Merge branch 'vendor/MDOCML'
[dragonfly.git] / sys / kern / kern_exec.c
1 /*
2  * Copyright (c) 1993, David Greenman
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_exec.c,v 1.107.2.15 2002/07/30 15:40:46 nectar Exp $
27  */
28
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysproto.h>
32 #include <sys/kernel.h>
33 #include <sys/mount.h>
34 #include <sys/filedesc.h>
35 #include <sys/fcntl.h>
36 #include <sys/acct.h>
37 #include <sys/exec.h>
38 #include <sys/imgact.h>
39 #include <sys/imgact_elf.h>
40 #include <sys/kern_syscall.h>
41 #include <sys/wait.h>
42 #include <sys/malloc.h>
43 #include <sys/proc.h>
44 #include <sys/priv.h>
45 #include <sys/ktrace.h>
46 #include <sys/signalvar.h>
47 #include <sys/pioctl.h>
48 #include <sys/nlookup.h>
49 #include <sys/sysent.h>
50 #include <sys/shm.h>
51 #include <sys/sysctl.h>
52 #include <sys/vnode.h>
53 #include <sys/vmmeter.h>
54 #include <sys/libkern.h>
55
56 #include <cpu/lwbuf.h>
57
58 #include <vm/vm.h>
59 #include <vm/vm_param.h>
60 #include <sys/lock.h>
61 #include <vm/pmap.h>
62 #include <vm/vm_page.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vnode_pager.h>
68 #include <vm/vm_pager.h>
69
70 #include <sys/user.h>
71 #include <sys/reg.h>
72
73 #include <sys/refcount.h>
74 #include <sys/thread2.h>
75 #include <sys/mplock2.h>
76 #include <vm/vm_page2.h>
77
78 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
79 MALLOC_DEFINE(M_EXECARGS, "exec-args", "Exec arguments");
80
81 static register_t *exec_copyout_strings (struct image_params *);
82
83 /* XXX This should be vm_size_t. */
84 static u_long ps_strings = PS_STRINGS;
85 SYSCTL_ULONG(_kern, KERN_PS_STRINGS, ps_strings, CTLFLAG_RD, &ps_strings, 0, "");
86
87 /* XXX This should be vm_size_t. */
88 static u_long usrstack = USRSTACK;
89 SYSCTL_ULONG(_kern, KERN_USRSTACK, usrstack, CTLFLAG_RD, &usrstack, 0, "");
90
91 u_long ps_arg_cache_limit = PAGE_SIZE / 16;
92 SYSCTL_LONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW, 
93     &ps_arg_cache_limit, 0, "");
94
95 int ps_argsopen = 1;
96 SYSCTL_INT(_kern, OID_AUTO, ps_argsopen, CTLFLAG_RW, &ps_argsopen, 0, "");
97
98 static int ktrace_suid = 0;
99 SYSCTL_INT(_kern, OID_AUTO, ktrace_suid, CTLFLAG_RW, &ktrace_suid, 0, "");
100
101 void print_execve_args(struct image_args *args);
102 int debug_execve_args = 0;
103 SYSCTL_INT(_kern, OID_AUTO, debug_execve_args, CTLFLAG_RW, &debug_execve_args,
104     0, "");
105
106 /*
107  * Exec arguments object cache
108  */
109 static struct objcache *exec_objcache;
110
111 static
112 void
113 exec_objcache_init(void *arg __unused)
114 {
115         int cluster_limit;
116         size_t limsize;
117
118         /*
119          * Maximum number of concurrent execs.  This can be limiting on
120          * systems with a lot of cpu cores but it also eats a significant
121          * amount of memory.
122          */
123         cluster_limit = (ncpus < 16) ? 16 : ncpus;
124         limsize = kmem_lim_size();
125         if (limsize > 7 * 1024)
126                 cluster_limit *= 2;
127         if (limsize > 15 * 1024)
128                 cluster_limit *= 2;
129
130         exec_objcache = objcache_create_mbacked(
131                                         M_EXECARGS, PATH_MAX + ARG_MAX,
132                                         cluster_limit, 8,
133                                         NULL, NULL, NULL);
134 }
135 SYSINIT(exec_objcache, SI_BOOT2_MACHDEP, SI_ORDER_ANY, exec_objcache_init, 0);
136
137 /*
138  * stackgap_random specifies if the stackgap should have a random size added
139  * to it.  It must be a power of 2.  If non-zero, the stack gap will be 
140  * calculated as: ALIGN(karc4random() & (stackgap_random - 1)).
