kernel - Correct null pointer panic in debug code
[dragonfly.git] / sys / vm / vm_object.c
1 /*
2  * Copyright (c) 1991, 1993, 2013
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  *
60  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/proc.h>           /* for curproc, pageproc */
70 #include <sys/thread.h>
71 #include <sys/vnode.h>
72 #include <sys/vmmeter.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/refcount.h>
78
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_pager.h>
87 #include <vm/swap_pager.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_zone.h>
91
92 #include <vm/vm_page2.h>
93
94 #include <machine/specialreg.h>
95
96 #define EASY_SCAN_FACTOR        8
97
98 static void     vm_object_qcollapse(vm_object_t object,
99                                     vm_object_t backing_object);
100 static void     vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
101                                              int pagerflags);
102 static void     vm_object_lock_init(vm_object_t);
103
104 /*
105  *      Virtual memory objects maintain the actual data
106  *      associated with allocated virtual memory.  A given
107  *      page of memory exists within exactly one object.
108  *
109  *      An object is only deallocated when all "references"
110  *      are given up.  Only one "reference" to a given
111  *      region of an object should be writeable.
112  *
113  *      Associated with each object is a list of all resident
114  *      memory pages belonging to that object; this list is
115  *      maintained by the "vm_page" module, and locked by the object's
116  *      lock.
117  *
118  *      Each object also records a "pager" routine which is
119  *      used to retrieve (and store) pages to the proper backing
120  *      storage.  In addition, objects may be backed by other
121  *      objects from which they were virtual-copied.
122  *
123  *      The only items within the object structure which are
124  *      modified after time of creation are:
125  *              reference count         locked by object's lock
126  *              pager routine           locked by object's lock
127  *
128  */
129
130 struct vm_object kernel_object;
131
132 static long object_collapses;
133 static long object_bypasses;
134
135 struct vm_object_hash vm_object_hash[VMOBJ_HSIZE];
136
137 MALLOC_DEFINE(M_VM_OBJECT, "vm_object", "vm_object structures");
138
139 #define VMOBJ_HASH_PRIME1       66555444443333333ULL
140 #define VMOBJ_HASH_PRIME2       989042931893ULL
141
142 static __inline
143 struct vm_object_hash *
144 vmobj_hash(vm_object_t obj)
145 {
146         uintptr_t hash1;
147         uintptr_t hash2;
148
149         hash1 = (uintptr_t)obj + ((uintptr_t)obj >> 18);
150         hash1 %= VMOBJ_HASH_PRIME1;
151         hash2 = ((uintptr_t)obj >> 8) + ((uintptr_t)obj >> 24);
152         hash2 %= VMOBJ_HASH_PRIME2;
153         return (&vm_object_hash[(hash1 ^ hash2) & VMOBJ_HMASK]);
154 }
155
156 #if defined(DEBUG_LOCKS)
157
158 #define vm_object_vndeallocate(obj, vpp)        \
159                 debugvm_object_vndeallocate(obj, vpp, __FILE__, __LINE__)
160
161 /*
162  * Debug helper to track hold/drop/ref/deallocate calls.
163  */
164 static void
165 debugvm_object_add(vm_object_t obj, char *file, int line, int addrem)
166 {
167         int i;
168
169         i = atomic_fetchadd_int(&obj->debug_index, 1);
170         i = i & (VMOBJ_DEBUG_ARRAY_SIZE - 1);
171         ksnprintf(obj->debug_hold_thrs[i],
172                   sizeof(obj->debug_hold_thrs[i]),
173                   "%c%d:(%d):%s",
174                   (addrem == -1 ? '-' : (addrem == 1 ? '+' : '=')),
175                   (curthread->td_proc ? curthread->td_proc->p_pid : -1),
176                   obj->ref_count,
177                   curthread->td_comm);
178         obj->debug_hold_file[i] = file;
179         obj->debug_hold_line[i] = line;
180 #if 0
181         /* Uncomment for debugging obj refs/derefs in reproducable cases */
182         if (strcmp(curthread->td_comm, "sshd") == 0) {
183                 kprintf("%d %p refs=%d ar=%d file: %s/%d\n",
184                         (curthread->td_proc ? curthread->td_proc->p_pid : -1),
185                         obj, obj->ref_count, addrem, file, line);
186         }
187 #endif
188 }
189
190 #endif
191
192 /*
193  * Misc low level routines
194  */
195 static void
196 vm_object_lock_init(vm_object_t obj)
197 {
198 #if defined(DEBUG_LOCKS)
199         int i;
200
201         obj->debug_index = 0;
202         for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
203                 obj->debug_hold_thrs[i][0] = 0;
204                 obj->debug_hold_file[i] = NULL;
205                 obj->debug_hold_line[i] = 0;
206         }
207 #endif
208 }
209
210 void
211 vm_object_lock_swap(void)
212 {
213         lwkt_token_swap();
214 }
215
216 void
217 vm_object_lock(vm_object_t obj)
218 {
219         lwkt_gettoken(&obj->token);
220 }
221
222 /*
223  * Returns TRUE on sucesss
224  */
225 static int
226 vm_object_lock_try(vm_object_t obj)
227 {
228         return(lwkt_trytoken(&obj->token));
229 }
230
231 void
232 vm_object_lock_shared(vm_object_t obj)
233 {
234         lwkt_gettoken_shared(&obj->token);
235 }
236
237 void
238 vm_object_unlock(vm_object_t obj)
239 {
240         lwkt_reltoken(&obj->token);
241 }
242
243 void
244 vm_object_upgrade(vm_object_t obj)
245 {
246         lwkt_reltoken(&obj->token);
247         lwkt_gettoken(&obj->token);
248 }
249
250 void
251 vm_object_downgrade(vm_object_t obj)
252 {
253         lwkt_reltoken(&obj->token);
254         lwkt_gettoken_shared(&obj->token);
255 }
256
257 static __inline void
258 vm_object_assert_held(vm_object_t obj)
259 {
260         ASSERT_LWKT_TOKEN_HELD(&obj->token);
261 }
262
263 static __inline int
264 vm_quickcolor(void)
265 {
266         globaldata_t gd = mycpu;
267         int pg_color;
268
269         pg_color = (int)(intptr_t)gd->gd_curthread >> 10;
270         pg_color += gd->gd_quick_color;
271         gd->gd_quick_color += PQ_PRIME2;
272
273         return pg_color;
274 }
275
276 void
277 VMOBJDEBUG(vm_object_hold)(vm_object_t obj VMOBJDBARGS)
278 {
279         KKASSERT(obj != NULL);
280
281         /*
282          * Object must be held (object allocation is stable due to callers
283          * context, typically already holding the token on a parent object)
284          * prior to potentially blocking on the lock, otherwise the object
285          * can get ripped away from us.
286          */
287         refcount_acquire(&obj->hold_count);
288         vm_object_lock(obj);
289
290 #if defined(DEBUG_LOCKS)
291         debugvm_object_add(obj, file, line, 1);
292 #endif
293 }
294
295 int
296 VMOBJDEBUG(vm_object_hold_try)(vm_object_t obj VMOBJDBARGS)
297 {
298         KKASSERT(obj != NULL);
299
300         /*
301          * Object must be held (object allocation is stable due to callers
302          * context, typically already holding the token on a parent object)
303          * prior to potentially blocking on the lock, otherwise the object
304          * can get ripped away from us.
305          */
306         refcount_acquire(&obj->hold_count);
307         if (vm_object_lock_try(obj) == 0) {
308                 if (refcount_release(&obj->hold_count)) {
309                         if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
310                                 kfree(obj, M_VM_OBJECT);
311                 }
312                 return(0);
313         }
314
315 #if defined(DEBUG_LOCKS)
316         debugvm_object_add(obj, file, line, 1);
317 #endif
318         return(1);
319 }
320
321 void
322 VMOBJDEBUG(vm_object_hold_shared)(vm_object_t obj VMOBJDBARGS)
323 {
324         KKASSERT(obj != NULL);
325
326         /*
327          * Object must be held (object allocation is stable due to callers
328          * context, typically already holding the token on a parent object)
329          * prior to potentially blocking on the lock, otherwise the object
330          * can get ripped away from us.
331          */
332         refcount_acquire(&obj->hold_count);
333         vm_object_lock_shared(obj);
334
335 #if defined(DEBUG_LOCKS)
336         debugvm_object_add(obj, file, line, 1);
337 #endif
338 }
339
340 /*
341  * Drop the token and hold_count on the object.
342  *
343  * WARNING! Token might be shared.
344  */
345 void
346 VMOBJDEBUG(vm_object_drop)(vm_object_t obj VMOBJDBARGS)
347 {
348         if (obj == NULL)
349                 return;
350
351         /*
352          * No new holders should be possible once we drop hold_count 1->0 as
353          * there is no longer any way to reference the object.
354          */
355         KKASSERT(obj->hold_count > 0);
356         if (refcount_release(&obj->hold_count)) {
357 #if defined(DEBUG_LOCKS)
358                 debugvm_object_add(obj, file, line, -1);
359 #endif
360
361                 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
362                         vm_object_unlock(obj);
363                         kfree(obj, M_VM_OBJECT);
364                 } else {
365                         vm_object_unlock(obj);
366                 }
367         } else {
368 #if defined(DEBUG_LOCKS)
369                 debugvm_object_add(obj, file, line, -1);
370 #endif
371                 vm_object_unlock(obj);
372         }
373 }
374
375 /*
376  * Initialize a freshly allocated object, returning a held object.
377  *
378  * Used only by vm_object_allocate(), zinitna() and vm_object_init().
379  *
380  * No requirements.
381  */
382 void
383 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
384 {
385         struct vm_object_hash *hash;
386
387         RB_INIT(&object->rb_memq);
388         LIST_INIT(&object->shadow_head);
389         lwkt_token_init(&object->token, "vmobj");
390
391         object->type = type;
392         object->size = size;
393         object->ref_count = 1;
394         object->memattr = VM_MEMATTR_DEFAULT;
395         object->hold_count = 0;
396         object->flags = 0;
397         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
398                 vm_object_set_flag(object, OBJ_ONEMAPPING);
399         object->paging_in_progress = 0;
400         object->resident_page_count = 0;
401         object->shadow_count = 0;
402         /* cpu localization twist */
403         object->pg_color = vm_quickcolor();
404         object->handle = NULL;
405         object->backing_object = NULL;
406         object->backing_object_offset = (vm_ooffset_t)0;
407
408         atomic_add_int(&object->generation, 1);
409         object->swblock_count = 0;
410         RB_INIT(&object->swblock_root);
411         vm_object_lock_init(object);
412         pmap_object_init(object);
413
414         vm_object_hold(object);
415
416         hash = vmobj_hash(object);
417         lwkt_gettoken(&hash->token);
418         TAILQ_INSERT_TAIL(&hash->list, object, object_list);
419         lwkt_reltoken(&hash->token);
420 }
421
422 /*
423  * Initialize a VM object.
424  */
425 void
426 vm_object_init(vm_object_t object, vm_pindex_t size)
427 {
428         _vm_object_allocate(OBJT_DEFAULT, size, object);
429         vm_object_drop(object);
430 }
431
432 /*
433  * Initialize the VM objects module.
434  *
435  * Called from the low level boot code only.  Note that this occurs before
436  * kmalloc is initialized so we cannot allocate any VM objects.
437  */
438 void
439 vm_object_init1(void)
440 {
441         int i;
442
443         for (i = 0; i < VMOBJ_HSIZE; ++i) {
444                 TAILQ_INIT(&vm_object_hash[i].list);
445                 lwkt_token_init(&vm_object_hash[i].token, "vmobjlst");
446         }
447
448         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
449                             &kernel_object);
450         vm_object_drop(&kernel_object);
451 }
452
453 void
454 vm_object_init2(void)
455 {
456         kmalloc_set_unlimited(M_VM_OBJECT);
457 }
458
459 /*
460  * Allocate and return a new object of the specified type and size.
461  *
462  * No requirements.
463  */
464 vm_object_t
465 vm_object_allocate(objtype_t type, vm_pindex_t size)
466 {
467         vm_object_t obj;
468
469         obj = kmalloc(sizeof(*obj), M_VM_OBJECT, M_INTWAIT|M_ZERO);
470         _vm_object_allocate(type, size, obj);
471         vm_object_drop(obj);
472
473         return (obj);
474 }
475
476 /*
477  * This version returns a held object, allowing further atomic initialization
478  * of the object.
479  */
480 vm_object_t
481 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
482 {
483         vm_object_t obj;
484
485         obj = kmalloc(sizeof(*obj), M_VM_OBJECT, M_INTWAIT|M_ZERO);
486         _vm_object_allocate(type, size, obj);
487
488         return (obj);
489 }
490
491 /*
492  * Add an additional reference to a vm_object.  The object must already be
493  * held.  The original non-lock version is no longer supported.  The object
494  * must NOT be chain locked by anyone at the time the reference is added.
495  *
496  * Referencing a chain-locked object can blow up the fairly sensitive
497  * ref_count and shadow_count tests in the deallocator.  Most callers
498  * will call vm_object_chain_wait() prior to calling
499  * vm_object_reference_locked() to avoid the case.  The held token
500  * allows the caller to pair the wait and ref.
