Merge branch 'vendor/GCC50'
[dragonfly.git] / sys / vfs / hammer2 / hammer2_chain.c
1 /*
2  * Copyright (c) 2011-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * and Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  * This subsystem implements most of the core support functions for
37  * the hammer2_chain structure.
38  *
39  * Chains are the in-memory version on media objects (volume header, inodes,
40  * indirect blocks, data blocks, etc).  Chains represent a portion of the
41  * HAMMER2 topology.
42  *
43  * Chains are no-longer delete-duplicated.  Instead, the original in-memory
44  * chain will be moved along with its block reference (e.g. for things like
45  * renames, hardlink operations, modifications, etc), and will be indexed
46  * on a secondary list for flush handling instead of propagating a flag
47  * upward to the root.
48  *
49  * Concurrent front-end operations can still run against backend flushes
50  * as long as they do not cross the current flush boundary.  An operation
51  * running above the current flush (in areas not yet flushed) can become
52  * part of the current flush while ano peration running below the current
53  * flush can become part of the next flush.
54  */
55 #include <sys/cdefs.h>
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/types.h>
59 #include <sys/lock.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/uuid.h>
62
63 #include <crypto/sha2/sha2.h>
64
65 #include "hammer2.h"
66
67 static int hammer2_indirect_optimize;   /* XXX SYSCTL */
68
69 static hammer2_chain_t *hammer2_chain_create_indirect(
70                 hammer2_trans_t *trans, hammer2_chain_t *parent,
71                 hammer2_key_t key, int keybits, int for_type, int *errorp);
72 static void hammer2_chain_drop_data(hammer2_chain_t *chain, int lastdrop);
73 static hammer2_chain_t *hammer2_combined_find(
74                 hammer2_chain_t *parent,
75                 hammer2_blockref_t *base, int count,
76                 int *cache_indexp, hammer2_key_t *key_nextp,
77                 hammer2_key_t key_beg, hammer2_key_t key_end,
78                 hammer2_blockref_t **bresp);
79
80 /*
81  * Basic RBTree for chains (core->rbtree and core->dbtree).  Chains cannot
82  * overlap in the RB trees.  Deleted chains are moved from rbtree to either
83  * dbtree or to dbq.
84  *
85  * Chains in delete-duplicate sequences can always iterate through core_entry
86  * to locate the live version of the chain.
87  */
88 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
89
90 int
91 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
92 {
93         hammer2_key_t c1_beg;
94         hammer2_key_t c1_end;
95         hammer2_key_t c2_beg;
96         hammer2_key_t c2_end;
97
98         /*
99          * Compare chains.  Overlaps are not supposed to happen and catch
100          * any software issues early we count overlaps as a match.
101          */
102         c1_beg = chain1->bref.key;
103         c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
104         c2_beg = chain2->bref.key;
105         c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
106
107         if (c1_end < c2_beg)    /* fully to the left */
108                 return(-1);
109         if (c1_beg > c2_end)    /* fully to the right */
110                 return(1);
111         return(0);              /* overlap (must not cross edge boundary) */
112 }
113
114 static __inline
115 int
116 hammer2_isclusterable(hammer2_chain_t *chain)
117 {
118         if (hammer2_cluster_enable) {
119                 if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
120                     chain->bref.type == HAMMER2_BREF_TYPE_INODE ||
121                     chain->bref.type == HAMMER2_BREF_TYPE_DATA) {
122                         return(1);
123                 }
124         }
125         return(0);
126 }
127
128 /*
129  * Make a chain visible to the flusher.  The flusher needs to be able to
130  * do flushes of a subdirectory chains or single files so it does a top-down
131  * recursion using the ONFLUSH flag for the recursion.  It locates MODIFIED
132  * or UPDATE chains and flushes back up the chain to the root.
133  */
134 void
135 hammer2_chain_setflush(hammer2_trans_t *trans, hammer2_chain_t *chain)
136 {
137         hammer2_chain_t *parent;
138
139         if ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
140                 hammer2_spin_sh(&chain->core.spin);
141                 while ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
142                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
143                         if ((parent = chain->parent) == NULL)
144                                 break;
145                         hammer2_spin_sh(&parent->core.spin);
146                         hammer2_spin_unsh(&chain->core.spin);
147                         chain = parent;
148                 }
149                 hammer2_spin_unsh(&chain->core.spin);
150         }
151 }
152
153 /*
154  * Allocate a new disconnected chain element representing the specified
155  * bref.  chain->refs is set to 1 and the passed bref is copied to
156  * chain->bref.  chain->bytes is derived from the bref.
157  *
158  * chain->pmp inherits pmp unless the chain is an inode (other than the
159  * super-root inode).
160  *
161  * NOTE: Returns a referenced but unlocked (because there is no core) chain.
162  */
163 hammer2_chain_t *
164 hammer2_chain_alloc(hammer2_dev_t *hmp, hammer2_pfs_t *pmp,
165                     hammer2_trans_t *trans, hammer2_blockref_t *bref)
166 {
167         hammer2_chain_t *chain;
168         u_int bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
169
170         /*
171          * Construct the appropriate system structure.
172          */
173         switch(bref->type) {
174         case HAMMER2_BREF_TYPE_INODE:
175         case HAMMER2_BREF_TYPE_INDIRECT:
176         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
177         case HAMMER2_BREF_TYPE_DATA:
178         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
179                 /*
180                  * Chain's are really only associated with the hmp but we
181                  * maintain a pmp association for per-mount memory tracking
182                  * purposes.  The pmp can be NULL.
183                  */
184                 chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
185                 break;
186         case HAMMER2_BREF_TYPE_VOLUME:
187         case HAMMER2_BREF_TYPE_FREEMAP:
188                 chain = NULL;
189                 panic("hammer2_chain_alloc volume type illegal for op");
190         default:
191                 chain = NULL;
192                 panic("hammer2_chain_alloc: unrecognized blockref type: %d",
193                       bref->type);
194         }
195
196         /*
197          * Initialize the new chain structure.  pmp must be set to NULL for
198          * chains belonging to the super-root topology of a device mount.
199          */
200         if (pmp == hmp->spmp)
201                 chain->pmp = NULL;
202         else
203                 chain->pmp = pmp;
204         chain->hmp = hmp;
205         chain->bref = *bref;
206         chain->bytes = bytes;
207         chain->refs = 1;
208         chain->flags = HAMMER2_CHAIN_ALLOCATED;
209
210         /*
211          * Set the PFS boundary flag if this chain represents a PFS root.
212          */
213         if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
214                 chain->flags |= HAMMER2_CHAIN_PFSBOUNDARY;
215         hammer2_chain_core_init(chain);
216
217         return (chain);
218 }
219
220 /*
221  * Initialize a chain's core structure.  This structure used to be allocated
222  * but is now embedded.
223  *
224  * The core is not locked.  No additional refs on the chain are made.
225  * (trans) must not be NULL if (core) is not NULL.
226  */
227 void
228 hammer2_chain_core_init(hammer2_chain_t *chain)
229 {
230         hammer2_chain_core_t *core = &chain->core;
231
232         /*
233          * Fresh core under nchain (no multi-homing of ochain's
234          * sub-tree).
235          */
236         RB_INIT(&core->rbtree); /* live chains */
237         hammer2_mtx_init(&core->lock, "h2chain");
238 }
239
240 /*
241  * Add a reference to a chain element, preventing its destruction.
242  *
243  * (can be called with spinlock held)
244  */
245 void
246 hammer2_chain_ref(hammer2_chain_t *chain)
247 {
248         atomic_add_int(&chain->refs, 1);
249 }
250
251 /*
252  * Insert the chain in the core rbtree.
253  *
254  * Normal insertions are placed in the live rbtree.  Insertion of a deleted
255  * chain is a special case used by the flush code that is placed on the
256  * unstaged deleted list to avoid confusing the live view.
257  */
258 #define HAMMER2_CHAIN_INSERT_SPIN       0x0001
259 #define HAMMER2_CHAIN_INSERT_LIVE       0x0002
260 #define HAMMER2_CHAIN_INSERT_RACE       0x0004
261
262 static
263 int
264 hammer2_chain_insert(hammer2_chain_t *parent, hammer2_chain_t *chain,
265                      int flags, int generation)
266 {
267         hammer2_chain_t *xchain;
268         int error = 0;
269
270         if (flags & HAMMER2_CHAIN_INSERT_SPIN)
271                 hammer2_spin_ex(&parent->core.spin);
272
273         /*
274          * Interlocked by spinlock, check for race
275          */
276         if ((flags & HAMMER2_CHAIN_INSERT_RACE) &&
277             parent->core.generation != generation) {
278                 error = EAGAIN;
279                 goto failed;
280         }
281
282         /*
283          * Insert chain
284          */
285         xchain = RB_INSERT(hammer2_chain_tree, &parent->core.rbtree, chain);
286         KASSERT(xchain == NULL,
287                 ("hammer2_chain_insert: collision %p %p", chain, xchain));
288         atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
289         chain->parent = parent;
290         ++parent->core.chain_count;
291         ++parent->core.generation;      /* XXX incs for _get() too, XXX */
292
293         /*
294          * We have to keep track of the effective live-view blockref count
295          * so the create code knows when to push an indirect block.
296          */
297         if (flags & HAMMER2_CHAIN_INSERT_LIVE)
298                 atomic_add_int(&parent->core.live_count, 1);
299 failed:
300         if (flags & HAMMER2_CHAIN_INSERT_SPIN)
301                 hammer2_spin_unex(&parent->core.spin);
302         return error;
303 }
304
305 /*
306  * Drop the caller's reference to the chain.  When the ref count drops to
307  * zero this function will try to disassociate the chain from its parent and
308  * deallocate it, then recursely drop the parent using the implied ref
309  * from the chain's chain->parent.
310  */
311 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain);
312
313 void
314 hammer2_chain_drop(hammer2_chain_t *chain)
315 {
316         u_int refs;
317         u_int need = 0;
318
319         if (hammer2_debug & 0x200000)
320                 Debugger("drop");
321
322         if (chain->flags & HAMMER2_CHAIN_UPDATE)
323                 ++need;
324         if (chain->flags & HAMMER2_CHAIN_MODIFIED)
325                 ++need;
326         KKASSERT(chain->refs > need);
327
328         while (chain) {
329                 refs = chain->refs;
330                 cpu_ccfence();
331                 KKASSERT(refs > 0);
332
333                 if (refs == 1) {
334                         chain = hammer2_chain_lastdrop(chain);
335                 } else {
336                         if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
337                                 break;
338                         /* retry the same chain */
339                 }
340         }
341 }
342
343 /*
344  * Safe handling of the 1->0 transition on chain.  Returns a chain for
345  * recursive drop or NULL, possibly returning the same chain if the atomic
346  * op fails.
347  *
348  * Whem two chains need to be recursively dropped we use the chain
349  * we would otherwise free to placehold the additional chain.  It's a bit
350  * convoluted but we can't just recurse without potentially blowing out
351  * the kernel stack.
352  *
353  * The chain cannot be freed if it has any children.
354  *
355  * The core spinlock is allowed nest child-to-parent (not parent-to-child).
356  */
357 static
358 hammer2_chain_t *
359 hammer2_chain_lastdrop(hammer2_chain_t *chain)
360 {
361         hammer2_pfs_t *pmp;
362         hammer2_dev_t *hmp;
363         hammer2_chain_t *parent;
364         hammer2_chain_t *rdrop;
365
366         /*
367          * Spinlock the core and check to see if it is empty.  If it is
368          * not empty we leave chain intact with refs == 0.  The elements
369          * in core->rbtree are associated with other chains contemporary
370          * with ours but not with our chain directly.
371          */
372         hammer2_spin_ex(&chain->core.spin);
373
374         /*
375          * We can't free non-stale chains with children until we are
376          * able to free the children because there might be a flush
377          * dependency.  Flushes of stale children (which should also
378          * have their deleted flag set) short-cut recursive flush
379          * dependencies and can be freed here.  Any flushes which run
380          * through stale children due to the flush synchronization
381          * point should have a FLUSH_* bit set in the chain and not
382          * reach lastdrop at this time.
383          *
384          * NOTE: We return (chain) on failure to retry.
385          */
386         if (chain->core.chain_count) {
387                 if (atomic_cmpset_int(&chain->refs, 1, 0)) {
388                         hammer2_spin_unex(&chain->core.spin);
389                         chain = NULL;   /* success */
390                 } else {
391                         hammer2_spin_unex(&chain->core.spin);
392                 }
393                 return(chain);
394         }
395         /* no chains left under us */
396
397         /*
398          * chain->core has no children left so no accessors can get to our
399          * chain from there.  Now we have to lock the parent core to interlock
400          * remaining possible accessors that might bump chain's refs before
401          * we can safely drop chain's refs with intent to free the chain.
402          */
403         hmp = chain->hmp;
404         pmp = chain->pmp;       /* can be NULL */
405         rdrop = NULL;
406
407         /*
408          * Spinlock the parent and try to drop the last ref on chain.
409          * On success remove chain from its parent, otherwise return NULL.
410          *
411          * (normal core locks are top-down recursive but we define core
412          *  spinlocks as bottom-up recursive, so this is safe).
413          */
414         if ((parent = chain->parent) != NULL) {
415                 hammer2_spin_ex(&parent->core.spin);
416                 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
417                         /* 1->0 transition failed */
418                         hammer2_spin_unex(&parent->core.spin);
419                         hammer2_spin_unex(&chain->core.spin);
420                         return(chain);  /* retry */
421                 }
422
423                 /*
424                  * 1->0 transition successful, remove chain from its
425                  * above core.
426                  */
427                 if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
428                         RB_REMOVE(hammer2_chain_tree,
429                                   &parent->core.rbtree, chain);
430                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
431                         --parent->core.chain_count;
432                         chain->parent = NULL;
433                 }
434
435                 /*
436                  * If our chain was the last chain in the parent's core the
437                  * core is now empty and its parent might have to be
438                  * re-dropped if it has 0 refs.
439                  */
440                 if (parent->core.chain_count == 0) {
441                         rdrop = parent;
442                         if (atomic_cmpset_int(&rdrop->refs, 0, 1) == 0) {
443                                 rdrop = NULL;
444                         }
445                 }
446                 hammer2_spin_unex(&parent->core.spin);
447                 parent = NULL;  /* safety */
448         }
449
450         /*
451          * Successful 1->0 transition and the chain can be destroyed now.
452          *
453          * We still have the core spinlock, and core's chain_count is 0.
454          * Any parent spinlock is gone.
455          */
456         hammer2_spin_unex(&chain->core.spin);
457         KKASSERT(RB_EMPTY(&chain->core.rbtree) &&
458                  chain->core.chain_count == 0);
459
460         /*
461          * All spin locks are gone, finish freeing stuff.
462          */
463         KKASSERT((chain->flags & (HAMMER2_CHAIN_UPDATE |
464                                   HAMMER2_CHAIN_MODIFIED)) == 0);
465         hammer2_chain_drop_data(chain, 1);
466
467         KKASSERT(chain->dio == NULL);
468
469         /*
470          * Once chain resources are gone we can use the now dead chain
471          * structure to placehold what might otherwise require a recursive
472          * drop, because we have potentially two things to drop and can only
473          * return one directly.
474          */
475         if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
476                 chain->flags &= ~HAMMER2_CHAIN_ALLOCATED;
477                 chain->hmp = NULL;
478                 kfree(chain, hmp->mchain);
479         }
480
481         /*
482          * Possible chaining loop when parent re-drop needed.
483          */
484         return(rdrop);
485 }
486
487 /*
488  * On either last lock release or last drop
489  */
490 static void
491 hammer2_chain_drop_data(hammer2_chain_t *chain, int lastdrop)
492 {
493         /*hammer2_dev_t *hmp = chain->hmp;*/
494
495         switch(chain->bref.type) {
496         case HAMMER2_BREF_TYPE_VOLUME:
497         case HAMMER2_BREF_TYPE_FREEMAP:
498                 if (lastdrop)
499                         chain->data = NULL;
500                 break;
501         default:
502                 KKASSERT(chain->data == NULL);
503                 break;
504         }
505 }
506
507 /*
508  * Lock a referenced chain element, acquiring its data with I/O if necessary,
509  * and specify how you would like the data to be resolved.
510  *
511  * If an I/O or other fatal error occurs, chain->error will be set to non-zero.
512  *
513  * The lock is allowed to recurse, multiple locking ops will aggregate
514  * the requested resolve types.  Once data is assigned it will not be
515  * removed until the last unlock.
516  *
517  * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
518  *                         (typically used to avoid device/logical buffer
519  *                          aliasing for data)
520  *
521  * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
522  *                         the INITIAL-create state (indirect blocks only).
523  *
524  *                         Do not resolve data elements for DATA chains.
525  *                         (typically used to avoid device/logical buffer
526  *                          aliasing for data)
527  *
528  * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
529  *
530  * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
531  *                         it will be locked exclusive.
532  *
533  * NOTE: Embedded elements (volume header, inodes) are always resolved
534  *       regardless.
535  *
536  * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
537  *       element will instantiate and zero its buffer, and flush it on
538  *       release.
539  *
540  * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
541  *       so as not to instantiate a device buffer, which could alias against
542  *       a logical file buffer.  However, if ALWAYS is specified the
543  *       device buffer will be instantiated anyway.
