kernel - Tag vm_map_entry structure, slight optimization to zalloc, misc.
[dragonfly.git] / sys / vm / vm_map.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  *
62  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
63  */
64
65 /*
66  *      Virtual memory mapping module.
67  */
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/proc.h>
73 #include <sys/serialize.h>
74 #include <sys/lock.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/resourcevar.h>
79 #include <sys/shm.h>
80 #include <sys/tree.h>
81 #include <sys/malloc.h>
82 #include <sys/objcache.h>
83
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_zone.h>
95
96 #include <sys/thread2.h>
97 #include <sys/random.h>
98 #include <sys/sysctl.h>
99
100 /*
101  * Virtual memory maps provide for the mapping, protection, and sharing
102  * of virtual memory objects.  In addition, this module provides for an
103  * efficient virtual copy of memory from one map to another.
104  *
105  * Synchronization is required prior to most operations.
106  *
107  * Maps consist of an ordered doubly-linked list of simple entries.
108  * A hint and a RB tree is used to speed-up lookups.
109  *
110  * Callers looking to modify maps specify start/end addresses which cause
111  * the related map entry to be clipped if necessary, and then later
112  * recombined if the pieces remained compatible.
113  *
114  * Virtual copy operations are performed by copying VM object references
115  * from one map to another, and then marking both regions as copy-on-write.
116  */
117 static boolean_t vmspace_ctor(void *obj, void *privdata, int ocflags);
118 static void vmspace_dtor(void *obj, void *privdata);
119 static void vmspace_terminate(struct vmspace *vm, int final);
120
121 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
122 static struct objcache *vmspace_cache;
123
124 /*
125  * per-cpu page table cross mappings are initialized in early boot
126  * and might require a considerable number of vm_map_entry structures.
127  */
128 #define MAPENTRYBSP_CACHE       (MAXCPU+1)
129 #define MAPENTRYAP_CACHE        8
130
131 static struct vm_zone mapentzone_store, mapzone_store;
132 static vm_zone_t mapentzone, mapzone;
133 static struct vm_object mapentobj, mapobj;
134
135 static struct vm_map_entry map_entry_init[MAX_MAPENT];
136 static struct vm_map_entry cpu_map_entry_init_bsp[MAPENTRYBSP_CACHE];
137 static struct vm_map_entry cpu_map_entry_init_ap[MAXCPU][MAPENTRYAP_CACHE];
138 static struct vm_map map_init[MAX_KMAP];
139
140 static int randomize_mmap;
141 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
142     "Randomize mmap offsets");
143 static int vm_map_relock_enable = 1;
144 SYSCTL_INT(_vm, OID_AUTO, map_relock_enable, CTLFLAG_RW,
145            &vm_map_relock_enable, 0, "Randomize mmap offsets");
146
147 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref);
148 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
149 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
150 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
151 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
152 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
153 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
154 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
155                 vm_map_entry_t);
156 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
157
158 /*
159  * Initialize the vm_map module.  Must be called before any other vm_map
160  * routines.
161  *
162  * Map and entry structures are allocated from the general purpose
163  * memory pool with some exceptions:
164  *
165  *      - The kernel map is allocated statically.
166  *      - Initial kernel map entries are allocated out of a static pool.
167  *      - We must set ZONE_SPECIAL here or the early boot code can get
168  *        stuck if there are >63 cores.
169  *
170  *      These restrictions are necessary since malloc() uses the
171  *      maps and requires map entries.
172  *
173  * Called from the low level boot code only.
174  */
175 void
176 vm_map_startup(void)
177 {
178         mapzone = &mapzone_store;
179         zbootinit(mapzone, "MAP", sizeof (struct vm_map),
180                 map_init, MAX_KMAP);
181         mapentzone = &mapentzone_store;
182         zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
183                   map_entry_init, MAX_MAPENT);
184         mapentzone_store.zflags |= ZONE_SPECIAL;
185 }
186
187 /*
188  * Called prior to any vmspace allocations.
189  *
190  * Called from the low level boot code only.
191  */
192 void
193 vm_init2(void) 
194 {
195         vmspace_cache = objcache_create_mbacked(M_VMSPACE,
196                                                 sizeof(struct vmspace),
197                                                 0, ncpus * 4,
198                                                 vmspace_ctor, vmspace_dtor,
199                                                 NULL);
200         zinitna(mapentzone, &mapentobj, NULL, 0, 0, 
201                 ZONE_USE_RESERVE | ZONE_SPECIAL);
202         zinitna(mapzone, &mapobj, NULL, 0, 0, 0);
203         pmap_init2();
204         vm_object_init2();
205 }
206
207 /*
208  * objcache support.  We leave the pmap root cached as long as possible
209  * for performance reasons.
210  */
211 static
212 boolean_t
213 vmspace_ctor(void *obj, void *privdata, int ocflags)
214 {
215         struct vmspace *vm = obj;
216
217         bzero(vm, sizeof(*vm));
218         vm->vm_refcnt = (u_int)-1;
219
220         return 1;
221 }
222
223 static
224 void
225 vmspace_dtor(void *obj, void *privdata)
226 {
227         struct vmspace *vm = obj;
228
229         KKASSERT(vm->vm_refcnt == (u_int)-1);
230         pmap_puninit(vmspace_pmap(vm));
231 }
232
233 /*
234  * Red black tree functions
235  *
236  * The caller must hold the related map lock.
237  */
238 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
239 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
240
241 /* a->start is address, and the only field has to be initialized */
242 static int
243 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
244 {
245         if (a->start < b->start)
246                 return(-1);
247         else if (a->start > b->start)
248                 return(1);
249         return(0);
250 }
251
252 /*
253  * Initialize vmspace ref/hold counts vmspace0.  There is a holdcnt for
254  * every refcnt.
255  */
256 void
257 vmspace_initrefs(struct vmspace *vm)
258 {
259         vm->vm_refcnt = 1;
260         vm->vm_holdcnt = 1;
261 }
262
263 /*
264  * Allocate a vmspace structure, including a vm_map and pmap.
265  * Initialize numerous fields.  While the initial allocation is zerod,
266  * subsequence reuse from the objcache leaves elements of the structure
267  * intact (particularly the pmap), so portions must be zerod.
268  *
269  * Returns a referenced vmspace.
270  *
271  * No requirements.
272  */
273 struct vmspace *
274 vmspace_alloc(vm_offset_t min, vm_offset_t max)
275 {
276         struct vmspace *vm;
277
278         vm = objcache_get(vmspace_cache, M_WAITOK);
279
280         bzero(&vm->vm_startcopy,
281               (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
282         vm_map_init(&vm->vm_map, min, max, NULL);       /* initializes token */
283
284         /*
285          * NOTE: hold to acquires token for safety.
286          *
287          * On return vmspace is referenced (refs=1, hold=1).  That is,
288          * each refcnt also has a holdcnt.  There can be additional holds
289          * (holdcnt) above and beyond the refcnt.  Finalization is handled in
290          * two stages, one on refs 1->0, and the the second on hold 1->0.
291          */
292         KKASSERT(vm->vm_holdcnt == 0);
293         KKASSERT(vm->vm_refcnt == (u_int)-1);
294         vmspace_initrefs(vm);
295         vmspace_hold(vm);
296         pmap_pinit(vmspace_pmap(vm));           /* (some fields reused) */
297         vm->vm_map.pmap = vmspace_pmap(vm);     /* XXX */
298         vm->vm_shm = NULL;
299         vm->vm_flags = 0;
300         cpu_vmspace_alloc(vm);
301         vmspace_drop(vm);
302
303         return (vm);
304 }
305
306 /*
307  * NOTE: Can return -1 if the vmspace is exiting.
308  */
309 int
310 vmspace_getrefs(struct vmspace *vm)
311 {
312         return ((int)vm->vm_refcnt);
313 }
314
315 /*
316  * A vmspace object must already have a non-zero hold to be able to gain
317  * further holds on it.
318  */
319 static void
320 vmspace_hold_notoken(struct vmspace *vm)
321 {
322         KKASSERT(vm->vm_holdcnt != 0);
323         refcount_acquire(&vm->vm_holdcnt);
324 }
325
326 static void
327 vmspace_drop_notoken(struct vmspace *vm)
328 {
329         if (refcount_release(&vm->vm_holdcnt)) {
330                 if (vm->vm_refcnt == (u_int)-1) {
331                         vmspace_terminate(vm, 1);
332                 }
333         }
334 }
335
336 void
337 vmspace_hold(struct vmspace *vm)
338 {
339         vmspace_hold_notoken(vm);
340         lwkt_gettoken(&vm->vm_map.token);
341 }
342
343 void
344 vmspace_drop(struct vmspace *vm)
345 {
346         lwkt_reltoken(&vm->vm_map.token);
347         vmspace_drop_notoken(vm);
348 }
349
350 /*
351  * A vmspace object must not be in a terminated state to be able to obtain
352  * additional refs on it.
353  *
354  * Ref'ing a vmspace object also increments its hold count.
355  */
356 void
357 vmspace_ref(struct vmspace *vm)
358 {
359         KKASSERT((int)vm->vm_refcnt >= 0);
360         vmspace_hold_notoken(vm);
361         refcount_acquire(&vm->vm_refcnt);
362 }
363
364 /*
365  * Release a ref on the vmspace.  On the 1->0 transition we do stage-1
366  * termination of the vmspace.  Then, on the final drop of the hold we
367  * will do stage-2 final termination.
368  */
369 void
370 vmspace_rel(struct vmspace *vm)
371 {
372         if (refcount_release(&vm->vm_refcnt)) {
373                 vm->vm_refcnt = (u_int)-1;      /* no other refs possible */
374                 vmspace_terminate(vm, 0);
375         }
376         vmspace_drop_notoken(vm);
377 }
378
379 /*
380  * This is called during exit indicating that the vmspace is no
381  * longer in used by an exiting process, but the process has not yet
382  * been reaped.
383  *
384  * We release the refcnt but not the associated holdcnt.
385  *
386  * No requirements.
387  */
388 void
389 vmspace_relexit(struct vmspace *vm)
390 {
391         if (refcount_release(&vm->vm_refcnt)) {
392                 vm->vm_refcnt = (u_int)-1;      /* no other refs possible */
393                 vmspace_terminate(vm, 0);
394         }
395 }
396
397 /*
398  * Called during reap to disconnect the remainder of the vmspace from
399  * the process.  On the hold drop the vmspace termination is finalized.
400  *
401  * No requirements.
402  */
403 void
404 vmspace_exitfree(struct proc *p)
405 {
406         struct vmspace *vm;
407
408         vm = p->p_vmspace;
409         p->p_vmspace = NULL;
410         vmspace_drop_notoken(vm);
411 }
412
413 /*
414  * Called in two cases:
415  *
416  * (1) When the last refcnt is dropped and the vmspace becomes inactive,
417  *     called with final == 0.  refcnt will be (u_int)-1 at this point,
418  *     and holdcnt will still be non-zero.
419  *
420  * (2) When holdcnt becomes 0, called with final == 1.  There should no
421  *     longer be anyone with access to the vmspace.
422  *
423  * VMSPACE_EXIT1 flags the primary deactivation
424  * VMSPACE_EXIT2 flags the last reap
425  */
426 static void
427 vmspace_terminate(struct vmspace *vm, int final)
428 {
429         int count;
430
431         lwkt_gettoken(&vm->vm_map.token);
432         if (final == 0) {
433                 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) == 0);
434
435                 /*
436                  * Get rid of most of the resources.  Leave the kernel pmap
437                  * intact.
438                  *
439                  * If the pmap does not contain wired pages we can bulk-delete
440                  * the pmap as a performance optimization before removing the related mappings.
441                  *
442                  * If the pmap contains wired pages we cannot do this pre-optimization
443                  * because currently vm_fault_unwire() expects the pmap pages to exist
444                  * and will not decrement p->wire_count if they do not.
445                  */
446                 vm->vm_flags |= VMSPACE_EXIT1;
447                 shmexit(vm);
448                 if (vmspace_pmap(vm)->pm_stats.wired_count) {
449                         vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
450                                       VM_MAX_USER_ADDRESS);
451                         pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
452                                           VM_MAX_USER_ADDRESS);
453                 } else {
454                         pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
455                                           VM_MAX_USER_ADDRESS);
456                         vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
457                                       VM_MAX_USER_ADDRESS);
458                 }
459                 lwkt_reltoken(&vm->vm_map.token);
460         } else {
461                 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) != 0);
462                 KKASSERT((vm->vm_flags & VMSPACE_EXIT2) == 0);
463
464                 /*
465                  * Get rid of remaining basic resources.
466                  */
467                 vm->vm_flags |= VMSPACE_EXIT2;
468                 cpu_vmspace_free(vm);
469                 shmexit(vm);
470
471                 /*
472                  * Lock the map, to wait out all other references to it.
473                  * Delete all of the mappings and pages they hold, then call
474                  * the pmap module to reclaim anything left.
475                  */
476                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
477                 vm_map_lock(&vm->vm_map);
478                 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
479                               vm->vm_map.max_offset, &count);
480                 vm_map_unlock(&vm->vm_map);
481                 vm_map_entry_release(count);
482
483                 lwkt_gettoken(&vmspace_pmap(vm)->pm_token);
484                 pmap_release(vmspace_pmap(vm));
485                 lwkt_reltoken(&vmspace_pmap(vm)->pm_token);
486                 lwkt_reltoken(&vm->vm_map.token);
487                 objcache_put(vmspace_cache, vm);
488         }
489 }
490
491 /*
492  * Swap useage is determined by taking the proportional swap used by
493  * VM objects backing the VM map.  To make up for fractional losses,
494  * if the VM object has any swap use at all the associated map entries
495  * count for at least 1 swap page.
496  *
497  * No requirements.
498  */
499 int
500 vmspace_swap_count(struct vmspace *vm)
501 {
502         vm_map_t map = &vm->vm_map;
503         vm_map_entry_t cur;
504         vm_object_t object;
505         int count = 0;
506         int n;
507
508         vmspace_hold(vm);
509         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
510                 switch(cur->maptype) {
511                 case VM_MAPTYPE_NORMAL:
512                 case VM_MAPTYPE_VPAGETABLE:
513                         if ((object = cur->object.vm_object) == NULL)
514                                 break;
515                         if (object->swblock_count) {
516                                 n = (cur->end - cur->start) / PAGE_SIZE;
517                                 count += object->swblock_count *
518                                     SWAP_META_PAGES * n / object->size + 1;
519                         }
520                         break;
521                 default:
522                         break;
523                 }
524         }
525         vmspace_drop(vm);
526
527         return(count);
528 }
529
530 /*
531  * Calculate the approximate number of anonymous pages in use by
532  * this vmspace.  To make up for fractional losses, we count each
533  * VM object as having at least 1 anonymous page.
534  *
535  * No requirements.
536  */
537 int
538 vmspace_anonymous_count(struct vmspace *vm)
539 {
540         vm_map_t map = &vm->vm_map;
541         vm_map_entry_t cur;
542         vm_object_t object;
543         int count = 0;
544
545         vmspace_hold(vm);
546         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
547                 switch(cur->maptype) {
548                 case VM_MAPTYPE_NORMAL:
549                 case VM_MAPTYPE_VPAGETABLE:
550                         if ((object = cur->object.vm_object) == NULL)
551                                 break;
552                         if (object->type != OBJT_DEFAULT &&
553                             object->type != OBJT_SWAP) {
554                                 break;
555                         }
556                         count += object->resident_page_count;
557                         break;
558                 default:
559                         break;
560                 }
561         }
562         vmspace_drop(vm);
563
564         return(count);
565 }
566
567 /*
568  * Creates and returns a new empty VM map with the given physical map
569  * structure, and having the given lower and upper address bounds.
570  *
571  * No requirements.
572  */
573 vm_map_t
574 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
575 {
576         if (result == NULL)
577                 result = zalloc(mapzone);
578         vm_map_init(result, min, max, pmap);
579         return (result);
580 }
581
582 /*
583  * Initialize an existing vm_map structure such as that in the vmspace
584  * structure.  The pmap is initialized elsewhere.
585  *
586  * No requirements.
587  */
588 void
589 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
590 {
591         map->header.next = map->header.prev = &map->header;
592         RB_INIT(&map->rb_root);
593         map->nentries = 0;
594         map->size = 0;
595         map->system_map = 0;
596         map->min_offset = min;
597         map->max_offset = max;
598         map->pmap = pmap;
599         map->first_free = &map->header;
600         map->hint = &map->header;
601         map->timestamp = 0;
602         map->flags = 0;
603         lwkt_token_init(&map->token, "vm_map");
604         lockinit(&map->lock, "vm_maplk", (hz + 9) / 10, 0);
605 }
606
607 /*
608  * Shadow the vm_map_entry's object.  This typically needs to be done when
609  * a write fault is taken on an entry which had previously been cloned by
610  * fork().  The shared object (which might be NULL) must become private so
611  * we add a shadow layer above it.
612  *
613  * Object allocation for anonymous mappings is defered as long as possible.
614  * When creating a shadow, however, the underlying object must be instantiated
615  * so it can be shared.
616  *
617  * If the map segment is governed by a virtual page table then it is
618  * possible to address offsets beyond the mapped area.  Just allocate
619  * a maximally sized object for this case.
620  *
621  * If addref is non-zero an additional reference is added to the returned
622  * entry.  This mechanic exists because the additional reference might have
623  * to be added atomically and not after return to prevent a premature
624  * collapse.
625  *
626  * The vm_map must be exclusively locked.
627  * No other requirements.
