Merge from vendor branch SENDMAIL:
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.29 2003/12/01 21:06:59 ambrisko Exp $
34  * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.52 2005/12/31 14:07:59 sephe Exp $
35  *
36  */
37
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
40  * 
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Engineer, Wind River Systems
43  */
44
45 /*
46  * The Broadcom BCM5700 is based on technology originally developed by
47  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51  * frames, highly configurable RX filtering, and 16 RX and TX queues
52  * (which, along with RX filter rules, can be used for QOS applications).
53  * Other features, such as TCP segmentation, may be available as part
54  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55  * firmware images can be stored in hardware and need not be compiled
56  * into the driver.
57  *
58  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
60  * 
61  * The BCM5701 is a single-chip solution incorporating both the BCM5700
62  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63  * does not support external SSRAM.
64  *
65  * Broadcom also produces a variation of the BCM5700 under the "Altima"
66  * brand name, which is functionally similar but lacks PCI-X support.
67  *
68  * Without external SSRAM, you can only have at most 4 TX rings,
69  * and the use of the mini RX ring is disabled. This seems to imply
70  * that these features are simply not available on the BCM5701. As a
71  * result, this driver does not implement any support for the mini RX
72  * ring.
73  */
74
75 #include "opt_bge.h"
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/sockio.h>
80 #include <sys/mbuf.h>
81 #include <sys/malloc.h>
82 #include <sys/kernel.h>
83 #include <sys/socket.h>
84 #include <sys/queue.h>
85 #include <sys/serialize.h>
86 #include <sys/thread2.h>
87
88 #include <net/if.h>
89 #include <net/ifq_var.h>
90 #include <net/if_arp.h>
91 #include <net/ethernet.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94
95 #include <net/bpf.h>
96
97 #include <net/if_types.h>
98 #include <net/vlan/if_vlan_var.h>
99
100 #include <netinet/in_systm.h>
101 #include <netinet/in.h>
102 #include <netinet/ip.h>
103
104 #include <vm/vm.h>              /* for vtophys */
105 #include <vm/pmap.h>            /* for vtophys */
106 #include <machine/resource.h>
107 #include <sys/bus.h>
108 #include <sys/rman.h>
109
110 #include <dev/netif/mii_layer/mii.h>
111 #include <dev/netif/mii_layer/miivar.h>
112 #include <dev/netif/mii_layer/miidevs.h>
113 #include <dev/netif/mii_layer/brgphyreg.h>
114
115 #include <bus/pci/pcidevs.h>
116 #include <bus/pci/pcireg.h>
117 #include <bus/pci/pcivar.h>
118
119 #include "if_bgereg.h"
120
121 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
122
123 /* "controller miibus0" required.  See GENERIC if you get errors here. */
124 #include "miibus_if.h"
125
126 /*
127  * Various supported device vendors/types and their names. Note: the
128  * spec seems to indicate that the hardware still has Alteon's vendor
129  * ID burned into it, though it will always be overriden by the vendor
130  * ID in the EEPROM. Just to be safe, we cover all possibilities.
131  */
132 #define BGE_DEVDESC_MAX         64      /* Maximum device description length */
133
134 static struct bge_type bge_devs[] = {
135         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
136                 "Alteon BCM5700 Gigabit Ethernet" },
137         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
138                 "Alteon BCM5701 Gigabit Ethernet" },
139         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
140                 "Broadcom BCM5700 Gigabit Ethernet" },
141         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
142                 "Broadcom BCM5701 Gigabit Ethernet" },
143         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
144                 "Broadcom BCM5702X Gigabit Ethernet" },
145         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
146                 "Broadcom BCM5702 Gigabit Ethernet" },
147         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
148                 "Broadcom BCM5703X Gigabit Ethernet" },
149         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
150                 "Broadcom BCM5703 Gigabit Ethernet" },
151         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
152                 "Broadcom BCM5704C Dual Gigabit Ethernet" },
153         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
154                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
155         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
156                 "Broadcom BCM5705 Gigabit Ethernet" },
157         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
158                 "Broadcom BCM5705K Gigabit Ethernet" },
159         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
160                 "Broadcom BCM5705M Gigabit Ethernet" },
161         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
162                 "Broadcom BCM5705M Gigabit Ethernet" },
163         { PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5714C,
164                 "Broadcom BCM5714C Gigabit Ethernet" },
165         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
166                 "Broadcom BCM5721 Gigabit Ethernet" },
167         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
168                 "Broadcom BCM5750 Gigabit Ethernet" },
169         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
170                 "Broadcom BCM5750M Gigabit Ethernet" },
171         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
172                 "Broadcom BCM5751 Gigabit Ethernet" },
173         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
174                 "Broadcom BCM5751M Gigabit Ethernet" },
175         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
176                 "Broadcom BCM5782 Gigabit Ethernet" },
177         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
178                 "Broadcom BCM5788 Gigabit Ethernet" },
179         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
180                 "Broadcom BCM5789 Gigabit Ethernet" },
181         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
182                 "Broadcom BCM5901 Fast Ethernet" },
183         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
184                 "Broadcom BCM5901A2 Fast Ethernet" },
185         { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
186                 "SysKonnect Gigabit Ethernet" },
187         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
188                 "Altima AC1000 Gigabit Ethernet" },
189         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
190                 "Altima AC1002 Gigabit Ethernet" },
191         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
192                 "Altima AC9100 Gigabit Ethernet" },
193         { 0, 0, NULL }
194 };
195
196 static int      bge_probe(device_t);
197 static int      bge_attach(device_t);
198 static int      bge_detach(device_t);
199 static void     bge_release_resources(struct bge_softc *);
200 static void     bge_txeof(struct bge_softc *);
201 static void     bge_rxeof(struct bge_softc *);
202
203 static void     bge_tick(void *);
204 static void     bge_tick_serialized(void *);
205 static void     bge_stats_update(struct bge_softc *);
206 static void     bge_stats_update_regs(struct bge_softc *);
207 static int      bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
208
209 static void     bge_intr(void *);
210 static void     bge_start(struct ifnet *);
211 static int      bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
212 static void     bge_init(void *);
213 static void     bge_stop(struct bge_softc *);
214 static void     bge_watchdog(struct ifnet *);
215 static void     bge_shutdown(device_t);
216 static int      bge_ifmedia_upd(struct ifnet *);
217 static void     bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
218
219 static uint8_t  bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
220 static int      bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
221
222 static void     bge_setmulti(struct bge_softc *);
223
224 static void     bge_handle_events(struct bge_softc *);
225 static int      bge_alloc_jumbo_mem(struct bge_softc *);
226 static void     bge_free_jumbo_mem(struct bge_softc *);
227 static struct bge_jslot
228                 *bge_jalloc(struct bge_softc *);
229 static void     bge_jfree(void *);
230 static void     bge_jref(void *);
231 static int      bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
232 static int      bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
233 static int      bge_init_rx_ring_std(struct bge_softc *);
