manage the write flush as we may have not yet
1302          * retired the buffer.
1303          *
1304          * Note that the last_write_seqno is always the earlier of
1305          * the two (read/write) seqno, so if we haved successfully waited,
1306          * we know we have passed the last write.
1307          */
1308         obj->last_write_seqno = 0;
1309
1310         return 0;
1311 }
1312
1313 /**
1314  * Ensures that all rendering to the object has completed and the object is
1315  * safe to unbind from the GTT or access from the CPU.
1316  */
1317 static __must_check int
1318 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1319                                bool readonly)
1320 {
1321         struct intel_engine_cs *ring = obj->ring;
1322         u32 seqno;
1323         int ret;
1324
1325         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1326         if (seqno == 0)
1327                 return 0;
1328
1329         ret = i915_wait_seqno(ring, seqno);
1330         if (ret)
1331                 return ret;
1332
1333         return i915_gem_object_wait_rendering__tail(obj, ring);
1334 }
1335
1336 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1337  * as the object state may change during this call.
1338  */
1339 static __must_check int
1340 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1341                                             struct drm_i915_file_private *file_priv,
1342                                             bool readonly)
1343 {
1344         struct drm_device *dev = obj->base.dev;
1345         struct drm_i915_private *dev_priv = dev->dev_private;
1346         struct intel_engine_cs *ring = obj->ring;
1347         unsigned reset_counter;
1348         u32 seqno;
1349         int ret;
1350
1351         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1352         BUG_ON(!dev_priv->mm.interruptible);
1353
1354         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1355         if (seqno == 0)
1356                 return 0;
1357
1358         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1359         if (ret)
1360                 return ret;
1361
1362         ret = i915_gem_check_olr(ring, seqno);
1363         if (ret)
1364                 return ret;
1365
1366         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1367         mutex_unlock(&dev->struct_mutex);
1368         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1369         mutex_lock(&dev->struct_mutex);
1370         if (ret)
1371                 return ret;
1372
1373         return i915_gem_object_wait_rendering__tail(obj, ring);
1374 }
1375
1376 /**
1377  * Called when user space prepares to use an object with the CPU, either
1378  * through the mmap ioctl's mapping or a GTT mapping.
1379  */
1380 int
1381 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1382                           struct drm_file *file)
1383 {
1384         struct drm_i915_gem_set_domain *args = data;
1385         struct drm_i915_gem_object *obj;
1386         uint32_t read_domains = args->read_domains;
1387         uint32_t write_domain = args->write_domain;
1388         int ret;
1389
1390         /* Only handle setting domains to types used by the CPU. */
1391         if (write_domain & I915_GEM_GPU_DOMAINS)
1392                 return -EINVAL;
1393
1394         if (read_domains & I915_GEM_GPU_DOMAINS)
1395                 return -EINVAL;
1396
1397         /* Having something in the write domain implies it's in the read
1398          * domain, and only that read domain.  Enforce that in the request.
1399          */
1400         if (write_domain != 0 && read_domains != write_domain)
1401                 return -EINVAL;
1402
1403         ret = i915_mutex_lock_interruptible(dev);
1404         if (ret)
1405                 return ret;
1406
1407         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1408         if (&obj->base == NULL) {
1409                 ret = -ENOENT;
1410                 goto unlock;
1411         }
1412
1413         /* Try to flush the object off the GPU without holding the lock.
1414          * We will repeat the flush holding the lock in the normal manner
1415          * to catch cases where we are gazumped.
1416          */
1417         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1418                                                           file->driver_priv,
1419                                                           !write_domain);
1420         if (ret)
1421                 goto unref;
1422
1423         if (read_domains & I915_GEM_DOMAIN_GTT) {
1424                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1425
1426                 /* Silently promote "you're not bound, there was nothing to do"
1427                  * to success, since the client was just asking us to
1428                  * make sure everything was done.
1429                  */
1430                 if (ret == -EINVAL)
1431                         ret = 0;
1432         } else {
1433                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1434         }
1435
1436 unref:
1437         drm_gem_object_unreference(&obj->base);
1438 unlock:
1439         mutex_unlock(&dev->struct_mutex);
1440         return ret;
1441 }
1442
1443 /**
1444  * Called when user space has done writes to this buffer
1445  */
1446 int
1447 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1448                          struct drm_file *file)
1449 {
1450         struct drm_i915_gem_sw_finish *args = data;
1451         struct drm_i915_gem_object *obj;
1452         int ret = 0;
1453
1454         ret = i915_mutex_lock_interruptible(dev);
1455         if (ret)
1456                 return ret;
1457
1458         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1459         if (&obj->base == NULL) {
1460                 ret = -ENOENT;
1461                 goto unlock;
1462         }
1463
1464         /* Pinned buffers may be scanout, so flush the cache */
1465         if (obj->pin_display)
1466                 i915_gem_object_flush_cpu_write_domain(obj, true);
1467
1468         drm_gem_object_unreference(&obj->base);
1469 unlock:
1470         mutex_unlock(&dev->struct_mutex);
1471         return ret;
1472 }
1473
1474 /**
1475  * Maps the contents of an object, returning the address it is mapped
1476  * into.
1477  *
1478  * While the mapping holds a reference on the contents of the object, it doesn't
1479  * imply a ref on the object itself.
1480  */
1481 int
1482 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1483                     struct drm_file *file)
1484 {
1485         struct drm_i915_gem_mmap *args = data;
1486         struct drm_gem_object *obj;
1487         unsigned long addr;
1488         struct proc *p = curproc;
1489         vm_map_t map = &p->p_vmspace->vm_map;
1490         vm_size_t size;
1491         int error = 0, rv;
1492
1493         obj = drm_gem_object_lookup(dev, file, args->handle);
1494         if (obj == NULL)
1495                 return -ENOENT;
1496
1497         if (args->size == 0)
1498                 goto out;
1499
1500         size = round_page(args->size);
1501         if (map->size + size > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
1502                 error = -ENOMEM;
1503                 goto out;
1504         }
1505
1506         /*
1507          * Call hint to ensure that NULL is not returned as a valid address
1508          * and to reduce vm_map traversals. XXX causes instability, use a
1509          * fixed low address as the start point instead to avoid the NULL
1510          * return issue.
1511          */
1512         addr = PAGE_SIZE;
1513
1514         /*
1515          * Use 256KB alignment.  It is unclear why this matters for a
1516          * virtual address but it appears to fix a number of application/X
1517          * crashes and kms console switching is much faster.
1518          */
1519         vm_object_hold(obj->vm_obj);
1520         vm_object_reference_locked(obj->vm_obj);
1521         vm_object_drop(obj->vm_obj);
1522
1523         rv = vm_map_find(map, obj->vm_obj, NULL,
1524                          args->offset, &addr, args->size,
1525                          256 * 1024, /* align */
1526                          TRUE, /* fitit */
1527                          VM_MAPTYPE_NORMAL, /* maptype */
1528                          VM_PROT_READ | VM_PROT_WRITE, /* prot */
1529                          VM_PROT_READ | VM_PROT_WRITE, /* max */
1530                          MAP_SHARED /* cow */);
1531         if (rv != KERN_SUCCESS) {
1532                 vm_object_deallocate(obj->vm_obj);
1533                 error = -vm_mmap_to_errno(rv);
1534         } else {
1535                 args->addr_ptr = (uint64_t)addr;
1536         }
1537 out:
1538         drm_gem_object_unreference(obj);
1539         return (error);
1540 }
1541
1542 /**
1543  * i915_gem_fault - fault a page into the GTT
1544  *
1545  * vm_obj is locked on entry and expected to be locked on return.
1546  *
1547  * The vm_pager has placemarked the object with an anonymous memory page
1548  * which we must replace atomically to avoid races against concurrent faults
1549  * on the same page.  XXX we currently are unable to do this atomically.
1550  *
1551  * If we are to return an error we should not touch the anonymous page,
1552  * the caller will deallocate it.
1553  *
1554  * XXX Most GEM calls appear to be interruptable, but we can't hard loop
1555  * in that case.  Release all resources and wait 1 tick before retrying.
1556  * This is a huge problem which needs to be fixed by getting rid of most
1557  * of the interruptability.  The linux code does not retry but does appear
1558  * to have some sort of mechanism (VM_FAULT_NOPAGE ?) for the higher level
1559  * to be able to retry.
1560  *
1561  * --
1562  *
1563  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1564  * from userspace.  The fault handler takes care of binding the object to
1565  * the GTT (if needed), allocating and programming a fence register (again,
1566  * only if needed based on whether the old reg is still valid or the object
1567  * is tiled) and inserting a new PTE into the faulting process.
1568  *
1569  * Note that the faulting process may involve evicting existing objects
1570  * from the GTT and/or fence registers to make room.  So performance may
1571  * suffer if the GTT working set is large or there are few fence registers
1572  * left.
1573  *
1574  * vm_obj is locked on entry and expected to be locked on return.  The VM
1575  * pager has placed an anonymous memory page at (obj,offset) which we have
1576  * to replace.
1577  */
1578 int i915_gem_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot, vm_page_t *mres)
1579 {
1580         struct drm_i915_gem_object *obj = to_intel_bo(vm_obj->handle);
1581         struct drm_device *dev = obj->base.dev;
1582         struct drm_i915_private *dev_priv = dev->dev_private;
1583         unsigned long page_offset;
1584         vm_page_t m, oldm = NULL;
1585         int ret = 0;
1586         int didpip = 0;
1587         bool write = !!(prot & VM_PROT_WRITE);
1588
1589         intel_runtime_pm_get(dev_priv);
1590
1591         /* We don't use vmf->pgoff since that has the fake offset */
1592         page_offset = (unsigned long)offset;
1593
1594 retry:
1595         ret = i915_mutex_lock_interruptible(dev);
1596         if (ret)
1597                 goto out;
1598
1599         trace_i915_gem_object_fault(obj, page_offset, true, write);
1600
1601         /* Try to flush the object off the GPU first without holding the lock.
1602          * Upon reacquiring the lock, we will perform our sanity checks and then
1603          * repeat the flush holding the lock in the normal manner to catch cases
1604          * where we are gazumped.
1605          */
1606         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1607         if (ret)
1608                 goto unlock;
1609
1610         /* Access to snoopable pages through the GTT is incoherent. */
1611         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1612                 ret = -EFAULT;
1613                 goto unlock;
1614         }
1615
1616         /*
1617          * START FREEBSD MAGIC
1618          *
1619          * Add a pip count to avoid destruction and certain other
1620          * complex operations (such as collapses?) while unlocked.
1621          */
1622         if (didpip == 0) {
1623                 vm_object_pip_add(vm_obj, 1);
1624                 didpip = 1;
1625         }
1626
1627         /*
1628          * XXX We must currently remove the placeholder page now to avoid
1629          * a deadlock against a concurrent i915_gem_release_mmap().
1630          * Otherwise concurrent operation will block on the busy page
1631          * while holding locks which we need to obtain.
1632          */
1633         if (*mres != NULL) {
1634                 oldm = *mres;
1635                 vm_page_remove(oldm);
1636                 *mres = NULL;
1637         } else {
1638                 oldm = NULL;
1639         }
1640
1641         VM_OBJECT_UNLOCK(vm_obj);
1642         ret = 0;
1643         m = NULL;
1644
1645         /*
1646          * Since the object lock was dropped, another thread might have
1647          * faulted on the same GTT address and instantiated the mapping.
1648          * Recheck.
1649          */
1650         VM_OBJECT_LOCK(vm_obj);
1651         m = vm_page_lookup(vm_obj, OFF_TO_IDX(offset));
1652         if (m != NULL) {
1653                 /*
1654                  * Try to busy the page, retry on failure (non-zero ret).
1655                  */
1656                 if (vm_page_busy_try(m, false)) {
1657                         kprintf("i915_gem_fault: PG_BUSY\n");
1658                         VM_OBJECT_UNLOCK(vm_obj);
1659                         mutex_unlock(&dev->struct_mutex);
1660                         int dummy;
1661                         tsleep(&dummy, 0, "delay", 1); /* XXX */
1662                         VM_OBJECT_LOCK(vm_obj);
1663                         goto retry;
1664                 }
1665                 goto have_page;
1666         }
1667         /*
1668          * END FREEBSD MAGIC
1669          */
1670
1671         /*
1672          * Object must be unlocked here to avoid deadlock during
1673          * other GEM calls.  All goto targets expect the object to
1674          * be locked.
1675          */
1676         VM_OBJECT_UNLOCK(vm_obj);
1677
1678         /* Now bind it into the GTT if needed */
1679         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1680         if (ret) {
1681                 VM_OBJECT_LOCK(vm_obj);
1682                 goto unlock;
1683         }
1684
1685         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1686         if (ret) {
1687                 VM_OBJECT_LOCK(vm_obj);
1688                 goto unpin;
1689         }
1690
1691         ret = i915_gem_object_get_fence(obj);
1692         if (ret) {
1693                 VM_OBJECT_LOCK(vm_obj);
1694                 goto unpin;
1695         }
1696
1697         obj->fault_mappable = true;
1698
1699         /*
1700          * Relock object for insertion, leave locked for return.
1701          */
1702         VM_OBJECT_LOCK(vm_obj);
1703         m = vm_phys_fictitious_to_vm_page(dev->agp->base +
1704                                           i915_gem_obj_ggtt_offset(obj) +
1705                                           offset);
1706         if (m == NULL) {
1707                 ret = -EFAULT;
1708                 goto unpin;
1709         }
1710         KASSERT((m->flags & PG_FICTITIOUS) != 0, ("not fictitious %p", m));
1711         KASSERT(m->wire_count == 1, ("wire_count not 1 %p", m));
1712
1713         /*
1714          * Try to busy the page.  Fails on non-zero return.
1715          */
1716         if (vm_page_busy_try(m, false)) {
1717                 VM_OBJECT_UNLOCK(vm_obj);
1718                 i915_gem_object_ggtt_unpin(obj);
1719                 kprintf("i915_gem_fault: PG_BUSY(2)\n");
1720                 i915_gem_object_ggtt_unpin(obj);
1721                 mutex_unlock(&dev->struct_mutex);
1722                 int dummy;
1723                 tsleep(&dummy, 0, "delay", 1); /* XXX */
1724                 VM_OBJECT_LOCK(vm_obj);
1725                 goto retry;
1726         }
1727         m->valid = VM_PAGE_BITS_ALL;
1728
1729         /*
1730          * Finally, remap it using the new GTT offset.
1731          *
1732          * (object expected to be in a locked state)
1733          */
1734         vm_page_insert(m, vm_obj, OFF_TO_IDX(offset));
1735 have_page:
1736         *mres = m;
1737
1738         i915_gem_object_ggtt_unpin(obj);
1739         mutex_unlock(&dev->struct_mutex);
1740         if (oldm != NULL)
1741                 vm_page_free(oldm);
1742         if (didpip)
1743                 vm_object_pip_wakeup(vm_obj);
1744         return (VM_PAGER_OK);
1745
1746         /*
1747          * ALTERNATIVE ERROR RETURN.
1748          *
1749          * OBJECT EXPECTED TO BE LOCKED.
1750          */
1751 unpin:
1752         i915_gem_object_ggtt_unpin(obj);
1753 unlock:
1754         mutex_unlock(&dev->struct_mutex);
1755 out:
1756         switch (ret) {
1757         case -EIO:
1758                 /*
1759                  * We eat errors when the gpu is terminally wedged to avoid
1760                  * userspace unduly crashing (gl has no provisions for mmaps to
1761                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1762                  * and so needs to be reported.