628  */
629 static
630 void
631 vm_map_entry_shadow(vm_map_entry_t entry, int addref)
632 {
633         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
634                 vm_object_shadow(&entry->object.vm_object, &entry->offset,
635                                  0x7FFFFFFF, addref);   /* XXX */
636         } else {
637                 vm_object_shadow(&entry->object.vm_object, &entry->offset,
638                                  atop(entry->end - entry->start), addref);
639         }
640         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
641 }
642
643 /*
644  * Allocate an object for a vm_map_entry.
645  *
646  * Object allocation for anonymous mappings is defered as long as possible.
647  * This function is called when we can defer no longer, generally when a map
648  * entry might be split or forked or takes a page fault.
649  *
650  * If the map segment is governed by a virtual page table then it is
651  * possible to address offsets beyond the mapped area.  Just allocate
652  * a maximally sized object for this case.
653  *
654  * The vm_map must be exclusively locked.
655  * No other requirements.
656  */
657 void 
658 vm_map_entry_allocate_object(vm_map_entry_t entry)
659 {
660         vm_object_t obj;
661
662         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
663                 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
664         } else {
665                 obj = vm_object_allocate(OBJT_DEFAULT,
666                                          atop(entry->end - entry->start));
667         }
668         entry->object.vm_object = obj;
669         entry->offset = 0;
670 }
671
672 /*
673  * Set an initial negative count so the first attempt to reserve
674  * space preloads a bunch of vm_map_entry's for this cpu.  Also
675  * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
676  * map a new page for vm_map_entry structures.  SMP systems are
677  * particularly sensitive.
678  *
679  * This routine is called in early boot so we cannot just call
680  * vm_map_entry_reserve().
681  *
682  * Called from the low level boot code only (for each cpu)
683  *
684  * WARNING! Take care not to have too-big a static/BSS structure here
685  *          as MAXCPU can be 256+, otherwise the loader's 64MB heap
686  *          can get blown out by the kernel plus the initrd image.
687  */
688 void
689 vm_map_entry_reserve_cpu_init(globaldata_t gd)
690 {
691         vm_map_entry_t entry;
692         int count;
693         int i;
694
695         gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
696         if (gd->gd_cpuid == 0) {
697                 entry = &cpu_map_entry_init_bsp[0];
698                 count = MAPENTRYBSP_CACHE;
699         } else {
700                 entry = &cpu_map_entry_init_ap[gd->gd_cpuid][0];
701                 count = MAPENTRYAP_CACHE;
702         }
703         for (i = 0; i < count; ++i, ++entry) {
704                 entry->next = gd->gd_vme_base;
705                 gd->gd_vme_base = entry;
706         }
707 }
708
709 /*
710  * Reserves vm_map_entry structures so code later on can manipulate
711  * map_entry structures within a locked map without blocking trying
712  * to allocate a new vm_map_entry.
713  *
714  * No requirements.
715  */
716 int
717 vm_map_entry_reserve(int count)
718 {
719         struct globaldata *gd = mycpu;
720         vm_map_entry_t entry;
721
722         /*
723          * Make sure we have enough structures in gd_vme_base to handle
724          * the reservation request.
725          *
726          * The critical section protects access to the per-cpu gd.
727          */
728         crit_enter();
729         while (gd->gd_vme_avail < count) {
730                 entry = zalloc(mapentzone);
731                 entry->next = gd->gd_vme_base;
732                 gd->gd_vme_base = entry;
733                 ++gd->gd_vme_avail;
734         }
735         gd->gd_vme_avail -= count;
736         crit_exit();
737
738         return(count);
739 }
740
741 /*
742  * Releases previously reserved vm_map_entry structures that were not
743  * used.  If we have too much junk in our per-cpu cache clean some of
744  * it out.
745  *
746  * No requirements.
747  */
748 void
749 vm_map_entry_release(int count)
750 {
751         struct globaldata *gd = mycpu;
752         vm_map_entry_t entry;
753
754         crit_enter();
755         gd->gd_vme_avail += count;
756         while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
757                 entry = gd->gd_vme_base;
758                 KKASSERT(entry != NULL);
759                 gd->gd_vme_base = entry->next;
760                 --gd->gd_vme_avail;
761                 crit_exit();
762                 zfree(mapentzone, entry);
763                 crit_enter();
764         }
765         crit_exit();
766 }
767
768 /*
769  * Reserve map entry structures for use in kernel_map itself.  These
770  * entries have *ALREADY* been reserved on a per-cpu basis when the map
771  * was inited.  This function is used by zalloc() to avoid a recursion
772  * when zalloc() itself needs to allocate additional kernel memory.
773  *
774  * This function works like the normal reserve but does not load the
775  * vm_map_entry cache (because that would result in an infinite
776  * recursion).  Note that gd_vme_avail may go negative.  This is expected.
777  *
778  * Any caller of this function must be sure to renormalize after
779  * potentially eating entries to ensure that the reserve supply
780  * remains intact.
781  *
782  * No requirements.
783  */
784 int
785 vm_map_entry_kreserve(int count)
786 {
787         struct globaldata *gd = mycpu;
788
789         crit_enter();
790         gd->gd_vme_avail -= count;
791         crit_exit();
792         KASSERT(gd->gd_vme_base != NULL,
793                 ("no reserved entries left, gd_vme_avail = %d",
794                 gd->gd_vme_avail));
795         return(count);
796 }
797
798 /*
799  * Release previously reserved map entries for kernel_map.  We do not
800  * attempt to clean up like the normal release function as this would
801  * cause an unnecessary (but probably not fatal) deep procedure call.
802  *
803  * No requirements.
804  */
805 void
806 vm_map_entry_krelease(int count)
807 {
808         struct globaldata *gd = mycpu;
809
810         crit_enter();
811         gd->gd_vme_avail += count;
812         crit_exit();
813 }
814
815 /*
816  * Allocates a VM map entry for insertion.  No entry fields are filled in.
817  *
818  * The entries should have previously been reserved.  The reservation count
819  * is tracked in (*countp).
820  *
821  * No requirements.
822  */
823 static vm_map_entry_t
824 vm_map_entry_create(vm_map_t map, int *countp)
825 {
826         struct globaldata *gd = mycpu;
827         vm_map_entry_t entry;
828
829         KKASSERT(*countp > 0);
830         --*countp;
831         crit_enter();
832         entry = gd->gd_vme_base;
833         KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
834         gd->gd_vme_base = entry->next;
835         crit_exit();
836
837         return(entry);
838 }
839
840 /*
841  * Dispose of a vm_map_entry that is no longer being referenced.
842  *
843  * No requirements.
844  */
845 static void
846 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
847 {
848         struct globaldata *gd = mycpu;
849
850         KKASSERT(map->hint != entry);
851         KKASSERT(map->first_free != entry);
852
853         ++*countp;
854         crit_enter();
855         entry->next = gd->gd_vme_base;
856         gd->gd_vme_base = entry;
857         crit_exit();
858 }
859
860
861 /*
862  * Insert/remove entries from maps.
863  *
864  * The related map must be exclusively locked.
865  * The caller must hold map->token
866  * No other requirements.
867  */
868 static __inline void
869 vm_map_entry_link(vm_map_t map,
870                   vm_map_entry_t after_where,
871                   vm_map_entry_t entry)
872 {
873         ASSERT_VM_MAP_LOCKED(map);
874
875         map->nentries++;
876         entry->prev = after_where;
877         entry->next = after_where->next;
878         entry->next->prev = entry;
879         after_where->next = entry;
880         if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
881                 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
882 }
883
884 static __inline void
885 vm_map_entry_unlink(vm_map_t map,
886                     vm_map_entry_t entry)
887 {
888         vm_map_entry_t prev;
889         vm_map_entry_t next;
890
891         ASSERT_VM_MAP_LOCKED(map);
892
893         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
894                 panic("vm_map_entry_unlink: attempt to mess with "
895                       "locked entry! %p", entry);
896         }
897         prev = entry->prev;
898         next = entry->next;
899         next->prev = prev;
900         prev->next = next;
901         vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
902         map->nentries--;
903 }
904
905 /*
906  * Finds the map entry containing (or immediately preceding) the specified
907  * address in the given map.  The entry is returned in (*entry).
908  *
909  * The boolean result indicates whether the address is actually contained
910  * in the map.
911  *
912  * The related map must be locked.
913  * No other requirements.
914  */
915 boolean_t
916 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
917 {
918         vm_map_entry_t tmp;
919         vm_map_entry_t last;
920
921         ASSERT_VM_MAP_LOCKED(map);
922 #if 0
923         /*
924          * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
925          * the hint code with the red-black lookup meets with system crashes
926          * and lockups.  We do not yet know why.
927          *
928          * It is possible that the problem is related to the setting
929          * of the hint during map_entry deletion, in the code specified
930          * at the GGG comment later on in this file.
931          *
932          * YYY More likely it's because this function can be called with
933          * a shared lock on the map, resulting in map->hint updates possibly
934          * racing.  Fixed now but untested.
935          */
936         /*
937          * Quickly check the cached hint, there's a good chance of a match.
938          */
939         tmp = map->hint;
940         cpu_ccfence();
941         if (tmp != &map->header) {
942                 if (address >= tmp->start && address < tmp->end) {
943                         *entry = tmp;
944                         return(TRUE);
945                 }
946         }
947 #endif
948
949         /*
950          * Locate the record from the top of the tree.  'last' tracks the
951          * closest prior record and is returned if no match is found, which
952          * in binary tree terms means tracking the most recent right-branch
953          * taken.  If there is no prior record, &map->header is returned.
954          */
955         last = &map->header;
956         tmp = RB_ROOT(&map->rb_root);
957
958         while (tmp) {
959                 if (address >= tmp->start) {
960                         if (address < tmp->end) {
961                                 *entry = tmp;
962                                 map->hint = tmp;
963                                 return(TRUE);
964                         }
965                         last = tmp;
966                         tmp = RB_RIGHT(tmp, rb_entry);
967                 } else {
968                         tmp = RB_LEFT(tmp, rb_entry);
969                 }
970         }
971         *entry = last;
972         return (FALSE);
973 }
974
975 /*
976  * Inserts the given whole VM object into the target map at the specified
977  * address range.  The object's size should match that of the address range.
978  *
979  * The map must be exclusively locked.
980  * The object must be held.
981  * The caller must have reserved sufficient vm_map_entry structures.
982  *
983  * If object is non-NULL, ref count must be bumped by caller prior to
984  * making call to account for the new entry.
985  */
986 int
987 vm_map_insert(vm_map_t map, int *countp, void *map_object, void *map_aux,
988               vm_ooffset_t offset, vm_offset_t start, vm_offset_t end,
989               vm_maptype_t maptype, vm_subsys_t id,
990               vm_prot_t prot, vm_prot_t max, int cow)
991 {
992         vm_map_entry_t new_entry;
993         vm_map_entry_t prev_entry;
994         vm_map_entry_t temp_entry;
995         vm_eflags_t protoeflags;
996         int must_drop = 0;
997         vm_object_t object;
998
999         if (maptype == VM_MAPTYPE_UKSMAP)
1000                 object = NULL;
1001         else
1002                 object = map_object;
1003
1004         ASSERT_VM_MAP_LOCKED(map);
1005         if (object)
1006                 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1007
1008         /*
1009          * Check that the start and end points are not bogus.
1010          */
1011         if ((start < map->min_offset) || (end > map->max_offset) ||
1012             (start >= end))
1013                 return (KERN_INVALID_ADDRESS);
1014
1015         /*
1016          * Find the entry prior to the proposed starting address; if it's part
1017          * of an existing entry, this range is bogus.
1018          */
1019         if (vm_map_lookup_entry(map, start, &temp_entry))
1020                 return (KERN_NO_SPACE);
1021
1022         prev_entry = temp_entry;
1023
1024         /*
1025          * Assert that the next entry doesn't overlap the end point.
1026          */
1027
1028         if ((prev_entry->next != &map->header) &&
1029             (prev_entry->next->start < end))
1030                 return (KERN_NO_SPACE);
1031
1032         protoeflags = 0;
1033
1034         if (cow & MAP_COPY_ON_WRITE)
1035                 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1036
1037         if (cow & MAP_NOFAULT) {
1038                 protoeflags |= MAP_ENTRY_NOFAULT;
1039
1040                 KASSERT(object == NULL,
1041                         ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1042         }
1043         if (cow & MAP_DISABLE_SYNCER)
1044                 protoeflags |= MAP_ENTRY_NOSYNC;
1045         if (cow & MAP_DISABLE_COREDUMP)
1046                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1047         if (cow & MAP_IS_STACK)
1048                 protoeflags |= MAP_ENTRY_STACK;
1049         if (cow & MAP_IS_KSTACK)
1050                 protoeflags |= MAP_ENTRY_KSTACK;
1051
1052         lwkt_gettoken(&map->token);
1053
1054         if (object) {
1055                 /*
1056                  * When object is non-NULL, it could be shared with another
1057                  * process.  We have to set or clear OBJ_ONEMAPPING 
1058                  * appropriately.
1059                  *
1060                  * NOTE: This flag is only applicable to DEFAULT and SWAP
1061                  *       objects and will already be clear in other types
1062                  *       of objects, so a shared object lock is ok for
1063                  *       VNODE objects.
1064                  */
1065                 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
1066                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1067                 }
1068         }
1069         else if ((prev_entry != &map->header) &&
1070                  (prev_entry->eflags == protoeflags) &&
1071                  (prev_entry->end == start) &&
1072                  (prev_entry->wired_count == 0) &&
1073                  (prev_entry->id == id) &&
1074                  prev_entry->maptype == maptype &&
1075                  maptype == VM_MAPTYPE_NORMAL &&
1076                  ((prev_entry->object.vm_object == NULL) ||
1077                   vm_object_coalesce(prev_entry->object.vm_object,
1078                                      OFF_TO_IDX(prev_entry->offset),
1079                                      (vm_size_t)(prev_entry->end - prev_entry->start),
1080                                      (vm_size_t)(end - prev_entry->end)))) {
1081                 /*
1082                  * We were able to extend the object.  Determine if we
1083                  * can extend the previous map entry to include the 
1084                  * new range as well.
1085                  */
1086                 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1087                     (prev_entry->protection == prot) &&
1088                     (prev_entry->max_protection == max)) {
1089                         map->size += (end - prev_entry->end);
1090                         prev_entry->end = end;
1091                         vm_map_simplify_entry(map, prev_entry, countp);
1092                         lwkt_reltoken(&map->token);
1093                         return (KERN_SUCCESS);
1094                 }
1095
1096                 /*
1097                  * If we can extend the object but cannot extend the
1098                  * map entry, we have to create a new map entry.  We
1099                  * must bump the ref count on the extended object to
1100                  * account for it.  object may be NULL.
1101                  *
1102                  * XXX if object is NULL should we set offset to 0 here ?
1103                  */
1104                 object = prev_entry->object.vm_object;
1105                 offset = prev_entry->offset +
1106                         (prev_entry->end - prev_entry->start);
1107                 if (object) {
1108                         vm_object_hold(object);
1109                         vm_object_chain_wait(object, 0);
1110                         vm_object_reference_locked(object);
1111                         must_drop = 1;
1112                         map_object = object;
1113                 }
1114         }
1115
1116         /*
1117          * NOTE: if conditionals fail, object can be NULL here.  This occurs
1118          * in things like the buffer map where we manage kva but do not manage
1119          * backing objects.
1120          */
1121
1122         /*
1123          * Create a new entry
1124          */
1125
1126         new_entry = vm_map_entry_create(map, countp);
1127         new_entry->start = start;
1128         new_entry->end = end;
1129         new_entry->id = id;
1130
1131         new_entry->maptype = maptype;
1132         new_entry->eflags = protoeflags;
1133         new_entry->object.map_object = map_object;
1134         new_entry->aux.master_pde = 0;          /* in case size is different */
1135         new_entry->aux.map_aux = map_aux;
1136         new_entry->offset = offset;
1137
1138         new_entry->inheritance = VM_INHERIT_DEFAULT;
1139         new_entry->protection = prot;
1140         new_entry->max_protection = max;
1141         new_entry->wired_count = 0;
1142
1143         /*
1144          * Insert the new entry into the list
1145          */
1146
1147         vm_map_entry_link(map, prev_entry, new_entry);
1148         map->size += new_entry->end - new_entry->start;
1149
1150         /*
1151          * Update the free space hint.  Entries cannot overlap.
1152          * An exact comparison is needed to avoid matching
1153          * against the map->header.
1154          */
1155         if ((map->first_free == prev_entry) &&
1156             (prev_entry->end == new_entry->start)) {
1157                 map->first_free = new_entry;
1158         }
1159
1160 #if 0
1161         /*
1162          * Temporarily removed to avoid MAP_STACK panic, due to
1163          * MAP_STACK being a huge hack.  Will be added back in
1164          * when MAP_STACK (and the user stack mapping) is fixed.
1165          */
1166         /*
1167          * It may be possible to simplify the entry
1168          */
1169         vm_map_simplify_entry(map, new_entry, countp);
1170 #endif
1171
1172         /*
1173          * Try to pre-populate the page table.  Mappings governed by virtual
1174          * page tables cannot be prepopulated without a lot of work, so
1175          * don't try.