141  */
142 static int stackgap_random = 1024;
143 static int
144 sysctl_kern_stackgap(SYSCTL_HANDLER_ARGS)
145 {
146         int error, new_val;
147         new_val = stackgap_random;
148         error = sysctl_handle_int(oidp, &new_val, 0, req);
149         if (error != 0 || req->newptr == NULL)
150                 return (error);
151         if (new_val > 0 && ((new_val > 16 * PAGE_SIZE) || !powerof2(new_val)))
152                 return (EINVAL);
153         stackgap_random = new_val;
154
155         return(0);
156 }
157
158 SYSCTL_PROC(_kern, OID_AUTO, stackgap_random, CTLFLAG_RW|CTLTYPE_INT,
159         0, 0, sysctl_kern_stackgap, "I",
160         "Max random stack gap (power of 2), static gap if negative");
161         
162 void
163 print_execve_args(struct image_args *args)
164 {
165         char *cp;
166         int ndx;
167
168         cp = args->begin_argv;
169         for (ndx = 0; ndx < args->argc; ndx++) {
170                 kprintf("\targv[%d]: %s\n", ndx, cp);
171                 while (*cp++ != '\0');
172         }
173         for (ndx = 0; ndx < args->envc; ndx++) {
174                 kprintf("\tenvv[%d]: %s\n", ndx, cp);
175                 while (*cp++ != '\0');
176         }
177 }
178
179 /*
180  * Each of the items is a pointer to a `const struct execsw', hence the
181  * double pointer here.
182  */
183 static const struct execsw **execsw;
184
185 /*
186  * Replace current vmspace with a new binary.
187  * Returns 0 on success, > 0 on recoverable error (use as errno).
188  * Returns -1 on lethal error which demands killing of the current
189  * process!
190  */
191 int
192 kern_execve(struct nlookupdata *nd, struct image_args *args)
193 {
194         struct thread *td = curthread;
195         struct lwp *lp = td->td_lwp;
196         struct proc *p = td->td_proc;
197         struct vnode *ovp;
198         register_t *stack_base;
199         struct pargs *pa;
200         struct sigacts *ops;
201         struct sigacts *nps;
202         int error, len, i;
203         struct image_params image_params, *imgp;
204         struct vattr attr;
205         int (*img_first) (struct image_params *);
206
207         if (debug_execve_args) {
208                 kprintf("%s()\n", __func__);
209                 print_execve_args(args);
210         }
211
212         KKASSERT(p);
213         lwkt_gettoken(&p->p_token);
214         imgp = &image_params;
215
216         /*
217          * NOTE: P_INEXEC is handled by exec_new_vmspace() now.  We make
218          * no modifications to the process at all until we get there.
219          *
220          * Note that multiple threads may be trying to exec at the same
221          * time.  exec_new_vmspace() handles that too.
222          */
223
224         /*
225          * Initialize part of the common data
226          */
227         imgp->proc = p;
228         imgp->args = args;
229         imgp->attr = &attr;
230         imgp->entry_addr = 0;
231         imgp->resident = 0;
232         imgp->vmspace_destroyed = 0;
233         imgp->interpreted = 0;
234         imgp->interpreter_name[0] = 0;
235         imgp->auxargs = NULL;
236         imgp->vp = NULL;
237         imgp->firstpage = NULL;
238         imgp->ps_strings = 0;
239         imgp->execpath = imgp->freepath = NULL;
240         imgp->execpathp = 0;
241         imgp->image_header = NULL;
242
243 interpret:
244
245         /*
246          * Translate the file name to a vnode.  Unlock the cache entry to
247          * improve parallelism for programs exec'd in parallel.
248          */
249         if ((error = nlookup(nd)) != 0)
250                 goto exec_fail;
251         error = cache_vget(&nd->nl_nch, nd->nl_cred, LK_EXCLUSIVE, &imgp->vp);
252         KKASSERT(nd->nl_flags & NLC_NCPISLOCKED);
253         nd->nl_flags &= ~NLC_NCPISLOCKED;
254         cache_unlock(&nd->nl_nch);
255         if (error)
256                 goto exec_fail;
257
258         /*
259          * Check file permissions (also 'opens' file).
260          * Include also the top level mount in the check.
261          */
262         error = exec_check_permissions(imgp, nd->nl_nch.mount);
263         if (error) {
264                 vn_unlock(imgp->vp);
265                 goto exec_fail_dealloc;
266         }
267
268         error = exec_map_first_page(imgp);
269         vn_unlock(imgp->vp);
270         if (error)
271                 goto exec_fail_dealloc;
272
273         imgp->proc->p_osrel = 0;
274
275         if (debug_execve_args && imgp->interpreted) {
276                 kprintf("    target is interpreted -- recursive pass\n");
277                 kprintf("    interpreter: %s\n", imgp->interpreter_name);
278                 print_execve_args(args);
279         }
280
281         /*
282          *      If the current process has a special image activator it
283          *      wants to try first, call it.   For example, emulating shell 
284          *      scripts differently.
285          */
286         error = -1;
287         if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL)
288                 error = img_first(imgp);
289
290         /*
291          *      If the vnode has a registered vmspace, exec the vmspace
292          */
293         if (error == -1 && imgp->vp->v_resident) {
294                 error = exec_resident_imgact(imgp);
295         }
296
297         /*
298          *      Loop through the list of image activators, calling each one.
299          *      An activator returns -1 if there is no match, 0 on success,
300          *      and an error otherwise.
