kernel - Tag vm_map_entry structure, slight optimization to zalloc, misc.
[dragonfly.git] / sys / vm / vm_fault.c
1 /*
2  * Copyright (c) 2003-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * ---
35  *
36  * Copyright (c) 1991, 1993
37  *      The Regents of the University of California.  All rights reserved.
38  * Copyright (c) 1994 John S. Dyson
39  * All rights reserved.
40  * Copyright (c) 1994 David Greenman
41  * All rights reserved.
42  *
43  *
44  * This code is derived from software contributed to Berkeley by
45  * The Mach Operating System project at Carnegie-Mellon University.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * ---
72  *
73  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
74  * All rights reserved.
75  *
76  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
77  *
78  * Permission to use, copy, modify and distribute this software and
79  * its documentation is hereby granted, provided that both the copyright
80  * notice and this permission notice appear in all copies of the
81  * software, derivative works or modified versions, and any portions
82  * thereof, and that both notices appear in supporting documentation.
83  *
84  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
85  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
86  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
87  *
88  * Carnegie Mellon requests users of this software to return to
89  *
90  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
91  *  School of Computer Science
92  *  Carnegie Mellon University
93  *  Pittsburgh PA 15213-3890
94  *
95  * any improvements or extensions that they make and grant Carnegie the
96  * rights to redistribute these changes.
97  */
98
99 /*
100  *      Page fault handling module.
101  */
102
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/vnode.h>
108 #include <sys/resourcevar.h>
109 #include <sys/vmmeter.h>
110 #include <sys/vkernel.h>
111 #include <sys/lock.h>
112 #include <sys/sysctl.h>
113
114 #include <cpu/lwbuf.h>
115
116 #include <vm/vm.h>
117 #include <vm/vm_param.h>
118 #include <vm/pmap.h>
119 #include <vm/vm_map.h>
120 #include <vm/vm_object.h>
121 #include <vm/vm_page.h>
122 #include <vm/vm_pageout.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_pager.h>
125 #include <vm/vnode_pager.h>
126 #include <vm/vm_extern.h>
127
128 #include <sys/thread2.h>
129 #include <vm/vm_page2.h>
130
131 struct faultstate {
132         vm_page_t m;
133         vm_object_t object;
134         vm_pindex_t pindex;
135         vm_prot_t prot;
136         vm_page_t first_m;
137         vm_object_t first_object;
138         vm_prot_t first_prot;
139         vm_map_t map;
140         vm_map_entry_t entry;
141         int lookup_still_valid;
142         int hardfault;
143         int fault_flags;
144         int map_generation;
145         int shared;
146         int first_shared;
147         boolean_t wired;
148         struct vnode *vp;
149 };
150
151 static int debug_fault = 0;
152 SYSCTL_INT(_vm, OID_AUTO, debug_fault, CTLFLAG_RW, &debug_fault, 0, "");
153 static int debug_cluster = 0;
154 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
155 int vm_shared_fault = 1;
156 TUNABLE_INT("vm.shared_fault", &vm_shared_fault);
157 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW, &vm_shared_fault, 0,
158            "Allow shared token on vm_object");
159 static long vm_shared_hit = 0;
160 SYSCTL_LONG(_vm, OID_AUTO, shared_hit, CTLFLAG_RW, &vm_shared_hit, 0,
161            "Successful shared faults");
162 static long vm_shared_count = 0;
163 SYSCTL_LONG(_vm, OID_AUTO, shared_count, CTLFLAG_RW, &vm_shared_count, 0,
164            "Shared fault attempts");
165 static long vm_shared_miss = 0;
166 SYSCTL_LONG(_vm, OID_AUTO, shared_miss, CTLFLAG_RW, &vm_shared_miss, 0,
167            "Unsuccessful shared faults");
168
169 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t, int);
170 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *,
171                         vpte_t, int, int);
172 #if 0
173 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
174 #endif
175 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
176 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
177                         vm_map_entry_t entry, int prot, int fault_flags);
178 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
179                         vm_map_entry_t entry, int prot, int fault_flags);
180
181 static __inline void
182 release_page(struct faultstate *fs)
183 {
184         vm_page_deactivate(fs->m);
185         vm_page_wakeup(fs->m);
186         fs->m = NULL;
187 }
188
189 /*
190  * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
191  *       requires relocking and then checking the timestamp.
192  *
193  * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
194  *       not have to update fs->map_generation here.
195  *
196  * NOTE: This function can fail due to a deadlock against the caller's
197  *       holding of a vm_page BUSY.
198  */
199 static __inline int
200 relock_map(struct faultstate *fs)
201 {
202         int error;
203
204         if (fs->lookup_still_valid == FALSE && fs->map) {
205                 error = vm_map_lock_read_to(fs->map);
206                 if (error == 0)
207                         fs->lookup_still_valid = TRUE;
208         } else {
209                 error = 0;
210         }
211         return error;
212 }
213
214 static __inline void
215 unlock_map(struct faultstate *fs)
216 {
217         if (fs->lookup_still_valid && fs->map) {
218                 vm_map_lookup_done(fs->map, fs->entry, 0);
219                 fs->lookup_still_valid = FALSE;
220         }
221 }
222
223 /*
224  * Clean up after a successful call to vm_fault_object() so another call
225  * to vm_fault_object() can be made.
226  */
227 static void
228 _cleanup_successful_fault(struct faultstate *fs, int relock)
229 {
230         /*
231          * We allocated a junk page for a COW operation that did
232          * not occur, the page must be freed.
233          */
234         if (fs->object != fs->first_object) {
235                 KKASSERT(fs->first_shared == 0);
236                 vm_page_free(fs->first_m);
237                 vm_object_pip_wakeup(fs->object);
238                 fs->first_m = NULL;
239         }
240
241         /*
242          * Reset fs->object.
243          */
244         fs->object = fs->first_object;
245         if (relock && fs->lookup_still_valid == FALSE) {
246                 if (fs->map)
247                         vm_map_lock_read(fs->map);
248                 fs->lookup_still_valid = TRUE;
249         }
250 }
251
252 static void
253 _unlock_things(struct faultstate *fs, int dealloc)
254 {
255         _cleanup_successful_fault(fs, 0);
256         if (dealloc) {
257                 /*vm_object_deallocate(fs->first_object);*/
258                 /*fs->first_object = NULL; drop used later on */
259         }
260         unlock_map(fs); 
261         if (fs->vp != NULL) { 
262                 vput(fs->vp);
263                 fs->vp = NULL;
264         }
265 }
266
267 #define unlock_things(fs) _unlock_things(fs, 0)
268 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
269 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
270
271 /*
272  * TRYPAGER 
273  *
274  * Determine if the pager for the current object *might* contain the page.
275  *
276  * We only need to try the pager if this is not a default object (default
277  * objects are zero-fill and have no real pager), and if we are not taking
278  * a wiring fault or if the FS entry is wired.
279  */
280 #define TRYPAGER(fs)    \
281                 (fs->object->type != OBJT_DEFAULT && \
282                 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
283
284 /*
285  * vm_fault:
286  *
287  * Handle a page fault occuring at the given address, requiring the given
288  * permissions, in the map specified.  If successful, the page is inserted
289  * into the associated physical map.
290  *
291  * NOTE: The given address should be truncated to the proper page address.
292  *
293  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
294  * a standard error specifying why the fault is fatal is returned.
295  *
296  * The map in question must be referenced, and remains so.
297  * The caller may hold no locks.
298  * No other requirements.
299  */
300 int
301 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
302 {
303         int result;
304         vm_pindex_t first_pindex;
305         struct faultstate fs;
306         struct lwp *lp;
307         int growstack;
308         int retry = 0;
309         int inherit_prot;
310
311         inherit_prot = fault_type & VM_PROT_NOSYNC;
312         fs.hardfault = 0;
313         fs.fault_flags = fault_flags;
314         fs.vp = NULL;
315         fs.shared = vm_shared_fault;
316         fs.first_shared = vm_shared_fault;
317         growstack = 1;
318         if (vm_shared_fault)
319                 ++vm_shared_count;
320
321         /*
322          * vm_map interactions
323          */
324         if ((lp = curthread->td_lwp) != NULL)
325                 lp->lwp_flags |= LWP_PAGING;
326         lwkt_gettoken(&map->token);
327
328 RetryFault:
329         /*
330          * Find the vm_map_entry representing the backing store and resolve
331          * the top level object and page index.  This may have the side
332          * effect of executing a copy-on-write on the map entry and/or
333          * creating a shadow object, but will not COW any actual VM pages.
334          *
335          * On success fs.map is left read-locked and various other fields 
336          * are initialized but not otherwise referenced or locked.
337          *
338          * NOTE!  vm_map_lookup will try to upgrade the fault_type to
339          * VM_FAULT_WRITE if the map entry is a virtual page table and also
340          * writable, so we can set the 'A'accessed bit in the virtual page
341          * table entry.
342          */
343         fs.map = map;
344         result = vm_map_lookup(&fs.map, vaddr, fault_type,
345                                &fs.entry, &fs.first_object,
346                                &first_pindex, &fs.first_prot, &fs.wired);
347
348         /*
349          * If the lookup failed or the map protections are incompatible,
350          * the fault generally fails.
351          *
352          * The failure could be due to TDF_NOFAULT if vm_map_lookup()
353          * tried to do a COW fault.
354          *
355          * If the caller is trying to do a user wiring we have more work
356          * to do.
357          */
358         if (result != KERN_SUCCESS) {
359                 if (result == KERN_FAILURE_NOFAULT) {
360                         result = KERN_FAILURE;
361                         goto done;
362                 }
363                 if (result != KERN_PROTECTION_FAILURE ||
364                     (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
365                 {
366                         if (result == KERN_INVALID_ADDRESS && growstack &&
367                             map != &kernel_map && curproc != NULL) {
368                                 result = vm_map_growstack(curproc, vaddr);
369                                 if (result == KERN_SUCCESS) {
370                                         growstack = 0;
371                                         ++retry;
372                                         goto RetryFault;
373                                 }
374                                 result = KERN_FAILURE;
375                         }
376                         goto done;
377                 }
378
379                 /*
380                  * If we are user-wiring a r/w segment, and it is COW, then
381                  * we need to do the COW operation.  Note that we don't
382                  * currently COW RO sections now, because it is NOT desirable
383                  * to COW .text.  We simply keep .text from ever being COW'ed
384                  * and take the heat that one cannot debug wired .text sections.
385                  */
386                 result = vm_map_lookup(&fs.map, vaddr,
387                                        VM_PROT_READ|VM_PROT_WRITE|
388                                         VM_PROT_OVERRIDE_WRITE,
389                                        &fs.entry, &fs.first_object,
390                                        &first_pindex, &fs.first_prot,
391                                        &fs.wired);
392                 if (result != KERN_SUCCESS) {
393                         /* could also be KERN_FAILURE_NOFAULT */
394                         result = KERN_FAILURE;
395                         goto done;
396                 }
397
398                 /*
399                  * If we don't COW now, on a user wire, the user will never
400                  * be able to write to the mapping.  If we don't make this
401                  * restriction, the bookkeeping would be nearly impossible.
402                  *
403                  * XXX We have a shared lock, this will have a MP race but
404                  * I don't see how it can hurt anything.
405                  */
406                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
407                         fs.entry->max_protection &= ~VM_PROT_WRITE;
408         }
409
410         /*
411          * fs.map is read-locked
412          *
413          * Misc checks.  Save the map generation number to detect races.
414          */
415         fs.map_generation = fs.map->timestamp;
416         fs.lookup_still_valid = TRUE;
417         fs.first_m = NULL;
418         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
419         fs.prot = fs.first_prot;        /* default (used by uksmap) */
420
421         if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
422                 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
423                         panic("vm_fault: fault on nofault entry, addr: %p",
424                               (void *)vaddr);
425                 }
426                 if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
427                     vaddr >= fs.entry->start &&
428                     vaddr < fs.entry->start + PAGE_SIZE) {
429                         panic("vm_fault: fault on stack guard, addr: %p",
430                               (void *)vaddr);
431                 }
432         }
433
434         /*
435          * A user-kernel shared map has no VM object and bypasses
436          * everything.  We execute the uksmap function with a temporary
437          * fictitious vm_page.  The address is directly mapped with no
438          * management.
