ath - Reimport fresh from FreeBSD 01-Jan-2014 for re-port
[dragonfly.git] / sys / dev / netif / ath / ath_hal / ar5212 / ar5413.c
1 /*
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  *
17  * $FreeBSD$
18  */
19 #include "opt_ah.h"
20
21 #include "ah.h"
22 #include "ah_internal.h"
23
24 #include "ah_eeprom_v3.h"
25
26 #include "ar5212/ar5212.h"
27 #include "ar5212/ar5212reg.h"
28 #include "ar5212/ar5212phy.h"
29
30 #define AH_5212_5413
31 #include "ar5212/ar5212.ini"
32
33 #define N(a)    (sizeof(a)/sizeof(a[0]))
34
35 struct ar5413State {
36         RF_HAL_FUNCS    base;           /* public state, must be first */
37         uint16_t        pcdacTable[PWR_TABLE_SIZE_2413];
38
39         uint32_t        Bank1Data[N(ar5212Bank1_5413)];
40         uint32_t        Bank2Data[N(ar5212Bank2_5413)];
41         uint32_t        Bank3Data[N(ar5212Bank3_5413)];
42         uint32_t        Bank6Data[N(ar5212Bank6_5413)];
43         uint32_t        Bank7Data[N(ar5212Bank7_5413)];
44
45         /*
46          * Private state for reduced stack usage.
47          */
48         /* filled out Vpd table for all pdGains (chanL) */
49         uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
50                             [MAX_PWR_RANGE_IN_HALF_DB];
51         /* filled out Vpd table for all pdGains (chanR) */
52         uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
53                             [MAX_PWR_RANGE_IN_HALF_DB];
54         /* filled out Vpd table for all pdGains (interpolated) */
55         uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
56                             [MAX_PWR_RANGE_IN_HALF_DB];
57 };
58 #define AR5413(ah)      ((struct ar5413State *) AH5212(ah)->ah_rfHal)
59
60 extern  void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
61                 uint32_t numBits, uint32_t firstBit, uint32_t column);
62
63 static void
64 ar5413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
65         int writes)
66 {
67         HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5413, modesIndex, writes);
68         HAL_INI_WRITE_ARRAY(ah, ar5212Common_5413, 1, writes);
69         HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5413, freqIndex, writes);
70 }
71
72 /*
73  * Take the MHz channel value and set the Channel value
74  *
75  * ASSUMES: Writes enabled to analog bus
76  */
77 static HAL_BOOL
78 ar5413SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
79 {
80         uint16_t freq = ath_hal_gethwchannel(ah, chan);
81         uint32_t channelSel  = 0;
82         uint32_t bModeSynth  = 0;
83         uint32_t aModeRefSel = 0;
84         uint32_t reg32       = 0;
85
86         OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
87
88         if (freq < 4800) {
89                 uint32_t txctl;
90
91                 if (((freq - 2192) % 5) == 0) {
92                         channelSel = ((freq - 672) * 2 - 3040)/10;
93                         bModeSynth = 0;
94                 } else if (((freq - 2224) % 5) == 0) {
95                         channelSel = ((freq - 704) * 2 - 3040) / 10;
96                         bModeSynth = 1;
97                 } else {
98                         HALDEBUG(ah, HAL_DEBUG_ANY,
99                             "%s: invalid channel %u MHz\n",
100                             __func__, freq);
101                         return AH_FALSE;
102                 }
103
104                 channelSel = (channelSel << 2) & 0xff;
105                 channelSel = ath_hal_reverseBits(channelSel, 8);
106
107                 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
108                 if (freq == 2484) {
109                         /* Enable channel spreading for channel 14 */
110                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
111                                 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