1176          */
1177         if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1178             maptype != VM_MAPTYPE_VPAGETABLE &&
1179             maptype != VM_MAPTYPE_UKSMAP) {
1180                 int dorelock = 0;
1181                 if (vm_map_relock_enable && (cow & MAP_PREFAULT_RELOCK)) {
1182                         dorelock = 1;
1183                         vm_object_lock_swap();
1184                         vm_object_drop(object);
1185                 }
1186                 pmap_object_init_pt(map->pmap, start, prot,
1187                                     object, OFF_TO_IDX(offset), end - start,
1188                                     cow & MAP_PREFAULT_PARTIAL);
1189                 if (dorelock) {
1190                         vm_object_hold(object);
1191                         vm_object_lock_swap();
1192                 }
1193         }
1194         if (must_drop)
1195                 vm_object_drop(object);
1196
1197         lwkt_reltoken(&map->token);
1198         return (KERN_SUCCESS);
1199 }
1200
1201 /*
1202  * Find sufficient space for `length' bytes in the given map, starting at
1203  * `start'.  Returns 0 on success, 1 on no space.
1204  *
1205  * This function will returned an arbitrarily aligned pointer.  If no
1206  * particular alignment is required you should pass align as 1.  Note that
1207  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1208  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1209  * argument.
1210  *
1211  * 'align' should be a power of 2 but is not required to be.
1212  *
1213  * The map must be exclusively locked.
1214  * No other requirements.
1215  */
1216 int
1217 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1218                  vm_size_t align, int flags, vm_offset_t *addr)
1219 {
1220         vm_map_entry_t entry, next;
1221         vm_offset_t end;
1222         vm_offset_t align_mask;
1223
1224         if (start < map->min_offset)
1225                 start = map->min_offset;
1226         if (start > map->max_offset)
1227                 return (1);
1228
1229         /*
1230          * If the alignment is not a power of 2 we will have to use
1231          * a mod/division, set align_mask to a special value.
1232          */
1233         if ((align | (align - 1)) + 1 != (align << 1))
1234                 align_mask = (vm_offset_t)-1;
1235         else
1236                 align_mask = align - 1;
1237
1238         /*
1239          * Look for the first possible address; if there's already something
1240          * at this address, we have to start after it.
1241          */
1242         if (start == map->min_offset) {
1243                 if ((entry = map->first_free) != &map->header)
1244                         start = entry->end;
1245         } else {
1246                 vm_map_entry_t tmp;
1247
1248                 if (vm_map_lookup_entry(map, start, &tmp))
1249                         start = tmp->end;
1250                 entry = tmp;
1251         }
1252
1253         /*
1254          * Look through the rest of the map, trying to fit a new region in the
1255          * gap between existing regions, or after the very last region.
1256          */
1257         for (;; start = (entry = next)->end) {
1258                 /*
1259                  * Adjust the proposed start by the requested alignment,
1260                  * be sure that we didn't wrap the address.
1261                  */
1262                 if (align_mask == (vm_offset_t)-1)
1263                         end = roundup(start, align);
1264                 else
1265                         end = (start + align_mask) & ~align_mask;
1266                 if (end < start)
1267                         return (1);
1268                 start = end;
1269                 /*
1270                  * Find the end of the proposed new region.  Be sure we didn't
1271                  * go beyond the end of the map, or wrap around the address.
1272                  * Then check to see if this is the last entry or if the 
1273                  * proposed end fits in the gap between this and the next
1274                  * entry.
1275                  */
1276                 end = start + length;
1277                 if (end > map->max_offset || end < start)
1278                         return (1);
1279                 next = entry->next;
1280
1281                 /*
1282                  * If the next entry's start address is beyond the desired
1283                  * end address we may have found a good entry.
1284                  *
1285                  * If the next entry is a stack mapping we do not map into
1286                  * the stack's reserved space.
1287                  *
1288                  * XXX continue to allow mapping into the stack's reserved
1289                  * space if doing a MAP_STACK mapping inside a MAP_STACK
1290                  * mapping, for backwards compatibility.  But the caller
1291                  * really should use MAP_STACK | MAP_TRYFIXED if they
1292                  * want to do that.
1293                  */
1294                 if (next == &map->header)
1295                         break;
1296                 if (next->start >= end) {
1297                         if ((next->eflags & MAP_ENTRY_STACK) == 0)
1298                                 break;
1299                         if (flags & MAP_STACK)
1300                                 break;
1301                         if (next->start - next->aux.avail_ssize >= end)
1302                                 break;
1303                 }
1304         }
1305         map->hint = entry;
1306
1307         /*
1308          * Grow the kernel_map if necessary.  pmap_growkernel() will panic
1309          * if it fails.  The kernel_map is locked and nothing can steal
1310          * our address space if pmap_growkernel() blocks.
1311          *
1312          * NOTE: This may be unconditionally called for kldload areas on
1313          *       x86_64 because these do not bump kernel_vm_end (which would
1314          *       fill 128G worth of page tables!).  Therefore we must not
1315          *       retry.
1316          */
1317         if (map == &kernel_map) {
1318                 vm_offset_t kstop;
1319
1320                 kstop = round_page(start + length);
1321                 if (kstop > kernel_vm_end)
1322                         pmap_growkernel(start, kstop);
1323         }
1324         *addr = start;
1325         return (0);
1326 }
1327
1328 /*
1329  * vm_map_find finds an unallocated region in the target address map with
1330  * the given length and allocates it.  The search is defined to be first-fit
1331  * from the specified address; the region found is returned in the same
1332  * parameter.
1333  *
1334  * If object is non-NULL, ref count must be bumped by caller
1335  * prior to making call to account for the new entry.
1336  *
1337  * No requirements.  This function will lock the map temporarily.
1338  */
1339 int
1340 vm_map_find(vm_map_t map, void *map_object, void *map_aux,
1341             vm_ooffset_t offset, vm_offset_t *addr,
1342             vm_size_t length, vm_size_t align, boolean_t fitit,
1343             vm_maptype_t maptype, vm_subsys_t id,
1344             vm_prot_t prot, vm_prot_t max, int cow)
1345 {
1346         vm_offset_t start;
1347         vm_object_t object;
1348         int result;
1349         int count;
1350
1351         if (maptype == VM_MAPTYPE_UKSMAP)
1352                 object = NULL;
1353         else
1354                 object = map_object;
1355
1356         start = *addr;
1357
1358         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1359         vm_map_lock(map);
1360         if (object)
1361                 vm_object_hold_shared(object);
1362         if (fitit) {
1363                 if (vm_map_findspace(map, start, length, align, 0, addr)) {
1364                         if (object)
1365                                 vm_object_drop(object);
1366                         vm_map_unlock(map);
1367                         vm_map_entry_release(count);
1368                         return (KERN_NO_SPACE);
1369                 }
1370                 start = *addr;
1371         }
1372         result = vm_map_insert(map, &count, map_object, map_aux,
1373                                offset, start, start + length,
1374                                maptype, id, prot, max, cow);
1375         if (object)
1376                 vm_object_drop(object);
1377         vm_map_unlock(map);
1378         vm_map_entry_release(count);
1379
1380         return (result);
1381 }
1382
1383 /*
1384  * Simplify the given map entry by merging with either neighbor.  This
1385  * routine also has the ability to merge with both neighbors.
1386  *
1387  * This routine guarentees that the passed entry remains valid (though
1388  * possibly extended).  When merging, this routine may delete one or
1389  * both neighbors.  No action is taken on entries which have their
1390  * in-transition flag set.
1391  *
1392  * The map must be exclusively locked.
1393  */
1394 void
1395 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1396 {
1397         vm_map_entry_t next, prev;
1398         vm_size_t prevsize, esize;
1399
1400         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1401                 ++mycpu->gd_cnt.v_intrans_coll;
1402                 return;
1403         }
1404
1405         if (entry->maptype == VM_MAPTYPE_SUBMAP)
1406                 return;
1407         if (entry->maptype == VM_MAPTYPE_UKSMAP)
1408                 return;
1409
1410         prev = entry->prev;
1411         if (prev != &map->header) {
1412                 prevsize = prev->end - prev->start;
1413                 if ( (prev->end == entry->start) &&
1414                      (prev->maptype == entry->maptype) &&
1415                      (prev->object.vm_object == entry->object.vm_object) &&
1416                      (!prev->object.vm_object ||
1417                         (prev->offset + prevsize == entry->offset)) &&
1418                      (prev->eflags == entry->eflags) &&
1419                      (prev->protection == entry->protection) &&
1420                      (prev->max_protection == entry->max_protection) &&
1421                      (prev->inheritance == entry->inheritance) &&
1422                      (prev->id == entry->id) &&
1423                      (prev->wired_count == entry->wired_count)) {
1424                         if (map->first_free == prev)
1425                                 map->first_free = entry;
1426                         if (map->hint == prev)
1427                                 map->hint = entry;
1428                         vm_map_entry_unlink(map, prev);
1429                         entry->start = prev->start;
1430                         entry->offset = prev->offset;
1431                         if (prev->object.vm_object)
1432                                 vm_object_deallocate(prev->object.vm_object);
1433                         vm_map_entry_dispose(map, prev, countp);
1434                 }
1435         }
1436
1437         next = entry->next;
1438         if (next != &map->header) {
1439                 esize = entry->end - entry->start;
1440                 if ((entry->end == next->start) &&
1441                     (next->maptype == entry->maptype) &&
1442                     (next->object.vm_object == entry->object.vm_object) &&
1443                      (!entry->object.vm_object ||
1444                         (entry->offset + esize == next->offset)) &&
1445                     (next->eflags == entry->eflags) &&
1446                     (next->protection == entry->protection) &&
1447                     (next->max_protection == entry->max_protection) &&
1448                     (next->inheritance == entry->inheritance) &&
1449                     (next->id == entry->id) &&
1450                     (next->wired_count == entry->wired_count)) {
1451                         if (map->first_free == next)
1452                                 map->first_free = entry;
1453                         if (map->hint == next)
1454                                 map->hint = entry;
1455                         vm_map_entry_unlink(map, next);
1456                         entry->end = next->end;
1457                         if (next->object.vm_object)
1458                                 vm_object_deallocate(next->object.vm_object);
1459                         vm_map_entry_dispose(map, next, countp);
1460                 }
1461         }
1462 }
1463
1464 /*
1465  * Asserts that the given entry begins at or after the specified address.
1466  * If necessary, it splits the entry into two.
1467  */
1468 #define vm_map_clip_start(map, entry, startaddr, countp)                \
1469 {                                                                       \
1470         if (startaddr > entry->start)                                   \
1471                 _vm_map_clip_start(map, entry, startaddr, countp);      \
1472 }
1473
1474 /*
1475  * This routine is called only when it is known that the entry must be split.
1476  *
1477  * The map must be exclusively locked.
1478  */
1479 static void
1480 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1481                    int *countp)
1482 {
1483         vm_map_entry_t new_entry;
1484
1485         /*
1486          * Split off the front portion -- note that we must insert the new
1487          * entry BEFORE this one, so that this entry has the specified
1488          * starting address.
1489          */
1490
1491         vm_map_simplify_entry(map, entry, countp);
1492
1493         /*
1494          * If there is no object backing this entry, we might as well create
1495          * one now.  If we defer it, an object can get created after the map
1496          * is clipped, and individual objects will be created for the split-up
1497          * map.  This is a bit of a hack, but is also about the best place to
1498          * put this improvement.
1499          */
1500         if (entry->object.vm_object == NULL && !map->system_map) {
1501                 vm_map_entry_allocate_object(entry);
1502         }
1503
1504         new_entry = vm_map_entry_create(map, countp);
1505         *new_entry = *entry;
1506
1507         new_entry->end = start;
1508         entry->offset += (start - entry->start);
1509         entry->start = start;
1510
1511         vm_map_entry_link(map, entry->prev, new_entry);
1512
1513         switch(entry->maptype) {
1514         case VM_MAPTYPE_NORMAL:
1515         case VM_MAPTYPE_VPAGETABLE:
1516                 if (new_entry->object.vm_object) {
1517                         vm_object_hold(new_entry->object.vm_object);
1518                         vm_object_chain_wait(new_entry->object.vm_object, 0);
1519                         vm_object_reference_locked(new_entry->object.vm_object);
1520                         vm_object_drop(new_entry->object.vm_object);
1521                 }
1522                 break;
1523         default:
1524                 break;
1525         }
1526 }
1527
1528 /*
1529  * Asserts that the given entry ends at or before the specified address.
1530  * If necessary, it splits the entry into two.
1531  *
1532  * The map must be exclusively locked.
1533  */
1534 #define vm_map_clip_end(map, entry, endaddr, countp)            \
1535 {                                                               \
1536         if (endaddr < entry->end)                               \
1537                 _vm_map_clip_end(map, entry, endaddr, countp);  \
1538 }
1539
1540 /*
1541  * This routine is called only when it is known that the entry must be split.
1542  *
1543  * The map must be exclusively locked.
1544  */
1545 static void
1546 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1547                  int *countp)
1548 {
1549         vm_map_entry_t new_entry;
1550
1551         /*
1552          * If there is no object backing this entry, we might as well create
1553          * one now.  If we defer it, an object can get created after the map
1554          * is clipped, and individual objects will be created for the split-up
1555          * map.  This is a bit of a hack, but is also about the best place to
1556          * put this improvement.
1557          */
1558
1559         if (entry->object.vm_object == NULL && !map->system_map) {
1560                 vm_map_entry_allocate_object(entry);
1561         }
1562
1563         /*
1564          * Create a new entry and insert it AFTER the specified entry
1565          */
1566
1567         new_entry = vm_map_entry_create(map, countp);
1568         *new_entry = *entry;
1569
1570         new_entry->start = entry->end = end;
1571         new_entry->offset += (end - entry->start);
1572
1573         vm_map_entry_link(map, entry, new_entry);
1574
1575         switch(entry->maptype) {
1576         case VM_MAPTYPE_NORMAL:
1577         case VM_MAPTYPE_VPAGETABLE:
1578                 if (new_entry->object.vm_object) {
1579                         vm_object_hold(new_entry->object.vm_object);
1580                         vm_object_chain_wait(new_entry->object.vm_object, 0);
1581                         vm_object_reference_locked(new_entry->object.vm_object);
1582                         vm_object_drop(new_entry->object.vm_object);
1583                 }
1584                 break;
1585         default:
1586                 break;
1587         }
1588 }
1589
1590 /*
1591  * Asserts that the starting and ending region addresses fall within the
1592  * valid range for the map.
1593  */
1594 #define VM_MAP_RANGE_CHECK(map, start, end)     \
1595 {                                               \
1596         if (start < vm_map_min(map))            \
1597                 start = vm_map_min(map);        \
1598         if (end > vm_map_max(map))              \
1599                 end = vm_map_max(map);          \
1600         if (start > end)                        \
1601                 start = end;                    \
1602 }
1603
1604 /*
1605  * Used to block when an in-transition collison occurs.  The map
1606  * is unlocked for the sleep and relocked before the return.
1607  */
1608 void
1609 vm_map_transition_wait(vm_map_t map)
1610 {
1611         tsleep_interlock(map, 0);
1612         vm_map_unlock(map);
1613         tsleep(map, PINTERLOCKED, "vment", 0);
1614         vm_map_lock(map);
1615 }
1616
1617 /*
1618  * When we do blocking operations with the map lock held it is
1619  * possible that a clip might have occured on our in-transit entry,
1620  * requiring an adjustment to the entry in our loop.  These macros
1621  * help the pageable and clip_range code deal with the case.  The
1622  * conditional costs virtually nothing if no clipping has occured.
1623  */
1624
1625 #define CLIP_CHECK_BACK(entry, save_start)              \
1626     do {                                                \
1627             while (entry->start != save_start) {        \
1628                     entry = entry->prev;                \
1629                     KASSERT(entry != &map->header, ("bad entry clip")); \
1630             }                                           \
1631     } while(0)
1632
1633 #define CLIP_CHECK_FWD(entry, save_end)                 \
1634     do {                                                \
1635             while (entry->end != save_end) {            \
1636                     entry = entry->next;                \
1637                     KASSERT(entry != &map->header, ("bad entry clip")); \
1638             }                                           \
1639     } while(0)
1640
1641
1642 /*
1643  * Clip the specified range and return the base entry.  The
1644  * range may cover several entries starting at the returned base
1645  * and the first and last entry in the covering sequence will be
1646  * properly clipped to the requested start and end address.
1647  *
1648  * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1649  * flag.
1650  *
1651  * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1652  * covered by the requested range.
1653  *
1654  * The map must be exclusively locked on entry and will remain locked
1655  * on return. If no range exists or the range contains holes and you
1656  * specified that no holes were allowed, NULL will be returned.  This
1657  * routine may temporarily unlock the map in order avoid a deadlock when
1658  * sleeping.
1659  */
1660 static
1661 vm_map_entry_t
1662 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 
1663                   int *countp, int flags)
1664 {
1665         vm_map_entry_t start_entry;
1666         vm_map_entry_t entry;
1667
1668         /*
1669          * Locate the entry and effect initial clipping.  The in-transition
1670          * case does not occur very often so do not try to optimize it.
1671          */
1672 again:
1673         if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1674                 return (NULL);
1675         entry = start_entry;
1676         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1677                 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1678                 ++mycpu->gd_cnt.v_intrans_coll;
1679                 ++mycpu->gd_cnt.v_intrans_wait;
1680                 vm_map_transition_wait(map);
1681                 /*
1682                  * entry and/or start_entry may have been clipped while
1683                  * we slept, or may have gone away entirely.  We have
1684                  * to restart from the lookup.
1685                  */
1686                 goto again;
1687         }
1688
1689         /*
1690          * Since we hold an exclusive map lock we do not have to restart
1691          * after clipping, even though clipping may block in zalloc.