234 static void     bge_free_rx_ring_std(struct bge_softc *);
235 static int      bge_init_rx_ring_jumbo(struct bge_softc *);
236 static void     bge_free_rx_ring_jumbo(struct bge_softc *);
237 static void     bge_free_tx_ring(struct bge_softc *);
238 static int      bge_init_tx_ring(struct bge_softc *);
239
240 static int      bge_chipinit(struct bge_softc *);
241 static int      bge_blockinit(struct bge_softc *);
242
243 #ifdef notdef
244 static uint8_t  bge_vpd_readbyte(struct bge_softc *, uint32_t);
245 static void     bge_vpd_read_res(struct bge_softc *, struct vpd_res *, uint32_t);
246 static void     bge_vpd_read(struct bge_softc *);
247 #endif
248
249 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
250 static void     bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
251 #ifdef notdef
252 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
253 #endif
254 static void     bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
255
256 static int      bge_miibus_readreg(device_t, int, int);
257 static int      bge_miibus_writereg(device_t, int, int, int);
258 static void     bge_miibus_statchg(device_t);
259
260 static void     bge_reset(struct bge_softc *);
261
262 static device_method_t bge_methods[] = {
263         /* Device interface */
264         DEVMETHOD(device_probe,         bge_probe),
265         DEVMETHOD(device_attach,        bge_attach),
266         DEVMETHOD(device_detach,        bge_detach),
267         DEVMETHOD(device_shutdown,      bge_shutdown),
268
269         /* bus interface */
270         DEVMETHOD(bus_print_child,      bus_generic_print_child),
271         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
272
273         /* MII interface */
274         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
275         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
276         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
277
278         { 0, 0 }
279 };
280
281 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
282 static devclass_t bge_devclass;
283
284 DECLARE_DUMMY_MODULE(if_bge);
285 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
286 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
287
288 static uint32_t
289 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
290 {
291         device_t dev = sc->bge_dev;
292
293         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
294         return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
295 }
296
297 static void
298 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
299 {
300         device_t dev = sc->bge_dev;
301
302         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
303         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
304 }
305
306 #ifdef notdef
307 static uint32_t
308 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
309 {
310         device_t dev = sc->bge_dev;
311
312         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
313         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
314 }
315 #endif
316
317 static void
318 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
319 {
320         device_t dev = sc->bge_dev;
321
322         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
323         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
324 }
325
326 #ifdef notdef
327 static uint8_t
328 bge_vpd_readbyte(struct bge_softc *sc, uint32_t addr)
329 {
330         device_t dev = sc->bge_dev;
331         uint32_t val;
332         int i;
333
334         pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
335         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
336                 DELAY(10);
337                 if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
338                         break;
339         }
340
341         if (i == BGE_TIMEOUT) {
342                 device_printf(sc->bge_dev, "VPD read timed out\n");
343                 return(0);
344         }
345
346         val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
347
348         return((val >> ((addr % 4) * 8)) & 0xFF);
349 }
350
351 static void
352 bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, uint32_t addr)
353 {
354         size_t i;
355         uint8_t *ptr;
356
357         ptr = (uint8_t *)res;
358         for (i = 0; i < sizeof(struct vpd_res); i++)
359                 ptr[i] = bge_vpd_readbyte(sc, i + addr);
360
361         return;
362 }
363
364 static void
365 bge_vpd_read(struct bge_softc *sc)
366 {
367         int pos = 0, i;
368         struct vpd_res res;
369
370         if (sc->bge_vpd_prodname != NULL)
371                 free(sc->bge_vpd_prodname, M_DEVBUF);
372         if (sc->bge_vpd_readonly != NULL)
373                 free(sc->bge_vpd_readonly, M_DEVBUF);
374         sc->bge_vpd_prodname = NULL;
375         sc->bge_vpd_readonly = NULL;
376
377         bge_vpd_read_res(sc, &res, pos);
378
379         if (res.vr_id != VPD_RES_ID) {
380                 device_printf(sc->bge_dev,
381                               "bad VPD resource id: expected %x got %x\n",
382                               VPD_RES_ID, res.vr_id);
383                 return;
384         }
385
386         pos += sizeof(res);
387         sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_INTWAIT);
388         for (i = 0; i < res.vr_len; i++)
389                 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
390         sc->bge_vpd_prodname[i] = '\0';
391         pos += i;
392
393         bge_vpd_read_res(sc, &res, pos);
394
395         if (res.vr_id != VPD_RES_READ) {
396                 device_printf(sc->bge_dev,
397                               "bad VPD resource id: expected %x got %x\n",
398                               VPD_RES_READ, res.vr_id);
399                 return;
400         }
401
402         pos += sizeof(res);
403         sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_INTWAIT);
404         for (i = 0; i < res.vr_len + 1; i++)
405                 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
406 }
407 #endif
408
409 /*
410  * Read a byte of data stored in the EEPROM at address 'addr.' The
411  * BCM570x supports both the traditional bitbang interface and an
412  * auto access interface for reading the EEPROM. We use the auto
413  * access method.
414  */
415 static uint8_t
416 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
417 {
418         int i;
419         uint32_t byte = 0;
420
421         /*
422          * Enable use of auto EEPROM access so we can avoid
423          * having to use the bitbang method.
424          */
425         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
426
427         /* Reset the EEPROM, load the clock period. */
428         CSR_WRITE_4(sc, BGE_EE_ADDR,
429             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
430         DELAY(20);
431
432         /* Issue the read EEPROM command. */
433         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
434
435         /* Wait for completion */
436         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
437                 DELAY(10);
438                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
439                         break;
440         }
441
442         if (i == BGE_TIMEOUT) {
443                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
444                 return(0);
445         }
446
447         /* Get result. */
448         byte = CSR_READ_4(sc, BGE_EE_DATA);
449
450         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
451
452         return(0);
453 }
454
455 /*
456  * Read a sequence of bytes from the EEPROM.
457  */
458 static int
459 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
460 {
461         size_t i;
462         int err;
463         uint8_t byte;
464
465         for (byte = 0, err = 0, i = 0; i < len; i++) {
466                 err = bge_eeprom_getbyte(sc, off + i, &byte);
467                 if (err)
468                         break;
469                 *(dest + i) = byte;
470         }
471
472         return(err ? 1 : 0);
473 }
474
475 static int
476 bge_miibus_readreg(device_t dev, int phy, int reg)
477 {
478         struct bge_softc *sc;
479         struct ifnet *ifp;
480         uint32_t val, autopoll;
481         int i;
482
483         sc = device_get_softc(dev);
484         ifp = &sc->arpcom.ac_if;
485
486         /*
487          * Broadcom's own driver always assumes the internal
488          * PHY is at GMII address 1. On some chips, the PHY responds
489          * to accesses at all addresses, which could cause us to
490          * bogusly attach the PHY 32 times at probe type. Always
491          * restricting the lookup to address 1 is simpler than
492          * trying to figure out which chips revisions should be
493          * special-cased.