112                 } else {
113                         OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
114                                 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
115                 }
116         } else if (((freq % 5) == 2) && (freq <= 5435)) {
117                 freq = freq - 2; /* Align to even 5MHz raster */
118                 channelSel = ath_hal_reverseBits(
119                         (uint32_t)(((freq - 4800)*10)/25 + 1), 8);
120                 aModeRefSel = ath_hal_reverseBits(0, 2);
121         } else if ((freq % 20) == 0 && freq >= 5120) {
122                 channelSel = ath_hal_reverseBits(
123                         ((freq - 4800) / 20 << 2), 8);
124                 aModeRefSel = ath_hal_reverseBits(1, 2);
125         } else if ((freq % 10) == 0) {
126                 channelSel = ath_hal_reverseBits(
127                         ((freq - 4800) / 10 << 1), 8);
128                 aModeRefSel = ath_hal_reverseBits(1, 2);
129         } else if ((freq % 5) == 0) {
130                 channelSel = ath_hal_reverseBits(
131                         (freq - 4800) / 5, 8);
132                 aModeRefSel = ath_hal_reverseBits(1, 2);
133         } else {
134                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
135                     __func__, freq);
136                 return AH_FALSE;
137         }
138
139         reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
140                         (1 << 12) | 0x1;
141         OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
142
143         reg32 >>= 8;
144         OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
145
146         AH_PRIVATE(ah)->ah_curchan = chan;
147         return AH_TRUE;
148 }
149
150 /*
151  * Reads EEPROM header info from device structure and programs
152  * all rf registers
153  *
154  * REQUIRES: Access to the analog rf device
155  */
156 static HAL_BOOL
157 ar5413SetRfRegs(struct ath_hal *ah,
158         const struct ieee80211_channel *chan,
159         uint16_t modesIndex, uint16_t *rfXpdGain)
160 {
161 #define RF_BANK_SETUP(_priv, _ix, _col) do {                                \
162         int i;                                                              \
163         for (i = 0; i < N(ar5212Bank##_ix##_5413); i++)                     \
164                 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5413[i][_col];\
165 } while (0)
166         struct ath_hal_5212 *ahp = AH5212(ah);
167         uint16_t freq = ath_hal_gethwchannel(ah, chan);
168         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
169         uint16_t ob5GHz = 0, db5GHz = 0;        
170         uint16_t ob2GHz = 0, db2GHz = 0;
171         struct ar5413State *priv = AR5413(ah);
172         int regWrites = 0;
173
174         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
175             __func__, chan->ic_freq, chan->ic_flags, modesIndex);
176
177         HALASSERT(priv != AH_NULL);
178
179         /* Setup rf parameters */
180         switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
181         case IEEE80211_CHAN_A:
182                 if (freq > 4000 && freq < 5260) {
183                         ob5GHz = ee->ee_ob1;
184                         db5GHz = ee->ee_db1;
185                 } else if (freq >= 5260 && freq < 5500) {
186                         ob5GHz = ee->ee_ob2;
187                         db5GHz = ee->ee_db2;
188                 } else if (freq >= 5500 && freq < 5725) {
189                         ob5GHz = ee->ee_ob3;
190                         db5GHz = ee->ee_db3;
191                 } else if (freq >= 5725) {
192                         ob5GHz = ee->ee_ob4;
193                         db5GHz = ee->ee_db4;
194                 } else {
195                         /* XXX else */
196                 }
197                 break;