439          */
440         if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
441                 struct vm_page fakem;
442
443                 bzero(&fakem, sizeof(fakem));
444                 fakem.pindex = first_pindex;
445                 fakem.flags = PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED;
446                 fakem.valid = VM_PAGE_BITS_ALL;
447                 fakem.pat_mode = VM_MEMATTR_DEFAULT;
448                 if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
449                         result = KERN_FAILURE;
450                         unlock_things(&fs);
451                         goto done2;
452                 }
453                 pmap_enter(fs.map->pmap, vaddr, &fakem, fs.prot | inherit_prot,
454                            fs.wired, fs.entry);
455                 goto done_success;
456         }
457
458         /*
459          * A system map entry may return a NULL object.  No object means
460          * no pager means an unrecoverable kernel fault.
461          */
462         if (fs.first_object == NULL) {
463                 panic("vm_fault: unrecoverable fault at %p in entry %p",
464                         (void *)vaddr, fs.entry);
465         }
466
467         /*
468          * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
469          * is set.
470          *
471          * Unfortunately a deadlock can occur if we are forced to page-in
472          * from swap, but diving all the way into the vm_pager_get_page()
473          * function to find out is too much.  Just check the object type.
474          *
475          * The deadlock is a CAM deadlock on a busy VM page when trying
476          * to finish an I/O if another process gets stuck in
477          * vop_helper_read_shortcut() due to a swap fault.
478          */
479         if ((curthread->td_flags & TDF_NOFAULT) &&
480             (retry ||
481              fs.first_object->type == OBJT_VNODE ||
482              fs.first_object->type == OBJT_SWAP ||
483              fs.first_object->backing_object)) {
484                 result = KERN_FAILURE;
485                 unlock_things(&fs);
486                 goto done2;
487         }
488
489         /*
490          * If the entry is wired we cannot change the page protection.
491          */
492         if (fs.wired)
493                 fault_type = fs.first_prot;
494
495         /*
496          * We generally want to avoid unnecessary exclusive modes on backing
497          * and terminal objects because this can seriously interfere with
498          * heavily fork()'d processes (particularly /bin/sh scripts).
499          *
500          * However, we also want to avoid unnecessary retries due to needed
501          * shared->exclusive promotion for common faults.  Exclusive mode is
502          * always needed if any page insertion, rename, or free occurs in an
503          * object (and also indirectly if any I/O is done).
504          *
505          * The main issue here is going to be fs.first_shared.  If the
506          * first_object has a backing object which isn't shadowed and the
507          * process is single-threaded we might as well use an exclusive
508          * lock/chain right off the bat.
509          */
510         if (fs.first_shared && fs.first_object->backing_object &&
511             LIST_EMPTY(&fs.first_object->shadow_head) &&
512             curthread->td_proc && curthread->td_proc->p_nthreads == 1) {
513                 fs.first_shared = 0;
514         }
515
516         /*
517          * swap_pager_unswapped() needs an exclusive object
518          */
519         if (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY)) {
520                 fs.first_shared = 0;
521         }
522
523         /*
524          * Obtain a top-level object lock, shared or exclusive depending
525          * on fs.first_shared.  If a shared lock winds up being insufficient
526          * we will retry with an exclusive lock.
527          *
528          * The vnode pager lock is always shared.
529          */
530         if (fs.first_shared)
531                 vm_object_hold_shared(fs.first_object);
532         else
533                 vm_object_hold(fs.first_object);
534         if (fs.vp == NULL)
535                 fs.vp = vnode_pager_lock(fs.first_object);
536
537         /*
538          * The page we want is at (first_object, first_pindex), but if the
539          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
540          * page table to figure out the actual pindex.
541          *
542          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
543          * ONLY
544          */
545         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
546                 result = vm_fault_vpagetable(&fs, &first_pindex,
547                                              fs.entry->aux.master_pde,
548                                              fault_type, 1);
549                 if (result == KERN_TRY_AGAIN) {
550                         vm_object_drop(fs.first_object);
551                         ++retry;
552                         goto RetryFault;
553                 }
554                 if (result != KERN_SUCCESS)
555                         goto done;
556         }
557
558         /*
559          * Now we have the actual (object, pindex), fault in the page.  If
560          * vm_fault_object() fails it will unlock and deallocate the FS
561          * data.   If it succeeds everything remains locked and fs->object
562          * will have an additional PIP count if it is not equal to
563          * fs->first_object
564          *
565          * vm_fault_object will set fs->prot for the pmap operation.  It is
566          * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
567          * page can be safely written.  However, it will force a read-only
568          * mapping for a read fault if the memory is managed by a virtual
569          * page table.
570          *
571          * If the fault code uses the shared object lock shortcut
572          * we must not try to burst (we can't allocate VM pages).
573          */
574         result = vm_fault_object(&fs, first_pindex, fault_type, 1);
575
576         if (debug_fault > 0) {
577                 --debug_fault;
578                 kprintf("VM_FAULT result %d addr=%jx type=%02x flags=%02x "
579                         "fs.m=%p fs.prot=%02x fs.wired=%02x fs.entry=%p\n",
580                         result, (intmax_t)vaddr, fault_type, fault_flags,
581                         fs.m, fs.prot, fs.wired, fs.entry);
582         }
583
584         if (result == KERN_TRY_AGAIN) {
585                 vm_object_drop(fs.first_object);
586                 ++retry;
587                 goto RetryFault;
588         }
589         if (result != KERN_SUCCESS)
590                 goto done;
591
592         /*
593          * On success vm_fault_object() does not unlock or deallocate, and fs.m
594          * will contain a busied page.
595          *
596          * Enter the page into the pmap and do pmap-related adjustments.
597          */
598         KKASSERT(fs.lookup_still_valid == TRUE);
599         vm_page_flag_set(fs.m, PG_REFERENCED);
600         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot | inherit_prot,
601                    fs.wired, fs.entry);
602
603         /*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
604         KKASSERT(fs.m->flags & PG_BUSY);
605
606         /*
607          * If the page is not wired down, then put it where the pageout daemon
608          * can find it.
609          */
610         if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
611                 if (fs.wired)
612                         vm_page_wire(fs.m);
613                 else
614                         vm_page_unwire(fs.m, 1);
615         } else {
616                 vm_page_activate(fs.m);
617         }
618         vm_page_wakeup(fs.m);
619
620         /*
621          * Burst in a few more pages if possible.  The fs.map should still
622          * be locked.  To avoid interlocking against a vnode->getblk
623          * operation we had to be sure to unbusy our primary vm_page above
624          * first.
625          *
626          * A normal burst can continue down backing store, only execute
627          * if we are holding an exclusive lock, otherwise the exclusive
628          * locks the burst code gets might cause excessive SMP collisions.
629          *
630          * A quick burst can be utilized when there is no backing object
631          * (i.e. a shared file mmap).
632          */
633         if ((fault_flags & VM_FAULT_BURST) &&
634             (fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
635             fs.wired == 0) {
636                 if (fs.first_shared == 0 && fs.shared == 0) {
637                         vm_prefault(fs.map->pmap, vaddr,
638                                     fs.entry, fs.prot, fault_flags);
639                 } else {
640                         vm_prefault_quick(fs.map->pmap, vaddr,
641                                           fs.entry, fs.prot, fault_flags);
642                 }
643         }
644
645 done_success:
646         mycpu->gd_cnt.v_vm_faults++;
647         if (curthread->td_lwp)
648                 ++curthread->td_lwp->lwp_ru.ru_minflt;
649
650         /*
651          * Unlock everything, and return
652          */
653         unlock_things(&fs);
654
655         if (curthread->td_lwp) {
656                 if (fs.hardfault) {
657                         curthread->td_lwp->lwp_ru.ru_majflt++;
658                 } else {
659                         curthread->td_lwp->lwp_ru.ru_minflt++;
660                 }
661         }
662
663         /*vm_object_deallocate(fs.first_object);*/
664         /*fs.m = NULL; */
665         /*fs.first_object = NULL; must still drop later */
666
667         result = KERN_SUCCESS;
668 done:
669         if (fs.first_object)
670                 vm_object_drop(fs.first_object);
671 done2:
672         lwkt_reltoken(&map->token);
673         if (lp)
674                 lp->lwp_flags &= ~LWP_PAGING;
675         if (vm_shared_fault && fs.shared == 0)
676                 ++vm_shared_miss;
677         return (result);
678 }
679
680 /*
681  * Fault in the specified virtual address in the current process map, 
682  * returning a held VM page or NULL.  See vm_fault_page() for more 
683  * information.
684  *
685  * No requirements.
686  */
687 vm_page_t
688 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
689 {
690         struct lwp *lp = curthread->td_lwp;
691         vm_page_t m;
692
693         m = vm_fault_page(&lp->lwp_vmspace->vm_map, va, 
694                           fault_type, VM_FAULT_NORMAL, errorp);
695         return(m);
696 }
697
698 /*
699  * Fault in the specified virtual address in the specified map, doing all
700  * necessary manipulation of the object store and all necessary I/O.  Return
701  * a held VM page or NULL, and set *errorp.  The related pmap is not
702  * updated.
703  *
704  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
705  * and marked PG_REFERENCED as well.
706  *
707  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
708  * error will be returned.
709  *
710  * No requirements.
711  */
712 vm_page_t
713 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
714               int fault_flags, int *errorp)
715 {
716         vm_pindex_t first_pindex;
717         struct faultstate fs;
718         int result;
719         int retry = 0;
720         vm_prot_t orig_fault_type = fault_type;
721
722         fs.hardfault = 0;
723         fs.fault_flags = fault_flags;
724         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
725
726         /*
727          * Dive the pmap (concurrency possible).  If we find the
728          * appropriate page we can terminate early and quickly.
729          */
730         fs.m = pmap_fault_page_quick(map->pmap, vaddr, fault_type);
731         if (fs.m) {
732                 *errorp = 0;
733                 return(fs.m);
734         }
735
736         /*
737          * Otherwise take a concurrency hit and do a formal page
738          * fault.
739          */
740         fs.shared = vm_shared_fault;
741         fs.first_shared = vm_shared_fault;
742         fs.vp = NULL;
743         lwkt_gettoken(&map->token);
744
745         /*
746          * swap_pager_unswapped() needs an exclusive object
747          */
748         if (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY)) {
749                 fs.first_shared = 0;
750         }
751
752 RetryFault:
753         /*
754          * Find the vm_map_entry representing the backing store and resolve
755          * the top level object and page index.  This may have the side
756          * effect of executing a copy-on-write on the map entry and/or
757          * creating a shadow object, but will not COW any actual VM pages.
758          *
759          * On success fs.map is left read-locked and various other fields 
760          * are initialized but not otherwise referenced or locked.
761          *
762          * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
763          * if the map entry is a virtual page table and also writable,
764          * so we can set the 'A'accessed bit in the virtual page table entry.
765          */
766         fs.map = map;
767         result = vm_map_lookup(&fs.map, vaddr, fault_type,
768                                &fs.entry, &fs.first_object,
769                                &first_pindex, &fs.first_prot, &fs.wired);
770
771         if (result != KERN_SUCCESS) {
772                 *errorp = result;
773                 fs.m = NULL;
774                 goto done;
775         }
776
777         /*
778          * fs.map is read-locked
779          *
780          * Misc checks.  Save the map generation number to detect races.
781          */
782         fs.map_generation = fs.map->timestamp;
783         fs.lookup_still_valid = TRUE;
784         fs.first_m = NULL;
785         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
786
787         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
788                 panic("vm_fault: fault on nofault entry, addr: %lx",
789                     (u_long)vaddr);
790         }
791
792         /*
793          * A user-kernel shared map has no VM object and bypasses
794          * everything.  We execute the uksmap function with a temporary
795          * fictitious vm_page.  The address is directly mapped with no
796          * management.
797          */
798         if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
799                 struct vm_page fakem;
800
801                 bzero(&fakem, sizeof(fakem));
802                 fakem.pindex = first_pindex;
803                 fakem.flags = PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED;
804                 fakem.valid = VM_PAGE_BITS_ALL;
805                 fakem.pat_mode = VM_MEMATTR_DEFAULT;
806                 if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
807                         *errorp = KERN_FAILURE;
808                         fs.m = NULL;
809                         unlock_things(&fs);
810                         goto done2;
811                 }
812                 fs.m = PHYS_TO_VM_PAGE(fakem.phys_addr);
813                 vm_page_hold(fs.m);
814
815                 unlock_things(&fs);
816                 *errorp = 0;
817                 goto done;
818         }
819
820
821         /*
822          * A system map entry may return a NULL object.  No object means
823          * no pager means an unrecoverable kernel fault.