544  *
545  * WARNING! If data must be fetched a shared lock will temporarily be
546  *          upgraded to exclusive.  However, a deadlock can occur if
547  *          the caller owns more than one shared lock.
548  */
549 void
550 hammer2_chain_lock(hammer2_chain_t *chain, int how)
551 {
552         hammer2_dev_t *hmp;
553         hammer2_blockref_t *bref;
554         hammer2_mtx_state_t ostate;
555         char *bdata;
556         int error;
557
558         /*
559          * Ref and lock the element.  Recursive locks are allowed.
560          */
561         KKASSERT(chain->refs > 0);
562         atomic_add_int(&chain->lockcnt, 1);
563
564         hmp = chain->hmp;
565         KKASSERT(hmp != NULL);
566
567         /*
568          * Get the appropriate lock.
569          */
570         if (how & HAMMER2_RESOLVE_SHARED)
571                 hammer2_mtx_sh(&chain->core.lock);
572         else
573                 hammer2_mtx_ex(&chain->core.lock);
574
575         /*
576          * If we already have a valid data pointer no further action is
577          * necessary.
578          */
579         if (chain->data)
580                 return;
581
582         /*
583          * Do we have to resolve the data?
584          */
585         switch(how & HAMMER2_RESOLVE_MASK) {
586         case HAMMER2_RESOLVE_NEVER:
587                 return;
588         case HAMMER2_RESOLVE_MAYBE:
589                 if (chain->flags & HAMMER2_CHAIN_INITIAL)
590                         return;
591                 if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
592                         return;
593 #if 0
594                 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
595                         return;
596                 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
597                         return;
598 #endif
599                 /* fall through */
600         case HAMMER2_RESOLVE_ALWAYS:
601                 break;
602         }
603
604         /*
605          * Upgrade to an exclusive lock so we can safely manipulate the
606          * buffer cache.  If another thread got to it before us we
607          * can just return.
608          */
609         ostate = hammer2_mtx_upgrade(&chain->core.lock);
610         if (chain->data) {
611                 hammer2_mtx_downgrade(&chain->core.lock, ostate);
612                 return;
613         }
614
615         /*
616          * We must resolve to a device buffer, either by issuing I/O or
617          * by creating a zero-fill element.  We do not mark the buffer
618          * dirty when creating a zero-fill element (the hammer2_chain_modify()
619          * API must still be used to do that).
620          *
621          * The device buffer is variable-sized in powers of 2 down
622          * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
623          * chunk always contains buffers of the same size. (XXX)
624          *
625          * The minimum physical IO size may be larger than the variable
626          * block size.
627          */
628         bref = &chain->bref;
629
630         /*
631          * The getblk() optimization can only be used on newly created
632          * elements if the physical block size matches the request.
633          */
634         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
635                 error = hammer2_io_new(hmp, bref->data_off, chain->bytes,
636                                         &chain->dio);
637         } else {
638                 error = hammer2_io_bread(hmp, bref->data_off, chain->bytes,
639                                          &chain->dio);
640                 hammer2_adjreadcounter(&chain->bref, chain->bytes);
641         }
642         if (error) {
643                 chain->error = HAMMER2_ERROR_IO;
644                 kprintf("hammer2_chain_lock: I/O error %016jx: %d\n",
645                         (intmax_t)bref->data_off, error);
646                 hammer2_io_bqrelse(&chain->dio);
647                 hammer2_mtx_downgrade(&chain->core.lock, ostate);
648                 return;
649         }
650         chain->error = 0;
651
652         /*
653          * NOTE: A locked chain's data cannot be modified without first
654          *       calling hammer2_chain_modify().
655          */
656
657         /*
658          * Clear INITIAL.  In this case we used io_new() and the buffer has
659          * been zero'd and marked dirty.
660          */
661         bdata = hammer2_io_data(chain->dio, chain->bref.data_off);
662         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
663                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
664                 chain->bref.flags |= HAMMER2_BREF_FLAG_ZERO;
665         } else if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
666                 /*
667                  * check data not currently synchronized due to
668                  * modification.  XXX assumes data stays in the buffer
669                  * cache, which might not be true (need biodep on flush
670                  * to calculate crc?  or simple crc?).
671                  */
672         } else {
673                 if (hammer2_chain_testcheck(chain, bdata) == 0) {
674                         kprintf("chain %016jx.%02x meth=%02x "
675                                 "CHECK FAIL %08x (flags=%08x)\n",
676                                 chain->bref.data_off,
677                                 chain->bref.type,
678                                 chain->bref.methods,
679                                 hammer2_icrc32(bdata, chain->bytes),
680                                 chain->flags);
681                         chain->error = HAMMER2_ERROR_CHECK;
682                 }
683         }
684
685         /*
686          * Setup the data pointer, either pointing it to an embedded data
687          * structure and copying the data from the buffer, or pointing it
688          * into the buffer.
689          *
690          * The buffer is not retained when copying to an embedded data
691          * structure in order to avoid potential deadlocks or recursions
692          * on the same physical buffer.
693          */
694         switch (bref->type) {
695         case HAMMER2_BREF_TYPE_VOLUME:
696         case HAMMER2_BREF_TYPE_FREEMAP:
697                 /*
698                  * Copy data from bp to embedded buffer
699                  */
700                 panic("hammer2_chain_lock: called on unresolved volume header");
701                 break;
702         case HAMMER2_BREF_TYPE_INODE:
703         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
704         case HAMMER2_BREF_TYPE_INDIRECT:
705         case HAMMER2_BREF_TYPE_DATA:
706         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
707         default:
708                 /*
709                  * Point data at the device buffer and leave dio intact.
710                  */
711                 chain->data = (void *)bdata;
712                 break;
713         }
714         hammer2_mtx_downgrade(&chain->core.lock, ostate);
715 }
716
717 /*
718  * Unlock and deref a chain element.
719  *
720  * On the last lock release any non-embedded data (chain->dio) will be
721  * retired.
722  */
723 void
724 hammer2_chain_unlock(hammer2_chain_t *chain)
725 {
726         hammer2_mtx_state_t ostate;
727         long *counterp;
728         u_int lockcnt;
729
730         /*
731          * If multiple locks are present (or being attempted) on this
732          * particular chain we can just unlock, drop refs, and return.
733          *
734          * Otherwise fall-through on the 1->0 transition.
735          */
736         for (;;) {
737                 lockcnt = chain->lockcnt;
738                 KKASSERT(lockcnt > 0);
739                 cpu_ccfence();
740                 if (lockcnt > 1) {
741                         if (atomic_cmpset_int(&chain->lockcnt,
742                                               lockcnt, lockcnt - 1)) {
743                                 hammer2_mtx_unlock(&chain->core.lock);
744                                 return;
745                         }
746                 } else {
747                         if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
748                                 break;
749                 }
750                 /* retry */
751         }
752
753         /*
754          * On the 1->0 transition we upgrade the core lock (if necessary)
755          * to exclusive for terminal processing.  If after upgrading we find
756          * that lockcnt is non-zero, another thread is racing us and will
757          * handle the unload for us later on, so just cleanup and return
758          * leaving the data/io intact
759          *
760          * Otherwise if lockcnt is still 0 it is possible for it to become
761          * non-zero and race, but since we hold the core->lock exclusively
762          * all that will happen is that the chain will be reloaded after we
763          * unload it.
764          */
765         ostate = hammer2_mtx_upgrade(&chain->core.lock);
766         if (chain->lockcnt) {
767                 hammer2_mtx_unlock(&chain->core.lock);
768                 return;
769         }
770
771         /*
772          * Shortcut the case if the data is embedded or not resolved.
773          *
774          * Do NOT NULL out chain->data (e.g. inode data), it might be
775          * dirty.
776          */
777         if (chain->dio == NULL) {
778                 if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0)
779                         hammer2_chain_drop_data(chain, 0);
780                 hammer2_mtx_unlock(&chain->core.lock);
781                 return;
782         }
783
784         /*
785          * Statistics
786          */
787         if (hammer2_io_isdirty(chain->dio) == 0) {
788                 ;
789         } else if (chain->flags & HAMMER2_CHAIN_IOFLUSH) {
790                 switch(chain->bref.type) {
791                 case HAMMER2_BREF_TYPE_DATA:
792                         counterp = &hammer2_ioa_file_write;
793                         break;
794                 case HAMMER2_BREF_TYPE_INODE:
795                         counterp = &hammer2_ioa_meta_write;
796                         break;
797                 case HAMMER2_BREF_TYPE_INDIRECT:
798                         counterp = &hammer2_ioa_indr_write;
799                         break;
800                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
801                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
802                         counterp = &hammer2_ioa_fmap_write;
803                         break;
804                 default:
805                         counterp = &hammer2_ioa_volu_write;
806                         break;
807                 }
808                 *counterp += chain->bytes;
809         } else {
810                 switch(chain->bref.type) {
811                 case HAMMER2_BREF_TYPE_DATA:
812                         counterp = &hammer2_iod_file_write;
813                         break;
814                 case HAMMER2_BREF_TYPE_INODE:
815                         counterp = &hammer2_iod_meta_write;
816                         break;
817                 case HAMMER2_BREF_TYPE_INDIRECT:
818                         counterp = &hammer2_iod_indr_write;
819                         break;
820                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
821                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
822                         counterp = &hammer2_iod_fmap_write;
823                         break;
824                 default:
825                         counterp = &hammer2_iod_volu_write;
826                         break;
827                 }
828                 *counterp += chain->bytes;
829         }
830
831         /*
832          * Clean out the dio.
833          *
834          * If a device buffer was used for data be sure to destroy the
835          * buffer when we are done to avoid aliases (XXX what about the
836          * underlying VM pages?).
837          *
838          * NOTE: Freemap leaf's use reserved blocks and thus no aliasing
839          *       is possible.
840          *
841          * NOTE: The isdirty check tracks whether we have to bdwrite() the
842          *       buffer or not.  The buffer might already be dirty.  The
843          *       flag is re-set when chain_modify() is called, even if
844          *       MODIFIED is already set, allowing the OS to retire the
845          *       buffer independent of a hammer2 flush.
846          */
847         chain->data = NULL;
848         if ((chain->flags & HAMMER2_CHAIN_IOFLUSH) &&
849             hammer2_io_isdirty(chain->dio)) {
850                 hammer2_io_bawrite(&chain->dio);
851         } else {
852                 hammer2_io_bqrelse(&chain->dio);
853         }
854         hammer2_mtx_unlock(&chain->core.lock);
855 }
856
857 /*
858  * This counts the number of live blockrefs in a block array and
859  * also calculates the point at which all remaining blockrefs are empty.
860  * This routine can only be called on a live chain (DUPLICATED flag not set).
861  *
862  * NOTE: Flag is not set until after the count is complete, allowing
863  *       callers to test the flag without holding the spinlock.
864  *
865  * NOTE: If base is NULL the related chain is still in the INITIAL
866  *       state and there are no blockrefs to count.
867  *
868  * NOTE: live_count may already have some counts accumulated due to
869  *       creation and deletion and could even be initially negative.
870  */
871 void
872 hammer2_chain_countbrefs(hammer2_chain_t *chain,
873                          hammer2_blockref_t *base, int count)
874 {
875         hammer2_spin_ex(&chain->core.spin);
876         if ((chain->core.flags & HAMMER2_CORE_COUNTEDBREFS) == 0) {
877                 if (base) {
878                         while (--count >= 0) {
879                                 if (base[count].type)
880                                         break;
881                         }
882                         chain->core.live_zero = count + 1;
883                         while (count >= 0) {
884                                 if (base[count].type)
885                                         atomic_add_int(&chain->core.live_count,
886                                                        1);
887                                 --count;
888                         }
889                 } else {
890                         chain->core.live_zero = 0;
891                 }
892                 /* else do not modify live_count */
893                 atomic_set_int(&chain->core.flags, HAMMER2_CORE_COUNTEDBREFS);
894         }
895         hammer2_spin_unex(&chain->core.spin);
896 }
897
898 /*
899  * Resize the chain's physical storage allocation in-place.  This function does
900  * not adjust the data pointer and must be followed by (typically) a
901  * hammer2_chain_modify() call to copy any old data over and adjust the
902  * data pointer.
903  *
904  * Chains can be resized smaller without reallocating the storage.  Resizing
905  * larger will reallocate the storage.  Excess or prior storage is reclaimed
906  * asynchronously at a later time.
907  *
908  * Must be passed an exclusively locked parent and chain.
909  *
910  * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
911  * to avoid instantiating a device buffer that conflicts with the vnode data
912  * buffer.  However, because H2 can compress or encrypt data, the chain may
913  * have a dio assigned to it in those situations, and they do not conflict.
914  *
915  * XXX return error if cannot resize.
916  */
917 void
918 hammer2_chain_resize(hammer2_trans_t *trans, hammer2_inode_t *ip,
919                      hammer2_chain_t *parent, hammer2_chain_t *chain,
920                      int nradix, int flags)
921 {
922         hammer2_dev_t *hmp;
923         size_t obytes;
924         size_t nbytes;
925
926         hmp = chain->hmp;
927
928         /*
929          * Only data and indirect blocks can be resized for now.
930          * (The volu root, inodes, and freemap elements use a fixed size).
931          */
932         KKASSERT(chain != &hmp->vchain);
933         KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
934                  chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT);
935
936         /*
937          * Nothing to do if the element is already the proper size
938          */
939         obytes = chain->bytes;
940         nbytes = 1U << nradix;
941         if (obytes == nbytes)
942                 return;
943         chain->data_count += (ssize_t)(nbytes - obytes);
944
945         /*
946          * Make sure the old data is instantiated so we can copy it.  If this
947          * is a data block, the device data may be superfluous since the data
948          * might be in a logical block, but compressed or encrypted data is
949          * another matter.
950          *
951          * NOTE: The modify will set BMAPUPD for us if BMAPPED is set.
952          */
953         hammer2_chain_modify(trans, chain, 0);
954
955         /*
956          * Relocate the block, even if making it smaller (because different
957          * block sizes may be in different regions).
958          *
959          * (data blocks only, we aren't copying the storage here).
960          */
961         hammer2_freemap_alloc(trans, chain, nbytes);
962         chain->bytes = nbytes;
963         /*ip->delta_dcount += (ssize_t)(nbytes - obytes);*/ /* XXX atomic */
964
965         /*
966          * We don't want the followup chain_modify() to try to copy data
967          * from the old (wrong-sized) buffer.  It won't know how much to
968          * copy.  This case should only occur during writes when the
969          * originator already has the data to write in-hand.
970          */
971         if (chain->dio) {
972                 KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA);
973                 hammer2_io_brelse(&chain->dio);
974                 chain->data = NULL;
975         }
976 }
977
978 void
979 hammer2_chain_modify(hammer2_trans_t *trans, hammer2_chain_t *chain, int flags)
980 {
981         hammer2_blockref_t obref;
982         hammer2_dev_t *hmp;
983         hammer2_io_t *dio;
984         int error;
985         int wasinitial;
986         int newmod;
987         char *bdata;
988
989         hmp = chain->hmp;
990         obref = chain->bref;
991         KKASSERT((chain->flags & HAMMER2_CHAIN_FICTITIOUS) == 0);
992
993         /*
994          * Data is not optional for freemap chains (we must always be sure
995          * to copy the data on COW storage allocations).
996          */
997         if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
998             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
999                 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1000                          (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1001         }
1002
1003         /*
1004          * Data must be resolved if already assigned unless explicitly
1005          * flagged otherwise.
1006          */
1007         if (chain->data == NULL && (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1008             (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1009                 hammer2_chain_lock(chain, HAMMER2_RESOLVE_ALWAYS);
1010                 hammer2_chain_unlock(chain);
1011         }
1012
1013         /*
1014          * Otherwise do initial-chain handling.  Set MODIFIED to indicate
1015          * that the chain has been modified.  Set UPDATE to ensure that
1016          * the blockref is updated in the parent.
1017          */
1018         if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1019                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1020                 hammer2_chain_ref(chain);
1021                 hammer2_pfs_memory_inc(chain->pmp);     /* can be NULL */
1022                 newmod = 1;
1023         } else {
1024                 newmod = 0;
1025         }
1026         if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
1027                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1028                 hammer2_chain_ref(chain);
1029         }
1030
1031         /*
1032          * The modification or re-modification requires an allocation and
1033          * possible COW.
1034          *
1035          * We normally always allocate new storage here.  If storage exists
1036          * and MODIFY_NOREALLOC is passed in, we do not allocate new storage.
1037          */
1038         if (chain != &hmp->vchain && chain != &hmp->fchain) {
1039                 if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1040                      ((flags & HAMMER2_MODIFY_NOREALLOC) == 0 && newmod)
1041                 ) {
1042                         hammer2_freemap_alloc(trans, chain, chain->bytes);
1043                         /* XXX failed allocation */
1044                 }
1045         }
1046
1047         /*
1048          * Update mirror_tid and modify_tid.
1049          *
1050          * NOTE: modify_tid updates can be suppressed with a flag.  This is
1051          *       used by the slave synchronization code to delay updating
1052          *       modify_tid in higher-level objects until lower-level objects
1053          *       have been synchronized.
1054          *
1055          * NOTE: chain->pmp could be the device spmp.