501  *
502  * The object must be held, but may be held shared if desired (hence why
503  * we use an atomic op).
504  */
505 void
506 VMOBJDEBUG(vm_object_reference_locked)(vm_object_t object VMOBJDBARGS)
507 {
508         KKASSERT(object != NULL);
509         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
510         KKASSERT((object->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) == 0);
511         atomic_add_int(&object->ref_count, 1);
512         if (object->type == OBJT_VNODE) {
513                 vref(object->handle);
514                 /* XXX what if the vnode is being destroyed? */
515         }
516 #if defined(DEBUG_LOCKS)
517         debugvm_object_add(object, file, line, 1);
518 #endif
519 }
520
521 /*
522  * This version explicitly allows the chain to be held (i.e. by the
523  * caller).  The token must also be held.
524  */
525 void
526 VMOBJDEBUG(vm_object_reference_locked_chain_held)(vm_object_t object
527            VMOBJDBARGS)
528 {
529         KKASSERT(object != NULL);
530         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
531         atomic_add_int(&object->ref_count, 1);
532         if (object->type == OBJT_VNODE) {
533                 vref(object->handle);
534                 /* XXX what if the vnode is being destroyed? */
535         }
536 #if defined(DEBUG_LOCKS)
537         debugvm_object_add(object, file, line, 1);
538 #endif
539 }
540
541 /*
542  * This version is only allowed for vnode objects.
543  */
544 void
545 VMOBJDEBUG(vm_object_reference_quick)(vm_object_t object VMOBJDBARGS)
546 {
547         KKASSERT(object->type == OBJT_VNODE);
548         atomic_add_int(&object->ref_count, 1);
549         vref(object->handle);
550 #if defined(DEBUG_LOCKS)
551         debugvm_object_add(object, file, line, 1);
552 #endif
553 }
554
555 /*
556  * Object OBJ_CHAINLOCK lock handling.
557  *
558  * The caller can chain-lock backing objects recursively and then
559  * use vm_object_chain_release_all() to undo the whole chain.
560  *
561  * Chain locks are used to prevent collapses and are only applicable
562  * to OBJT_DEFAULT and OBJT_SWAP objects.  Chain locking operations
563  * on other object types are ignored.  This is also important because
564  * it allows e.g. the vnode underlying a memory mapping to take concurrent
565  * faults.
566  *
567  * The object must usually be held on entry, though intermediate
568  * objects need not be held on release.  The object must be held exclusively,
569  * NOT shared.  Note that the prefault path checks the shared state and
570  * avoids using the chain functions.
571  */
572 void
573 vm_object_chain_wait(vm_object_t object, int shared)
574 {
575         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
576         for (;;) {
577                 uint32_t chainlk = object->chainlk;
578
579                 cpu_ccfence();
580                 if (shared) {
581                         if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
582                                 tsleep_interlock(object, 0);
583                                 if (atomic_cmpset_int(&object->chainlk,
584                                                       chainlk,
585                                                       chainlk | CHAINLK_WAIT)) {
586                                         tsleep(object, PINTERLOCKED,
587                                                "objchns", 0);
588                                 }
589                                 /* retry */
590                         } else {
591                                 break;
592                         }
593                         /* retry */
594                 } else {
595                         if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
596                                 tsleep_interlock(object, 0);
597                                 if (atomic_cmpset_int(&object->chainlk,
598                                                       chainlk,
599                                                       chainlk | CHAINLK_WAIT))
600                                 {
601                                         tsleep(object, PINTERLOCKED,
602                                                "objchnx", 0);
603                                 }
604                                 /* retry */
605                         } else {
606                                 if (atomic_cmpset_int(&object->chainlk,
607                                                       chainlk,
608                                                       chainlk & ~CHAINLK_WAIT))
609                                 {
610                                         if (chainlk & CHAINLK_WAIT)
611                                                 wakeup(object);
612                                         break;
613                                 }
614                                 /* retry */
615                         }
616                 }
617                 /* retry */
618         }
619 }
620
621 void
622 vm_object_chain_acquire(vm_object_t object, int shared)
623 {
624         if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
625                 return;
626         if (vm_shared_fault == 0)
627                 shared = 0;
628
629         for (;;) {
630                 uint32_t chainlk = object->chainlk;
631
632                 cpu_ccfence();
633                 if (shared) {
634                         if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
635                                 tsleep_interlock(object, 0);
636                                 if (atomic_cmpset_int(&object->chainlk,
637                                                       chainlk,
638                                                       chainlk | CHAINLK_WAIT)) {
639                                         tsleep(object, PINTERLOCKED,
640                                                "objchns", 0);
641                                 }
642                                 /* retry */
643                         } else if (atomic_cmpset_int(&object->chainlk,
644                                               chainlk, chainlk + 1)) {
645                                 break;
646                         }
647                         /* retry */
648                 } else {
649                         if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
650                                 tsleep_interlock(object, 0);
651                                 if (atomic_cmpset_int(&object->chainlk,
652                                                       chainlk,
653                                                       chainlk |
654                                                        CHAINLK_WAIT |
655                                                        CHAINLK_EXCLREQ)) {
656                                         tsleep(object, PINTERLOCKED,
657                                                "objchnx", 0);
658                                 }
659                                 /* retry */
660                         } else {
661                                 if (atomic_cmpset_int(&object->chainlk,
662                                                       chainlk,
663                                                       (chainlk | CHAINLK_EXCL) &
664                                                       ~(CHAINLK_EXCLREQ |
665                                                         CHAINLK_WAIT))) {
666                                         if (chainlk & CHAINLK_WAIT)
667                                                 wakeup(object);
668                                         break;
669                                 }
670                                 /* retry */
671                         }
672                 }
673                 /* retry */
674         }
675 }
676
677 void
678 vm_object_chain_release(vm_object_t object)
679 {
680         /*ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));*/
681         if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
682                 return;
683         KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
684         for (;;) {
685                 uint32_t chainlk = object->chainlk;
686
687                 cpu_ccfence();
688                 if (chainlk & CHAINLK_MASK) {
689                         if ((chainlk & CHAINLK_MASK) == 1 &&
690                             atomic_cmpset_int(&object->chainlk,
691                                               chainlk,
692                                               (chainlk - 1) & ~CHAINLK_WAIT)) {
693                                 if (chainlk & CHAINLK_WAIT)
694                                         wakeup(object);
695                                 break;
696                         }
697                         if ((chainlk & CHAINLK_MASK) > 1 &&
698                             atomic_cmpset_int(&object->chainlk,
699                                               chainlk, chainlk - 1)) {
700                                 break;
701                         }
702                         /* retry */
703                 } else {
704                         KKASSERT(chainlk & CHAINLK_EXCL);
705                         if (atomic_cmpset_int(&object->chainlk,
706                                               chainlk,
707                                               chainlk & ~(CHAINLK_EXCL |
708                                                           CHAINLK_WAIT))) {
709                                 if (chainlk & CHAINLK_WAIT)
710                                         wakeup(object);
711                                 break;
712                         }
713                 }
714         }
715 }
716
717 /*
718  * Release the chain from first_object through and including stopobj.
719  * The caller is typically holding the first and last object locked
720  * (shared or exclusive) to prevent destruction races.
721  *
722  * We release stopobj first as an optimization as this object is most
723  * likely to be shared across multiple processes.
724  */
725 void
726 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
727 {
728         vm_object_t backing_object;
729         vm_object_t object;
730
731         vm_object_chain_release(stopobj);
732         object = first_object;
733
734         while (object != stopobj) {
735                 KKASSERT(object);
736                 backing_object = object->backing_object;
737                 vm_object_chain_release(object);
738                 object = backing_object;
739         }
740 }
741
742 /*
743  * Dereference an object and its underlying vnode.  The object may be
744  * held shared.  On return the object will remain held.
745  *
746  * This function may return a vnode in *vpp which the caller must release
747  * after the caller drops its own lock.  If vpp is NULL, we assume that
748  * the caller was holding an exclusive lock on the object and we vrele()
749  * the vp ourselves.
750  */
751 static void
752 VMOBJDEBUG(vm_object_vndeallocate)(vm_object_t object, struct vnode **vpp
753                                    VMOBJDBARGS)
754 {
755         struct vnode *vp = (struct vnode *) object->handle;
756
757         KASSERT(object->type == OBJT_VNODE,
758             ("vm_object_vndeallocate: not a vnode object"));
759         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
760         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
761 #ifdef INVARIANTS
762         if (object->ref_count == 0) {
763                 vprint("vm_object_vndeallocate", vp);
764                 panic("vm_object_vndeallocate: bad object reference count");
765         }
766 #endif
767         for (;;) {
768                 int count = object->ref_count;
769                 cpu_ccfence();
770                 if (count == 1) {
771                         vm_object_upgrade(object);
772                         if (atomic_cmpset_int(&object->ref_count, count, 0)) {
773                                 vclrflags(vp, VTEXT);
774                                 break;
775                         }
776                 } else {
777                         if (atomic_cmpset_int(&object->ref_count,
778                                               count, count - 1)) {
779                                 break;
780                         }
781                 }
782                 /* retry */
783         }
784 #if defined(DEBUG_LOCKS)
785         debugvm_object_add(object, file, line, -1);
786 #endif
787
788         /*
789          * vrele or return the vp to vrele.  We can only safely vrele(vp)
790          * if the object was locked exclusively.  But there are two races
791          * here.
792          *
793          * We had to upgrade the object above to safely clear VTEXT
794          * but the alternative path where the shared lock is retained
795          * can STILL race to 0 in other paths and cause our own vrele()
796          * to terminate the vnode.  We can't allow that if the VM object
797          * is still locked shared.
798          */
799         if (vpp)
800                 *vpp = vp;
801         else
802                 vrele(vp);
803 }
804
805 /*
806  * Release a reference to the specified object, gained either through a
807  * vm_object_allocate or a vm_object_reference call.  When all references
808  * are gone, storage associated with this object may be relinquished.
809  *
810  * The caller does not have to hold the object locked but must have control
811  * over the reference in question in order to guarantee that the object
812  * does not get ripped out from under us.
813  *
814  * XXX Currently all deallocations require an exclusive lock.
815  */
816 void
817 VMOBJDEBUG(vm_object_deallocate)(vm_object_t object VMOBJDBARGS)
818 {
819         struct vnode *vp;
820         int count;
821
822         if (object == NULL)
823                 return;
824
825         for (;;) {
826                 count = object->ref_count;
827                 cpu_ccfence();
828
829                 /*
830                  * If decrementing the count enters into special handling
831                  * territory (0, 1, or 2) we have to do it the hard way.
832                  * Fortunate though, objects with only a few refs like this
833                  * are not likely to be heavily contended anyway.
834                  *
835                  * For vnode objects we only care about 1->0 transitions.
836                  */
837                 if (count <= 3 || (object->type == OBJT_VNODE && count <= 1)) {
838 #if defined(DEBUG_LOCKS)
839                         debugvm_object_add(object, file, line, 0);
840 #endif
841                         vm_object_hold(object);
842                         vm_object_deallocate_locked(object);
843                         vm_object_drop(object);
844                         break;
845                 }
846
847                 /*
848                  * Try to decrement ref_count without acquiring a hold on
849                  * the object.  This is particularly important for the exec*()
850                  * and exit*() code paths because the program binary may
851                  * have a great deal of sharing and an exclusive lock will
852                  * crowbar performance in those circumstances.
853                  */
854                 if (object->type == OBJT_VNODE) {
855                         vp = (struct vnode *)object->handle;
856                         if (atomic_cmpset_int(&object->ref_count,
857                                               count, count - 1)) {
858 #if defined(DEBUG_LOCKS)
859                                 debugvm_object_add(object, file, line, -1);
860 #endif
861
862                                 vrele(vp);
863                                 break;
864                         }
865                         /* retry */
866                 } else {
867                         if (atomic_cmpset_int(&object->ref_count,
868                                               count, count - 1)) {
869 #if defined(DEBUG_LOCKS)
870                                 debugvm_object_add(object, file, line, -1);
871 #endif
872                                 break;
873                         }
874                         /* retry */
875                 }
876                 /* retry */
877         }
878 }
879
880 void
881 VMOBJDEBUG(vm_object_deallocate_locked)(vm_object_t object VMOBJDBARGS)
882 {
883         struct vm_object_dealloc_list *dlist = NULL;
884         struct vm_object_dealloc_list *dtmp;
885         vm_object_t temp;
886         int must_drop = 0;
887
888         /*
889          * We may chain deallocate object, but additional objects may
890          * collect on the dlist which also have to be deallocated.  We
891          * must avoid a recursion, vm_object chains can get deep.
892          */
893
894 again:
895         while (object != NULL) {
896                 /*
897                  * vnode case, caller either locked the object exclusively
898                  * or this is a recursion with must_drop != 0 and the vnode
899                  * object will be locked shared.
900                  *
901                  * If locked shared we have to drop the object before we can
902                  * call vrele() or risk a shared/exclusive livelock.