198         case IEEE80211_CHAN_B:
199                 ob2GHz = ee->ee_obFor24;
200                 db2GHz = ee->ee_dbFor24;
201                 break;
202         case IEEE80211_CHAN_G:
203         case IEEE80211_CHAN_PUREG:      /* NB: really 108G */
204                 ob2GHz = ee->ee_obFor24g;
205                 db2GHz = ee->ee_dbFor24g;
206                 break;
207         default:
208                 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
209                     __func__, chan->ic_flags);
210                 return AH_FALSE;
211         }
212
213         /* Bank 1 Write */
214         RF_BANK_SETUP(priv, 1, 1);
215
216         /* Bank 2 Write */
217         RF_BANK_SETUP(priv, 2, modesIndex);
218
219         /* Bank 3 Write */
220         RF_BANK_SETUP(priv, 3, modesIndex);
221
222         /* Bank 6 Write */
223         RF_BANK_SETUP(priv, 6, modesIndex);
224
225         /* Only the 5 or 2 GHz OB/DB need to be set for a mode */
226         if (IEEE80211_IS_CHAN_2GHZ(chan)) {
227                 ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 241, 0);
228                 ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 238, 0);
229
230                         /* TODO - only for Eagle 1.0 2GHz - remove for production */
231                         /* XXX: but without this bit G doesn't work. */
232                         ar5212ModifyRfBuffer(priv->Bank6Data, 1 , 1, 291, 2);
233
234                         /* Optimum value for rf_pwd_iclobuf2G for PCIe chips only */
235                         if (AH_PRIVATE(ah)->ah_ispcie) {
236                                 ar5212ModifyRfBuffer(priv->Bank6Data, ath_hal_reverseBits(6, 3),
237                                                  3, 131, 3);
238                         }
239         } else {
240                 ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 247, 0);
241                 ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 244, 0);
242
243         }
244
245         /* Bank 7 Setup */
246         RF_BANK_SETUP(priv, 7, modesIndex);
247
248         /* Write Analog registers */
249         HAL_INI_WRITE_BANK(ah, ar5212Bank1_5413, priv->Bank1Data, regWrites);
250         HAL_INI_WRITE_BANK(ah, ar5212Bank2_5413, priv->Bank2Data, regWrites);
251         HAL_INI_WRITE_BANK(ah, ar5212Bank3_5413, priv->Bank3Data, regWrites);
252         HAL_INI_WRITE_BANK(ah, ar5212Bank6_5413, priv->Bank6Data, regWrites);
253         HAL_INI_WRITE_BANK(ah, ar5212Bank7_5413, priv->Bank7Data, regWrites);
254
255         /* Now that we have reprogrammed rfgain value, clear the flag. */
256         ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
257
258         return AH_TRUE;
259 #undef  RF_BANK_SETUP
260 }
261
262 /*
263  * Return a reference to the requested RF Bank.
264  */
265 static uint32_t *
266 ar5413GetRfBank(struct ath_hal *ah, int bank)
267 {
268         struct ar5413State *priv = AR5413(ah);
269
270         HALASSERT(priv != AH_NULL);
271         switch (bank) {
272         case 1: return priv->Bank1Data;
273         case 2: return priv->Bank2Data;
274         case 3: return priv->Bank3Data;
275         case 6: return priv->Bank6Data;
276         case 7: return priv->Bank7Data;
277         }
278         HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
279             __func__, bank);
280         return AH_NULL;
281 }
282
283 /*
284  * Return indices surrounding the value in sorted integer lists.
285  *
286  * NB: the input list is assumed to be sorted in ascending order
287  */
288 static void
289 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
290                           uint32_t *vlo, uint32_t *vhi)
291 {
292         int16_t target = v;
293         const uint16_t *ep = lp+listSize;
294         const uint16_t *tp;
295
296         /*
297          * Check first and last elements for out-of-bounds conditions.