1763                  */
1764                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1765 //                      ret = VM_FAULT_SIGBUS;
1766                         break;
1767                 }
1768                 /* fall through */
1769         case -EAGAIN:
1770                 /*
1771                  * EAGAIN means the gpu is hung and we'll wait for the error
1772                  * handler to reset everything when re-faulting in
1773                  * i915_mutex_lock_interruptible.
1774                  */
1775                 /* fall through */
1776         case -ERESTARTSYS:
1777         case -EINTR:
1778                 VM_OBJECT_UNLOCK(vm_obj);
1779                 int dummy;
1780                 tsleep(&dummy, 0, "delay", 1); /* XXX */
1781                 VM_OBJECT_LOCK(vm_obj);
1782                 goto retry;
1783         default:
1784                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1785                 ret = VM_PAGER_ERROR;
1786                 break;
1787         }
1788
1789         intel_runtime_pm_put(dev_priv);
1790
1791         /*
1792          * Error return.  We already NULL'd out *mres so we should be able
1793          * to free (oldm) here even though we are returning an error and the
1794          * caller usually handles the freeing.
1795          */
1796         if (oldm != NULL)
1797                 vm_page_free(oldm);
1798         if (didpip)
1799                 vm_object_pip_wakeup(vm_obj);
1800
1801         return ret;
1802 }
1803
1804 /**
1805  * i915_gem_release_mmap - remove physical page mappings
1806  * @obj: obj in question
1807  *
1808  * Preserve the reservation of the mmapping with the DRM core code, but
1809  * relinquish ownership of the pages back to the system.
1810  *
1811  * It is vital that we remove the page mapping if we have mapped a tiled
1812  * object through the GTT and then lose the fence register due to
1813  * resource pressure. Similarly if the object has been moved out of the
1814  * aperture, than pages mapped into userspace must be revoked. Removing the
1815  * mapping will then trigger a page fault on the next user access, allowing
1816  * fixup by i915_gem_fault().
1817  */
1818 void
1819 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1820 {
1821         vm_object_t devobj;
1822         vm_page_t m;
1823         int i, page_count;
1824
1825         if (!obj->fault_mappable)
1826                 return;
1827
1828         devobj = cdev_pager_lookup(obj);
1829         if (devobj != NULL) {
1830                 page_count = OFF_TO_IDX(obj->base.size);
1831
1832                 VM_OBJECT_LOCK(devobj);
1833                 for (i = 0; i < page_count; i++) {
1834                         m = vm_page_lookup_busy_wait(devobj, i, TRUE, "915unm");
1835                         if (m == NULL)
1836                                 continue;
1837                         cdev_pager_free_page(devobj, m);
1838                 }
1839                 VM_OBJECT_UNLOCK(devobj);
1840                 vm_object_deallocate(devobj);
1841         }
1842
1843         obj->fault_mappable = false;
1844 }
1845
1846 void
1847 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1848 {
1849         struct drm_i915_gem_object *obj;
1850
1851         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1852                 i915_gem_release_mmap(obj);
1853 }
1854
1855 uint32_t
1856 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1857 {
1858         uint32_t gtt_size;
1859
1860         if (INTEL_INFO(dev)->gen >= 4 ||
1861             tiling_mode == I915_TILING_NONE)
1862                 return size;
1863
1864         /* Previous chips need a power-of-two fence region when tiling */
1865         if (INTEL_INFO(dev)->gen == 3)
1866                 gtt_size = 1024*1024;
1867         else
1868                 gtt_size = 512*1024;
1869
1870         while (gtt_size < size)
1871                 gtt_size <<= 1;
1872
1873         return gtt_size;
1874 }
1875
1876 /**
1877  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1878  * @obj: object to check
1879  *
1880  * Return the required GTT alignment for an object, taking into account
1881  * potential fence register mapping.
1882  */
1883 uint32_t
1884 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1885                            int tiling_mode, bool fenced)
1886 {
1887         /*
1888          * Minimum alignment is 4k (GTT page size), but might be greater
1889          * if a fence register is needed for the object.
1890          */
1891         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1892             tiling_mode == I915_TILING_NONE)
1893                 return 4096;
1894
1895         /*
1896          * Previous chips need to be aligned to the size of the smallest
1897          * fence register that can contain the object.
1898          */
1899         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1900 }
1901
1902 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1903 {
1904         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1905         int ret;
1906
1907 #if 0
1908         if (drm_vma_node_has_offset(&obj->base.vma_node))
1909                 return 0;
1910 #endif
1911
1912         dev_priv->mm.shrinker_no_lock_stealing = true;
1913
1914         ret = drm_gem_create_mmap_offset(&obj->base);
1915         if (ret != -ENOSPC)
1916                 goto out;
1917
1918         /* Badly fragmented mmap space? The only way we can recover
1919          * space is by destroying unwanted objects. We can't randomly release
1920          * mmap_offsets as userspace expects them to be persistent for the
1921          * lifetime of the objects. The closest we can is to release the
1922          * offsets on purgeable objects by truncating it and marking it purged,
1923          * which prevents userspace from ever using that object again.
1924          */
1925         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1926         ret = drm_gem_create_mmap_offset(&obj->base);
1927         if (ret != -ENOSPC)
1928                 goto out;
1929
1930         i915_gem_shrink_all(dev_priv);
1931         ret = drm_gem_create_mmap_offset(&obj->base);
1932 out:
1933         dev_priv->mm.shrinker_no_lock_stealing = false;
1934
1935         return ret;
1936 }
1937
1938 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1939 {
1940         drm_gem_free_mmap_offset(&obj->base);
1941 }
1942
1943 int
1944 i915_gem_mmap_gtt(struct drm_file *file,
1945                   struct drm_device *dev,
1946                   uint32_t handle,
1947                   uint64_t *offset)
1948 {
1949         struct drm_i915_private *dev_priv = dev->dev_private;
1950         struct drm_i915_gem_object *obj;
1951         int ret;
1952
1953         ret = i915_mutex_lock_interruptible(dev);
1954         if (ret)
1955                 return ret;
1956
1957         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1958         if (&obj->base == NULL) {
1959                 ret = -ENOENT;
1960                 goto unlock;
1961         }
1962
1963         if (obj->base.size > dev_priv->gtt.mappable_end) {
1964                 ret = -E2BIG;
1965                 goto out;
1966         }
1967
1968         if (obj->madv != I915_MADV_WILLNEED) {
1969                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1970                 ret = -EFAULT;
1971                 goto out;
1972         }
1973
1974         ret = i915_gem_object_create_mmap_offset(obj);
1975         if (ret)
1976                 goto out;
1977
1978         *offset = DRM_GEM_MAPPING_OFF(obj->base.map_list.key) |
1979             DRM_GEM_MAPPING_KEY;
1980
1981 out:
1982         drm_gem_object_unreference(&obj->base);
1983 unlock:
1984         mutex_unlock(&dev->struct_mutex);
1985         return ret;
1986 }
1987
1988 /**
1989  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1990  * @dev: DRM device
1991  * @data: GTT mapping ioctl data
1992  * @file: GEM object info
1993  *
1994  * Simply returns the fake offset to userspace so it can mmap it.
1995  * The mmap call will end up in drm_gem_mmap(), which will set things
1996  * up so we can get faults in the handler above.
1997  *
1998  * The fault handler will take care of binding the object into the GTT
1999  * (since it may have been evicted to make room for something), allocating
2000  * a fence register, and mapping the appropriate aperture address into
2001  * userspace.
2002  */
2003 int
2004 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2005                         struct drm_file *file)
2006 {
2007         struct drm_i915_gem_mmap_gtt *args = data;
2008
2009         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2010 }
2011
2012 static inline int
2013 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
2014 {
2015         return obj->madv == I915_MADV_DONTNEED;
2016 }
2017
2018 /* Immediately discard the backing storage */
2019 static void
2020 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2021 {
2022         vm_object_t vm_obj;
2023
2024         vm_obj = obj->base.vm_obj;
2025         VM_OBJECT_LOCK(vm_obj);
2026         vm_object_page_remove(vm_obj, 0, 0, false);
2027         VM_OBJECT_UNLOCK(vm_obj);
2028
2029         obj->madv = __I915_MADV_PURGED;
2030 }
2031
2032 /* Try to discard unwanted pages */
2033 static void
2034 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2035 {
2036 #if 0
2037         struct address_space *mapping;
2038 #endif
2039
2040         switch (obj->madv) {
2041         case I915_MADV_DONTNEED:
2042                 i915_gem_object_truncate(obj);
2043         case __I915_MADV_PURGED:
2044                 return;
2045         }
2046
2047 #if 0
2048         if (obj->base.filp == NULL)
2049                 return;
2050
2051         mapping = file_inode(obj->base.filp)->i_mapping,
2052         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2053 #endif
2054 }
2055
2056 static void
2057 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2058 {
2059         int page_count = obj->base.size / PAGE_SIZE;
2060         int i, ret;
2061
2062         if (!obj->pages)
2063                 return;
2064
2065         BUG_ON(obj->madv == __I915_MADV_PURGED);
2066
2067         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2068         if (ret) {
2069                 /* In the event of a disaster, abandon all caches and
2070                  * hope for the best.
2071                  */
2072                 WARN_ON(ret != -EIO);
2073                 i915_gem_clflush_object(obj, true);
2074                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2075         }
2076
2077         if (i915_gem_object_needs_bit17_swizzle(obj))
2078                 i915_gem_object_save_bit_17_swizzle(obj);
2079
2080         if (obj->madv == I915_MADV_DONTNEED)
2081                 obj->dirty = 0;
2082
2083         for (i = 0; i < page_count; i++) {
2084                 struct vm_page *page = obj->pages[i];
2085
2086                 if (obj->dirty)
2087                         set_page_dirty(page);
2088
2089                 if (obj->madv == I915_MADV_WILLNEED)
2090                         mark_page_accessed(page);
2091
2092                 vm_page_busy_wait(obj->pages[i], FALSE, "i915gem");
2093                 vm_page_unwire(obj->pages[i], 1);
2094                 vm_page_wakeup(obj->pages[i]);
2095         }
2096         obj->dirty = 0;
2097
2098         kfree(obj->pages);
2099         obj->pages = NULL;
2100 }
2101
2102 int
2103 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2104 {
2105         const struct drm_i915_gem_object_ops *ops = obj->ops;
2106
2107         if (obj->pages == NULL)
2108                 return 0;
2109
2110         if (obj->pages_pin_count)
2111                 return -EBUSY;
2112
2113         BUG_ON(i915_gem_obj_bound_any(obj));
2114
2115         /* ->put_pages might need to allocate memory for the bit17 swizzle
2116          * array, hence protect them from being reaped by removing them from gtt
2117          * lists early. */
2118         list_del(&obj->global_list);
2119
2120         ops->put_pages(obj);
2121         obj->pages = NULL;
2122
2123         i915_gem_object_invalidate(obj);
2124
2125         return 0;
2126 }
2127
2128 static unsigned long
2129 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
2130                   bool purgeable_only)
2131 {
2132         struct list_head still_in_list;
2133         struct drm_i915_gem_object *obj;
2134         unsigned long count = 0;
2135
2136         /*
2137          * As we may completely rewrite the (un)bound list whilst unbinding
2138          * (due to retiring requests) we have to strictly process only
2139          * one element of the list at the time, and recheck the list
2140          * on every iteration.
2141          *
2142          * In particular, we must hold a reference whilst removing the
2143          * object as we may end up waiting for and/or retiring the objects.
2144          * This might release the final reference (held by the active list)
2145          * and result in the object being freed from under us. This is
2146          * similar to the precautions the eviction code must take whilst
2147          * removing objects.
2148          *
2149          * Also note that although these lists do not hold a reference to
2150          * the object we can safely grab one here: The final object
2151          * unreferencing and the bound_list are both protected by the
2152          * dev->struct_mutex and so we won't ever be able to observe an
2153          * object on the bound_list with a reference count equals 0.
2154          */
2155         INIT_LIST_HEAD(&still_in_list);
2156         while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
2157                 obj = list_first_entry(&dev_priv->mm.unbound_list,
2158                                        typeof(*obj), global_list);
2159                 list_move_tail(&obj->global_list, &still_in_list);
2160
2161                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
2162                         continue;
2163
2164                 drm_gem_object_reference(&obj->base);
2165
2166                 if (i915_gem_object_put_pages(obj) == 0)
2167                         count += obj->base.size >> PAGE_SHIFT;
2168
2169                 drm_gem_object_unreference(&obj->base);
2170         }
2171         list_splice(&still_in_list, &dev_priv->mm.unbound_list);
2172
2173         INIT_LIST_HEAD(&still_in_list);
2174         while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
2175                 struct i915_vma *vma, *v;
2176
2177                 obj = list_first_entry(&dev_priv->mm.bound_list,
2178                                        typeof(*obj), global_list);
2179                 list_move_tail(&obj->global_list, &still_in_list);
2180
2181                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
2182                         continue;
2183
2184                 drm_gem_object_reference(&obj->base);
2185
2186                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
2187                         if (i915_vma_unbind(vma))
2188                                 break;
2189
2190                 if (i915_gem_object_put_pages(obj) == 0)
2191                         count += obj->base.size >> PAGE_SHIFT;
2192
2193                 drm_gem_object_unreference(&obj->base);
2194         }
2195         list_splice(&still_in_list, &dev_priv->mm.bound_list);
2196
2197         return count;
2198 }
2199
2200 static unsigned long
2201 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
2202 {
2203         return __i915_gem_shrink(dev_priv, target, true);
2204 }
2205
2206 static unsigned long
2207 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2208 {
2209         i915_gem_evict_everything(dev_priv->dev);
2210         return __i915_gem_shrink(dev_priv, LONG_MAX, false);
2211 }
2212
2213 static int
2214 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2215 {
2216         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2217         int page_count, i, j;
2218         vm_object_t vm_obj;
2219         struct vm_page *page;
2220
2221         /* Assert that the object is not currently in any GPU domain. As it
2222          * wasn't in the GTT, there shouldn't be any way it could have been in
2223          * a GPU cache
2224          */
2225         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2226         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2227
2228         page_count = obj->base.size / PAGE_SIZE;
2229         obj->pages = kmalloc(page_count * sizeof(vm_page_t), M_DRM,
2230             M_WAITOK);
2231
2232         /* Get the list of pages out of our struct file.  They'll be pinned
2233          * at this point until we release them.
2234          *
2235          * Fail silently without starting the shrinker
2236          */
2237         vm_obj = obj->base.vm_obj;
2238         VM_OBJECT_LOCK(vm_obj);
2239         for (i = 0; i < page_count; i++) {
2240                 page = shmem_read_mapping_page(vm_obj, i);
2241                 if (IS_ERR(page)) {
2242                         i915_gem_purge(dev_priv, page_count);
2243                         page = shmem_read_mapping_page(vm_obj, i);
2244                 }
2245                 if (IS_ERR(page)) {
2246                         /* We've tried hard to allocate the memory by reaping
2247                          * our own buffer, now let the real VM do its job and
2248                          * go down in flames if truly OOM.