903                  */
904                 if (object->type == OBJT_VNODE) {
905                         ASSERT_LWKT_TOKEN_HELD(&object->token);
906                         if (must_drop) {
907                                 struct vnode *tmp_vp;
908
909                                 vm_object_vndeallocate(object, &tmp_vp);
910                                 vm_object_drop(object);
911                                 must_drop = 0;
912                                 object = NULL;
913                                 vrele(tmp_vp);
914                         } else {
915                                 vm_object_vndeallocate(object, NULL);
916                         }
917                         break;
918                 }
919                 ASSERT_LWKT_TOKEN_HELD_EXCL(&object->token);
920
921                 /*
922                  * Normal case (object is locked exclusively)
923                  */
924                 if (object->ref_count == 0) {
925                         panic("vm_object_deallocate: object deallocated "
926                               "too many times: %d", object->type);
927                 }
928                 if (object->ref_count > 2) {
929                         atomic_add_int(&object->ref_count, -1);
930 #if defined(DEBUG_LOCKS)
931                         debugvm_object_add(object, file, line, -1);
932 #endif
933                         break;
934                 }
935
936                 /*
937                  * Here on ref_count of one or two, which are special cases for
938                  * objects.
939                  *
940                  * Nominal ref_count > 1 case if the second ref is not from
941                  * a shadow.
942                  *
943                  * (ONEMAPPING only applies to DEFAULT AND SWAP objects)
944                  */
945                 if (object->ref_count == 2 && object->shadow_count == 0) {
946                         if (object->type == OBJT_DEFAULT ||
947                             object->type == OBJT_SWAP) {
948                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
949                         }
950                         atomic_add_int(&object->ref_count, -1);
951 #if defined(DEBUG_LOCKS)
952                         debugvm_object_add(object, file, line, -1);
953 #endif
954                         break;
955                 }
956
957                 /*
958                  * If the second ref is from a shadow we chain along it
959                  * upwards if object's handle is exhausted.
960                  *
961                  * We have to decrement object->ref_count before potentially
962                  * collapsing the first shadow object or the collapse code
963                  * will not be able to handle the degenerate case to remove
964                  * object.  However, if we do it too early the object can
965                  * get ripped out from under us.
966                  */
967                 if (object->ref_count == 2 && object->shadow_count == 1 &&
968                     object->handle == NULL && (object->type == OBJT_DEFAULT ||
969                                                object->type == OBJT_SWAP)) {
970                         temp = LIST_FIRST(&object->shadow_head);
971                         KKASSERT(temp != NULL);
972                         vm_object_hold(temp);
973
974                         /*
975                          * Wait for any paging to complete so the collapse
976                          * doesn't (or isn't likely to) qcollapse.  pip
977                          * waiting must occur before we acquire the
978                          * chainlock.
979                          */
980                         while (
981                                 temp->paging_in_progress ||
982                                 object->paging_in_progress
983                         ) {
984                                 vm_object_pip_wait(temp, "objde1");
985                                 vm_object_pip_wait(object, "objde2");
986                         }
987
988                         /*
989                          * If the parent is locked we have to give up, as
990                          * otherwise we would be acquiring locks in the
991                          * wrong order and potentially deadlock.
992                          */
993                         if (temp->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) {
994                                 vm_object_drop(temp);
995                                 goto skip;
996                         }
997                         vm_object_chain_acquire(temp, 0);
998
999                         /*
1000                          * Recheck/retry after the hold and the paging
1001                          * wait, both of which can block us.
1002                          */
1003                         if (object->ref_count != 2 ||
1004                             object->shadow_count != 1 ||
1005                             object->handle ||
1006                             LIST_FIRST(&object->shadow_head) != temp ||
1007                             (object->type != OBJT_DEFAULT &&
1008                              object->type != OBJT_SWAP)) {
1009                                 vm_object_chain_release(temp);
1010                                 vm_object_drop(temp);
1011                                 continue;
1012                         }
1013
1014                         /*
1015                          * We can safely drop object's ref_count now.
1016                          */
1017                         KKASSERT(object->ref_count == 2);
1018                         atomic_add_int(&object->ref_count, -1);
1019 #if defined(DEBUG_LOCKS)
1020                         debugvm_object_add(object, file, line, -1);
1021 #endif
1022
1023                         /*
1024                          * If our single parent is not collapseable just
1025                          * decrement ref_count (2->1) and stop.
1026                          */
1027                         if (temp->handle || (temp->type != OBJT_DEFAULT &&
1028                                              temp->type != OBJT_SWAP)) {
1029                                 vm_object_chain_release(temp);
1030                                 vm_object_drop(temp);
1031                                 break;
1032                         }
1033
1034                         /*
1035                          * At this point we have already dropped object's
1036                          * ref_count so it is possible for a race to
1037                          * deallocate obj out from under us.  Any collapse
1038                          * will re-check the situation.  We must not block
1039                          * until we are able to collapse.
1040                          *
1041                          * Bump temp's ref_count to avoid an unwanted
1042                          * degenerate recursion (can't call
1043                          * vm_object_reference_locked() because it asserts
1044                          * that CHAINLOCK is not set).
1045                          */
1046                         atomic_add_int(&temp->ref_count, 1);
1047                         KKASSERT(temp->ref_count > 1);
1048
1049                         /*
1050                          * Collapse temp, then deallocate the extra ref
1051                          * formally.
1052                          */
1053                         vm_object_collapse(temp, &dlist);
1054                         vm_object_chain_release(temp);
1055                         if (must_drop) {
1056                                 vm_object_lock_swap();
1057                                 vm_object_drop(object);
1058                         }
1059                         object = temp;
1060                         must_drop = 1;
1061                         continue;
1062                 }
1063
1064                 /*
1065                  * Drop the ref and handle termination on the 1->0 transition.
1066                  * We may have blocked above so we have to recheck.
1067                  */
1068 skip:
1069                 KKASSERT(object->ref_count != 0);
1070                 if (object->ref_count >= 2) {
1071                         atomic_add_int(&object->ref_count, -1);
1072 #if defined(DEBUG_LOCKS)
1073                         debugvm_object_add(object, file, line, -1);
1074 #endif
1075                         break;
1076                 }
1077                 KKASSERT(object->ref_count == 1);
1078
1079                 /*
1080                  * 1->0 transition.  Chain through the backing_object.
1081                  * Maintain the ref until we've located the backing object,
1082                  * then re-check.
1083                  */
1084                 while ((temp = object->backing_object) != NULL) {
1085                         if (temp->type == OBJT_VNODE)
1086                                 vm_object_hold_shared(temp);
1087                         else
1088                                 vm_object_hold(temp);
1089                         if (temp == object->backing_object)
1090                                 break;
1091                         vm_object_drop(temp);
1092                 }
1093
1094                 /*
1095                  * 1->0 transition verified, retry if ref_count is no longer
1096                  * 1.  Otherwise disconnect the backing_object (temp) and
1097                  * clean up.
1098                  */
1099                 if (object->ref_count != 1) {
1100                         vm_object_drop(temp);
1101                         continue;
1102                 }
1103
1104                 /*
1105                  * It shouldn't be possible for the object to be chain locked
1106                  * if we're removing the last ref on it.
1107                  *
1108                  * Removing object from temp's shadow list requires dropping
1109                  * temp, which we will do on loop.
1110                  *
1111                  * NOTE! vnodes do not use the shadow list, but still have
1112                  *       the backing_object reference.
1113                  */
1114                 KKASSERT((object->chainlk & (CHAINLK_EXCL|CHAINLK_MASK)) == 0);
1115
1116                 if (temp) {
1117                         if (object->flags & OBJ_ONSHADOW) {
1118                                 LIST_REMOVE(object, shadow_list);
1119                                 temp->shadow_count--;
1120                                 atomic_add_int(&temp->generation, 1);
1121                                 vm_object_clear_flag(object, OBJ_ONSHADOW);
1122                         }
1123                         object->backing_object = NULL;
1124                 }
1125
1126                 atomic_add_int(&object->ref_count, -1);
1127                 if ((object->flags & OBJ_DEAD) == 0)
1128                         vm_object_terminate(object);
1129                 if (must_drop && temp)
1130                         vm_object_lock_swap();
1131                 if (must_drop)
1132                         vm_object_drop(object);
1133                 object = temp;
1134                 must_drop = 1;
1135         }
1136
1137         if (must_drop && object)
1138                 vm_object_drop(object);
1139
1140         /*
1141          * Additional tail recursion on dlist.  Avoid a recursion.  Objects
1142          * on the dlist have a hold count but are not locked.
1143          */
1144         if ((dtmp = dlist) != NULL) {
1145                 dlist = dtmp->next;
1146                 object = dtmp->object;
1147                 kfree(dtmp, M_TEMP);
1148
1149                 vm_object_lock(object); /* already held, add lock */
1150                 must_drop = 1;          /* and we're responsible for it */
1151                 goto again;
1152         }
1153 }
1154
1155 /*
1156  * Destroy the specified object, freeing up related resources.
1157  *
1158  * The object must have zero references.
1159  *
1160  * The object must held.  The caller is responsible for dropping the object
1161  * after terminate returns.  Terminate does NOT drop the object.
1162  */
1163 static int vm_object_terminate_callback(vm_page_t p, void *data);
1164
1165 void
1166 vm_object_terminate(vm_object_t object)
1167 {
1168         struct rb_vm_page_scan_info info;
1169         struct vm_object_hash *hash;
1170
1171         /*
1172          * Make sure no one uses us.  Once we set OBJ_DEAD we should be
1173          * able to safely block.
1174          */
1175         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1176         KKASSERT((object->flags & OBJ_DEAD) == 0);
1177         vm_object_set_flag(object, OBJ_DEAD);
1178
1179         /*
1180          * Wait for the pageout daemon to be done with the object
1181          */
1182         vm_object_pip_wait(object, "objtrm1");
1183
1184         KASSERT(!object->paging_in_progress,
1185                 ("vm_object_terminate: pageout in progress"));
1186
1187         /*
1188          * Clean and free the pages, as appropriate. All references to the
1189          * object are gone, so we don't need to lock it.
1190          */
1191         if (object->type == OBJT_VNODE) {
1192                 struct vnode *vp;
1193
1194                 /*
1195                  * Clean pages and flush buffers.
1196                  *
1197                  * NOTE!  TMPFS buffer flushes do not typically flush the
1198                  *        actual page to swap as this would be highly
1199                  *        inefficient, and normal filesystems usually wrap
1200                  *        page flushes with buffer cache buffers.
1201                  *
1202                  *        To deal with this we have to call vinvalbuf() both
1203                  *        before and after the vm_object_page_clean().
1204                  */
1205                 vp = (struct vnode *) object->handle;
1206                 vinvalbuf(vp, V_SAVE, 0, 0);
1207                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
1208                 vinvalbuf(vp, V_SAVE, 0, 0);
1209         }
1210
1211         /*
1212          * Wait for any I/O to complete, after which there had better not
1213          * be any references left on the object.
1214          */
1215         vm_object_pip_wait(object, "objtrm2");
1216
1217         if (object->ref_count != 0) {
1218                 panic("vm_object_terminate: object with references, "
1219                       "ref_count=%d", object->ref_count);
1220         }
1221
1222         /*
1223          * Cleanup any shared pmaps associated with this object.
1224          */
1225         pmap_object_free(object);
1226
1227         /*
1228          * Now free any remaining pages. For internal objects, this also
1229          * removes them from paging queues. Don't free wired pages, just
1230          * remove them from the object. 
1231          */
1232         info.count = 0;
1233         info.object = object;
1234         do {
1235                 info.error = 0;
1236                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1237                                         vm_object_terminate_callback, &info);
1238         } while (info.error);
1239
1240         /*
1241          * Let the pager know object is dead.
1242          */
1243         vm_pager_deallocate(object);
1244
1245         /*
1246          * Wait for the object hold count to hit 1, clean out pages as
1247          * we go.  vmobj_token interlocks any race conditions that might
1248          * pick the object up from the vm_object_list after we have cleared
1249          * rb_memq.
1250          */
1251         for (;;) {
1252                 if (RB_ROOT(&object->rb_memq) == NULL)
1253                         break;
1254                 kprintf("vm_object_terminate: Warning, object %p "
1255                         "still has %ld pages\n",
1256                         object, object->resident_page_count);
1257                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1258                                         vm_object_terminate_callback, &info);
1259         }
1260
1261         /*
1262          * There had better not be any pages left
1263          */
1264         KKASSERT(object->resident_page_count == 0);
1265
1266         /*
1267          * Remove the object from the global object list.
1268          */
1269         hash = vmobj_hash(object);
1270         lwkt_gettoken(&hash->token);
1271         TAILQ_REMOVE(&hash->list, object, object_list);
1272         lwkt_reltoken(&hash->token);
1273
1274         if (object->ref_count != 0) {
1275                 panic("vm_object_terminate2: object with references, "
1276                       "ref_count=%d", object->ref_count);
1277         }
1278
1279         /*
1280          * NOTE: The object hold_count is at least 1, so we cannot kfree()
1281          *       the object here.  See vm_object_drop().
1282          */
1283 }
1284
1285 /*
1286  * The caller must hold the object.