1692          */
1693         vm_map_clip_start(map, entry, start, countp);
1694         vm_map_clip_end(map, entry, end, countp);
1695         entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1696
1697         /*
1698          * Scan entries covered by the range.  When working on the next
1699          * entry a restart need only re-loop on the current entry which
1700          * we have already locked, since 'next' may have changed.  Also,
1701          * even though entry is safe, it may have been clipped so we
1702          * have to iterate forwards through the clip after sleeping.
1703          */
1704         while (entry->next != &map->header && entry->next->start < end) {
1705                 vm_map_entry_t next = entry->next;
1706
1707                 if (flags & MAP_CLIP_NO_HOLES) {
1708                         if (next->start > entry->end) {
1709                                 vm_map_unclip_range(map, start_entry,
1710                                         start, entry->end, countp, flags);
1711                                 return(NULL);
1712                         }
1713                 }
1714
1715                 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1716                         vm_offset_t save_end = entry->end;
1717                         next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1718                         ++mycpu->gd_cnt.v_intrans_coll;
1719                         ++mycpu->gd_cnt.v_intrans_wait;
1720                         vm_map_transition_wait(map);
1721
1722                         /*
1723                          * clips might have occured while we blocked.
1724                          */
1725                         CLIP_CHECK_FWD(entry, save_end);
1726                         CLIP_CHECK_BACK(start_entry, start);
1727                         continue;
1728                 }
1729                 /*
1730                  * No restart necessary even though clip_end may block, we
1731                  * are holding the map lock.
1732                  */
1733                 vm_map_clip_end(map, next, end, countp);
1734                 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1735                 entry = next;
1736         }
1737         if (flags & MAP_CLIP_NO_HOLES) {
1738                 if (entry->end != end) {
1739                         vm_map_unclip_range(map, start_entry,
1740                                 start, entry->end, countp, flags);
1741                         return(NULL);
1742                 }
1743         }
1744         return(start_entry);
1745 }
1746
1747 /*
1748  * Undo the effect of vm_map_clip_range().  You should pass the same
1749  * flags and the same range that you passed to vm_map_clip_range().
1750  * This code will clear the in-transition flag on the entries and
1751  * wake up anyone waiting.  This code will also simplify the sequence
1752  * and attempt to merge it with entries before and after the sequence.
1753  *
1754  * The map must be locked on entry and will remain locked on return.
1755  *
1756  * Note that you should also pass the start_entry returned by
1757  * vm_map_clip_range().  However, if you block between the two calls
1758  * with the map unlocked please be aware that the start_entry may
1759  * have been clipped and you may need to scan it backwards to find
1760  * the entry corresponding with the original start address.  You are
1761  * responsible for this, vm_map_unclip_range() expects the correct
1762  * start_entry to be passed to it and will KASSERT otherwise.
1763  */
1764 static
1765 void
1766 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1767                     vm_offset_t start, vm_offset_t end,
1768                     int *countp, int flags)
1769 {
1770         vm_map_entry_t entry;
1771
1772         entry = start_entry;
1773
1774         KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1775         while (entry != &map->header && entry->start < end) {
1776                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1777                         ("in-transition flag not set during unclip on: %p",
1778                         entry));
1779                 KASSERT(entry->end <= end,
1780                         ("unclip_range: tail wasn't clipped"));
1781                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1782                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1783                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1784                         wakeup(map);
1785                 }
1786                 entry = entry->next;
1787         }
1788
1789         /*
1790          * Simplification does not block so there is no restart case.
1791          */
1792         entry = start_entry;
1793         while (entry != &map->header && entry->start < end) {
1794                 vm_map_simplify_entry(map, entry, countp);
1795                 entry = entry->next;
1796         }
1797 }
1798
1799 /*
1800  * Mark the given range as handled by a subordinate map.
1801  *
1802  * This range must have been created with vm_map_find(), and no other
1803  * operations may have been performed on this range prior to calling
1804  * vm_map_submap().
1805  *
1806  * Submappings cannot be removed.
1807  *
1808  * No requirements.
1809  */
1810 int
1811 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1812 {
1813         vm_map_entry_t entry;
1814         int result = KERN_INVALID_ARGUMENT;
1815         int count;
1816
1817         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1818         vm_map_lock(map);
1819
1820         VM_MAP_RANGE_CHECK(map, start, end);
1821
1822         if (vm_map_lookup_entry(map, start, &entry)) {
1823                 vm_map_clip_start(map, entry, start, &count);
1824         } else {
1825                 entry = entry->next;
1826         }
1827
1828         vm_map_clip_end(map, entry, end, &count);
1829
1830         if ((entry->start == start) && (entry->end == end) &&
1831             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1832             (entry->object.vm_object == NULL)) {
1833                 entry->object.sub_map = submap;
1834                 entry->maptype = VM_MAPTYPE_SUBMAP;
1835                 result = KERN_SUCCESS;
1836         }
1837         vm_map_unlock(map);
1838         vm_map_entry_release(count);
1839
1840         return (result);
1841 }
1842
1843 /*
1844  * Sets the protection of the specified address region in the target map. 
1845  * If "set_max" is specified, the maximum protection is to be set;
1846  * otherwise, only the current protection is affected.
1847  *
1848  * The protection is not applicable to submaps, but is applicable to normal
1849  * maps and maps governed by virtual page tables.  For example, when operating
1850  * on a virtual page table our protection basically controls how COW occurs
1851  * on the backing object, whereas the virtual page table abstraction itself
1852  * is an abstraction for userland.
1853  *
1854  * No requirements.
1855  */
1856 int
1857 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1858                vm_prot_t new_prot, boolean_t set_max)
1859 {
1860         vm_map_entry_t current;
1861         vm_map_entry_t entry;
1862         int count;
1863
1864         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1865         vm_map_lock(map);
1866
1867         VM_MAP_RANGE_CHECK(map, start, end);
1868
1869         if (vm_map_lookup_entry(map, start, &entry)) {
1870                 vm_map_clip_start(map, entry, start, &count);
1871         } else {
1872                 entry = entry->next;
1873         }
1874
1875         /*
1876          * Make a first pass to check for protection violations.
1877          */
1878         current = entry;
1879         while ((current != &map->header) && (current->start < end)) {
1880                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
1881                         vm_map_unlock(map);
1882                         vm_map_entry_release(count);
1883                         return (KERN_INVALID_ARGUMENT);
1884                 }
1885                 if ((new_prot & current->max_protection) != new_prot) {
1886                         vm_map_unlock(map);
1887                         vm_map_entry_release(count);
1888                         return (KERN_PROTECTION_FAILURE);
1889                 }
1890                 current = current->next;
1891         }
1892
1893         /*
1894          * Go back and fix up protections. [Note that clipping is not
1895          * necessary the second time.]
1896          */
1897         current = entry;
1898
1899         while ((current != &map->header) && (current->start < end)) {
1900                 vm_prot_t old_prot;
1901
1902                 vm_map_clip_end(map, current, end, &count);
1903
1904                 old_prot = current->protection;
1905                 if (set_max) {
1906                         current->protection =
1907                             (current->max_protection = new_prot) &
1908                             old_prot;
1909                 } else {
1910                         current->protection = new_prot;
1911                 }
1912
1913                 /*
1914                  * Update physical map if necessary. Worry about copy-on-write
1915                  * here -- CHECK THIS XXX
1916                  */
1917
1918                 if (current->protection != old_prot) {
1919 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1920                                                         VM_PROT_ALL)
1921
1922                         pmap_protect(map->pmap, current->start,
1923                             current->end,
1924                             current->protection & MASK(current));
1925 #undef  MASK
1926                 }
1927
1928                 vm_map_simplify_entry(map, current, &count);
1929
1930                 current = current->next;
1931         }
1932
1933         vm_map_unlock(map);
1934         vm_map_entry_release(count);
1935         return (KERN_SUCCESS);
1936 }
1937
1938 /*
1939  * This routine traverses a processes map handling the madvise
1940  * system call.  Advisories are classified as either those effecting
1941  * the vm_map_entry structure, or those effecting the underlying
1942  * objects.
1943  *
1944  * The <value> argument is used for extended madvise calls.
1945  *
1946  * No requirements.
1947  */
1948 int
1949 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1950                int behav, off_t value)
1951 {
1952         vm_map_entry_t current, entry;
1953         int modify_map = 0;
1954         int error = 0;
1955         int count;
1956
1957         /*
1958          * Some madvise calls directly modify the vm_map_entry, in which case
1959          * we need to use an exclusive lock on the map and we need to perform 
1960          * various clipping operations.  Otherwise we only need a read-lock
1961          * on the map.
1962          */
1963
1964         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1965
1966         switch(behav) {
1967         case MADV_NORMAL:
1968         case MADV_SEQUENTIAL:
1969         case MADV_RANDOM:
1970         case MADV_NOSYNC:
1971         case MADV_AUTOSYNC:
1972         case MADV_NOCORE:
1973         case MADV_CORE:
1974         case MADV_SETMAP:
1975         case MADV_INVAL:
1976                 modify_map = 1;
1977                 vm_map_lock(map);
1978                 break;
1979         case MADV_WILLNEED:
1980         case MADV_DONTNEED:
1981         case MADV_FREE:
1982                 vm_map_lock_read(map);
1983                 break;
1984         default:
1985                 vm_map_entry_release(count);
1986                 return (EINVAL);
1987         }
1988
1989         /*
1990          * Locate starting entry and clip if necessary.
1991          */
1992
1993         VM_MAP_RANGE_CHECK(map, start, end);
1994
1995         if (vm_map_lookup_entry(map, start, &entry)) {
1996                 if (modify_map)
1997                         vm_map_clip_start(map, entry, start, &count);
1998         } else {
1999                 entry = entry->next;
2000         }
2001
2002         if (modify_map) {
2003                 /*
2004                  * madvise behaviors that are implemented in the vm_map_entry.
2005                  *
2006                  * We clip the vm_map_entry so that behavioral changes are
2007                  * limited to the specified address range.
2008                  */
2009                 for (current = entry;
2010                      (current != &map->header) && (current->start < end);
2011                      current = current->next
2012                 ) {
2013                         if (current->maptype == VM_MAPTYPE_SUBMAP)
2014                                 continue;
2015
2016                         vm_map_clip_end(map, current, end, &count);
2017
2018                         switch (behav) {
2019                         case MADV_NORMAL:
2020                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2021                                 break;
2022                         case MADV_SEQUENTIAL:
2023                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2024                                 break;
2025                         case MADV_RANDOM:
2026                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2027                                 break;
2028                         case MADV_NOSYNC:
2029                                 current->eflags |= MAP_ENTRY_NOSYNC;
2030                                 break;
2031                         case MADV_AUTOSYNC:
2032                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
2033                                 break;
2034                         case MADV_NOCORE:
2035                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2036                                 break;
2037                         case MADV_CORE:
2038                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2039                                 break;
2040                         case MADV_INVAL:
2041                                 /*
2042                                  * Invalidate the related pmap entries, used
2043                                  * to flush portions of the real kernel's
2044                                  * pmap when the caller has removed or
2045                                  * modified existing mappings in a virtual
2046                                  * page table.
2047                                  */
2048                                 pmap_remove(map->pmap,
2049                                             current->start, current->end);
2050                                 break;
2051                         case MADV_SETMAP:
2052                                 /*
2053                                  * Set the page directory page for a map
2054                                  * governed by a virtual page table.  Mark
2055                                  * the entry as being governed by a virtual
2056                                  * page table if it is not.
2057                                  *
2058                                  * XXX the page directory page is stored
2059                                  * in the avail_ssize field if the map_entry.
2060                                  *
2061                                  * XXX the map simplification code does not
2062                                  * compare this field so weird things may
2063                                  * happen if you do not apply this function
2064                                  * to the entire mapping governed by the
2065                                  * virtual page table.
2066                                  */
2067                                 if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
2068                                         error = EINVAL;
2069                                         break;
2070                                 }
2071                                 current->aux.master_pde = value;
2072                                 pmap_remove(map->pmap,
2073                                             current->start, current->end);
2074                                 break;
2075                         default:
2076                                 error = EINVAL;
2077                                 break;
2078                         }
2079                         vm_map_simplify_entry(map, current, &count);
2080                 }
2081                 vm_map_unlock(map);
2082         } else {
2083                 vm_pindex_t pindex;
2084                 int count;
2085
2086                 /*
2087                  * madvise behaviors that are implemented in the underlying
2088                  * vm_object.
2089                  *
2090                  * Since we don't clip the vm_map_entry, we have to clip
2091                  * the vm_object pindex and count.
2092                  *
2093                  * NOTE!  We currently do not support these functions on
2094                  * virtual page tables.
2095                  */
2096                 for (current = entry;
2097                      (current != &map->header) && (current->start < end);
2098                      current = current->next
2099                 ) {
2100                         vm_offset_t useStart;
2101
2102                         if (current->maptype != VM_MAPTYPE_NORMAL)
2103                                 continue;
2104
2105                         pindex = OFF_TO_IDX(current->offset);
2106                         count = atop(current->end - current->start);
2107                         useStart = current->start;
2108
2109                         if (current->start < start) {
2110                                 pindex += atop(start - current->start);
2111                                 count -= atop(start - current->start);
2112                                 useStart = start;
2113                         }
2114                         if (current->end > end)
2115                                 count -= atop(current->end - end);
2116
2117                         if (count <= 0)
2118                                 continue;
2119
2120                         vm_object_madvise(current->object.vm_object,
2121                                           pindex, count, behav);
2122
2123                         /*
2124                          * Try to populate the page table.  Mappings governed
2125                          * by virtual page tables cannot be pre-populated
2126                          * without a lot of work so don't try.
2127                          */
2128                         if (behav == MADV_WILLNEED &&
2129                             current->maptype != VM_MAPTYPE_VPAGETABLE) {
2130                                 pmap_object_init_pt(
2131                                     map->pmap, 
2132                                     useStart,
2133                                     current->protection,
2134                                     current->object.vm_object,
2135                                     pindex, 
2136                                     (count << PAGE_SHIFT),
2137                                     MAP_PREFAULT_MADVISE
2138                                 );
2139                         }
2140                 }
2141                 vm_map_unlock_read(map);
2142         }
2143         vm_map_entry_release(count);
2144         return(error);
2145 }       
2146
2147
2148 /*
2149  * Sets the inheritance of the specified address range in the target map.
2150  * Inheritance affects how the map will be shared with child maps at the
2151  * time of vm_map_fork.
2152  */
2153 int
2154 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2155                vm_inherit_t new_inheritance)
2156 {
2157         vm_map_entry_t entry;
2158         vm_map_entry_t temp_entry;
2159         int count;
2160
2161         switch (new_inheritance) {
2162         case VM_INHERIT_NONE:
2163         case VM_INHERIT_COPY:
2164         case VM_INHERIT_SHARE:
2165                 break;
2166         default:
2167                 return (KERN_INVALID_ARGUMENT);
2168         }
2169
2170         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2171         vm_map_lock(map);
2172
2173         VM_MAP_RANGE_CHECK(map, start, end);
2174
2175         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2176                 entry = temp_entry;
2177                 vm_map_clip_start(map, entry, start, &count);
2178         } else
2179                 entry = temp_entry->next;
2180
2181         while ((entry != &map->header) && (entry->start < end)) {
2182                 vm_map_clip_end(map, entry, end, &count);
2183
2184                 entry->inheritance = new_inheritance;
2185
2186                 vm_map_simplify_entry(map, entry, &count);
2187
2188                 entry = entry->next;
2189         }
2190         vm_map_unlock(map);
2191         vm_map_entry_release(count);
2192         return (KERN_SUCCESS);
2193 }
2194
2195 /*
2196  * Implement the semantics of mlock
2197  */
2198 int
2199 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2200               boolean_t new_pageable)
2201 {
2202         vm_map_entry_t entry;
2203         vm_map_entry_t start_entry;
2204         vm_offset_t end;
2205         int rv = KERN_SUCCESS;
2206         int count;
2207
2208         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2209         vm_map_lock(map);
2210         VM_MAP_RANGE_CHECK(map, start, real_end);
2211         end = real_end;
2212
2213         start_entry = vm_map_clip_range(map, start, end, &count,
2214                                         MAP_CLIP_NO_HOLES);
2215         if (start_entry == NULL) {
2216                 vm_map_unlock(map);
2217                 vm_map_entry_release(count);
2218                 return (KERN_INVALID_ADDRESS);
2219         }
2220
2221         if (new_pageable == 0) {
2222                 entry = start_entry;
2223                 while ((entry != &map->header) && (entry->start < end)) {
2224                         vm_offset_t save_start;
2225                         vm_offset_t save_end;
2226
2227                         /*
2228                          * Already user wired or hard wired (trivial cases)
2229                          */
2230                         if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2231                                 entry = entry->next;
2232                                 continue;
2233                         }
2234                         if (entry->wired_count != 0) {
2235                                 entry->wired_count++;
2236                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2237                                 entry = entry->next;
2238                                 continue;
2239                         }
2240
2241                         /*
2242                          * A new wiring requires instantiation of appropriate
2243                          * management structures and the faulting in of the
2244                          * page.
2245                          */
2246                         if (entry->maptype == VM_MAPTYPE_NORMAL ||
2247                             entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2248                                 int copyflag = entry->eflags &
2249                                                MAP_ENTRY_NEEDS_COPY;
2250                                 if (copyflag && ((entry->protection &
2251                                                   VM_PROT_WRITE) != 0)) {
2252                                         vm_map_entry_shadow(entry, 0);
2253                                 } else if (entry->object.vm_object == NULL &&
2254                                            !map->system_map) {
2255                                         vm_map_entry_allocate_object(entry);
2256                                 }
2257                         }
2258                         entry->wired_count++;
2259                         entry->eflags |= MAP_ENTRY_USER_WIRED;
2260
2261                         /*
2262                          * Now fault in the area.  Note that vm_fault_wire()
2263                          * may release the map lock temporarily, it will be
2264                          * relocked on return.  The in-transition
2265                          * flag protects the entries. 