824          */
825         if (fs.first_object == NULL) {
826                 panic("vm_fault: unrecoverable fault at %p in entry %p",
827                         (void *)vaddr, fs.entry);
828         }
829
830         /*
831          * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
832          * is set.
833          *
834          * Unfortunately a deadlock can occur if we are forced to page-in
835          * from swap, but diving all the way into the vm_pager_get_page()
836          * function to find out is too much.  Just check the object type.
837          */
838         if ((curthread->td_flags & TDF_NOFAULT) &&
839             (retry ||
840              fs.first_object->type == OBJT_VNODE ||
841              fs.first_object->type == OBJT_SWAP ||
842              fs.first_object->backing_object)) {
843                 *errorp = KERN_FAILURE;
844                 unlock_things(&fs);
845                 goto done2;
846         }
847
848         /*
849          * If the entry is wired we cannot change the page protection.
850          */
851         if (fs.wired)
852                 fault_type = fs.first_prot;
853
854         /*
855          * Make a reference to this object to prevent its disposal while we
856          * are messing with it.  Once we have the reference, the map is free
857          * to be diddled.  Since objects reference their shadows (and copies),
858          * they will stay around as well.
859          *
860          * The reference should also prevent an unexpected collapse of the
861          * parent that might move pages from the current object into the
862          * parent unexpectedly, resulting in corruption.
863          *
864          * Bump the paging-in-progress count to prevent size changes (e.g.
865          * truncation operations) during I/O.  This must be done after
866          * obtaining the vnode lock in order to avoid possible deadlocks.
867          */
868         if (fs.first_shared)
869                 vm_object_hold_shared(fs.first_object);
870         else
871                 vm_object_hold(fs.first_object);
872         if (fs.vp == NULL)
873                 fs.vp = vnode_pager_lock(fs.first_object);      /* shared */
874
875         /*
876          * The page we want is at (first_object, first_pindex), but if the
877          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
878          * page table to figure out the actual pindex.
879          *
880          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
881          * ONLY
882          */
883         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
884                 result = vm_fault_vpagetable(&fs, &first_pindex,
885                                              fs.entry->aux.master_pde,
886                                              fault_type, 1);
887                 if (result == KERN_TRY_AGAIN) {
888                         vm_object_drop(fs.first_object);
889                         ++retry;
890                         goto RetryFault;
891                 }
892                 if (result != KERN_SUCCESS) {
893                         *errorp = result;
894                         fs.m = NULL;
895                         goto done;
896                 }
897         }
898
899         /*
900          * Now we have the actual (object, pindex), fault in the page.  If
901          * vm_fault_object() fails it will unlock and deallocate the FS
902          * data.   If it succeeds everything remains locked and fs->object
903          * will have an additinal PIP count if it is not equal to
904          * fs->first_object
905          */
906         fs.m = NULL;
907         result = vm_fault_object(&fs, first_pindex, fault_type, 1);
908
909         if (result == KERN_TRY_AGAIN) {
910                 vm_object_drop(fs.first_object);
911                 ++retry;
912                 goto RetryFault;
913         }
914         if (result != KERN_SUCCESS) {
915                 *errorp = result;
916                 fs.m = NULL;
917                 goto done;
918         }
919
920         if ((orig_fault_type & VM_PROT_WRITE) &&
921             (fs.prot & VM_PROT_WRITE) == 0) {
922                 *errorp = KERN_PROTECTION_FAILURE;
923                 unlock_and_deallocate(&fs);
924                 fs.m = NULL;
925                 goto done;
926         }
927
928         /*
929          * DO NOT UPDATE THE PMAP!!!  This function may be called for
930          * a pmap unrelated to the current process pmap, in which case
931          * the current cpu core will not be listed in the pmap's pm_active
932          * mask.  Thus invalidation interlocks will fail to work properly.
933          *
934          * (for example, 'ps' uses procfs to read program arguments from
935          * each process's stack).
936          *
937          * In addition to the above this function will be called to acquire
938          * a page that might already be faulted in, re-faulting it
939          * continuously is a waste of time.
940          *
941          * XXX could this have been the cause of our random seg-fault
942          *     issues?  procfs accesses user stacks.
943          */
944         vm_page_flag_set(fs.m, PG_REFERENCED);
945 #if 0
946         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, NULL);
947         mycpu->gd_cnt.v_vm_faults++;
948         if (curthread->td_lwp)
949                 ++curthread->td_lwp->lwp_ru.ru_minflt;
950 #endif
951
952         /*
953          * On success vm_fault_object() does not unlock or deallocate, and fs.m
954          * will contain a busied page.  So we must unlock here after having
955          * messed with the pmap.
956          */
957         unlock_things(&fs);
958
959         /*
960          * Return a held page.  We are not doing any pmap manipulation so do
961          * not set PG_MAPPED.  However, adjust the page flags according to
962          * the fault type because the caller may not use a managed pmapping
963          * (so we don't want to lose the fact that the page will be dirtied
964          * if a write fault was specified).
965          */
966         vm_page_hold(fs.m);
967         vm_page_activate(fs.m);
968         if (fault_type & VM_PROT_WRITE)
969                 vm_page_dirty(fs.m);
970
971         if (curthread->td_lwp) {
972                 if (fs.hardfault) {
973                         curthread->td_lwp->lwp_ru.ru_majflt++;
974                 } else {
975                         curthread->td_lwp->lwp_ru.ru_minflt++;
976                 }
977         }
978
979         /*
980          * Unlock everything, and return the held page.
981          */
982         vm_page_wakeup(fs.m);
983         /*vm_object_deallocate(fs.first_object);*/
984         /*fs.first_object = NULL; */
985         *errorp = 0;
986
987 done:
988         if (fs.first_object)
989                 vm_object_drop(fs.first_object);
990 done2:
991         lwkt_reltoken(&map->token);
992         return(fs.m);
993 }
994
995 /*
996  * Fault in the specified (object,offset), dirty the returned page as
997  * needed.  If the requested fault_type cannot be done NULL and an
998  * error is returned.
999  *
1000  * A held (but not busied) page is returned.
1001  *
1002  * The passed in object must be held as specified by the shared
1003  * argument.
1004  */
1005 vm_page_t
1006 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
1007                      vm_prot_t fault_type, int fault_flags,
1008                      int *sharedp, int *errorp)
1009 {
1010         int result;
1011         vm_pindex_t first_pindex;
1012         struct faultstate fs;
1013         struct vm_map_entry entry;
1014
1015         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1016         bzero(&entry, sizeof(entry));
1017         entry.object.vm_object = object;
1018         entry.maptype = VM_MAPTYPE_NORMAL;
1019         entry.protection = entry.max_protection = fault_type;
1020
1021         fs.hardfault = 0;
1022         fs.fault_flags = fault_flags;
1023         fs.map = NULL;
1024         fs.shared = vm_shared_fault;
1025         fs.first_shared = *sharedp;
1026         fs.vp = NULL;
1027         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
1028
1029         /*
1030          * Might require swap block adjustments
1031          */
1032         if (fs.first_shared && (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY))) {
1033                 fs.first_shared = 0;
1034                 vm_object_upgrade(object);
1035         }
1036
1037         /*
1038          * Retry loop as needed (typically for shared->exclusive transitions)
1039          */
1040 RetryFault:
1041         *sharedp = fs.first_shared;
1042         first_pindex = OFF_TO_IDX(offset);
1043         fs.first_object = object;
1044         fs.entry = &entry;
1045         fs.first_prot = fault_type;
1046         fs.wired = 0;
1047         /*fs.map_generation = 0; unused */
1048
1049         /*
1050          * Make a reference to this object to prevent its disposal while we
1051          * are messing with it.  Once we have the reference, the map is free
1052          * to be diddled.  Since objects reference their shadows (and copies),
1053          * they will stay around as well.
1054          *
1055          * The reference should also prevent an unexpected collapse of the
1056          * parent that might move pages from the current object into the
1057          * parent unexpectedly, resulting in corruption.
1058          *
1059          * Bump the paging-in-progress count to prevent size changes (e.g.
1060          * truncation operations) during I/O.  This must be done after
1061          * obtaining the vnode lock in order to avoid possible deadlocks.
1062          */
1063         if (fs.vp == NULL)
1064                 fs.vp = vnode_pager_lock(fs.first_object);
1065
1066         fs.lookup_still_valid = TRUE;
1067         fs.first_m = NULL;
1068         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
1069
1070 #if 0
1071         /* XXX future - ability to operate on VM object using vpagetable */
1072         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1073                 result = vm_fault_vpagetable(&fs, &first_pindex,
1074                                              fs.entry->aux.master_pde,
1075                                              fault_type, 0);
1076                 if (result == KERN_TRY_AGAIN) {
1077                         if (fs.first_shared == 0 && *sharedp)
1078                                 vm_object_upgrade(object);
1079                         goto RetryFault;
1080                 }
1081                 if (result != KERN_SUCCESS) {
1082                         *errorp = result;
1083                         return (NULL);
1084                 }
1085         }
1086 #endif
1087
1088         /*
1089          * Now we have the actual (object, pindex), fault in the page.  If
1090          * vm_fault_object() fails it will unlock and deallocate the FS
1091          * data.   If it succeeds everything remains locked and fs->object
1092          * will have an additinal PIP count if it is not equal to
1093          * fs->first_object
1094          *
1095          * On KERN_TRY_AGAIN vm_fault_object() leaves fs.first_object intact.
1096          * We may have to upgrade its lock to handle the requested fault.
1097          */
1098         result = vm_fault_object(&fs, first_pindex, fault_type, 0);
1099
1100         if (result == KERN_TRY_AGAIN) {
1101                 if (fs.first_shared == 0 && *sharedp)
1102                         vm_object_upgrade(object);
1103                 goto RetryFault;
1104         }
1105         if (result != KERN_SUCCESS) {
1106                 *errorp = result;
1107                 return(NULL);
1108         }
1109
1110         if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
1111                 *errorp = KERN_PROTECTION_FAILURE;
1112                 unlock_and_deallocate(&fs);
1113                 return(NULL);
1114         }
1115
1116         /*
1117          * On success vm_fault_object() does not unlock or deallocate, so we
1118          * do it here.  Note that the returned fs.m will be busied.
1119          */
1120         unlock_things(&fs);
1121
1122         /*
1123          * Return a held page.  We are not doing any pmap manipulation so do
1124          * not set PG_MAPPED.  However, adjust the page flags according to
1125          * the fault type because the caller may not use a managed pmapping
1126          * (so we don't want to lose the fact that the page will be dirtied
1127          * if a write fault was specified).
1128          */
1129         vm_page_hold(fs.m);
1130         vm_page_activate(fs.m);
1131         if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
1132                 vm_page_dirty(fs.m);
1133         if (fault_flags & VM_FAULT_UNSWAP)
1134                 swap_pager_unswapped(fs.m);
1135
1136         /*
1137          * Indicate that the page was accessed.
1138          */
1139         vm_page_flag_set(fs.m, PG_REFERENCED);
1140
1141         if (curthread->td_lwp) {
1142                 if (fs.hardfault) {
1143                         curthread->td_lwp->lwp_ru.ru_majflt++;
1144                 } else {
1145                         curthread->td_lwp->lwp_ru.ru_minflt++;
1146                 }
1147         }
1148
1149         /*
1150          * Unlock everything, and return the held page.
1151          */
1152         vm_page_wakeup(fs.m);
1153         /*vm_object_deallocate(fs.first_object);*/
1154         /*fs.first_object = NULL; */
1155
1156         *errorp = 0;
1157         return(fs.m);
1158 }
1159
1160 /*
1161  * Translate the virtual page number (first_pindex) that is relative
1162  * to the address space into a logical page number that is relative to the
1163  * backing object.  Use the virtual page table pointed to by (vpte).
1164  *
1165  * This implements an N-level page table.  Any level can terminate the
1166  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
1167  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
1168  */
1169 static
1170 int
1171 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
1172                     vpte_t vpte, int fault_type, int allow_nofault)
1173 {
1174         struct lwbuf *lwb;
1175         struct lwbuf lwb_cache;
1176         int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
1177         int result = KERN_SUCCESS;
1178         vpte_t *ptep;
1179
1180         ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1181         for (;;) {
1182                 /*
1183                  * We cannot proceed if the vpte is not valid, not readable
1184                  * for a read fault, or not writable for a write fault.