1287  */
1288 static int
1289 vm_object_terminate_callback(vm_page_t p, void *data)
1290 {
1291         struct rb_vm_page_scan_info *info = data;
1292         vm_object_t object;
1293
1294         object = p->object;
1295         KKASSERT(object == info->object);
1296         if (vm_page_busy_try(p, TRUE)) {
1297                 vm_page_sleep_busy(p, TRUE, "vmotrm");
1298                 info->error = 1;
1299                 return 0;
1300         }
1301         if (object != p->object) {
1302                 /* XXX remove once we determine it can't happen */
1303                 kprintf("vm_object_terminate: Warning: Encountered "
1304                         "busied page %p on queue %d\n", p, p->queue);
1305                 vm_page_wakeup(p);
1306                 info->error = 1;
1307         } else if (p->wire_count == 0) {
1308                 /*
1309                  * NOTE: p->dirty and PG_NEED_COMMIT are ignored.
1310                  */
1311                 vm_page_free(p);
1312                 mycpu->gd_cnt.v_pfree++;
1313         } else {
1314                 if (p->queue != PQ_NONE)
1315                         kprintf("vm_object_terminate: Warning: Encountered "
1316                                 "wired page %p on queue %d\n", p, p->queue);
1317                 vm_page_remove(p);
1318                 vm_page_wakeup(p);
1319         }
1320
1321         /*
1322          * Must be at end to avoid SMP races, caller holds object token
1323          */
1324         if ((++info->count & 63) == 0)
1325                 lwkt_user_yield();
1326         return(0);
1327 }
1328
1329 /*
1330  * Clean all dirty pages in the specified range of object.  Leaves page
1331  * on whatever queue it is currently on.   If NOSYNC is set then do not
1332  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
1333  * leaving the object dirty.
1334  *
1335  * When stuffing pages asynchronously, allow clustering.  XXX we need a
1336  * synchronous clustering mode implementation.
1337  *
1338  * Odd semantics: if start == end, we clean everything.
1339  *
1340  * The object must be locked? XXX
1341  */
1342 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
1343 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
1344
1345 void
1346 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1347                      int flags)
1348 {
1349         struct rb_vm_page_scan_info info;
1350         struct vnode *vp;
1351         int wholescan;
1352         int pagerflags;
1353         int generation;
1354
1355         vm_object_hold(object);
1356         if (object->type != OBJT_VNODE ||
1357             (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
1358                 vm_object_drop(object);
1359                 return;
1360         }
1361
1362         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? 
1363                         VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1364         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1365
1366         vp = object->handle;
1367
1368         /*
1369          * Interlock other major object operations.  This allows us to 
1370          * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1371          */
1372         vm_object_set_flag(object, OBJ_CLEANING);
1373
1374         /*
1375          * Handle 'entire object' case
1376          */
1377         info.start_pindex = start;
1378         if (end == 0) {
1379                 info.end_pindex = object->size - 1;
1380         } else {
1381                 info.end_pindex = end - 1;
1382         }
1383         wholescan = (start == 0 && info.end_pindex == object->size - 1);
1384         info.limit = flags;
1385         info.pagerflags = pagerflags;
1386         info.object = object;
1387
1388         /*
1389          * If cleaning the entire object do a pass to mark the pages read-only.
1390          * If everything worked out ok, clear OBJ_WRITEABLE and
1391          * OBJ_MIGHTBEDIRTY.
1392          */
1393         if (wholescan) {
1394                 info.error = 0;
1395                 info.count = 0;
1396                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1397                                         vm_object_page_clean_pass1, &info);
1398                 if (info.error == 0) {
1399                         vm_object_clear_flag(object,
1400                                              OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1401                         if (object->type == OBJT_VNODE &&
1402                             (vp = (struct vnode *)object->handle) != NULL) {
1403                                 /*
1404                                  * Use new-style interface to clear VISDIRTY
1405                                  * because the vnode is not necessarily removed
1406                                  * from the syncer list(s) as often as it was
1407                                  * under the old interface, which can leave
1408                                  * the vnode on the syncer list after reclaim.
1409                                  */
1410                                 vclrobjdirty(vp);
1411                         }
1412                 }
1413         }
1414
1415         /*
1416          * Do a pass to clean all the dirty pages we find.
1417          */
1418         do {
1419                 info.error = 0;
1420                 info.count = 0;
1421                 generation = object->generation;
1422                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1423                                         vm_object_page_clean_pass2, &info);
1424         } while (info.error || generation != object->generation);
1425
1426         vm_object_clear_flag(object, OBJ_CLEANING);
1427         vm_object_drop(object);
1428 }
1429
1430 /*
1431  * The caller must hold the object.
1432  */
1433 static 
1434 int
1435 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1436 {
1437         struct rb_vm_page_scan_info *info = data;
1438
1439         KKASSERT(p->object == info->object);
1440
1441         vm_page_flag_set(p, PG_CLEANCHK);
1442         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1443                 info->error = 1;
1444         } else if (vm_page_busy_try(p, FALSE)) {
1445                 info->error = 1;
1446         } else {
1447                 KKASSERT(p->object == info->object);
1448                 vm_page_protect(p, VM_PROT_READ);
1449                 vm_page_wakeup(p);
1450         }
1451
1452         /*
1453          * Must be at end to avoid SMP races, caller holds object token
1454          */
1455         if ((++info->count & 63) == 0)
1456                 lwkt_user_yield();
1457         return(0);
1458 }
1459
1460 /*
1461  * The caller must hold the object
1462  */
1463 static 
1464 int
1465 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1466 {
1467         struct rb_vm_page_scan_info *info = data;
1468         int generation;
1469
1470         KKASSERT(p->object == info->object);
1471
1472         /*
1473          * Do not mess with pages that were inserted after we started
1474          * the cleaning pass.
1475          */
1476         if ((p->flags & PG_CLEANCHK) == 0)
1477                 goto done;
1478
1479         generation = info->object->generation;
1480
1481         if (vm_page_busy_try(p, TRUE)) {
1482                 vm_page_sleep_busy(p, TRUE, "vpcwai");
1483                 info->error = 1;
1484                 goto done;
1485         }
1486
1487         KKASSERT(p->object == info->object &&
1488                  info->object->generation == generation);
1489
1490         /*
1491          * Before wasting time traversing the pmaps, check for trivial
1492          * cases where the page cannot be dirty.
1493          */
1494         if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1495                 KKASSERT((p->dirty & p->valid) == 0 &&
1496                          (p->flags & PG_NEED_COMMIT) == 0);
1497                 vm_page_wakeup(p);
1498                 goto done;
1499         }
1500
1501         /*
1502          * Check whether the page is dirty or not.  The page has been set
1503          * to be read-only so the check will not race a user dirtying the
1504          * page.
1505          */
1506         vm_page_test_dirty(p);
1507         if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) {
1508                 vm_page_flag_clear(p, PG_CLEANCHK);
1509                 vm_page_wakeup(p);
1510                 goto done;
1511         }
1512
1513         /*
1514          * If we have been asked to skip nosync pages and this is a
1515          * nosync page, skip it.  Note that the object flags were
1516          * not cleared in this case (because pass1 will have returned an
1517          * error), so we do not have to set them.
1518          */
1519         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1520                 vm_page_flag_clear(p, PG_CLEANCHK);
1521                 vm_page_wakeup(p);
1522                 goto done;
1523         }
1524
1525         /*
1526          * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
1527          * the pages that get successfully flushed.  Set info->error if
1528          * we raced an object modification.
1529          */
1530         vm_object_page_collect_flush(info->object, p, info->pagerflags);
1531         /* vm_wait_nominal(); this can deadlock the system in syncer/pageout */
1532
1533         /*
1534          * Must be at end to avoid SMP races, caller holds object token
1535          */
1536 done:
1537         if ((++info->count & 63) == 0)
1538                 lwkt_user_yield();
1539         return(0);
1540 }
1541
1542 /*
1543  * Collect the specified page and nearby pages and flush them out.
1544  * The number of pages flushed is returned.  The passed page is busied
1545  * by the caller and we are responsible for its disposition.
1546  *
1547  * The caller must hold the object.
1548  */
1549 static void
1550 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1551 {
1552         int error;
1553         int is;
1554         int ib;
1555         int i;
1556         int page_base;
1557         vm_pindex_t pi;
1558         vm_page_t ma[BLIST_MAX_ALLOC];
1559
1560         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1561
1562         pi = p->pindex;
1563         page_base = pi % BLIST_MAX_ALLOC;
1564         ma[page_base] = p;
1565         ib = page_base - 1;
1566         is = page_base + 1;
1567
1568         while (ib >= 0) {
1569                 vm_page_t tp;
1570
1571                 tp = vm_page_lookup_busy_try(object, pi - page_base + ib,
1572                                              TRUE, &error);
1573                 if (error)
1574                         break;
1575                 if (tp == NULL)
1576                         break;
1577                 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1578                     (tp->flags & PG_CLEANCHK) == 0) {
1579                         vm_page_wakeup(tp);
1580                         break;
1581                 }
1582                 if ((tp->queue - tp->pc) == PQ_CACHE) {
1583                         vm_page_flag_clear(tp, PG_CLEANCHK);
1584                         vm_page_wakeup(tp);
1585                         break;
1586                 }
1587                 vm_page_test_dirty(tp);
1588                 if ((tp->dirty & tp->valid) == 0 &&
1589                     (tp->flags & PG_NEED_COMMIT) == 0) {
1590                         vm_page_flag_clear(tp, PG_CLEANCHK);
1591                         vm_page_wakeup(tp);
1592                         break;
1593                 }
1594                 ma[ib] = tp;
1595                 --ib;
1596         }
1597         ++ib;   /* fixup */
1598
1599         while (is < BLIST_MAX_ALLOC &&
1600                pi - page_base + is < object->size) {
1601                 vm_page_t tp;
1602
1603                 tp = vm_page_lookup_busy_try(object, pi - page_base + is,
1604                                              TRUE, &error);
1605                 if (error)
1606                         break;
1607                 if (tp == NULL)
1608                         break;
1609                 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1610                     (tp->flags & PG_CLEANCHK) == 0) {
1611                         vm_page_wakeup(tp);
1612                         break;
1613                 }
1614                 if ((tp->queue - tp->pc) == PQ_CACHE) {
1615                         vm_page_flag_clear(tp, PG_CLEANCHK);
1616                         vm_page_wakeup(tp);
1617                         break;
1618                 }
1619                 vm_page_test_dirty(tp);
1620                 if ((tp->dirty & tp->valid) == 0 &&
1621                     (tp->flags & PG_NEED_COMMIT) == 0) {
1622                         vm_page_flag_clear(tp, PG_CLEANCHK);
1623                         vm_page_wakeup(tp);
1624                         break;
1625                 }
1626                 ma[is] = tp;
1627                 ++is;
1628         }
1629
1630         /*
1631          * All pages in the ma[] array are busied now
1632          */
1633         for (i = ib; i < is; ++i) {
1634                 vm_page_flag_clear(ma[i], PG_CLEANCHK);
1635                 vm_page_hold(ma[i]);    /* XXX need this any more? */
1636         }
1637         vm_pageout_flush(&ma[ib], is - ib, pagerflags);
1638         for (i = ib; i < is; ++i)       /* XXX need this any more? */
1639                 vm_page_unhold(ma[i]);
1640 }
1641
1642 /*
1643  * Same as vm_object_pmap_copy, except range checking really
1644  * works, and is meant for small sections of an object.
1645  *
1646  * This code protects resident pages by making them read-only
1647  * and is typically called on a fork or split when a page
1648  * is converted to copy-on-write.  
1649  *
1650  * NOTE: If the page is already at VM_PROT_NONE, calling
1651  * vm_page_protect will have no effect.
1652  */
1653 void
1654 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1655 {
1656         vm_pindex_t idx;
1657         vm_page_t p;
1658
1659         if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1660                 return;
1661
1662         vm_object_hold(object);
1663         for (idx = start; idx < end; idx++) {
1664                 p = vm_page_lookup(object, idx);
1665                 if (p == NULL)
1666                         continue;
1667                 vm_page_protect(p, VM_PROT_READ);
1668         }
1669         vm_object_drop(object);
1670 }
1671
1672 /*
1673  * Removes all physical pages in the specified object range from all
1674  * physical maps.
1675  *
1676  * The object must *not* be locked.
1677  */
1678
1679 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1680
1681 void
1682 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1683 {
1684         struct rb_vm_page_scan_info info;
1685
1686         if (object == NULL)
1687                 return;
1688         if (start == end)
1689                 return;
1690         info.start_pindex = start;
1691         info.end_pindex = end - 1;
1692         info.count = 0;
1693         info.object = object;
1694
1695         vm_object_hold(object);
1696         do {
1697                 info.error = 0;
1698                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1699                                         vm_object_pmap_remove_callback, &info);
1700         } while (info.error);
1701         if (start == 0 && end == object->size)
1702                 vm_object_clear_flag(object, OBJ_WRITEABLE);
1703         vm_object_drop(object);
1704 }
1705
1706 /*
1707  * The caller must hold the object
1708  */
1709 static int
1710 vm_object_pmap_remove_callback(vm_page_t p, void *data)
1711 {
1712         struct rb_vm_page_scan_info *info = data;
1713
1714         if (info->object != p->object ||
1715             p->pindex < info->start_pindex ||
1716             p->pindex > info->end_pindex) {
1717                 kprintf("vm_object_pmap_remove_callback: obj/pg race %p/%p\n",
1718                         info->object, p);
1719                 info->error = 1;
1720                 return(0);
1721         }
1722
1723         vm_page_protect(p, VM_PROT_NONE);
1724
1725         /*
1726          * Must be at end to avoid SMP races, caller holds object token
1727          */
1728         if ((++info->count & 63) == 0)
1729                 lwkt_user_yield();
1730         return(0);
1731 }
1732
1733 /*
1734  * Implements the madvise function at the object/page level.