494          */
495         if (phy != 1)
496                 return(0);
497
498         /* Reading with autopolling on may trigger PCI errors */
499         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
500         if (autopoll & BGE_MIMODE_AUTOPOLL) {
501                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
502                 DELAY(40);
503         }
504
505         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
506             BGE_MIPHY(phy)|BGE_MIREG(reg));
507
508         for (i = 0; i < BGE_TIMEOUT; i++) {
509                 val = CSR_READ_4(sc, BGE_MI_COMM);
510                 if (!(val & BGE_MICOMM_BUSY))
511                         break;
512         }
513
514         if (i == BGE_TIMEOUT) {
515                 if_printf(ifp, "PHY read timed out\n");
516                 val = 0;
517                 goto done;
518         }
519
520         val = CSR_READ_4(sc, BGE_MI_COMM);
521
522 done:
523         if (autopoll & BGE_MIMODE_AUTOPOLL) {
524                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
525                 DELAY(40);
526         }
527
528         if (val & BGE_MICOMM_READFAIL)
529                 return(0);
530
531         return(val & 0xFFFF);
532 }
533
534 static int
535 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
536 {
537         struct bge_softc *sc;
538         uint32_t autopoll;
539         int i;
540
541         sc = device_get_softc(dev);
542
543         /* Reading with autopolling on may trigger PCI errors */
544         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
545         if (autopoll & BGE_MIMODE_AUTOPOLL) {
546                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
547                 DELAY(40);
548         }
549
550         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
551             BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
552
553         for (i = 0; i < BGE_TIMEOUT; i++) {
554                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
555                         break;
556         }
557
558         if (autopoll & BGE_MIMODE_AUTOPOLL) {
559                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
560                 DELAY(40);
561         }
562
563         if (i == BGE_TIMEOUT) {
564                 if_printf(&sc->arpcom.ac_if, "PHY read timed out\n");
565                 return(0);
566         }
567
568         return(0);
569 }
570
571 static void
572 bge_miibus_statchg(device_t dev)
573 {
574         struct bge_softc *sc;
575         struct mii_data *mii;
576
577         sc = device_get_softc(dev);
578         mii = device_get_softc(sc->bge_miibus);
579
580         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
581         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
582                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
583         } else {
584                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
585         }
586
587         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
588                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
589         } else {
590                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
591         }
592 }
593
594 /*
595  * Handle events that have triggered interrupts.
596  */
597 static void
598 bge_handle_events(struct bge_softc *sc)
599 {
600 }
601
602 /*
603  * Memory management for jumbo frames.
604  */
605 static int
606 bge_alloc_jumbo_mem(struct bge_softc *sc)
607 {
608         struct bge_jslot *entry;
609         caddr_t ptr;
610         int i;
611
612         /* Grab a big chunk o' storage. */
613         sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF,
614                 M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
615
616         if (sc->bge_cdata.bge_jumbo_buf == NULL) {
617                 if_printf(&sc->arpcom.ac_if, "no memory for jumbo buffers!\n");
618                 return(ENOBUFS);
619         }
620
621         SLIST_INIT(&sc->bge_jfree_listhead);
622
623         /*
624          * Now divide it up into 9K pieces and save the addresses
625          * in an array. Note that we play an evil trick here by using
626          * the first few bytes in the buffer to hold the the address
627          * of the softc structure for this interface. This is because
628          * bge_jfree() needs it, but it is called by the mbuf management
629          * code which will not pass it to us explicitly.
630          */
631         ptr = sc->bge_cdata.bge_jumbo_buf;
632         for (i = 0; i < BGE_JSLOTS; i++) {
633                 entry = &sc->bge_cdata.bge_jslots[i];
634                 entry->bge_sc = sc;
635                 entry->bge_buf = ptr;
636                 entry->bge_inuse = 0;
637                 entry->bge_slot = i;
638                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
639                 ptr += BGE_JLEN;
640         }
641
642         return(0);
643 }
644
645 static void
646 bge_free_jumbo_mem(struct bge_softc *sc)
647 {
648         if (sc->bge_cdata.bge_jumbo_buf)
649                 contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF);
650 }
651
652 /*
653  * Allocate a jumbo buffer.
654  */
655 static struct bge_jslot *
656 bge_jalloc(struct bge_softc *sc)
657 {
658         struct bge_jslot *entry;
659
660         lwkt_serialize_enter(&sc->bge_jslot_serializer);
661         entry = SLIST_FIRST(&sc->bge_jfree_listhead);
662         if (entry) {
663                 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
664                 entry->bge_inuse = 1;
665         } else {
666                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
667         }
668         lwkt_serialize_exit(&sc->bge_jslot_serializer);
669         return(entry);
670 }
671
672 /*
673  * Adjust usage count on a jumbo buffer.
674  */
675 static void
676 bge_jref(void *arg)
677 {
678         struct bge_jslot *entry = (struct bge_jslot *)arg;
679         struct bge_softc *sc = entry->bge_sc;
680
681         if (sc == NULL)
682                 panic("bge_jref: can't find softc pointer!");
683
684         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
685                 panic("bge_jref: asked to reference buffer "
686                     "that we don't manage!");
687         } else if (entry->bge_inuse == 0) {
688                 panic("bge_jref: buffer already free!");
689         } else {
690                 atomic_add_int(&entry->bge_inuse, 1);
691         }
692 }
693
694 /*
695  * Release a jumbo buffer.
696  */
697 static void
698 bge_jfree(void *arg)
699 {
700         struct bge_jslot *entry = (struct bge_jslot *)arg;
701         struct bge_softc *sc = entry->bge_sc;
702
703         if (sc == NULL)
704                 panic("bge_jfree: can't find softc pointer!");
705
706         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
707                 panic("bge_jfree: asked to free buffer that we don't manage!");
708         } else if (entry->bge_inuse == 0) {
709                 panic("bge_jfree: buffer already free!");
710         } else {
711                 /*
712                  * Possible MP race to 0, use the serializer.  The atomic insn
713                  * is still needed for races against bge_jref().
714                  */
715                 lwkt_serialize_enter(&sc->bge_jslot_serializer);
716                 atomic_subtract_int(&entry->bge_inuse, 1);
717                 if (entry->bge_inuse == 0) {
718                         SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 
719                                           entry, jslot_link);
720                 }
721                 lwkt_serialize_exit(&sc->bge_jslot_serializer);
722         }
723 }
724
725
726 /*
727  * Intialize a standard receive ring descriptor.
728  */
729 static int
730 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
731 {
732         struct mbuf *m_new = NULL;
733         struct bge_rx_bd *r;
734
735         if (m == NULL) {
736                 m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
737                 if (m_new == NULL)
738                         return (ENOBUFS);
739                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
740         } else {
741                 m_new = m;
742                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
743                 m_new->m_data = m_new->m_ext.ext_buf;
744         }
745
746         if (!sc->bge_rx_alignment_bug)
747                 m_adj(m_new, ETHER_ALIGN);
748         sc->bge_cdata.bge_rx_std_chain[i] = m_new;
749         r = &sc->bge_rdata->bge_rx_std_ring[i];
750         BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
751         r->bge_flags = BGE_RXBDFLAG_END;
752         r->bge_len = m_new->m_len;
753         r->bge_idx = i;
754
755         return(0);
756 }
757
758 /*
759  * Initialize a jumbo receive ring descriptor. This allocates
760  * a jumbo buffer from the pool managed internally by the driver.