1185                  */
1186                 if ((vpte & VPTE_V) == 0) {
1187                         unlock_and_deallocate(fs);
1188                         return (KERN_FAILURE);
1189                 }
1190                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW) == 0) {
1191                         unlock_and_deallocate(fs);
1192                         return (KERN_FAILURE);
1193                 }
1194                 if ((vpte & VPTE_PS) || vshift == 0)
1195                         break;
1196                 KKASSERT(vshift >= VPTE_PAGE_BITS);
1197
1198                 /*
1199                  * Get the page table page.  Nominally we only read the page
1200                  * table, but since we are actively setting VPTE_M and VPTE_A,
1201                  * tell vm_fault_object() that we are writing it. 
1202                  *
1203                  * There is currently no real need to optimize this.
1204                  */
1205                 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1206                                          VM_PROT_READ|VM_PROT_WRITE,
1207                                          allow_nofault);
1208                 if (result != KERN_SUCCESS)
1209                         return (result);
1210
1211                 /*
1212                  * Process the returned fs.m and look up the page table
1213                  * entry in the page table page.
1214                  */
1215                 vshift -= VPTE_PAGE_BITS;
1216                 lwb = lwbuf_alloc(fs->m, &lwb_cache);
1217                 ptep = ((vpte_t *)lwbuf_kva(lwb) +
1218                         ((*pindex >> vshift) & VPTE_PAGE_MASK));
1219                 vpte = *ptep;
1220
1221                 /*
1222                  * Page table write-back.  If the vpte is valid for the
1223                  * requested operation, do a write-back to the page table.
1224                  *
1225                  * XXX VPTE_M is not set properly for page directory pages.
1226                  * It doesn't get set in the page directory if the page table
1227                  * is modified during a read access.
1228                  */
1229                 vm_page_activate(fs->m);
1230                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
1231                     (vpte & VPTE_RW)) {
1232                         if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
1233                                 atomic_set_long(ptep, VPTE_M | VPTE_A);
1234                                 vm_page_dirty(fs->m);
1235                         }
1236                 }
1237                 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V)) {
1238                         if ((vpte & VPTE_A) == 0) {
1239                                 atomic_set_long(ptep, VPTE_A);
1240                                 vm_page_dirty(fs->m);
1241                         }
1242                 }
1243                 lwbuf_free(lwb);
1244                 vm_page_flag_set(fs->m, PG_REFERENCED);
1245                 vm_page_wakeup(fs->m);
1246                 fs->m = NULL;
1247                 cleanup_successful_fault(fs);
1248         }
1249         /*
1250          * Combine remaining address bits with the vpte.
1251          */
1252         /* JG how many bits from each? */
1253         *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1254                   (*pindex & ((1L << vshift) - 1));
1255         return (KERN_SUCCESS);
1256 }
1257
1258
1259 /*
1260  * This is the core of the vm_fault code.
1261  *
1262  * Do all operations required to fault-in (fs.first_object, pindex).  Run
1263  * through the shadow chain as necessary and do required COW or virtual
1264  * copy operations.  The caller has already fully resolved the vm_map_entry
1265  * and, if appropriate, has created a copy-on-write layer.  All we need to
1266  * do is iterate the object chain.
1267  *
1268  * On failure (fs) is unlocked and deallocated and the caller may return or
1269  * retry depending on the failure code.  On success (fs) is NOT unlocked or
1270  * deallocated, fs.m will contained a resolved, busied page, and fs.object
1271  * will have an additional PIP count if it is not equal to fs.first_object.
1272  *
1273  * If locks based on fs->first_shared or fs->shared are insufficient,
1274  * clear the appropriate field(s) and return RETRY.  COWs require that
1275  * first_shared be 0, while page allocations (or frees) require that
1276  * shared be 0.  Renames require that both be 0.
1277  *
1278  * fs->first_object must be held on call.
1279  */
1280 static
1281 int
1282 vm_fault_object(struct faultstate *fs, vm_pindex_t first_pindex,
1283                 vm_prot_t fault_type, int allow_nofault)
1284 {
1285         vm_object_t next_object;
1286         vm_pindex_t pindex;
1287         int error;
1288
1289         ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1290         fs->prot = fs->first_prot;
1291         fs->object = fs->first_object;
1292         pindex = first_pindex;
1293
1294         vm_object_chain_acquire(fs->first_object, fs->shared);
1295         vm_object_pip_add(fs->first_object, 1);
1296
1297         /* 
1298          * If a read fault occurs we try to make the page writable if
1299          * possible.  There are three cases where we cannot make the
1300          * page mapping writable:
1301          *
1302          * (1) The mapping is read-only or the VM object is read-only,
1303          *     fs->prot above will simply not have VM_PROT_WRITE set.
1304          *
1305          * (2) If the mapping is a virtual page table we need to be able
1306          *     to detect writes so we can set VPTE_M in the virtual page
1307          *     table.
1308          *
1309          * (3) If the VM page is read-only or copy-on-write, upgrading would
1310          *     just result in an unnecessary COW fault.
1311          *
1312          * VM_PROT_VPAGED is set if faulting via a virtual page table and
1313          * causes adjustments to the 'M'odify bit to also turn off write
1314          * access to force a re-fault.
1315          */
1316         if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1317                 if ((fault_type & VM_PROT_WRITE) == 0)
1318                         fs->prot &= ~VM_PROT_WRITE;
1319         }
1320
1321         if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
1322             pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
1323                 if ((fault_type & VM_PROT_WRITE) == 0)
1324                         fs->prot &= ~VM_PROT_WRITE;
1325         }
1326
1327         /* vm_object_hold(fs->object); implied b/c object == first_object */
1328
1329         for (;;) {
1330                 /*
1331                  * The entire backing chain from first_object to object
1332                  * inclusive is chainlocked.
1333                  *
1334                  * If the object is dead, we stop here
1335                  */
1336                 if (fs->object->flags & OBJ_DEAD) {
1337                         vm_object_pip_wakeup(fs->first_object);
1338                         vm_object_chain_release_all(fs->first_object,
1339                                                     fs->object);
1340                         if (fs->object != fs->first_object)
1341                                 vm_object_drop(fs->object);
1342                         unlock_and_deallocate(fs);
1343                         return (KERN_PROTECTION_FAILURE);
1344                 }
1345
1346                 /*
1347                  * See if the page is resident.  Wait/Retry if the page is
1348                  * busy (lots of stuff may have changed so we can't continue
1349                  * in that case).
1350                  *
1351                  * We can theoretically allow the soft-busy case on a read
1352                  * fault if the page is marked valid, but since such
1353                  * pages are typically already pmap'd, putting that
1354                  * special case in might be more effort then it is
1355                  * worth.  We cannot under any circumstances mess
1356                  * around with a vm_page_t->busy page except, perhaps,
1357                  * to pmap it.
1358                  */
1359                 fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1360                                                 TRUE, &error);
1361                 if (error) {
1362                         vm_object_pip_wakeup(fs->first_object);
1363                         vm_object_chain_release_all(fs->first_object,
1364                                                     fs->object);
1365                         if (fs->object != fs->first_object)
1366                                 vm_object_drop(fs->object);
1367                         unlock_things(fs);
1368                         vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1369                         mycpu->gd_cnt.v_intrans++;
1370                         /*vm_object_deallocate(fs->first_object);*/
1371                         /*fs->first_object = NULL;*/
1372                         fs->m = NULL;
1373                         return (KERN_TRY_AGAIN);
1374                 }
1375                 if (fs->m) {
1376                         /*
1377                          * The page is busied for us.
1378                          *
1379                          * If reactivating a page from PQ_CACHE we may have
1380                          * to rate-limit.
1381                          */
1382                         int queue = fs->m->queue;
1383                         vm_page_unqueue_nowakeup(fs->m);
1384
1385                         if ((queue - fs->m->pc) == PQ_CACHE && 
1386                             vm_page_count_severe()) {
1387                                 vm_page_activate(fs->m);
1388                                 vm_page_wakeup(fs->m);
1389                                 fs->m = NULL;
1390                                 vm_object_pip_wakeup(fs->first_object);
1391                                 vm_object_chain_release_all(fs->first_object,
1392                                                             fs->object);
1393                                 if (fs->object != fs->first_object)
1394                                         vm_object_drop(fs->object);
1395                                 unlock_and_deallocate(fs);
1396                                 if (allow_nofault == 0 ||
1397                                     (curthread->td_flags & TDF_NOFAULT) == 0) {
1398                                         thread_t td;
1399
1400                                         vm_wait_pfault();
1401                                         td = curthread;
1402                                         if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1403                                                 return (KERN_PROTECTION_FAILURE);
1404                                 }
1405                                 return (KERN_TRY_AGAIN);
1406                         }
1407
1408                         /*
1409                          * If it still isn't completely valid (readable),
1410                          * or if a read-ahead-mark is set on the VM page,
1411                          * jump to readrest, else we found the page and
1412                          * can return.
1413                          *
1414                          * We can release the spl once we have marked the
1415                          * page busy.
1416                          */
1417                         if (fs->m->object != &kernel_object) {
1418                                 if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1419                                     VM_PAGE_BITS_ALL) {
1420                                         goto readrest;
1421                                 }
1422                                 if (fs->m->flags & PG_RAM) {
1423                                         if (debug_cluster)
1424                                                 kprintf("R");
1425                                         vm_page_flag_clear(fs->m, PG_RAM);
1426                                         goto readrest;
1427                                 }
1428                         }
1429                         break; /* break to PAGE HAS BEEN FOUND */
1430                 }
1431
1432                 /*
1433                  * Page is not resident, If this is the search termination
1434                  * or the pager might contain the page, allocate a new page.
1435                  */
1436                 if (TRYPAGER(fs) || fs->object == fs->first_object) {
1437                         /*
1438                          * Allocating, must be exclusive.
1439                          */
1440                         if (fs->object == fs->first_object &&
1441                             fs->first_shared) {
1442                                 fs->first_shared = 0;
1443                                 vm_object_pip_wakeup(fs->first_object);
1444                                 vm_object_chain_release_all(fs->first_object,
1445                                                             fs->object);
1446                                 if (fs->object != fs->first_object)
1447                                         vm_object_drop(fs->object);
1448                                 unlock_and_deallocate(fs);
1449                                 return (KERN_TRY_AGAIN);
1450                         }
1451                         if (fs->object != fs->first_object &&
1452                             fs->shared) {
1453                                 fs->first_shared = 0;
1454                                 fs->shared = 0;
1455                                 vm_object_pip_wakeup(fs->first_object);
1456                                 vm_object_chain_release_all(fs->first_object,
1457                                                             fs->object);
1458                                 if (fs->object != fs->first_object)
1459                                         vm_object_drop(fs->object);
1460                                 unlock_and_deallocate(fs);
1461                                 return (KERN_TRY_AGAIN);
1462                         }
1463
1464                         /*
1465                          * If the page is beyond the object size we fail
1466                          */
1467                         if (pindex >= fs->object->size) {
1468                                 vm_object_pip_wakeup(fs->first_object);
1469                                 vm_object_chain_release_all(fs->first_object,
1470                                                             fs->object);
1471                                 if (fs->object != fs->first_object)
1472                                         vm_object_drop(fs->object);
1473                                 unlock_and_deallocate(fs);
1474                                 return (KERN_PROTECTION_FAILURE);
1475                         }
1476
1477                         /*
1478                          * Allocate a new page for this object/offset pair.
1479                          *
1480                          * It is possible for the allocation to race, so
1481                          * handle the case.
1482                          */
1483                         fs->m = NULL;
1484                         if (!vm_page_count_severe()) {
1485                                 fs->m = vm_page_alloc(fs->object, pindex,
1486                                     ((fs->vp || fs->object->backing_object) ?