298          */
299         if (target < lp[0]) {
300                 *vlo = *vhi = 0;
301                 return;
302         }
303         if (target >= ep[-1]) {
304                 *vlo = *vhi = listSize - 1;
305                 return;
306         }
307
308         /* look for value being near or between 2 values in list */
309         for (tp = lp; tp < ep; tp++) {
310                 /*
311                  * If value is close to the current value of the list
312                  * then target is not between values, it is one of the values
313                  */
314                 if (*tp == target) {
315                         *vlo = *vhi = tp - (const uint16_t *) lp;
316                         return;
317                 }
318                 /*
319                  * Look for value being between current value and next value
320                  * if so return these 2 values
321                  */
322                 if (target < tp[1]) {
323                         *vlo = tp - (const uint16_t *) lp;
324                         *vhi = *vlo + 1;
325                         return;
326                 }
327         }
328 }
329
330 /*
331  * Fill the Vpdlist for indices Pmax-Pmin
332  */
333 static HAL_BOOL
334 ar5413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
335                    const int16_t *pwrList, const uint16_t *VpdList,
336                    uint16_t numIntercepts,
337                    uint16_t retVpdList[][64])
338 {
339         uint16_t ii, jj, kk;
340         int16_t currPwr = (int16_t)(2*Pmin);
341         /* since Pmin is pwr*2 and pwrList is 4*pwr */
342         uint32_t  idxL, idxR;
343
344         ii = 0;
345         jj = 0;
346
347         if (numIntercepts < 2)
348                 return AH_FALSE;
349
350         while (ii <= (uint16_t)(Pmax - Pmin)) {
351                 GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
352                                    numIntercepts, &(idxL), &(idxR));
353                 if (idxR < 1)
354                         idxR = 1;                       /* extrapolate below */
355                 if (idxL == (uint32_t)(numIntercepts - 1))
356                         idxL = numIntercepts - 2;       /* extrapolate above */
357                 if (pwrList[idxL] == pwrList[idxR])
358                         kk = VpdList[idxL];
359                 else
360                         kk = (uint16_t)
361                                 (((currPwr - pwrList[idxL])*VpdList[idxR]+ 
362                                   (pwrList[idxR] - currPwr)*VpdList[idxL])/
363                                  (pwrList[idxR] - pwrList[idxL]));
364                 retVpdList[pdGainIdx][ii] = kk;
365                 ii++;
366                 currPwr += 2;                           /* half dB steps */
367         }
368
369         return AH_TRUE;
370 }
371
372 /*
373  * Returns interpolated or the scaled up interpolated value
374  */
375 static int16_t
376 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
377         int16_t targetLeft, int16_t targetRight)
378 {
379         int16_t rv;
380
381         if (srcRight != srcLeft) {
382                 rv = ((target - srcLeft)*targetRight +
383                       (srcRight - target)*targetLeft) / (srcRight - srcLeft);
384         } else {
385                 rv = targetLeft;
386         }
387         return rv;
388 }
389
390 /*
391  * Uses the data points read from EEPROM to reconstruct the pdadc power table
392  * Called by ar5413SetPowerTable()
393  */
394 static int 
395 ar5413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
396                 const RAW_DATA_STRUCT_2413 *pRawDataset,
397                 uint16_t pdGainOverlap_t2, 
398                 int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[], 
399                 uint16_t pPdGainValues[], uint16_t pPDADCValues[]) 
400 {
401         struct ar5413State *priv = AR5413(ah);
402 #define VpdTable_L      priv->vpdTable_L
403 #define VpdTable_R      priv->vpdTable_R
404 #define VpdTable_I      priv->vpdTable_I
405         uint32_t ii, jj, kk;
406         int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
407         uint32_t idxL, idxR;
408         uint32_t numPdGainsUsed = 0;
409         /* 
410          * If desired to support -ve power levels in future, just
411          * change pwr_I_0 to signed 5-bits.