2266                          */
2267                         save_start = entry->start;
2268                         save_end = entry->end;
2269                         rv = vm_fault_wire(map, entry, TRUE, 0);
2270                         if (rv) {
2271                                 CLIP_CHECK_BACK(entry, save_start);
2272                                 for (;;) {
2273                                         KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2274                                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2275                                         entry->wired_count = 0;
2276                                         if (entry->end == save_end)
2277                                                 break;
2278                                         entry = entry->next;
2279                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
2280                                 }
2281                                 end = save_start;       /* unwire the rest */
2282                                 break;
2283                         }
2284                         /*
2285                          * note that even though the entry might have been
2286                          * clipped, the USER_WIRED flag we set prevents
2287                          * duplication so we do not have to do a 
2288                          * clip check.
2289                          */
2290                         entry = entry->next;
2291                 }
2292
2293                 /*
2294                  * If we failed fall through to the unwiring section to
2295                  * unwire what we had wired so far.  'end' has already
2296                  * been adjusted.
2297                  */
2298                 if (rv)
2299                         new_pageable = 1;
2300
2301                 /*
2302                  * start_entry might have been clipped if we unlocked the
2303                  * map and blocked.  No matter how clipped it has gotten
2304                  * there should be a fragment that is on our start boundary.
2305                  */
2306                 CLIP_CHECK_BACK(start_entry, start);
2307         }
2308
2309         /*
2310          * Deal with the unwiring case.
2311          */
2312         if (new_pageable) {
2313                 /*
2314                  * This is the unwiring case.  We must first ensure that the
2315                  * range to be unwired is really wired down.  We know there
2316                  * are no holes.
2317                  */
2318                 entry = start_entry;
2319                 while ((entry != &map->header) && (entry->start < end)) {
2320                         if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2321                                 rv = KERN_INVALID_ARGUMENT;
2322                                 goto done;
2323                         }
2324                         KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2325                         entry = entry->next;
2326                 }
2327
2328                 /*
2329                  * Now decrement the wiring count for each region. If a region
2330                  * becomes completely unwired, unwire its physical pages and
2331                  * mappings.
2332                  */
2333                 /*
2334                  * The map entries are processed in a loop, checking to
2335                  * make sure the entry is wired and asserting it has a wired
2336                  * count. However, another loop was inserted more-or-less in
2337                  * the middle of the unwiring path. This loop picks up the
2338                  * "entry" loop variable from the first loop without first
2339                  * setting it to start_entry. Naturally, the secound loop
2340                  * is never entered and the pages backing the entries are
2341                  * never unwired. This can lead to a leak of wired pages.
2342                  */
2343                 entry = start_entry;
2344                 while ((entry != &map->header) && (entry->start < end)) {
2345                         KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2346                                 ("expected USER_WIRED on entry %p", entry));
2347                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2348                         entry->wired_count--;
2349                         if (entry->wired_count == 0)
2350                                 vm_fault_unwire(map, entry);
2351                         entry = entry->next;
2352                 }
2353         }
2354 done:
2355         vm_map_unclip_range(map, start_entry, start, real_end, &count,
2356                 MAP_CLIP_NO_HOLES);
2357         map->timestamp++;
2358         vm_map_unlock(map);
2359         vm_map_entry_release(count);
2360         return (rv);
2361 }
2362
2363 /*
2364  * Sets the pageability of the specified address range in the target map.
2365  * Regions specified as not pageable require locked-down physical
2366  * memory and physical page maps.
2367  *
2368  * The map must not be locked, but a reference must remain to the map
2369  * throughout the call.
2370  *
2371  * This function may be called via the zalloc path and must properly
2372  * reserve map entries for kernel_map.
2373  *
2374  * No requirements.
2375  */
2376 int
2377 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2378 {
2379         vm_map_entry_t entry;
2380         vm_map_entry_t start_entry;
2381         vm_offset_t end;
2382         int rv = KERN_SUCCESS;
2383         int count;
2384
2385         if (kmflags & KM_KRESERVE)
2386                 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2387         else
2388                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2389         vm_map_lock(map);
2390         VM_MAP_RANGE_CHECK(map, start, real_end);
2391         end = real_end;
2392
2393         start_entry = vm_map_clip_range(map, start, end, &count,
2394                                         MAP_CLIP_NO_HOLES);
2395         if (start_entry == NULL) {
2396                 vm_map_unlock(map);
2397                 rv = KERN_INVALID_ADDRESS;
2398                 goto failure;
2399         }
2400         if ((kmflags & KM_PAGEABLE) == 0) {
2401                 /*
2402                  * Wiring.  
2403                  *
2404                  * 1.  Holding the write lock, we create any shadow or zero-fill
2405                  * objects that need to be created. Then we clip each map
2406                  * entry to the region to be wired and increment its wiring
2407                  * count.  We create objects before clipping the map entries
2408                  * to avoid object proliferation.
2409                  *
2410                  * 2.  We downgrade to a read lock, and call vm_fault_wire to
2411                  * fault in the pages for any newly wired area (wired_count is
2412                  * 1).
2413                  *
2414                  * Downgrading to a read lock for vm_fault_wire avoids a 
2415                  * possible deadlock with another process that may have faulted
2416                  * on one of the pages to be wired (it would mark the page busy,
2417                  * blocking us, then in turn block on the map lock that we
2418                  * hold).  Because of problems in the recursive lock package,
2419                  * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2420                  * any actions that require the write lock must be done
2421                  * beforehand.  Because we keep the read lock on the map, the
2422                  * copy-on-write status of the entries we modify here cannot
2423                  * change.
2424                  */
2425                 entry = start_entry;
2426                 while ((entry != &map->header) && (entry->start < end)) {
2427                         /*
2428                          * Trivial case if the entry is already wired
2429                          */
2430                         if (entry->wired_count) {
2431                                 entry->wired_count++;
2432                                 entry = entry->next;
2433                                 continue;
2434                         }
2435
2436                         /*
2437                          * The entry is being newly wired, we have to setup
2438                          * appropriate management structures.  A shadow 
2439                          * object is required for a copy-on-write region,
2440                          * or a normal object for a zero-fill region.  We
2441                          * do not have to do this for entries that point to sub
2442                          * maps because we won't hold the lock on the sub map.
2443                          */
2444                         if (entry->maptype == VM_MAPTYPE_NORMAL ||
2445                             entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2446                                 int copyflag = entry->eflags &
2447                                                MAP_ENTRY_NEEDS_COPY;
2448                                 if (copyflag && ((entry->protection &
2449                                                   VM_PROT_WRITE) != 0)) {
2450                                         vm_map_entry_shadow(entry, 0);
2451                                 } else if (entry->object.vm_object == NULL &&
2452                                            !map->system_map) {
2453                                         vm_map_entry_allocate_object(entry);
2454                                 }
2455                         }
2456
2457                         entry->wired_count++;
2458                         entry = entry->next;
2459                 }
2460
2461                 /*
2462                  * Pass 2.
2463                  */
2464
2465                 /*
2466                  * HACK HACK HACK HACK
2467                  *
2468                  * vm_fault_wire() temporarily unlocks the map to avoid
2469                  * deadlocks.  The in-transition flag from vm_map_clip_range
2470                  * call should protect us from changes while the map is
2471                  * unlocked.  T
2472                  *
2473                  * NOTE: Previously this comment stated that clipping might
2474                  *       still occur while the entry is unlocked, but from
2475                  *       what I can tell it actually cannot.
2476                  *
2477                  *       It is unclear whether the CLIP_CHECK_*() calls
2478                  *       are still needed but we keep them in anyway.
2479                  *
2480                  * HACK HACK HACK HACK
2481                  */
2482
2483                 entry = start_entry;
2484                 while (entry != &map->header && entry->start < end) {
2485                         /*
2486                          * If vm_fault_wire fails for any page we need to undo
2487                          * what has been done.  We decrement the wiring count
2488                          * for those pages which have not yet been wired (now)
2489                          * and unwire those that have (later).
2490                          */
2491                         vm_offset_t save_start = entry->start;
2492                         vm_offset_t save_end = entry->end;
2493
2494                         if (entry->wired_count == 1)
2495                                 rv = vm_fault_wire(map, entry, FALSE, kmflags);
2496                         if (rv) {
2497                                 CLIP_CHECK_BACK(entry, save_start);
2498                                 for (;;) {
2499                                         KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2500                                         entry->wired_count = 0;
2501                                         if (entry->end == save_end)
2502                                                 break;
2503                                         entry = entry->next;
2504                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
2505                                 }
2506                                 end = save_start;
2507                                 break;
2508                         }
2509                         CLIP_CHECK_FWD(entry, save_end);
2510                         entry = entry->next;
2511                 }
2512
2513                 /*
2514                  * If a failure occured undo everything by falling through
2515                  * to the unwiring code.  'end' has already been adjusted
2516                  * appropriately.
2517                  */
2518                 if (rv)
2519                         kmflags |= KM_PAGEABLE;
2520
2521                 /*
2522                  * start_entry is still IN_TRANSITION but may have been 
2523                  * clipped since vm_fault_wire() unlocks and relocks the
2524                  * map.  No matter how clipped it has gotten there should
2525                  * be a fragment that is on our start boundary.
2526                  */
2527                 CLIP_CHECK_BACK(start_entry, start);
2528         }
2529
2530         if (kmflags & KM_PAGEABLE) {
2531                 /*
2532                  * This is the unwiring case.  We must first ensure that the
2533                  * range to be unwired is really wired down.  We know there
2534                  * are no holes.
2535                  */
2536                 entry = start_entry;
2537                 while ((entry != &map->header) && (entry->start < end)) {
2538                         if (entry->wired_count == 0) {
2539                                 rv = KERN_INVALID_ARGUMENT;
2540                                 goto done;
2541                         }
2542                         entry = entry->next;
2543                 }
2544
2545                 /*
2546                  * Now decrement the wiring count for each region. If a region
2547                  * becomes completely unwired, unwire its physical pages and
2548                  * mappings.
2549                  */
2550                 entry = start_entry;
2551                 while ((entry != &map->header) && (entry->start < end)) {
2552                         entry->wired_count--;
2553                         if (entry->wired_count == 0)
2554                                 vm_fault_unwire(map, entry);
2555                         entry = entry->next;
2556                 }
2557         }
2558 done:
2559         vm_map_unclip_range(map, start_entry, start, real_end,
2560                             &count, MAP_CLIP_NO_HOLES);
2561         map->timestamp++;
2562         vm_map_unlock(map);
2563 failure:
2564         if (kmflags & KM_KRESERVE)
2565                 vm_map_entry_krelease(count);
2566         else
2567                 vm_map_entry_release(count);
2568         return (rv);
2569 }
2570
2571 /*
2572  * Mark a newly allocated address range as wired but do not fault in
2573  * the pages.  The caller is expected to load the pages into the object.
2574  *
2575  * The map must be locked on entry and will remain locked on return.
2576  * No other requirements.
2577  */
2578 void
2579 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2580                        int *countp)
2581 {
2582         vm_map_entry_t scan;
2583         vm_map_entry_t entry;
2584
2585         entry = vm_map_clip_range(map, addr, addr + size,
2586                                   countp, MAP_CLIP_NO_HOLES);
2587         for (scan = entry;
2588              scan != &map->header && scan->start < addr + size;
2589              scan = scan->next) {
2590             KKASSERT(scan->wired_count == 0);
2591             scan->wired_count = 1;
2592         }
2593         vm_map_unclip_range(map, entry, addr, addr + size,
2594                             countp, MAP_CLIP_NO_HOLES);
2595 }
2596
2597 /*
2598  * Push any dirty cached pages in the address range to their pager.
2599  * If syncio is TRUE, dirty pages are written synchronously.
2600  * If invalidate is TRUE, any cached pages are freed as well.
2601  *
2602  * This routine is called by sys_msync()
2603  *
2604  * Returns an error if any part of the specified range is not mapped.
2605  *
2606  * No requirements.
2607  */
2608 int
2609 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2610              boolean_t syncio, boolean_t invalidate)
2611 {
2612         vm_map_entry_t current;
2613         vm_map_entry_t entry;
2614         vm_size_t size;
2615         vm_object_t object;
2616         vm_object_t tobj;
2617         vm_ooffset_t offset;
2618
2619         vm_map_lock_read(map);
2620         VM_MAP_RANGE_CHECK(map, start, end);
2621         if (!vm_map_lookup_entry(map, start, &entry)) {
2622                 vm_map_unlock_read(map);
2623                 return (KERN_INVALID_ADDRESS);
2624         }
2625         lwkt_gettoken(&map->token);
2626
2627         /*
2628          * Make a first pass to check for holes.
2629          */
2630         for (current = entry; current->start < end; current = current->next) {
2631                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2632                         lwkt_reltoken(&map->token);
2633                         vm_map_unlock_read(map);
2634                         return (KERN_INVALID_ARGUMENT);
2635                 }
2636                 if (end > current->end &&
2637                     (current->next == &map->header ||
2638                         current->end != current->next->start)) {
2639                         lwkt_reltoken(&map->token);
2640                         vm_map_unlock_read(map);
2641                         return (KERN_INVALID_ADDRESS);
2642                 }
2643         }
2644
2645         if (invalidate)
2646                 pmap_remove(vm_map_pmap(map), start, end);
2647
2648         /*
2649          * Make a second pass, cleaning/uncaching pages from the indicated
2650          * objects as we go.
2651          */
2652         for (current = entry; current->start < end; current = current->next) {
2653                 offset = current->offset + (start - current->start);
2654                 size = (end <= current->end ? end : current->end) - start;
2655
2656                 switch(current->maptype) {
2657                 case VM_MAPTYPE_SUBMAP:
2658                 {
2659                         vm_map_t smap;
2660                         vm_map_entry_t tentry;
2661                         vm_size_t tsize;
2662
2663                         smap = current->object.sub_map;
2664                         vm_map_lock_read(smap);
2665                         vm_map_lookup_entry(smap, offset, &tentry);
2666                         tsize = tentry->end - offset;
2667                         if (tsize < size)
2668                                 size = tsize;
2669                         object = tentry->object.vm_object;
2670                         offset = tentry->offset + (offset - tentry->start);
2671                         vm_map_unlock_read(smap);
2672                         break;
2673                 }
2674                 case VM_MAPTYPE_NORMAL:
2675                 case VM_MAPTYPE_VPAGETABLE:
2676                         object = current->object.vm_object;
2677                         break;
2678                 default:
2679                         object = NULL;
2680                         break;
2681                 }
2682
2683                 if (object)
2684                         vm_object_hold(object);
2685
2686                 /*
2687                  * Note that there is absolutely no sense in writing out
2688                  * anonymous objects, so we track down the vnode object
2689                  * to write out.
2690                  * We invalidate (remove) all pages from the address space
2691                  * anyway, for semantic correctness.
2692                  *
2693                  * note: certain anonymous maps, such as MAP_NOSYNC maps,
2694                  * may start out with a NULL object.
2695                  */
2696                 while (object && (tobj = object->backing_object) != NULL) {
2697                         vm_object_hold(tobj);
2698                         if (tobj == object->backing_object) {
2699                                 vm_object_lock_swap();
2700                                 offset += object->backing_object_offset;
2701                                 vm_object_drop(object);
2702                                 object = tobj;
2703                                 if (object->size < OFF_TO_IDX(offset + size))
2704                                         size = IDX_TO_OFF(object->size) -
2705                                                offset;
2706                                 break;
2707                         }
2708                         vm_object_drop(tobj);
2709                 }
2710                 if (object && (object->type == OBJT_VNODE) && 
2711                     (current->protection & VM_PROT_WRITE) &&
2712                     (object->flags & OBJ_NOMSYNC) == 0) {
2713                         /*
2714                          * Flush pages if writing is allowed, invalidate them
2715                          * if invalidation requested.  Pages undergoing I/O
2716                          * will be ignored by vm_object_page_remove().
2717                          *
2718                          * We cannot lock the vnode and then wait for paging
2719                          * to complete without deadlocking against vm_fault.
2720                          * Instead we simply call vm_object_page_remove() and
2721                          * allow it to block internally on a page-by-page 
2722                          * basis when it encounters pages undergoing async 
2723                          * I/O.