1735  *
1736  * MADV_WILLNEED        (any object)
1737  *
1738  *      Activate the specified pages if they are resident.
1739  *
1740  * MADV_DONTNEED        (any object)
1741  *
1742  *      Deactivate the specified pages if they are resident.
1743  *
1744  * MADV_FREE    (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1745  *
1746  *      Deactivate and clean the specified pages if they are
1747  *      resident.  This permits the process to reuse the pages
1748  *      without faulting or the kernel to reclaim the pages
1749  *      without I/O.
1750  *
1751  * No requirements.
1752  */
1753 void
1754 vm_object_madvise(vm_object_t object, vm_pindex_t pindex,
1755                   vm_pindex_t count, int advise)
1756 {
1757         vm_pindex_t end, tpindex;
1758         vm_object_t tobject;
1759         vm_object_t xobj;
1760         vm_page_t m;
1761         int error;
1762
1763         if (object == NULL)
1764                 return;
1765
1766         end = pindex + count;
1767
1768         vm_object_hold(object);
1769         tobject = object;
1770
1771         /*
1772          * Locate and adjust resident pages
1773          */
1774         for (; pindex < end; pindex += 1) {
1775 relookup:
1776                 if (tobject != object)
1777                         vm_object_drop(tobject);
1778                 tobject = object;
1779                 tpindex = pindex;
1780 shadowlookup:
1781                 /*
1782                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1783                  * and those pages must be OBJ_ONEMAPPING.
1784                  */
1785                 if (advise == MADV_FREE) {
1786                         if ((tobject->type != OBJT_DEFAULT &&
1787                              tobject->type != OBJT_SWAP) ||
1788                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1789                                 continue;
1790                         }
1791                 }
1792
1793                 m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1794
1795                 if (error) {
1796                         vm_page_sleep_busy(m, TRUE, "madvpo");
1797                         goto relookup;
1798                 }
1799                 if (m == NULL) {
1800                         /*
1801                          * There may be swap even if there is no backing page
1802                          */
1803                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1804                                 swap_pager_freespace(tobject, tpindex, 1);
1805
1806                         /*
1807                          * next object
1808                          */
1809                         while ((xobj = tobject->backing_object) != NULL) {
1810                                 KKASSERT(xobj != object);
1811                                 vm_object_hold(xobj);
1812                                 if (xobj == tobject->backing_object)
1813                                         break;
1814                                 vm_object_drop(xobj);
1815                         }
1816                         if (xobj == NULL)
1817                                 continue;
1818                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1819                         if (tobject != object) {
1820                                 vm_object_lock_swap();
1821                                 vm_object_drop(tobject);
1822                         }
1823                         tobject = xobj;
1824                         goto shadowlookup;
1825                 }
1826
1827                 /*
1828                  * If the page is not in a normal active state, we skip it.
1829                  * If the page is not managed there are no page queues to
1830                  * mess with.  Things can break if we mess with pages in
1831                  * any of the below states.
1832                  */
1833                 if (m->wire_count ||
1834                     (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1835                     m->valid != VM_PAGE_BITS_ALL
1836                 ) {
1837                         vm_page_wakeup(m);
1838                         continue;
1839                 }
1840
1841                 /*
1842                  * Theoretically once a page is known not to be busy, an
1843                  * interrupt cannot come along and rip it out from under us.
1844                  */
1845
1846                 if (advise == MADV_WILLNEED) {
1847                         vm_page_activate(m);
1848                 } else if (advise == MADV_DONTNEED) {
1849                         vm_page_dontneed(m);
1850                 } else if (advise == MADV_FREE) {
1851                         /*
1852                          * Mark the page clean.  This will allow the page
1853                          * to be freed up by the system.  However, such pages
1854                          * are often reused quickly by malloc()/free()
1855                          * so we do not do anything that would cause
1856                          * a page fault if we can help it.
1857                          *
1858                          * Specifically, we do not try to actually free
1859                          * the page now nor do we try to put it in the
1860                          * cache (which would cause a page fault on reuse).
1861                          *
1862                          * But we do make the page is freeable as we
1863                          * can without actually taking the step of unmapping
1864                          * it.
1865                          */
1866                         pmap_clear_modify(m);
1867                         m->dirty = 0;
1868                         m->act_count = 0;
1869                         vm_page_dontneed(m);
1870                         if (tobject->type == OBJT_SWAP)
1871                                 swap_pager_freespace(tobject, tpindex, 1);
1872                 }
1873                 vm_page_wakeup(m);
1874         }       
1875         if (tobject != object)
1876                 vm_object_drop(tobject);
1877         vm_object_drop(object);
1878 }
1879
1880 /*
1881  * Create a new object which is backed by the specified existing object
1882  * range.  Replace the pointer and offset that was pointing at the existing
1883  * object with the pointer/offset for the new object.
1884  *
1885  * If addref is non-zero the returned object is given an additional reference.
1886  * This mechanic exists to avoid the situation where refs might be 1 and
1887  * race against a collapse when the caller intends to bump it.  So the
1888  * caller cannot add the ref after the fact.  Used when the caller is
1889  * duplicating a vm_map_entry.
1890  *
1891  * No other requirements.
1892  */
1893 void
1894 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1895                  int addref)
1896 {
1897         vm_object_t source;
1898         vm_object_t result;
1899         int useshadowlist;
1900
1901         source = *objectp;
1902
1903         /*
1904          * Don't create the new object if the old object isn't shared.
1905          * We have to chain wait before adding the reference to avoid
1906          * racing a collapse or deallocation.
1907          *
1908          * Clear OBJ_ONEMAPPING flag when shadowing.
1909          *
1910          * The caller owns a ref on source via *objectp which we are going
1911          * to replace.  This ref is inherited by the backing_object assignment.
1912          * from nobject and does not need to be incremented here.
1913          *
1914          * However, we add a temporary extra reference to the original source
1915          * prior to holding nobject in case we block, to avoid races where
1916          * someone else might believe that the source can be collapsed.
1917          */
1918         useshadowlist = 0;
1919         if (source) {
1920                 if (source->type != OBJT_VNODE) {
1921                         useshadowlist = 1;
1922                         vm_object_hold(source);
1923                         vm_object_chain_wait(source, 0);
1924                         if (source->ref_count == 1 &&
1925                             source->handle == NULL &&
1926                             (source->type == OBJT_DEFAULT ||
1927                              source->type == OBJT_SWAP)) {
1928                                 if (addref) {
1929                                         vm_object_reference_locked(source);
1930                                         vm_object_clear_flag(source,
1931                                                              OBJ_ONEMAPPING);
1932                                 }
1933                                 vm_object_drop(source);
1934                                 return;
1935                         }
1936                         vm_object_reference_locked(source);
1937                         vm_object_clear_flag(source, OBJ_ONEMAPPING);
1938                 } else {
1939                         vm_object_reference_quick(source);
1940                         vm_object_clear_flag(source, OBJ_ONEMAPPING);
1941                 }
1942         }
1943
1944         /*
1945          * Allocate a new object with the given length.  The new object
1946          * is returned referenced but we may have to add another one.
1947          * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1948          * (typically because the caller is about to clone a vm_map_entry).
1949          *
1950          * The source object currently has an extra reference to prevent
1951          * collapses into it while we mess with its shadow list, which
1952          * we will remove later in this routine.
1953          *
1954          * The target object may require a second reference if asked for one
1955          * by the caller.
1956          */
1957         result = vm_object_allocate(OBJT_DEFAULT, length);
1958         if (result == NULL)
1959                 panic("vm_object_shadow: no object for shadowing");
1960         vm_object_hold(result);
1961         if (addref) {
1962                 vm_object_reference_locked(result);
1963                 vm_object_clear_flag(result, OBJ_ONEMAPPING);
1964         }
1965
1966         /*
1967          * The new object shadows the source object.  Chain wait before
1968          * adjusting shadow_count or the shadow list to avoid races.
1969          *
1970          * Try to optimize the result object's page color when shadowing
1971          * in order to maintain page coloring consistency in the combined 
1972          * shadowed object.
1973          *
1974          * The backing_object reference to source requires adding a ref to
1975          * source.  We simply inherit the ref from the original *objectp
1976          * (which we are replacing) so no additional refs need to be added.
1977          * (we must still clean up the extra ref we had to prevent collapse
1978          * races).
1979          *
1980          * SHADOWING IS NOT APPLICABLE TO OBJT_VNODE OBJECTS
1981          */
1982         KKASSERT(result->backing_object == NULL);
1983         result->backing_object = source;
1984         if (source) {
1985                 if (useshadowlist) {
1986                         vm_object_chain_wait(source, 0);
1987                         LIST_INSERT_HEAD(&source->shadow_head,
1988                                          result, shadow_list);
1989                         source->shadow_count++;
1990                         atomic_add_int(&source->generation, 1);
1991                         vm_object_set_flag(result, OBJ_ONSHADOW);
1992                 }
1993                 /* cpu localization twist */
1994                 result->pg_color = vm_quickcolor();
1995         }
1996
1997         /*
1998          * Adjust the return storage.  Drop the ref on source before
1999          * returning.
2000          */
2001         result->backing_object_offset = *offset;
2002         vm_object_drop(result);
2003         *offset = 0;
2004         if (source) {
2005                 if (useshadowlist) {
2006                         vm_object_deallocate_locked(source);
2007                         vm_object_drop(source);
2008                 } else {
2009                         vm_object_deallocate(source);
2010                 }
2011         }
2012
2013         /*
2014          * Return the new things
2015          */
2016         *objectp = result;
2017 }
2018
2019 #define OBSC_TEST_ALL_SHADOWED  0x0001
2020 #define OBSC_COLLAPSE_NOWAIT    0x0002
2021 #define OBSC_COLLAPSE_WAIT      0x0004
2022
2023 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
2024
2025 /*
2026  * The caller must hold the object.
2027  */
2028 static __inline int
2029 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
2030 {
2031         struct rb_vm_page_scan_info info;
2032         struct vm_object_hash *hash;
2033
2034         vm_object_assert_held(object);
2035         vm_object_assert_held(backing_object);
2036
2037         KKASSERT(backing_object == object->backing_object);
2038         info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
2039
2040         /*
2041          * Initial conditions
2042          */
2043         if (op & OBSC_TEST_ALL_SHADOWED) {
2044                 /*
2045                  * We do not want to have to test for the existence of
2046                  * swap pages in the backing object.  XXX but with the
2047                  * new swapper this would be pretty easy to do.
2048                  *
2049                  * XXX what about anonymous MAP_SHARED memory that hasn't
2050                  * been ZFOD faulted yet?  If we do not test for this, the
2051                  * shadow test may succeed! XXX
2052                  */
2053                 if (backing_object->type != OBJT_DEFAULT)
2054                         return(0);
2055         }
2056         if (op & OBSC_COLLAPSE_WAIT) {
2057                 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
2058                 vm_object_set_flag(backing_object, OBJ_DEAD);
2059
2060                 hash = vmobj_hash(backing_object);
2061                 lwkt_gettoken(&hash->token);
2062                 TAILQ_REMOVE(&hash->list, backing_object, object_list);
2063                 lwkt_reltoken(&hash->token);
2064         }
2065
2066         /*
2067          * Our scan.   We have to retry if a negative error code is returned,
2068          * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
2069          * the scan had to be stopped because the parent does not completely
2070          * shadow the child.
2071          */
2072         info.object = object;
2073         info.backing_object = backing_object;
2074         info.limit = op;
2075         info.count = 0;
2076         do {
2077                 info.error = 1;
2078                 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
2079                                         vm_object_backing_scan_callback,
2080                                         &info);
2081         } while (info.error < 0);
2082
2083         return(info.error);
2084 }
2085
2086 /*
2087  * The caller must hold the object.
2088  */
2089 static int
2090 vm_object_backing_scan_callback(vm_page_t p, void *data)
2091 {
2092         struct rb_vm_page_scan_info *info = data;
2093         vm_object_t backing_object;
2094         vm_object_t object;
2095         vm_pindex_t pindex;
2096         vm_pindex_t new_pindex;
2097         vm_pindex_t backing_offset_index;
2098         int op;
2099
2100         pindex = p->pindex;
2101         new_pindex = pindex - info->backing_offset_index;
2102         op = info->limit;
2103         object = info->object;
2104         backing_object = info->backing_object;
2105         backing_offset_index = info->backing_offset_index;
2106
2107         if (op & OBSC_TEST_ALL_SHADOWED) {
2108                 vm_page_t pp;
2109
2110                 /*
2111                  * Ignore pages outside the parent object's range
2112                  * and outside the parent object's mapping of the 
2113                  * backing object.
2114                  *
2115                  * note that we do not busy the backing object's
2116                  * page.
2117                  */
2118                 if (pindex < backing_offset_index ||
2119                     new_pindex >= object->size
2120                 ) {
2121                         return(0);
2122                 }
2123
2124                 /*
2125                  * See if the parent has the page or if the parent's
2126                  * object pager has the page.  If the parent has the
2127                  * page but the page is not valid, the parent's
2128                  * object pager must have the page.