301          */
302         for (i = 0; error == -1 && execsw[i]; ++i) {
303                 if (execsw[i]->ex_imgact == NULL ||
304                     execsw[i]->ex_imgact == img_first) {
305                         continue;
306                 }
307                 error = (*execsw[i]->ex_imgact)(imgp);
308         }
309
310         if (error) {
311                 if (error == -1)
312                         error = ENOEXEC;
313                 goto exec_fail_dealloc;
314         }
315
316         /*
317          * Special interpreter operation, cleanup and loop up to try to
318          * activate the interpreter.
319          */
320         if (imgp->interpreted) {
321                 exec_unmap_first_page(imgp);
322                 nlookup_done(nd);
323                 vrele(imgp->vp);
324                 imgp->vp = NULL;
325                 error = nlookup_init(nd, imgp->interpreter_name, UIO_SYSSPACE,
326                                         NLC_FOLLOW);
327                 if (error)
328                         goto exec_fail;
329                 goto interpret;
330         }
331
332         /*
333          * Do the best to calculate the full path to the image file
334          */
335         if (imgp->auxargs != NULL &&
336            ((args->fname != NULL && args->fname[0] == '/') ||
337             vn_fullpath(imgp->proc,
338                         imgp->vp,
339                         &imgp->execpath,
340                         &imgp->freepath,
341                         0) != 0))
342                 imgp->execpath = args->fname;
343
344         /*
345          * Copy out strings (args and env) and initialize stack base
346          */
347         stack_base = exec_copyout_strings(imgp);
348         p->p_vmspace->vm_minsaddr = (char *)stack_base;
349
350         /*
351          * If custom stack fixup routine present for this process
352          * let it do the stack setup.  If we are running a resident
353          * image there is no auxinfo or other image activator context
354          * so don't try to add fixups to the stack.
355          *
356          * Else stuff argument count as first item on stack
357          */
358         if (p->p_sysent->sv_fixup && imgp->resident == 0)
359                 (*p->p_sysent->sv_fixup)(&stack_base, imgp);
360         else
361                 suword(--stack_base, imgp->args->argc);
362
363         /*
364          * For security and other reasons, the file descriptor table cannot
365          * be shared after an exec.
366          */
367         if (p->p_fd->fd_refcnt > 1) {
368                 struct filedesc *tmp;
369
370                 error = fdcopy(p, &tmp);
371                 if (error != 0)
372                         goto exec_fail;
373                 fdfree(p, tmp);
374         }
375
376         /*
377          * For security and other reasons, signal handlers cannot
378          * be shared after an exec. The new proces gets a copy of the old
379          * handlers. In execsigs(), the new process will have its signals
380          * reset.
381          */
382         ops = p->p_sigacts;
383         if (ops->ps_refcnt > 1) {
384                 nps = kmalloc(sizeof(*nps), M_SUBPROC, M_WAITOK);
385                 bcopy(ops, nps, sizeof(*nps));
386                 refcount_init(&nps->ps_refcnt, 1);
387                 p->p_sigacts = nps;
388                 if (refcount_release(&ops->ps_refcnt)) {
389                         kfree(ops, M_SUBPROC);
390                         ops = NULL;
391                 }
392         }
393
394         /*
395          * For security and other reasons virtual kernels cannot be
396          * inherited by an exec.  This also allows a virtual kernel
397          * to fork/exec unrelated applications.
398          */
399         if (p->p_vkernel)
400                 vkernel_exit(p);
401
402         /* Stop profiling */
403         stopprofclock(p);
404
405         /* close files on exec */
406         fdcloseexec(p);
407
408         /* reset caught signals */
409         execsigs(p);
410
411         /* name this process - nameiexec(p, ndp) */
412         len = min(nd->nl_nch.ncp->nc_nlen, MAXCOMLEN);
413         bcopy(nd->nl_nch.ncp->nc_name, p->p_comm, len);
414         p->p_comm[len] = 0;
415         bcopy(p->p_comm, lp->lwp_thread->td_comm, MAXCOMLEN+1);
416
417         /*
418          * mark as execed, wakeup the process that vforked (if any) and tell
419          * it that it now has its own resources back
420          */
421         p->p_flags |= P_EXEC;
422         if (p->p_pptr && (p->p_flags & P_PPWAIT)) {
423                 p->p_flags &= ~P_PPWAIT;
424                 wakeup((caddr_t)p->p_pptr);
425         }
426
427         /*
428          * Implement image setuid/setgid.
429          *
430          * Don't honor setuid/setgid if the filesystem prohibits it or if
431          * the process is being traced.
432          */
433         if ((((attr.va_mode & VSUID) && p->p_ucred->cr_uid != attr.va_uid) ||
434              ((attr.va_mode & VSGID) && p->p_ucred->cr_gid != attr.va_gid)) &&
435             (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
436             (p->p_flags & P_TRACED) == 0) {
437                 /*
438                  * Turn off syscall tracing for set-id programs, except for
439                  * root.  Record any set-id flags first to make sure that
440                  * we do not regain any tracing during a possible block.