2724                          */
2725                         int flags;
2726
2727                         /* no chain wait needed for vnode objects */
2728                         vm_object_reference_locked(object);
2729                         vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2730                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2731                         flags |= invalidate ? OBJPC_INVAL : 0;
2732
2733                         /*
2734                          * When operating on a virtual page table just
2735                          * flush the whole object.  XXX we probably ought
2736                          * to 
2737                          */
2738                         switch(current->maptype) {
2739                         case VM_MAPTYPE_NORMAL:
2740                                 vm_object_page_clean(object,
2741                                     OFF_TO_IDX(offset),
2742                                     OFF_TO_IDX(offset + size + PAGE_MASK),
2743                                     flags);
2744                                 break;
2745                         case VM_MAPTYPE_VPAGETABLE:
2746                                 vm_object_page_clean(object, 0, 0, flags);
2747                                 break;
2748                         }
2749                         vn_unlock(((struct vnode *)object->handle));
2750                         vm_object_deallocate_locked(object);
2751                 }
2752                 if (object && invalidate &&
2753                    ((object->type == OBJT_VNODE) ||
2754                     (object->type == OBJT_DEVICE) ||
2755                     (object->type == OBJT_MGTDEVICE))) {
2756                         int clean_only = 
2757                                 ((object->type == OBJT_DEVICE) ||
2758                                 (object->type == OBJT_MGTDEVICE)) ? FALSE : TRUE;
2759                         /* no chain wait needed for vnode/device objects */
2760                         vm_object_reference_locked(object);
2761                         switch(current->maptype) {
2762                         case VM_MAPTYPE_NORMAL:
2763                                 vm_object_page_remove(object,
2764                                     OFF_TO_IDX(offset),
2765                                     OFF_TO_IDX(offset + size + PAGE_MASK),
2766                                     clean_only);
2767                                 break;
2768                         case VM_MAPTYPE_VPAGETABLE:
2769                                 vm_object_page_remove(object, 0, 0, clean_only);
2770                                 break;
2771                         }
2772                         vm_object_deallocate_locked(object);
2773                 }
2774                 start += size;
2775                 if (object)
2776                         vm_object_drop(object);
2777         }
2778
2779         lwkt_reltoken(&map->token);
2780         vm_map_unlock_read(map);
2781
2782         return (KERN_SUCCESS);
2783 }
2784
2785 /*
2786  * Make the region specified by this entry pageable.
2787  *
2788  * The vm_map must be exclusively locked.
2789  */
2790 static void 
2791 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2792 {
2793         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2794         entry->wired_count = 0;
2795         vm_fault_unwire(map, entry);
2796 }
2797
2798 /*
2799  * Deallocate the given entry from the target map.
2800  *
2801  * The vm_map must be exclusively locked.
2802  */
2803 static void
2804 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2805 {
2806         vm_map_entry_unlink(map, entry);
2807         map->size -= entry->end - entry->start;
2808
2809         switch(entry->maptype) {
2810         case VM_MAPTYPE_NORMAL:
2811         case VM_MAPTYPE_VPAGETABLE:
2812         case VM_MAPTYPE_SUBMAP:
2813                 vm_object_deallocate(entry->object.vm_object);
2814                 break;
2815         case VM_MAPTYPE_UKSMAP:
2816                 /* XXX TODO */
2817                 break;
2818         default:
2819                 break;
2820         }
2821
2822         vm_map_entry_dispose(map, entry, countp);
2823 }
2824
2825 /*
2826  * Deallocates the given address range from the target map.
2827  *
2828  * The vm_map must be exclusively locked.
2829  */
2830 int
2831 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2832 {
2833         vm_object_t object;
2834         vm_map_entry_t entry;
2835         vm_map_entry_t first_entry;
2836
2837         ASSERT_VM_MAP_LOCKED(map);
2838         lwkt_gettoken(&map->token);
2839 again:
2840         /*
2841          * Find the start of the region, and clip it.  Set entry to point
2842          * at the first record containing the requested address or, if no
2843          * such record exists, the next record with a greater address.  The
2844          * loop will run from this point until a record beyond the termination
2845          * address is encountered.
2846          *
2847          * map->hint must be adjusted to not point to anything we delete,
2848          * so set it to the entry prior to the one being deleted.
2849          *
2850          * GGG see other GGG comment.
2851          */
2852         if (vm_map_lookup_entry(map, start, &first_entry)) {
2853                 entry = first_entry;
2854                 vm_map_clip_start(map, entry, start, countp);
2855                 map->hint = entry->prev;        /* possible problem XXX */
2856         } else {
2857                 map->hint = first_entry;        /* possible problem XXX */
2858                 entry = first_entry->next;
2859         }
2860
2861         /*
2862          * If a hole opens up prior to the current first_free then
2863          * adjust first_free.  As with map->hint, map->first_free
2864          * cannot be left set to anything we might delete.
2865          */
2866         if (entry == &map->header) {
2867                 map->first_free = &map->header;
2868         } else if (map->first_free->start >= start) {
2869                 map->first_free = entry->prev;
2870         }
2871
2872         /*
2873          * Step through all entries in this region
2874          */
2875         while ((entry != &map->header) && (entry->start < end)) {
2876                 vm_map_entry_t next;
2877                 vm_offset_t s, e;
2878                 vm_pindex_t offidxstart, offidxend, count;
2879
2880                 /*
2881                  * If we hit an in-transition entry we have to sleep and
2882                  * retry.  It's easier (and not really slower) to just retry
2883                  * since this case occurs so rarely and the hint is already
2884                  * pointing at the right place.  We have to reset the
2885                  * start offset so as not to accidently delete an entry
2886                  * another process just created in vacated space.
2887                  */
2888                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2889                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2890                         start = entry->start;
2891                         ++mycpu->gd_cnt.v_intrans_coll;
2892                         ++mycpu->gd_cnt.v_intrans_wait;
2893                         vm_map_transition_wait(map);
2894                         goto again;
2895                 }
2896                 vm_map_clip_end(map, entry, end, countp);
2897
2898                 s = entry->start;
2899                 e = entry->end;
2900                 next = entry->next;
2901
2902                 offidxstart = OFF_TO_IDX(entry->offset);
2903                 count = OFF_TO_IDX(e - s);
2904
2905                 switch(entry->maptype) {
2906                 case VM_MAPTYPE_NORMAL:
2907                 case VM_MAPTYPE_VPAGETABLE:
2908                 case VM_MAPTYPE_SUBMAP:
2909                         object = entry->object.vm_object;
2910                         break;
2911                 default:
2912                         object = NULL;
2913                         break;
2914                 }
2915
2916                 /*
2917                  * Unwire before removing addresses from the pmap; otherwise,
2918                  * unwiring will put the entries back in the pmap.
2919                  */
2920                 if (entry->wired_count != 0)
2921                         vm_map_entry_unwire(map, entry);
2922
2923                 offidxend = offidxstart + count;
2924
2925                 if (object == &kernel_object) {
2926                         vm_object_hold(object);
2927                         vm_object_page_remove(object, offidxstart,
2928                                               offidxend, FALSE);
2929                         vm_object_drop(object);
2930                 } else if (object && object->type != OBJT_DEFAULT &&
2931                            object->type != OBJT_SWAP) {
2932                         /*
2933                          * vnode object routines cannot be chain-locked,
2934                          * but since we aren't removing pages from the
2935                          * object here we can use a shared hold.
2936                          */
2937                         vm_object_hold_shared(object);
2938                         pmap_remove(map->pmap, s, e);
2939                         vm_object_drop(object);
2940                 } else if (object) {
2941                         vm_object_hold(object);
2942                         vm_object_chain_acquire(object, 0);
2943                         pmap_remove(map->pmap, s, e);
2944
2945                         if (object != NULL &&
2946                             object->ref_count != 1 &&
2947                             (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
2948                              OBJ_ONEMAPPING &&
2949                             (object->type == OBJT_DEFAULT ||
2950                              object->type == OBJT_SWAP)) {
2951                                 vm_object_collapse(object, NULL);
2952                                 vm_object_page_remove(object, offidxstart,
2953                                                       offidxend, FALSE);
2954                                 if (object->type == OBJT_SWAP) {
2955                                         swap_pager_freespace(object,
2956                                                              offidxstart,
2957                                                              count);
2958                                 }
2959                                 if (offidxend >= object->size &&
2960                                     offidxstart < object->size) {
2961                                         object->size = offidxstart;
2962                                 }
2963                         }
2964                         vm_object_chain_release(object);
2965                         vm_object_drop(object);
2966                 } else if (entry->maptype == VM_MAPTYPE_UKSMAP) {
2967                         pmap_remove(map->pmap, s, e);
2968                 }
2969
2970                 /*
2971                  * Delete the entry (which may delete the object) only after
2972                  * removing all pmap entries pointing to its pages.
2973                  * (Otherwise, its page frames may be reallocated, and any
2974                  * modify bits will be set in the wrong object!)
2975                  */
2976                 vm_map_entry_delete(map, entry, countp);
2977                 entry = next;
2978         }
2979         lwkt_reltoken(&map->token);
2980         return (KERN_SUCCESS);
2981 }
2982
2983 /*
2984  * Remove the given address range from the target map.
2985  * This is the exported form of vm_map_delete.
2986  *
2987  * No requirements.
2988  */
2989 int
2990 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2991 {
2992         int result;
2993         int count;
2994
2995         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2996         vm_map_lock(map);
2997         VM_MAP_RANGE_CHECK(map, start, end);
2998         result = vm_map_delete(map, start, end, &count);
2999         vm_map_unlock(map);
3000         vm_map_entry_release(count);
3001
3002         return (result);
3003 }
3004
3005 /*
3006  * Assert that the target map allows the specified privilege on the
3007  * entire address region given.  The entire region must be allocated.
3008  *
3009  * The caller must specify whether the vm_map is already locked or not.
3010  */
3011 boolean_t
3012 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3013                         vm_prot_t protection, boolean_t have_lock)
3014 {
3015         vm_map_entry_t entry;
3016         vm_map_entry_t tmp_entry;
3017         boolean_t result;
3018
3019         if (have_lock == FALSE)
3020                 vm_map_lock_read(map);
3021
3022         if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
3023                 if (have_lock == FALSE)
3024                         vm_map_unlock_read(map);
3025                 return (FALSE);
3026         }
3027         entry = tmp_entry;
3028
3029         result = TRUE;
3030         while (start < end) {
3031                 if (entry == &map->header) {
3032                         result = FALSE;
3033                         break;
3034                 }
3035                 /*
3036                  * No holes allowed!
3037                  */
3038
3039                 if (start < entry->start) {
3040                         result = FALSE;
3041                         break;
3042                 }
3043                 /*
3044                  * Check protection associated with entry.
3045                  */
3046
3047                 if ((entry->protection & protection) != protection) {
3048                         result = FALSE;
3049                         break;
3050                 }
3051                 /* go to next entry */
3052
3053                 start = entry->end;
3054                 entry = entry->next;
3055         }
3056         if (have_lock == FALSE)
3057                 vm_map_unlock_read(map);
3058         return (result);
3059 }
3060
3061 /*
3062  * If appropriate this function shadows the original object with a new object
3063  * and moves the VM pages from the original object to the new object.
3064  * The original object will also be collapsed, if possible.
3065  *
3066  * We can only do this for normal memory objects with a single mapping, and
3067  * it only makes sense to do it if there are 2 or more refs on the original
3068  * object.  i.e. typically a memory object that has been extended into
3069  * multiple vm_map_entry's with non-overlapping ranges.
3070  *
3071  * This makes it easier to remove unused pages and keeps object inheritance
3072  * from being a negative impact on memory usage.
3073  *
3074  * On return the (possibly new) entry->object.vm_object will have an
3075  * additional ref on it for the caller to dispose of (usually by cloning
3076  * the vm_map_entry).  The additional ref had to be done in this routine
3077  * to avoid racing a collapse.  The object's ONEMAPPING flag will also be
3078  * cleared.
3079  *
3080  * The vm_map must be locked and its token held.
3081  */
3082 static void
3083 vm_map_split(vm_map_entry_t entry)
3084 {
3085         /* OPTIMIZED */
3086         vm_object_t oobject, nobject, bobject;
3087         vm_offset_t s, e;
3088         vm_page_t m;
3089         vm_pindex_t offidxstart, offidxend, idx;
3090         vm_size_t size;
3091         vm_ooffset_t offset;
3092         int useshadowlist;
3093
3094         /*
3095          * Optimize away object locks for vnode objects.  Important exit/exec
3096          * critical path.
3097          *
3098          * OBJ_ONEMAPPING doesn't apply to vnode objects but clear the flag
3099          * anyway.
3100          */
3101         oobject = entry->object.vm_object;
3102         if (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) {
3103                 vm_object_reference_quick(oobject);
3104                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3105                 return;
3106         }
3107
3108         /*
3109          * Setup.  Chain lock the original object throughout the entire
3110          * routine to prevent new page faults from occuring.
3111          *
3112          * XXX can madvise WILLNEED interfere with us too?
3113          */
3114         vm_object_hold(oobject);
3115         vm_object_chain_acquire(oobject, 0);
3116
3117         /*
3118          * Original object cannot be split?  Might have also changed state.
3119          */
3120         if (oobject->handle == NULL || (oobject->type != OBJT_DEFAULT &&
3121                                         oobject->type != OBJT_SWAP)) {
3122                 vm_object_chain_release(oobject);
3123                 vm_object_reference_locked(oobject);
3124                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3125                 vm_object_drop(oobject);
3126                 return;
3127         }
3128
3129         /*
3130          * Collapse original object with its backing store as an
3131          * optimization to reduce chain lengths when possible.
3132          *
3133          * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's
3134          * for oobject, so there's no point collapsing it.
3135          *
3136          * Then re-check whether the object can be split.
3137          */
3138         vm_object_collapse(oobject, NULL);
3139
3140         if (oobject->ref_count <= 1 ||
3141             (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) ||
3142             (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) {
3143                 vm_object_chain_release(oobject);
3144                 vm_object_reference_locked(oobject);
3145                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3146                 vm_object_drop(oobject);
3147                 return;
3148         }
3149
3150         /*
3151          * Acquire the chain lock on the backing object.
3152          *
3153          * Give bobject an additional ref count for when it will be shadowed
3154          * by nobject.
3155          */
3156         useshadowlist = 0;
3157         if ((bobject = oobject->backing_object) != NULL) {
3158                 if (bobject->type != OBJT_VNODE) {
3159                         useshadowlist = 1;
3160                         vm_object_hold(bobject);
3161                         vm_object_chain_wait(bobject, 0);
3162                         /* ref for shadowing below */
3163                         vm_object_reference_locked(bobject);
3164                         vm_object_chain_acquire(bobject, 0);
3165                         KKASSERT(bobject->backing_object == bobject);
3166                         KKASSERT((bobject->flags & OBJ_DEAD) == 0);
3167                 } else {
3168                         /*
3169                          * vnodes are not placed on the shadow list but
3170                          * they still get another ref for the backing_object
3171                          * reference.
3172                          */
3173                         vm_object_reference_quick(bobject);
3174                 }
3175         }
3176
3177         /*
3178          * Calculate the object page range and allocate the new object.
3179          */
3180         offset = entry->offset;
3181         s = entry->start;
3182         e = entry->end;
3183
3184         offidxstart = OFF_TO_IDX(offset);
3185         offidxend = offidxstart + OFF_TO_IDX(e - s);
3186         size = offidxend - offidxstart;
3187
3188         switch(oobject->type) {
3189         case OBJT_DEFAULT:
3190                 nobject = default_pager_alloc(NULL, IDX_TO_OFF(size),
3191                                               VM_PROT_ALL, 0);
3192                 break;
3193         case OBJT_SWAP:
3194                 nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size),
3195                                            VM_PROT_ALL, 0);
3196                 break;
3197         default:
3198                 /* not reached */
3199                 nobject = NULL;
3200                 KKASSERT(0);
3201         }
3202
3203         if (nobject == NULL) {
3204                 if (bobject) {
3205                         if (useshadowlist) {
3206                                 vm_object_chain_release(bobject);
3207                                 vm_object_deallocate(bobject);
3208                                 vm_object_drop(bobject);
3209                         } else {
3210                                 vm_object_deallocate(bobject);
3211                         }
3212                 }
3213                 vm_object_chain_release(oobject);
3214                 vm_object_reference_locked(oobject);
3215                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3216                 vm_object_drop(oobject);
3217                 return;
3218         }
3219
3220         /*
3221          * The new object will replace entry->object.vm_object so it needs
3222          * a second reference (the caller expects an additional ref).
3223          */
3224         vm_object_hold(nobject);
3225         vm_object_reference_locked(nobject);
3226         vm_object_chain_acquire(nobject, 0);
3227
3228         /*
3229          * nobject shadows bobject (oobject already shadows bobject).
3230          *
3231          * Adding an object to bobject's shadow list requires refing bobject
3232          * which we did above in the useshadowlist case.
3233          */
3234         if (bobject) {
3235                 nobject->backing_object_offset =
3236                     oobject->backing_object_offset + IDX_TO_OFF(offidxstart);
3237                 nobject->backing_object = bobject;
3238                 if (useshadowlist) {
3239                         bobject->shadow_count++;
3240                         bobject->generation++;
3241                         LIST_INSERT_HEAD(&bobject->shadow_head,
3242                                          nobject, shadow_list);
3243                         vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /*XXX*/
3244                         vm_object_chain_release(bobject);
3245                         vm_object_drop(bobject);
3246                         vm_object_set_flag(nobject, OBJ_ONSHADOW);
3247                 }
3248         }
3249
3250         /*
3251          * Move the VM pages from oobject to nobject
3252          */
3253         for (idx = 0; idx < size; idx++) {
3254                 vm_page_t m;
3255
3256                 m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3257                                              TRUE, "vmpg");
3258                 if (m == NULL)
3259                         continue;
3260
3261                 /*
3262                  * We must wait for pending I/O to complete before we can
3263                  * rename the page.
3264                  *
3265                  * We do not have to VM_PROT_NONE the page as mappings should
3266                  * not be changed by this operation.
3267                  *
3268                  * NOTE: The act of renaming a page updates chaingen for both
3269                  *       objects.
3270                  */
3271                 vm_page_rename(m, nobject, idx);
3272                 /* page automatically made dirty by rename and cache handled */
3273                 /* page remains busy */
3274         }
3275
3276         if (oobject->type == OBJT_SWAP) {
3277                 vm_object_pip_add(oobject, 1);
3278                 /*
3279                  * copy oobject pages into nobject and destroy unneeded
3280                  * pages in shadow object.