2249                          */
2250
2251                         i915_gem_shrink_all(dev_priv);
2252                         page = shmem_read_mapping_page(vm_obj, i);
2253                         if (IS_ERR(page))
2254                                 goto err_pages;
2255                 }
2256 #ifdef CONFIG_SWIOTLB
2257                 if (swiotlb_nr_tbl()) {
2258                         st->nents++;
2259                         sg_set_page(sg, page, PAGE_SIZE, 0);
2260                         sg = sg_next(sg);
2261                         continue;
2262                 }
2263 #endif
2264                 obj->pages[i] = page;
2265         }
2266 #ifdef CONFIG_SWIOTLB
2267         if (!swiotlb_nr_tbl())
2268 #endif
2269         VM_OBJECT_UNLOCK(vm_obj);
2270
2271         if (i915_gem_object_needs_bit17_swizzle(obj))
2272                 i915_gem_object_do_bit_17_swizzle(obj);
2273
2274         return 0;
2275
2276 err_pages:
2277         for (j = 0; j < i; j++) {
2278                 page = obj->pages[j];
2279                 vm_page_busy_wait(page, FALSE, "i915gem");
2280                 vm_page_unwire(page, 0);
2281                 vm_page_wakeup(page);
2282         }
2283         VM_OBJECT_UNLOCK(vm_obj);
2284         kfree(obj->pages);
2285         obj->pages = NULL;
2286         return (-EIO);
2287 }
2288
2289 /* Ensure that the associated pages are gathered from the backing storage
2290  * and pinned into our object. i915_gem_object_get_pages() may be called
2291  * multiple times before they are released by a single call to
2292  * i915_gem_object_put_pages() - once the pages are no longer referenced
2293  * either as a result of memory pressure (reaping pages under the shrinker)
2294  * or as the object is itself released.
2295  */
2296 int
2297 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2298 {
2299         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2300         const struct drm_i915_gem_object_ops *ops = obj->ops;
2301         int ret;
2302
2303         if (obj->pages)
2304                 return 0;
2305
2306         if (obj->madv != I915_MADV_WILLNEED) {
2307                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2308                 return -EFAULT;
2309         }
2310
2311         BUG_ON(obj->pages_pin_count);
2312
2313         ret = ops->get_pages(obj);
2314         if (ret)
2315                 return ret;
2316
2317         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2318         return 0;
2319 }
2320
2321 static void
2322 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2323                                struct intel_engine_cs *ring)
2324 {
2325         struct drm_device *dev = obj->base.dev;
2326         struct drm_i915_private *dev_priv = dev->dev_private;
2327         u32 seqno = intel_ring_get_seqno(ring);
2328
2329         BUG_ON(ring == NULL);
2330         if (obj->ring != ring && obj->last_write_seqno) {
2331                 /* Keep the seqno relative to the current ring */
2332                 obj->last_write_seqno = seqno;
2333         }
2334         obj->ring = ring;
2335
2336         /* Add a reference if we're newly entering the active list. */
2337         if (!obj->active) {
2338                 drm_gem_object_reference(&obj->base);
2339                 obj->active = 1;
2340         }
2341
2342         list_move_tail(&obj->ring_list, &ring->active_list);
2343
2344         obj->last_read_seqno = seqno;
2345
2346         if (obj->fenced_gpu_access) {
2347                 obj->last_fenced_seqno = seqno;
2348
2349                 /* Bump MRU to take account of the delayed flush */
2350                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2351                         struct drm_i915_fence_reg *reg;
2352
2353                         reg = &dev_priv->fence_regs[obj->fence_reg];
2354                         list_move_tail(&reg->lru_list,
2355                                        &dev_priv->mm.fence_list);
2356                 }
2357         }
2358 }
2359
2360 void i915_vma_move_to_active(struct i915_vma *vma,
2361                              struct intel_engine_cs *ring)
2362 {
2363         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2364         return i915_gem_object_move_to_active(vma->obj, ring);
2365 }
2366
2367 static void
2368 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2369 {
2370         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2371         struct i915_address_space *vm;
2372         struct i915_vma *vma;
2373
2374         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2375         BUG_ON(!obj->active);
2376
2377         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2378                 vma = i915_gem_obj_to_vma(obj, vm);
2379                 if (vma && !list_empty(&vma->mm_list))
2380                         list_move_tail(&vma->mm_list, &vm->inactive_list);
2381         }
2382
2383         intel_fb_obj_flush(obj, true);
2384
2385         list_del_init(&obj->ring_list);
2386         obj->ring = NULL;
2387
2388         obj->last_read_seqno = 0;
2389         obj->last_write_seqno = 0;
2390         obj->base.write_domain = 0;
2391
2392         obj->last_fenced_seqno = 0;
2393         obj->fenced_gpu_access = false;
2394
2395         obj->active = 0;
2396         drm_gem_object_unreference(&obj->base);
2397
2398         WARN_ON(i915_verify_lists(dev));
2399 }
2400
2401 static void
2402 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2403 {
2404         struct intel_engine_cs *ring = obj->ring;
2405
2406         if (ring == NULL)
2407                 return;
2408
2409         if (i915_seqno_passed(ring->get_seqno(ring, true),
2410                               obj->last_read_seqno))
2411                 i915_gem_object_move_to_inactive(obj);
2412 }
2413
2414 static int
2415 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2416 {
2417         struct drm_i915_private *dev_priv = dev->dev_private;
2418         struct intel_engine_cs *ring;
2419         int ret, i, j;
2420
2421         /* Carefully retire all requests without writing to the rings */
2422         for_each_ring(ring, dev_priv, i) {
2423                 ret = intel_ring_idle(ring);
2424                 if (ret)
2425                         return ret;
2426         }
2427         i915_gem_retire_requests(dev);
2428
2429         /* Finally reset hw state */
2430         for_each_ring(ring, dev_priv, i) {
2431                 intel_ring_init_seqno(ring, seqno);
2432
2433                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2434                         ring->semaphore.sync_seqno[j] = 0;
2435         }
2436
2437         return 0;
2438 }
2439
2440 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2441 {
2442         struct drm_i915_private *dev_priv = dev->dev_private;
2443         int ret;
2444
2445         if (seqno == 0)
2446                 return -EINVAL;
2447
2448         /* HWS page needs to be set less than what we
2449          * will inject to ring
2450          */
2451         ret = i915_gem_init_seqno(dev, seqno - 1);
2452         if (ret)
2453                 return ret;
2454
2455         /* Carefully set the last_seqno value so that wrap
2456          * detection still works
2457          */
2458         dev_priv->next_seqno = seqno;
2459         dev_priv->last_seqno = seqno - 1;
2460         if (dev_priv->last_seqno == 0)
2461                 dev_priv->last_seqno--;
2462
2463         return 0;
2464 }
2465
2466 int
2467 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2468 {
2469         struct drm_i915_private *dev_priv = dev->dev_private;
2470
2471         /* reserve 0 for non-seqno */
2472         if (dev_priv->next_seqno == 0) {
2473                 int ret = i915_gem_init_seqno(dev, 0);
2474                 if (ret)
2475                         return ret;
2476
2477                 dev_priv->next_seqno = 1;
2478         }
2479
2480         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2481         return 0;
2482 }
2483
2484 int __i915_add_request(struct intel_engine_cs *ring,
2485                        struct drm_file *file,
2486                        struct drm_i915_gem_object *obj,
2487                        u32 *out_seqno)
2488 {
2489         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2490         struct drm_i915_gem_request *request;
2491         u32 request_ring_position, request_start;
2492         int ret;
2493
2494         request_start = intel_ring_get_tail(ring->buffer);
2495         /*
2496          * Emit any outstanding flushes - execbuf can fail to emit the flush
2497          * after having emitted the batchbuffer command. Hence we need to fix
2498          * things up similar to emitting the lazy request. The difference here
2499          * is that the flush _must_ happen before the next request, no matter
2500          * what.
2501          */
2502         ret = intel_ring_flush_all_caches(ring);
2503         if (ret)
2504                 return ret;
2505
2506         request = ring->preallocated_lazy_request;
2507         if (WARN_ON(request == NULL))
2508                 return -ENOMEM;
2509
2510         /* Record the position of the start of the request so that
2511          * should we detect the updated seqno part-way through the
2512          * GPU processing the request, we never over-estimate the
2513          * position of the head.
2514          */
2515         request_ring_position = intel_ring_get_tail(ring->buffer);
2516
2517         ret = ring->add_request(ring);
2518         if (ret)
2519                 return ret;
2520
2521         request->seqno = intel_ring_get_seqno(ring);
2522         request->ring = ring;
2523         request->head = request_start;
2524         request->tail = request_ring_position;
2525
2526         /* Whilst this request exists, batch_obj will be on the
2527          * active_list, and so will hold the active reference. Only when this
2528          * request is retired will the the batch_obj be moved onto the
2529          * inactive_list and lose its active reference. Hence we do not need
2530          * to explicitly hold another reference here.
2531          */
2532         request->batch_obj = obj;
2533
2534         /* Hold a reference to the current context so that we can inspect
2535          * it later in case a hangcheck error event fires.
2536          */
2537         request->ctx = ring->last_context;
2538         if (request->ctx)
2539                 i915_gem_context_reference(request->ctx);
2540
2541         request->emitted_jiffies = jiffies;
2542         list_add_tail(&request->list, &ring->request_list);
2543         request->file_priv = NULL;
2544
2545         if (file) {
2546                 struct drm_i915_file_private *file_priv = file->driver_priv;
2547
2548                 spin_lock(&file_priv->mm.lock);
2549                 request->file_priv = file_priv;
2550                 list_add_tail(&request->client_list,
2551                               &file_priv->mm.request_list);
2552                 spin_unlock(&file_priv->mm.lock);
2553         }
2554
2555         trace_i915_gem_request_add(ring, request->seqno);
2556         ring->outstanding_lazy_seqno = 0;
2557         ring->preallocated_lazy_request = NULL;
2558
2559         if (!dev_priv->ums.mm_suspended) {
2560                 i915_queue_hangcheck(ring->dev);
2561
2562                 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2563                 queue_delayed_work(dev_priv->wq,
2564                                    &dev_priv->mm.retire_work,
2565                                    round_jiffies_up_relative(HZ));
2566                 intel_mark_busy(dev_priv->dev);
2567         }
2568
2569         if (out_seqno)
2570                 *out_seqno = request->seqno;
2571         return 0;
2572 }
2573
2574 static inline void
2575 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2576 {
2577         struct drm_i915_file_private *file_priv = request->file_priv;
2578
2579         if (!file_priv)
2580                 return;
2581
2582         spin_lock(&file_priv->mm.lock);
2583         list_del(&request->client_list);
2584         request->file_priv = NULL;
2585         spin_unlock(&file_priv->mm.lock);
2586 }
2587
2588 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2589                                    const struct intel_context *ctx)
2590 {
2591         unsigned long elapsed;
2592
2593         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2594
2595         if (ctx->hang_stats.banned)
2596                 return true;
2597
2598         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2599                 if (!i915_gem_context_is_default(ctx)) {
2600                         DRM_DEBUG("context hanging too fast, banning!\n");
2601                         return true;
2602                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2603                         if (i915_stop_ring_allow_warn(dev_priv))
2604                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2605                         return true;
2606                 }
2607         }
2608
2609         return false;
2610 }
2611
2612 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2613                                   struct intel_context *ctx,
2614                                   const bool guilty)
2615 {
2616         struct i915_ctx_hang_stats *hs;
2617
2618         if (WARN_ON(!ctx))
2619                 return;
2620
2621         hs = &ctx->hang_stats;
2622
2623         if (guilty) {
2624                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2625                 hs->batch_active++;
2626                 hs->guilty_ts = get_seconds();
2627         } else {
2628                 hs->batch_pending++;
2629         }
2630 }
2631
2632 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2633 {
2634         list_del(&request->list);
2635         i915_gem_request_remove_from_client(request);
2636
2637         if (request->ctx)
2638                 i915_gem_context_unreference(request->ctx);
2639
2640         kfree(request);
2641 }
2642
2643 struct drm_i915_gem_request *
2644 i915_gem_find_active_request(struct intel_engine_cs *ring)
2645 {
2646         struct drm_i915_gem_request *request;
2647         u32 completed_seqno;
2648
2649         completed_seqno = ring->get_seqno(ring, false);
2650
2651         list_for_each_entry(request, &ring->request_list, list) {
2652                 if (i915_seqno_passed(completed_seqno, request->seqno))
2653                         continue;
2654
2655                 return request;
2656         }
2657
2658         return NULL;
2659 }
2660
2661 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2662                                        struct intel_engine_cs *ring)
2663 {
2664         struct drm_i915_gem_request *request;
2665         bool ring_hung;
2666
2667         request = i915_gem_find_active_request(ring);
2668
2669         if (request == NULL)
2670                 return;
2671
2672         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2673
2674         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2675
2676         list_for_each_entry_continue(request, &ring->request_list, list)
2677                 i915_set_reset_status(dev_priv, request->ctx, false);
2678 }
2679
2680 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2681                                         struct intel_engine_cs *ring)
2682 {
2683         while (!list_empty(&ring->active_list)) {
2684                 struct drm_i915_gem_object *obj;
2685
2686                 obj = list_first_entry(&ring->active_list,
2687                                        struct drm_i915_gem_object,
2688                                        ring_list);
2689
2690                 i915_gem_object_move_to_inactive(obj);
2691         }
2692
2693         /*
2694          * We must free the requests after all the corresponding objects have
2695          * been moved off active lists. Which is the same order as the normal
2696          * retire_requests function does. This is important if object hold
2697          * implicit references on things like e.g. ppgtt address spaces through
2698          * the request.
2699          */
2700         while (!list_empty(&ring->request_list)) {
2701                 struct drm_i915_gem_request *request;
2702
2703                 request = list_first_entry(&ring->request_list,
2704                                            struct drm_i915_gem_request,
2705                                            list);
2706
2707                 i915_gem_free_request(request);
2708         }
2709
2710         /* These may not have been flush before the reset, do so now */
2711         kfree(ring->preallocated_lazy_request);
2712         ring->preallocated_lazy_request = NULL;
2713         ring->outstanding_lazy_seqno = 0;
2714 }
2715
2716 void i915_gem_restore_fences(struct drm_device *dev)
2717 {
2718         struct drm_i915_private *dev_priv = dev->dev_private;
2719         int i;
2720
2721         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2722                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2723
2724                 /*
2725                  * Commit delayed tiling changes if we have an object still
2726                  * attached to the fence, otherwise just clear the fence.
2727                  */
2728                 if (reg->obj) {
2729                         i915_gem_object_update_fence(reg->obj, reg,
2730                                                      reg->obj->tiling_mode);
2731                 } else {
2732                         i915_gem_write_fence(dev, i, NULL);
2733                 }
2734         }
2735 }
2736
2737 void i915_gem_reset(struct drm_device *dev)
2738 {
2739         struct drm_i915_private *dev_priv = dev->dev_private;
2740         struct intel_engine_cs *ring;
2741         int i;
2742
2743         /*
2744          * Before we free the objects from the requests, we need to inspect
2745          * them for finding the guilty party. As the requests only borrow
2746          * their reference to the objects, the inspection must be done first.
2747          */
2748         for_each_ring(ring, dev_priv, i)
2749                 i915_gem_reset_ring_status(dev_priv, ring);
2750
2751         for_each_ring(ring, dev_priv, i)
2752                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2753
2754         i915_gem_context_reset(dev);
2755
2756         i915_gem_restore_fences(dev);
2757 }
2758
2759 /**
2760  * This function clears the request list as sequence numbers are passed.