441                  */
442                 setsugid();
443                 if (p->p_tracenode && ktrace_suid == 0 &&
444                     priv_check(td, PRIV_ROOT) != 0) {
445                         ktrdestroy(&p->p_tracenode);
446                         p->p_traceflag = 0;
447                 }
448                 /* Close any file descriptors 0..2 that reference procfs */
449                 setugidsafety(p);
450                 /* Make sure file descriptors 0..2 are in use. */
451                 error = fdcheckstd(lp);
452                 if (error != 0)
453                         goto exec_fail_dealloc;
454                 /*
455                  * Set the new credentials.
456                  */
457                 cratom(&p->p_ucred);
458                 if (attr.va_mode & VSUID)
459                         change_euid(attr.va_uid);
460                 if (attr.va_mode & VSGID)
461                         p->p_ucred->cr_gid = attr.va_gid;
462
463                 /*
464                  * Clear local varsym variables
465                  */
466                 varsymset_clean(&p->p_varsymset);
467         } else {
468                 if (p->p_ucred->cr_uid == p->p_ucred->cr_ruid &&
469                     p->p_ucred->cr_gid == p->p_ucred->cr_rgid)
470                         p->p_flags &= ~P_SUGID;
471         }
472
473         /*
474          * Implement correct POSIX saved-id behavior.
475          */
476         if (p->p_ucred->cr_svuid != p->p_ucred->cr_uid ||
477             p->p_ucred->cr_svgid != p->p_ucred->cr_gid) {
478                 cratom(&p->p_ucred);
479                 p->p_ucred->cr_svuid = p->p_ucred->cr_uid;
480                 p->p_ucred->cr_svgid = p->p_ucred->cr_gid;
481         }
482
483         /*
484          * Store the vp for use in procfs.  Be sure to keep p_textvp
485          * consistent if we block during the switch-over.
486          */
487         ovp = p->p_textvp;
488         vref(imgp->vp);                 /* ref new vp */
489         p->p_textvp = imgp->vp;
490         if (ovp)                        /* release old vp */
491                 vrele(ovp);
492
493         /* Release old namecache handle to text file */
494         if (p->p_textnch.ncp)
495                 cache_drop(&p->p_textnch);
496
497         if (nd->nl_nch.mount)
498                 cache_copy(&nd->nl_nch, &p->p_textnch);
499
500         /*
501          * Notify others that we exec'd, and clear the P_INEXEC flag
502          * as we're now a bona fide freshly-execed process.
503          */
504         KNOTE(&p->p_klist, NOTE_EXEC);
505         p->p_flags &= ~P_INEXEC;
506         if (p->p_stops)
507                 wakeup(&p->p_stype);
508
509         /*
510          * If tracing the process, trap to debugger so breakpoints
511          *      can be set before the program executes.
512          */
513         STOPEVENT(p, S_EXEC, 0);
514
515         if (p->p_flags & P_TRACED)
516                 ksignal(p, SIGTRAP);
517
518         /* clear "fork but no exec" flag, as we _are_ execing */
519         p->p_acflag &= ~AFORK;
520
521         /* Set values passed into the program in registers. */
522         exec_setregs(imgp->entry_addr, (u_long)(uintptr_t)stack_base,
523                      imgp->ps_strings);
524
525         /* Set the access time on the vnode */
526         vn_mark_atime(imgp->vp, td);
527
528         /*
529          * Free any previous argument cache
530          */
531         pa = p->p_args;
532         p->p_args = NULL;
533         if (pa && refcount_release(&pa->ar_ref)) {
534                 kfree(pa, M_PARGS);
535                 pa = NULL;
536         }
537
538         /*
539          * Cache arguments if they fit inside our allowance
540          */
541         i = imgp->args->begin_envv - imgp->args->begin_argv;
542         if (sizeof(struct pargs) + i <= ps_arg_cache_limit) {
543                 pa = kmalloc(sizeof(struct pargs) + i, M_PARGS, M_WAITOK);
544                 refcount_init(&pa->ar_ref, 1);
545                 pa->ar_length = i;
546                 bcopy(imgp->args->begin_argv, pa->ar_args, i);
547                 KKASSERT(p->p_args == NULL);
548                 p->p_args = pa;
549         }
550
551 exec_fail_dealloc:
552
553         /*
554          * free various allocated resources
555          */
556         if (imgp->firstpage)
557                 exec_unmap_first_page(imgp);
558
559         if (imgp->vp) {
560                 vrele(imgp->vp);
561                 imgp->vp = NULL;
562         }
563
564         if (imgp->freepath)
565                 kfree(imgp->freepath, M_TEMP);
566
567         if (error == 0) {
568                 ++mycpu->gd_cnt.v_exec;
569                 lwkt_reltoken(&p->p_token);
570                 return (0);
571         }
572
573 exec_fail:
574         /*
575          * we're done here, clear P_INEXEC if we were the ones that
576          * set it.  Otherwise if vmspace_destroyed is still set we
577          * raced another thread and that thread is responsible for
578          * clearing it.