3281                  */
3282                 swap_pager_copy(oobject, nobject, offidxstart, 0);
3283                 vm_object_pip_wakeup(oobject);
3284         }
3285
3286         /*
3287          * Wakeup the pages we played with.  No spl protection is needed
3288          * for a simple wakeup.
3289          */
3290         for (idx = 0; idx < size; idx++) {
3291                 m = vm_page_lookup(nobject, idx);
3292                 if (m) {
3293                         KKASSERT(m->flags & PG_BUSY);
3294                         vm_page_wakeup(m);
3295                 }
3296         }
3297         entry->object.vm_object = nobject;
3298         entry->offset = 0LL;
3299
3300         /*
3301          * Cleanup
3302          *
3303          * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the
3304          *       related pages were moved and are no longer applicable to the
3305          *       original object.
3306          *
3307          * NOTE: Deallocate oobject (due to its entry->object.vm_object being
3308          *       replaced by nobject).
3309          */
3310         vm_object_chain_release(nobject);
3311         vm_object_drop(nobject);
3312         if (bobject && useshadowlist) {
3313                 vm_object_chain_release(bobject);
3314                 vm_object_drop(bobject);
3315         }
3316         vm_object_chain_release(oobject);
3317         /*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/
3318         vm_object_deallocate_locked(oobject);
3319         vm_object_drop(oobject);
3320 }
3321
3322 /*
3323  * Copies the contents of the source entry to the destination
3324  * entry.  The entries *must* be aligned properly.
3325  *
3326  * The vm_maps must be exclusively locked.
3327  * The vm_map's token must be held.
3328  *
3329  * Because the maps are locked no faults can be in progress during the
3330  * operation.
3331  */
3332 static void
3333 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
3334                   vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
3335 {
3336         vm_object_t src_object;
3337
3338         if (dst_entry->maptype == VM_MAPTYPE_SUBMAP ||
3339             dst_entry->maptype == VM_MAPTYPE_UKSMAP)
3340                 return;
3341         if (src_entry->maptype == VM_MAPTYPE_SUBMAP ||
3342             src_entry->maptype == VM_MAPTYPE_UKSMAP)
3343                 return;
3344
3345         if (src_entry->wired_count == 0) {
3346                 /*
3347                  * If the source entry is marked needs_copy, it is already
3348                  * write-protected.
3349                  */
3350                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3351                         pmap_protect(src_map->pmap,
3352                             src_entry->start,
3353                             src_entry->end,
3354                             src_entry->protection & ~VM_PROT_WRITE);
3355                 }
3356
3357                 /*
3358                  * Make a copy of the object.
3359                  *
3360                  * The object must be locked prior to checking the object type
3361                  * and for the call to vm_object_collapse() and vm_map_split().
3362                  * We cannot use *_hold() here because the split code will
3363                  * probably try to destroy the object.  The lock is a pool
3364                  * token and doesn't care.
3365                  *
3366                  * We must bump src_map->timestamp when setting
3367                  * MAP_ENTRY_NEEDS_COPY to force any concurrent fault
3368                  * to retry, otherwise the concurrent fault might improperly
3369                  * install a RW pte when its supposed to be a RO(COW) pte.
3370                  * This race can occur because a vnode-backed fault may have
3371                  * to temporarily release the map lock.
3372                  */
3373                 if (src_entry->object.vm_object != NULL) {
3374                         vm_map_split(src_entry);
3375                         src_object = src_entry->object.vm_object;
3376                         dst_entry->object.vm_object = src_object;
3377                         src_entry->eflags |= (MAP_ENTRY_COW |
3378                                               MAP_ENTRY_NEEDS_COPY);
3379                         dst_entry->eflags |= (MAP_ENTRY_COW |
3380                                               MAP_ENTRY_NEEDS_COPY);
3381                         dst_entry->offset = src_entry->offset;
3382                         ++src_map->timestamp;
3383                 } else {
3384                         dst_entry->object.vm_object = NULL;
3385                         dst_entry->offset = 0;
3386                 }
3387
3388                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3389                     dst_entry->end - dst_entry->start, src_entry->start);
3390         } else {
3391                 /*
3392                  * Of course, wired down pages can't be set copy-on-write.
3393                  * Cause wired pages to be copied into the new map by
3394                  * simulating faults (the new pages are pageable)
3395                  */
3396                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3397         }
3398 }
3399
3400 /*
3401  * vmspace_fork:
3402  * Create a new process vmspace structure and vm_map
3403  * based on those of an existing process.  The new map
3404  * is based on the old map, according to the inheritance
3405  * values on the regions in that map.
3406  *
3407  * The source map must not be locked.
3408  * No requirements.
3409  */
3410 static void vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3411                           vm_map_entry_t old_entry, int *countp);
3412 static void vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3413                           vm_map_entry_t old_entry, int *countp);
3414
3415 struct vmspace *
3416 vmspace_fork(struct vmspace *vm1)
3417 {
3418         struct vmspace *vm2;
3419         vm_map_t old_map = &vm1->vm_map;
3420         vm_map_t new_map;
3421         vm_map_entry_t old_entry;
3422         int count;
3423
3424         lwkt_gettoken(&vm1->vm_map.token);
3425         vm_map_lock(old_map);
3426
3427         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3428         lwkt_gettoken(&vm2->vm_map.token);
3429         bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3430             (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3431         new_map = &vm2->vm_map; /* XXX */
3432         new_map->timestamp = 1;
3433
3434         vm_map_lock(new_map);
3435
3436         count = 0;
3437         old_entry = old_map->header.next;
3438         while (old_entry != &old_map->header) {
3439                 ++count;
3440                 old_entry = old_entry->next;
3441         }
3442
3443         count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3444
3445         old_entry = old_map->header.next;
3446         while (old_entry != &old_map->header) {
3447                 switch(old_entry->maptype) {
3448                 case VM_MAPTYPE_SUBMAP:
3449                         panic("vm_map_fork: encountered a submap");
3450                         break;
3451                 case VM_MAPTYPE_UKSMAP:
3452                         vmspace_fork_uksmap_entry(old_map, new_map,
3453                                                   old_entry, &count);
3454                         break;
3455                 case VM_MAPTYPE_NORMAL:
3456                 case VM_MAPTYPE_VPAGETABLE:
3457                         vmspace_fork_normal_entry(old_map, new_map,
3458                                                   old_entry, &count);
3459                         break;
3460                 }
3461                 old_entry = old_entry->next;
3462         }
3463
3464         new_map->size = old_map->size;
3465         vm_map_unlock(old_map);
3466         vm_map_unlock(new_map);
3467         vm_map_entry_release(count);
3468
3469         lwkt_reltoken(&vm2->vm_map.token);
3470         lwkt_reltoken(&vm1->vm_map.token);
3471
3472         return (vm2);
3473 }
3474
3475 static
3476 void
3477 vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3478                           vm_map_entry_t old_entry, int *countp)
3479 {
3480         vm_map_entry_t new_entry;
3481         vm_object_t object;
3482
3483         switch (old_entry->inheritance) {
3484         case VM_INHERIT_NONE:
3485                 break;
3486         case VM_INHERIT_SHARE:
3487                 /*
3488                  * Clone the entry, creating the shared object if
3489                  * necessary.
3490                  */
3491                 if (old_entry->object.vm_object == NULL)
3492                         vm_map_entry_allocate_object(old_entry);
3493
3494                 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3495                         /*
3496                          * Shadow a map_entry which needs a copy,
3497                          * replacing its object with a new object
3498                          * that points to the old one.  Ask the
3499                          * shadow code to automatically add an
3500                          * additional ref.  We can't do it afterwords
3501                          * because we might race a collapse.  The call
3502                          * to vm_map_entry_shadow() will also clear
3503                          * OBJ_ONEMAPPING.
3504                          */
3505                         vm_map_entry_shadow(old_entry, 1);
3506                 } else if (old_entry->object.vm_object) {
3507                         /*
3508                          * We will make a shared copy of the object,
3509                          * and must clear OBJ_ONEMAPPING.
3510                          *
3511                          * Optimize vnode objects.  OBJ_ONEMAPPING
3512                          * is non-applicable but clear it anyway,
3513                          * and its terminal so we don'th ave to deal
3514                          * with chains.  Reduces SMP conflicts.
3515                          *
3516                          * XXX assert that object.vm_object != NULL
3517                          *     since we allocate it above.
3518                          */
3519                         object = old_entry->object.vm_object;
3520                         if (object->type == OBJT_VNODE) {
3521                                 vm_object_reference_quick(object);
3522                                 vm_object_clear_flag(object,
3523                                                      OBJ_ONEMAPPING);
3524                         } else {
3525                                 vm_object_hold(object);
3526                                 vm_object_chain_wait(object, 0);
3527                                 vm_object_reference_locked(object);
3528                                 vm_object_clear_flag(object,
3529                                                      OBJ_ONEMAPPING);
3530                                 vm_object_drop(object);
3531                         }
3532                 }
3533
3534                 /*
3535                  * Clone the entry.  We've already bumped the ref on
3536                  * any vm_object.
3537                  */
3538                 new_entry = vm_map_entry_create(new_map, countp);
3539                 *new_entry = *old_entry;
3540                 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3541                 new_entry->wired_count = 0;
3542
3543                 /*
3544                  * Insert the entry into the new map -- we know we're
3545                  * inserting at the end of the new map.
3546                  */
3547
3548                 vm_map_entry_link(new_map, new_map->header.prev,
3549                                   new_entry);
3550
3551                 /*
3552                  * Update the physical map
3553                  */
3554                 pmap_copy(new_map->pmap, old_map->pmap,
3555                           new_entry->start,
3556                           (old_entry->end - old_entry->start),
3557                           old_entry->start);
3558                 break;
3559         case VM_INHERIT_COPY:
3560                 /*
3561                  * Clone the entry and link into the map.
3562                  */
3563                 new_entry = vm_map_entry_create(new_map, countp);
3564                 *new_entry = *old_entry;
3565                 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3566                 new_entry->wired_count = 0;
3567                 new_entry->object.vm_object = NULL;
3568                 vm_map_entry_link(new_map, new_map->header.prev,
3569                                   new_entry);
3570                 vm_map_copy_entry(old_map, new_map, old_entry,
3571                                   new_entry);
3572                 break;
3573         }
3574 }
3575
3576 /*
3577  * When forking user-kernel shared maps, the map might change in the
3578  * child so do not try to copy the underlying pmap entries.
3579  */
3580 static
3581 void
3582 vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3583                           vm_map_entry_t old_entry, int *countp)
3584 {
3585         vm_map_entry_t new_entry;
3586
3587         new_entry = vm_map_entry_create(new_map, countp);
3588         *new_entry = *old_entry;
3589         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3590         new_entry->wired_count = 0;
3591         vm_map_entry_link(new_map, new_map->header.prev,
3592                           new_entry);
3593 }
3594
3595 /*
3596  * Create an auto-grow stack entry
3597  *
3598  * No requirements.
3599  */
3600 int
3601 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3602               int flags, vm_prot_t prot, vm_prot_t max, int cow)
3603 {
3604         vm_map_entry_t  prev_entry;
3605         vm_map_entry_t  new_stack_entry;
3606         vm_size_t       init_ssize;
3607         int             rv;
3608         int             count;
3609         vm_offset_t     tmpaddr;
3610
3611         cow |= MAP_IS_STACK;
3612
3613         if (max_ssize < sgrowsiz)
3614                 init_ssize = max_ssize;
3615         else
3616                 init_ssize = sgrowsiz;
3617
3618         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3619         vm_map_lock(map);
3620
3621         /*
3622          * Find space for the mapping
3623          */
3624         if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3625                 if (vm_map_findspace(map, addrbos, max_ssize, 1,
3626                                      flags, &tmpaddr)) {
3627                         vm_map_unlock(map);
3628                         vm_map_entry_release(count);
3629                         return (KERN_NO_SPACE);
3630                 }
3631                 addrbos = tmpaddr;
3632         }
3633
3634         /* If addr is already mapped, no go */
3635         if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3636                 vm_map_unlock(map);
3637                 vm_map_entry_release(count);
3638                 return (KERN_NO_SPACE);
3639         }
3640
3641 #if 0
3642         /* XXX already handled by kern_mmap() */
3643         /* If we would blow our VMEM resource limit, no go */
3644         if (map->size + init_ssize >
3645             curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3646                 vm_map_unlock(map);
3647                 vm_map_entry_release(count);
3648                 return (KERN_NO_SPACE);
3649         }
3650 #endif
3651
3652         /*
3653          * If we can't accomodate max_ssize in the current mapping,
3654          * no go.  However, we need to be aware that subsequent user
3655          * mappings might map into the space we have reserved for
3656          * stack, and currently this space is not protected.  
3657          * 
3658          * Hopefully we will at least detect this condition 
3659          * when we try to grow the stack.
3660          */
3661         if ((prev_entry->next != &map->header) &&
3662             (prev_entry->next->start < addrbos + max_ssize)) {
3663                 vm_map_unlock(map);
3664                 vm_map_entry_release(count);
3665                 return (KERN_NO_SPACE);
3666         }
3667
3668         /*
3669          * We initially map a stack of only init_ssize.  We will
3670          * grow as needed later.  Since this is to be a grow 
3671          * down stack, we map at the top of the range.
3672          *
3673          * Note: we would normally expect prot and max to be
3674          * VM_PROT_ALL, and cow to be 0.  Possibly we should
3675          * eliminate these as input parameters, and just
3676          * pass these values here in the insert call.
3677          */
3678         rv = vm_map_insert(map, &count, NULL, NULL,
3679                            0, addrbos + max_ssize - init_ssize,
3680                            addrbos + max_ssize,
3681                            VM_MAPTYPE_NORMAL,
3682                            VM_SUBSYS_STACK, prot, max, cow);
3683
3684         /* Now set the avail_ssize amount */
3685         if (rv == KERN_SUCCESS) {
3686                 if (prev_entry != &map->header)
3687                         vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3688                 new_stack_entry = prev_entry->next;
3689                 if (new_stack_entry->end   != addrbos + max_ssize ||
3690                     new_stack_entry->start != addrbos + max_ssize - init_ssize)
3691                         panic ("Bad entry start/end for new stack entry");
3692                 else 
3693                         new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3694         }
3695
3696         vm_map_unlock(map);
3697         vm_map_entry_release(count);
3698         return (rv);
3699 }
3700
3701 /*
3702  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3703  * desired address is already mapped, or if we successfully grow
3704  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3705  * stack range (this is strange, but preserves compatibility with
3706  * the grow function in vm_machdep.c).
3707  *
3708  * No requirements.
3709  */
3710 int
3711 vm_map_growstack (struct proc *p, vm_offset_t addr)
3712 {
3713         vm_map_entry_t prev_entry;
3714         vm_map_entry_t stack_entry;
3715         vm_map_entry_t new_stack_entry;
3716         struct vmspace *vm = p->p_vmspace;
3717         vm_map_t map = &vm->vm_map;
3718         vm_offset_t    end;
3719         int grow_amount;
3720         int rv = KERN_SUCCESS;
3721         int is_procstack;
3722         int use_read_lock = 1;
3723         int count;
3724
3725         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3726 Retry:
3727         if (use_read_lock)
3728                 vm_map_lock_read(map);
3729         else
3730                 vm_map_lock(map);
3731
3732         /* If addr is already in the entry range, no need to grow.*/
3733         if (vm_map_lookup_entry(map, addr, &prev_entry))
3734                 goto done;
3735
3736         if ((stack_entry = prev_entry->next) == &map->header)
3737                 goto done;
3738         if (prev_entry == &map->header) 
3739                 end = stack_entry->start - stack_entry->aux.avail_ssize;
3740         else
3741                 end = prev_entry->end;
3742
3743         /*
3744          * This next test mimics the old grow function in vm_machdep.c.
3745          * It really doesn't quite make sense, but we do it anyway
3746          * for compatibility.
3747          *
3748          * If not growable stack, return success.  This signals the
3749          * caller to proceed as he would normally with normal vm.
3750          */
3751         if (stack_entry->aux.avail_ssize < 1 ||
3752             addr >= stack_entry->start ||
3753             addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3754                 goto done;
3755         } 
3756         
3757         /* Find the minimum grow amount */
3758         grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3759         if (grow_amount > stack_entry->aux.avail_ssize) {
3760                 rv = KERN_NO_SPACE;
3761                 goto done;
3762         }
3763
3764         /*
3765          * If there is no longer enough space between the entries
3766          * nogo, and adjust the available space.  Note: this 
3767          * should only happen if the user has mapped into the
3768          * stack area after the stack was created, and is
3769          * probably an error.
3770          *
3771          * This also effectively destroys any guard page the user
3772          * might have intended by limiting the stack size.
3773          */
3774         if (grow_amount > stack_entry->start - end) {
3775                 if (use_read_lock && vm_map_lock_upgrade(map)) {
3776                         /* lost lock */
3777                         use_read_lock = 0;
3778                         goto Retry;
3779                 }
3780                 use_read_lock = 0;
3781                 stack_entry->aux.avail_ssize = stack_entry->start - end;
3782                 rv = KERN_NO_SPACE;
3783                 goto done;
3784         }
3785
3786         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3787
3788         /* If this is the main process stack, see if we're over the 
3789          * stack limit.