1487                                         VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1488                                         VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1489                                         VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1490                         }
1491                         if (fs->m == NULL) {
1492                                 vm_object_pip_wakeup(fs->first_object);
1493                                 vm_object_chain_release_all(fs->first_object,
1494                                                             fs->object);
1495                                 if (fs->object != fs->first_object)
1496                                         vm_object_drop(fs->object);
1497                                 unlock_and_deallocate(fs);
1498                                 if (allow_nofault == 0 ||
1499                                     (curthread->td_flags & TDF_NOFAULT) == 0) {
1500                                         thread_t td;
1501
1502                                         vm_wait_pfault();
1503                                         td = curthread;
1504                                         if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1505                                                 return (KERN_PROTECTION_FAILURE);
1506                                 }
1507                                 return (KERN_TRY_AGAIN);
1508                         }
1509
1510                         /*
1511                          * Fall through to readrest.  We have a new page which
1512                          * will have to be paged (since m->valid will be 0).
1513                          */
1514                 }
1515
1516 readrest:
1517                 /*
1518                  * We have found an invalid or partially valid page, a
1519                  * page with a read-ahead mark which might be partially or
1520                  * fully valid (and maybe dirty too), or we have allocated
1521                  * a new page.
1522                  *
1523                  * Attempt to fault-in the page if there is a chance that the
1524                  * pager has it, and potentially fault in additional pages
1525                  * at the same time.
1526                  *
1527                  * If TRYPAGER is true then fs.m will be non-NULL and busied
1528                  * for us.
1529                  */
1530                 if (TRYPAGER(fs)) {
1531                         int rv;
1532                         int seqaccess;
1533                         u_char behavior = vm_map_entry_behavior(fs->entry);
1534
1535                         if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1536                                 seqaccess = 0;
1537                         else
1538                                 seqaccess = -1;
1539
1540                         /*
1541                          * Doing I/O may synchronously insert additional
1542                          * pages so we can't be shared at this point either.
1543                          *
1544                          * NOTE: We can't free fs->m here in the allocated
1545                          *       case (fs->object != fs->first_object) as
1546                          *       this would require an exclusively locked
1547                          *       VM object.
1548                          */
1549                         if (fs->object == fs->first_object &&
1550                             fs->first_shared) {
1551                                 vm_page_deactivate(fs->m);
1552                                 vm_page_wakeup(fs->m);
1553                                 fs->m = NULL;
1554                                 fs->first_shared = 0;
1555                                 vm_object_pip_wakeup(fs->first_object);
1556                                 vm_object_chain_release_all(fs->first_object,
1557                                                             fs->object);
1558                                 if (fs->object != fs->first_object)
1559                                         vm_object_drop(fs->object);
1560                                 unlock_and_deallocate(fs);
1561                                 return (KERN_TRY_AGAIN);
1562                         }
1563                         if (fs->object != fs->first_object &&
1564                             fs->shared) {
1565                                 vm_page_deactivate(fs->m);
1566                                 vm_page_wakeup(fs->m);
1567                                 fs->m = NULL;
1568                                 fs->first_shared = 0;
1569                                 fs->shared = 0;
1570                                 vm_object_pip_wakeup(fs->first_object);
1571                                 vm_object_chain_release_all(fs->first_object,
1572                                                             fs->object);
1573                                 if (fs->object != fs->first_object)
1574                                         vm_object_drop(fs->object);
1575                                 unlock_and_deallocate(fs);
1576                                 return (KERN_TRY_AGAIN);
1577                         }
1578
1579                         /*
1580                          * Avoid deadlocking against the map when doing I/O.
1581                          * fs.object and the page is PG_BUSY'd.
1582                          *
1583                          * NOTE: Once unlocked, fs->entry can become stale
1584                          *       so this will NULL it out.
1585                          *
1586                          * NOTE: fs->entry is invalid until we relock the
1587                          *       map and verify that the timestamp has not
1588                          *       changed.
1589                          */
1590                         unlock_map(fs);
1591
1592                         /*
1593                          * Acquire the page data.  We still hold a ref on
1594                          * fs.object and the page has been PG_BUSY's.
1595                          *
1596                          * The pager may replace the page (for example, in
1597                          * order to enter a fictitious page into the
1598                          * object).  If it does so it is responsible for
1599                          * cleaning up the passed page and properly setting
1600                          * the new page PG_BUSY.
1601                          *
1602                          * If we got here through a PG_RAM read-ahead
1603                          * mark the page may be partially dirty and thus
1604                          * not freeable.  Don't bother checking to see
1605                          * if the pager has the page because we can't free
1606                          * it anyway.  We have to depend on the get_page
1607                          * operation filling in any gaps whether there is
1608                          * backing store or not.
1609                          */
1610                         rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1611
1612                         if (rv == VM_PAGER_OK) {
1613                                 /*
1614                                  * Relookup in case pager changed page. Pager
1615                                  * is responsible for disposition of old page
1616                                  * if moved.
1617                                  *
1618                                  * XXX other code segments do relookups too.
1619                                  * It's a bad abstraction that needs to be
1620                                  * fixed/removed.
1621                                  */
1622                                 fs->m = vm_page_lookup(fs->object, pindex);
1623                                 if (fs->m == NULL) {
1624                                         vm_object_pip_wakeup(fs->first_object);
1625                                         vm_object_chain_release_all(
1626                                                 fs->first_object, fs->object);
1627                                         if (fs->object != fs->first_object)
1628                                                 vm_object_drop(fs->object);
1629                                         unlock_and_deallocate(fs);
1630                                         return (KERN_TRY_AGAIN);
1631                                 }
1632                                 ++fs->hardfault;
1633                                 break; /* break to PAGE HAS BEEN FOUND */
1634                         }
1635
1636                         /*
1637                          * Remove the bogus page (which does not exist at this
1638                          * object/offset); before doing so, we must get back
1639                          * our object lock to preserve our invariant.
1640                          *
1641                          * Also wake up any other process that may want to bring
1642                          * in this page.
1643                          *
1644                          * If this is the top-level object, we must leave the
1645                          * busy page to prevent another process from rushing
1646                          * past us, and inserting the page in that object at
1647                          * the same time that we are.
1648                          */
1649                         if (rv == VM_PAGER_ERROR) {
1650                                 if (curproc) {
1651                                         kprintf("vm_fault: pager read error, "
1652                                                 "pid %d (%s)\n",
1653                                                 curproc->p_pid,
1654                                                 curproc->p_comm);
1655                                 } else {
1656                                         kprintf("vm_fault: pager read error, "
1657                                                 "thread %p (%s)\n",
1658                                                 curthread,
1659                                                 curproc->p_comm);
1660                                 }
1661                         }
1662
1663                         /*
1664                          * Data outside the range of the pager or an I/O error
1665                          *
1666                          * The page may have been wired during the pagein,
1667                          * e.g. by the buffer cache, and cannot simply be
1668                          * freed.  Call vnode_pager_freepage() to deal with it.
1669                          *
1670                          * Also note that we cannot free the page if we are
1671                          * holding the related object shared. XXX not sure
1672                          * what to do in that case.
1673                          */
1674                         if (fs->object != fs->first_object) {
1675                                 vnode_pager_freepage(fs->m);
1676                                 fs->m = NULL;
1677                                 /*
1678                                  * XXX - we cannot just fall out at this
1679                                  * point, m has been freed and is invalid!
1680                                  */
1681                         }
1682                         /*
1683                          * XXX - the check for kernel_map is a kludge to work
1684                          * around having the machine panic on a kernel space
1685                          * fault w/ I/O error.
1686                          */
1687                         if (((fs->map != &kernel_map) &&
1688                             (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1689                                 if (fs->m) {
1690                                         if (fs->first_shared) {
1691                                                 vm_page_deactivate(fs->m);
1692                                                 vm_page_wakeup(fs->m);
1693                                         } else {
1694                                                 vnode_pager_freepage(fs->m);
1695                                         }
1696                                         fs->m = NULL;
1697                                 }
1698                                 vm_object_pip_wakeup(fs->first_object);
1699                                 vm_object_chain_release_all(fs->first_object,
1700                                                             fs->object);
1701                                 if (fs->object != fs->first_object)
1702                                         vm_object_drop(fs->object);
1703                                 unlock_and_deallocate(fs);
1704                                 if (rv == VM_PAGER_ERROR)
1705                                         return (KERN_FAILURE);
1706                                 else
1707                                         return (KERN_PROTECTION_FAILURE);
1708                                 /* NOT REACHED */
1709                         }
1710                 }
1711
1712                 /*
1713                  * We get here if the object has a default pager (or unwiring) 
1714                  * or the pager doesn't have the page.
1715                  *
1716                  * fs->first_m will be used for the COW unless we find a
1717                  * deeper page to be mapped read-only, in which case the
1718                  * unlock*(fs) will free first_m.
1719                  */
1720                 if (fs->object == fs->first_object)
1721                         fs->first_m = fs->m;
1722
1723                 /*
1724                  * Move on to the next object.  The chain lock should prevent
1725                  * the backing_object from getting ripped out from under us.
1726                  *
1727                  * The object lock for the next object is governed by
1728                  * fs->shared.
1729                  */
1730                 if ((next_object = fs->object->backing_object) != NULL) {
1731                         if (fs->shared)
1732                                 vm_object_hold_shared(next_object);
1733                         else
1734                                 vm_object_hold(next_object);
1735                         vm_object_chain_acquire(next_object, fs->shared);
1736                         KKASSERT(next_object == fs->object->backing_object);
1737                         pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1738                 }
1739
1740                 if (next_object == NULL) {
1741                         /*
1742                          * If there's no object left, fill the page in the top
1743                          * object with zeros.
1744                          */
1745                         if (fs->object != fs->first_object) {
1746 #if 0
1747                                 if (fs->first_object->backing_object !=
1748                                     fs->object) {
1749                                         vm_object_hold(fs->first_object->backing_object);
1750                                 }
1751 #endif
1752                                 vm_object_chain_release_all(
1753                                         fs->first_object->backing_object,
1754                                         fs->object);
1755 #if 0
1756                                 if (fs->first_object->backing_object !=
1757                                     fs->object) {
1758                                         vm_object_drop(fs->first_object->backing_object);
1759                                 }
1760 #endif
1761                                 vm_object_pip_wakeup(fs->object);
1762                                 vm_object_drop(fs->object);
1763                                 fs->object = fs->first_object;
1764                                 pindex = first_pindex;
1765                                 fs->m = fs->first_m;
1766                         }
1767                         fs->first_m = NULL;
1768
1769                         /*
1770                          * Zero the page and mark it valid.
1771                          */
1772                         vm_page_zero_fill(fs->m);
1773                         mycpu->gd_cnt.v_zfod++;
1774                         fs->m->valid = VM_PAGE_BITS_ALL;
1775                         break;  /* break to PAGE HAS BEEN FOUND */
1776                 }
1777                 if (fs->object != fs->first_object) {
1778                         vm_object_pip_wakeup(fs->object);
1779                         vm_object_lock_swap();
1780                         vm_object_drop(fs->object);
1781                 }
1782                 KASSERT(fs->object != next_object,
1783                         ("object loop %p", next_object));
1784                 fs->object = next_object;
1785                 vm_object_pip_add(fs->object, 1);
1786         }
1787
1788         /*
1789          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1790          * is held.]
1791          *
1792          * object still held.
1793          *
1794          * local shared variable may be different from fs->shared.
1795          *
1796          * If the page is being written, but isn't already owned by the
1797          * top-level object, we have to copy it into a new page owned by the
1798          * top-level object.
1799          */
1800         KASSERT((fs->m->flags & PG_BUSY) != 0,
1801                 ("vm_fault: not busy after main loop"));
1802
1803         if (fs->object != fs->first_object) {
1804                 /*
1805                  * We only really need to copy if we want to write it.
1806                  */
1807                 if (fault_type & VM_PROT_WRITE) {
1808                         /*
1809                          * This allows pages to be virtually copied from a 
1810                          * backing_object into the first_object, where the 
1811                          * backing object has no other refs to it, and cannot
1812                          * gain any more refs.  Instead of a bcopy, we just 
1813                          * move the page from the backing object to the 
1814                          * first object.  Note that we must mark the page 
1815                          * dirty in the first object so that it will go out 
1816                          * to swap when needed.