579          */
580         if (imgp->vmspace_destroyed & 2) {
581                 p->p_flags &= ~P_INEXEC;
582                 if (p->p_stops)
583                         wakeup(&p->p_stype);
584         }
585         lwkt_reltoken(&p->p_token);
586         if (imgp->vmspace_destroyed) {
587                 /*
588                  * Sorry, no more process anymore. exit gracefully.
589                  * However we can't die right here, because our
590                  * caller might have to clean up, so indicate a
591                  * lethal error by returning -1.
592                  */
593                 return(-1);
594         } else {
595                 return(error);
596         }
597 }
598
599 /*
600  * execve() system call.
601  */
602 int
603 sys_execve(struct execve_args *uap)
604 {
605         struct nlookupdata nd;
606         struct image_args args;
607         int error;
608
609         bzero(&args, sizeof(args));
610
611         error = nlookup_init(&nd, uap->fname, UIO_USERSPACE, NLC_FOLLOW);
612         if (error == 0) {
613                 error = exec_copyin_args(&args, uap->fname, PATH_USERSPACE,
614                                         uap->argv, uap->envv);
615         }
616         if (error == 0)
617                 error = kern_execve(&nd, &args);
618         nlookup_done(&nd);
619         exec_free_args(&args);
620
621         if (error < 0) {
622                 /* We hit a lethal error condition.  Let's die now. */
623                 exit1(W_EXITCODE(0, SIGABRT));
624                 /* NOTREACHED */
625         }
626
627         /*
628          * The syscall result is returned in registers to the new program.
629          * Linux will register %edx as an atexit function and we must be
630          * sure to set it to 0.  XXX
631          */
632         if (error == 0)
633                 uap->sysmsg_result64 = 0;
634
635         return (error);
636 }
637
638 int
639 exec_map_page(struct image_params *imgp, vm_pindex_t pageno,
640               struct lwbuf **plwb, const char **pdata)
641 {
642         int rv;
643         vm_page_t ma;
644         vm_page_t m;
645         vm_object_t object;
646
647         /*
648          * The file has to be mappable.
649          */
650         if ((object = imgp->vp->v_object) == NULL)
651                 return (EIO);
652
653         if (pageno >= object->size)
654                 return (EIO);
655
656         vm_object_hold(object);
657         m = vm_page_grab(object, pageno, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
658         while ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
659                 ma = m;
660
661                 /*
662                  * get_pages unbusies all the requested pages except the
663                  * primary page (at index 0 in this case).  The primary
664                  * page may have been wired during the pagein (e.g. by
665                  * the buffer cache) so vnode_pager_freepage() must be
666                  * used to properly release it.
667                  */
668                 rv = vm_pager_get_page(object, &ma, 1);
669                 m = vm_page_lookup(object, pageno);
670
671                 if (rv != VM_PAGER_OK || m == NULL || m->valid == 0) {
672                         if (m) {
673                                 vm_page_protect(m, VM_PROT_NONE);
674                                 vnode_pager_freepage(m);
675                         }
676                         vm_object_drop(object);
677                         return EIO;
678                 }
679         }
680         vm_page_hold(m);
681         vm_page_wakeup(m);      /* unbusy the page */
682         vm_object_drop(object);
683
684         *plwb = lwbuf_alloc(m, *plwb);
685         *pdata = (void *)lwbuf_kva(*plwb);
686
687         return (0);
688 }
689
690 /*
691  * Map the first page of an executable image.
692  *
693  * NOTE: If the mapping fails we have to NULL-out firstpage which may
694  *       still be pointing to our supplied lwp structure.
695  */
696 int
697 exec_map_first_page(struct image_params *imgp)
698 {
699         int err;
700
701         if (imgp->firstpage)
702                 exec_unmap_first_page(imgp);
703
704         imgp->firstpage = &imgp->firstpage_cache;
705         err = exec_map_page(imgp, 0, &imgp->firstpage, &imgp->image_header);
706
707         if (err) {
708                 imgp->firstpage = NULL;
709                 return err;
710         }
711
712         return 0;
713 }
714
715 void
716 exec_unmap_page(struct lwbuf *lwb)
717 {
718         vm_page_t m;
719
720         crit_enter();
721         if (lwb != NULL) {
722                 m = lwbuf_page(lwb);
723                 lwbuf_free(lwb);
724                 vm_page_unhold(m);
725         }
726         crit_exit();
727 }
728
729 void
730 exec_unmap_first_page(struct image_params *imgp)
731 {
732         exec_unmap_page(imgp->firstpage);
733         imgp->firstpage = NULL;
734         imgp->image_header = NULL;
735 }
736
737 /*
738  * Destroy old address space, and allocate a new stack
739  *      The new stack is only SGROWSIZ large because it is grown
740  *      automatically in trap.c.
741  *
742  * This is the point of no return.