1056          */
1057         chain->bref.mirror_tid = hmp->voldata.mirror_tid + 1;
1058         if (chain->pmp && (trans->flags & HAMMER2_TRANS_KEEPMODIFY) == 0)
1059                 chain->bref.modify_tid = chain->pmp->modify_tid + 1;
1060
1061         /*
1062          * Set BMAPUPD to tell the flush code that an existing blockmap entry
1063          * requires updating as well as to tell the delete code that the
1064          * chain's blockref might not exactly match (in terms of physical size
1065          * or block offset) the one in the parent's blocktable.  The base key
1066          * of course will still match.
1067          */
1068         if (chain->flags & HAMMER2_CHAIN_BMAPPED)
1069                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD);
1070
1071         /*
1072          * Short-cut data blocks which the caller does not need an actual
1073          * data reference to (aka OPTDATA), as long as the chain does not
1074          * already have a data pointer to the data.  This generally means
1075          * that the modifications are being done via the logical buffer cache.
1076          * The INITIAL flag relates only to the device data buffer and thus
1077          * remains unchange in this situation.
1078          */
1079         if (chain->bref.type == HAMMER2_BREF_TYPE_DATA &&
1080             (flags & HAMMER2_MODIFY_OPTDATA) &&
1081             chain->data == NULL) {
1082                 goto skip2;
1083         }
1084
1085         /*
1086          * Clearing the INITIAL flag (for indirect blocks) indicates that
1087          * we've processed the uninitialized storage allocation.
1088          *
1089          * If this flag is already clear we are likely in a copy-on-write
1090          * situation but we have to be sure NOT to bzero the storage if
1091          * no data is present.
1092          */
1093         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1094                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1095                 wasinitial = 1;
1096         } else {
1097                 wasinitial = 0;
1098         }
1099
1100         /*
1101          * Instantiate data buffer and possibly execute COW operation
1102          */
1103         switch(chain->bref.type) {
1104         case HAMMER2_BREF_TYPE_VOLUME:
1105         case HAMMER2_BREF_TYPE_FREEMAP:
1106                 /*
1107                  * The data is embedded, no copy-on-write operation is
1108                  * needed.
1109                  */
1110                 KKASSERT(chain->dio == NULL);
1111                 break;
1112         case HAMMER2_BREF_TYPE_INODE:
1113         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1114         case HAMMER2_BREF_TYPE_DATA:
1115         case HAMMER2_BREF_TYPE_INDIRECT:
1116         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1117                 /*
1118                  * Perform the copy-on-write operation
1119                  *
1120                  * zero-fill or copy-on-write depending on whether
1121                  * chain->data exists or not and set the dirty state for
1122                  * the new buffer.  hammer2_io_new() will handle the
1123                  * zero-fill.
1124                  */
1125                 KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
1126
1127                 if (wasinitial) {
1128                         error = hammer2_io_new(hmp, chain->bref.data_off,
1129                                                chain->bytes, &dio);
1130                 } else {
1131                         error = hammer2_io_bread(hmp, chain->bref.data_off,
1132                                                  chain->bytes, &dio);
1133                 }
1134                 hammer2_adjreadcounter(&chain->bref, chain->bytes);
1135
1136                 /*
1137                  * If an I/O error occurs make sure callers cannot accidently
1138                  * modify the old buffer's contents and corrupt the filesystem.
1139                  */
1140                 if (error) {
1141                         kprintf("hammer2_chain_modify: hmp=%p I/O error\n",
1142                                 hmp);
1143                         chain->error = HAMMER2_ERROR_IO;
1144                         hammer2_io_brelse(&dio);
1145                         hammer2_io_brelse(&chain->dio);
1146                         chain->data = NULL;
1147                         break;
1148                 }
1149                 chain->error = 0;
1150                 bdata = hammer2_io_data(dio, chain->bref.data_off);
1151
1152                 if (chain->data) {
1153                         KKASSERT(chain->dio != NULL);
1154                         if (chain->data != (void *)bdata) {
1155                                 bcopy(chain->data, bdata, chain->bytes);
1156                         }
1157                 } else if (wasinitial == 0) {
1158                         /*
1159                          * We have a problem.  We were asked to COW but
1160                          * we don't have any data to COW with!
1161                          */
1162                         panic("hammer2_chain_modify: having a COW %p\n",
1163                               chain);
1164                 }
1165
1166                 /*
1167                  * Retire the old buffer, replace with the new.  Dirty or
1168                  * redirty the new buffer.
1169                  *
1170                  * WARNING! The system buffer cache may have already flushed
1171                  *          the buffer, so we must be sure to [re]dirty it
1172                  *          for further modification.
1173                  */
1174                 if (chain->dio)
1175                         hammer2_io_brelse(&chain->dio);
1176                 chain->data = (void *)bdata;
1177                 chain->dio = dio;
1178                 hammer2_io_setdirty(dio);       /* modified by bcopy above */
1179                 break;
1180         default:
1181                 panic("hammer2_chain_modify: illegal non-embedded type %d",
1182                       chain->bref.type);
1183                 break;
1184
1185         }
1186 skip2:
1187         /*
1188          * setflush on parent indicating that the parent must recurse down
1189          * to us.  Do not call on chain itself which might already have it
1190          * set.
1191          */
1192         if (chain->parent)
1193                 hammer2_chain_setflush(trans, chain->parent);
1194 }
1195
1196 /*
1197  * Volume header data locks
1198  */
1199 void
1200 hammer2_voldata_lock(hammer2_dev_t *hmp)
1201 {
1202         lockmgr(&hmp->vollk, LK_EXCLUSIVE);
1203 }
1204
1205 void
1206 hammer2_voldata_unlock(hammer2_dev_t *hmp)
1207 {
1208         lockmgr(&hmp->vollk, LK_RELEASE);
1209 }
1210
1211 void
1212 hammer2_voldata_modify(hammer2_dev_t *hmp)
1213 {
1214         if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1215                 atomic_set_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
1216                 hammer2_chain_ref(&hmp->vchain);
1217                 hammer2_pfs_memory_inc(hmp->vchain.pmp);
1218         }
1219 }
1220
1221 /*
1222  * This function returns the chain at the nearest key within the specified
1223  * range.  The returned chain will be referenced but not locked.
1224  *
1225  * This function will recurse through chain->rbtree as necessary and will
1226  * return a *key_nextp suitable for iteration.  *key_nextp is only set if
1227  * the iteration value is less than the current value of *key_nextp.
1228  *
1229  * The caller should use (*key_nextp) to calculate the actual range of
1230  * the returned element, which will be (key_beg to *key_nextp - 1), because
1231  * there might be another element which is superior to the returned element
1232  * and overlaps it.
1233  *
1234  * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
1235  * chains continue to be returned.  On EOF (*key_nextp) may overflow since
1236  * it will wind up being (key_end + 1).
1237  *
1238  * WARNING!  Must be called with child's spinlock held.  Spinlock remains
1239  *           held through the operation.
1240  */
1241 struct hammer2_chain_find_info {
1242         hammer2_chain_t         *best;
1243         hammer2_key_t           key_beg;
1244         hammer2_key_t           key_end;
1245         hammer2_key_t           key_next;
1246 };
1247
1248 static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
1249 static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
1250
1251 static
1252 hammer2_chain_t *
1253 hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
1254                           hammer2_key_t key_beg, hammer2_key_t key_end)
1255 {
1256         struct hammer2_chain_find_info info;
1257
1258         info.best = NULL;
1259         info.key_beg = key_beg;
1260         info.key_end = key_end;
1261         info.key_next = *key_nextp;
1262
1263         RB_SCAN(hammer2_chain_tree, &parent->core.rbtree,
1264                 hammer2_chain_find_cmp, hammer2_chain_find_callback,
1265                 &info);
1266         *key_nextp = info.key_next;
1267 #if 0
1268         kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
1269                 parent, key_beg, key_end, *key_nextp);
1270 #endif
1271
1272         return (info.best);
1273 }
1274
1275 static
1276 int
1277 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
1278 {
1279         struct hammer2_chain_find_info *info = data;
1280         hammer2_key_t child_beg;
1281         hammer2_key_t child_end;
1282
1283         child_beg = child->bref.key;
1284         child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
1285
1286         if (child_end < info->key_beg)
1287                 return(-1);
1288         if (child_beg > info->key_end)
1289                 return(1);
1290         return(0);
1291 }
1292
1293 static
1294 int
1295 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
1296 {
1297         struct hammer2_chain_find_info *info = data;
1298         hammer2_chain_t *best;
1299         hammer2_key_t child_end;
1300
1301         /*
1302          * WARNING! Do not discard DUPLICATED chains, it is possible that
1303          *          we are catching an insertion half-way done.  If a
1304          *          duplicated chain turns out to be the best choice the
1305          *          caller will re-check its flags after locking it.
1306          *
1307          * WARNING! Layerq is scanned forwards, exact matches should keep
1308          *          the existing info->best.
1309          */
1310         if ((best = info->best) == NULL) {
1311                 /*
1312                  * No previous best.  Assign best
1313                  */
1314                 info->best = child;
1315         } else if (best->bref.key <= info->key_beg &&
1316                    child->bref.key <= info->key_beg) {
1317                 /*
1318                  * Illegal overlap.
1319                  */
1320                 KKASSERT(0);
1321                 /*info->best = child;*/
1322         } else if (child->bref.key < best->bref.key) {
1323                 /*
1324                  * Child has a nearer key and best is not flush with key_beg.
1325                  * Set best to child.  Truncate key_next to the old best key.
1326                  */
1327                 info->best = child;
1328                 if (info->key_next > best->bref.key || info->key_next == 0)
1329                         info->key_next = best->bref.key;
1330         } else if (child->bref.key == best->bref.key) {
1331                 /*
1332                  * If our current best is flush with the child then this
1333                  * is an illegal overlap.
1334                  *
1335                  * key_next will automatically be limited to the smaller of
1336                  * the two end-points.
1337                  */
1338                 KKASSERT(0);
1339                 info->best = child;
1340         } else {
1341                 /*
1342                  * Keep the current best but truncate key_next to the child's
1343                  * base.
1344                  *
1345                  * key_next will also automatically be limited to the smaller
1346                  * of the two end-points (probably not necessary for this case
1347                  * but we do it anyway).
1348                  */
1349                 if (info->key_next > child->bref.key || info->key_next == 0)
1350                         info->key_next = child->bref.key;
1351         }
1352
1353         /*
1354          * Always truncate key_next based on child's end-of-range.
1355          */
1356         child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
1357         if (child_end && (info->key_next > child_end || info->key_next == 0))
1358                 info->key_next = child_end;
1359
1360         return(0);
1361 }
1362
1363 /*
1364  * Retrieve the specified chain from a media blockref, creating the
1365  * in-memory chain structure which reflects it.
1366  *
1367  * To handle insertion races pass the INSERT_RACE flag along with the
1368  * generation number of the core.  NULL will be returned if the generation
1369  * number changes before we have a chance to insert the chain.  Insert
1370  * races can occur because the parent might be held shared.
1371  *
1372  * Caller must hold the parent locked shared or exclusive since we may
1373  * need the parent's bref array to find our block.
1374  *
1375  * WARNING! chain->pmp is always set to NULL for any chain representing
1376  *          part of the super-root topology.
1377  */
1378 hammer2_chain_t *
1379 hammer2_chain_get(hammer2_chain_t *parent, int generation,
1380                   hammer2_blockref_t *bref)
1381 {
1382         hammer2_dev_t *hmp = parent->hmp;
1383         hammer2_chain_t *chain;
1384         int error;
1385
1386         /*
1387          * Allocate a chain structure representing the existing media
1388          * entry.  Resulting chain has one ref and is not locked.
1389          */
1390         if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
1391                 chain = hammer2_chain_alloc(hmp, NULL, NULL, bref);
1392         else
1393                 chain = hammer2_chain_alloc(hmp, parent->pmp, NULL, bref);
1394         /* ref'd chain returned */
1395
1396         /*
1397          * Flag that the chain is in the parent's blockmap so delete/flush
1398          * knows what to do with it.
1399          */
1400         atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
1401
1402         /*
1403          * Link the chain into its parent.  A spinlock is required to safely
1404          * access the RBTREE, and it is possible to collide with another
1405          * hammer2_chain_get() operation because the caller might only hold
1406          * a shared lock on the parent.
1407          */
1408         KKASSERT(parent->refs > 0);
1409         error = hammer2_chain_insert(parent, chain,
1410                                      HAMMER2_CHAIN_INSERT_SPIN |
1411                                      HAMMER2_CHAIN_INSERT_RACE,
1412                                      generation);
1413         if (error) {
1414                 KKASSERT((chain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
1415                 kprintf("chain %p get race\n", chain);
1416                 hammer2_chain_drop(chain);
1417                 chain = NULL;
1418         } else {
1419                 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
1420         }
1421
1422         /*
1423          * Return our new chain referenced but not locked, or NULL if
1424          * a race occurred.
1425          */
1426         return (chain);
1427 }
1428
1429 /*
1430  * Lookup initialization/completion API
1431  */
1432 hammer2_chain_t *
1433 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
1434 {
1435         hammer2_chain_ref(parent);
1436         if (flags & HAMMER2_LOOKUP_SHARED) {
1437                 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
1438                                            HAMMER2_RESOLVE_SHARED);
1439         } else {
1440                 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
1441         }
1442         return (parent);
1443 }
1444
1445 void
1446 hammer2_chain_lookup_done(hammer2_chain_t *parent)
1447 {
1448         if (parent) {
1449                 hammer2_chain_unlock(parent);
1450                 hammer2_chain_drop(parent);
1451         }
1452 }
1453
1454 static
1455 hammer2_chain_t *
1456 hammer2_chain_getparent(hammer2_chain_t **parentp, int how)
1457 {
1458         hammer2_chain_t *oparent;
1459         hammer2_chain_t *nparent;
1460
1461         /*
1462          * Be careful of order, oparent must be unlocked before nparent
1463          * is locked below to avoid a deadlock.
1464          */
1465         oparent = *parentp;
1466         hammer2_spin_ex(&oparent->core.spin);
1467         nparent = oparent->parent;
1468         hammer2_chain_ref(nparent);
1469         hammer2_spin_unex(&oparent->core.spin);
1470         if (oparent) {
1471                 hammer2_chain_unlock(oparent);
1472                 hammer2_chain_drop(oparent);
1473                 oparent = NULL;
1474         }
1475
1476         hammer2_chain_lock(nparent, how);
1477         *parentp = nparent;
1478
1479         return (nparent);
1480 }
1481
1482 /*
1483  * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
1484  * (*parentp) typically points to an inode but can also point to a related
1485  * indirect block and this function will recurse upwards and find the inode
1486  * again.
1487  *
1488  * (*parentp) must be exclusively locked and referenced and can be an inode
1489  * or an existing indirect block within the inode.
1490  *
1491  * On return (*parentp) will be modified to point at the deepest parent chain
1492  * element encountered during the search, as a helper for an insertion or
1493  * deletion.   The new (*parentp) will be locked and referenced and the old
1494  * will be unlocked and dereferenced (no change if they are both the same).
1495  *
1496  * The matching chain will be returned exclusively locked.  If NOLOCK is
1497  * requested the chain will be returned only referenced.  Note that the
1498  * parent chain must always be locked shared or exclusive, matching the
1499  * HAMMER2_LOOKUP_SHARED flag.  We can conceivably lock it SHARED temporarily
1500  * when NOLOCK is specified but that complicates matters if *parentp must
1501  * inherit the chain.
1502  *
1503  * NOLOCK also implies NODATA, since an unlocked chain usually has a NULL
1504  * data pointer or can otherwise be in flux.
1505  *
1506  * NULL is returned if no match was found, but (*parentp) will still
1507  * potentially be adjusted.
1508  *
1509  * If a fatal error occurs (typically an I/O error), a dummy chain is
1510  * returned with chain->error and error-identifying information set.  This
1511  * chain will assert if you try to do anything fancy with it.
1512  *
1513  * XXX Depending on where the error occurs we should allow continued iteration.
1514  *
1515  * On return (*key_nextp) will point to an iterative value for key_beg.
1516  * (If NULL is returned (*key_nextp) is set to (key_end + 1)).
1517  *
1518  * This function will also recurse up the chain if the key is not within the
1519  * current parent's range.  (*parentp) can never be set to NULL.  An iteration
1520  * can simply allow (*parentp) to float inside the loop.
1521  *
1522  * NOTE!  chain->data is not always resolved.  By default it will not be
1523  *        resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF.  Use
1524  *        HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
1525  *        BREF_TYPE_DATA as the device buffer can alias the logical file
1526  *        buffer).