2761  */
2762 void
2763 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2764 {
2765         uint32_t seqno;
2766
2767         if (list_empty(&ring->request_list))
2768                 return;
2769
2770         WARN_ON(i915_verify_lists(ring->dev));
2771
2772         seqno = ring->get_seqno(ring, true);
2773
2774         /* Move any buffers on the active list that are no longer referenced
2775          * by the ringbuffer to the flushing/inactive lists as appropriate,
2776          * before we free the context associated with the requests.
2777          */
2778         while (!list_empty(&ring->active_list)) {
2779                 struct drm_i915_gem_object *obj;
2780
2781                 obj = list_first_entry(&ring->active_list,
2782                                       struct drm_i915_gem_object,
2783                                       ring_list);
2784
2785                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2786                         break;
2787
2788                 i915_gem_object_move_to_inactive(obj);
2789         }
2790
2791
2792         while (!list_empty(&ring->request_list)) {
2793                 struct drm_i915_gem_request *request;
2794
2795                 request = list_first_entry(&ring->request_list,
2796                                            struct drm_i915_gem_request,
2797                                            list);
2798
2799                 if (!i915_seqno_passed(seqno, request->seqno))
2800                         break;
2801
2802                 trace_i915_gem_request_retire(ring, request->seqno);
2803                 /* We know the GPU must have read the request to have
2804                  * sent us the seqno + interrupt, so use the position
2805                  * of tail of the request to update the last known position
2806                  * of the GPU head.
2807                  */
2808                 ring->buffer->last_retired_head = request->tail;
2809
2810                 i915_gem_free_request(request);
2811         }
2812
2813         if (unlikely(ring->trace_irq_seqno &&
2814                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2815                 ring->irq_put(ring);
2816                 ring->trace_irq_seqno = 0;
2817         }
2818
2819         WARN_ON(i915_verify_lists(ring->dev));
2820 }
2821
2822 bool
2823 i915_gem_retire_requests(struct drm_device *dev)
2824 {
2825         struct drm_i915_private *dev_priv = dev->dev_private;
2826         struct intel_engine_cs *ring;
2827         bool idle = true;
2828         int i;
2829
2830         for_each_ring(ring, dev_priv, i) {
2831                 i915_gem_retire_requests_ring(ring);
2832                 idle &= list_empty(&ring->request_list);
2833         }
2834
2835         if (idle)
2836                 mod_delayed_work(dev_priv->wq,
2837                                    &dev_priv->mm.idle_work,
2838                                    msecs_to_jiffies(100));
2839
2840         return idle;
2841 }
2842
2843 static void
2844 i915_gem_retire_work_handler(struct work_struct *work)
2845 {
2846         struct drm_i915_private *dev_priv =
2847                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2848         struct drm_device *dev = dev_priv->dev;
2849         bool idle;
2850
2851         /* Come back later if the device is busy... */
2852         idle = false;
2853         if (mutex_trylock(&dev->struct_mutex)) {
2854                 idle = i915_gem_retire_requests(dev);
2855                 mutex_unlock(&dev->struct_mutex);
2856         }
2857         if (!idle)
2858                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2859                                    round_jiffies_up_relative(HZ));
2860 }
2861
2862 static void
2863 i915_gem_idle_work_handler(struct work_struct *work)
2864 {
2865         struct drm_i915_private *dev_priv =
2866                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2867
2868         intel_mark_idle(dev_priv->dev);
2869 }
2870
2871 /**
2872  * Ensures that an object will eventually get non-busy by flushing any required
2873  * write domains, emitting any outstanding lazy request and retiring and
2874  * completed requests.
2875  */
2876 static int
2877 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2878 {
2879         int ret;
2880
2881         if (obj->active) {
2882                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2883                 if (ret)
2884                         return ret;
2885
2886                 i915_gem_retire_requests_ring(obj->ring);
2887         }
2888
2889         return 0;
2890 }
2891
2892 /**
2893  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2894  * @DRM_IOCTL_ARGS: standard ioctl arguments
2895  *
2896  * Returns 0 if successful, else an error is returned with the remaining time in
2897  * the timeout parameter.
2898  *  -ETIME: object is still busy after timeout
2899  *  -ERESTARTSYS: signal interrupted the wait
2900  *  -ENONENT: object doesn't exist
2901  * Also possible, but rare:
2902  *  -EAGAIN: GPU wedged
2903  *  -ENOMEM: damn
2904  *  -ENODEV: Internal IRQ fail
2905  *  -E?: The add request failed
2906  *
2907  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2908  * non-zero timeout parameter the wait ioctl will wait for the given number of
2909  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2910  * without holding struct_mutex the object may become re-busied before this
2911  * function completes. A similar but shorter * race condition exists in the busy
2912  * ioctl
2913  */
2914 int
2915 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2916 {
2917         struct drm_i915_private *dev_priv = dev->dev_private;
2918         struct drm_i915_gem_wait *args = data;
2919         struct drm_i915_gem_object *obj;
2920         struct intel_engine_cs *ring = NULL;
2921         struct timespec timeout_stack, *timeout = NULL;
2922         unsigned reset_counter;
2923         u32 seqno = 0;
2924         int ret = 0;
2925
2926         if (args->timeout_ns >= 0) {
2927                 timeout_stack = ns_to_timespec(args->timeout_ns);
2928                 timeout = &timeout_stack;
2929         }
2930
2931         ret = i915_mutex_lock_interruptible(dev);
2932         if (ret)
2933                 return ret;
2934
2935         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2936         if (&obj->base == NULL) {
2937                 mutex_unlock(&dev->struct_mutex);
2938                 return -ENOENT;
2939         }
2940
2941         /* Need to make sure the object gets inactive eventually. */
2942         ret = i915_gem_object_flush_active(obj);
2943         if (ret)
2944                 goto out;
2945
2946         if (obj->active) {
2947                 seqno = obj->last_read_seqno;
2948                 ring = obj->ring;
2949         }
2950
2951         if (seqno == 0)
2952                  goto out;
2953
2954         /* Do this after OLR check to make sure we make forward progress polling
2955          * on this IOCTL with a 0 timeout (like busy ioctl)
2956          */
2957         if (!args->timeout_ns) {
2958                 ret = -ETIMEDOUT;
2959                 goto out;
2960         }
2961
2962         drm_gem_object_unreference(&obj->base);
2963         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2964         mutex_unlock(&dev->struct_mutex);
2965
2966         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2967         if (timeout)
2968                 args->timeout_ns = timespec_to_ns(timeout);
2969         return ret;
2970
2971 out:
2972         drm_gem_object_unreference(&obj->base);
2973         mutex_unlock(&dev->struct_mutex);
2974         return ret;
2975 }
2976
2977 /**
2978  * i915_gem_object_sync - sync an object to a ring.
2979  *
2980  * @obj: object which may be in use on another ring.
2981  * @to: ring we wish to use the object on. May be NULL.
2982  *
2983  * This code is meant to abstract object synchronization with the GPU.
2984  * Calling with NULL implies synchronizing the object with the CPU
2985  * rather than a particular GPU ring.
2986  *
2987  * Returns 0 if successful, else propagates up the lower layer error.
2988  */
2989 int
2990 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2991                      struct intel_engine_cs *to)
2992 {
2993         struct intel_engine_cs *from = obj->ring;
2994         u32 seqno;
2995         int ret, idx;
2996
2997         if (from == NULL || to == from)
2998                 return 0;
2999
3000         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
3001                 return i915_gem_object_wait_rendering(obj, false);
3002
3003         idx = intel_ring_sync_index(from, to);
3004
3005         seqno = obj->last_read_seqno;
3006         /* Optimization: Avoid semaphore sync when we are sure we already
3007          * waited for an object with higher seqno */
3008         if (seqno <= from->semaphore.sync_seqno[idx])
3009                 return 0;
3010
3011         ret = i915_gem_check_olr(obj->ring, seqno);
3012         if (ret)
3013                 return ret;
3014
3015         trace_i915_gem_ring_sync_to(from, to, seqno);
3016         ret = to->semaphore.sync_to(to, from, seqno);
3017         if (!ret)
3018                 /* We use last_read_seqno because sync_to()
3019                  * might have just caused seqno wrap under
3020                  * the radar.
3021                  */
3022                 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
3023
3024         return ret;
3025 }
3026
3027 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3028 {
3029         u32 old_write_domain, old_read_domains;
3030
3031         /* Force a pagefault for domain tracking on next user access */
3032         i915_gem_release_mmap(obj);
3033
3034         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3035                 return;
3036
3037         /* Wait for any direct GTT access to complete */
3038         mb();
3039
3040         old_read_domains = obj->base.read_domains;
3041         old_write_domain = obj->base.write_domain;
3042
3043         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3044         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3045
3046         trace_i915_gem_object_change_domain(obj,
3047                                             old_read_domains,
3048                                             old_write_domain);
3049 }
3050
3051 int i915_vma_unbind(struct i915_vma *vma)
3052 {
3053         struct drm_i915_gem_object *obj = vma->obj;
3054         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3055         int ret;
3056
3057         if (list_empty(&vma->vma_link))
3058                 return 0;
3059
3060         if (!drm_mm_node_allocated(&vma->node)) {
3061                 i915_gem_vma_destroy(vma);
3062                 return 0;
3063         }
3064
3065         if (vma->pin_count)
3066                 return -EBUSY;
3067
3068         BUG_ON(obj->pages == NULL);
3069
3070         ret = i915_gem_object_finish_gpu(obj);
3071         if (ret)
3072                 return ret;
3073         /* Continue on if we fail due to EIO, the GPU is hung so we
3074          * should be safe and we need to cleanup or else we might
3075          * cause memory corruption through use-after-free.
3076          */
3077
3078         if (i915_is_ggtt(vma->vm)) {
3079                 i915_gem_object_finish_gtt(obj);
3080
3081                 /* release the fence reg _after_ flushing */
3082                 ret = i915_gem_object_put_fence(obj);
3083                 if (ret)
3084                         return ret;
3085         }
3086
3087         trace_i915_vma_unbind(vma);
3088
3089         vma->unbind_vma(vma);
3090
3091         list_del_init(&vma->mm_list);
3092         /* Avoid an unnecessary call to unbind on rebind. */
3093         if (i915_is_ggtt(vma->vm))
3094                 obj->map_and_fenceable = true;
3095
3096         drm_mm_remove_node(&vma->node);
3097         i915_gem_vma_destroy(vma);
3098
3099         /* Since the unbound list is global, only move to that list if
3100          * no more VMAs exist. */
3101         if (list_empty(&obj->vma_list)) {
3102                 i915_gem_gtt_finish_object(obj);
3103                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3104         }
3105
3106         /* And finally now the object is completely decoupled from this vma,
3107          * we can drop its hold on the backing storage and allow it to be
3108          * reaped by the shrinker.
3109          */
3110         i915_gem_object_unpin_pages(obj);
3111
3112         return 0;
3113 }
3114
3115 int i915_gpu_idle(struct drm_device *dev)
3116 {
3117         struct drm_i915_private *dev_priv = dev->dev_private;
3118         struct intel_engine_cs *ring;
3119         int ret, i;
3120
3121         /* Flush everything onto the inactive list. */
3122         for_each_ring(ring, dev_priv, i) {
3123                 ret = i915_switch_context(ring, ring->default_context);
3124                 if (ret)
3125                         return ret;
3126
3127                 ret = intel_ring_idle(ring);
3128                 if (ret)
3129                         return ret;
3130         }
3131
3132         return 0;
3133 }
3134
3135 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3136                                  struct drm_i915_gem_object *obj)
3137 {
3138         struct drm_i915_private *dev_priv = dev->dev_private;
3139         int fence_reg;
3140         int fence_pitch_shift;
3141
3142         if (INTEL_INFO(dev)->gen >= 6) {
3143                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3144                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3145         } else {
3146                 fence_reg = FENCE_REG_965_0;
3147                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3148         }
3149
3150         fence_reg += reg * 8;
3151
3152         /* To w/a incoherency with non-atomic 64-bit register updates,
3153          * we split the 64-bit update into two 32-bit writes. In order
3154          * for a partial fence not to be evaluated between writes, we
3155          * precede the update with write to turn off the fence register,
3156          * and only enable the fence as the last step.
3157          *
3158          * For extra levels of paranoia, we make sure each step lands
3159          * before applying the next step.
3160          */
3161         I915_WRITE(fence_reg, 0);
3162         POSTING_READ(fence_reg);
3163
3164         if (obj) {
3165                 u32 size = i915_gem_obj_ggtt_size(obj);
3166                 uint64_t val;
3167
3168                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3169                                  0xfffff000) << 32;
3170                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3171                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3172                 if (obj->tiling_mode == I915_TILING_Y)
3173                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3174                 val |= I965_FENCE_REG_VALID;
3175
3176                 I915_WRITE(fence_reg + 4, val >> 32);
3177                 POSTING_READ(fence_reg + 4);
3178
3179                 I915_WRITE(fence_reg + 0, val);
3180                 POSTING_READ(fence_reg);
3181         } else {
3182                 I915_WRITE(fence_reg + 4, 0);
3183                 POSTING_READ(fence_reg + 4);
3184         }
3185 }
3186
3187 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3188                                  struct drm_i915_gem_object *obj)
3189 {
3190         struct drm_i915_private *dev_priv = dev->dev_private;
3191         u32 val;
3192
3193         if (obj) {
3194                 u32 size = i915_gem_obj_ggtt_size(obj);
3195                 int pitch_val;
3196                 int tile_width;
3197
3198                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3199                      (size & -size) != size ||
3200                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3201                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3202                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3203
3204                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3205                         tile_width = 128;
3206                 else
3207                         tile_width = 512;
3208
3209                 /* Note: pitch better be a power of two tile widths */
3210                 pitch_val = obj->stride / tile_width;
3211                 pitch_val = ffs(pitch_val) - 1;
3212
3213                 val = i915_gem_obj_ggtt_offset(obj);
3214                 if (obj->tiling_mode == I915_TILING_Y)
3215                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3216                 val |= I915_FENCE_SIZE_BITS(size);
3217                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3218                 val |= I830_FENCE_REG_VALID;
3219         } else
3220                 val = 0;
3221
3222         if (reg < 8)
3223                 reg = FENCE_REG_830_0 + reg * 4;
3224         else
3225                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3226
3227         I915_WRITE(reg, val);
3228         POSTING_READ(reg);
3229 }
3230
3231 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3232                                 struct drm_i915_gem_object *obj)
3233 {
3234         struct drm_i915_private *dev_priv = dev->dev_private;
3235         uint32_t val;
3236
3237         if (obj) {
3238                 u32 size = i915_gem_obj_ggtt_size(obj);
3239                 uint32_t pitch_val;
3240
3241                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3242                      (size & -size) != size ||
3243                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3244                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3245                      i915_gem_obj_ggtt_offset(obj), size);
3246
3247                 pitch_val = obj->stride / 128;
3248                 pitch_val = ffs(pitch_val) - 1;
3249
3250                 val = i915_gem_obj_ggtt_offset(obj);
3251                 if (obj->tiling_mode == I915_TILING_Y)
3252                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3253                 val |= I830_FENCE_SIZE_BITS(size);
3254                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3255                 val |= I830_FENCE_REG_VALID;
3256         } else
3257                 val = 0;
3258
3259         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3260         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3261 }
3262
3263 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3264 {
3265         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3266 }
3267
3268 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3269                                  struct drm_i915_gem_object *obj)
3270 {
3271         struct drm_i915_private *dev_priv = dev->dev_private;
3272
3273         /* Ensure that all CPU reads are completed before installing a fence
3274          * and all writes before removing the fence.