743  */
744 int
745 exec_new_vmspace(struct image_params *imgp, struct vmspace *vmcopy)
746 {
747         struct vmspace *vmspace = imgp->proc->p_vmspace;
748         vm_offset_t stack_addr = USRSTACK - maxssiz;
749         struct proc *p;
750         vm_map_t map;
751         int error;
752
753         /*
754          * Indicate that we cannot gracefully error out any more, kill
755          * any other threads present, and set P_INEXEC to indicate that
756          * we are now messing with the process structure proper.
757          *
758          * If killalllwps() races return an error which coupled with
759          * vmspace_destroyed will cause us to exit.  This is what we
760          * want since another thread is patiently waiting for us to exit
761          * in that case.
762          */
763         p = curproc;
764         imgp->vmspace_destroyed = 1;
765
766         if (curthread->td_proc->p_nthreads > 1) {
767                 error = killalllwps(1);
768                 if (error)
769                         return (error);
770         }
771         imgp->vmspace_destroyed |= 2;   /* we are responsible for P_INEXEC */
772         p->p_flags |= P_INEXEC;
773
774         /*
775          * Tell procfs to release its hold on the process.  It
776          * will return EAGAIN.
777          */
778         if (p->p_stops)
779                 wakeup(&p->p_stype);
780
781         /*
782          * After setting P_INEXEC wait for any remaining references to
783          * the process (p) to go away.
784          *
785          * In particular, a vfork/exec sequence will replace p->p_vmspace
786          * and we must interlock anyone trying to access the space (aka
787          * procfs or sys_process.c calling procfs_domem()).
788          *
789          * If P_PPWAIT is set the parent vfork()'d and has a PHOLD() on us.
790          */
791         PSTALL(p, "exec1", ((p->p_flags & P_PPWAIT) ? 1 : 0));
792
793         /*
794          * Blow away entire process VM, if address space not shared,
795          * otherwise, create a new VM space so that other threads are
796          * not disrupted.  If we are execing a resident vmspace we
797          * create a duplicate of it and remap the stack.
798          */
799         map = &vmspace->vm_map;
800         if (vmcopy) {
801                 vmspace_exec(imgp->proc, vmcopy);
802                 vmspace = imgp->proc->p_vmspace;
803                 pmap_remove_pages(vmspace_pmap(vmspace), stack_addr, USRSTACK);
804                 map = &vmspace->vm_map;
805         } else if (vmspace->vm_sysref.refcnt == 1) {
806                 shmexit(vmspace);
807                 pmap_remove_pages(vmspace_pmap(vmspace),
808                                   0, VM_MAX_USER_ADDRESS);
809                 vm_map_remove(map, 0, VM_MAX_USER_ADDRESS);
810         } else {
811                 vmspace_exec(imgp->proc, NULL);
812                 vmspace = imgp->proc->p_vmspace;
813                 map = &vmspace->vm_map;
814         }
815
816         /* Allocate a new stack */
817         error = vm_map_stack(&vmspace->vm_map, stack_addr, (vm_size_t)maxssiz,
818                              0, VM_PROT_ALL, VM_PROT_ALL, 0);
819         if (error)
820                 return (error);
821
822         /* vm_ssize and vm_maxsaddr are somewhat antiquated concepts in the
823          * VM_STACK case, but they are still used to monitor the size of the
824          * process stack so we can check the stack rlimit.
825          */
826         vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT;
827         vmspace->vm_maxsaddr = (char *)USRSTACK - maxssiz;
828
829         return(0);
830 }
831
832 /*
833  * Copy out argument and environment strings from the old process
834  *      address space into the temporary string buffer.
835  */
836 int
837 exec_copyin_args(struct image_args *args, char *fname,
838                 enum exec_path_segflg segflg, char **argv, char **envv)
839 {
840         char    *argp, *envp;
841         int     error = 0;
842         size_t  length;
843
844         args->buf = objcache_get(exec_objcache, M_WAITOK);
845         if (args->buf == NULL)
846                 return (ENOMEM);
847         args->begin_argv = args->buf;
848         args->endp = args->begin_argv;
849         args->space = ARG_MAX;
850
851         args->fname = args->buf + ARG_MAX;
852
853         /*
854          * Copy the file name.
855          */
856         if (segflg == PATH_SYSSPACE) {
857                 error = copystr(fname, args->fname, PATH_MAX, &length);
858         } else if (segflg == PATH_USERSPACE) {
859                 error = copyinstr(fname, args->fname, PATH_MAX, &length);
860         }
861
862         /*
863          * Extract argument strings.  argv may not be NULL.  The argv
864          * array is terminated by a NULL entry.  We special-case the
865          * situation where argv[0] is NULL by passing { filename, NULL }
866          * to the new program to guarentee that the interpreter knows what
867          * file to open in case we exec an interpreted file.   Note that
868          * a NULL argv[0] terminates the argv[] array.
869          *
870          * XXX the special-casing of argv[0] is historical and needs to be
871          * revisited.