2129                  *
2130                  * If this fails, the parent does not completely shadow
2131                  * the object and we might as well give up now.
2132                  */
2133                 pp = vm_page_lookup(object, new_pindex);
2134                 if ((pp == NULL || pp->valid == 0) &&
2135                     !vm_pager_has_page(object, new_pindex)
2136                 ) {
2137                         info->error = 0;        /* problemo */
2138                         return(-1);             /* stop the scan */
2139                 }
2140         }
2141
2142         /*
2143          * Check for busy page.  Note that we may have lost (p) when we
2144          * possibly blocked above.
2145          */
2146         if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
2147                 vm_page_t pp;
2148
2149                 if (vm_page_busy_try(p, TRUE)) {
2150                         if (op & OBSC_COLLAPSE_NOWAIT) {
2151                                 return(0);
2152                         } else {
2153                                 /*
2154                                  * If we slept, anything could have
2155                                  * happened.   Ask that the scan be restarted.
2156                                  *
2157                                  * Since the object is marked dead, the
2158                                  * backing offset should not have changed.  
2159                                  */
2160                                 vm_page_sleep_busy(p, TRUE, "vmocol");
2161                                 info->error = -1;
2162                                 return(-1);
2163                         }
2164                 }
2165
2166                 /*
2167                  * If (p) is no longer valid restart the scan.
2168                  */
2169                 if (p->object != backing_object || p->pindex != pindex) {
2170                         kprintf("vm_object_backing_scan: Warning: page "
2171                                 "%p ripped out from under us\n", p);
2172                         vm_page_wakeup(p);
2173                         info->error = -1;
2174                         return(-1);
2175                 }
2176
2177                 if (op & OBSC_COLLAPSE_NOWAIT) {
2178                         if (p->valid == 0 ||
2179                             p->wire_count ||
2180                             (p->flags & PG_NEED_COMMIT)) {
2181                                 vm_page_wakeup(p);
2182                                 return(0);
2183                         }
2184                 } else {
2185                         /* XXX what if p->valid == 0 , hold_count, etc? */
2186                 }
2187
2188                 KASSERT(
2189                     p->object == backing_object,
2190                     ("vm_object_qcollapse(): object mismatch")
2191                 );
2192
2193                 /*
2194                  * Destroy any associated swap
2195                  */
2196                 if (backing_object->type == OBJT_SWAP)
2197                         swap_pager_freespace(backing_object, p->pindex, 1);
2198
2199                 if (
2200                     p->pindex < backing_offset_index ||
2201                     new_pindex >= object->size
2202                 ) {
2203                         /*
2204                          * Page is out of the parent object's range, we 
2205                          * can simply destroy it. 
2206                          */
2207                         vm_page_protect(p, VM_PROT_NONE);
2208                         vm_page_free(p);
2209                         return(0);
2210                 }
2211
2212                 pp = vm_page_lookup(object, new_pindex);
2213                 if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
2214                         /*
2215                          * page already exists in parent OR swap exists
2216                          * for this location in the parent.  Destroy 
2217                          * the original page from the backing object.
2218                          *
2219                          * Leave the parent's page alone
2220                          */
2221                         vm_page_protect(p, VM_PROT_NONE);
2222                         vm_page_free(p);
2223                         return(0);
2224                 }
2225
2226                 /*
2227                  * Page does not exist in parent, rename the
2228                  * page from the backing object to the main object. 
2229                  *
2230                  * If the page was mapped to a process, it can remain 
2231                  * mapped through the rename.
2232                  */
2233                 if ((p->queue - p->pc) == PQ_CACHE)
2234                         vm_page_deactivate(p);
2235
2236                 vm_page_rename(p, object, new_pindex);
2237                 vm_page_wakeup(p);
2238                 /* page automatically made dirty by rename */
2239         }
2240         return(0);
2241 }
2242
2243 /*
2244  * This version of collapse allows the operation to occur earlier and
2245  * when paging_in_progress is true for an object...  This is not a complete
2246  * operation, but should plug 99.9% of the rest of the leaks.
2247  *
2248  * The caller must hold the object and backing_object and both must be
2249  * chainlocked.
2250  *
2251  * (only called from vm_object_collapse)
2252  */
2253 static void
2254 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
2255 {
2256         if (backing_object->ref_count == 1) {
2257                 atomic_add_int(&backing_object->ref_count, 2);
2258 #if defined(DEBUG_LOCKS)
2259                 debugvm_object_add(backing_object, "qcollapse", 1, 2);
2260 #endif
2261                 vm_object_backing_scan(object, backing_object,
2262                                        OBSC_COLLAPSE_NOWAIT);
2263                 atomic_add_int(&backing_object->ref_count, -2);
2264 #if defined(DEBUG_LOCKS)
2265                 debugvm_object_add(backing_object, "qcollapse", 2, -2);
2266 #endif
2267         }
2268 }
2269
2270 /*
2271  * Collapse an object with the object backing it.  Pages in the backing
2272  * object are moved into the parent, and the backing object is deallocated.
2273  * Any conflict is resolved in favor of the parent's existing pages.
2274  *
2275  * object must be held and chain-locked on call.
2276  *
2277  * The caller must have an extra ref on object to prevent a race from
2278  * destroying it during the collapse.
2279  */
2280 void
2281 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
2282 {
2283         struct vm_object_dealloc_list *dlist = NULL;
2284         vm_object_t backing_object;
2285
2286         /*
2287          * Only one thread is attempting a collapse at any given moment.
2288          * There are few restrictions for (object) that callers of this
2289          * function check so reentrancy is likely.
2290          */
2291         KKASSERT(object != NULL);
2292         vm_object_assert_held(object);
2293         KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
2294
2295         for (;;) {
2296                 vm_object_t bbobj;
2297                 int dodealloc;
2298
2299                 /*
2300                  * We can only collapse a DEFAULT/SWAP object with a
2301                  * DEFAULT/SWAP object.
2302                  */
2303                 if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP) {
2304                         backing_object = NULL;
2305                         break;
2306                 }
2307
2308                 backing_object = object->backing_object;
2309                 if (backing_object == NULL)
2310                         break;
2311                 if (backing_object->type != OBJT_DEFAULT &&
2312                     backing_object->type != OBJT_SWAP) {
2313                         backing_object = NULL;
2314                         break;
2315                 }
2316
2317                 /*
2318                  * Hold (token lock) the backing_object and retest conditions.
2319                  */
2320                 vm_object_hold(backing_object);
2321                 if (backing_object != object->backing_object ||
2322                     (backing_object->type != OBJT_DEFAULT &&
2323                      backing_object->type != OBJT_SWAP)) {
2324                         vm_object_drop(backing_object);
2325                         continue;
2326                 }
2327
2328                 /*
2329                  * Chain-lock the backing object too because if we
2330                  * successfully merge its pages into the top object we
2331                  * will collapse backing_object->backing_object as the
2332                  * new backing_object.  Re-check that it is still our
2333                  * backing object.
2334                  */
2335                 vm_object_chain_acquire(backing_object, 0);
2336                 if (backing_object != object->backing_object) {
2337                         vm_object_chain_release(backing_object);
2338                         vm_object_drop(backing_object);
2339                         continue;
2340                 }
2341
2342                 /*
2343                  * We check the backing object first, because it is most
2344                  * likely not collapsable.
2345                  */
2346                 if (backing_object->handle != NULL ||
2347                     (backing_object->type != OBJT_DEFAULT &&
2348                      backing_object->type != OBJT_SWAP) ||
2349                     (backing_object->flags & OBJ_DEAD) ||
2350                     object->handle != NULL ||
2351                     (object->type != OBJT_DEFAULT &&
2352                      object->type != OBJT_SWAP) ||
2353                     (object->flags & OBJ_DEAD)) {
2354                         break;
2355                 }
2356
2357                 /*
2358                  * If paging is in progress we can't do a normal collapse.
2359                  */
2360                 if (object->paging_in_progress != 0 ||
2361                     backing_object->paging_in_progress != 0
2362                 ) {
2363                         vm_object_qcollapse(object, backing_object);
2364                         break;
2365                 }
2366
2367                 /*
2368                  * We know that we can either collapse the backing object (if
2369                  * the parent is the only reference to it) or (perhaps) have
2370                  * the parent bypass the object if the parent happens to shadow
2371                  * all the resident pages in the entire backing object.
2372                  *
2373                  * This is ignoring pager-backed pages such as swap pages.
2374                  * vm_object_backing_scan fails the shadowing test in this
2375                  * case.
2376                  */
2377                 if (backing_object->ref_count == 1) {
2378                         /*
2379                          * If there is exactly one reference to the backing
2380                          * object, we can collapse it into the parent.  
2381                          */
2382                         KKASSERT(object->backing_object == backing_object);
2383                         vm_object_backing_scan(object, backing_object,
2384                                                OBSC_COLLAPSE_WAIT);
2385
2386                         /*
2387                          * Move the pager from backing_object to object.
2388                          */
2389                         if (backing_object->type == OBJT_SWAP) {
2390                                 vm_object_pip_add(backing_object, 1);
2391
2392                                 /*
2393                                  * scrap the paging_offset junk and do a 
2394                                  * discrete copy.  This also removes major 
2395                                  * assumptions about how the swap-pager 
2396                                  * works from where it doesn't belong.  The
2397                                  * new swapper is able to optimize the
2398                                  * destroy-source case.
2399                                  */
2400                                 vm_object_pip_add(object, 1);
2401                                 swap_pager_copy(backing_object, object,
2402                                     OFF_TO_IDX(object->backing_object_offset),
2403                                     TRUE);
2404                                 vm_object_pip_wakeup(object);
2405                                 vm_object_pip_wakeup(backing_object);
2406                         }
2407
2408                         /*
2409                          * Object now shadows whatever backing_object did.
2410                          * Remove object from backing_object's shadow_list.
2411                          *
2412                          * Removing object from backing_objects shadow list
2413                          * requires releasing object, which we will do below.
2414                          */
2415                         KKASSERT(object->backing_object == backing_object);
2416                         if (object->flags & OBJ_ONSHADOW) {
2417                                 LIST_REMOVE(object, shadow_list);
2418                                 backing_object->shadow_count--;
2419                                 atomic_add_int(&backing_object->generation, 1);
2420                                 vm_object_clear_flag(object, OBJ_ONSHADOW);
2421                         }
2422
2423                         /*
2424                          * backing_object->backing_object moves from within
2425                          * backing_object to within object.
2426                          *
2427                          * OBJT_VNODE bbobj's should have empty shadow lists.
2428                          */
2429                         while ((bbobj = backing_object->backing_object) != NULL) {
2430                                 if (bbobj->type == OBJT_VNODE)
2431                                         vm_object_hold_shared(bbobj);
2432                                 else
2433                                         vm_object_hold(bbobj);
2434                                 if (bbobj == backing_object->backing_object)
2435                                         break;
2436                                 vm_object_drop(bbobj);
2437                         }
2438
2439                         /*
2440                          * We are removing backing_object from bbobj's
2441                          * shadow list and adding object to bbobj's shadow
2442                          * list, so the ref_count on bbobj is unchanged.
2443                          */
2444                         if (bbobj) {
2445                                 if (backing_object->flags & OBJ_ONSHADOW) {
2446                                         /* not locked exclusively if vnode */
2447                                         KKASSERT(bbobj->type != OBJT_VNODE);
2448                                         LIST_REMOVE(backing_object,
2449                                                     shadow_list);
2450                                         bbobj->shadow_count--;
2451                                         atomic_add_int(&bbobj->generation, 1);
2452                                         vm_object_clear_flag(backing_object,
2453                                                              OBJ_ONSHADOW);
2454                                 }
2455                                 backing_object->backing_object = NULL;
2456                         }
2457                         object->backing_object = bbobj;
2458                         if (bbobj) {
2459                                 if (bbobj->type != OBJT_VNODE) {
2460                                         LIST_INSERT_HEAD(&bbobj->shadow_head,
2461                                                          object, shadow_list);
2462                                         bbobj->shadow_count++;
2463                                         atomic_add_int(&bbobj->generation, 1);
2464                                         vm_object_set_flag(object,
2465                                                            OBJ_ONSHADOW);
2466                                 }
2467                         }
2468
2469                         object->backing_object_offset +=
2470                                 backing_object->backing_object_offset;
2471
2472                         vm_object_drop(bbobj);
2473
2474                         /*
2475                          * Discard the old backing_object.  Nothing should be
2476                          * able to ref it, other than a vm_map_split(),
2477                          * and vm_map_split() will stall on our chain lock.
2478                          * And we control the parent so it shouldn't be
2479                          * possible for it to go away either.
2480                          *
2481                          * Since the backing object has no pages, no pager
2482                          * left, and no object references within it, all
2483                          * that is necessary is to dispose of it.
2484                          */
2485                         KASSERT(backing_object->ref_count == 1,
2486                                 ("backing_object %p was somehow "
2487                                  "re-referenced during collapse!",
2488                                  backing_object));
2489                         KASSERT(RB_EMPTY(&backing_object->rb_memq),
2490                                 ("backing_object %p somehow has left "
2491                                  "over pages during collapse!",
2492                                  backing_object));
2493
2494                         /*
2495                          * The object can be destroyed.