1817                          */
1818                         if (
1819                                 /*
1820                                  * Must be holding exclusive locks
1821                                  */
1822                                 fs->first_shared == 0 &&
1823                                 fs->shared == 0 &&
1824                                 /*
1825                                  * Map, if present, has not changed
1826                                  */
1827                                 (fs->map == NULL ||
1828                                 fs->map_generation == fs->map->timestamp) &&
1829                                 /*
1830                                  * Only one shadow object
1831                                  */
1832                                 (fs->object->shadow_count == 1) &&
1833                                 /*
1834                                  * No COW refs, except us
1835                                  */
1836                                 (fs->object->ref_count == 1) &&
1837                                 /*
1838                                  * No one else can look this object up
1839                                  */
1840                                 (fs->object->handle == NULL) &&
1841                                 /*
1842                                  * No other ways to look the object up
1843                                  */
1844                                 ((fs->object->type == OBJT_DEFAULT) ||
1845                                  (fs->object->type == OBJT_SWAP)) &&
1846                                 /*
1847                                  * We don't chase down the shadow chain
1848                                  */
1849                                 (fs->object == fs->first_object->backing_object) &&
1850
1851                                 /*
1852                                  * grab the lock if we need to
1853                                  */
1854                                 (fs->lookup_still_valid ||
1855                                  fs->map == NULL ||
1856                                  lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1857                             ) {
1858                                 /*
1859                                  * (first_m) and (m) are both busied.  We have
1860                                  * move (m) into (first_m)'s object/pindex
1861                                  * in an atomic fashion, then free (first_m).
1862                                  *
1863                                  * first_object is held so second remove
1864                                  * followed by the rename should wind
1865                                  * up being atomic.  vm_page_free() might
1866                                  * block so we don't do it until after the
1867                                  * rename.
1868                                  */
1869                                 fs->lookup_still_valid = 1;
1870                                 vm_page_protect(fs->first_m, VM_PROT_NONE);
1871                                 vm_page_remove(fs->first_m);
1872                                 vm_page_rename(fs->m, fs->first_object,
1873                                                first_pindex);
1874                                 vm_page_free(fs->first_m);
1875                                 fs->first_m = fs->m;
1876                                 fs->m = NULL;
1877                                 mycpu->gd_cnt.v_cow_optim++;
1878                         } else {
1879                                 /*
1880                                  * Oh, well, lets copy it.
1881                                  *
1882                                  * Why are we unmapping the original page
1883                                  * here?  Well, in short, not all accessors
1884                                  * of user memory go through the pmap.  The
1885                                  * procfs code doesn't have access user memory
1886                                  * via a local pmap, so vm_fault_page*()
1887                                  * can't call pmap_enter().  And the umtx*()
1888                                  * code may modify the COW'd page via a DMAP
1889                                  * or kernel mapping and not via the pmap,
1890                                  * leaving the original page still mapped
1891                                  * read-only into the pmap.
1892                                  *
1893                                  * So we have to remove the page from at
1894                                  * least the current pmap if it is in it.
1895                                  * Just remove it from all pmaps.
1896                                  */
1897                                 KKASSERT(fs->first_shared == 0);
1898                                 vm_page_copy(fs->m, fs->first_m);
1899                                 vm_page_protect(fs->m, VM_PROT_NONE);
1900                                 vm_page_event(fs->m, VMEVENT_COW);
1901                         }
1902
1903                         /*
1904                          * We no longer need the old page or object.
1905                          */
1906                         if (fs->m)
1907                                 release_page(fs);
1908
1909                         /*
1910                          * We intend to revert to first_object, undo the
1911                          * chain lock through to that.
1912                          */
1913 #if 0
1914                         if (fs->first_object->backing_object != fs->object)
1915                                 vm_object_hold(fs->first_object->backing_object);
1916 #endif
1917                         vm_object_chain_release_all(
1918                                         fs->first_object->backing_object,
1919                                         fs->object);
1920 #if 0
1921                         if (fs->first_object->backing_object != fs->object)
1922                                 vm_object_drop(fs->first_object->backing_object);
1923 #endif
1924
1925                         /*
1926                          * fs->object != fs->first_object due to above 
1927                          * conditional
1928                          */
1929                         vm_object_pip_wakeup(fs->object);
1930                         vm_object_drop(fs->object);
1931
1932                         /*
1933                          * Only use the new page below...
1934                          */
1935                         mycpu->gd_cnt.v_cow_faults++;
1936                         fs->m = fs->first_m;
1937                         fs->object = fs->first_object;
1938                         pindex = first_pindex;
1939                 } else {
1940                         /*
1941                          * If it wasn't a write fault avoid having to copy
1942                          * the page by mapping it read-only.
1943                          */
1944                         fs->prot &= ~VM_PROT_WRITE;
1945                 }
1946         }
1947
1948         /*
1949          * Relock the map if necessary, then check the generation count.
1950          * relock_map() will update fs->timestamp to account for the
1951          * relocking if necessary.
1952          *
1953          * If the count has changed after relocking then all sorts of
1954          * crap may have happened and we have to retry.
1955          *
1956          * NOTE: The relock_map() can fail due to a deadlock against
1957          *       the vm_page we are holding BUSY.
1958          */
1959         if (fs->lookup_still_valid == FALSE && fs->map) {
1960                 if (relock_map(fs) ||
1961                     fs->map->timestamp != fs->map_generation) {
1962                         release_page(fs);
1963                         vm_object_pip_wakeup(fs->first_object);
1964                         vm_object_chain_release_all(fs->first_object,
1965                                                     fs->object);
1966                         if (fs->object != fs->first_object)
1967                                 vm_object_drop(fs->object);
1968                         unlock_and_deallocate(fs);
1969                         return (KERN_TRY_AGAIN);
1970                 }
1971         }
1972
1973         /*
1974          * If the fault is a write, we know that this page is being
1975          * written NOW so dirty it explicitly to save on pmap_is_modified()
1976          * calls later.
1977          *
1978          * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1979          * if the page is already dirty to prevent data written with
1980          * the expectation of being synced from not being synced.
1981          * Likewise if this entry does not request NOSYNC then make
1982          * sure the page isn't marked NOSYNC.  Applications sharing
1983          * data should use the same flags to avoid ping ponging.
1984          *
1985          * Also tell the backing pager, if any, that it should remove
1986          * any swap backing since the page is now dirty.
1987          */
1988         vm_page_activate(fs->m);
1989         if (fs->prot & VM_PROT_WRITE) {
1990                 vm_object_set_writeable_dirty(fs->m->object);
1991                 vm_set_nosync(fs->m, fs->entry);
1992                 if (fs->fault_flags & VM_FAULT_DIRTY) {
1993                         vm_page_dirty(fs->m);
1994                         swap_pager_unswapped(fs->m);
1995                 }
1996         }
1997
1998         vm_object_pip_wakeup(fs->first_object);
1999         vm_object_chain_release_all(fs->first_object, fs->object);
2000         if (fs->object != fs->first_object)
2001                 vm_object_drop(fs->object);
2002
2003         /*
2004          * Page had better still be busy.  We are still locked up and 
2005          * fs->object will have another PIP reference if it is not equal
2006          * to fs->first_object.
2007          */
2008         KASSERT(fs->m->flags & PG_BUSY,
2009                 ("vm_fault: page %p not busy!", fs->m));
2010
2011         /*
2012          * Sanity check: page must be completely valid or it is not fit to
2013          * map into user space.  vm_pager_get_pages() ensures this.
2014          */
2015         if (fs->m->valid != VM_PAGE_BITS_ALL) {
2016                 vm_page_zero_invalid(fs->m, TRUE);
2017                 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
2018         }
2019
2020         return (KERN_SUCCESS);
2021 }
2022
2023 /*
2024  * Hold each of the physical pages that are mapped by the specified range of
2025  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
2026  * and allow the specified types of access, "prot".  If all of the implied
2027  * pages are successfully held, then the number of held pages is returned
2028  * together with pointers to those pages in the array "ma".  However, if any
2029  * of the pages cannot be held, -1 is returned.
2030  */
2031 int
2032 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
2033     vm_prot_t prot, vm_page_t *ma, int max_count)
2034 {
2035         vm_offset_t start, end;
2036         int i, npages, error;
2037
2038         start = trunc_page(addr);
2039         end = round_page(addr + len);
2040
2041         npages = howmany(end - start, PAGE_SIZE);
2042
2043         if (npages > max_count)
2044                 return -1;
2045
2046         for (i = 0; i < npages; i++) {
2047                 // XXX error handling
2048                 ma[i] = vm_fault_page_quick(start + (i * PAGE_SIZE),
2049                         prot,
2050                         &error);
2051         }
2052
2053         return npages;
2054 }
2055
2056 /*
2057  * Wire down a range of virtual addresses in a map.  The entry in question
2058  * should be marked in-transition and the map must be locked.  We must
2059  * release the map temporarily while faulting-in the page to avoid a
2060  * deadlock.  Note that the entry may be clipped while we are blocked but
2061  * will never be freed.
2062  *
2063  * No requirements.
2064  */
2065 int
2066 vm_fault_wire(vm_map_t map, vm_map_entry_t entry,
2067               boolean_t user_wire, int kmflags)
2068 {
2069         boolean_t fictitious;
2070         vm_offset_t start;
2071         vm_offset_t end;
2072         vm_offset_t va;
2073         vm_paddr_t pa;
2074         vm_page_t m;
2075         pmap_t pmap;
2076         int rv;
2077         int wire_prot;
2078         int fault_flags;
2079
2080         lwkt_gettoken(&map->token);
2081
2082         if (user_wire) {
2083                 wire_prot = VM_PROT_READ;
2084                 fault_flags = VM_FAULT_USER_WIRE;
2085         } else {
2086                 wire_prot = VM_PROT_READ | VM_PROT_WRITE;
2087                 fault_flags = VM_FAULT_CHANGE_WIRING;
2088         }
2089         if (kmflags & KM_NOTLBSYNC)
2090                 wire_prot |= VM_PROT_NOSYNC;
2091
2092         pmap = vm_map_pmap(map);
2093         start = entry->start;
2094         end = entry->end;
2095         switch(entry->maptype) {
2096         case VM_MAPTYPE_NORMAL:
2097         case VM_MAPTYPE_VPAGETABLE:
2098                 fictitious = entry->object.vm_object &&
2099                             ((entry->object.vm_object->type == OBJT_DEVICE) ||
2100                              (entry->object.vm_object->type == OBJT_MGTDEVICE));
2101                 break;
2102         case VM_MAPTYPE_UKSMAP:
2103                 fictitious = TRUE;
2104                 break;
2105         default:
2106                 fictitious = FALSE;
2107                 break;
2108         }
2109
2110         if (entry->eflags & MAP_ENTRY_KSTACK)
2111                 start += PAGE_SIZE;
2112         map->timestamp++;
2113         vm_map_unlock(map);
2114
2115         /*
2116          * We simulate a fault to get the page and enter it in the physical
2117          * map.
2118          */
2119         for (va = start; va < end; va += PAGE_SIZE) {
2120                 rv = vm_fault(map, va, wire_prot, fault_flags);
2121                 if (rv) {
2122                         while (va > start) {
2123                                 va -= PAGE_SIZE;
2124                                 if ((pa = pmap_extract(pmap, va)) == 0)
2125                                         continue;
2126                                 pmap_change_wiring(pmap, va, FALSE, entry);
2127                                 if (!fictitious) {
2128                                         m = PHYS_TO_VM_PAGE(pa);
2129                                         vm_page_busy_wait(m, FALSE, "vmwrpg");
2130                                         vm_page_unwire(m, 1);
2131                                         vm_page_wakeup(m);
2132                                 }
2133                         }
2134                         goto done;
2135                 }
2136         }
2137         rv = KERN_SUCCESS;
2138 done:
2139         vm_map_lock(map);
2140         lwkt_reltoken(&map->token);
2141         return (rv);
2142 }
2143
2144 /*
2145  * Unwire a range of virtual addresses in a map.  The map should be
2146  * locked.
2147  */
2148 void
2149 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
2150 {
2151         boolean_t fictitious;
2152         vm_offset_t start;
2153         vm_offset_t end;
2154         vm_offset_t va;
2155         vm_paddr_t pa;
2156         vm_page_t m;
2157         pmap_t pmap;
2158
2159         lwkt_gettoken(&map->token);
2160
2161         pmap = vm_map_pmap(map);
2162         start = entry->start;
2163         end = entry->end;
2164         fictitious = entry->object.vm_object &&
2165                         ((entry->object.vm_object->type == OBJT_DEVICE) ||
2166                          (entry->object.vm_object->type == OBJT_MGTDEVICE));
2167         if (entry->eflags & MAP_ENTRY_KSTACK)
2168                 start += PAGE_SIZE;
2169
2170         /*
2171          * Since the pages are wired down, we must be able to get their
2172          * mappings from the physical map system.