872          */
873         if (argv == NULL)
874                 error = EFAULT;
875         if (error == 0) {
876                 while ((argp = (caddr_t)(intptr_t)fuword(argv++)) != NULL) {
877                         if (argp == (caddr_t)-1) {
878                                 error = EFAULT;
879                                 break;
880                         }
881                         error = copyinstr(argp, args->endp,
882                                           args->space, &length);
883                         if (error) {
884                                 if (error == ENAMETOOLONG)
885                                         error = E2BIG;
886                                 break;
887                         }
888                         args->space -= length;
889                         args->endp += length;
890                         args->argc++;
891                 }
892                 if (args->argc == 0 && error == 0) {
893                         length = strlen(args->fname) + 1;
894                         if (length > args->space) {
895                                 error = E2BIG;
896                         } else {
897                                 bcopy(args->fname, args->endp, length);
898                                 args->space -= length;
899                                 args->endp += length;
900                                 args->argc++;
901                         }
902                 }
903         }       
904
905         args->begin_envv = args->endp;
906
907         /*
908          * extract environment strings.  envv may be NULL.
909          */
910         if (envv && error == 0) {
911                 while ((envp = (caddr_t) (intptr_t) fuword(envv++))) {
912                         if (envp == (caddr_t) -1) {
913                                 error = EFAULT;
914                                 break;
915                         }
916                         error = copyinstr(envp, args->endp,
917                                           args->space, &length);
918                         if (error) {
919                                 if (error == ENAMETOOLONG)
920                                         error = E2BIG;
921                                 break;
922                         }
923                         args->space -= length;
924                         args->endp += length;
925                         args->envc++;
926                 }
927         }
928         return (error);
929 }
930
931 void
932 exec_free_args(struct image_args *args)
933 {
934         if (args->buf) {
935                 objcache_put(exec_objcache, args->buf);
936                 args->buf = NULL;
937         }
938 }
939
940 /*
941  * Copy strings out to the new process address space, constructing
942  * new arg and env vector tables. Return a pointer to the base
943  * so that it can be used as the initial stack pointer.
944  *
945  * The format is, roughly:
946  *
947  *      [argv[]]                        <-- vectp
948  *      [envp[]]
949  *      [ELF_Auxargs]
950  *
951  *      [args & env]                    <-- destp
952  *      [sgap]
953  *      [SPARE_USRSPACE]
954  *      [execpath]
955  *      [szsigcode]
956  *      [ps_strings]                    top of user stack
957  *
958  */
959 register_t *
960 exec_copyout_strings(struct image_params *imgp)
961 {
962         int argc, envc, sgap;
963         int gap;
964         int argsenvspace;
965         char **vectp;
966         char *stringp, *destp;
967         register_t *stack_base;
968         struct ps_strings *arginfo;
969         size_t execpath_len;
970         int szsigcode;
971
972         /*
973          * Calculate string base and vector table pointers.
974          * Also deal with signal trampoline code for this exec type.
975          */
976         if (imgp->execpath != NULL && imgp->auxargs != NULL)
977                 execpath_len = strlen(imgp->execpath) + 1;
978         else
979                 execpath_len = 0;
980         arginfo = (struct ps_strings *)PS_STRINGS;
981         szsigcode = *(imgp->proc->p_sysent->sv_szsigcode);
982
983         argsenvspace = roundup((ARG_MAX - imgp->args->space), sizeof(char *));
984         gap = stackgap_random;
985         cpu_ccfence();
986         if (gap != 0) {
987                 if (gap < 0)
988                         sgap = ALIGN(-gap);
989                 else
990                         sgap = ALIGN(karc4random() & (gap - 1));
991         } else {
992                 sgap = 0;
993         }
994
995         /*
996          * Calculate destp, which points to [args & env] and above.
997          */
998         destp = (caddr_t)arginfo -
999                 szsigcode -
1000                 roundup(execpath_len, sizeof(char *)) -
1001                 SPARE_USRSPACE -
1002                 sgap -
1003                 argsenvspace;
1004
1005         /*
1006          * install sigcode
1007          */
1008         if (szsigcode) {
1009                 copyout(imgp->proc->p_sysent->sv_sigcode,
1010                         ((caddr_t)arginfo - szsigcode), szsigcode);
1011         }
1012
1013         /*
1014          * Copy the image path for the rtld
1015          */
1016         if (execpath_len) {
1017                 imgp->execpathp = (uintptr_t)arginfo
1018                                   - szsigcode
1019                                   - roundup(execpath_len, sizeof(char *));
1020                 copyout(imgp->execpath, (void *)imgp->execpathp, execpath_len);
1021         }
1022
1023         /*
1024          * Calculate base for argv[], envp[], and ELF_Auxargs.
1025          */
1026         vectp = (char **)destp - (AT_COUNT * 2);
1027         vectp -= imgp->args->argc + imgp->args->envc + 2;
1028
1029         stack_base = (register_t *)vectp;
1030
1031         stringp = imgp->args->begin_argv;
1032         argc = imgp->args->argc;
1033         envc = imgp->args->envc;
1034
1035         /*
1036          * Copy out strings - arguments and environment (at destp)
1037          */
1038         copyout(stringp, destp, ARG_MAX - imgp->args->space);
1039
1040         /*
1041          * Fill in "ps_strings" struct for ps, w, etc.