761  */
762 static int
763 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
764 {
765         struct mbuf *m_new = NULL;
766         struct bge_rx_bd *r;
767
768         if (m == NULL) {
769                 struct bge_jslot *buf;
770
771                 /* Allocate the mbuf. */
772                 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
773                 if (m_new == NULL)
774                         return(ENOBUFS);
775
776                 /* Allocate the jumbo buffer */
777                 buf = bge_jalloc(sc);
778                 if (buf == NULL) {
779                         m_freem(m_new);
780                         if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
781                             "-- packet dropped!\n");
782                         return(ENOBUFS);
783                 }
784
785                 /* Attach the buffer to the mbuf. */
786                 m_new->m_ext.ext_arg = buf;
787                 m_new->m_ext.ext_buf = buf->bge_buf;
788                 m_new->m_ext.ext_free = bge_jfree;
789                 m_new->m_ext.ext_ref = bge_jref;
790                 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
791
792                 m_new->m_data = m_new->m_ext.ext_buf;
793                 m_new->m_flags |= M_EXT;
794                 m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
795         } else {
796                 m_new = m;
797                 m_new->m_data = m_new->m_ext.ext_buf;
798                 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
799         }
800
801         if (!sc->bge_rx_alignment_bug)
802                 m_adj(m_new, ETHER_ALIGN);
803         /* Set up the descriptor. */
804         r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
805         sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
806         BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
807         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
808         r->bge_len = m_new->m_len;
809         r->bge_idx = i;
810
811         return(0);
812 }
813
814 /*
815  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
816  * that's 1MB or memory, which is a lot. For now, we fill only the first
817  * 256 ring entries and hope that our CPU is fast enough to keep up with
818  * the NIC.
819  */
820 static int
821 bge_init_rx_ring_std(struct bge_softc *sc)
822 {
823         int i;
824
825         for (i = 0; i < BGE_SSLOTS; i++) {
826                 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
827                         return(ENOBUFS);
828         };
829
830         sc->bge_std = i - 1;
831         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
832
833         return(0);
834 }
835
836 static void
837 bge_free_rx_ring_std(struct bge_softc *sc)
838 {
839         int i;
840
841         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
842                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
843                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
844                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
845                 }
846                 bzero(&sc->bge_rdata->bge_rx_std_ring[i],
847                     sizeof(struct bge_rx_bd));
848         }
849 }
850
851 static int
852 bge_init_rx_ring_jumbo(struct bge_softc *sc)
853 {
854         int i;
855         struct bge_rcb *rcb;
856
857         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
858                 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
859                         return(ENOBUFS);
860         };
861
862         sc->bge_jumbo = i - 1;
863
864         rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
865         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
866         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
867
868         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
869
870         return(0);
871 }
872
873 static void
874 bge_free_rx_ring_jumbo(struct bge_softc *sc)
875 {
876         int i;
877
878         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
879                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
880                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
881                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
882                 }
883                 bzero(&sc->bge_rdata->bge_rx_jumbo_ring[i],
884                     sizeof(struct bge_rx_bd));
885         }
886 }
887
888 static void
889 bge_free_tx_ring(struct bge_softc *sc)
890 {
891         int i;
892
893         if (sc->bge_rdata->bge_tx_ring == NULL)
894                 return;
895
896         for (i = 0; i < BGE_TX_RING_CNT; i++) {
897                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
898                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
899                         sc->bge_cdata.bge_tx_chain[i] = NULL;
900                 }
901                 bzero(&sc->bge_rdata->bge_tx_ring[i],
902                     sizeof(struct bge_tx_bd));
903         }
904 }
905
906 static int
907 bge_init_tx_ring(struct bge_softc *sc)
908 {
909         sc->bge_txcnt = 0;
910         sc->bge_tx_saved_considx = 0;
911
912         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
913         /* 5700 b2 errata */
914         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
915                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
916
917         CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
918         /* 5700 b2 errata */
919         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
920                 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
921
922         return(0);
923 }
924
925 static void
926 bge_setmulti(struct bge_softc *sc)
927 {
928         struct ifnet *ifp;
929         struct ifmultiaddr *ifma;
930         uint32_t hashes[4] = { 0, 0, 0, 0 };
931         int h, i;
932
933         ifp = &sc->arpcom.ac_if;
934
935         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
936                 for (i = 0; i < 4; i++)
937                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
938                 return;
939         }
940
941         /* First, zot all the existing filters. */
942         for (i = 0; i < 4; i++)
943                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
944
945         /* Now program new ones. */
946         LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
947                 if (ifma->ifma_addr->sa_family != AF_LINK)
948                         continue;
949                 h = ether_crc32_le(
950                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
951                     ETHER_ADDR_LEN) & 0x7f;
952                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
953         }
954
955         for (i = 0; i < 4; i++)
956                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
957 }
958
959 /*
960  * Do endian, PCI and DMA initialization. Also check the on-board ROM
961  * self-test results.
962  */
963 static int
964 bge_chipinit(struct bge_softc *sc)
965 {
966         int i;
967         uint32_t dma_rw_ctl;
968
969         /* Set endianness before we access any non-PCI registers. */
970 #if BYTE_ORDER == BIG_ENDIAN
971         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
972             BGE_BIGENDIAN_INIT, 4);
973 #else
974         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
975             BGE_LITTLEENDIAN_INIT, 4);
976 #endif
977
978         /*
979          * Check the 'ROM failed' bit on the RX CPU to see if
980          * self-tests passed.
981          */
982         if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
983                 if_printf(&sc->arpcom.ac_if,
984                           "RX CPU self-diagnostics failed!\n");
985                 return(ENODEV);
986         }
987
988         /* Clear the MAC control register */
989         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
990
991         /*
992          * Clear the MAC statistics block in the NIC's
993          * internal memory.
994          */
995         for (i = BGE_STATS_BLOCK;
996             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
997                 BGE_MEMWIN_WRITE(sc, i, 0);
998
999         for (i = BGE_STATUS_BLOCK;
1000             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1001                 BGE_MEMWIN_WRITE(sc, i, 0);
1002
1003         /* Set up the PCI DMA control register. */
1004         if (sc->bge_pcie) {
1005                 /* PCI Express */
1006                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1007                     (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1008                     (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1009         } else if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
1010                    BGE_PCISTATE_PCI_BUSMODE) {
1011                 /* Conventional PCI bus */
1012                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1013                     (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1014                     (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1015                     (0x0F);
1016         } else {
1017                 /* PCI-X bus */
1018                 /*
1019                  * The 5704 uses a different encoding of read/write
1020                  * watermarks.
1021                  */
1022                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1023                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1024                             (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1025                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1026                 else
1027                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1028                             (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1029                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1030                             (0x0F);
1031
1032                 /*
1033                  * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1034                  * for hardware bugs.
1035                  */
1036                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1037                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1038                         uint32_t tmp;
1039
1040                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1041                         if (tmp == 0x6 || tmp == 0x7)
1042                                 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1043                 }
1044         }
1045
1046         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1047             sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1048             sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1049             sc->bge_asicrev == BGE_ASICREV_BCM5750)
1050                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1051         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1052
1053         /*
1054          * Set up general mode register.