2496                          *
2497                          * XXX just fall through and dodealloc instead
2498                          *     of forcing destruction?
2499                          */
2500                         atomic_add_int(&backing_object->ref_count, -1);
2501 #if defined(DEBUG_LOCKS)
2502                         debugvm_object_add(backing_object, "collapse", 1, -1);
2503 #endif
2504                         if ((backing_object->flags & OBJ_DEAD) == 0)
2505                                 vm_object_terminate(backing_object);
2506                         object_collapses++;
2507                         dodealloc = 0;
2508                 } else {
2509                         /*
2510                          * If we do not entirely shadow the backing object,
2511                          * there is nothing we can do so we give up.
2512                          */
2513                         if (vm_object_backing_scan(object, backing_object,
2514                                                 OBSC_TEST_ALL_SHADOWED) == 0) {
2515                                 break;
2516                         }
2517
2518                         /*
2519                          * bbobj is backing_object->backing_object.  Since
2520                          * object completely shadows backing_object we can
2521                          * bypass it and become backed by bbobj instead.
2522                          *
2523                          * The shadow list for vnode backing objects is not
2524                          * used and a shared hold is allowed.
2525                          */
2526                         while ((bbobj = backing_object->backing_object) != NULL) {
2527                                 if (bbobj->type == OBJT_VNODE)
2528                                         vm_object_hold_shared(bbobj);
2529                                 else
2530                                         vm_object_hold(bbobj);
2531                                 if (bbobj == backing_object->backing_object)
2532                                         break;
2533                                 vm_object_drop(bbobj);
2534                         }
2535
2536                         /*
2537                          * Make object shadow bbobj instead of backing_object.
2538                          * Remove object from backing_object's shadow list.
2539                          *
2540                          * Deallocating backing_object will not remove
2541                          * it, since its reference count is at least 2.
2542                          *
2543                          * Removing object from backing_object's shadow
2544                          * list requires releasing a ref, which we do
2545                          * below by setting dodealloc to 1.
2546                          */
2547                         KKASSERT(object->backing_object == backing_object);
2548                         if (object->flags & OBJ_ONSHADOW) {
2549                                 LIST_REMOVE(object, shadow_list);
2550                                 backing_object->shadow_count--;
2551                                 atomic_add_int(&backing_object->generation, 1);
2552                                 vm_object_clear_flag(object, OBJ_ONSHADOW);
2553                         }
2554
2555                         /*
2556                          * Add a ref to bbobj, bbobj now shadows object.
2557                          *
2558                          * NOTE: backing_object->backing_object still points
2559                          *       to bbobj.  That relationship remains intact
2560                          *       because backing_object has > 1 ref, so
2561                          *       someone else is pointing to it (hence why
2562                          *       we can't collapse it into object and can
2563                          *       only handle the all-shadowed bypass case).
2564                          */
2565                         if (bbobj) {
2566                                 if (bbobj->type != OBJT_VNODE) {
2567                                         vm_object_chain_wait(bbobj, 0);
2568                                         vm_object_reference_locked(bbobj);
2569                                         LIST_INSERT_HEAD(&bbobj->shadow_head,
2570                                                          object, shadow_list);
2571                                         bbobj->shadow_count++;
2572                                         atomic_add_int(&bbobj->generation, 1);
2573                                         vm_object_set_flag(object,
2574                                                            OBJ_ONSHADOW);
2575                                 } else {
2576                                         vm_object_reference_quick(bbobj);
2577                                 }
2578                                 object->backing_object_offset +=
2579                                         backing_object->backing_object_offset;
2580                                 object->backing_object = bbobj;
2581                                 vm_object_drop(bbobj);
2582                         } else {
2583                                 object->backing_object = NULL;
2584                         }
2585
2586                         /*
2587                          * Drop the reference count on backing_object.  To
2588                          * handle ref_count races properly we can't assume
2589                          * that the ref_count is still at least 2 so we
2590                          * have to actually call vm_object_deallocate()
2591                          * (after clearing the chainlock).
2592                          */
2593                         object_bypasses++;
2594                         dodealloc = 1;
2595                 }
2596
2597                 /*
2598                  * Ok, we want to loop on the new object->bbobj association,
2599                  * possibly collapsing it further.  However if dodealloc is
2600                  * non-zero we have to deallocate the backing_object which
2601                  * itself can potentially undergo a collapse, creating a
2602                  * recursion depth issue with the LWKT token subsystem.
2603                  *
2604                  * In the case where we must deallocate the backing_object
2605                  * it is possible now that the backing_object has a single
2606                  * shadow count on some other object (not represented here
2607                  * as yet), since it no longer shadows us.  Thus when we
2608                  * call vm_object_deallocate() it may attempt to collapse
2609                  * itself into its remaining parent.
2610                  */
2611                 if (dodealloc) {
2612                         struct vm_object_dealloc_list *dtmp;
2613
2614                         vm_object_chain_release(backing_object);
2615                         vm_object_unlock(backing_object);
2616                         /* backing_object remains held */
2617
2618                         /*
2619                          * Auto-deallocation list for caller convenience.
2620                          */
2621                         if (dlistp == NULL)
2622                                 dlistp = &dlist;
2623
2624                         dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2625                         dtmp->object = backing_object;
2626                         dtmp->next = *dlistp;
2627                         *dlistp = dtmp;
2628                 } else {
2629                         vm_object_chain_release(backing_object);
2630                         vm_object_drop(backing_object);
2631                 }
2632                 /* backing_object = NULL; not needed */
2633                 /* loop */
2634         }
2635
2636         /*
2637          * Clean up any left over backing_object
2638          */
2639         if (backing_object) {
2640                 vm_object_chain_release(backing_object);
2641                 vm_object_drop(backing_object);
2642         }
2643
2644         /*
2645          * Clean up any auto-deallocation list.  This is a convenience
2646          * for top-level callers so they don't have to pass &dlist.
2647          * Do not clean up any caller-passed dlistp, the caller will
2648          * do that.
2649          */
2650         if (dlist)
2651                 vm_object_deallocate_list(&dlist);
2652
2653 }
2654
2655 /*
2656  * vm_object_collapse() may collect additional objects in need of
2657  * deallocation.  This routine deallocates these objects.  The
2658  * deallocation itself can trigger additional collapses (which the
2659  * deallocate function takes care of).  This procedure is used to
2660  * reduce procedural recursion since these vm_object shadow chains
2661  * can become quite long.
2662  */
2663 void
2664 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2665 {
2666         struct vm_object_dealloc_list *dlist;
2667
2668         while ((dlist = *dlistp) != NULL) {
2669                 *dlistp = dlist->next;
2670                 vm_object_lock(dlist->object);
2671                 vm_object_deallocate_locked(dlist->object);
2672                 vm_object_drop(dlist->object);
2673                 kfree(dlist, M_TEMP);
2674         }
2675 }
2676
2677 /*
2678  * Removes all physical pages in the specified object range from the
2679  * object's list of pages.
2680  *
2681  * No requirements.
2682  */
2683 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2684
2685 void
2686 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2687                       boolean_t clean_only)
2688 {
2689         struct rb_vm_page_scan_info info;
2690         int all;
2691
2692         /*
2693          * Degenerate cases and assertions
2694          */
2695         vm_object_hold(object);
2696         if (object == NULL ||
2697             (object->resident_page_count == 0 && object->swblock_count == 0)) {
2698                 vm_object_drop(object);
2699                 return;
2700         }
2701         KASSERT(object->type != OBJT_PHYS, 
2702                 ("attempt to remove pages from a physical object"));
2703
2704         /*
2705          * Indicate that paging is occuring on the object
2706          */
2707         vm_object_pip_add(object, 1);
2708
2709         /*
2710          * Figure out the actual removal range and whether we are removing
2711          * the entire contents of the object or not.  If removing the entire
2712          * contents, be sure to get all pages, even those that might be 
2713          * beyond the end of the object.
2714          */
2715         info.object = object;
2716         info.start_pindex = start;
2717         if (end == 0)
2718                 info.end_pindex = (vm_pindex_t)-1;
2719         else
2720                 info.end_pindex = end - 1;
2721         info.limit = clean_only;
2722         info.count = 0;
2723         all = (start == 0 && info.end_pindex >= object->size - 1);
2724
2725         /*
2726          * Loop until we are sure we have gotten them all.
2727          */
2728         do {
2729                 info.error = 0;
2730                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2731                                         vm_object_page_remove_callback, &info);
2732         } while (info.error);
2733
2734         /*
2735          * Remove any related swap if throwing away pages, or for
2736          * non-swap objects (the swap is a clean copy in that case).
2737          */
2738         if (object->type != OBJT_SWAP || clean_only == FALSE) {
2739                 if (all)
2740                         swap_pager_freespace_all(object);
2741                 else
2742                         swap_pager_freespace(object, info.start_pindex,
2743                              info.end_pindex - info.start_pindex + 1);
2744         }
2745
2746         /*
2747          * Cleanup
2748          */
2749         vm_object_pip_wakeup(object);
2750         vm_object_drop(object);
2751 }
2752
2753 /*
2754  * The caller must hold the object.
2755  *
2756  * NOTE: User yields are allowed when removing more than one page, but not
2757  *       allowed if only removing one page (the path for single page removals
2758  *       might hold a spinlock).
2759  */
2760 static int
2761 vm_object_page_remove_callback(vm_page_t p, void *data)
2762 {
2763         struct rb_vm_page_scan_info *info = data;
2764
2765         if (info->object != p->object ||
2766             p->pindex < info->start_pindex ||
2767             p->pindex > info->end_pindex) {
2768                 kprintf("vm_object_page_remove_callbackA: obj/pg race %p/%p\n",
2769                         info->object, p);
2770                 return(0);
2771         }
2772         if (vm_page_busy_try(p, TRUE)) {
2773                 vm_page_sleep_busy(p, TRUE, "vmopar");
2774                 info->error = 1;
2775                 return(0);
2776         }
2777         if (info->object != p->object) {
2778                 /* this should never happen */
2779                 kprintf("vm_object_page_remove_callbackB: obj/pg race %p/%p\n",
2780                         info->object, p);
2781                 vm_page_wakeup(p);
2782                 return(0);
2783         }
2784
2785         /*
2786          * Wired pages cannot be destroyed, but they can be invalidated
2787          * and we do so if clean_only (limit) is not set.
2788          *
2789          * WARNING!  The page may be wired due to being part of a buffer
2790          *           cache buffer, and the buffer might be marked B_CACHE.
2791          *           This is fine as part of a truncation but VFSs must be
2792          *           sure to fix the buffer up when re-extending the file.
2793          *
2794          * NOTE!     PG_NEED_COMMIT is ignored.
2795          */
2796         if (p->wire_count != 0) {
2797                 vm_page_protect(p, VM_PROT_NONE);
2798                 if (info->limit == 0)
2799                         p->valid = 0;
2800                 vm_page_wakeup(p);
2801                 goto done;
2802         }
2803
2804         /*
2805          * limit is our clean_only flag.  If set and the page is dirty or
2806          * requires a commit, do not free it.  If set and the page is being
2807          * held by someone, do not free it.
2808          */
2809         if (info->limit && p->valid) {
2810                 vm_page_test_dirty(p);
2811                 if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) {
2812                         vm_page_wakeup(p);
2813                         goto done;
2814                 }
2815         }
2816
2817         /*
2818          * Destroy the page
2819          */
2820         vm_page_protect(p, VM_PROT_NONE);
2821         vm_page_free(p);
2822
2823         /*
2824          * Must be at end to avoid SMP races, caller holds object token
2825          */
2826 done:
2827         if ((++info->count & 63) == 0)
2828                 lwkt_user_yield();
2829
2830         return(0);
2831 }
2832
2833 /*
2834  * Try to extend prev_object into an adjoining region of virtual
2835  * memory, return TRUE on success.
2836  *
2837  * The caller does not need to hold (prev_object) but must have a stable
2838  * pointer to it (typically by holding the vm_map locked).
2839  *
2840  * This function only works for anonymous memory objects which either
2841  * have (a) one reference or (b) we are extending the object's size.
2842  * Otherwise the related VM pages we want to use for the object might
2843  * be in use by another mapping.
2844  */
2845 boolean_t
2846 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2847                    vm_size_t prev_size, vm_size_t next_size)
2848 {
2849         vm_pindex_t next_pindex;
2850
2851         if (prev_object == NULL)
2852                 return (TRUE);
2853
2854         vm_object_hold(prev_object);
2855
2856         if (prev_object->type != OBJT_DEFAULT &&
2857             prev_object->type != OBJT_SWAP) {
2858                 vm_object_drop(prev_object);
2859                 return (FALSE);
2860         }
2861
2862         /*
2863          * Try to collapse the object first
2864          */
2865         vm_object_chain_acquire(prev_object, 0);
2866         vm_object_collapse(prev_object, NULL);
2867
2868         /*
2869          * We can't coalesce if we shadow another object (figuring out the
2870          * relationships become too complex).
2871          */
2872         if (prev_object->backing_object != NULL) {
2873                 vm_object_chain_release(prev_object);
2874                 vm_object_drop(prev_object);
2875                 return (FALSE);
2876         }
2877
2878         prev_size >>= PAGE_SHIFT;
2879         next_size >>= PAGE_SHIFT;
2880         next_pindex = prev_pindex + prev_size;
2881
2882         /*
2883          * We can't if the object has more than one ref count unless we
2884          * are extending it into newly minted space.