1527  */
1528 hammer2_chain_t *
1529 hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
1530                      hammer2_key_t key_beg, hammer2_key_t key_end,
1531                      int *cache_indexp, int flags)
1532 {
1533         hammer2_dev_t *hmp;
1534         hammer2_chain_t *parent;
1535         hammer2_chain_t *chain;
1536         hammer2_blockref_t *base;
1537         hammer2_blockref_t *bref;
1538         hammer2_blockref_t bcopy;
1539         hammer2_key_t scan_beg;
1540         hammer2_key_t scan_end;
1541         int count = 0;
1542         int how_always = HAMMER2_RESOLVE_ALWAYS;
1543         int how_maybe = HAMMER2_RESOLVE_MAYBE;
1544         int how;
1545         int generation;
1546         int maxloops = 300000;
1547
1548         if (flags & HAMMER2_LOOKUP_ALWAYS) {
1549                 how_maybe = how_always;
1550                 how = HAMMER2_RESOLVE_ALWAYS;
1551         } else if (flags & (HAMMER2_LOOKUP_NODATA | HAMMER2_LOOKUP_NOLOCK)) {
1552                 how = HAMMER2_RESOLVE_NEVER;
1553         } else {
1554                 how = HAMMER2_RESOLVE_MAYBE;
1555         }
1556         if (flags & HAMMER2_LOOKUP_SHARED) {
1557                 how_maybe |= HAMMER2_RESOLVE_SHARED;
1558                 how_always |= HAMMER2_RESOLVE_SHARED;
1559                 how |= HAMMER2_RESOLVE_SHARED;
1560         }
1561
1562         /*
1563          * Recurse (*parentp) upward if necessary until the parent completely
1564          * encloses the key range or we hit the inode.
1565          *
1566          * This function handles races against the flusher doing a delete-
1567          * duplicate above us and re-homes the parent to the duplicate in
1568          * that case, otherwise we'd wind up recursing down a stale chain.
1569          */
1570         parent = *parentp;
1571         hmp = parent->hmp;
1572
1573         while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1574                parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1575                 scan_beg = parent->bref.key;
1576                 scan_end = scan_beg +
1577                            ((hammer2_key_t)1 << parent->bref.keybits) - 1;
1578                 if (key_beg >= scan_beg && key_end <= scan_end)
1579                         break;
1580                 parent = hammer2_chain_getparent(parentp, how_maybe);
1581         }
1582
1583 again:
1584         if (--maxloops == 0)
1585                 panic("hammer2_chain_lookup: maxloops");
1586         /*
1587          * Locate the blockref array.  Currently we do a fully associative
1588          * search through the array.
1589          */
1590         switch(parent->bref.type) {
1591         case HAMMER2_BREF_TYPE_INODE:
1592                 /*
1593                  * Special shortcut for embedded data returns the inode
1594                  * itself.  Callers must detect this condition and access
1595                  * the embedded data (the strategy code does this for us).
1596                  *
1597                  * This is only applicable to regular files and softlinks.
1598                  */
1599                 if (parent->data->ipdata.op_flags & HAMMER2_OPFLAG_DIRECTDATA) {
1600                         if (flags & HAMMER2_LOOKUP_NODIRECT) {
1601                                 chain = NULL;
1602                                 *key_nextp = key_end + 1;
1603                                 goto done;
1604                         }
1605                         hammer2_chain_ref(parent);
1606                         if ((flags & HAMMER2_LOOKUP_NOLOCK) == 0)
1607                                 hammer2_chain_lock(parent, how_always);
1608                         *key_nextp = key_end + 1;
1609                         return (parent);
1610                 }
1611                 base = &parent->data->ipdata.u.blockset.blockref[0];
1612                 count = HAMMER2_SET_COUNT;
1613                 break;
1614         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1615         case HAMMER2_BREF_TYPE_INDIRECT:
1616                 /*
1617                  * Handle MATCHIND on the parent
1618                  */
1619                 if (flags & HAMMER2_LOOKUP_MATCHIND) {
1620                         scan_beg = parent->bref.key;
1621                         scan_end = scan_beg +
1622                                ((hammer2_key_t)1 << parent->bref.keybits) - 1;
1623                         if (key_beg == scan_beg && key_end == scan_end) {
1624                                 chain = parent;
1625                                 hammer2_chain_ref(chain);
1626                                 hammer2_chain_lock(chain, how_maybe);
1627                                 *key_nextp = scan_end + 1;
1628                                 goto done;
1629                         }
1630                 }
1631                 /*
1632                  * Optimize indirect blocks in the INITIAL state to avoid
1633                  * I/O.
1634                  */
1635                 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1636                         base = NULL;
1637                 } else {
1638                         if (parent->data == NULL)
1639                                 panic("parent->data is NULL");
1640                         base = &parent->data->npdata[0];
1641                 }
1642                 count = parent->bytes / sizeof(hammer2_blockref_t);
1643                 break;
1644         case HAMMER2_BREF_TYPE_VOLUME:
1645                 base = &hmp->voldata.sroot_blockset.blockref[0];
1646                 count = HAMMER2_SET_COUNT;
1647                 break;
1648         case HAMMER2_BREF_TYPE_FREEMAP:
1649                 base = &hmp->voldata.freemap_blockset.blockref[0];
1650                 count = HAMMER2_SET_COUNT;
1651                 break;
1652         default:
1653                 panic("hammer2_chain_lookup: unrecognized blockref type: %d",
1654                       parent->bref.type);
1655                 base = NULL;    /* safety */
1656                 count = 0;      /* safety */
1657         }
1658
1659         /*
1660          * Merged scan to find next candidate.
1661          *
1662          * hammer2_base_*() functions require the parent->core.live_* fields
1663          * to be synchronized.
1664          *
1665          * We need to hold the spinlock to access the block array and RB tree
1666          * and to interlock chain creation.
1667          */
1668         if ((parent->core.flags & HAMMER2_CORE_COUNTEDBREFS) == 0)
1669                 hammer2_chain_countbrefs(parent, base, count);
1670
1671         /*
1672          * Combined search
1673          */
1674         hammer2_spin_ex(&parent->core.spin);
1675         chain = hammer2_combined_find(parent, base, count,
1676                                       cache_indexp, key_nextp,
1677                                       key_beg, key_end,
1678                                       &bref);
1679         generation = parent->core.generation;
1680
1681         /*
1682          * Exhausted parent chain, iterate.
1683          */
1684         if (bref == NULL) {
1685                 hammer2_spin_unex(&parent->core.spin);
1686                 if (key_beg == key_end) /* short cut single-key case */
1687                         return (NULL);
1688
1689                 /*
1690                  * Stop if we reached the end of the iteration.
1691                  */
1692                 if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
1693                     parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1694                         return (NULL);
1695                 }
1696
1697                 /*
1698                  * Calculate next key, stop if we reached the end of the
1699                  * iteration, otherwise go up one level and loop.
1700                  */
1701                 key_beg = parent->bref.key +
1702                           ((hammer2_key_t)1 << parent->bref.keybits);
1703                 if (key_beg == 0 || key_beg > key_end)
1704                         return (NULL);
1705                 parent = hammer2_chain_getparent(parentp, how_maybe);
1706                 goto again;
1707         }
1708
1709         /*
1710          * Selected from blockref or in-memory chain.
1711          */
1712         if (chain == NULL) {
1713                 bcopy = *bref;
1714                 hammer2_spin_unex(&parent->core.spin);
1715                 chain = hammer2_chain_get(parent, generation,
1716                                           &bcopy);
1717                 if (chain == NULL) {
1718                         kprintf("retry lookup parent %p keys %016jx:%016jx\n",
1719                                 parent, key_beg, key_end);
1720                         goto again;
1721                 }
1722                 if (bcmp(&bcopy, bref, sizeof(bcopy))) {
1723                         hammer2_chain_drop(chain);
1724                         goto again;
1725                 }
1726         } else {
1727                 hammer2_chain_ref(chain);
1728                 hammer2_spin_unex(&parent->core.spin);
1729         }
1730
1731         /*
1732          * chain is referenced but not locked.  We must lock the chain
1733          * to obtain definitive DUPLICATED/DELETED state
1734          */
1735         if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1736             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1737                 hammer2_chain_lock(chain, how_maybe);
1738         } else {
1739                 hammer2_chain_lock(chain, how);
1740         }
1741
1742         /*
1743          * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
1744          *
1745          * NOTE: Chain's key range is not relevant as there might be
1746          *       one-offs within the range that are not deleted.
1747          *
1748          * NOTE: Lookups can race delete-duplicate because
1749          *       delete-duplicate does not lock the parent's core
1750          *       (they just use the spinlock on the core).  We must
1751          *       check for races by comparing the DUPLICATED flag before
1752          *       releasing the spinlock with the flag after locking the
1753          *       chain.
1754          */
1755         if (chain->flags & HAMMER2_CHAIN_DELETED) {
1756                 hammer2_chain_unlock(chain);
1757                 hammer2_chain_drop(chain);
1758                 key_beg = *key_nextp;
1759                 if (key_beg == 0 || key_beg > key_end)
1760                         return(NULL);
1761                 goto again;
1762         }
1763
1764         /*
1765          * If the chain element is an indirect block it becomes the new
1766          * parent and we loop on it.  We must maintain our top-down locks
1767          * to prevent the flusher from interfering (i.e. doing a
1768          * delete-duplicate and leaving us recursing down a deleted chain).
1769          *
1770          * The parent always has to be locked with at least RESOLVE_MAYBE
1771          * so we can access its data.  It might need a fixup if the caller
1772          * passed incompatible flags.  Be careful not to cause a deadlock
1773          * as a data-load requires an exclusive lock.
1774          *
1775          * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
1776          * range is within the requested key range we return the indirect
1777          * block and do NOT loop.  This is usually only used to acquire
1778          * freemap nodes.
1779          */
1780         if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1781             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1782                 hammer2_chain_unlock(parent);
1783                 hammer2_chain_drop(parent);
1784                 *parentp = parent = chain;
1785                 goto again;
1786         }
1787 done:
1788         /*
1789          * All done, return the chain.
1790          *
1791          * If the caller does not want a locked chain, replace the lock with
1792          * a ref.  Perhaps this can eventually be optimized to not obtain the
1793          * lock in the first place for situations where the data does not
1794          * need to be resolved.
1795          */
1796         if (chain) {
1797                 if (flags & HAMMER2_LOOKUP_NOLOCK)
1798                         hammer2_chain_unlock(chain);
1799         }
1800
1801         return (chain);
1802 }
1803
1804 /*
1805  * After having issued a lookup we can iterate all matching keys.
1806  *
1807  * If chain is non-NULL we continue the iteration from just after it's index.
1808  *
1809  * If chain is NULL we assume the parent was exhausted and continue the
1810  * iteration at the next parent.
1811  *
1812  * If a fatal error occurs (typically an I/O error), a dummy chain is
1813  * returned with chain->error and error-identifying information set.  This
1814  * chain will assert if you try to do anything fancy with it.
1815  *
1816  * XXX Depending on where the error occurs we should allow continued iteration.
1817  *
1818  * parent must be locked on entry and remains locked throughout.  chain's
1819  * lock status must match flags.  Chain is always at least referenced.
1820  *
1821  * WARNING!  The MATCHIND flag does not apply to this function.
1822  */
1823 hammer2_chain_t *
1824 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
1825                    hammer2_key_t *key_nextp,
1826                    hammer2_key_t key_beg, hammer2_key_t key_end,
1827                    int *cache_indexp, int flags)
1828 {
1829         hammer2_chain_t *parent;
1830         int how_maybe;
1831
1832         /*
1833          * Calculate locking flags for upward recursion.
1834          */
1835         how_maybe = HAMMER2_RESOLVE_MAYBE;
1836         if (flags & HAMMER2_LOOKUP_SHARED)
1837                 how_maybe |= HAMMER2_RESOLVE_SHARED;
1838
1839         parent = *parentp;
1840
1841         /*
1842          * Calculate the next index and recalculate the parent if necessary.
1843          */
1844         if (chain) {
1845                 key_beg = chain->bref.key +
1846                           ((hammer2_key_t)1 << chain->bref.keybits);
1847                 if ((flags & HAMMER2_LOOKUP_NOLOCK) == 0)
1848                         hammer2_chain_unlock(chain);
1849                 hammer2_chain_drop(chain);
1850
1851                 /*
1852                  * chain invalid past this point, but we can still do a
1853                  * pointer comparison w/parent.
1854                  *
1855                  * Any scan where the lookup returned degenerate data embedded
1856                  * in the inode has an invalid index and must terminate.
1857                  */
1858                 if (chain == parent)
1859                         return(NULL);
1860                 if (key_beg == 0 || key_beg > key_end)
1861                         return(NULL);
1862                 chain = NULL;
1863         } else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
1864                    parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1865                 /*
1866                  * We reached the end of the iteration.
1867                  */
1868                 return (NULL);
1869         } else {
1870                 /*
1871                  * Continue iteration with next parent unless the current
1872                  * parent covers the range.
1873                  */
1874                 key_beg = parent->bref.key +
1875                           ((hammer2_key_t)1 << parent->bref.keybits);
1876                 if (key_beg == 0 || key_beg > key_end)
1877                         return (NULL);
1878                 parent = hammer2_chain_getparent(parentp, how_maybe);
1879         }
1880
1881         /*
1882          * And execute
1883          */
1884         return (hammer2_chain_lookup(parentp, key_nextp,
1885                                      key_beg, key_end,
1886                                      cache_indexp, flags));
1887 }
1888
1889 /*
1890  * The raw scan function is similar to lookup/next but does not seek to a key.
1891  * Blockrefs are iterated via first_chain = (parent, NULL) and
1892  * next_chain = (parent, chain).
1893  *
1894  * The passed-in parent must be locked and its data resolved.  The returned
1895  * chain will be locked.  Pass chain == NULL to acquire the first sub-chain
1896  * under parent and then iterate with the passed-in chain (which this
1897  * function will unlock).
1898  */
1899 hammer2_chain_t *
1900 hammer2_chain_scan(hammer2_chain_t *parent, hammer2_chain_t *chain,
1901                    int *cache_indexp, int flags)
1902 {
1903         hammer2_dev_t *hmp;
1904         hammer2_blockref_t *base;
1905         hammer2_blockref_t *bref;
1906         hammer2_blockref_t bcopy;
1907         hammer2_key_t key;
1908         hammer2_key_t next_key;
1909         int count = 0;
1910         int how_always = HAMMER2_RESOLVE_ALWAYS;
1911         int how_maybe = HAMMER2_RESOLVE_MAYBE;
1912         int how;
1913         int generation;
1914         int maxloops = 300000;
1915
1916         hmp = parent->hmp;
1917
1918         /*
1919          * Scan flags borrowed from lookup.
1920          */
1921         if (flags & HAMMER2_LOOKUP_ALWAYS) {
1922                 how_maybe = how_always;
1923                 how = HAMMER2_RESOLVE_ALWAYS;
1924         } else if (flags & (HAMMER2_LOOKUP_NODATA | HAMMER2_LOOKUP_NOLOCK)) {
1925                 how = HAMMER2_RESOLVE_NEVER;
1926         } else {
1927                 how = HAMMER2_RESOLVE_MAYBE;
1928         }
1929         if (flags & HAMMER2_LOOKUP_SHARED) {
1930                 how_maybe |= HAMMER2_RESOLVE_SHARED;
1931                 how_always |= HAMMER2_RESOLVE_SHARED;
1932                 how |= HAMMER2_RESOLVE_SHARED;
1933         }
1934
1935         /*
1936          * Calculate key to locate first/next element, unlocking the previous
1937          * element as we go.  Be careful, the key calculation can overflow.
1938          */
1939         if (chain) {
1940                 key = chain->bref.key +
1941                       ((hammer2_key_t)1 << chain->bref.keybits);
1942                 hammer2_chain_unlock(chain);
1943                 hammer2_chain_drop(chain);
1944                 chain = NULL;
1945                 if (key == 0)
1946                         goto done;
1947         } else {
1948                 key = 0;
1949         }
1950
1951 again:
1952         KKASSERT(parent->error == 0);   /* XXX case not handled yet */
1953         if (--maxloops == 0)
1954                 panic("hammer2_chain_scan: maxloops");
1955         /*
1956          * Locate the blockref array.  Currently we do a fully associative
1957          * search through the array.
1958          */
1959         switch(parent->bref.type) {
1960         case HAMMER2_BREF_TYPE_INODE:
1961                 /*
1962                  * An inode with embedded data has no sub-chains.
1963                  */
1964                 if (parent->data->ipdata.op_flags & HAMMER2_OPFLAG_DIRECTDATA)
1965                         goto done;
1966                 base = &parent->data->ipdata.u.blockset.blockref[0];
1967                 count = HAMMER2_SET_COUNT;
1968                 break;
1969         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1970         case HAMMER2_BREF_TYPE_INDIRECT:
1971                 /*
1972                  * Optimize indirect blocks in the INITIAL state to avoid
1973                  * I/O.
1974                  */
1975                 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1976                         base = NULL;
1977                 } else {
1978                         if (parent->data == NULL)
1979                                 panic("parent->data is NULL");
1980                         base = &parent->data->npdata[0];
1981                 }
1982                 count = parent->bytes / sizeof(hammer2_blockref_t);
1983                 break;
1984         case HAMMER2_BREF_TYPE_VOLUME:
1985                 base = &hmp->voldata.sroot_blockset.blockref[0];
1986                 count = HAMMER2_SET_COUNT;
1987                 break;
1988         case HAMMER2_BREF_TYPE_FREEMAP:
1989                 base = &hmp->voldata.freemap_blockset.blockref[0];
1990                 count = HAMMER2_SET_COUNT;
1991                 break;
1992         default:
1993                 panic("hammer2_chain_lookup: unrecognized blockref type: %d",
1994                       parent->bref.type);
1995                 base = NULL;    /* safety */
1996                 count = 0;      /* safety */
1997         }
1998
1999         /*
2000          * Merged scan to find next candidate.
2001          *
2002          * hammer2_base_*() functions require the parent->core.live_* fields
2003          * to be synchronized.