3275          */
3276         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3277                 mb();
3278
3279         WARN(obj && (!obj->stride || !obj->tiling_mode),
3280              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3281              obj->stride, obj->tiling_mode);
3282
3283         switch (INTEL_INFO(dev)->gen) {
3284         case 8:
3285         case 7:
3286         case 6:
3287         case 5:
3288         case 4: i965_write_fence_reg(dev, reg, obj); break;
3289         case 3: i915_write_fence_reg(dev, reg, obj); break;
3290         case 2: i830_write_fence_reg(dev, reg, obj); break;
3291         default: BUG();
3292         }
3293
3294         /* And similarly be paranoid that no direct access to this region
3295          * is reordered to before the fence is installed.
3296          */
3297         if (i915_gem_object_needs_mb(obj))
3298                 mb();
3299 }
3300
3301 static inline int fence_number(struct drm_i915_private *dev_priv,
3302                                struct drm_i915_fence_reg *fence)
3303 {
3304         return fence - dev_priv->fence_regs;
3305 }
3306
3307 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3308                                          struct drm_i915_fence_reg *fence,
3309                                          bool enable)
3310 {
3311         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3312         int reg = fence_number(dev_priv, fence);
3313
3314         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3315
3316         if (enable) {
3317                 obj->fence_reg = reg;
3318                 fence->obj = obj;
3319                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3320         } else {
3321                 obj->fence_reg = I915_FENCE_REG_NONE;
3322                 fence->obj = NULL;
3323                 list_del_init(&fence->lru_list);
3324         }
3325         obj->fence_dirty = false;
3326 }
3327
3328 static int
3329 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3330 {
3331         if (obj->last_fenced_seqno) {
3332                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3333                 if (ret)
3334                         return ret;
3335
3336                 obj->last_fenced_seqno = 0;
3337         }
3338
3339         obj->fenced_gpu_access = false;
3340         return 0;
3341 }
3342
3343 int
3344 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3345 {
3346         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3347         struct drm_i915_fence_reg *fence;
3348         int ret;
3349
3350         ret = i915_gem_object_wait_fence(obj);
3351         if (ret)
3352                 return ret;
3353
3354         if (obj->fence_reg == I915_FENCE_REG_NONE)
3355                 return 0;
3356
3357         fence = &dev_priv->fence_regs[obj->fence_reg];
3358
3359         if (WARN_ON(fence->pin_count))
3360                 return -EBUSY;
3361
3362         i915_gem_object_fence_lost(obj);
3363         i915_gem_object_update_fence(obj, fence, false);
3364
3365         return 0;
3366 }
3367
3368 static struct drm_i915_fence_reg *
3369 i915_find_fence_reg(struct drm_device *dev)
3370 {
3371         struct drm_i915_private *dev_priv = dev->dev_private;
3372         struct drm_i915_fence_reg *reg, *avail;
3373         int i;
3374
3375         /* First try to find a free reg */
3376         avail = NULL;
3377         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3378                 reg = &dev_priv->fence_regs[i];
3379                 if (!reg->obj)
3380                         return reg;
3381
3382                 if (!reg->pin_count)
3383                         avail = reg;
3384         }
3385
3386         if (avail == NULL)
3387                 goto deadlock;
3388
3389         /* None available, try to steal one or wait for a user to finish */
3390         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3391                 if (reg->pin_count)
3392                         continue;
3393
3394                 return reg;
3395         }
3396
3397 deadlock:
3398         /* Wait for completion of pending flips which consume fences */
3399         if (intel_has_pending_fb_unpin(dev))
3400                 return ERR_PTR(-EAGAIN);
3401
3402         return ERR_PTR(-EDEADLK);
3403 }
3404
3405 /**
3406  * i915_gem_object_get_fence - set up fencing for an object
3407  * @obj: object to map through a fence reg
3408  *
3409  * When mapping objects through the GTT, userspace wants to be able to write
3410  * to them without having to worry about swizzling if the object is tiled.
3411  * This function walks the fence regs looking for a free one for @obj,
3412  * stealing one if it can't find any.
3413  *
3414  * It then sets up the reg based on the object's properties: address, pitch
3415  * and tiling format.
3416  *
3417  * For an untiled surface, this removes any existing fence.
3418  */
3419 int
3420 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3421 {
3422         struct drm_device *dev = obj->base.dev;
3423         struct drm_i915_private *dev_priv = dev->dev_private;
3424         bool enable = obj->tiling_mode != I915_TILING_NONE;
3425         struct drm_i915_fence_reg *reg;
3426         int ret;
3427
3428         /* Have we updated the tiling parameters upon the object and so
3429          * will need to serialise the write to the associated fence register?
3430          */
3431         if (obj->fence_dirty) {
3432                 ret = i915_gem_object_wait_fence(obj);
3433                 if (ret)
3434                         return ret;
3435         }
3436
3437         /* Just update our place in the LRU if our fence is getting reused. */
3438         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3439                 reg = &dev_priv->fence_regs[obj->fence_reg];
3440                 if (!obj->fence_dirty) {
3441                         list_move_tail(&reg->lru_list,
3442                                        &dev_priv->mm.fence_list);
3443                         return 0;
3444                 }
3445         } else if (enable) {
3446                 reg = i915_find_fence_reg(dev);
3447                 if (IS_ERR(reg))
3448                         return PTR_ERR(reg);
3449
3450                 if (reg->obj) {
3451                         struct drm_i915_gem_object *old = reg->obj;
3452
3453                         ret = i915_gem_object_wait_fence(old);
3454                         if (ret)
3455                                 return ret;
3456
3457                         i915_gem_object_fence_lost(old);
3458                 }
3459         } else
3460                 return 0;
3461
3462         i915_gem_object_update_fence(obj, reg, enable);
3463
3464         return 0;
3465 }
3466
3467 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3468                                      struct drm_mm_node *gtt_space,
3469                                      unsigned long cache_level)
3470 {
3471         struct drm_mm_node *other;
3472
3473         /* On non-LLC machines we have to be careful when putting differing
3474          * types of snoopable memory together to avoid the prefetcher
3475          * crossing memory domains and dying.
3476          */
3477         if (HAS_LLC(dev))
3478                 return true;
3479
3480         if (!drm_mm_node_allocated(gtt_space))
3481                 return true;
3482
3483         if (list_empty(&gtt_space->node_list))
3484                 return true;
3485
3486         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3487         if (other->allocated && !other->hole_follows && other->color != cache_level)
3488                 return false;
3489
3490         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3491         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3492                 return false;
3493
3494         return true;
3495 }
3496
3497 static void i915_gem_verify_gtt(struct drm_device *dev)
3498 {
3499 #if WATCH_GTT
3500         struct drm_i915_private *dev_priv = dev->dev_private;
3501         struct drm_i915_gem_object *obj;
3502         int err = 0;
3503
3504         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3505                 if (obj->gtt_space == NULL) {
3506                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3507                         err++;
3508                         continue;
3509                 }
3510
3511                 if (obj->cache_level != obj->gtt_space->color) {
3512                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3513                                i915_gem_obj_ggtt_offset(obj),
3514                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3515                                obj->cache_level,
3516                                obj->gtt_space->color);
3517                         err++;
3518                         continue;
3519                 }
3520
3521                 if (!i915_gem_valid_gtt_space(dev,
3522                                               obj->gtt_space,
3523                                               obj->cache_level)) {
3524                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3525                                i915_gem_obj_ggtt_offset(obj),
3526                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3527                                obj->cache_level);
3528                         err++;
3529                         continue;
3530                 }
3531         }
3532
3533         WARN_ON(err);
3534 #endif
3535 }
3536
3537 /**
3538  * Finds free space in the GTT aperture and binds the object there.
3539  */
3540 static struct i915_vma *
3541 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3542                            struct i915_address_space *vm,
3543                            unsigned alignment,
3544                            uint64_t flags)
3545 {
3546         struct drm_device *dev = obj->base.dev;
3547         struct drm_i915_private *dev_priv = dev->dev_private;
3548         u32 size, fence_size, fence_alignment, unfenced_alignment;
3549         unsigned long start =
3550                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3551         unsigned long end =
3552                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3553         struct i915_vma *vma;
3554         int ret;
3555
3556         fence_size = i915_gem_get_gtt_size(dev,
3557                                            obj->base.size,
3558                                            obj->tiling_mode);
3559         fence_alignment = i915_gem_get_gtt_alignment(dev,
3560                                                      obj->base.size,
3561                                                      obj->tiling_mode, true);
3562         unfenced_alignment =
3563                 i915_gem_get_gtt_alignment(dev,
3564                                            obj->base.size,
3565                                            obj->tiling_mode, false);
3566
3567         if (alignment == 0)
3568                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3569                                                 unfenced_alignment;
3570         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3571                 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3572                 return ERR_PTR(-EINVAL);
3573         }
3574
3575         size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3576
3577         /* If the object is bigger than the entire aperture, reject it early
3578          * before evicting everything in a vain attempt to find space.
3579          */
3580         if (obj->base.size > end) {
3581                 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3582                           obj->base.size,
3583                           flags & PIN_MAPPABLE ? "mappable" : "total",
3584                           end);
3585                 return ERR_PTR(-E2BIG);
3586         }
3587
3588         ret = i915_gem_object_get_pages(obj);
3589         if (ret)
3590                 return ERR_PTR(ret);
3591
3592         i915_gem_object_pin_pages(obj);
3593
3594         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3595         if (IS_ERR(vma))
3596                 goto err_unpin;
3597
3598 search_free:
3599         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3600                                                   size, alignment,
3601                                                   obj->cache_level,
3602                                                   start, end,
3603                                                   DRM_MM_SEARCH_DEFAULT,
3604                                                   DRM_MM_CREATE_DEFAULT);
3605         if (ret) {
3606                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3607                                                obj->cache_level,
3608                                                start, end,
3609                                                flags);
3610                 if (ret == 0)
3611                         goto search_free;
3612
3613                 goto err_free_vma;
3614         }
3615         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3616                                               obj->cache_level))) {
3617                 ret = -EINVAL;
3618                 goto err_remove_node;
3619         }
3620
3621         ret = i915_gem_gtt_prepare_object(obj);
3622         if (ret)
3623                 goto err_remove_node;
3624
3625         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3626         list_add_tail(&vma->mm_list, &vm->inactive_list);
3627
3628         if (i915_is_ggtt(vm)) {
3629                 bool mappable, fenceable;
3630
3631                 fenceable = (vma->node.size == fence_size &&
3632                              (vma->node.start & (fence_alignment - 1)) == 0);
3633
3634                 mappable = (vma->node.start + obj->base.size <=
3635                             dev_priv->gtt.mappable_end);
3636
3637                 obj->map_and_fenceable = mappable && fenceable;
3638         }
3639
3640         WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3641
3642         trace_i915_vma_bind(vma, flags);
3643         vma->bind_vma(vma, obj->cache_level,
3644                       flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3645
3646         i915_gem_verify_gtt(dev);
3647         return vma;
3648
3649 err_remove_node:
3650         drm_mm_remove_node(&vma->node);
3651 err_free_vma:
3652         i915_gem_vma_destroy(vma);
3653         vma = ERR_PTR(ret);
3654 err_unpin:
3655         i915_gem_object_unpin_pages(obj);
3656         return vma;
3657 }
3658
3659 bool
3660 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3661                         bool force)
3662 {
3663         /* If we don't have a page list set up, then we're not pinned
3664          * to GPU, and we can ignore the cache flush because it'll happen
3665          * again at bind time.
3666          */
3667         if (obj->pages == NULL)
3668                 return false;
3669
3670         /*
3671          * Stolen memory is always coherent with the GPU as it is explicitly
3672          * marked as wc by the system, or the system is cache-coherent.
3673          */
3674         if (obj->stolen)
3675                 return false;
3676
3677         /* If the GPU is snooping the contents of the CPU cache,
3678          * we do not need to manually clear the CPU cache lines.  However,
3679          * the caches are only snooped when the render cache is
3680          * flushed/invalidated.  As we always have to emit invalidations
3681          * and flushes when moving into and out of the RENDER domain, correct
3682          * snooping behaviour occurs naturally as the result of our domain
3683          * tracking.
3684          */
3685         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3686                 return false;
3687
3688         trace_i915_gem_object_clflush(obj);
3689         drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
3690
3691         return true;
3692 }
3693
3694 /** Flushes the GTT write domain for the object if it's dirty. */
3695 static void
3696 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3697 {
3698         uint32_t old_write_domain;
3699
3700         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3701                 return;
3702
3703         /* No actual flushing is required for the GTT write domain.  Writes
3704          * to it immediately go to main memory as far as we know, so there's
3705          * no chipset flush.  It also doesn't land in render cache.
3706          *
3707          * However, we do have to enforce the order so that all writes through
3708          * the GTT land before any writes to the device, such as updates to
3709          * the GATT itself.
3710          */
3711         wmb();
3712
3713         old_write_domain = obj->base.write_domain;
3714         obj->base.write_domain = 0;
3715
3716         intel_fb_obj_flush(obj, false);
3717
3718         intel_fb_obj_flush(obj, false);
3719
3720         trace_i915_gem_object_change_domain(obj,
3721                                             obj->base.read_domains,
3722                                             old_write_domain);
3723 }
3724
3725 /** Flushes the CPU write domain for the object if it's dirty. */
3726 static void
3727 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3728                                        bool force)
3729 {
3730         uint32_t old_write_domain;
3731
3732         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3733                 return;
3734
3735         if (i915_gem_clflush_object(obj, force))
3736                 i915_gem_chipset_flush(obj->base.dev);
3737
3738         old_write_domain = obj->base.write_domain;
3739         obj->base.write_domain = 0;
3740
3741         trace_i915_gem_object_change_domain(obj,
3742                                             obj->base.read_domains,
3743                                             old_write_domain);
3744 }
3745
3746 /**
3747  * Moves a single object to the GTT read, and possibly write domain.
3748  *
3749  * This function returns when the move is complete, including waiting on
3750  * flushes to occur.
3751  */
3752 int
3753 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3754 {
3755         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3756         uint32_t old_write_domain, old_read_domains;
3757         int ret;
3758
3759         /* Not valid to be called on unbound objects. */
3760         if (!i915_gem_obj_bound_any(obj))
3761                 return -EINVAL;
3762
3763         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3764                 return 0;
3765
3766         ret = i915_gem_object_wait_rendering(obj, !write);
3767         if (ret)
3768                 return ret;
3769
3770         i915_gem_object_retire(obj);
3771         i915_gem_object_flush_cpu_write_domain(obj, false);
3772
3773         /* Serialise direct access to this object with the barriers for
3774          * coherent writes from the GPU, by effectively invalidating the
3775          * GTT domain upon first access.
3776          */
3777         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3778                 mb();
3779
3780         old_write_domain = obj->base.write_domain;
3781         old_read_domains = obj->base.read_domains;
3782
3783         /* It should now be out of any other write domains, and we can update
3784          * the domain values for our changes.