2885          */
2886         if (prev_object->ref_count > 1 &&
2887             prev_object->size != next_pindex) {
2888                 vm_object_chain_release(prev_object);
2889                 vm_object_drop(prev_object);
2890                 return (FALSE);
2891         }
2892
2893         /*
2894          * Remove any pages that may still be in the object from a previous
2895          * deallocation.
2896          */
2897         if (next_pindex < prev_object->size) {
2898                 vm_object_page_remove(prev_object,
2899                                       next_pindex,
2900                                       next_pindex + next_size, FALSE);
2901                 if (prev_object->type == OBJT_SWAP)
2902                         swap_pager_freespace(prev_object,
2903                                              next_pindex, next_size);
2904         }
2905
2906         /*
2907          * Extend the object if necessary.
2908          */
2909         if (next_pindex + next_size > prev_object->size)
2910                 prev_object->size = next_pindex + next_size;
2911         vm_object_chain_release(prev_object);
2912         vm_object_drop(prev_object);
2913
2914         return (TRUE);
2915 }
2916
2917 /*
2918  * Make the object writable and flag is being possibly dirty.
2919  *
2920  * The object might not be held (or might be held but held shared),
2921  * the related vnode is probably not held either.  Object and vnode are
2922  * stable by virtue of the vm_page busied by the caller preventing
2923  * destruction.
2924  *
2925  * If the related mount is flagged MNTK_THR_SYNC we need to call
2926  * vsetobjdirty().  Filesystems using this option usually shortcut
2927  * synchronization by only scanning the syncer list.
2928  */
2929 void
2930 vm_object_set_writeable_dirty(vm_object_t object)
2931 {
2932         struct vnode *vp;
2933
2934         /*vm_object_assert_held(object);*/
2935         /*
2936          * Avoid contention in vm fault path by checking the state before
2937          * issuing an atomic op on it.
2938          */
2939         if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2940             (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2941                 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2942         }
2943         if (object->type == OBJT_VNODE &&
2944             (vp = (struct vnode *)object->handle) != NULL) {
2945                 if ((vp->v_flag & VOBJDIRTY) == 0) {
2946                         if (vp->v_mount &&
2947                             (vp->v_mount->mnt_kern_flag & MNTK_THR_SYNC)) {
2948                                 /*
2949                                  * New style THR_SYNC places vnodes on the
2950                                  * syncer list more deterministically.
2951                                  */
2952                                 vsetobjdirty(vp);
2953                         } else {
2954                                 /*
2955                                  * Old style scan would not necessarily place
2956                                  * a vnode on the syncer list when possibly
2957                                  * modified via mmap.
2958                                  */
2959                                 vsetflags(vp, VOBJDIRTY);
2960                         }
2961                 }
2962         }
2963 }
2964
2965 #include "opt_ddb.h"
2966 #ifdef DDB
2967 #include <sys/cons.h>
2968
2969 #include <ddb/ddb.h>
2970
2971 static int      _vm_object_in_map (vm_map_t map, vm_object_t object,
2972                                        vm_map_entry_t entry);
2973 static int      vm_object_in_map (vm_object_t object);
2974
2975 /*
2976  * The caller must hold the object.
2977  */
2978 static int
2979 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2980 {
2981         vm_map_t tmpm;
2982         vm_map_entry_t tmpe;
2983         vm_object_t obj, nobj;
2984         int entcount;
2985
2986         if (map == 0)
2987                 return 0;
2988         if (entry == 0) {
2989                 tmpe = map->header.next;
2990                 entcount = map->nentries;
2991                 while (entcount-- && (tmpe != &map->header)) {
2992                         if( _vm_object_in_map(map, object, tmpe)) {
2993                                 return 1;
2994                         }
2995                         tmpe = tmpe->next;
2996                 }
2997                 return (0);
2998         }
2999         switch(entry->maptype) {
3000         case VM_MAPTYPE_SUBMAP:
3001                 tmpm = entry->object.sub_map;
3002                 tmpe = tmpm->header.next;
3003                 entcount = tmpm->nentries;
3004                 while (entcount-- && tmpe != &tmpm->header) {
3005                         if( _vm_object_in_map(tmpm, object, tmpe)) {
3006                                 return 1;
3007                         }
3008                         tmpe = tmpe->next;
3009                 }
3010                 break;
3011         case VM_MAPTYPE_NORMAL:
3012         case VM_MAPTYPE_VPAGETABLE:
3013                 obj = entry->object.vm_object;
3014                 while (obj) {
3015                         if (obj == object) {
3016                                 if (obj != entry->object.vm_object)
3017                                         vm_object_drop(obj);
3018                                 return 1;
3019                         }
3020                         while ((nobj = obj->backing_object) != NULL) {
3021                                 vm_object_hold(nobj);
3022                                 if (nobj == obj->backing_object)
3023                                         break;
3024                                 vm_object_drop(nobj);
3025                         }
3026                         if (obj != entry->object.vm_object) {
3027                                 if (nobj)
3028                                         vm_object_lock_swap();
3029                                 vm_object_drop(obj);
3030                         }
3031                         obj = nobj;
3032                 }
3033                 break;
3034         default:
3035                 break;
3036         }
3037         return 0;
3038 }
3039
3040 static int vm_object_in_map_callback(struct proc *p, void *data);
3041
3042 struct vm_object_in_map_info {
3043         vm_object_t object;
3044         int rv;
3045 };
3046
3047 /*
3048  * Debugging only
3049  */
3050 static int
3051 vm_object_in_map(vm_object_t object)
3052 {
3053         struct vm_object_in_map_info info;
3054
3055         info.rv = 0;
3056         info.object = object;
3057
3058         allproc_scan(vm_object_in_map_callback, &info, 0);
3059         if (info.rv)
3060                 return 1;
3061         if( _vm_object_in_map(&kernel_map, object, 0))
3062                 return 1;
3063         if( _vm_object_in_map(&pager_map, object, 0))
3064                 return 1;
3065         if( _vm_object_in_map(&buffer_map, object, 0))
3066                 return 1;
3067         return 0;
3068 }
3069
3070 /*
3071  * Debugging only
3072  */
3073 static int
3074 vm_object_in_map_callback(struct proc *p, void *data)
3075 {
3076         struct vm_object_in_map_info *info = data;
3077
3078         if (p->p_vmspace) {
3079                 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
3080                         info->rv = 1;
3081                         return -1;
3082                 }
3083         }
3084         return (0);
3085 }
3086
3087 DB_SHOW_COMMAND(vmochk, vm_object_check)
3088 {
3089         struct vm_object_hash *hash;
3090         vm_object_t object;
3091         int n;
3092
3093         /*
3094          * make sure that internal objs are in a map somewhere
3095          * and none have zero ref counts.
3096          */
3097         for (n = 0; n < VMOBJ_HSIZE; ++n) {
3098                 hash = &vm_object_hash[n];
3099                 for (object = TAILQ_FIRST(&hash->list);
3100                                 object != NULL;
3101                                 object = TAILQ_NEXT(object, object_list)) {
3102                         if (object->type == OBJT_MARKER)
3103                                 continue;
3104                         if (object->handle != NULL ||
3105                             (object->type != OBJT_DEFAULT &&
3106                              object->type != OBJT_SWAP)) {
3107                                 continue;
3108                         }
3109                         if (object->ref_count == 0) {
3110                                 db_printf("vmochk: internal obj has "
3111                                           "zero ref count: %ld\n",
3112                                           (long)object->size);
3113                         }
3114                         if (vm_object_in_map(object))
3115                                 continue;
3116                         db_printf("vmochk: internal obj is not in a map: "
3117                                   "ref: %d, size: %lu: 0x%lx, "
3118                                   "backing_object: %p\n",
3119                                   object->ref_count, (u_long)object->size,
3120                                   (u_long)object->size,
3121                                   (void *)object->backing_object);
3122                 }
3123         }
3124 }
3125
3126 /*
3127  * Debugging only
3128  */
3129 DB_SHOW_COMMAND(object, vm_object_print_static)
3130 {
3131         /* XXX convert args. */
3132         vm_object_t object = (vm_object_t)addr;
3133         boolean_t full = have_addr;
3134
3135         vm_page_t p;
3136
3137         /* XXX count is an (unused) arg.  Avoid shadowing it. */
3138 #define count   was_count
3139
3140         int count;
3141
3142         if (object == NULL)
3143                 return;
3144
3145         db_iprintf(
3146             "Object %p: type=%d, size=0x%lx, res=%ld, ref=%d, flags=0x%x\n",
3147             object, (int)object->type, (u_long)object->size,
3148             object->resident_page_count, object->ref_count, object->flags);
3149         /*
3150          * XXX no %qd in kernel.  Truncate object->backing_object_offset.
3151          */
3152         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
3153             object->shadow_count, 
3154             object->backing_object ? object->backing_object->ref_count : 0,
3155             object->backing_object, (long)object->backing_object_offset);
3156
3157         if (!full)
3158                 return;
3159
3160         db_indent += 2;
3161         count = 0;
3162         RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
3163                 if (count == 0)
3164                         db_iprintf("memory:=");
3165                 else if (count == 6) {
3166                         db_printf("\n");
3167                         db_iprintf(" ...");
3168                         count = 0;
3169                 } else
3170                         db_printf(",");
3171                 count++;
3172
3173                 db_printf("(off=0x%lx,page=0x%lx)",
3174                     (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
3175         }
3176         if (count != 0)
3177                 db_printf("\n");
3178         db_indent -= 2;
3179 }
3180
3181 /* XXX. */
3182 #undef count
3183
3184 /*
3185  * XXX need this non-static entry for calling from vm_map_print.
3186  *
3187  * Debugging only
3188  */
3189 void
3190 vm_object_print(/* db_expr_t */ long addr,
3191                 boolean_t have_addr,
3192                 /* db_expr_t */ long count,
3193                 char *modif)
3194 {
3195         vm_object_print_static(addr, have_addr, count, modif);
3196 }
3197
3198 /*
3199  * Debugging only
3200  */
3201 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
3202 {
3203         struct vm_object_hash *hash;
3204         vm_object_t object;
3205         int nl = 0;
3206         int c;
3207         int n;
3208
3209         for (n = 0; n < VMOBJ_HSIZE; ++n) {
3210                 hash = &vm_object_hash[n];
3211                 for (object = TAILQ_FIRST(&hash->list);
3212                                 object != NULL;
3213                                 object = TAILQ_NEXT(object, object_list)) {
3214                         vm_pindex_t idx, fidx;
3215                         vm_pindex_t osize;
3216                         vm_paddr_t pa = -1, padiff;
3217                         int rcount;
3218                         vm_page_t m;
3219
3220                         if (object->type == OBJT_MARKER)
3221                                 continue;
3222                         db_printf("new object: %p\n", (void *)object);
3223                         if ( nl > 18) {
3224                                 c = cngetc();
3225                                 if (c != ' ')
3226                                         return;
3227                                 nl = 0;
3228                         }
3229                         nl++;
3230                         rcount = 0;
3231                         fidx = 0;
3232                         osize = object->size;
3233                         if (osize > 128)
3234                                 osize = 128;
3235                         for (idx = 0; idx < osize; idx++) {
3236                                 m = vm_page_lookup(object, idx);
3237                                 if (m == NULL) {
3238                                         if (rcount) {
3239                                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3240                                                         (long)fidx, rcount, (long)pa);
3241                                                 if ( nl > 18) {
3242                                                         c = cngetc();
3243                                                         if (c != ' ')
3244                                                                 return;
3245                                                         nl = 0;
3246                                                 }
3247                                                 nl++;
3248                                                 rcount = 0;
3249                                         }
3250                                         continue;
3251                                 }
3252
3253                                 if (rcount &&
3254                                         (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
3255                                         ++rcount;
3256                                         continue;
3257                                 }
3258                                 if (rcount) {
3259                                         padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
3260                                         padiff >>= PAGE_SHIFT;
3261                                         padiff &= PQ_L2_MASK;
3262                                         if (padiff == 0) {
3263                                                 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
3264                                                 ++rcount;
3265                                                 continue;
3266                                         }
3267                                         db_printf(" index(%ld)run(%d)pa(0x%lx)",
3268                                                 (long)fidx, rcount, (long)pa);
3269                                         db_printf("pd(%ld)\n", (long)padiff);
3270                                         if ( nl > 18) {
3271                                                 c = cngetc();
3272                                                 if (c != ' ')
3273                                                         return;
3274                                                 nl = 0;
3275                                         }
3276                                         nl++;
3277                                 }
3278                                 fidx = idx;
3279                                 pa = VM_PAGE_TO_PHYS(m);
3280                                 rcount = 1;
3281                         }
3282                         if (rcount) {
3283                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3284                                         (long)fidx, rcount, (long)pa);
3285                                 if ( nl > 18) {
3286                                         c = cngetc();
3287                                         if (c != ' ')
3288                                                 return;
3289                                         nl = 0;
3290                                 }
3291                                 nl++;
3292                         }
3293                 }
3294         }
3295 }
3296 #endif /* DDB */