1055          */
1056         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME|
1057             BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1058             BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1059             BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1060
1061         /*
1062          * Disable memory write invalidate.  Apparently it is not supported
1063          * properly by these devices.
1064          */
1065         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1066
1067         /* Set the timer prescaler (always 66Mhz) */
1068         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1069
1070         return(0);
1071 }
1072
1073 static int
1074 bge_blockinit(struct bge_softc *sc)
1075 {
1076         struct bge_rcb *rcb;
1077         volatile struct bge_rcb *vrcb;
1078         int i;
1079
1080         /*
1081          * Initialize the memory window pointer register so that
1082          * we can access the first 32K of internal NIC RAM. This will
1083          * allow us to set up the TX send ring RCBs and the RX return
1084          * ring RCBs, plus other things which live in NIC memory.
1085          */
1086         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1087
1088         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1089
1090         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1091             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1092                 /* Configure mbuf memory pool */
1093                 if (sc->bge_extram) {
1094                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1095                             BGE_EXT_SSRAM);
1096                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1097                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1098                         else
1099                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1100                 } else {
1101                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1102                             BGE_BUFFPOOL_1);
1103                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1104                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1105                         else
1106                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1107                 }
1108
1109                 /* Configure DMA resource pool */
1110                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1111                     BGE_DMA_DESCRIPTORS);
1112                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1113         }
1114
1115         /* Configure mbuf pool watermarks */
1116         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1117             sc->bge_asicrev == BGE_ASICREV_BCM5750) {
1118                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1119                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1120         } else {
1121                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1122                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1123         }
1124         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1125
1126         /* Configure DMA resource watermarks */
1127         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1128         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1129
1130         /* Enable buffer manager */
1131         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1132             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1133                 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1134                     BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1135
1136                 /* Poll for buffer manager start indication */
1137                 for (i = 0; i < BGE_TIMEOUT; i++) {
1138                         if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1139                                 break;
1140                         DELAY(10);
1141                 }
1142
1143                 if (i == BGE_TIMEOUT) {
1144                         if_printf(&sc->arpcom.ac_if,
1145                                   "buffer manager failed to start\n");
1146                         return(ENXIO);
1147                 }
1148         }
1149
1150         /* Enable flow-through queues */
1151         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1152         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1153
1154         /* Wait until queue initialization is complete */
1155         for (i = 0; i < BGE_TIMEOUT; i++) {
1156                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1157                         break;
1158                 DELAY(10);
1159         }
1160
1161         if (i == BGE_TIMEOUT) {
1162                 if_printf(&sc->arpcom.ac_if,
1163                           "flow-through queue init failed\n");
1164                 return(ENXIO);
1165         }
1166
1167         /* Initialize the standard RX ring control block */
1168         rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1169         BGE_HOSTADDR(rcb->bge_hostaddr,
1170             vtophys(&sc->bge_rdata->bge_rx_std_ring));
1171         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1172             sc->bge_asicrev == BGE_ASICREV_BCM5750)
1173                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1174         else
1175                 rcb->bge_maxlen_flags =
1176                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1177         if (sc->bge_extram)
1178                 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1179         else
1180                 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1181         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1182         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1183         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1184         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1185
1186         /*
1187          * Initialize the jumbo RX ring control block
1188          * We set the 'ring disabled' bit in the flags
1189          * field until we're actually ready to start
1190          * using this ring (i.e. once we set the MTU
1191          * high enough to require it).
1192          */
1193         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1194             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1195                 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1196                 BGE_HOSTADDR(rcb->bge_hostaddr,
1197                     vtophys(&sc->bge_rdata->bge_rx_jumbo_ring));
1198                 rcb->bge_maxlen_flags =
1199                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1200                     BGE_RCB_FLAG_RING_DISABLED);
1201                 if (sc->bge_extram)
1202                         rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1203                 else
1204                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1205                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1206                     rcb->bge_hostaddr.bge_addr_hi);
1207                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1208                     rcb->bge_hostaddr.bge_addr_lo);
1209                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1210                     rcb->bge_maxlen_flags);
1211                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1212
1213                 /* Set up dummy disabled mini ring RCB */
1214                 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1215                 rcb->bge_maxlen_flags =
1216                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1217                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1218                     rcb->bge_maxlen_flags);
1219         }
1220
1221         /*
1222          * Set the BD ring replentish thresholds. The recommended
1223          * values are 1/8th the number of descriptors allocated to
1224          * each ring.
1225          */
1226         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1227         CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1228
1229         /*
1230          * Disable all unused send rings by setting the 'ring disabled'
1231          * bit in the flags field of all the TX send ring control blocks.
1232          * These are located in NIC memory.
1233          */
1234         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1235             BGE_SEND_RING_RCB);
1236         for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1237                 vrcb->bge_maxlen_flags =
1238                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1239                 vrcb->bge_nicaddr = 0;
1240                 vrcb++;
1241         }
1242
1243         /* Configure TX RCB 0 (we use only the first ring) */
1244         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1245             BGE_SEND_RING_RCB);
1246         vrcb->bge_hostaddr.bge_addr_hi = 0;
1247         BGE_HOSTADDR(vrcb->bge_hostaddr, vtophys(&sc->bge_rdata->bge_tx_ring));
1248         vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT);
1249         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1250             sc->bge_asicrev != BGE_ASICREV_BCM5750)
1251                 vrcb->bge_maxlen_flags =
1252                     BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0);
1253
1254         /* Disable all unused RX return rings */
1255         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1256             BGE_RX_RETURN_RING_RCB);
1257         for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1258                 vrcb->bge_hostaddr.bge_addr_hi = 0;
1259                 vrcb->bge_hostaddr.bge_addr_lo = 0;
1260                 vrcb->bge_maxlen_flags =
1261                     BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1262                     BGE_RCB_FLAG_RING_DISABLED);
1263                 vrcb->bge_nicaddr = 0;
1264                 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1265                     (i * (sizeof(uint64_t))), 0);
1266                 vrcb++;
1267         }
1268
1269         /* Initialize RX ring indexes */
1270         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1271         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1272         CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1273
1274         /*
1275          * Set up RX return ring 0
1276          * Note that the NIC address for RX return rings is 0x00000000.
1277          * The return rings live entirely within the host, so the
1278          * nicaddr field in the RCB isn't used.
1279          */
1280         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1281             BGE_RX_RETURN_RING_RCB);
1282         vrcb->bge_hostaddr.bge_addr_hi = 0;
1283         BGE_HOSTADDR(vrcb->bge_hostaddr,
1284             vtophys(&sc->bge_rdata->bge_rx_return_ring));
1285         vrcb->bge_nicaddr = 0x00000000;
1286         vrcb->bge_maxlen_flags =
1287             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0);
1288
1289         /* Set random backoff seed for TX */
1290         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1291             sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1292             sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1293             sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1294             BGE_TX_BACKOFF_SEED_MASK);
1295
1296         /* Set inter-packet gap */
1297         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1298
1299         /*
1300          * Specify which ring to use for packets that don't match
1301          * any RX rules.
1302          */
1303         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1304
1305         /*
1306          * Configure number of RX lists. One interrupt distribution
1307          * list, sixteen active lists, one bad frames class.