412          */
413         int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
414         /* to accomodate -ve power levels later on. */
415         int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
416         /* to accomodate -ve power levels later on */
417         uint16_t numVpd = 0;
418         uint16_t Vpd_step;
419         int16_t tmpVal ; 
420         uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
421     
422         /* Get upper lower index */
423         GetLowerUpperIndex(channel, pRawDataset->pChannels,
424                                  pRawDataset->numChannels, &(idxL), &(idxR));
425
426         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
427                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
428                 /* work backwards 'cause highest pdGain for lowest power */
429                 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
430                 if (numVpd > 0) {
431                         pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
432                         Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
433                         if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
434                                 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
435                         }
436                         Pmin_t2[numPdGainsUsed] = (int16_t)
437                                 (Pmin_t2[numPdGainsUsed] / 2);
438                         Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
439                         if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
440                                 Pmax_t2[numPdGainsUsed] = 
441                                         pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
442                         Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
443                         ar5413FillVpdTable(
444                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
445                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), 
446                                            &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
447                                            );
448                         ar5413FillVpdTable(
449                                            numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 
450                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
451                                            &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
452                                            );
453                         for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
454                                 VpdTable_I[numPdGainsUsed][kk] = 
455                                         interpolate_signed(
456                                                            channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
457                                                            (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
458                         }
459                         /* fill VpdTable_I for this pdGain */
460                         numPdGainsUsed++;
461                 }
462                 /* if this pdGain is used */
463         }
464
465         *pMinCalPower = Pmin_t2[0];
466         kk = 0; /* index for the final table */
467         for (ii = 0; ii < numPdGainsUsed; ii++) {
468                 if (ii == (numPdGainsUsed - 1))
469                         pPdGainBoundaries[ii] = Pmax_t2[ii] +
470                                 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
471                 else 
472                         pPdGainBoundaries[ii] = (uint16_t)
473                                 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
474                 if (pPdGainBoundaries[ii] > 63) {
475                         HALDEBUG(ah, HAL_DEBUG_ANY,
476                             "%s: clamp pPdGainBoundaries[%d] %d\n",
477                             __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
478                         pPdGainBoundaries[ii] = 63;
479                 }
480
481                 /* Find starting index for this pdGain */
482                 if (ii == 0) 
483                         ss = 0; /* for the first pdGain, start from index 0 */
484                 else 
485                         ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - 
486                                 pdGainOverlap_t2;
487                 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
488                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
489                 /*
490                  *-ve ss indicates need to extrapolate data below for this pdGain
491                  */
492                 while (ss < 0) {
493                         tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
494                         pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
495                         ss++;
496                 }
497
498                 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
499                 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
500                 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
501
502                 while (ss < (int16_t)maxIndex)
503                         pPDADCValues[kk++] = VpdTable_I[ii][ss++];
504
505                 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
506                                        VpdTable_I[ii][sizeCurrVpdTable-2]);
507                 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);           
508                 /*
509                  * for last gain, pdGainBoundary == Pmax_t2, so will 
510                  * have to extrapolate
511                  */
512                 if (tgtIndex > maxIndex) {      /* need to extrapolate above */
513                         while(ss < (int16_t)tgtIndex) {
514                                 tmpVal = (uint16_t)
515                                         (VpdTable_I[ii][sizeCurrVpdTable-1] + 
516                                          (ss-maxIndex)*Vpd_step);
517                                 pPDADCValues[kk++] = (tmpVal > 127) ? 
518                                         127 : tmpVal;
519                                 ss++;
520                         }
521                 }                               /* extrapolated above */
522         }                                       /* for all pdGainUsed */
523
524         while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
525                 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
526                 ii++;
527         }
528         while (kk < 128) {
529                 pPDADCValues[kk] = pPDADCValues[kk-1];
530                 kk++;
531         }
532
533         return numPdGainsUsed;
534 #undef VpdTable_L
535 #undef VpdTable_R
536 #undef VpdTable_I
537 }
538
539 static HAL_BOOL
540 ar5413SetPowerTable(struct ath_hal *ah,
541         int16_t *minPower, int16_t *maxPower,
542         const struct ieee80211_channel *chan, 
543         uint16_t *rfXpdGain)
544 {
545         struct ath_hal_5212 *ahp = AH5212(ah);
546         uint16_t freq = ath_hal_gethwchannel(ah, chan);
547         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
548         const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
549         uint16_t pdGainOverlap_t2;
550         int16_t minCalPower5413_t2;
551         uint16_t *pdadcValues = ahp->ah_pcdacTable;
552         uint16_t gainBoundaries[4];
553         uint32_t reg32, regoffset;
554         int i, numPdGainsUsed;
555 #ifndef AH_USE_INIPDGAIN
556         uint32_t tpcrg1;
557 #endif
558
559         HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
560             __func__, chan->ic_freq, chan->ic_flags);
561
562         if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
563                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
564         else if (IEEE80211_IS_CHAN_B(chan))
565                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
566         else {
567                 HALASSERT(IEEE80211_IS_CHAN_5GHZ(chan));
568                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
569         }
570
571         pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
572                                           AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
573     
574         numPdGainsUsed = ar5413getGainBoundariesAndPdadcsForPowers(ah,
575                 freq, pRawDataset, pdGainOverlap_t2,
576                 &minCalPower5413_t2,gainBoundaries, rfXpdGain, pdadcValues);
577         HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
578
579 #ifdef AH_USE_INIPDGAIN
580         /*
581          * Use pd_gains curve from eeprom; Atheros always uses
582          * the default curve from the ini file but some vendors
583          * (e.g. Zcomax) want to override this curve and not
584          * honoring their settings results in tx power 5dBm low.