3785          */
3786         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3787         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3788         if (write) {
3789                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3790                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3791                 obj->dirty = 1;
3792         }
3793
3794         if (write)
3795                 intel_fb_obj_invalidate(obj, NULL);
3796
3797         trace_i915_gem_object_change_domain(obj,
3798                                             old_read_domains,
3799                                             old_write_domain);
3800
3801         /* And bump the LRU for this access */
3802         if (i915_gem_object_is_inactive(obj)) {
3803                 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3804                 if (vma)
3805                         list_move_tail(&vma->mm_list,
3806                                        &dev_priv->gtt.base.inactive_list);
3807
3808         }
3809
3810         return 0;
3811 }
3812
3813 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3814                                     enum i915_cache_level cache_level)
3815 {
3816         struct drm_device *dev = obj->base.dev;
3817         struct i915_vma *vma, *next;
3818         int ret;
3819
3820         if (obj->cache_level == cache_level)
3821                 return 0;
3822
3823         if (i915_gem_obj_is_pinned(obj)) {
3824                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3825                 return -EBUSY;
3826         }
3827
3828         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3829                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3830                         ret = i915_vma_unbind(vma);
3831                         if (ret)
3832                                 return ret;
3833                 }
3834         }
3835
3836         if (i915_gem_obj_bound_any(obj)) {
3837                 ret = i915_gem_object_finish_gpu(obj);
3838                 if (ret)
3839                         return ret;
3840
3841                 i915_gem_object_finish_gtt(obj);
3842
3843                 /* Before SandyBridge, you could not use tiling or fence
3844                  * registers with snooped memory, so relinquish any fences
3845                  * currently pointing to our region in the aperture.
3846                  */
3847                 if (INTEL_INFO(dev)->gen < 6) {
3848                         ret = i915_gem_object_put_fence(obj);
3849                         if (ret)
3850                                 return ret;
3851                 }
3852
3853                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3854                         if (drm_mm_node_allocated(&vma->node))
3855                                 vma->bind_vma(vma, cache_level,
3856                                               obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3857         }
3858
3859         list_for_each_entry(vma, &obj->vma_list, vma_link)
3860                 vma->node.color = cache_level;
3861         obj->cache_level = cache_level;
3862
3863         if (cpu_write_needs_clflush(obj)) {
3864                 u32 old_read_domains, old_write_domain;
3865
3866                 /* If we're coming from LLC cached, then we haven't
3867                  * actually been tracking whether the data is in the
3868                  * CPU cache or not, since we only allow one bit set
3869                  * in obj->write_domain and have been skipping the clflushes.
3870                  * Just set it to the CPU cache for now.
3871                  */
3872                 i915_gem_object_retire(obj);
3873                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3874
3875                 old_read_domains = obj->base.read_domains;
3876                 old_write_domain = obj->base.write_domain;
3877
3878                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3879                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3880
3881                 trace_i915_gem_object_change_domain(obj,
3882                                                     old_read_domains,
3883                                                     old_write_domain);
3884         }
3885
3886         i915_gem_verify_gtt(dev);
3887         return 0;
3888 }
3889
3890 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3891                                struct drm_file *file)
3892 {
3893         struct drm_i915_gem_caching *args = data;
3894         struct drm_i915_gem_object *obj;
3895         int ret;
3896
3897         ret = i915_mutex_lock_interruptible(dev);
3898         if (ret)
3899                 return ret;
3900
3901         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3902         if (&obj->base == NULL) {
3903                 ret = -ENOENT;
3904                 goto unlock;
3905         }
3906
3907         switch (obj->cache_level) {
3908         case I915_CACHE_LLC:
3909         case I915_CACHE_L3_LLC:
3910                 args->caching = I915_CACHING_CACHED;
3911                 break;
3912
3913         case I915_CACHE_WT:
3914                 args->caching = I915_CACHING_DISPLAY;
3915                 break;
3916
3917         default:
3918                 args->caching = I915_CACHING_NONE;
3919                 break;
3920         }
3921
3922         drm_gem_object_unreference(&obj->base);
3923 unlock:
3924         mutex_unlock(&dev->struct_mutex);
3925         return ret;
3926 }
3927
3928 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3929                                struct drm_file *file)
3930 {
3931         struct drm_i915_gem_caching *args = data;
3932         struct drm_i915_gem_object *obj;
3933         enum i915_cache_level level;
3934         int ret;
3935
3936         switch (args->caching) {
3937         case I915_CACHING_NONE:
3938                 level = I915_CACHE_NONE;
3939                 break;
3940         case I915_CACHING_CACHED:
3941                 level = I915_CACHE_LLC;
3942                 break;
3943         case I915_CACHING_DISPLAY:
3944                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3945                 break;
3946         default:
3947                 return -EINVAL;
3948         }
3949
3950         ret = i915_mutex_lock_interruptible(dev);
3951         if (ret)
3952                 return ret;
3953
3954         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3955         if (&obj->base == NULL) {
3956                 ret = -ENOENT;
3957                 goto unlock;
3958         }
3959
3960         ret = i915_gem_object_set_cache_level(obj, level);
3961
3962         drm_gem_object_unreference(&obj->base);
3963 unlock:
3964         mutex_unlock(&dev->struct_mutex);
3965         return ret;
3966 }
3967
3968 static bool is_pin_display(struct drm_i915_gem_object *obj)
3969 {
3970         struct i915_vma *vma;
3971
3972         if (list_empty(&obj->vma_list))
3973                 return false;
3974
3975         vma = i915_gem_obj_to_ggtt(obj);
3976         if (!vma)
3977                 return false;
3978
3979         /* There are 3 sources that pin objects:
3980          *   1. The display engine (scanouts, sprites, cursors);
3981          *   2. Reservations for execbuffer;
3982          *   3. The user.
3983          *
3984          * We can ignore reservations as we hold the struct_mutex and
3985          * are only called outside of the reservation path.  The user
3986          * can only increment pin_count once, and so if after
3987          * subtracting the potential reference by the user, any pin_count
3988          * remains, it must be due to another use by the display engine.
3989          */
3990         return vma->pin_count - !!obj->user_pin_count;
3991 }
3992
3993 /*
3994  * Prepare buffer for display plane (scanout, cursors, etc).
3995  * Can be called from an uninterruptible phase (modesetting) and allows
3996  * any flushes to be pipelined (for pageflips).
3997  */
3998 int
3999 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4000                                      u32 alignment,
4001                                      struct intel_engine_cs *pipelined)
4002 {
4003         u32 old_read_domains, old_write_domain;
4004         bool was_pin_display;
4005         int ret;
4006
4007         if (pipelined != obj->ring) {
4008                 ret = i915_gem_object_sync(obj, pipelined);
4009                 if (ret)
4010                         return ret;
4011         }
4012
4013         /* Mark the pin_display early so that we account for the
4014          * display coherency whilst setting up the cache domains.
4015          */
4016         was_pin_display = obj->pin_display;
4017         obj->pin_display = true;
4018
4019         /* The display engine is not coherent with the LLC cache on gen6.  As
4020          * a result, we make sure that the pinning that is about to occur is
4021          * done with uncached PTEs. This is lowest common denominator for all
4022          * chipsets.
4023          *
4024          * However for gen6+, we could do better by using the GFDT bit instead
4025          * of uncaching, which would allow us to flush all the LLC-cached data
4026          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4027          */
4028         ret = i915_gem_object_set_cache_level(obj,
4029                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4030         if (ret)
4031                 goto err_unpin_display;
4032
4033         /* As the user may map the buffer once pinned in the display plane
4034          * (e.g. libkms for the bootup splash), we have to ensure that we
4035          * always use map_and_fenceable for all scanout buffers.
4036          */
4037         ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
4038         if (ret)
4039                 goto err_unpin_display;
4040
4041         i915_gem_object_flush_cpu_write_domain(obj, true);
4042
4043         old_write_domain = obj->base.write_domain;
4044         old_read_domains = obj->base.read_domains;
4045
4046         /* It should now be out of any other write domains, and we can update
4047          * the domain values for our changes.
4048          */
4049         obj->base.write_domain = 0;
4050         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4051
4052         trace_i915_gem_object_change_domain(obj,
4053                                             old_read_domains,
4054                                             old_write_domain);
4055
4056         return 0;
4057
4058 err_unpin_display:
4059         WARN_ON(was_pin_display != is_pin_display(obj));
4060         obj->pin_display = was_pin_display;
4061         return ret;
4062 }
4063
4064 void
4065 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4066 {
4067         i915_gem_object_ggtt_unpin(obj);
4068         obj->pin_display = is_pin_display(obj);
4069 }
4070
4071 int
4072 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4073 {
4074         int ret;
4075
4076         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4077                 return 0;
4078
4079         ret = i915_gem_object_wait_rendering(obj, false);
4080         if (ret)
4081                 return ret;
4082
4083         /* Ensure that we invalidate the GPU's caches and TLBs. */
4084         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4085         return 0;
4086 }
4087
4088 /**
4089  * Moves a single object to the CPU read, and possibly write domain.
4090  *
4091  * This function returns when the move is complete, including waiting on
4092  * flushes to occur.
4093  */
4094 int
4095 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4096 {
4097         uint32_t old_write_domain, old_read_domains;
4098         int ret;
4099
4100         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4101                 return 0;
4102
4103         ret = i915_gem_object_wait_rendering(obj, !write);
4104         if (ret)
4105                 return ret;
4106
4107         i915_gem_object_retire(obj);
4108         i915_gem_object_flush_gtt_write_domain(obj);
4109
4110         old_write_domain = obj->base.write_domain;
4111         old_read_domains = obj->base.read_domains;
4112
4113         /* Flush the CPU cache if it's still invalid. */
4114         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4115                 i915_gem_clflush_object(obj, false);
4116
4117                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4118         }
4119
4120         /* It should now be out of any other write domains, and we can update
4121          * the domain values for our changes.
4122          */
4123         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4124
4125         /* If we're writing through the CPU, then the GPU read domains will
4126          * need to be invalidated at next use.
4127          */
4128         if (write) {
4129                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4130                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4131         }
4132
4133         if (write)
4134                 intel_fb_obj_invalidate(obj, NULL);
4135
4136         trace_i915_gem_object_change_domain(obj,
4137                                             old_read_domains,
4138                                             old_write_domain);
4139
4140         return 0;
4141 }
4142
4143 /* Throttle our rendering by waiting until the ring has completed our requests
4144  * emitted over 20 msec ago.
4145  *
4146  * Note that if we were to use the current jiffies each time around the loop,
4147  * we wouldn't escape the function with any frames outstanding if the time to
4148  * render a frame was over 20ms.
4149  *
4150  * This should get us reasonable parallelism between CPU and GPU but also
4151  * relatively low latency when blocking on a particular request to finish.
4152  */
4153 static int
4154 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4155 {
4156         struct drm_i915_private *dev_priv = dev->dev_private;
4157         struct drm_i915_file_private *file_priv = file->driver_priv;
4158         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4159         struct drm_i915_gem_request *request;
4160         struct intel_engine_cs *ring = NULL;
4161         unsigned reset_counter;
4162         u32 seqno = 0;
4163         int ret;
4164
4165         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4166         if (ret)
4167                 return ret;
4168
4169         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4170         if (ret)
4171                 return ret;
4172
4173         spin_lock(&file_priv->mm.lock);
4174         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4175                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4176                         break;
4177
4178                 ring = request->ring;
4179                 seqno = request->seqno;
4180         }
4181         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4182         spin_unlock(&file_priv->mm.lock);
4183
4184         if (seqno == 0)
4185                 return 0;
4186
4187         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4188         if (ret == 0)
4189                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4190
4191         return ret;
4192 }
4193
4194 static bool
4195 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4196 {
4197         struct drm_i915_gem_object *obj = vma->obj;
4198
4199         if (alignment &&
4200             vma->node.start & (alignment - 1))
4201                 return true;
4202
4203         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4204                 return true;
4205
4206         if (flags & PIN_OFFSET_BIAS &&
4207             vma->node.start < (flags & PIN_OFFSET_MASK))
4208                 return true;
4209
4210         return false;
4211 }
4212
4213 int
4214 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4215                     struct i915_address_space *vm,
4216                     uint32_t alignment,
4217                     uint64_t flags)
4218 {
4219         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4220         struct i915_vma *vma;
4221         int ret;
4222
4223         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4224                 return -ENODEV;
4225
4226         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4227                 return -EINVAL;
4228
4229         vma = i915_gem_obj_to_vma(obj, vm);
4230         if (vma) {
4231                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4232                         return -EBUSY;
4233
4234                 if (i915_vma_misplaced(vma, alignment, flags)) {
4235                         WARN(vma->pin_count,
4236                              "bo is already pinned with incorrect alignment:"
4237                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4238                              " obj->map_and_fenceable=%d\n",
4239                              i915_gem_obj_offset(obj, vm), alignment,
4240                              !!(flags & PIN_MAPPABLE),
4241                              obj->map_and_fenceable);
4242                         ret = i915_vma_unbind(vma);
4243                         if (ret)
4244                                 return ret;
4245
4246                         vma = NULL;
4247                 }
4248         }
4249
4250         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4251                 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4252                 if (IS_ERR(vma))
4253                         return PTR_ERR(vma);
4254         }
4255
4256         if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4257                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4258
4259         vma->pin_count++;
4260         if (flags & PIN_MAPPABLE)
4261                 obj->pin_mappable |= true;
4262
4263         return 0;
4264 }
4265
4266 void
4267 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4268 {
4269         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4270
4271         BUG_ON(!vma);
4272         BUG_ON(vma->pin_count == 0);
4273         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4274
4275         if (--vma->pin_count == 0)
4276                 obj->pin_mappable = false;
4277 }
4278
4279 bool
4280 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4281 {
4282         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4283                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4284                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4285
4286                 WARN_ON(!ggtt_vma ||
4287                         dev_priv->fence_regs[obj->fence_reg].pin_count >
4288                         ggtt_vma->pin_count);
4289                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4290                 return true;
4291         } else
4292                 return false;
4293 }
4294
4295 void
4296 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4297 {
4298         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4299                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4300                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4301                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4302         }
4303 }
4304
4305 int
4306 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4307                    struct drm_file *file)
4308 {
4309         struct drm_i915_gem_pin *args = data;
4310         struct drm_i915_gem_object *obj;
4311         int ret;
4312
4313         if (INTEL_INFO(dev)->gen >= 6)
4314                 return -ENODEV;
4315
4316         ret = i915_mutex_lock_interruptible(dev);
4317         if (ret)
4318                 return ret;
4319
4320         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4321         if (&obj->base == NULL) {
4322                 ret = -ENOENT;
4323                 goto unlock;
4324         }
4325
4326         if (obj->madv != I915_MADV_WILLNEED) {
4327                 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4328                 ret = -EFAULT;
4329                 goto out;
4330         }
4331
4332         if (obj->pin_filp != NULL && obj->pin_filp != file) {
4333                 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4334                           args->handle);
4335                 ret = -EINVAL;
4336                 goto out;
4337         }
4338
4339         if (obj->user_pin_count == ULONG_MAX) {
4340                 ret = -EBUSY;
4341                 goto out;
4342         }
4343
4344         if (obj->user_pin_count == 0) {
4345                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4346                 if (ret)
4347                         goto out;
4348         }
4349
4350         obj->user_pin_count++;
4351         obj->pin_filp = file;
4352
4353         args->offset = i915_gem_obj_ggtt_offset(obj);
4354 out:
4355         drm_gem_object_unreference(&obj->base);
4356 unlock:
4357         mutex_unlock(&dev->struct_mutex);
4358         return ret;
4359 }
4360
4361 int
4362 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4363                      struct drm_file *file)
4364 {
4365         struct drm_i915_gem_pin *args = data;
4366         struct drm_i915_gem_object *obj;
4367         int ret;
4368
4369         ret = i915_mutex_lock_interruptible(dev);
4370         if (ret)
4371                 return ret;
4372
4373         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4374         if (&obj->base == NULL) {
4375                 ret = -ENOENT;
4376                 goto unlock;
4377         }
4378
4379         if (obj->pin_filp != file) {
4380                 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4381                           args->handle);
4382                 ret = -EINVAL;
4383                 goto out;
4384         }
4385         obj->user_pin_count--;
4386         if (obj->user_pin_count == 0) {
4387                 obj->pin_filp = NULL;
4388                 i915_gem_object_ggtt_unpin(obj);
4389         }
4390
4391 out:
4392         drm_gem_object_unreference(&obj->base);
4393 unlock:
4394         mutex_unlock(&dev->struct_mutex);
4395         return ret;
4396 }
4397
4398 int
4399 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4400                     struct drm_file *file)
4401 {
4402         struct drm_i915_gem_busy *args = data;
4403         struct drm_i915_gem_object *obj;
4404         int ret;
4405
4406         ret = i915_mutex_lock_interruptible(dev);
4407         if (ret)
4408                 return ret;
4409
4410         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4411         if (&obj->base == NULL) {
4412                 ret = -ENOENT;
4413                 goto unlock;
4414         }
4415
4416         /* Count all active objects as busy, even if they are currently not used
4417          * by the gpu. Users of this interface expect objects to eventually
4418          * become non-busy without any further actions, therefore emit any
4419          * necessary flushes here.