1308          */
1309         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1310
1311         /* Inialize RX list placement stats mask. */
1312         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1313         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1314
1315         /* Disable host coalescing until we get it set up */
1316         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1317
1318         /* Poll to make sure it's shut down. */
1319         for (i = 0; i < BGE_TIMEOUT; i++) {
1320                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1321                         break;
1322                 DELAY(10);
1323         }
1324
1325         if (i == BGE_TIMEOUT) {
1326                 if_printf(&sc->arpcom.ac_if,
1327                           "host coalescing engine failed to idle\n");
1328                 return(ENXIO);
1329         }
1330
1331         /* Set up host coalescing defaults */
1332         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1333         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1334         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1335         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1336         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1337             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1338                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1339                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1340         }
1341         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1342         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1343
1344         /* Set up address of statistics block */
1345         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1346             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1347                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0);
1348                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1349                     vtophys(&sc->bge_rdata->bge_info.bge_stats));
1350
1351                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1352                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1353                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1354         }
1355
1356         /* Set up address of status block */
1357         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0);
1358         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1359             vtophys(&sc->bge_rdata->bge_status_block));
1360
1361         sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1362         sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1363
1364         /* Turn on host coalescing state machine */
1365         CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1366
1367         /* Turn on RX BD completion state machine and enable attentions */
1368         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1369             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1370
1371         /* Turn on RX list placement state machine */
1372         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1373
1374         /* Turn on RX list selector state machine. */
1375         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1376             sc->bge_asicrev != BGE_ASICREV_BCM5750)
1377                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1378
1379         /* Turn on DMA, clear stats */
1380         CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1381             BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1382             BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1383             BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1384             (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1385
1386         /* Set misc. local control, enable interrupts on attentions */
1387         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1388
1389 #ifdef notdef
1390         /* Assert GPIO pins for PHY reset */
1391         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1392             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1393         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1394             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1395 #endif
1396
1397         /* Turn on DMA completion state machine */
1398         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1399             sc->bge_asicrev != BGE_ASICREV_BCM5750)
1400                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1401
1402         /* Turn on write DMA state machine */
1403         CSR_WRITE_4(sc, BGE_WDMA_MODE,
1404             BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1405         
1406         /* Turn on read DMA state machine */
1407         CSR_WRITE_4(sc, BGE_RDMA_MODE,
1408             BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1409
1410         /* Turn on RX data completion state machine */
1411         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1412
1413         /* Turn on RX BD initiator state machine */
1414         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1415
1416         /* Turn on RX data and RX BD initiator state machine */
1417         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1418
1419         /* Turn on Mbuf cluster free state machine */
1420         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1421             sc->bge_asicrev != BGE_ASICREV_BCM5750)
1422                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1423
1424         /* Turn on send BD completion state machine */
1425         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1426
1427         /* Turn on send data completion state machine */
1428         CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1429
1430         /* Turn on send data initiator state machine */
1431         CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1432
1433         /* Turn on send BD initiator state machine */
1434         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1435
1436         /* Turn on send BD selector state machine */
1437         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1438
1439         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1440         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1441             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1442
1443         /* ack/clear link change events */
1444         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1445             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1446             BGE_MACSTAT_LINK_CHANGED);
1447
1448         /* Enable PHY auto polling (for MII/GMII only) */
1449         if (sc->bge_tbi) {
1450                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1451         } else {
1452                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1453                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
1454                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1455                             BGE_EVTENB_MI_INTERRUPT);
1456         }
1457
1458         /* Enable link state change attentions. */
1459         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1460
1461         return(0);
1462 }
1463
1464 /*
1465  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1466  * against our list and return its name if we find a match. Note
1467  * that since the Broadcom controller contains VPD support, we
1468  * can get the device name string from the controller itself instead
1469  * of the compiled-in string. This is a little slow, but it guarantees
1470  * we'll always announce the right product name.
1471  */
1472 static int
1473 bge_probe(device_t dev)
1474 {
1475         struct bge_softc *sc;
1476         struct bge_type *t;
1477         char *descbuf;
1478         uint16_t product, vendor;
1479
1480         product = pci_get_device(dev);
1481         vendor = pci_get_vendor(dev);
1482
1483         for (t = bge_devs; t->bge_name != NULL; t++) {
1484                 if (vendor == t->bge_vid && product == t->bge_did)
1485                         break;
1486         }
1487
1488         if (t->bge_name == NULL)
1489                 return(ENXIO);
1490
1491         sc = device_get_softc(dev);
1492 #ifdef notdef
1493         sc->bge_dev = dev;
1494
1495         bge_vpd_read(sc);
1496         device_set_desc(dev, sc->bge_vpd_prodname);
1497 #endif
1498         descbuf = malloc(BGE_DEVDESC_MAX, M_TEMP, M_WAITOK);
1499         snprintf(descbuf, BGE_DEVDESC_MAX, "%s, ASIC rev. %#04x", t->bge_name,
1500             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1501         device_set_desc_copy(dev, descbuf);
1502         if (pci_get_subvendor(dev) == PCI_VENDOR_DELL)
1503                 sc->bge_no_3_led = 1;
1504         free(descbuf, M_TEMP);
1505         return(0);
1506 }
1507
1508 static int
1509 bge_attach(device_t dev)
1510 {
1511         struct ifnet *ifp;
1512         struct bge_softc *sc;
1513         uint32_t hwcfg = 0;
1514         uint32_t mac_addr = 0;
1515         int error = 0, rid;
1516         uint8_t ether_addr[ETHER_ADDR_LEN];
1517
1518         sc = device_get_softc(dev);
1519         sc->bge_dev = dev;
1520         callout_init(&sc->bge_stat_timer);
1521         lwkt_serialize_init(&sc->bge_jslot_serializer);
1522
1523         /*
1524          * Map control/status registers.
1525          */
1526         pci_enable_busmaster(dev);
1527
1528         rid = BGE_PCI_BAR0;
1529         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1530             RF_ACTIVE);
1531
1532         if (sc->bge_res == NULL) {
1533                 device_printf(dev, "couldn't map memory\n");
1534                 error = ENXIO;
1535                 return(error);
1536         }
1537
1538         sc->bge_btag = rman_get_bustag(sc->bge_res);
1539         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1540         sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res);
1541
1542         /* Allocate interrupt */
1543         rid = 0;
1544
1545         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1546             RF_SHAREABLE | RF_ACTIVE);
1547
1548         if (sc->bge_irq == NULL) {
1549                 device_printf(dev, "couldn't map interrupt\n");
1550                 error = ENXIO;
1551                 goto fail;
1552         }
1553
1554         /* Save ASIC rev. */
1555         sc->bge_chipid =
1556             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1557             BGE_PCIMISCCTL_ASICREV;
1558         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1559         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1560
1561         /*
1562          * Treat the 5714 like the 5750 until we have more info
1563          * on this chip.
1564          */
1565         if (sc->bge_asicrev == BGE_ASICREV_BCM5714)
1566                 sc->bge_asicrev = BGE_ASICREV_BCM5750;
1567
1568         /*
1569          * XXX: Broadcom Linux driver.  Not in specs or eratta.