2173          */
2174         for (va = start; va < end; va += PAGE_SIZE) {
2175                 pa = pmap_extract(pmap, va);
2176                 if (pa != 0) {
2177                         pmap_change_wiring(pmap, va, FALSE, entry);
2178                         if (!fictitious) {
2179                                 m = PHYS_TO_VM_PAGE(pa);
2180                                 vm_page_busy_wait(m, FALSE, "vmwupg");
2181                                 vm_page_unwire(m, 1);
2182                                 vm_page_wakeup(m);
2183                         }
2184                 }
2185         }
2186         lwkt_reltoken(&map->token);
2187 }
2188
2189 /*
2190  * Copy all of the pages from a wired-down map entry to another.
2191  *
2192  * The source and destination maps must be locked for write.
2193  * The source and destination maps token must be held
2194  * The source map entry must be wired down (or be a sharing map
2195  * entry corresponding to a main map entry that is wired down).
2196  *
2197  * No other requirements.
2198  *
2199  * XXX do segment optimization
2200  */
2201 void
2202 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
2203                     vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
2204 {
2205         vm_object_t dst_object;
2206         vm_object_t src_object;
2207         vm_ooffset_t dst_offset;
2208         vm_ooffset_t src_offset;
2209         vm_prot_t prot;
2210         vm_offset_t vaddr;
2211         vm_page_t dst_m;
2212         vm_page_t src_m;
2213
2214         src_object = src_entry->object.vm_object;
2215         src_offset = src_entry->offset;
2216
2217         /*
2218          * Create the top-level object for the destination entry. (Doesn't
2219          * actually shadow anything - we copy the pages directly.)
2220          */
2221         vm_map_entry_allocate_object(dst_entry);
2222         dst_object = dst_entry->object.vm_object;
2223
2224         prot = dst_entry->max_protection;
2225
2226         /*
2227          * Loop through all of the pages in the entry's range, copying each
2228          * one from the source object (it should be there) to the destination
2229          * object.
2230          */
2231         vm_object_hold(src_object);
2232         vm_object_hold(dst_object);
2233         for (vaddr = dst_entry->start, dst_offset = 0;
2234             vaddr < dst_entry->end;
2235             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
2236
2237                 /*
2238                  * Allocate a page in the destination object
2239                  */
2240                 do {
2241                         dst_m = vm_page_alloc(dst_object,
2242                                               OFF_TO_IDX(dst_offset),
2243                                               VM_ALLOC_NORMAL);
2244                         if (dst_m == NULL) {
2245                                 vm_wait(0);
2246                         }
2247                 } while (dst_m == NULL);
2248
2249                 /*
2250                  * Find the page in the source object, and copy it in.
2251                  * (Because the source is wired down, the page will be in
2252                  * memory.)
2253                  */
2254                 src_m = vm_page_lookup(src_object,
2255                                        OFF_TO_IDX(dst_offset + src_offset));
2256                 if (src_m == NULL)
2257                         panic("vm_fault_copy_wired: page missing");
2258
2259                 vm_page_copy(src_m, dst_m);
2260                 vm_page_event(src_m, VMEVENT_COW);
2261
2262                 /*
2263                  * Enter it in the pmap...
2264                  */
2265                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2266
2267                 /*
2268                  * Mark it no longer busy, and put it on the active list.
2269                  */
2270                 vm_page_activate(dst_m);
2271                 vm_page_wakeup(dst_m);
2272         }
2273         vm_object_drop(dst_object);
2274         vm_object_drop(src_object);
2275 }
2276
2277 #if 0
2278
2279 /*
2280  * This routine checks around the requested page for other pages that
2281  * might be able to be faulted in.  This routine brackets the viable
2282  * pages for the pages to be paged in.
2283  *
2284  * Inputs:
2285  *      m, rbehind, rahead
2286  *
2287  * Outputs:
2288  *  marray (array of vm_page_t), reqpage (index of requested page)
2289  *
2290  * Return value:
2291  *  number of pages in marray
2292  */
2293 static int
2294 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2295                           vm_page_t *marray, int *reqpage)
2296 {
2297         int i,j;
2298         vm_object_t object;
2299         vm_pindex_t pindex, startpindex, endpindex, tpindex;
2300         vm_page_t rtm;
2301         int cbehind, cahead;
2302
2303         object = m->object;
2304         pindex = m->pindex;
2305
2306         /*
2307          * we don't fault-ahead for device pager
2308          */
2309         if ((object->type == OBJT_DEVICE) ||
2310             (object->type == OBJT_MGTDEVICE)) {
2311                 *reqpage = 0;
2312                 marray[0] = m;
2313                 return 1;
2314         }
2315
2316         /*
2317          * if the requested page is not available, then give up now
2318          */
2319         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2320                 *reqpage = 0;   /* not used by caller, fix compiler warn */
2321                 return 0;
2322         }
2323
2324         if ((cbehind == 0) && (cahead == 0)) {
2325                 *reqpage = 0;
2326                 marray[0] = m;
2327                 return 1;
2328         }
2329
2330         if (rahead > cahead) {
2331                 rahead = cahead;
2332         }
2333
2334         if (rbehind > cbehind) {
2335                 rbehind = cbehind;
2336         }
2337
2338         /*
2339          * Do not do any readahead if we have insufficient free memory.
2340          *
2341          * XXX code was broken disabled before and has instability
2342          * with this conditonal fixed, so shortcut for now.
2343          */
2344         if (burst_fault == 0 || vm_page_count_severe()) {
2345                 marray[0] = m;
2346                 *reqpage = 0;
2347                 return 1;
2348         }
2349
2350         /*
2351          * scan backward for the read behind pages -- in memory 
2352          *
2353          * Assume that if the page is not found an interrupt will not
2354          * create it.  Theoretically interrupts can only remove (busy)
2355          * pages, not create new associations.
2356          */
2357         if (pindex > 0) {
2358                 if (rbehind > pindex) {
2359                         rbehind = pindex;
2360                         startpindex = 0;
2361                 } else {
2362                         startpindex = pindex - rbehind;
2363                 }
2364
2365                 vm_object_hold(object);
2366                 for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2367                         if (vm_page_lookup(object, tpindex - 1))
2368                                 break;
2369                 }
2370
2371                 i = 0;
2372                 while (tpindex < pindex) {
2373                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2374                                                              VM_ALLOC_NULL_OK);
2375                         if (rtm == NULL) {
2376                                 for (j = 0; j < i; j++) {
2377                                         vm_page_free(marray[j]);
2378                                 }
2379                                 vm_object_drop(object);
2380                                 marray[0] = m;
2381                                 *reqpage = 0;
2382                                 return 1;
2383                         }
2384                         marray[i] = rtm;
2385                         ++i;
2386                         ++tpindex;
2387                 }
2388                 vm_object_drop(object);
2389         } else {
2390                 i = 0;
2391         }
2392
2393         /*
2394          * Assign requested page
2395          */
2396         marray[i] = m;
2397         *reqpage = i;
2398         ++i;
2399
2400         /*
2401          * Scan forwards for read-ahead pages
2402          */
2403         tpindex = pindex + 1;
2404         endpindex = tpindex + rahead;
2405         if (endpindex > object->size)
2406                 endpindex = object->size;
2407
2408         vm_object_hold(object);
2409         while (tpindex < endpindex) {
2410                 if (vm_page_lookup(object, tpindex))
2411                         break;
2412                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2413                                                      VM_ALLOC_NULL_OK);
2414                 if (rtm == NULL)
2415                         break;
2416                 marray[i] = rtm;
2417                 ++i;
2418                 ++tpindex;
2419         }
2420         vm_object_drop(object);
2421
2422         return (i);
2423 }
2424
2425 #endif
2426
2427 /*
2428  * vm_prefault() provides a quick way of clustering pagefaults into a
2429  * processes address space.  It is a "cousin" of pmap_object_init_pt,
2430  * except it runs at page fault time instead of mmap time.
2431  *
2432  * vm.fast_fault        Enables pre-faulting zero-fill pages
2433  *
2434  * vm.prefault_pages    Number of pages (1/2 negative, 1/2 positive) to
2435  *                      prefault.  Scan stops in either direction when
2436  *                      a page is found to already exist.
2437  *
2438  * This code used to be per-platform pmap_prefault().  It is now
2439  * machine-independent and enhanced to also pre-fault zero-fill pages
2440  * (see vm.fast_fault) as well as make them writable, which greatly
2441  * reduces the number of page faults programs incur.
2442  *
2443  * Application performance when pre-faulting zero-fill pages is heavily
2444  * dependent on the application.  Very tiny applications like /bin/echo
2445  * lose a little performance while applications of any appreciable size
2446  * gain performance.  Prefaulting multiple pages also reduces SMP
2447  * congestion and can improve SMP performance significantly.
2448  *
2449  * NOTE!  prot may allow writing but this only applies to the top level
2450  *        object.  If we wind up mapping a page extracted from a backing
2451  *        object we have to make sure it is read-only.
2452  *
2453  * NOTE!  The caller has already handled any COW operations on the
2454  *        vm_map_entry via the normal fault code.  Do NOT call this
2455  *        shortcut unless the normal fault code has run on this entry.
2456  *
2457  * The related map must be locked.
2458  * No other requirements.
2459  */
2460 static int vm_prefault_pages = 8;
2461 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2462            "Maximum number of pages to pre-fault");
2463 static int vm_fast_fault = 1;
2464 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2465            "Burst fault zero-fill regions");
2466
2467 /*
2468  * Set PG_NOSYNC if the map entry indicates so, but only if the page
2469  * is not already dirty by other means.  This will prevent passive
2470  * filesystem syncing as well as 'sync' from writing out the page.
2471  */
2472 static void
2473 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2474 {
2475         if (entry->eflags & MAP_ENTRY_NOSYNC) {
2476                 if (m->dirty == 0)
2477                         vm_page_flag_set(m, PG_NOSYNC);
2478         } else {
2479                 vm_page_flag_clear(m, PG_NOSYNC);
2480         }
2481 }
2482
2483 static void
2484 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2485             int fault_flags)
2486 {
2487         struct lwp *lp;
2488         vm_page_t m;
2489         vm_offset_t addr;
2490         vm_pindex_t index;
2491         vm_pindex_t pindex;
2492         vm_object_t object;
2493         int pprot;
2494         int i;
2495         int noneg;
2496         int nopos;
2497         int maxpages;
2498
2499         /*
2500          * Get stable max count value, disabled if set to 0
2501          */
2502         maxpages = vm_prefault_pages;
2503         cpu_ccfence();
2504         if (maxpages <= 0)
2505                 return;
2506
2507         /*
2508          * We do not currently prefault mappings that use virtual page
2509          * tables.  We do not prefault foreign pmaps.
2510          */
2511         if (entry->maptype != VM_MAPTYPE_NORMAL)
2512                 return;
2513         lp = curthread->td_lwp;
2514         if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2515                 return;
2516
2517         /*
2518          * Limit pre-fault count to 1024 pages.
2519          */
2520         if (maxpages > 1024)
2521                 maxpages = 1024;
2522
2523         object = entry->object.vm_object;
2524         KKASSERT(object != NULL);
2525         KKASSERT(object == entry->object.vm_object);
2526         vm_object_hold(object);
2527         vm_object_chain_acquire(object, 0);
2528
2529         noneg = 0;
2530         nopos = 0;
2531         for (i = 0; i < maxpages; ++i) {
2532                 vm_object_t lobject;
2533                 vm_object_t nobject;
2534                 int allocated = 0;
2535                 int error;
2536
2537                 /*
2538                  * This can eat a lot of time on a heavily contended
2539                  * machine so yield on the tick if needed.
2540                  */
2541                 if ((i & 7) == 7)
2542                         lwkt_yield();
2543
2544                 /*
2545                  * Calculate the page to pre-fault, stopping the scan in
2546                  * each direction separately if the limit is reached.
2547                  */
2548                 if (i & 1) {
2549                         if (noneg)
2550                                 continue;
2551                         addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2552                 } else {
2553                         if (nopos)
2554                                 continue;
2555                         addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2556                 }
2557                 if (addr < entry->start) {
2558                         noneg = 1;
2559                         if (noneg && nopos)
2560                                 break;
2561                         continue;
2562                 }
2563                 if (addr >= entry->end) {
2564                         nopos = 1;
2565                         if (noneg && nopos)
2566                                 break;
2567                         continue;
2568                 }
2569
2570                 /*
2571                  * Skip pages already mapped, and stop scanning in that
2572                  * direction.  When the scan terminates in both directions
2573                  * we are done.