2004          *
2005          * We need to hold the spinlock to access the block array and RB tree
2006          * and to interlock chain creation.
2007          */
2008         if ((parent->core.flags & HAMMER2_CORE_COUNTEDBREFS) == 0)
2009                 hammer2_chain_countbrefs(parent, base, count);
2010
2011         next_key = 0;
2012         hammer2_spin_ex(&parent->core.spin);
2013         chain = hammer2_combined_find(parent, base, count,
2014                                       cache_indexp, &next_key,
2015                                       key, HAMMER2_KEY_MAX,
2016                                       &bref);
2017         generation = parent->core.generation;
2018
2019         /*
2020          * Exhausted parent chain, we're done.
2021          */
2022         if (bref == NULL) {
2023                 hammer2_spin_unex(&parent->core.spin);
2024                 KKASSERT(chain == NULL);
2025                 goto done;
2026         }
2027
2028         /*
2029          * Selected from blockref or in-memory chain.
2030          */
2031         if (chain == NULL) {
2032                 bcopy = *bref;
2033                 hammer2_spin_unex(&parent->core.spin);
2034                 chain = hammer2_chain_get(parent, generation, &bcopy);
2035                 if (chain == NULL) {
2036                         kprintf("retry scan parent %p keys %016jx\n",
2037                                 parent, key);
2038                         goto again;
2039                 }
2040                 if (bcmp(&bcopy, bref, sizeof(bcopy))) {
2041                         hammer2_chain_drop(chain);
2042                         chain = NULL;
2043                         goto again;
2044                 }
2045         } else {
2046                 hammer2_chain_ref(chain);
2047                 hammer2_spin_unex(&parent->core.spin);
2048         }
2049
2050         /*
2051          * chain is referenced but not locked.  We must lock the chain
2052          * to obtain definitive DUPLICATED/DELETED state
2053          */
2054         hammer2_chain_lock(chain, how);
2055
2056         /*
2057          * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2058          *
2059          * NOTE: chain's key range is not relevant as there might be
2060          *       one-offs within the range that are not deleted.
2061          *
2062          * NOTE: XXX this could create problems with scans used in
2063          *       situations other than mount-time recovery.
2064          *
2065          * NOTE: Lookups can race delete-duplicate because
2066          *       delete-duplicate does not lock the parent's core
2067          *       (they just use the spinlock on the core).  We must
2068          *       check for races by comparing the DUPLICATED flag before
2069          *       releasing the spinlock with the flag after locking the
2070          *       chain.
2071          */
2072         if (chain->flags & HAMMER2_CHAIN_DELETED) {
2073                 hammer2_chain_unlock(chain);
2074                 hammer2_chain_drop(chain);
2075                 chain = NULL;
2076
2077                 key = next_key;
2078                 if (key == 0)
2079                         goto done;
2080                 goto again;
2081         }
2082
2083 done:
2084         /*
2085          * All done, return the chain or NULL
2086          */
2087         return (chain);
2088 }
2089
2090 /*
2091  * Create and return a new hammer2 system memory structure of the specified
2092  * key, type and size and insert it under (*parentp).  This is a full
2093  * insertion, based on the supplied key/keybits, and may involve creating
2094  * indirect blocks and moving other chains around via delete/duplicate.
2095  *
2096  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
2097  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
2098  * FULL.  This typically means that the caller is creating the chain after
2099  * doing a hammer2_chain_lookup().
2100  *
2101  * (*parentp) must be exclusive locked and may be replaced on return
2102  * depending on how much work the function had to do.
2103  *
2104  * (*parentp) must not be errored or this function will assert.
2105  *
2106  * (*chainp) usually starts out NULL and returns the newly created chain,
2107  * but if the caller desires the caller may allocate a disconnected chain
2108  * and pass it in instead.
2109  *
2110  * This function should NOT be used to insert INDIRECT blocks.  It is
2111  * typically used to create/insert inodes and data blocks.
2112  *
2113  * Caller must pass-in an exclusively locked parent the new chain is to
2114  * be inserted under, and optionally pass-in a disconnected, exclusively
2115  * locked chain to insert (else we create a new chain).  The function will
2116  * adjust (*parentp) as necessary, create or connect the chain, and
2117  * return an exclusively locked chain in *chainp.
2118  *
2119  * When creating a PFSROOT inode under the super-root, pmp is typically NULL
2120  * and will be reassigned.
2121  */
2122 int
2123 hammer2_chain_create(hammer2_trans_t *trans, hammer2_chain_t **parentp,
2124                      hammer2_chain_t **chainp, hammer2_pfs_t *pmp,
2125                      hammer2_key_t key, int keybits, int type, size_t bytes,
2126                      int flags)
2127 {
2128         hammer2_dev_t *hmp;
2129         hammer2_chain_t *chain;
2130         hammer2_chain_t *parent;
2131         hammer2_blockref_t *base;
2132         hammer2_blockref_t dummy;
2133         int allocated = 0;
2134         int error = 0;
2135         int count;
2136         int maxloops = 300000;
2137
2138         /*
2139          * Topology may be crossing a PFS boundary.
2140          */
2141         parent = *parentp;
2142         KKASSERT(hammer2_mtx_owned(&parent->core.lock));
2143         KKASSERT(parent->error == 0);
2144         hmp = parent->hmp;
2145         chain = *chainp;
2146
2147         if (chain == NULL) {
2148                 /*
2149                  * First allocate media space and construct the dummy bref,
2150                  * then allocate the in-memory chain structure.  Set the
2151                  * INITIAL flag for fresh chains which do not have embedded
2152                  * data.
2153                  */
2154                 bzero(&dummy, sizeof(dummy));
2155                 dummy.type = type;
2156                 dummy.key = key;
2157                 dummy.keybits = keybits;
2158                 dummy.data_off = hammer2_getradix(bytes);
2159                 dummy.methods = parent->bref.methods;
2160                 chain = hammer2_chain_alloc(hmp, pmp, trans, &dummy);
2161
2162                 /*
2163                  * Lock the chain manually, chain_lock will load the chain
2164                  * which we do NOT want to do.  (note: chain->refs is set
2165                  * to 1 by chain_alloc() for us, but lockcnt is not).
2166                  */
2167                 chain->lockcnt = 1;
2168                 hammer2_mtx_ex(&chain->core.lock);
2169                 allocated = 1;
2170
2171                 /*
2172                  * We do NOT set INITIAL here (yet).  INITIAL is only
2173                  * used for indirect blocks.
2174                  *
2175                  * Recalculate bytes to reflect the actual media block
2176                  * allocation.
2177                  */
2178                 bytes = (hammer2_off_t)1 <<
2179                         (int)(chain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
2180                 chain->bytes = bytes;
2181
2182                 switch(type) {
2183                 case HAMMER2_BREF_TYPE_VOLUME:
2184                 case HAMMER2_BREF_TYPE_FREEMAP:
2185                         panic("hammer2_chain_create: called with volume type");
2186                         break;
2187                 case HAMMER2_BREF_TYPE_INDIRECT:
2188                         panic("hammer2_chain_create: cannot be used to"
2189                               "create indirect block");
2190                         break;
2191                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2192                         panic("hammer2_chain_create: cannot be used to"
2193                               "create freemap root or node");
2194                         break;
2195                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2196                         KKASSERT(bytes == sizeof(chain->data->bmdata));
2197                         /* fall through */
2198                 case HAMMER2_BREF_TYPE_INODE:
2199                 case HAMMER2_BREF_TYPE_DATA:
2200                 default:
2201                         /*
2202                          * leave chain->data NULL, set INITIAL
2203                          */
2204                         KKASSERT(chain->data == NULL);
2205                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
2206                         break;
2207                 }
2208
2209                 /*
2210                  * Set statistics for pending updates.  These will be
2211                  * synchronized by the flush code.
2212                  */
2213                 switch(type) {
2214                 case HAMMER2_BREF_TYPE_INODE:
2215                         chain->inode_count = 1;
2216                         break;
2217                 case HAMMER2_BREF_TYPE_DATA:
2218                 case HAMMER2_BREF_TYPE_INDIRECT:
2219                         chain->data_count = chain->bytes;
2220                         break;
2221                 }
2222         } else {
2223                 /*
2224                  * We are reattaching a previously deleted chain, possibly
2225                  * under a new parent and possibly with a new key/keybits.
2226                  * The chain does not have to be in a modified state.  The
2227                  * UPDATE flag will be set later on in this routine.
2228                  *
2229                  * Do NOT mess with the current state of the INITIAL flag.
2230                  */
2231                 chain->bref.key = key;
2232                 chain->bref.keybits = keybits;
2233                 if (chain->flags & HAMMER2_CHAIN_DELETED)
2234                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DELETED);
2235                 KKASSERT(chain->parent == NULL);
2236         }
2237         if (flags & HAMMER2_INSERT_PFSROOT)
2238                 chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
2239         else
2240                 chain->bref.flags &= ~HAMMER2_BREF_FLAG_PFSROOT;
2241
2242         /*
2243          * Calculate how many entries we have in the blockref array and
2244          * determine if an indirect block is required.
2245          */
2246 again:
2247         if (--maxloops == 0)
2248                 panic("hammer2_chain_create: maxloops");
2249
2250         switch(parent->bref.type) {
2251         case HAMMER2_BREF_TYPE_INODE:
2252                 KKASSERT((parent->data->ipdata.op_flags &
2253                           HAMMER2_OPFLAG_DIRECTDATA) == 0);
2254                 KKASSERT(parent->data != NULL);
2255                 base = &parent->data->ipdata.u.blockset.blockref[0];
2256                 count = HAMMER2_SET_COUNT;
2257                 break;
2258         case HAMMER2_BREF_TYPE_INDIRECT:
2259         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2260                 if (parent->flags & HAMMER2_CHAIN_INITIAL)
2261                         base = NULL;
2262                 else
2263                         base = &parent->data->npdata[0];
2264                 count = parent->bytes / sizeof(hammer2_blockref_t);
2265                 break;
2266         case HAMMER2_BREF_TYPE_VOLUME:
2267                 KKASSERT(parent->data != NULL);
2268                 base = &hmp->voldata.sroot_blockset.blockref[0];
2269                 count = HAMMER2_SET_COUNT;
2270                 break;
2271         case HAMMER2_BREF_TYPE_FREEMAP:
2272                 KKASSERT(parent->data != NULL);
2273                 base = &hmp->voldata.freemap_blockset.blockref[0];
2274                 count = HAMMER2_SET_COUNT;
2275                 break;
2276         default:
2277                 panic("hammer2_chain_create: unrecognized blockref type: %d",
2278                       parent->bref.type);
2279                 base = NULL;
2280                 count = 0;
2281                 break;
2282         }
2283
2284         /*
2285          * Make sure we've counted the brefs
2286          */
2287         if ((parent->core.flags & HAMMER2_CORE_COUNTEDBREFS) == 0)
2288                 hammer2_chain_countbrefs(parent, base, count);
2289
2290         KKASSERT(parent->core.live_count >= 0 &&
2291                  parent->core.live_count <= count);
2292
2293         /*
2294          * If no free blockref could be found we must create an indirect
2295          * block and move a number of blockrefs into it.  With the parent
2296          * locked we can safely lock each child in order to delete+duplicate
2297          * it without causing a deadlock.
2298          *
2299          * This may return the new indirect block or the old parent depending
2300          * on where the key falls.  NULL is returned on error.
2301          */
2302         if (parent->core.live_count == count) {
2303                 hammer2_chain_t *nparent;
2304
2305                 nparent = hammer2_chain_create_indirect(trans, parent,
2306                                                         key, keybits,
2307                                                         type, &error);
2308                 if (nparent == NULL) {
2309                         if (allocated)
2310                                 hammer2_chain_drop(chain);
2311                         chain = NULL;
2312                         goto done;
2313                 }
2314                 if (parent != nparent) {
2315                         hammer2_chain_unlock(parent);
2316                         hammer2_chain_drop(parent);
2317                         parent = *parentp = nparent;
2318                 }
2319                 goto again;
2320         }
2321
2322         /*
2323          * Link the chain into its parent.
2324          */
2325         if (chain->parent != NULL)
2326                 panic("hammer2: hammer2_chain_create: chain already connected");
2327         KKASSERT(chain->parent == NULL);
2328         hammer2_chain_insert(parent, chain,
2329                              HAMMER2_CHAIN_INSERT_SPIN |
2330                              HAMMER2_CHAIN_INSERT_LIVE,
2331                              0);
2332
2333         if (allocated) {
2334                 /*
2335                  * Mark the newly created chain modified.  This will cause
2336                  * UPDATE to be set.
2337                  *
2338                  * Device buffers are not instantiated for DATA elements
2339                  * as these are handled by logical buffers.
2340                  *
2341                  * Indirect and freemap node indirect blocks are handled
2342                  * by hammer2_chain_create_indirect() and not by this
2343                  * function.
2344                  *
2345                  * Data for all other bref types is expected to be
2346                  * instantiated (INODE, LEAF).
2347                  */
2348                 switch(chain->bref.type) {
2349                 case HAMMER2_BREF_TYPE_DATA:
2350                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2351                 case HAMMER2_BREF_TYPE_INODE:
2352                         hammer2_chain_modify(trans, chain,
2353                                              HAMMER2_MODIFY_OPTDATA);
2354                         break;
2355                 default:
2356                         /*
2357                          * Remaining types are not supported by this function.
2358                          * In particular, INDIRECT and LEAF_NODE types are
2359                          * handled by create_indirect().
2360                          */
2361                         panic("hammer2_chain_create: bad type: %d",
2362                               chain->bref.type);
2363                         /* NOT REACHED */
2364                         break;
2365                 }
2366         } else {
2367                 /*
2368                  * When reconnecting a chain we must set UPDATE and
2369                  * setflush so the flush recognizes that it must update
2370                  * the bref in the parent.
2371                  */
2372                 if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
2373                         hammer2_chain_ref(chain);
2374                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
2375                 }
2376                 if (chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
2377                     (flags & HAMMER2_INSERT_NOSTATS) == 0) {
2378                         KKASSERT(chain->data);
2379                         chain->inode_count_up +=
2380                                 chain->data->ipdata.inode_count;
2381                         chain->data_count_up +=
2382                                 chain->data->ipdata.data_count;
2383                 }
2384         }
2385
2386         /*
2387          * We must setflush(parent) to ensure that it recurses through to
2388          * chain.  setflush(chain) might not work because ONFLUSH is possibly
2389          * already set in the chain (so it won't recurse up to set it in the
2390          * parent).
2391          */
2392         hammer2_chain_setflush(trans, parent);
2393
2394 done:
2395         *chainp = chain;
2396
2397         return (error);
2398 }
2399
2400 /*
2401  * Move the chain from its old parent to a new parent.  The chain must have
2402  * already been deleted or already disconnected (or never associated) with
2403  * a parent.  The chain is reassociated with the new parent and the deleted
2404  * flag will be cleared (no longer deleted).  The chain's modification state
2405  * is not altered.
2406  *
2407  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (parent) TO THE INSERTION
2408  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
2409  * FULL.  This typically means that the caller is creating the chain after
2410  * doing a hammer2_chain_lookup().
2411  *
2412  * A non-NULL bref is typically passed when key and keybits must be overridden.
2413  * Note that hammer2_cluster_duplicate() *ONLY* uses the key and keybits fields
2414  * from a passed-in bref and uses the old chain's bref for everything else.
2415  *
2416  * Neither (parent) or (chain) can be errored.
2417  *
2418  * If (parent) is non-NULL then the new duplicated chain is inserted under
2419  * the parent.
2420  *
2421  * If (parent) is NULL then the newly duplicated chain is not inserted
2422  * anywhere, similar to if it had just been chain_alloc()'d (suitable for
2423  * passing into hammer2_chain_create() after this function returns).
2424  *
2425  * WARNING! This function calls create which means it can insert indirect
2426  *          blocks.  This can cause other unrelated chains in the parent to
2427  *          be moved to a newly inserted indirect block in addition to the
2428  *          specific chain.
2429  */
2430 void
2431 hammer2_chain_rename(hammer2_trans_t *trans, hammer2_blockref_t *bref,
2432                      hammer2_chain_t **parentp, hammer2_chain_t *chain,
2433                      int flags)
2434 {
2435         hammer2_dev_t *hmp;
2436         hammer2_chain_t *parent;
2437         size_t bytes;
2438
2439         /*
2440          * WARNING!  We should never resolve DATA to device buffers
2441          *           (XXX allow it if the caller did?), and since
2442          *           we currently do not have the logical buffer cache
2443          *           buffer in-hand to fix its cached physical offset
2444          *           we also force the modify code to not COW it. XXX
2445          */
2446         hmp = chain->hmp;
2447         KKASSERT(chain->parent == NULL);
2448         KKASSERT(chain->error == 0);
2449
2450         /*
2451          * Now create a duplicate of the chain structure, associating
2452          * it with the same core, making it the same size, pointing it
2453          * to the same bref (the same media block).
2454          */
2455         if (bref == NULL)
2456                 bref = &chain->bref;
2457         bytes = (hammer2_off_t)1 <<
2458                 (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
2459
2460         /*
2461          * If parent is not NULL the duplicated chain will be entered under
2462          * the parent and the UPDATE bit set to tell flush to update
2463          * the blockref.