1570          * PCI-Express?
1571          */
1572         if (sc->bge_asicrev == BGE_ASICREV_BCM5750) {
1573                 uint32_t v;
1574
1575                 v = pci_read_config(dev, BGE_PCI_MSI_CAPID, 4);
1576                 if (((v >> 8) & 0xff) == BGE_PCIE_MSI_CAPID) {
1577                         v = pci_read_config(dev, BGE_PCIE_MSI_CAPID, 4);
1578                         if ((v & 0xff) == BGE_PCIE_MSI_CAPID_VAL)
1579                                 sc->bge_pcie = 1;
1580                 }
1581         }
1582
1583         ifp = &sc->arpcom.ac_if;
1584         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1585
1586         /* Try to reset the chip. */
1587         bge_reset(sc);
1588
1589         if (bge_chipinit(sc)) {
1590                 device_printf(dev, "chip initialization failed\n");
1591                 error = ENXIO;
1592                 goto fail;
1593         }
1594
1595         /*
1596          * Get station address from the EEPROM.
1597          */
1598         mac_addr = bge_readmem_ind(sc, 0x0c14);
1599         if ((mac_addr >> 16) == 0x484b) {
1600                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
1601                 ether_addr[1] = (uint8_t)mac_addr;
1602                 mac_addr = bge_readmem_ind(sc, 0x0c18);
1603                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
1604                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
1605                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
1606                 ether_addr[5] = (uint8_t)mac_addr;
1607         } else if (bge_read_eeprom(sc, ether_addr,
1608             BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1609                 device_printf(dev, "failed to read station address\n");
1610                 error = ENXIO;
1611                 goto fail;
1612         }
1613
1614         /* Allocate the general information block and ring buffers. */
1615         sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF,
1616             M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1617
1618         if (sc->bge_rdata == NULL) {
1619                 error = ENXIO;
1620                 device_printf(dev, "no memory for list buffers!\n");
1621                 goto fail;
1622         }
1623
1624         bzero(sc->bge_rdata, sizeof(struct bge_ring_data));
1625
1626         /*
1627          * Try to allocate memory for jumbo buffers.
1628          * The 5705/5750 does not appear to support jumbo frames.
1629          */
1630         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1631             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1632                 if (bge_alloc_jumbo_mem(sc)) {
1633                         device_printf(dev, "jumbo buffer allocation failed\n");
1634                         error = ENXIO;
1635                         goto fail;
1636                 }
1637         }
1638
1639         /* Set default tuneable values. */
1640         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1641         sc->bge_rx_coal_ticks = 150;
1642         sc->bge_tx_coal_ticks = 150;
1643         sc->bge_rx_max_coal_bds = 64;
1644         sc->bge_tx_max_coal_bds = 128;
1645
1646         /* 5705/5750 limits RX return ring to 512 entries. */
1647         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1648             sc->bge_asicrev == BGE_ASICREV_BCM5750)
1649                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1650         else
1651                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1652
1653         /* Set up ifnet structure */
1654         ifp->if_softc = sc;
1655         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1656         ifp->if_ioctl = bge_ioctl;
1657         ifp->if_start = bge_start;
1658         ifp->if_watchdog = bge_watchdog;
1659         ifp->if_init = bge_init;
1660         ifp->if_mtu = ETHERMTU;
1661         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1662         ifq_set_ready(&ifp->if_snd);
1663         ifp->if_hwassist = BGE_CSUM_FEATURES;
1664         ifp->if_capabilities = IFCAP_HWCSUM;
1665         ifp->if_capenable = ifp->if_capabilities;
1666
1667         /*
1668          * Figure out what sort of media we have by checking the
1669          * hardware config word in the first 32k of NIC internal memory,
1670          * or fall back to examining the EEPROM if necessary.
1671          * Note: on some BCM5700 cards, this value appears to be unset.
1672          * If that's the case, we have to rely on identifying the NIC
1673          * by its PCI subsystem ID, as we do below for the SysKonnect
1674          * SK-9D41.
1675          */
1676         if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1677                 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1678         else {
1679                 bge_read_eeprom(sc, (caddr_t)&hwcfg,
1680                                 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
1681                 hwcfg = ntohl(hwcfg);
1682         }
1683
1684         if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1685                 sc->bge_tbi = 1;
1686
1687         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
1688         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
1689                 sc->bge_tbi = 1;
1690
1691         if (sc->bge_tbi) {
1692                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1693                     bge_ifmedia_upd, bge_ifmedia_sts);
1694                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1695                 ifmedia_add(&sc->bge_ifmedia,
1696                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1697                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1698                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1699                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
1700         } else {
1701                 /*
1702                  * Do transceiver setup.
1703                  */
1704                 if (mii_phy_probe(dev, &sc->bge_miibus,
1705                     bge_ifmedia_upd, bge_ifmedia_sts)) {
1706                         device_printf(dev, "MII without any PHY!\n");
1707                         error = ENXIO;
1708                         goto fail;
1709                 }
1710         }
1711
1712         /*
1713          * When using the BCM5701 in PCI-X mode, data corruption has
1714          * been observed in the first few bytes of some received packets.
1715          * Aligning the packet buffer in memory eliminates the corruption.
1716          * Unfortunately, this misaligns the packet payloads.  On platforms
1717          * which do not support unaligned accesses, we will realign the
1718          * payloads by copying the received packets.
1719          */
1720         switch (sc->bge_chipid) {
1721         case BGE_CHIPID_BCM5701_A0:
1722         case BGE_CHIPID_BCM5701_B0:
1723         case BGE_CHIPID_BCM5701_B2:
1724         case BGE_CHIPID_BCM5701_B5:
1725                 /* If in PCI-X mode, work around the alignment bug. */
1726                 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
1727                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
1728                     BGE_PCISTATE_PCI_BUSSPEED)
1729                         sc->bge_rx_alignment_bug = 1;
1730                 break;
1731         }
1732
1733         /*
1734          * Call MI attach routine.