4420          */
4421         ret = i915_gem_object_flush_active(obj);
4422
4423         args->busy = obj->active;
4424         if (obj->ring) {
4425                 args->busy |= intel_ring_flag(obj->ring) << 16;
4426         }
4427
4428         drm_gem_object_unreference(&obj->base);
4429 unlock:
4430         mutex_unlock(&dev->struct_mutex);
4431         return ret;
4432 }
4433
4434 int
4435 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4436                         struct drm_file *file_priv)
4437 {
4438         return i915_gem_ring_throttle(dev, file_priv);
4439 }
4440
4441 int
4442 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4443                        struct drm_file *file_priv)
4444 {
4445         struct drm_i915_gem_madvise *args = data;
4446         struct drm_i915_gem_object *obj;
4447         int ret;
4448
4449         switch (args->madv) {
4450         case I915_MADV_DONTNEED:
4451         case I915_MADV_WILLNEED:
4452             break;
4453         default:
4454             return -EINVAL;
4455         }
4456
4457         ret = i915_mutex_lock_interruptible(dev);
4458         if (ret)
4459                 return ret;
4460
4461         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4462         if (&obj->base == NULL) {
4463                 ret = -ENOENT;
4464                 goto unlock;
4465         }
4466
4467         if (i915_gem_obj_is_pinned(obj)) {
4468                 ret = -EINVAL;
4469                 goto out;
4470         }
4471
4472         if (obj->madv != __I915_MADV_PURGED)
4473                 obj->madv = args->madv;
4474
4475         /* if the object is no longer attached, discard its backing storage */
4476         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4477                 i915_gem_object_truncate(obj);
4478
4479         args->retained = obj->madv != __I915_MADV_PURGED;
4480
4481 out:
4482         drm_gem_object_unreference(&obj->base);
4483 unlock:
4484         mutex_unlock(&dev->struct_mutex);
4485         return ret;
4486 }
4487
4488 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4489                           const struct drm_i915_gem_object_ops *ops)
4490 {
4491         INIT_LIST_HEAD(&obj->global_list);
4492         INIT_LIST_HEAD(&obj->ring_list);
4493         INIT_LIST_HEAD(&obj->obj_exec_link);
4494         INIT_LIST_HEAD(&obj->vma_list);
4495
4496         obj->ops = ops;
4497
4498         obj->fence_reg = I915_FENCE_REG_NONE;
4499         obj->madv = I915_MADV_WILLNEED;
4500         /* Avoid an unnecessary call to unbind on the first bind. */
4501         obj->map_and_fenceable = true;
4502
4503         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4504 }
4505
4506 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4507         .get_pages = i915_gem_object_get_pages_gtt,
4508         .put_pages = i915_gem_object_put_pages_gtt,
4509 };
4510
4511 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4512                                                   size_t size)
4513 {
4514         struct drm_i915_gem_object *obj;
4515 #if 0
4516         struct address_space *mapping;
4517         gfp_t mask;
4518 #endif
4519
4520         obj = i915_gem_object_alloc(dev);
4521         if (obj == NULL)
4522                 return NULL;
4523
4524         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4525                 i915_gem_object_free(obj);
4526                 return NULL;
4527         }
4528
4529 #if 0
4530         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4531         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4532                 /* 965gm cannot relocate objects above 4GiB. */
4533                 mask &= ~__GFP_HIGHMEM;
4534                 mask |= __GFP_DMA32;
4535         }
4536
4537         mapping = file_inode(obj->base.filp)->i_mapping;
4538         mapping_set_gfp_mask(mapping, mask);
4539 #endif
4540
4541         i915_gem_object_init(obj, &i915_gem_object_ops);
4542
4543         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4544         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4545
4546         if (HAS_LLC(dev)) {
4547                 /* On some devices, we can have the GPU use the LLC (the CPU
4548                  * cache) for about a 10% performance improvement
4549                  * compared to uncached.  Graphics requests other than
4550                  * display scanout are coherent with the CPU in
4551                  * accessing this cache.  This means in this mode we
4552                  * don't need to clflush on the CPU side, and on the
4553                  * GPU side we only need to flush internal caches to
4554                  * get data visible to the CPU.
4555                  *
4556                  * However, we maintain the display planes as UC, and so
4557                  * need to rebind when first used as such.
4558                  */
4559                 obj->cache_level = I915_CACHE_LLC;
4560         } else
4561                 obj->cache_level = I915_CACHE_NONE;
4562
4563         trace_i915_gem_object_create(obj);
4564
4565         return obj;
4566 }
4567
4568 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4569 {
4570         /* If we are the last user of the backing storage (be it shmemfs
4571          * pages or stolen etc), we know that the pages are going to be
4572          * immediately released. In this case, we can then skip copying
4573          * back the contents from the GPU.
4574          */
4575
4576         if (obj->madv != I915_MADV_WILLNEED)
4577                 return false;
4578
4579         if (obj->base.vm_obj == NULL)
4580                 return true;
4581
4582         /* At first glance, this looks racy, but then again so would be
4583          * userspace racing mmap against close. However, the first external
4584          * reference to the filp can only be obtained through the
4585          * i915_gem_mmap_ioctl() which safeguards us against the user
4586          * acquiring such a reference whilst we are in the middle of
4587          * freeing the object.
4588          */
4589 #if 0
4590         return atomic_long_read(&obj->base.filp->f_count) == 1;
4591 #else
4592         return false;
4593 #endif
4594 }
4595
4596 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4597 {
4598         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4599         struct drm_device *dev = obj->base.dev;
4600         struct drm_i915_private *dev_priv = dev->dev_private;
4601         struct i915_vma *vma, *next;
4602
4603         intel_runtime_pm_get(dev_priv);
4604
4605         trace_i915_gem_object_destroy(obj);
4606
4607         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4608                 int ret;
4609
4610                 vma->pin_count = 0;
4611                 ret = i915_vma_unbind(vma);
4612                 if (WARN_ON(ret == -ERESTARTSYS)) {
4613                         bool was_interruptible;
4614
4615                         was_interruptible = dev_priv->mm.interruptible;
4616                         dev_priv->mm.interruptible = false;
4617
4618                         WARN_ON(i915_vma_unbind(vma));
4619
4620                         dev_priv->mm.interruptible = was_interruptible;
4621                 }
4622         }
4623
4624         i915_gem_object_detach_phys(obj);
4625
4626         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4627          * before progressing. */
4628         if (obj->stolen)
4629                 i915_gem_object_unpin_pages(obj);
4630
4631         WARN_ON(obj->frontbuffer_bits);
4632
4633         if (WARN_ON(obj->pages_pin_count))
4634                 obj->pages_pin_count = 0;
4635         if (discard_backing_storage(obj))
4636                 obj->madv = I915_MADV_DONTNEED;
4637         i915_gem_object_put_pages(obj);
4638         i915_gem_object_free_mmap_offset(obj);
4639
4640         BUG_ON(obj->pages);
4641
4642 #if 0
4643         if (obj->base.import_attach)
4644                 drm_prime_gem_destroy(&obj->base, NULL);
4645 #endif
4646
4647         if (obj->ops->release)
4648                 obj->ops->release(obj);
4649
4650         drm_gem_object_release(&obj->base);
4651         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4652
4653         kfree(obj->bit_17);
4654         i915_gem_object_free(obj);
4655
4656         intel_runtime_pm_put(dev_priv);
4657 }
4658
4659 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4660                                      struct i915_address_space *vm)
4661 {
4662         struct i915_vma *vma;
4663         list_for_each_entry(vma, &obj->vma_list, vma_link)
4664                 if (vma->vm == vm)
4665                         return vma;
4666
4667         return NULL;
4668 }
4669
4670 void i915_gem_vma_destroy(struct i915_vma *vma)
4671 {
4672         WARN_ON(vma->node.allocated);
4673
4674         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4675         if (!list_empty(&vma->exec_list))
4676                 return;
4677
4678         list_del(&vma->vma_link);
4679
4680         kfree(vma);
4681 }
4682
4683 static void
4684 i915_gem_stop_ringbuffers(struct drm_device *dev)
4685 {
4686         struct drm_i915_private *dev_priv = dev->dev_private;
4687         struct intel_engine_cs *ring;
4688         int i;
4689
4690         for_each_ring(ring, dev_priv, i)
4691                 intel_stop_ring_buffer(ring);
4692 }
4693
4694 int
4695 i915_gem_suspend(struct drm_device *dev)
4696 {
4697         struct drm_i915_private *dev_priv = dev->dev_private;
4698         int ret = 0;
4699
4700         mutex_lock(&dev->struct_mutex);
4701         if (dev_priv->ums.mm_suspended)
4702                 goto err;
4703
4704         ret = i915_gpu_idle(dev);
4705         if (ret)
4706                 goto err;
4707
4708         i915_gem_retire_requests(dev);
4709
4710         /* Under UMS, be paranoid and evict. */
4711         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4712                 i915_gem_evict_everything(dev);
4713
4714         i915_kernel_lost_context(dev);
4715         i915_gem_stop_ringbuffers(dev);
4716
4717         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4718          * We need to replace this with a semaphore, or something.
4719          * And not confound ums.mm_suspended!
4720          */
4721         dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4722                                                              DRIVER_MODESET);
4723         mutex_unlock(&dev->struct_mutex);
4724
4725         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4726         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4727 #if 0
4728         flush_delayed_work(&dev_priv->mm.idle_work);
4729 #endif
4730
4731         return 0;
4732
4733 err:
4734         mutex_unlock(&dev->struct_mutex);
4735         return ret;
4736 }
4737
4738 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4739 {
4740         struct drm_device *dev = ring->dev;
4741         struct drm_i915_private *dev_priv = dev->dev_private;
4742         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4743         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4744         int i, ret;
4745
4746         if (!HAS_L3_DPF(dev) || !remap_info)
4747                 return 0;
4748
4749         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4750         if (ret)
4751                 return ret;
4752
4753         /*
4754          * Note: We do not worry about the concurrent register cacheline hang
4755          * here because no other code should access these registers other than
4756          * at initialization time.
4757          */
4758         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4759                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4760                 intel_ring_emit(ring, reg_base + i);
4761                 intel_ring_emit(ring, remap_info[i/4]);
4762         }
4763
4764         intel_ring_advance(ring);
4765
4766         return ret;
4767 }
4768
4769 void i915_gem_init_swizzling(struct drm_device *dev)
4770 {
4771         struct drm_i915_private *dev_priv = dev->dev_private;
4772
4773         if (INTEL_INFO(dev)->gen < 5 ||
4774             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4775                 return;
4776
4777         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4778                                  DISP_TILE_SURFACE_SWIZZLING);
4779
4780         if (IS_GEN5(dev))
4781                 return;
4782
4783         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4784         if (IS_GEN6(dev))
4785                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4786         else if (IS_GEN7(dev))
4787                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4788         else if (IS_GEN8(dev))
4789                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4790         else
4791                 BUG();
4792 }
4793
4794 static bool
4795 intel_enable_blt(struct drm_device *dev)
4796 {
4797         int revision;
4798
4799         if (!HAS_BLT(dev))
4800                 return false;
4801
4802         /* The blitter was dysfunctional on early prototypes */
4803         revision = pci_read_config(dev->dev, PCIR_REVID, 1);
4804         if (IS_GEN6(dev) && revision < 8) {
4805                 DRM_INFO("BLT not supported on this pre-production hardware;"
4806                          " graphics performance will be degraded.\n");
4807                 return false;
4808         }
4809
4810         return true;
4811 }
4812
4813 static int i915_gem_init_rings(struct drm_device *dev)
4814 {
4815         struct drm_i915_private *dev_priv = dev->dev_private;
4816         int ret;
4817
4818         ret = intel_init_render_ring_buffer(dev);
4819         if (ret)
4820                 return ret;
4821
4822         if (HAS_BSD(dev)) {
4823                 ret = intel_init_bsd_ring_buffer(dev);
4824                 if (ret)
4825                         goto cleanup_render_ring;
4826         }
4827
4828         if (intel_enable_blt(dev)) {
4829                 ret = intel_init_blt_ring_buffer(dev);
4830                 if (ret)
4831                         goto cleanup_bsd_ring;
4832         }
4833
4834         if (HAS_VEBOX(dev)) {
4835                 ret = intel_init_vebox_ring_buffer(dev);
4836                 if (ret)
4837                         goto cleanup_blt_ring;
4838         }
4839
4840         if (HAS_BSD2(dev)) {
4841                 ret = intel_init_bsd2_ring_buffer(dev);
4842                 if (ret)
4843                         goto cleanup_vebox_ring;
4844         }
4845
4846         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4847         if (ret)
4848                 goto cleanup_bsd2_ring;
4849
4850         return 0;
4851
4852 cleanup_bsd2_ring:
4853         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4854 cleanup_vebox_ring:
4855         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4856 cleanup_blt_ring:
4857         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4858 cleanup_bsd_ring:
4859         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4860 cleanup_render_ring:
4861         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4862
4863         return ret;
4864 }
4865
4866 int
4867 i915_gem_init_hw(struct drm_device *dev)
4868 {
4869         struct drm_i915_private *dev_priv = dev->dev_private;
4870         int ret, i;
4871
4872 #if 0
4873         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4874                 return -EIO;
4875 #endif
4876
4877         if (dev_priv->ellc_size)
4878                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4879
4880         if (IS_HASWELL(dev))
4881                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4882                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4883
4884         if (HAS_PCH_NOP(dev)) {
4885                 if (IS_IVYBRIDGE(dev)) {
4886                         u32 temp = I915_READ(GEN7_MSG_CTL);
4887                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4888                         I915_WRITE(GEN7_MSG_CTL, temp);
4889                 } else if (INTEL_INFO(dev)->gen >= 7) {
4890                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4891                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4892                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4893                 }
4894         }
4895
4896         i915_gem_init_swizzling(dev);
4897
4898         ret = i915_gem_init_rings(dev);
4899         if (ret)
4900                 return ret;
4901
4902         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4903                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4904
4905         /*
4906          * XXX: Contexts should only be initialized once. Doing a switch to the
4907          * default context switch however is something we'd like to do after
4908          * reset or thaw (the latter may not actually be necessary for HW, but
4909          * goes with our code better). Context switching requires rings (for
4910          * the do_switch), but before enabling PPGTT. So don't move this.