2464          *
2465          * We must setflush(parent) to ensure that it recurses through to
2466          * chain.  setflush(chain) might not work because ONFLUSH is possibly
2467          * already set in the chain (so it won't recurse up to set it in the
2468          * parent).
2469          *
2470          * Having both chains locked is extremely important for atomicy.
2471          */
2472         if (parentp && (parent = *parentp) != NULL) {
2473                 KKASSERT(hammer2_mtx_owned(&parent->core.lock));
2474                 KKASSERT(parent->refs > 0);
2475                 KKASSERT(parent->error == 0);
2476
2477                 hammer2_chain_create(trans, parentp, &chain, chain->pmp,
2478                                      bref->key, bref->keybits, bref->type,
2479                                      chain->bytes, flags);
2480                 KKASSERT(chain->flags & HAMMER2_CHAIN_UPDATE);
2481                 hammer2_chain_setflush(trans, *parentp);
2482         }
2483 }
2484
2485 /*
2486  * Helper function for deleting chains.
2487  *
2488  * The chain is removed from the live view (the RBTREE) as well as the parent's
2489  * blockmap.  Both chain and its parent must be locked.
2490  *
2491  * parent may not be errored.  chain can be errored.
2492  */
2493 static void
2494 _hammer2_chain_delete_helper(hammer2_trans_t *trans,
2495                              hammer2_chain_t *parent, hammer2_chain_t *chain,
2496                              int flags)
2497 {
2498         hammer2_dev_t *hmp;
2499
2500         KKASSERT((chain->flags & (HAMMER2_CHAIN_DELETED |
2501                                   HAMMER2_CHAIN_FICTITIOUS)) == 0);
2502         hmp = chain->hmp;
2503
2504         if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
2505                 /*
2506                  * Chain is blockmapped, so there must be a parent.
2507                  * Atomically remove the chain from the parent and remove
2508                  * the blockmap entry.
2509                  */
2510                 hammer2_blockref_t *base;
2511                 int count;
2512
2513                 KKASSERT(parent != NULL);
2514                 KKASSERT(parent->error == 0);
2515                 KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
2516                 hammer2_chain_modify(trans, parent,
2517                                      HAMMER2_MODIFY_OPTDATA);
2518
2519                 /*
2520                  * Calculate blockmap pointer
2521                  */
2522                 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
2523                 hammer2_spin_ex(&parent->core.spin);
2524
2525                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
2526                 atomic_add_int(&parent->core.live_count, -1);
2527                 ++parent->core.generation;
2528                 RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
2529                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
2530                 --parent->core.chain_count;
2531                 chain->parent = NULL;
2532
2533                 switch(parent->bref.type) {
2534                 case HAMMER2_BREF_TYPE_INODE:
2535                         /*
2536                          * Access the inode's block array.  However, there
2537                          * is no block array if the inode is flagged
2538                          * DIRECTDATA.  The DIRECTDATA case typicaly only
2539                          * occurs when a hardlink has been shifted up the
2540                          * tree and the original inode gets replaced with
2541                          * an OBJTYPE_HARDLINK placeholding inode.
2542                          */
2543                         if (parent->data &&
2544                             (parent->data->ipdata.op_flags &
2545                              HAMMER2_OPFLAG_DIRECTDATA) == 0) {
2546                                 base =
2547                                    &parent->data->ipdata.u.blockset.blockref[0];
2548                         } else {
2549                                 base = NULL;
2550                         }
2551                         count = HAMMER2_SET_COUNT;
2552                         break;
2553                 case HAMMER2_BREF_TYPE_INDIRECT:
2554                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2555                         if (parent->data)
2556                                 base = &parent->data->npdata[0];
2557                         else
2558                                 base = NULL;
2559                         count = parent->bytes / sizeof(hammer2_blockref_t);
2560                         break;
2561                 case HAMMER2_BREF_TYPE_VOLUME:
2562                         base = &hmp->voldata.sroot_blockset.blockref[0];
2563                         count = HAMMER2_SET_COUNT;
2564                         break;
2565                 case HAMMER2_BREF_TYPE_FREEMAP:
2566                         base = &parent->data->npdata[0];
2567                         count = HAMMER2_SET_COUNT;
2568                         break;
2569                 default:
2570                         base = NULL;
2571                         count = 0;
2572                         panic("hammer2_flush_pass2: "
2573                               "unrecognized blockref type: %d",
2574                               parent->bref.type);
2575                 }
2576
2577                 /*
2578                  * delete blockmapped chain from its parent.
2579                  *
2580                  * The parent is not affected by any statistics in chain
2581                  * which are pending synchronization.  That is, there is
2582                  * nothing to undo in the parent since they have not yet
2583                  * been incorporated into the parent.
2584                  *
2585                  * The parent is affected by statistics stored in inodes.
2586                  * Those have already been synchronized, so they must be
2587                  * undone.  XXX split update possible w/delete in middle?
2588                  */
2589                 if (base) {
2590                         if (chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
2591                             (flags & HAMMER2_DELETE_NOSTATS) == 0) {
2592                                 KKASSERT(chain->data != NULL);
2593                                 parent->data_count -=
2594                                         chain->data->ipdata.data_count;
2595                                 parent->inode_count -=
2596                                         chain->data->ipdata.inode_count;
2597                         }
2598
2599                         int cache_index = -1;
2600                         hammer2_base_delete(trans, parent, base, count,
2601                                             &cache_index, chain);
2602                 }
2603                 hammer2_spin_unex(&parent->core.spin);
2604         } else if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
2605                 /*
2606                  * Chain is not blockmapped but a parent is present.
2607                  * Atomically remove the chain from the parent.  There is
2608                  * no blockmap entry to remove.
2609                  *
2610                  * Because chain was associated with a parent but not
2611                  * synchronized, the chain's *_count_up fields contain
2612                  * inode adjustment statistics which must be undone.
2613                  */
2614                 hammer2_spin_ex(&parent->core.spin);
2615                 if (chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
2616                     (flags & HAMMER2_DELETE_NOSTATS) == 0) {
2617                         KKASSERT(chain->data != NULL);
2618                         chain->data_count_up -=
2619                                 chain->data->ipdata.data_count;
2620                         chain->inode_count_up -=
2621                                 chain->data->ipdata.inode_count;
2622                 }
2623                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
2624                 atomic_add_int(&parent->core.live_count, -1);
2625                 ++parent->core.generation;
2626                 RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
2627                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
2628                 --parent->core.chain_count;
2629                 chain->parent = NULL;
2630                 hammer2_spin_unex(&parent->core.spin);
2631         } else {
2632                 /*
2633                  * Chain is not blockmapped and has no parent.  This
2634                  * is a degenerate case.
2635                  */
2636                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
2637         }
2638
2639 #if 0
2640         /*
2641          * If the deletion is permanent (i.e. the chain is not simply being
2642          * moved within the topology), adjust the freemap to indicate that
2643          * the block *might* be freeable.  bulkfree must still determine
2644          * that it is actually freeable.
2645          *
2646          * We no longer do this in the normal filesystem operations path
2647          * as it interferes with the bulkfree algorithm.
2648          */
2649         if ((flags & HAMMER2_DELETE_PERMANENT) &&
2650             chain->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
2651             chain->bref.type != HAMMER2_BREF_TYPE_FREEMAP_LEAF &&
2652             (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
2653                 hammer2_freemap_adjust(trans, hmp, &chain->bref,
2654                                        HAMMER2_FREEMAP_DOMAYFREE);
2655         }
2656 #endif
2657 }
2658
2659 /*
2660  * Create an indirect block that covers one or more of the elements in the
2661  * current parent.  Either returns the existing parent with no locking or
2662  * ref changes or returns the new indirect block locked and referenced
2663  * and leaving the original parent lock/ref intact as well.
2664  *
2665  * If an error occurs, NULL is returned and *errorp is set to the error.
2666  *
2667  * The returned chain depends on where the specified key falls.
2668  *
2669  * The key/keybits for the indirect mode only needs to follow three rules:
2670  *
2671  * (1) That all elements underneath it fit within its key space and
2672  *
2673  * (2) That all elements outside it are outside its key space.
2674  *
2675  * (3) When creating the new indirect block any elements in the current
2676  *     parent that fit within the new indirect block's keyspace must be
2677  *     moved into the new indirect block.
2678  *
2679  * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
2680  *     keyspace the the current parent, but lookup/iteration rules will
2681  *     ensure (and must ensure) that rule (2) for all parents leading up
2682  *     to the nearest inode or the root volume header is adhered to.  This
2683  *     is accomplished by always recursing through matching keyspaces in
2684  *     the hammer2_chain_lookup() and hammer2_chain_next() API.
2685  *
2686  * The current implementation calculates the current worst-case keyspace by
2687  * iterating the current parent and then divides it into two halves, choosing
2688  * whichever half has the most elements (not necessarily the half containing
2689  * the requested key).
2690  *
2691  * We can also opt to use the half with the least number of elements.  This
2692  * causes lower-numbered keys (aka logical file offsets) to recurse through
2693  * fewer indirect blocks and higher-numbered keys to recurse through more.
2694  * This also has the risk of not moving enough elements to the new indirect
2695  * block and being forced to create several indirect blocks before the element
2696  * can be inserted.
2697  *
2698  * Must be called with an exclusively locked parent.
2699  */
2700 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
2701                                 hammer2_key_t *keyp, int keybits,
2702                                 hammer2_blockref_t *base, int count);
2703 static int hammer2_chain_indkey_normal(hammer2_chain_t *parent,
2704                                 hammer2_key_t *keyp, int keybits,
2705                                 hammer2_blockref_t *base, int count);
2706 static
2707 hammer2_chain_t *
2708 hammer2_chain_create_indirect(hammer2_trans_t *trans, hammer2_chain_t *parent,
2709                               hammer2_key_t create_key, int create_bits,
2710                               int for_type, int *errorp)
2711 {
2712         hammer2_dev_t *hmp;
2713         hammer2_blockref_t *base;
2714         hammer2_blockref_t *bref;
2715         hammer2_blockref_t bcopy;
2716         hammer2_chain_t *chain;
2717         hammer2_chain_t *ichain;
2718         hammer2_chain_t dummy;
2719         hammer2_key_t key = create_key;
2720         hammer2_key_t key_beg;
2721         hammer2_key_t key_end;
2722         hammer2_key_t key_next;
2723         int keybits = create_bits;
2724         int count;
2725         int nbytes;
2726         int cache_index;
2727         int loops;
2728         int reason;
2729         int generation;
2730         int maxloops = 300000;
2731
2732         /*
2733          * Calculate the base blockref pointer or NULL if the chain
2734          * is known to be empty.  We need to calculate the array count
2735          * for RB lookups either way.
2736          */
2737         hmp = parent->hmp;
2738         *errorp = 0;
2739         KKASSERT(hammer2_mtx_owned(&parent->core.lock));
2740
2741         /*hammer2_chain_modify(trans, &parent, HAMMER2_MODIFY_OPTDATA);*/
2742         if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2743                 base = NULL;
2744
2745                 switch(parent->bref.type) {
2746                 case HAMMER2_BREF_TYPE_INODE:
2747                         count = HAMMER2_SET_COUNT;
2748                         break;
2749                 case HAMMER2_BREF_TYPE_INDIRECT:
2750                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2751                         count = parent->bytes / sizeof(hammer2_blockref_t);
2752                         break;
2753                 case HAMMER2_BREF_TYPE_VOLUME:
2754                         count = HAMMER2_SET_COUNT;
2755                         break;
2756                 case HAMMER2_BREF_TYPE_FREEMAP:
2757                         count = HAMMER2_SET_COUNT;
2758                         break;
2759                 default:
2760                         panic("hammer2_chain_create_indirect: "
2761                               "unrecognized blockref type: %d",
2762                               parent->bref.type);
2763                         count = 0;
2764                         break;
2765                 }
2766         } else {
2767                 switch(parent->bref.type) {
2768                 case HAMMER2_BREF_TYPE_INODE:
2769                         base = &parent->data->ipdata.u.blockset.blockref[0];
2770                         count = HAMMER2_SET_COUNT;
2771                         break;
2772                 case HAMMER2_BREF_TYPE_INDIRECT:
2773                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2774                         base = &parent->data->npdata[0];
2775                         count = parent->bytes / sizeof(hammer2_blockref_t);
2776                         break;
2777                 case HAMMER2_BREF_TYPE_VOLUME:
2778                         base = &hmp->voldata.sroot_blockset.blockref[0];
2779                         count = HAMMER2_SET_COUNT;
2780                         break;
2781                 case HAMMER2_BREF_TYPE_FREEMAP:
2782                         base = &hmp->voldata.freemap_blockset.blockref[0];
2783                         count = HAMMER2_SET_COUNT;
2784                         break;
2785                 default:
2786                         panic("hammer2_chain_create_indirect: "
2787                               "unrecognized blockref type: %d",
2788                               parent->bref.type);
2789                         count = 0;
2790                         break;
2791                 }
2792         }
2793
2794         /*
2795          * dummy used in later chain allocation (no longer used for lookups).
2796          */
2797         bzero(&dummy, sizeof(dummy));
2798
2799         /*
2800          * When creating an indirect block for a freemap node or leaf
2801          * the key/keybits must be fitted to static radix levels because
2802          * particular radix levels use particular reserved blocks in the
2803          * related zone.
2804          *
2805          * This routine calculates the key/radix of the indirect block
2806          * we need to create, and whether it is on the high-side or the
2807          * low-side.
2808          */
2809         if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
2810             for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
2811                 keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
2812                                                        base, count);
2813         } else {
2814                 keybits = hammer2_chain_indkey_normal(parent, &key, keybits,
2815                                                       base, count);
2816         }
2817
2818         /*
2819          * Normalize the key for the radix being represented, keeping the
2820          * high bits and throwing away the low bits.
2821          */
2822         key &= ~(((hammer2_key_t)1 << keybits) - 1);
2823
2824         /*
2825          * How big should our new indirect block be?  It has to be at least
2826          * as large as its parent.
2827          */
2828         if (parent->bref.type == HAMMER2_BREF_TYPE_INODE)
2829                 nbytes = HAMMER2_IND_BYTES_MIN;
2830         else
2831                 nbytes = HAMMER2_IND_BYTES_MAX;
2832         if (nbytes < count * sizeof(hammer2_blockref_t))
2833                 nbytes = count * sizeof(hammer2_blockref_t);
2834
2835         /*
2836          * Ok, create our new indirect block
2837          */
2838         if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
2839             for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
2840                 dummy.bref.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
2841         } else {
2842                 dummy.bref.type = HAMMER2_BREF_TYPE_INDIRECT;
2843         }
2844         dummy.bref.key = key;
2845         dummy.bref.keybits = keybits;
2846         dummy.bref.data_off = hammer2_getradix(nbytes);
2847         dummy.bref.methods = parent->bref.methods;
2848
2849         ichain = hammer2_chain_alloc(hmp, parent->pmp, trans, &dummy.bref);
2850         atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
2851         hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
2852         /* ichain has one ref at this point */
2853
2854         /*
2855          * We have to mark it modified to allocate its block, but use
2856          * OPTDATA to allow it to remain in the INITIAL state.  Otherwise
2857          * it won't be acted upon by the flush code.
2858          */
2859         hammer2_chain_modify(trans, ichain, HAMMER2_MODIFY_OPTDATA);
2860
2861         /*
2862          * Iterate the original parent and move the matching brefs into
2863          * the new indirect block.
2864          *
2865          * XXX handle flushes.
2866          */
2867         key_beg = 0;
2868         key_end = HAMMER2_KEY_MAX;
2869         cache_index = 0;
2870         hammer2_spin_ex(&parent->core.spin);
2871         loops = 0;
2872         reason = 0;
2873
2874         for (;;) {
2875                 if (++loops > 100000) {
2876                     hammer2_spin_unex(&parent->core.spin);
2877                     panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
2878                           reason, parent, base, count, key_next);
2879                 }
2880
2881                 /*
2882                  * NOTE: spinlock stays intact, returned chain (if not NULL)
2883                  *       is not referenced or locked which means that we
2884                  *       cannot safely check its flagged / deletion status
2885                  *       until we lock it.
2886                  */
2887                 chain = hammer2_combined_find(parent, base, count,
2888                                               &cache_index, &key_next,
2889                                               key_beg, key_end,
2890                                               &bref);
2891                 generation = parent->core.generation;
2892                 if (bref == NULL)
2893                         break;
2894                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
2895
2896                 /*
2897                  * Skip keys that are not within the key/radix of the new
2898                  * indirect block.  They stay in the parent.
2899                  */
2900                 if ((~(((hammer2_key_t)1 << keybits) - 1) &
2901                     (key ^ bref->key)) != 0) {
2902                         goto next_key_spinlocked;
2903                 }
2904
2905                 /*
2906                  * Load the new indirect block by acquiring the related
2907                  * chains (potentially from media as it might not be
2908                  * in-memory).  Then move it to the new parent (ichain)
2909                  * via DELETE-DUPLICATE.
2910                  *
2911                  * chain is referenced but not locked.  We must lock the
2912                  * chain to obtain definitive DUPLICATED/DELETED state
2913                  */
2914                 if (chain) {
2915                         /*
2916                          * Use chain already present in the RBTREE
2917                          */
2918                         hammer2_chain_ref(chain);
2919                         hammer2_spin_unex(&parent->core.spin);
2920                         hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
2921                 } else {
2922                         /*
2923                          * Get chain for blockref element.  _get returns NULL
2924                          * on insertion race.