585          */
586         OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 
587                          (pRawDataset->pDataPerChannel[0].numPdGains - 1));
588 #else
589         tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
590         tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
591                   | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
592         switch (numPdGainsUsed) {
593         case 3:
594                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
595                 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
596                 /* fall thru... */
597         case 2:
598                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
599                 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
600                 /* fall thru... */
601         case 1:
602                 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
603                 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
604                 break;
605         }
606 #ifdef AH_DEBUG
607         if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
608                 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
609                     "pd_gains (default 0x%x, calculated 0x%x)\n",
610                     __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
611 #endif
612         OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
613 #endif
614
615         /*
616          * Note the pdadc table may not start at 0 dBm power, could be
617          * negative or greater than 0.  Need to offset the power
618          * values by the amount of minPower for griffin
619          */
620         if (minCalPower5413_t2 != 0)
621                 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower5413_t2);
622         else
623                 ahp->ah_txPowerIndexOffset = 0;
624
625         /* Finally, write the power values into the baseband power table */
626         regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
627         for (i = 0; i < 32; i++) {
628                 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  | 
629                         ((pdadcValues[4*i + 1] & 0xFF) << 8)  |
630                         ((pdadcValues[4*i + 2] & 0xFF) << 16) |
631                         ((pdadcValues[4*i + 3] & 0xFF) << 24) ;        
632                 OS_REG_WRITE(ah, regoffset, reg32);
633                 regoffset += 4;
634         }
635
636         OS_REG_WRITE(ah, AR_PHY_TPCRG5, 
637                      SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 
638                      SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
639                      SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
640                      SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
641                      SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
642
643         return AH_TRUE;
644 }
645
646 static int16_t
647 ar5413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
648 {
649         uint32_t ii,jj;
650         uint16_t Pmin=0,numVpd;
651
652         for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
653                 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
654                 /* work backwards 'cause highest pdGain for lowest power */
655                 numVpd = data->pDataPerPDGain[jj].numVpd;
656                 if (numVpd > 0) {
657                         Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
658                         return(Pmin);
659                 }
660         }
661         return(Pmin);
662 }
663
664 static int16_t
665 ar5413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
666 {
667         uint32_t ii;
668         uint16_t Pmax=0,numVpd;
669         
670         for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
671                 /* work forwards cuase lowest pdGain for highest power */
672                 numVpd = data->pDataPerPDGain[ii].numVpd;
673                 if (numVpd > 0) {
674                         Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
675                         return(Pmax);
676                 }
677         }
678         return(Pmax);
679 }
680
681 static HAL_BOOL
682 ar5413GetChannelMaxMinPower(struct ath_hal *ah,
683         const struct ieee80211_channel *chan,
684         int16_t *maxPow, int16_t *minPow)
685 {
686         uint16_t freq = chan->ic_freq;          /* NB: never mapped */
687         const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
688         const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
689         const RAW_DATA_PER_CHANNEL_2413 *data=AH_NULL;