3790          */
3791         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3792                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3793                 rv = KERN_NO_SPACE;
3794                 goto done;
3795         }
3796
3797         /* Round up the grow amount modulo SGROWSIZ */
3798         grow_amount = roundup (grow_amount, sgrowsiz);
3799         if (grow_amount > stack_entry->aux.avail_ssize) {
3800                 grow_amount = stack_entry->aux.avail_ssize;
3801         }
3802         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3803                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3804                 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3805                               ctob(vm->vm_ssize);
3806         }
3807
3808         /* If we would blow our VMEM resource limit, no go */
3809         if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3810                 rv = KERN_NO_SPACE;
3811                 goto done;
3812         }
3813
3814         if (use_read_lock && vm_map_lock_upgrade(map)) {
3815                 /* lost lock */
3816                 use_read_lock = 0;
3817                 goto Retry;
3818         }
3819         use_read_lock = 0;
3820
3821         /* Get the preliminary new entry start value */
3822         addr = stack_entry->start - grow_amount;
3823
3824         /* If this puts us into the previous entry, cut back our growth
3825          * to the available space.  Also, see the note above.
3826          */
3827         if (addr < end) {
3828                 stack_entry->aux.avail_ssize = stack_entry->start - end;
3829                 addr = end;
3830         }
3831
3832         rv = vm_map_insert(map, &count, NULL, NULL,
3833                            0, addr, stack_entry->start,
3834                            VM_MAPTYPE_NORMAL,
3835                            VM_SUBSYS_STACK, VM_PROT_ALL, VM_PROT_ALL, 0);
3836
3837         /* Adjust the available stack space by the amount we grew. */
3838         if (rv == KERN_SUCCESS) {
3839                 if (prev_entry != &map->header)
3840                         vm_map_clip_end(map, prev_entry, addr, &count);
3841                 new_stack_entry = prev_entry->next;
3842                 if (new_stack_entry->end   != stack_entry->start  ||
3843                     new_stack_entry->start != addr)
3844                         panic ("Bad stack grow start/end in new stack entry");
3845                 else {
3846                         new_stack_entry->aux.avail_ssize =
3847                                 stack_entry->aux.avail_ssize -
3848                                 (new_stack_entry->end - new_stack_entry->start);
3849                         if (is_procstack)
3850                                 vm->vm_ssize += btoc(new_stack_entry->end -
3851                                                      new_stack_entry->start);
3852                 }
3853
3854                 if (map->flags & MAP_WIREFUTURE)
3855                         vm_map_unwire(map, new_stack_entry->start,
3856                                       new_stack_entry->end, FALSE);
3857         }
3858
3859 done:
3860         if (use_read_lock)
3861                 vm_map_unlock_read(map);
3862         else
3863                 vm_map_unlock(map);
3864         vm_map_entry_release(count);
3865         return (rv);
3866 }
3867
3868 /*
3869  * Unshare the specified VM space for exec.  If other processes are
3870  * mapped to it, then create a new one.  The new vmspace is null.
3871  *
3872  * No requirements.
3873  */
3874 void
3875 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 
3876 {
3877         struct vmspace *oldvmspace = p->p_vmspace;
3878         struct vmspace *newvmspace;
3879         vm_map_t map = &p->p_vmspace->vm_map;
3880
3881         /*
3882          * If we are execing a resident vmspace we fork it, otherwise
3883          * we create a new vmspace.  Note that exitingcnt is not
3884          * copied to the new vmspace.
3885          */
3886         lwkt_gettoken(&oldvmspace->vm_map.token);
3887         if (vmcopy)  {
3888                 newvmspace = vmspace_fork(vmcopy);
3889                 lwkt_gettoken(&newvmspace->vm_map.token);
3890         } else {
3891                 newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3892                 lwkt_gettoken(&newvmspace->vm_map.token);
3893                 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3894                       (caddr_t)&oldvmspace->vm_endcopy -
3895                        (caddr_t)&oldvmspace->vm_startcopy);
3896         }
3897
3898         /*
3899          * Finish initializing the vmspace before assigning it
3900          * to the process.  The vmspace will become the current vmspace
3901          * if p == curproc.
3902          */
3903         pmap_pinit2(vmspace_pmap(newvmspace));
3904         pmap_replacevm(p, newvmspace, 0);
3905         lwkt_reltoken(&newvmspace->vm_map.token);
3906         lwkt_reltoken(&oldvmspace->vm_map.token);
3907         vmspace_rel(oldvmspace);
3908 }
3909
3910 /*
3911  * Unshare the specified VM space for forcing COW.  This
3912  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3913  */
3914 void
3915 vmspace_unshare(struct proc *p) 
3916 {
3917         struct vmspace *oldvmspace = p->p_vmspace;
3918         struct vmspace *newvmspace;
3919
3920         lwkt_gettoken(&oldvmspace->vm_map.token);
3921         if (vmspace_getrefs(oldvmspace) == 1) {
3922                 lwkt_reltoken(&oldvmspace->vm_map.token);
3923                 return;
3924         }
3925         newvmspace = vmspace_fork(oldvmspace);
3926         lwkt_gettoken(&newvmspace->vm_map.token);
3927         pmap_pinit2(vmspace_pmap(newvmspace));
3928         pmap_replacevm(p, newvmspace, 0);
3929         lwkt_reltoken(&newvmspace->vm_map.token);
3930         lwkt_reltoken(&oldvmspace->vm_map.token);
3931         vmspace_rel(oldvmspace);
3932 }
3933
3934 /*
3935  * vm_map_hint: return the beginning of the best area suitable for
3936  * creating a new mapping with "prot" protection.
3937  *
3938  * No requirements.
3939  */
3940 vm_offset_t
3941 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
3942 {
3943         struct vmspace *vms = p->p_vmspace;
3944
3945         if (!randomize_mmap || addr != 0) {
3946                 /*
3947                  * Set a reasonable start point for the hint if it was
3948                  * not specified or if it falls within the heap space.
3949                  * Hinted mmap()s do not allocate out of the heap space.
3950                  */
3951                 if (addr == 0 ||
3952                     (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
3953                      addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) {
3954                         addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz);
3955                 }
3956
3957                 return addr;
3958         }
3959         addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ;
3960         addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1);
3961
3962         return (round_page(addr));
3963 }
3964
3965 /*
3966  * Finds the VM object, offset, and protection for a given virtual address
3967  * in the specified map, assuming a page fault of the type specified.
3968  *
3969  * Leaves the map in question locked for read; return values are guaranteed
3970  * until a vm_map_lookup_done call is performed.  Note that the map argument
3971  * is in/out; the returned map must be used in the call to vm_map_lookup_done.
3972  *
3973  * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
3974  * that fast.
3975  *
3976  * If a lookup is requested with "write protection" specified, the map may
3977  * be changed to perform virtual copying operations, although the data
3978  * referenced will remain the same.
3979  *
3980  * No requirements.
3981  */
3982 int
3983 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
3984               vm_offset_t vaddr,
3985               vm_prot_t fault_typea,
3986               vm_map_entry_t *out_entry,        /* OUT */
3987               vm_object_t *object,              /* OUT */
3988               vm_pindex_t *pindex,              /* OUT */
3989               vm_prot_t *out_prot,              /* OUT */
3990               boolean_t *wired)                 /* OUT */
3991 {
3992         vm_map_entry_t entry;
3993         vm_map_t map = *var_map;
3994         vm_prot_t prot;
3995         vm_prot_t fault_type = fault_typea;
3996         int use_read_lock = 1;
3997         int rv = KERN_SUCCESS;
3998
3999 RetryLookup:
4000         if (use_read_lock)
4001                 vm_map_lock_read(map);
4002         else
4003                 vm_map_lock(map);
4004
4005         /*
4006          * If the map has an interesting hint, try it before calling full
4007          * blown lookup routine.
4008          */
4009         entry = map->hint;
4010         cpu_ccfence();
4011         *out_entry = entry;
4012         *object = NULL;
4013
4014         if ((entry == &map->header) ||
4015             (vaddr < entry->start) || (vaddr >= entry->end)) {
4016                 vm_map_entry_t tmp_entry;
4017
4018                 /*
4019                  * Entry was either not a valid hint, or the vaddr was not
4020                  * contained in the entry, so do a full lookup.
4021                  */
4022                 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
4023                         rv = KERN_INVALID_ADDRESS;
4024                         goto done;
4025                 }
4026
4027                 entry = tmp_entry;
4028                 *out_entry = entry;
4029         }
4030         
4031         /*
4032          * Handle submaps.
4033          */
4034         if (entry->maptype == VM_MAPTYPE_SUBMAP) {
4035                 vm_map_t old_map = map;
4036
4037                 *var_map = map = entry->object.sub_map;
4038                 if (use_read_lock)
4039                         vm_map_unlock_read(old_map);
4040                 else
4041                         vm_map_unlock(old_map);
4042                 use_read_lock = 1;
4043                 goto RetryLookup;
4044         }
4045
4046         /*
4047          * Check whether this task is allowed to have this page.
4048          * Note the special case for MAP_ENTRY_COW
4049          * pages with an override.  This is to implement a forced
4050          * COW for debuggers.
4051          */
4052
4053         if (fault_type & VM_PROT_OVERRIDE_WRITE)
4054                 prot = entry->max_protection;
4055         else
4056                 prot = entry->protection;
4057
4058         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
4059         if ((fault_type & prot) != fault_type) {
4060                 rv = KERN_PROTECTION_FAILURE;
4061                 goto done;
4062         }
4063
4064         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4065             (entry->eflags & MAP_ENTRY_COW) &&
4066             (fault_type & VM_PROT_WRITE) &&
4067             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
4068                 rv = KERN_PROTECTION_FAILURE;
4069                 goto done;
4070         }
4071
4072         /*
4073          * If this page is not pageable, we have to get it for all possible
4074          * accesses.
4075          */
4076         *wired = (entry->wired_count != 0);
4077         if (*wired)
4078                 prot = fault_type = entry->protection;
4079
4080         /*
4081          * Virtual page tables may need to update the accessed (A) bit
4082          * in a page table entry.  Upgrade the fault to a write fault for
4083          * that case if the map will support it.  If the map does not support
4084          * it the page table entry simply will not be updated.
4085          */
4086         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
4087                 if (prot & VM_PROT_WRITE)
4088                         fault_type |= VM_PROT_WRITE;
4089         }
4090
4091         if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
4092             pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
4093                 if ((prot & VM_PROT_WRITE) == 0)
4094                         fault_type |= VM_PROT_WRITE;
4095         }
4096
4097         /*
4098          * Only NORMAL and VPAGETABLE maps are object-based.  UKSMAPs are not.
4099          */
4100         if (entry->maptype != VM_MAPTYPE_NORMAL &&
4101             entry->maptype != VM_MAPTYPE_VPAGETABLE) {
4102                 *object = NULL;
4103                 goto skip;
4104         }
4105
4106         /*
4107          * If the entry was copy-on-write, we either ...
4108          */
4109         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4110                 /*
4111                  * If we want to write the page, we may as well handle that
4112                  * now since we've got the map locked.
4113                  *
4114                  * If we don't need to write the page, we just demote the
4115                  * permissions allowed.
4116                  */
4117
4118                 if (fault_type & VM_PROT_WRITE) {
4119                         /*
4120                          * Not allowed if TDF_NOFAULT is set as the shadowing
4121                          * operation can deadlock against the faulting
4122                          * function due to the copy-on-write.
4123                          */
4124                         if (curthread->td_flags & TDF_NOFAULT) {
4125                                 rv = KERN_FAILURE_NOFAULT;
4126                                 goto done;
4127                         }
4128
4129                         /*
4130                          * Make a new object, and place it in the object
4131                          * chain.  Note that no new references have appeared
4132                          * -- one just moved from the map to the new
4133                          * object.
4134                          */
4135
4136                         if (use_read_lock && vm_map_lock_upgrade(map)) {
4137                                 /* lost lock */
4138                                 use_read_lock = 0;
4139                                 goto RetryLookup;
4140                         }
4141                         use_read_lock = 0;
4142
4143                         vm_map_entry_shadow(entry, 0);
4144                 } else {
4145                         /*
4146                          * We're attempting to read a copy-on-write page --
4147                          * don't allow writes.
4148                          */
4149
4150                         prot &= ~VM_PROT_WRITE;
4151                 }
4152         }
4153
4154         /*
4155          * Create an object if necessary.
4156          */
4157         if (entry->object.vm_object == NULL && !map->system_map) {
4158                 if (use_read_lock && vm_map_lock_upgrade(map))  {
4159                         /* lost lock */
4160                         use_read_lock = 0;
4161                         goto RetryLookup;
4162                 }
4163                 use_read_lock = 0;
4164                 vm_map_entry_allocate_object(entry);
4165         }
4166
4167         /*
4168          * Return the object/offset from this entry.  If the entry was
4169          * copy-on-write or empty, it has been fixed up.
4170          */
4171         *object = entry->object.vm_object;
4172
4173 skip:
4174         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4175
4176         /*
4177          * Return whether this is the only map sharing this data.  On
4178          * success we return with a read lock held on the map.  On failure
4179          * we return with the map unlocked.
4180          */
4181         *out_prot = prot;
4182 done:
4183         if (rv == KERN_SUCCESS) {
4184                 if (use_read_lock == 0)
4185                         vm_map_lock_downgrade(map);
4186         } else if (use_read_lock) {
4187                 vm_map_unlock_read(map);
4188         } else {
4189                 vm_map_unlock(map);
4190         }
4191         return (rv);
4192 }
4193
4194 /*
4195  * Releases locks acquired by a vm_map_lookup()
4196  * (according to the handle returned by that lookup).
4197  *
4198  * No other requirements.
4199  */
4200 void
4201 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
4202 {
4203         /*
4204          * Unlock the main-level map
4205          */
4206         vm_map_unlock_read(map);
4207         if (count)
4208                 vm_map_entry_release(count);
4209 }
4210
4211 #include "opt_ddb.h"
4212 #ifdef DDB
4213 #include <sys/kernel.h>
4214
4215 #include <ddb/ddb.h>
4216
4217 /*
4218  * Debugging only
4219  */
4220 DB_SHOW_COMMAND(map, vm_map_print)
4221 {
4222         static int nlines;
4223         /* XXX convert args. */
4224         vm_map_t map = (vm_map_t)addr;
4225         boolean_t full = have_addr;
4226
4227         vm_map_entry_t entry;
4228
4229         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4230             (void *)map,
4231             (void *)map->pmap, map->nentries, map->timestamp);
4232         nlines++;
4233
4234         if (!full && db_indent)
4235                 return;
4236
4237         db_indent += 2;
4238         for (entry = map->header.next; entry != &map->header;
4239             entry = entry->next) {
4240                 db_iprintf("map entry %p: start=%p, end=%p\n",
4241                     (void *)entry, (void *)entry->start, (void *)entry->end);
4242                 nlines++;
4243                 {
4244                         static char *inheritance_name[4] =
4245                         {"share", "copy", "none", "donate_copy"};
4246
4247                         db_iprintf(" prot=%x/%x/%s",
4248                             entry->protection,
4249                             entry->max_protection,
4250                             inheritance_name[(int)(unsigned char)entry->inheritance]);
4251                         if (entry->wired_count != 0)
4252                                 db_printf(", wired");
4253                 }
4254                 switch(entry->maptype) {
4255                 case VM_MAPTYPE_SUBMAP:
4256                         /* XXX no %qd in kernel.  Truncate entry->offset. */
4257                         db_printf(", share=%p, offset=0x%lx\n",
4258                             (void *)entry->object.sub_map,
4259                             (long)entry->offset);
4260                         nlines++;
4261                         if ((entry->prev == &map->header) ||
4262                             (entry->prev->object.sub_map !=
4263                                 entry->object.sub_map)) {
4264                                 db_indent += 2;
4265                                 vm_map_print((db_expr_t)(intptr_t)
4266                                              entry->object.sub_map,
4267                                              full, 0, NULL);
4268                                 db_indent -= 2;
4269                         }
4270                         break;
4271                 case VM_MAPTYPE_NORMAL:
4272                 case VM_MAPTYPE_VPAGETABLE:
4273                         /* XXX no %qd in kernel.  Truncate entry->offset. */
4274                         db_printf(", object=%p, offset=0x%lx",
4275                             (void *)entry->object.vm_object,
4276                             (long)entry->offset);
4277                         if (entry->eflags & MAP_ENTRY_COW)
4278                                 db_printf(", copy (%s)",
4279                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4280                         db_printf("\n");
4281                         nlines++;
4282
4283                         if ((entry->prev == &map->header) ||
4284                             (entry->prev->object.vm_object !=
4285                                 entry->object.vm_object)) {
4286                                 db_indent += 2;
4287                                 vm_object_print((db_expr_t)(intptr_t)
4288                                                 entry->object.vm_object,
4289                                                 full, 0, NULL);
4290                                 nlines += 4;
4291                                 db_indent -= 2;
4292                         }
4293                         break;
4294                 case VM_MAPTYPE_UKSMAP:
4295                         db_printf(", uksmap=%p, offset=0x%lx",
4296                             (void *)entry->object.uksmap,
4297                             (long)entry->offset);
4298                         if (entry->eflags & MAP_ENTRY_COW)
4299                                 db_printf(", copy (%s)",
4300                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4301                         db_printf("\n");
4302                         nlines++;
4303                         break;
4304                 default:
4305                         break;
4306                 }
4307         }
4308         db_indent -= 2;
4309         if (db_indent == 0)
4310                 nlines = 0;
4311 }
4312
4313 /*
4314  * Debugging only
4315  */
4316 DB_SHOW_COMMAND(procvm, procvm)
4317 {
4318         struct proc *p;
4319
4320         if (have_addr) {
4321                 p = (struct proc *) addr;
4322         } else {
4323                 p = curproc;
4324         }
4325
4326         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4327             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4328             (void *)vmspace_pmap(p->p_vmspace));
4329
4330         vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4331 }
4332
4333 #endif /* DDB */