2925                          */
2926                         bcopy = *bref;
2927                         hammer2_spin_unex(&parent->core.spin);
2928                         chain = hammer2_chain_get(parent, generation, &bcopy);
2929                         if (chain == NULL) {
2930                                 reason = 1;
2931                                 hammer2_spin_ex(&parent->core.spin);
2932                                 continue;
2933                         }
2934                         if (bcmp(&bcopy, bref, sizeof(bcopy))) {
2935                                 kprintf("REASON 2\n");
2936                                 reason = 2;
2937                                 hammer2_chain_drop(chain);
2938                                 hammer2_spin_ex(&parent->core.spin);
2939                                 continue;
2940                         }
2941                         hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
2942                 }
2943
2944                 /*
2945                  * This is always live so if the chain has been deleted
2946                  * we raced someone and we have to retry.
2947                  *
2948                  * NOTE: Lookups can race delete-duplicate because
2949                  *       delete-duplicate does not lock the parent's core
2950                  *       (they just use the spinlock on the core).  We must
2951                  *       check for races by comparing the DUPLICATED flag before
2952                  *       releasing the spinlock with the flag after locking the
2953                  *       chain.
2954                  *
2955                  *       (note reversed logic for this one)
2956                  */
2957                 if (chain->flags & HAMMER2_CHAIN_DELETED) {
2958                         hammer2_chain_unlock(chain);
2959                         hammer2_chain_drop(chain);
2960                         goto next_key;
2961                 }
2962
2963                 /*
2964                  * Shift the chain to the indirect block.
2965                  *
2966                  * WARNING! No reason for us to load chain data, pass NOSTATS
2967                  *          to prevent delete/insert from trying to access
2968                  *          inode stats (and thus asserting if there is no
2969                  *          chain->data loaded).
2970                  */
2971                 hammer2_chain_delete(trans, parent, chain,
2972                                      HAMMER2_DELETE_NOSTATS);
2973                 hammer2_chain_rename(trans, NULL, &ichain, chain,
2974                                      HAMMER2_INSERT_NOSTATS);
2975                 hammer2_chain_unlock(chain);
2976                 hammer2_chain_drop(chain);
2977                 KKASSERT(parent->refs > 0);
2978                 chain = NULL;
2979 next_key:
2980                 hammer2_spin_ex(&parent->core.spin);
2981 next_key_spinlocked:
2982                 if (--maxloops == 0)
2983                         panic("hammer2_chain_create_indirect: maxloops");
2984                 reason = 4;
2985                 if (key_next == 0 || key_next > key_end)
2986                         break;
2987                 key_beg = key_next;
2988                 /* loop */
2989         }
2990         hammer2_spin_unex(&parent->core.spin);
2991
2992         /*
2993          * Insert the new indirect block into the parent now that we've
2994          * cleared out some entries in the parent.  We calculated a good
2995          * insertion index in the loop above (ichain->index).
2996          *
2997          * We don't have to set UPDATE here because we mark ichain
2998          * modified down below (so the normal modified -> flush -> set-moved
2999          * sequence applies).
3000          *
3001          * The insertion shouldn't race as this is a completely new block
3002          * and the parent is locked.
3003          */
3004         KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
3005         hammer2_chain_insert(parent, ichain,
3006                              HAMMER2_CHAIN_INSERT_SPIN |
3007                              HAMMER2_CHAIN_INSERT_LIVE,
3008                              0);
3009
3010         /*
3011          * Make sure flushes propogate after our manual insertion.
3012          */
3013         hammer2_chain_setflush(trans, ichain);
3014         hammer2_chain_setflush(trans, parent);
3015
3016         /*
3017          * Figure out what to return.
3018          */
3019         if (~(((hammer2_key_t)1 << keybits) - 1) &
3020                    (create_key ^ key)) {
3021                 /*
3022                  * Key being created is outside the key range,
3023                  * return the original parent.
3024                  */
3025                 hammer2_chain_unlock(ichain);
3026                 hammer2_chain_drop(ichain);
3027         } else {
3028                 /*
3029                  * Otherwise its in the range, return the new parent.
3030                  * (leave both the new and old parent locked).
3031                  */
3032                 parent = ichain;
3033         }
3034
3035         return(parent);
3036 }
3037
3038 /*
3039  * Calculate the keybits and highside/lowside of the freemap node the
3040  * caller is creating.
3041  *
3042  * This routine will specify the next higher-level freemap key/radix
3043  * representing the lowest-ordered set.  By doing so, eventually all
3044  * low-ordered sets will be moved one level down.
3045  *
3046  * We have to be careful here because the freemap reserves a limited
3047  * number of blocks for a limited number of levels.  So we can't just
3048  * push indiscriminately.
3049  */
3050 int
3051 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
3052                              int keybits, hammer2_blockref_t *base, int count)
3053 {
3054         hammer2_chain_t *chain;
3055         hammer2_blockref_t *bref;
3056         hammer2_key_t key;
3057         hammer2_key_t key_beg;
3058         hammer2_key_t key_end;
3059         hammer2_key_t key_next;
3060         int cache_index;
3061         int locount;
3062         int hicount;
3063         int maxloops = 300000;
3064
3065         key = *keyp;
3066         locount = 0;
3067         hicount = 0;
3068         keybits = 64;
3069
3070         /*
3071          * Calculate the range of keys in the array being careful to skip
3072          * slots which are overridden with a deletion.
3073          */
3074         key_beg = 0;
3075         key_end = HAMMER2_KEY_MAX;
3076         cache_index = 0;
3077         hammer2_spin_ex(&parent->core.spin);
3078
3079         for (;;) {
3080                 if (--maxloops == 0) {
3081                         panic("indkey_freemap shit %p %p:%d\n",
3082                               parent, base, count);
3083                 }
3084                 chain = hammer2_combined_find(parent, base, count,
3085                                               &cache_index, &key_next,
3086                                               key_beg, key_end,
3087                                               &bref);
3088
3089                 /*
3090                  * Exhausted search
3091                  */
3092                 if (bref == NULL)
3093                         break;
3094
3095                 /*
3096                  * Skip deleted chains.
3097                  */
3098                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3099                         if (key_next == 0 || key_next > key_end)
3100                                 break;
3101                         key_beg = key_next;
3102                         continue;
3103                 }
3104
3105                 /*
3106                  * Use the full live (not deleted) element for the scan
3107                  * iteration.  HAMMER2 does not allow partial replacements.
3108                  *
3109                  * XXX should be built into hammer2_combined_find().
3110                  */
3111                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
3112
3113                 if (keybits > bref->keybits) {
3114                         key = bref->key;
3115                         keybits = bref->keybits;
3116                 } else if (keybits == bref->keybits && bref->key < key) {
3117                         key = bref->key;
3118                 }
3119                 if (key_next == 0)
3120                         break;
3121                 key_beg = key_next;
3122         }
3123         hammer2_spin_unex(&parent->core.spin);
3124
3125         /*
3126          * Return the keybits for a higher-level FREEMAP_NODE covering
3127          * this node.
3128          */
3129         switch(keybits) {
3130         case HAMMER2_FREEMAP_LEVEL0_RADIX:
3131                 keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
3132                 break;
3133         case HAMMER2_FREEMAP_LEVEL1_RADIX:
3134                 keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
3135                 break;
3136         case HAMMER2_FREEMAP_LEVEL2_RADIX:
3137                 keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
3138                 break;
3139         case HAMMER2_FREEMAP_LEVEL3_RADIX:
3140                 keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
3141                 break;
3142         case HAMMER2_FREEMAP_LEVEL4_RADIX:
3143                 panic("hammer2_chain_indkey_freemap: level too high");
3144                 break;
3145         default:
3146                 panic("hammer2_chain_indkey_freemap: bad radix");
3147                 break;
3148         }
3149         *keyp = key;
3150
3151         return (keybits);
3152 }
3153
3154 /*
3155  * Calculate the keybits and highside/lowside of the indirect block the
3156  * caller is creating.
3157  */
3158 static int
3159 hammer2_chain_indkey_normal(hammer2_chain_t *parent, hammer2_key_t *keyp,
3160                             int keybits, hammer2_blockref_t *base, int count)
3161 {
3162         hammer2_blockref_t *bref;
3163         hammer2_chain_t *chain;
3164         hammer2_key_t key_beg;
3165         hammer2_key_t key_end;
3166         hammer2_key_t key_next;
3167         hammer2_key_t key;
3168         int nkeybits;
3169         int locount;
3170         int hicount;
3171         int cache_index;
3172         int maxloops = 300000;
3173
3174         key = *keyp;
3175         locount = 0;
3176         hicount = 0;
3177
3178         /*
3179          * Calculate the range of keys in the array being careful to skip
3180          * slots which are overridden with a deletion.  Once the scan
3181          * completes we will cut the key range in half and shift half the
3182          * range into the new indirect block.
3183          */
3184         key_beg = 0;
3185         key_end = HAMMER2_KEY_MAX;
3186         cache_index = 0;
3187         hammer2_spin_ex(&parent->core.spin);
3188
3189         for (;;) {
3190                 if (--maxloops == 0) {
3191                         panic("indkey_freemap shit %p %p:%d\n",
3192                               parent, base, count);
3193                 }
3194                 chain = hammer2_combined_find(parent, base, count,
3195                                               &cache_index, &key_next,
3196                                               key_beg, key_end,
3197                                               &bref);
3198
3199                 /*
3200                  * Exhausted search
3201                  */
3202                 if (bref == NULL)
3203                         break;
3204
3205                 /*
3206                  * NOTE: No need to check DUPLICATED here because we do
3207                  *       not release the spinlock.
3208                  */
3209                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3210                         if (key_next == 0 || key_next > key_end)
3211                                 break;
3212                         key_beg = key_next;
3213                         continue;
3214                 }
3215
3216                 /*
3217                  * Use the full live (not deleted) element for the scan
3218                  * iteration.  HAMMER2 does not allow partial replacements.
3219                  *
3220                  * XXX should be built into hammer2_combined_find().
3221                  */
3222                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
3223
3224                 /*
3225                  * Expand our calculated key range (key, keybits) to fit
3226                  * the scanned key.  nkeybits represents the full range
3227                  * that we will later cut in half (two halves @ nkeybits - 1).
3228                  */
3229                 nkeybits = keybits;
3230                 if (nkeybits < bref->keybits) {
3231                         if (bref->keybits > 64) {
3232                                 kprintf("bad bref chain %p bref %p\n",
3233                                         chain, bref);
3234                                 Debugger("fubar");
3235                         }
3236                         nkeybits = bref->keybits;
3237                 }
3238                 while (nkeybits < 64 &&
3239                        (~(((hammer2_key_t)1 << nkeybits) - 1) &
3240                         (key ^ bref->key)) != 0) {
3241                         ++nkeybits;
3242                 }
3243
3244                 /*
3245                  * If the new key range is larger we have to determine
3246                  * which side of the new key range the existing keys fall
3247                  * under by checking the high bit, then collapsing the
3248                  * locount into the hicount or vise-versa.
3249                  */
3250                 if (keybits != nkeybits) {
3251                         if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
3252                                 hicount += locount;
3253                                 locount = 0;
3254                         } else {
3255                                 locount += hicount;
3256                                 hicount = 0;
3257                         }
3258                         keybits = nkeybits;
3259                 }
3260
3261                 /*
3262                  * The newly scanned key will be in the lower half or the
3263                  * upper half of the (new) key range.
3264                  */
3265                 if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
3266                         ++hicount;
3267                 else
3268                         ++locount;
3269
3270                 if (key_next == 0)
3271                         break;
3272                 key_beg = key_next;
3273         }
3274         hammer2_spin_unex(&parent->core.spin);
3275         bref = NULL;    /* now invalid (safety) */
3276
3277         /*
3278          * Adjust keybits to represent half of the full range calculated
3279          * above (radix 63 max)
3280          */
3281         --keybits;
3282
3283         /*
3284          * Select whichever half contains the most elements.  Theoretically
3285          * we can select either side as long as it contains at least one
3286          * element (in order to ensure that a free slot is present to hold
3287          * the indirect block).
3288          */
3289         if (hammer2_indirect_optimize) {
3290                 /*
3291                  * Insert node for least number of keys, this will arrange
3292                  * the first few blocks of a large file or the first few
3293                  * inodes in a directory with fewer indirect blocks when
3294                  * created linearly.
3295                  */
3296                 if (hicount < locount && hicount != 0)
3297                         key |= (hammer2_key_t)1 << keybits;
3298                 else
3299                         key &= ~(hammer2_key_t)1 << keybits;
3300         } else {
3301                 /*
3302                  * Insert node for most number of keys, best for heavily
3303                  * fragmented files.
3304                  */
3305                 if (hicount > locount)
3306                         key |= (hammer2_key_t)1 << keybits;
3307                 else
3308                         key &= ~(hammer2_key_t)1 << keybits;
3309         }
3310         *keyp = key;
3311
3312         return (keybits);
3313 }
3314
3315 /*
3316  * Sets CHAIN_DELETED and remove the chain's blockref from the parent if
3317  * it exists.
3318  *
3319  * Both parent and chain must be locked exclusively.
3320  *
3321  * This function will modify the parent if the blockref requires removal
3322  * from the parent's block table.
3323  *
3324  * This function is NOT recursive.  Any entity already pushed into the
3325  * chain (such as an inode) may still need visibility into its contents,
3326  * as well as the ability to read and modify the contents.  For example,
3327  * for an unlinked file which is still open.
3328  */
3329 void
3330 hammer2_chain_delete(hammer2_trans_t *trans, hammer2_chain_t *parent,
3331                      hammer2_chain_t *chain, int flags)
3332 {
3333         KKASSERT(hammer2_mtx_owned(&chain->core.lock));
3334
3335         /*
3336          * Nothing to do if already marked.
3337          *
3338          * We need the spinlock on the core whos RBTREE contains chain
3339          * to protect against races.
3340          */
3341         if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
3342                 KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
3343                          chain->parent == parent);
3344                 _hammer2_chain_delete_helper(trans, parent, chain, flags);
3345         }
3346
3347         /*
3348          * NOTE: Special case call to hammer2_flush().  We are not in a FLUSH
3349          *       transaction, so we can't pass a mirror_tid for the volume.
3350          *       But since we are destroying the chain we can just pass 0
3351          *       and use the flush call to clean out the subtopology.
3352          *
3353          *       XXX not the best way to destroy the sub-topology.
3354          */
3355         if (flags & HAMMER2_DELETE_PERMANENT) {
3356                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
3357                 hammer2_flush(trans, chain);
3358         } else {
3359                 /* XXX might not be needed */
3360                 hammer2_chain_setflush(trans, chain);
3361         }
3362 }
3363
3364 /*
3365  * Returns the index of the nearest element in the blockref array >= elm.
3366  * Returns (count) if no element could be found.
3367  *
3368  * Sets *key_nextp to the next key for loop purposes but does not modify
3369  * it if the next key would be higher than the current value of *key_nextp.
3370  * Note that *key_nexp can overflow to 0, which should be tested by the
3371  * caller.
3372  *
3373  * (*cache_indexp) is a heuristic and can be any value without effecting
3374  * the result.
3375  *
3376  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
3377  *           held through the operation.
3378  */
3379 static int
3380 hammer2_base_find(hammer2_chain_t *parent,
3381                   hammer2_blockref_t *base, int count,
3382                   int *cache_indexp, hammer2_key_t *key_nextp,
3383                   hammer2_key_t key_beg, hammer2_key_t key_end)
3384 {
3385         hammer2_blockref_t *scan;
3386         hammer2_key_t scan_end;
3387         int i;
3388         int limit;
3389
3390         /*
3391          * Require the live chain's already have their core's counted
3392          * so we can optimize operations.
3393          */
3394         KKASSERT(parent->core.flags & HAMMER2_CORE_COUNTEDBREFS);
3395
3396         /*
3397          * Degenerate case
3398          */
3399         if (count == 0 || base == NULL)
3400                 return(count);
3401
3402         /*
3403          * Sequential optimization using *cache_indexp.  This is the most
3404          * likely scenario.
3405          *
3406          * We can avoid trailing empty entries on live chains, otherwise
3407          * we might have to check the whole block array.
3408          */
3409         i = *cache_indexp;
3410         cpu_ccfence();
3411         limit = parent->core.live_zero;
3412         if (i >= limit)
3413                 i = limit - 1;
3414         if (i < 0)
3415                 i = 0;
3416         KKASSERT(i < count);
3417
3418         /*
3419          * Search backwards
3420          */
3421         scan = &base[i];
3422         while (i > 0 && (scan->type == 0 || scan->key > key_beg)) {
3423                 --scan;
3424                 --i;
3425         }
3426         *cache_indexp = i;
3427
3428         /*
3429          * Search forwards, stop when we find a scan element which
3430          * encloses the key or until we know that there are no further
3431          * elements.