2574                  */
2575                 if (pmap_prefault_ok(pmap, addr) == 0) {
2576                         if (i & 1)
2577                                 noneg = 1;
2578                         else
2579                                 nopos = 1;
2580                         if (noneg && nopos)
2581                                 break;
2582                         continue;
2583                 }
2584
2585                 /*
2586                  * Follow the VM object chain to obtain the page to be mapped
2587                  * into the pmap.
2588                  *
2589                  * If we reach the terminal object without finding a page
2590                  * and we determine it would be advantageous, then allocate
2591                  * a zero-fill page for the base object.  The base object
2592                  * is guaranteed to be OBJT_DEFAULT for this case.
2593                  *
2594                  * In order to not have to check the pager via *haspage*()
2595                  * we stop if any non-default object is encountered.  e.g.
2596                  * a vnode or swap object would stop the loop.
2597                  */
2598                 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2599                 lobject = object;
2600                 pindex = index;
2601                 pprot = prot;
2602
2603                 KKASSERT(lobject == entry->object.vm_object);
2604                 /*vm_object_hold(lobject); implied */
2605
2606                 while ((m = vm_page_lookup_busy_try(lobject, pindex,
2607                                                     TRUE, &error)) == NULL) {
2608                         if (lobject->type != OBJT_DEFAULT)
2609                                 break;
2610                         if (lobject->backing_object == NULL) {
2611                                 if (vm_fast_fault == 0)
2612                                         break;
2613                                 if ((prot & VM_PROT_WRITE) == 0 ||
2614                                     vm_page_count_min(0)) {
2615                                         break;
2616                                 }
2617
2618                                 /*
2619                                  * NOTE: Allocated from base object
2620                                  */
2621                                 m = vm_page_alloc(object, index,
2622                                                   VM_ALLOC_NORMAL |
2623                                                   VM_ALLOC_ZERO |
2624                                                   VM_ALLOC_USE_GD |
2625                                                   VM_ALLOC_NULL_OK);
2626                                 if (m == NULL)
2627                                         break;
2628                                 allocated = 1;
2629                                 pprot = prot;
2630                                 /* lobject = object .. not needed */
2631                                 break;
2632                         }
2633                         if (lobject->backing_object_offset & PAGE_MASK)
2634                                 break;
2635                         nobject = lobject->backing_object;
2636                         vm_object_hold(nobject);
2637                         KKASSERT(nobject == lobject->backing_object);
2638                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2639                         if (lobject != object) {
2640                                 vm_object_lock_swap();
2641                                 vm_object_drop(lobject);
2642                         }
2643                         lobject = nobject;
2644                         pprot &= ~VM_PROT_WRITE;
2645                         vm_object_chain_acquire(lobject, 0);
2646                 }
2647
2648                 /*
2649                  * NOTE: A non-NULL (m) will be associated with lobject if
2650                  *       it was found there, otherwise it is probably a
2651                  *       zero-fill page associated with the base object.
2652                  *
2653                  * Give-up if no page is available.
2654                  */
2655                 if (m == NULL) {
2656                         if (lobject != object) {
2657 #if 0
2658                                 if (object->backing_object != lobject)
2659                                         vm_object_hold(object->backing_object);
2660 #endif
2661                                 vm_object_chain_release_all(
2662                                         object->backing_object, lobject);
2663 #if 0
2664                                 if (object->backing_object != lobject)
2665                                         vm_object_drop(object->backing_object);
2666 #endif
2667                                 vm_object_drop(lobject);
2668                         }
2669                         break;
2670                 }
2671
2672                 /*
2673                  * The object must be marked dirty if we are mapping a
2674                  * writable page.  m->object is either lobject or object,
2675                  * both of which are still held.  Do this before we
2676                  * potentially drop the object.
2677                  */
2678                 if (pprot & VM_PROT_WRITE)
2679                         vm_object_set_writeable_dirty(m->object);
2680
2681                 /*
2682                  * Do not conditionalize on PG_RAM.  If pages are present in
2683                  * the VM system we assume optimal caching.  If caching is
2684                  * not optimal the I/O gravy train will be restarted when we
2685                  * hit an unavailable page.  We do not want to try to restart
2686                  * the gravy train now because we really don't know how much
2687                  * of the object has been cached.  The cost for restarting
2688                  * the gravy train should be low (since accesses will likely
2689                  * be I/O bound anyway).
2690                  */
2691                 if (lobject != object) {
2692 #if 0
2693                         if (object->backing_object != lobject)
2694                                 vm_object_hold(object->backing_object);
2695 #endif
2696                         vm_object_chain_release_all(object->backing_object,
2697                                                     lobject);
2698 #if 0
2699                         if (object->backing_object != lobject)
2700                                 vm_object_drop(object->backing_object);
2701 #endif
2702                         vm_object_drop(lobject);
2703                 }
2704
2705                 /*
2706                  * Enter the page into the pmap if appropriate.  If we had
2707                  * allocated the page we have to place it on a queue.  If not
2708                  * we just have to make sure it isn't on the cache queue
2709                  * (pages on the cache queue are not allowed to be mapped).
2710                  */
2711                 if (allocated) {
2712                         /*
2713                          * Page must be zerod.
2714                          */
2715                         vm_page_zero_fill(m);
2716                         mycpu->gd_cnt.v_zfod++;
2717                         m->valid = VM_PAGE_BITS_ALL;
2718
2719                         /*
2720                          * Handle dirty page case
2721                          */
2722                         if (pprot & VM_PROT_WRITE)
2723                                 vm_set_nosync(m, entry);
2724                         pmap_enter(pmap, addr, m, pprot, 0, entry);
2725                         mycpu->gd_cnt.v_vm_faults++;
2726                         if (curthread->td_lwp)
2727                                 ++curthread->td_lwp->lwp_ru.ru_minflt;
2728                         vm_page_deactivate(m);
2729                         if (pprot & VM_PROT_WRITE) {
2730                                 /*vm_object_set_writeable_dirty(m->object);*/
2731                                 vm_set_nosync(m, entry);
2732                                 if (fault_flags & VM_FAULT_DIRTY) {
2733                                         vm_page_dirty(m);
2734                                         /*XXX*/
2735                                         swap_pager_unswapped(m);
2736                                 }
2737                         }
2738                         vm_page_wakeup(m);
2739                 } else if (error) {
2740                         /* couldn't busy page, no wakeup */
2741                 } else if (
2742                     ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2743                     (m->flags & PG_FICTITIOUS) == 0) {
2744                         /*
2745                          * A fully valid page not undergoing soft I/O can
2746                          * be immediately entered into the pmap.
2747                          */
2748                         if ((m->queue - m->pc) == PQ_CACHE)
2749                                 vm_page_deactivate(m);
2750                         if (pprot & VM_PROT_WRITE) {
2751                                 /*vm_object_set_writeable_dirty(m->object);*/
2752                                 vm_set_nosync(m, entry);
2753                                 if (fault_flags & VM_FAULT_DIRTY) {
2754                                         vm_page_dirty(m);
2755                                         /*XXX*/
2756                                         swap_pager_unswapped(m);
2757                                 }
2758                         }
2759                         if (pprot & VM_PROT_WRITE)
2760                                 vm_set_nosync(m, entry);
2761                         pmap_enter(pmap, addr, m, pprot, 0, entry);
2762                         mycpu->gd_cnt.v_vm_faults++;
2763                         if (curthread->td_lwp)
2764                                 ++curthread->td_lwp->lwp_ru.ru_minflt;
2765                         vm_page_wakeup(m);
2766                 } else {
2767                         vm_page_wakeup(m);
2768                 }
2769         }
2770         vm_object_chain_release(object);
2771         vm_object_drop(object);
2772 }
2773
2774 /*
2775  * Object can be held shared
2776  */
2777 static void
2778 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
2779                   vm_map_entry_t entry, int prot, int fault_flags)
2780 {
2781         struct lwp *lp;
2782         vm_page_t m;
2783         vm_offset_t addr;
2784         vm_pindex_t pindex;
2785         vm_object_t object;
2786         int i;
2787         int noneg;
2788         int nopos;
2789         int maxpages;
2790
2791         /*
2792          * Get stable max count value, disabled if set to 0
2793          */
2794         maxpages = vm_prefault_pages;
2795         cpu_ccfence();
2796         if (maxpages <= 0)
2797                 return;
2798
2799         /*
2800          * We do not currently prefault mappings that use virtual page
2801          * tables.  We do not prefault foreign pmaps.
2802          */
2803         if (entry->maptype != VM_MAPTYPE_NORMAL)
2804                 return;
2805         lp = curthread->td_lwp;
2806         if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2807                 return;
2808         object = entry->object.vm_object;
2809         if (object->backing_object != NULL)
2810                 return;
2811         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2812
2813         /*
2814          * Limit pre-fault count to 1024 pages.
2815          */
2816         if (maxpages > 1024)
2817                 maxpages = 1024;
2818
2819         noneg = 0;
2820         nopos = 0;
2821         for (i = 0; i < maxpages; ++i) {
2822                 int error;
2823
2824                 /*
2825                  * Calculate the page to pre-fault, stopping the scan in
2826                  * each direction separately if the limit is reached.
2827                  */
2828                 if (i & 1) {
2829                         if (noneg)
2830                                 continue;
2831                         addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2832                 } else {
2833                         if (nopos)
2834                                 continue;
2835                         addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2836                 }
2837                 if (addr < entry->start) {
2838                         noneg = 1;
2839                         if (noneg && nopos)
2840                                 break;
2841                         continue;
2842                 }
2843                 if (addr >= entry->end) {
2844                         nopos = 1;
2845                         if (noneg && nopos)
2846                                 break;
2847                         continue;
2848                 }
2849
2850                 /*
2851                  * Follow the VM object chain to obtain the page to be mapped
2852                  * into the pmap.  This version of the prefault code only
2853                  * works with terminal objects.
2854                  *
2855                  * The page must already exist.  If we encounter a problem
2856                  * we stop here.
2857                  *
2858                  * WARNING!  We cannot call swap_pager_unswapped() or insert
2859                  *           a new vm_page with a shared token.
2860                  */
2861                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2862
2863                 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2864                 if (m == NULL || error)
2865                         break;
2866
2867                 /*
2868                  * Skip pages already mapped, and stop scanning in that
2869                  * direction.  When the scan terminates in both directions
2870                  * we are done.
2871                  */
2872                 if (pmap_prefault_ok(pmap, addr) == 0) {
2873                         vm_page_wakeup(m);
2874                         if (i & 1)
2875                                 noneg = 1;
2876                         else
2877                                 nopos = 1;
2878                         if (noneg && nopos)
2879                                 break;
2880                         continue;
2881                 }
2882
2883                 /*
2884                  * Stop if the page cannot be trivially entered into the
2885                  * pmap.
2886                  */
2887                 if (((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) ||
2888                     (m->flags & PG_FICTITIOUS) ||
2889                     ((m->flags & PG_SWAPPED) &&
2890                      (prot & VM_PROT_WRITE) &&
2891                      (fault_flags & VM_FAULT_DIRTY))) {
2892                         vm_page_wakeup(m);
2893                         break;
2894                 }
2895
2896                 /*
2897                  * Enter the page into the pmap.  The object might be held
2898                  * shared so we can't do any (serious) modifying operation
2899                  * on it.
2900                  */
2901                 if ((m->queue - m->pc) == PQ_CACHE)
2902                         vm_page_deactivate(m);
2903                 if (prot & VM_PROT_WRITE) {
2904                         vm_object_set_writeable_dirty(m->object);
2905                         vm_set_nosync(m, entry);
2906                         if (fault_flags & VM_FAULT_DIRTY) {
2907                                 vm_page_dirty(m);
2908                                 /* can't happeen due to conditional above */
2909                                 /* swap_pager_unswapped(m); */
2910                         }
2911                 }
2912                 pmap_enter(pmap, addr, m, prot, 0, entry);
2913                 mycpu->gd_cnt.v_vm_faults++;
2914                 if (curthread->td_lwp)
2915                         ++curthread->td_lwp->lwp_ru.ru_minflt;
2916                 vm_page_wakeup(m);
2917         }
2918 }