690         uint16_t numChannels;
691         int totalD,totalF, totalMin,last, i;
692
693         *maxPow = 0;
694
695         if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
696                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
697         else if (IEEE80211_IS_CHAN_B(chan))
698                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
699         else {
700                 HALASSERT(IEEE80211_IS_CHAN_5GHZ(chan));
701                 pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
702         }
703
704         numChannels = pRawDataset->numChannels;
705         data = pRawDataset->pDataPerChannel;
706         
707         /* Make sure the channel is in the range of the TP values 
708          *  (freq piers)
709          */
710         if (numChannels < 1)
711                 return(AH_FALSE);
712
713         if ((freq < data[0].channelValue) ||
714             (freq > data[numChannels-1].channelValue)) {
715                 if (freq < data[0].channelValue) {
716                         *maxPow = ar5413GetMaxPower(ah, &data[0]);
717                         *minPow = ar5413GetMinPower(ah, &data[0]);
718                         return(AH_TRUE);
719                 } else {
720                         *maxPow = ar5413GetMaxPower(ah, &data[numChannels - 1]);
721                         *minPow = ar5413GetMinPower(ah, &data[numChannels - 1]);
722                         return(AH_TRUE);
723                 }
724         }
725
726         /* Linearly interpolate the power value now */
727         for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
728              last = i++);
729         totalD = data[i].channelValue - data[last].channelValue;
730         if (totalD > 0) {
731                 totalF = ar5413GetMaxPower(ah, &data[i]) - ar5413GetMaxPower(ah, &data[last]);
732                 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + 
733                                      ar5413GetMaxPower(ah, &data[last])*totalD)/totalD);
734                 totalMin = ar5413GetMinPower(ah, &data[i]) - ar5413GetMinPower(ah, &data[last]);
735                 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
736                                      ar5413GetMinPower(ah, &data[last])*totalD)/totalD);
737                 return(AH_TRUE);
738         } else {
739                 if (freq == data[i].channelValue) {
740                         *maxPow = ar5413GetMaxPower(ah, &data[i]);
741                         *minPow = ar5413GetMinPower(ah, &data[i]);
742                         return(AH_TRUE);
743                 } else
744                         return(AH_FALSE);
745         }
746 }
747
748 /*
749  * Free memory for analog bank scratch buffers
750  */
751 static void
752 ar5413RfDetach(struct ath_hal *ah)
753 {
754         struct ath_hal_5212 *ahp = AH5212(ah);
755
756         HALASSERT(ahp->ah_rfHal != AH_NULL);
757         ath_hal_free(ahp->ah_rfHal);
758         ahp->ah_rfHal = AH_NULL;
759 }
760
761 /*
762  * Allocate memory for analog bank scratch buffers
763  * Scratch Buffer will be reinitialized every reset so no need to zero now
764  */
765 static HAL_BOOL
766 ar5413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
767 {
768         struct ath_hal_5212 *ahp = AH5212(ah);
769         struct ar5413State *priv;
770
771         HALASSERT(ah->ah_magic == AR5212_MAGIC);
772
773         HALASSERT(ahp->ah_rfHal == AH_NULL);
774         priv = ath_hal_malloc(sizeof(struct ar5413State));
775         if (priv == AH_NULL) {
776                 HALDEBUG(ah, HAL_DEBUG_ANY,
777                     "%s: cannot allocate private state\n", __func__);
778                 *status = HAL_ENOMEM;           /* XXX */
779                 return AH_FALSE;
780         }
781         priv->base.rfDetach             = ar5413RfDetach;
782         priv->base.writeRegs            = ar5413WriteRegs;
783         priv->base.getRfBank            = ar5413GetRfBank;
784         priv->base.setChannel           = ar5413SetChannel;
785         priv->base.setRfRegs            = ar5413SetRfRegs;
786         priv->base.setPowerTable        = ar5413SetPowerTable;
787         priv->base.getChannelMaxMinPower = ar5413GetChannelMaxMinPower;
788         priv->base.getNfAdjust          = ar5212GetNfAdjust;
789
790         ahp->ah_pcdacTable = priv->pcdacTable;
791         ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
792         ahp->ah_rfHal = &priv->base;
793
794         return AH_TRUE;
795 }
796
797 static HAL_BOOL
798 ar5413Probe(struct ath_hal *ah)
799 {
800         return IS_5413(ah);
801 }
802 AH_RF(RF5413, ar5413Probe, ar5413RfAttach);