3432          */
3433         while (i < count) {
3434                 if (scan->type != 0) {
3435                         scan_end = scan->key +
3436                                    ((hammer2_key_t)1 << scan->keybits) - 1;
3437                         if (scan->key > key_beg || scan_end >= key_beg)
3438                                 break;
3439                 }
3440                 if (i >= limit)
3441                         return (count);
3442                 ++scan;
3443                 ++i;
3444         }
3445         if (i != count) {
3446                 *cache_indexp = i;
3447                 if (i >= limit) {
3448                         i = count;
3449                 } else {
3450                         scan_end = scan->key +
3451                                    ((hammer2_key_t)1 << scan->keybits);
3452                         if (scan_end && (*key_nextp > scan_end ||
3453                                          *key_nextp == 0)) {
3454                                 *key_nextp = scan_end;
3455                         }
3456                 }
3457         }
3458         return (i);
3459 }
3460
3461 /*
3462  * Do a combined search and return the next match either from the blockref
3463  * array or from the in-memory chain.  Sets *bresp to the returned bref in
3464  * both cases, or sets it to NULL if the search exhausted.  Only returns
3465  * a non-NULL chain if the search matched from the in-memory chain.
3466  *
3467  * When no in-memory chain has been found and a non-NULL bref is returned
3468  * in *bresp.
3469  *
3470  *
3471  * The returned chain is not locked or referenced.  Use the returned bref
3472  * to determine if the search exhausted or not.  Iterate if the base find
3473  * is chosen but matches a deleted chain.
3474  *
3475  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
3476  *           held through the operation.
3477  */
3478 static hammer2_chain_t *
3479 hammer2_combined_find(hammer2_chain_t *parent,
3480                       hammer2_blockref_t *base, int count,
3481                       int *cache_indexp, hammer2_key_t *key_nextp,
3482                       hammer2_key_t key_beg, hammer2_key_t key_end,
3483                       hammer2_blockref_t **bresp)
3484 {
3485         hammer2_blockref_t *bref;
3486         hammer2_chain_t *chain;
3487         int i;
3488
3489         /*
3490          * Lookup in block array and in rbtree.
3491          */
3492         *key_nextp = key_end + 1;
3493         i = hammer2_base_find(parent, base, count, cache_indexp,
3494                               key_nextp, key_beg, key_end);
3495         chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
3496
3497         /*
3498          * Neither matched
3499          */
3500         if (i == count && chain == NULL) {
3501                 *bresp = NULL;
3502                 return(NULL);
3503         }
3504
3505         /*
3506          * Only chain matched.
3507          */
3508         if (i == count) {
3509                 bref = &chain->bref;
3510                 goto found;
3511         }
3512
3513         /*
3514          * Only blockref matched.
3515          */
3516         if (chain == NULL) {
3517                 bref = &base[i];
3518                 goto found;
3519         }
3520
3521         /*
3522          * Both in-memory and blockref matched, select the nearer element.
3523          *
3524          * If both are flush with the left-hand side or both are the
3525          * same distance away, select the chain.  In this situation the
3526          * chain must have been loaded from the matching blockmap.
3527          */
3528         if ((chain->bref.key <= key_beg && base[i].key <= key_beg) ||
3529             chain->bref.key == base[i].key) {
3530                 KKASSERT(chain->bref.key == base[i].key);
3531                 bref = &chain->bref;
3532                 goto found;
3533         }
3534
3535         /*
3536          * Select the nearer key
3537          */
3538         if (chain->bref.key < base[i].key) {
3539                 bref = &chain->bref;
3540         } else {
3541                 bref = &base[i];
3542                 chain = NULL;
3543         }
3544
3545         /*
3546          * If the bref is out of bounds we've exhausted our search.
3547          */
3548 found:
3549         if (bref->key > key_end) {
3550                 *bresp = NULL;
3551                 chain = NULL;
3552         } else {
3553                 *bresp = bref;
3554         }
3555         return(chain);
3556 }
3557
3558 /*
3559  * Locate the specified block array element and delete it.  The element
3560  * must exist.
3561  *
3562  * The spin lock on the related chain must be held.
3563  *
3564  * NOTE: live_count was adjusted when the chain was deleted, so it does not
3565  *       need to be adjusted when we commit the media change.
3566  */
3567 void
3568 hammer2_base_delete(hammer2_trans_t *trans, hammer2_chain_t *parent,
3569                     hammer2_blockref_t *base, int count,
3570                     int *cache_indexp, hammer2_chain_t *chain)
3571 {
3572         hammer2_blockref_t *elm = &chain->bref;
3573         hammer2_key_t key_next;
3574         int i;
3575
3576         /*
3577          * Delete element.  Expect the element to exist.
3578          *
3579          * XXX see caller, flush code not yet sophisticated enough to prevent
3580          *     re-flushed in some cases.
3581          */
3582         key_next = 0; /* max range */
3583         i = hammer2_base_find(parent, base, count, cache_indexp,
3584                               &key_next, elm->key, elm->key);
3585         if (i == count || base[i].type == 0 ||
3586             base[i].key != elm->key ||
3587             ((chain->flags & HAMMER2_CHAIN_BMAPUPD) == 0 &&
3588              base[i].keybits != elm->keybits)) {
3589                 hammer2_spin_unex(&parent->core.spin);
3590                 panic("delete base %p element not found at %d/%d elm %p\n",
3591                       base, i, count, elm);
3592                 return;
3593         }
3594         bzero(&base[i], sizeof(*base));
3595
3596         /*
3597          * We can only optimize parent->core.live_zero for live chains.
3598          */
3599         if (parent->core.live_zero == i + 1) {
3600                 while (--i >= 0 && base[i].type == 0)
3601                         ;
3602                 parent->core.live_zero = i + 1;
3603         }
3604
3605         /*
3606          * Clear appropriate blockmap flags in chain.
3607          */
3608         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
3609                                         HAMMER2_CHAIN_BMAPUPD);
3610 }
3611
3612 /*
3613  * Insert the specified element.  The block array must not already have the
3614  * element and must have space available for the insertion.
3615  *
3616  * The spin lock on the related chain must be held.
3617  *
3618  * NOTE: live_count was adjusted when the chain was deleted, so it does not
3619  *       need to be adjusted when we commit the media change.
3620  */
3621 void
3622 hammer2_base_insert(hammer2_trans_t *trans __unused, hammer2_chain_t *parent,
3623                     hammer2_blockref_t *base, int count,
3624                     int *cache_indexp, hammer2_chain_t *chain)
3625 {
3626         hammer2_blockref_t *elm = &chain->bref;
3627         hammer2_key_t key_next;
3628         hammer2_key_t xkey;
3629         int i;
3630         int j;
3631         int k;
3632         int l;
3633         int u = 1;
3634
3635         /*
3636          * Insert new element.  Expect the element to not already exist
3637          * unless we are replacing it.
3638          *
3639          * XXX see caller, flush code not yet sophisticated enough to prevent
3640          *     re-flushed in some cases.
3641          */
3642         key_next = 0; /* max range */
3643         i = hammer2_base_find(parent, base, count, cache_indexp,
3644                               &key_next, elm->key, elm->key);
3645
3646         /*
3647          * Shortcut fill optimization, typical ordered insertion(s) may not
3648          * require a search.
3649          */
3650         KKASSERT(i >= 0 && i <= count);
3651
3652         /*
3653          * Set appropriate blockmap flags in chain.
3654          */
3655         atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
3656
3657         /*
3658          * We can only optimize parent->core.live_zero for live chains.
3659          */
3660         if (i == count && parent->core.live_zero < count) {
3661                 i = parent->core.live_zero++;
3662                 base[i] = *elm;
3663                 return;
3664         }
3665
3666         xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
3667         if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
3668                 hammer2_spin_unex(&parent->core.spin);
3669                 panic("insert base %p overlapping elements at %d elm %p\n",
3670                       base, i, elm);
3671         }
3672
3673         /*
3674          * Try to find an empty slot before or after.
3675          */
3676         j = i;
3677         k = i;
3678         while (j > 0 || k < count) {
3679                 --j;
3680                 if (j >= 0 && base[j].type == 0) {
3681                         if (j == i - 1) {
3682                                 base[j] = *elm;
3683                         } else {
3684                                 bcopy(&base[j+1], &base[j],
3685                                       (i - j - 1) * sizeof(*base));
3686                                 base[i - 1] = *elm;
3687                         }
3688                         goto validate;
3689                 }
3690                 ++k;
3691                 if (k < count && base[k].type == 0) {
3692                         bcopy(&base[i], &base[i+1],
3693                               (k - i) * sizeof(hammer2_blockref_t));
3694                         base[i] = *elm;
3695
3696                         /*
3697                          * We can only update parent->core.live_zero for live
3698                          * chains.
3699                          */
3700                         if (parent->core.live_zero <= k)
3701                                 parent->core.live_zero = k + 1;
3702                         u = 2;
3703                         goto validate;
3704                 }
3705         }
3706         panic("hammer2_base_insert: no room!");
3707
3708         /*
3709          * Debugging
3710          */
3711 validate:
3712         key_next = 0;
3713         for (l = 0; l < count; ++l) {
3714                 if (base[l].type) {
3715                         key_next = base[l].key +
3716                                    ((hammer2_key_t)1 << base[l].keybits) - 1;
3717                         break;
3718                 }
3719         }
3720         while (++l < count) {
3721                 if (base[l].type) {
3722                         if (base[l].key <= key_next)
3723                                 panic("base_insert %d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
3724                         key_next = base[l].key +
3725                                    ((hammer2_key_t)1 << base[l].keybits) - 1;
3726
3727                 }
3728         }
3729
3730 }
3731
3732 #if 0
3733
3734 /*
3735  * Sort the blockref array for the chain.  Used by the flush code to
3736  * sort the blockref[] array.
3737  *
3738  * The chain must be exclusively locked AND spin-locked.
3739  */
3740 typedef hammer2_blockref_t *hammer2_blockref_p;
3741
3742 static
3743 int
3744 hammer2_base_sort_callback(const void *v1, const void *v2)
3745 {
3746         hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
3747         hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
3748
3749         /*
3750          * Make sure empty elements are placed at the end of the array
3751          */
3752         if (bref1->type == 0) {
3753                 if (bref2->type == 0)
3754                         return(0);
3755                 return(1);
3756         } else if (bref2->type == 0) {
3757                 return(-1);
3758         }
3759
3760         /*
3761          * Sort by key
3762          */
3763         if (bref1->key < bref2->key)
3764                 return(-1);
3765         if (bref1->key > bref2->key)
3766                 return(1);
3767         return(0);
3768 }
3769
3770 void
3771 hammer2_base_sort(hammer2_chain_t *chain)
3772 {
3773         hammer2_blockref_t *base;
3774         int count;
3775
3776         switch(chain->bref.type) {
3777         case HAMMER2_BREF_TYPE_INODE:
3778                 /*
3779                  * Special shortcut for embedded data returns the inode
3780                  * itself.  Callers must detect this condition and access
3781                  * the embedded data (the strategy code does this for us).
3782                  *
3783                  * This is only applicable to regular files and softlinks.
3784                  */
3785                 if (chain->data->ipdata.op_flags & HAMMER2_OPFLAG_DIRECTDATA)
3786                         return;
3787                 base = &chain->data->ipdata.u.blockset.blockref[0];
3788                 count = HAMMER2_SET_COUNT;
3789                 break;
3790         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3791         case HAMMER2_BREF_TYPE_INDIRECT:
3792                 /*
3793                  * Optimize indirect blocks in the INITIAL state to avoid
3794                  * I/O.
3795                  */
3796                 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
3797                 base = &chain->data->npdata[0];
3798                 count = chain->bytes / sizeof(hammer2_blockref_t);
3799                 break;
3800         case HAMMER2_BREF_TYPE_VOLUME:
3801                 base = &chain->hmp->voldata.sroot_blockset.blockref[0];
3802                 count = HAMMER2_SET_COUNT;
3803                 break;
3804         case HAMMER2_BREF_TYPE_FREEMAP:
3805                 base = &chain->hmp->voldata.freemap_blockset.blockref[0];
3806                 count = HAMMER2_SET_COUNT;
3807                 break;
3808         default:
3809                 panic("hammer2_chain_lookup: unrecognized blockref type: %d",
3810                       chain->bref.type);
3811                 base = NULL;    /* safety */
3812                 count = 0;      /* safety */
3813         }
3814         kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
3815 }
3816
3817 #endif
3818
3819 /*
3820  * Chain memory management
3821  */
3822 void
3823 hammer2_chain_wait(hammer2_chain_t *chain)
3824 {
3825         tsleep(chain, 0, "chnflw", 1);
3826 }
3827
3828 const hammer2_media_data_t *
3829 hammer2_chain_rdata(hammer2_chain_t *chain)
3830 {
3831         KKASSERT(chain->data != NULL);
3832         return (chain->data);
3833 }
3834
3835 hammer2_media_data_t *
3836 hammer2_chain_wdata(hammer2_chain_t *chain)
3837 {
3838         KKASSERT(chain->data != NULL);
3839         return (chain->data);
3840 }
3841
3842 /*
3843  * Set the check data for a chain.  This can be a heavy-weight operation
3844  * and typically only runs on-flush.  For file data check data is calculated
3845  * when the logical buffers are flushed.
3846  */
3847 void
3848 hammer2_chain_setcheck(hammer2_chain_t *chain, void *bdata)
3849 {
3850         chain->bref.flags &= ~HAMMER2_BREF_FLAG_ZERO;
3851
3852         switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
3853         case HAMMER2_CHECK_NONE:
3854                 break;
3855         case HAMMER2_CHECK_DISABLED:
3856                 break;
3857         case HAMMER2_CHECK_ISCSI32:
3858                 chain->bref.check.iscsi32.value =
3859                         hammer2_icrc32(bdata, chain->bytes);
3860                 break;
3861         case HAMMER2_CHECK_CRC64:
3862                 chain->bref.check.crc64.value = 0;
3863                 /* XXX */
3864                 break;
3865         case HAMMER2_CHECK_SHA192:
3866                 {
3867                         SHA256_CTX hash_ctx;
3868                         union {
3869                                 uint8_t digest[SHA256_DIGEST_LENGTH];
3870                                 uint64_t digest64[SHA256_DIGEST_LENGTH/8];
3871                         } u;
3872
3873                         SHA256_Init(&hash_ctx);
3874                         SHA256_Update(&hash_ctx, bdata, chain->bytes);
3875                         SHA256_Final(u.digest, &hash_ctx);
3876                         u.digest64[2] ^= u.digest64[3];
3877                         bcopy(u.digest,
3878                               chain->bref.check.sha192.data,
3879                               sizeof(chain->bref.check.sha192.data));
3880                 }
3881                 break;
3882         case HAMMER2_CHECK_FREEMAP:
3883                 chain->bref.check.freemap.icrc32 =
3884                         hammer2_icrc32(bdata, chain->bytes);
3885                 break;
3886         default:
3887                 kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
3888                         chain->bref.methods);
3889                 break;
3890         }
3891 }
3892
3893 int
3894 hammer2_chain_testcheck(hammer2_chain_t *chain, void *bdata)
3895 {
3896         int r;
3897
3898         if (chain->bref.flags & HAMMER2_BREF_FLAG_ZERO)
3899                 return 1;
3900
3901         switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
3902         case HAMMER2_CHECK_NONE:
3903                 r = 1;
3904                 break;
3905         case HAMMER2_CHECK_DISABLED:
3906                 r = 1;
3907                 break;
3908         case HAMMER2_CHECK_ISCSI32:
3909                 r = (chain->bref.check.iscsi32.value ==
3910                      hammer2_icrc32(bdata, chain->bytes));
3911                 break;
3912         case HAMMER2_CHECK_CRC64:
3913                 r = (chain->bref.check.crc64.value == 0);
3914                 /* XXX */
3915                 break;
3916         case HAMMER2_CHECK_SHA192:
3917                 {
3918                         SHA256_CTX hash_ctx;
3919                         union {
3920                                 uint8_t digest[SHA256_DIGEST_LENGTH];
3921                                 uint64_t digest64[SHA256_DIGEST_LENGTH/8];
3922                         } u;
3923
3924                         SHA256_Init(&hash_ctx);
3925                         SHA256_Update(&hash_ctx, bdata, chain->bytes);
3926                         SHA256_Final(u.digest, &hash_ctx);
3927                         u.digest64[2] ^= u.digest64[3];
3928                         if (bcmp(u.digest,
3929                                  chain->bref.check.sha192.data,
3930                                  sizeof(chain->bref.check.sha192.data)) == 0) {
3931                                 r = 1;
3932                         } else {
3933                                 r = 0;
3934                         }
3935                 }
3936                 break;
3937         case HAMMER2_CHECK_FREEMAP:
3938                 r = (chain->bref.check.freemap.icrc32 ==
3939                      hammer2_icrc32(bdata, chain->bytes));
3940                 if (r == 0) {
3941                         kprintf("freemap.icrc %08x icrc32 %08x (%d)\n",
3942                                 chain->bref.check.freemap.icrc32,
3943                                 hammer2_icrc32(bdata, chain->bytes), chain->bytes);
3944                         if (chain->dio)
3945                                 kprintf("dio %p buf %016jx,%d bdata %p/%p\n",
3946                                         chain->dio, chain->dio->bp->b_loffset, chain->dio->bp->b_bufsize, bdata, chain->dio->bp->b_data);
3947                 }
3948
3949                 break;
3950         default:
3951                 kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
3952                         chain->bref.methods);
3953                 r = 1;
3954                 break;
3955         }
3956         return r;
3957 }