4911          */
4912         ret = i915_gem_context_enable(dev_priv);
4913         if (ret && ret != -EIO) {
4914                 DRM_ERROR("Context enable failed %d\n", ret);
4915                 i915_gem_cleanup_ringbuffer(dev);
4916         }
4917
4918         return ret;
4919 }
4920
4921 int i915_gem_init(struct drm_device *dev)
4922 {
4923         struct drm_i915_private *dev_priv = dev->dev_private;
4924         int ret;
4925
4926         mutex_lock(&dev->struct_mutex);
4927
4928         if (IS_VALLEYVIEW(dev)) {
4929                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4930                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4931                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4932                               VLV_GTLC_ALLOWWAKEACK), 10))
4933                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4934         }
4935
4936         i915_gem_init_userptr(dev);
4937         i915_gem_init_global_gtt(dev);
4938
4939         ret = i915_gem_context_init(dev);
4940         if (ret) {
4941                 mutex_unlock(&dev->struct_mutex);
4942                 return ret;
4943         }
4944
4945         ret = i915_gem_init_hw(dev);
4946         if (ret == -EIO) {
4947                 /* Allow ring initialisation to fail by marking the GPU as
4948                  * wedged. But we only want to do this where the GPU is angry,
4949                  * for all other failure, such as an allocation failure, bail.
4950                  */
4951                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4952                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4953                 ret = 0;
4954         }
4955         mutex_unlock(&dev->struct_mutex);
4956
4957         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4958         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4959                 dev_priv->dri1.allow_batchbuffer = 1;
4960         return ret;
4961 }
4962
4963 void
4964 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4965 {
4966         struct drm_i915_private *dev_priv = dev->dev_private;
4967         struct intel_engine_cs *ring;
4968         int i;
4969
4970         for_each_ring(ring, dev_priv, i)
4971                 intel_cleanup_ring_buffer(ring);
4972 }
4973
4974 int
4975 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4976                        struct drm_file *file_priv)
4977 {
4978         struct drm_i915_private *dev_priv = dev->dev_private;
4979         int ret;
4980
4981         if (drm_core_check_feature(dev, DRIVER_MODESET))
4982                 return 0;
4983
4984         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4985                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4986                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4987         }
4988
4989         mutex_lock(&dev->struct_mutex);
4990         dev_priv->ums.mm_suspended = 0;
4991
4992         ret = i915_gem_init_hw(dev);
4993         if (ret != 0) {
4994                 mutex_unlock(&dev->struct_mutex);
4995                 return ret;
4996         }
4997
4998         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4999
5000         ret = drm_irq_install(dev, dev->irq);
5001         if (ret)
5002                 goto cleanup_ringbuffer;
5003         mutex_unlock(&dev->struct_mutex);
5004
5005         return 0;
5006
5007 cleanup_ringbuffer:
5008         i915_gem_cleanup_ringbuffer(dev);
5009         dev_priv->ums.mm_suspended = 1;
5010         mutex_unlock(&dev->struct_mutex);
5011
5012         return ret;
5013 }
5014
5015 int
5016 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
5017                        struct drm_file *file_priv)
5018 {
5019         if (drm_core_check_feature(dev, DRIVER_MODESET))
5020                 return 0;
5021
5022         mutex_lock(&dev->struct_mutex);
5023         drm_irq_uninstall(dev);
5024         mutex_unlock(&dev->struct_mutex);
5025
5026         return i915_gem_suspend(dev);
5027 }
5028
5029 void
5030 i915_gem_lastclose(struct drm_device *dev)
5031 {
5032         int ret;
5033
5034         if (drm_core_check_feature(dev, DRIVER_MODESET))
5035                 return;
5036
5037         ret = i915_gem_suspend(dev);
5038         if (ret)
5039                 DRM_ERROR("failed to idle hardware: %d\n", ret);
5040 }
5041
5042 static void
5043 init_ring_lists(struct intel_engine_cs *ring)
5044 {
5045         INIT_LIST_HEAD(&ring->active_list);
5046         INIT_LIST_HEAD(&ring->request_list);
5047 }
5048
5049 void i915_init_vm(struct drm_i915_private *dev_priv,
5050                   struct i915_address_space *vm)
5051 {
5052         if (!i915_is_ggtt(vm))
5053                 drm_mm_init(&vm->mm, vm->start, vm->total);
5054         vm->dev = dev_priv->dev;
5055         INIT_LIST_HEAD(&vm->active_list);
5056         INIT_LIST_HEAD(&vm->inactive_list);
5057         INIT_LIST_HEAD(&vm->global_link);
5058         list_add_tail(&vm->global_link, &dev_priv->vm_list);
5059 }
5060
5061 void
5062 i915_gem_load(struct drm_device *dev)
5063 {
5064         struct drm_i915_private *dev_priv = dev->dev_private;
5065         int i;
5066
5067         INIT_LIST_HEAD(&dev_priv->vm_list);
5068         i915_init_vm(dev_priv, &dev_priv->gtt.base);
5069
5070         INIT_LIST_HEAD(&dev_priv->context_list);
5071         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5072         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5073         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5074         for (i = 0; i < I915_NUM_RINGS; i++)
5075                 init_ring_lists(&dev_priv->ring[i]);
5076         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5077                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5078         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5079                           i915_gem_retire_work_handler);
5080         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5081                           i915_gem_idle_work_handler);
5082         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5083
5084         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5085         if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
5086                 I915_WRITE(MI_ARB_STATE,
5087                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5088         }
5089
5090         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5091
5092         /* Old X drivers will take 0-2 for front, back, depth buffers */
5093         if (!drm_core_check_feature(dev, DRIVER_MODESET))
5094                 dev_priv->fence_reg_start = 3;
5095
5096         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5097                 dev_priv->num_fence_regs = 32;
5098         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5099                 dev_priv->num_fence_regs = 16;
5100         else
5101                 dev_priv->num_fence_regs = 8;
5102
5103         /* Initialize fence registers to zero */
5104         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5105         i915_gem_restore_fences(dev);
5106
5107         i915_gem_detect_bit_6_swizzle(dev);
5108         init_waitqueue_head(&dev_priv->pending_flip_queue);
5109
5110         dev_priv->mm.interruptible = true;
5111
5112 #if 0
5113         dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5114         dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5115         dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5116         register_shrinker(&dev_priv->mm.shrinker);
5117
5118         dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5119         register_oom_notifier(&dev_priv->mm.oom_notifier);
5120 #endif
5121
5122         lockinit(&dev_priv->fb_tracking.lock, "drmftl", 0, LK_CANRECURSE);
5123 }
5124
5125 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5126 {
5127         struct drm_i915_file_private *file_priv = file->driver_priv;
5128
5129         cancel_delayed_work_sync(&file_priv->mm.idle_work);
5130
5131         /* Clean up our request list when the client is going away, so that
5132          * later retire_requests won't dereference our soon-to-be-gone
5133          * file_priv.
5134          */
5135         spin_lock(&file_priv->mm.lock);
5136         while (!list_empty(&file_priv->mm.request_list)) {
5137                 struct drm_i915_gem_request *request;
5138
5139                 request = list_first_entry(&file_priv->mm.request_list,
5140                                            struct drm_i915_gem_request,
5141                                            client_list);
5142                 list_del(&request->client_list);
5143                 request->file_priv = NULL;
5144         }
5145         spin_unlock(&file_priv->mm.lock);
5146 }
5147
5148 int
5149 i915_gem_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
5150     vm_ooffset_t foff, struct ucred *cred, u_short *color)
5151 {
5152         *color = 0; /* XXXKIB */
5153         return (0);
5154 }
5155
5156 void
5157 i915_gem_pager_dtor(void *handle)
5158 {
5159         struct drm_gem_object *obj;
5160         struct drm_device *dev;
5161
5162         obj = handle;
5163         dev = obj->dev;
5164
5165         mutex_lock(&dev->struct_mutex);
5166         drm_gem_free_mmap_offset(obj);
5167         i915_gem_release_mmap(to_intel_bo(obj));
5168         drm_gem_object_unreference(obj);
5169         mutex_unlock(&dev->struct_mutex);
5170 }
5171
5172 static void
5173 i915_gem_file_idle_work_handler(struct work_struct *work)
5174 {
5175         struct drm_i915_file_private *file_priv =
5176                 container_of(work, typeof(*file_priv), mm.idle_work.work);
5177
5178         atomic_set(&file_priv->rps_wait_boost, false);
5179 }
5180
5181 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5182 {
5183         struct drm_i915_file_private *file_priv;
5184         int ret;
5185
5186         DRM_DEBUG_DRIVER("\n");
5187
5188         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5189         if (!file_priv)
5190                 return -ENOMEM;
5191
5192         file->driver_priv = file_priv;
5193         file_priv->dev_priv = dev->dev_private;
5194         file_priv->file = file;
5195
5196         spin_init(&file_priv->mm.lock, "i915_priv");
5197         INIT_LIST_HEAD(&file_priv->mm.request_list);
5198         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5199                           i915_gem_file_idle_work_handler);
5200
5201         ret = i915_gem_context_open(dev, file);
5202         if (ret)
5203                 kfree(file_priv);
5204
5205         return ret;
5206 }
5207
5208 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5209                        struct drm_i915_gem_object *new,
5210                        unsigned frontbuffer_bits)
5211 {
5212         if (old) {
5213                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5214                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5215                 old->frontbuffer_bits &= ~frontbuffer_bits;
5216         }
5217
5218         if (new) {
5219                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5220                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5221                 new->frontbuffer_bits |= frontbuffer_bits;
5222         }
5223 }
5224
5225 #if 0
5226 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5227 {
5228         if (!mutex_is_locked(mutex))
5229                 return false;
5230
5231 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5232         return mutex->owner == task;
5233 #else
5234         /* Since UP may be pre-empted, we cannot assume that we own the lock */
5235         return false;
5236 #endif
5237 }
5238 #endif
5239
5240 #if 0
5241 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5242 {
5243         if (!mutex_trylock(&dev->struct_mutex)) {
5244                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5245                         return false;
5246
5247                 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5248                         return false;
5249
5250                 *unlock = false;
5251         } else
5252                 *unlock = true;
5253
5254         return true;
5255 }
5256
5257 static int num_vma_bound(struct drm_i915_gem_object *obj)
5258 {
5259         struct i915_vma *vma;
5260         int count = 0;
5261
5262         list_for_each_entry(vma, &obj->vma_list, vma_link)
5263                 if (drm_mm_node_allocated(&vma->node))
5264                         count++;
5265
5266         return count;
5267 }
5268
5269 static unsigned long
5270 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
5271 {
5272         struct drm_i915_private *dev_priv =
5273                 container_of(shrinker,
5274                              struct drm_i915_private,
5275                              mm.inactive_shrinker);
5276         struct drm_device *dev = dev_priv->dev;
5277         struct drm_i915_gem_object *obj;
5278         unsigned long count;
5279         bool unlock;
5280
5281         if (!i915_gem_shrinker_lock(dev, &unlock))
5282                 return 0;
5283
5284         count = 0;
5285         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5286                 if (obj->pages_pin_count == 0)
5287                         count += obj->base.size >> PAGE_SHIFT;
5288
5289         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5290                 if (!i915_gem_obj_is_pinned(obj) &&
5291                     obj->pages_pin_count == num_vma_bound(obj))
5292                         count += obj->base.size >> PAGE_SHIFT;
5293         }
5294
5295         if (unlock)
5296                 mutex_unlock(&dev->struct_mutex);
5297
5298         return count;
5299 }
5300 #endif
5301
5302 /* All the new VM stuff */
5303 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5304                                   struct i915_address_space *vm)
5305 {
5306         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5307         struct i915_vma *vma;
5308
5309         if (!dev_priv->mm.aliasing_ppgtt ||
5310             vm == &dev_priv->mm.aliasing_ppgtt->base)
5311                 vm = &dev_priv->gtt.base;
5312
5313         list_for_each_entry(vma, &o->vma_list, vma_link) {
5314                 if (vma->vm == vm)
5315                         return vma->node.start;
5316
5317         }
5318         WARN(1, "%s vma for this object not found.\n",
5319              i915_is_ggtt(vm) ? "global" : "ppgtt");
5320         return -1;
5321 }
5322
5323 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5324                         struct i915_address_space *vm)
5325 {
5326         struct i915_vma *vma;
5327
5328         list_for_each_entry(vma, &o->vma_list, vma_link)
5329                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5330                         return true;
5331
5332         return false;
5333 }
5334
5335 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5336 {
5337         struct i915_vma *vma;
5338
5339         list_for_each_entry(vma, &o->vma_list, vma_link)
5340                 if (drm_mm_node_allocated(&vma->node))
5341                         return true;
5342
5343         return false;
5344 }
5345
5346 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5347                                 struct i915_address_space *vm)
5348 {
5349         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5350         struct i915_vma *vma;
5351
5352         if (!dev_priv->mm.aliasing_ppgtt ||
5353             vm == &dev_priv->mm.aliasing_ppgtt->base)
5354                 vm = &dev_priv->gtt.base;
5355
5356         BUG_ON(list_empty(&o->vma_list));
5357
5358         list_for_each_entry(vma, &o->vma_list, vma_link)
5359                 if (vma->vm == vm)
5360                         return vma->node.size;
5361
5362         return 0;
5363 }
5364
5365 #if 0
5366 static unsigned long
5367 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5368 {
5369         struct drm_i915_private *dev_priv =
5370                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5371         struct drm_device *dev = dev_priv->dev;
5372         unsigned long freed;
5373         bool unlock;
5374
5375         if (!i915_gem_shrinker_lock(dev, &unlock))
5376                 return SHRINK_STOP;
5377
5378         freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5379         if (freed < sc->nr_to_scan)
5380                 freed += __i915_gem_shrink(dev_priv,
5381                                            sc->nr_to_scan - freed,
5382                                            false);
5383         if (freed < sc->nr_to_scan)
5384                 freed += i915_gem_shrink_all(dev_priv);
5385
5386         if (unlock)
5387                 mutex_unlock(&dev->struct_mutex);
5388
5389         return freed;
5390 }
5391 #endif
5392
5393 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5394 {
5395         struct i915_vma *vma;
5396
5397         /* This WARN has probably outlived its usefulness (callers already
5398          * WARN if they don't find the GGTT vma they expect). When removing,
5399          * remember to remove the pre-check in is_pin_display() as well */
5400         if (WARN_ON(list_empty(&obj->vma_list)))
5401                 return NULL;
5402
5403         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5404         if (vma->vm != obj_to_ggtt(obj))
5405                 return NULL;
5406
5407         return vma;
5408 }