1042          */
1043         suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp);
1044         suword32(&arginfo->ps_nargvstr, argc);
1045
1046         /*
1047          * Fill in argument portion of vector table.
1048          */
1049         for (; argc > 0; --argc) {
1050                 suword(vectp++, (long)(intptr_t)destp);
1051                 while (*stringp++ != 0)
1052                         destp++;
1053                 destp++;
1054         }
1055
1056         /* a null vector table pointer separates the argp's from the envp's */
1057         suword(vectp++, 0);
1058
1059         suword(&arginfo->ps_envstr, (long)(intptr_t)vectp);
1060         suword32(&arginfo->ps_nenvstr, envc);
1061
1062         /*
1063          * Fill in environment portion of vector table.
1064          */
1065         for (; envc > 0; --envc) {
1066                 suword(vectp++, (long)(intptr_t)destp);
1067                 while (*stringp++ != 0)
1068                         destp++;
1069                 destp++;
1070         }
1071
1072         /* end of vector table is a null pointer */
1073         suword(vectp, 0);
1074
1075         return (stack_base);
1076 }
1077
1078 /*
1079  * Check permissions of file to execute.
1080  *      Return 0 for success or error code on failure.
1081  */
1082 int
1083 exec_check_permissions(struct image_params *imgp, struct mount *topmnt)
1084 {
1085         struct proc *p = imgp->proc;
1086         struct vnode *vp = imgp->vp;
1087         struct vattr *attr = imgp->attr;
1088         int error;
1089
1090         /* Get file attributes */
1091         error = VOP_GETATTR(vp, attr);
1092         if (error)
1093                 return (error);
1094
1095         /*
1096          * 1) Check if file execution is disabled for the filesystem that this
1097          *      file resides on.
1098          * 2) Insure that at least one execute bit is on - otherwise root
1099          *      will always succeed, and we don't want to happen unless the
1100          *      file really is executable.
1101          * 3) Insure that the file is a regular file.
1102          */
1103         if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
1104             ((topmnt != NULL) && (topmnt->mnt_flag & MNT_NOEXEC)) ||
1105             ((attr->va_mode & 0111) == 0) ||
1106             (attr->va_type != VREG)) {
1107                 return (EACCES);
1108         }
1109
1110         /*
1111          * Zero length files can't be exec'd
1112          */
1113         if (attr->va_size == 0)
1114                 return (ENOEXEC);
1115
1116         /*
1117          *  Check for execute permission to file based on current credentials.
1118          */
1119         error = VOP_EACCESS(vp, VEXEC, p->p_ucred);
1120         if (error)
1121                 return (error);
1122
1123         /*
1124          * Check number of open-for-writes on the file and deny execution
1125          * if there are any.
1126          */
1127         if (vp->v_writecount)
1128                 return (ETXTBSY);
1129
1130         /*
1131          * Call filesystem specific open routine, which allows us to read,
1132          * write, and mmap the file.  Without the VOP_OPEN we can only
1133          * stat the file.
1134          */
1135         error = VOP_OPEN(vp, FREAD, p->p_ucred, NULL);
1136         if (error)
1137                 return (error);
1138
1139         return (0);
1140 }
1141
1142 /*
1143  * Exec handler registration
1144  */
1145 int
1146 exec_register(const struct execsw *execsw_arg)
1147 {
1148         const struct execsw **es, **xs, **newexecsw;
1149         int count = 2;  /* New slot and trailing NULL */
1150
1151         if (execsw)
1152                 for (es = execsw; *es; es++)
1153                         count++;
1154         newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1155         xs = newexecsw;
1156         if (execsw)
1157                 for (es = execsw; *es; es++)
1158                         *xs++ = *es;
1159         *xs++ = execsw_arg;
1160         *xs = NULL;
1161         if (execsw)
1162                 kfree(execsw, M_TEMP);
1163         execsw = newexecsw;
1164         return 0;
1165 }
1166
1167 int
1168 exec_unregister(const struct execsw *execsw_arg)
1169 {
1170         const struct execsw **es, **xs, **newexecsw;
1171         int count = 1;
1172
1173         if (execsw == NULL)
1174                 panic("unregister with no handlers left?");
1175
1176         for (es = execsw; *es; es++) {
1177                 if (*es == execsw_arg)
1178                         break;
1179         }
1180         if (*es == NULL)
1181                 return ENOENT;
1182         for (es = execsw; *es; es++)
1183                 if (*es != execsw_arg)
1184                         count++;
1185         newexecsw = kmalloc(count * sizeof(*es), M_TEMP, M_WAITOK);
1186         xs = newexecsw;
1187         for (es = execsw; *es; es++)
1188                 if (*es != execsw_arg)
1189                         *xs++ = *es;
1190         *xs = NULL;
1191         if (execsw)
1192                 kfree(execsw, M_TEMP);
1193         execsw = newexecsw;
1194         return 0;
1195 }