1735          */
1736         ether_ifattach(ifp, ether_addr, NULL);
1737
1738         error = bus_setup_intr(dev, sc->bge_irq, INTR_NETSAFE,
1739                                bge_intr, sc, &sc->bge_intrhand, 
1740                                ifp->if_serializer);
1741         if (error) {
1742                 ether_ifdetach(ifp);
1743                 device_printf(dev, "couldn't set up irq\n");
1744                 goto fail;
1745         }
1746
1747         return(0);
1748
1749 fail:
1750         bge_detach(dev);
1751
1752         return(error);
1753 }
1754
1755 static int
1756 bge_detach(device_t dev)
1757 {
1758         struct bge_softc *sc = device_get_softc(dev);
1759         struct ifnet *ifp = &sc->arpcom.ac_if;
1760
1761         if (device_is_attached(dev)) {
1762                 lwkt_serialize_enter(ifp->if_serializer);
1763                 bge_stop(sc);
1764                 bge_reset(sc);
1765                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1766                 lwkt_serialize_exit(ifp->if_serializer);
1767
1768                 ether_ifdetach(ifp);
1769         }
1770         if (sc->bge_tbi)
1771                 ifmedia_removeall(&sc->bge_ifmedia);
1772         if (sc->bge_miibus);
1773                 device_delete_child(dev, sc->bge_miibus);
1774         bus_generic_detach(dev);
1775
1776         bge_release_resources(sc);
1777
1778         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1779             sc->bge_asicrev != BGE_ASICREV_BCM5750)
1780                 bge_free_jumbo_mem(sc);
1781
1782         return(0);
1783 }
1784
1785 static void
1786 bge_release_resources(struct bge_softc *sc)
1787 {
1788         device_t dev;
1789
1790         dev = sc->bge_dev;
1791
1792         if (sc->bge_vpd_prodname != NULL)
1793                 free(sc->bge_vpd_prodname, M_DEVBUF);
1794
1795         if (sc->bge_vpd_readonly != NULL)
1796                 free(sc->bge_vpd_readonly, M_DEVBUF);
1797
1798         if (sc->bge_irq != NULL)
1799                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1800
1801         if (sc->bge_res != NULL)
1802                 bus_release_resource(dev, SYS_RES_MEMORY,
1803                     BGE_PCI_BAR0, sc->bge_res);
1804
1805         if (sc->bge_rdata != NULL)
1806                 contigfree(sc->bge_rdata, sizeof(struct bge_ring_data),
1807                            M_DEVBUF);
1808
1809         return;
1810 }
1811
1812 static void
1813 bge_reset(struct bge_softc *sc)
1814 {
1815         device_t dev;
1816         uint32_t cachesize, command, pcistate, reset;
1817         int i, val = 0;
1818
1819         dev = sc->bge_dev;
1820
1821         /* Save some important PCI state. */
1822         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
1823         command = pci_read_config(dev, BGE_PCI_CMD, 4);
1824         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
1825
1826         pci_write_config(dev, BGE_PCI_MISC_CTL,
1827             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1828             BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1829
1830         reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
1831
1832         /* XXX: Broadcom Linux driver. */
1833         if (sc->bge_pcie) {
1834                 if (CSR_READ_4(sc, 0x7e2c) == 0x60)     /* PCIE 1.0 */
1835                         CSR_WRITE_4(sc, 0x7e2c, 0x20);
1836                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
1837                         /* Prevent PCIE link training during global reset */
1838                         CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
1839                         reset |= (1<<29);
1840                 }
1841         }
1842
1843         /* Issue global reset */
1844         bge_writereg_ind(sc, BGE_MISC_CFG, reset);
1845
1846         DELAY(1000);
1847
1848         /* XXX: Broadcom Linux driver. */
1849         if (sc->bge_pcie) {
1850                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
1851                         uint32_t v;
1852
1853                         DELAY(500000); /* wait for link training to complete */
1854                         v = pci_read_config(dev, 0xc4, 4);
1855                         pci_write_config(dev, 0xc4, v | (1<<15), 4);
1856                 }
1857                 /* Set PCIE max payload size and clear error status. */
1858                 pci_write_config(dev, 0xd8, 0xf5000, 4);
1859         }
1860
1861         /* Reset some of the PCI state that got zapped by reset */
1862         pci_write_config(dev, BGE_PCI_MISC_CTL,
1863             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1864             BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1865         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
1866         pci_write_config(dev, BGE_PCI_CMD, command, 4);
1867         bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1868
1869         /* Enable memory arbiter. */
1870         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1871                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1872
1873         /*
1874          * Prevent PXE restart: write a magic number to the
1875          * general communications memory at 0xB50.
1876          */
1877         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1878         /*
1879          * Poll the value location we just wrote until
1880          * we see the 1's complement of the magic number.
1881          * This indicates that the firmware initialization
1882          * is complete.
1883          */
1884         for (i = 0; i < BGE_TIMEOUT; i++) {
1885                 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1886                 if (val == ~BGE_MAGIC_NUMBER)
1887                         break;
1888                 DELAY(10);
1889         }
1890         
1891         if (i == BGE_TIMEOUT) {
1892                 if_printf(&sc->arpcom.ac_if, "firmware handshake timed out\n");
1893                 return;
1894         }
1895
1896         /*
1897          * XXX Wait for the value of the PCISTATE register to
1898          * return to its original pre-reset state. This is a
1899          * fairly good indicator of reset completion. If we don't
1900          * wait for the reset to fully complete, trying to read
1901          * from the device's non-PCI registers may yield garbage
1902          * results.
1903          */
1904         for (i = 0; i < BGE_TIMEOUT; i++) {
1905                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
1906                         break;
1907                 DELAY(10);
1908         }
1909
1910         /* Fix up byte swapping */
1911         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME|
1912             BGE_MODECTL_BYTESWAP_DATA);
1913
1914         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1915
1916         /*
1917          * The 5704 in TBI mode apparently needs some special
1918          * adjustment to insure the SERDES drive level is set
1919          * to 1.2V.
1920          */
1921         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 && sc->bge_tbi) {
1922                 uint32_t serdescfg;
1923
1924                 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
1925                 serdescfg = (serdescfg & ~0xFFF) | 0x880;
1926                 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
1927         }
1928
1929         /* XXX: Broadcom Linux driver. */
1930         if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
1931                 uint32_t v;
1932
1933                 v = CSR_READ_4(sc, 0x7c00);
1934                 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
1935         }
1936
1937         DELAY(10000);
1938 }
1939
1940 /*
1941  * Frame reception handling. This is called if there's a frame
1942  * on the receive return list.
1943  *
1944  * Note: we have to be able to handle two possibilities here:
1945  * 1) the frame is from the jumbo recieve ring
1946  * 2) the frame is from the standard receive ring
1947  */
1948
1949 static void
1950 bge_rxeof(struct bge_softc *sc)
1951 {
1952         struct ifnet *ifp;
1953         int stdcnt = 0, jumbocnt = 0;
1954
1955         ifp = &sc->arpcom.ac_if;
1956
1957         while(sc->bge_rx_saved_considx !=
1958             sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
1959                 struct bge_rx_bd        *cur_rx;
1960                 uint32_t                rxidx;
1961                 struct mbuf             *m = NULL;
1962                 uint16_t                vlan_tag = 0;
1963                 int                     have_tag = 0;
1964
1965                 cur_rx =
1966             &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx];
1967
1968                 rxidx = cur_rx->bge_idx;
1969                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
1970
1971                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
1972                         have_tag = 1;
1973                         vlan_tag = cur_rx->bge_vlan_tag;
1974                 }
1975
1976                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
1977                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1978                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
1979                         sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
1980                         jumbocnt++;
1981                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1982                                 ifp->if_ierrors++;
1983                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1984                                 continue;
1985                         }
1986                         if (bge_newbuf_jumbo(sc,
1987                             sc->bge_jumbo, NULL) == ENOBUFS) {
1988                                 ifp->if_ierrors++;
1989                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1990                                 continue;
1991                         }
1992                 } else {
1993                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1994                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
1995                         sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
1996                         stdcnt++;
1997                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1998                                 ifp->if_ierrors++;
1999                                 bge_newbuf_std(sc, sc->bge_std, m);
2000                                 continue;
2001                         }
2002                         if (bge_newbuf_std(sc, sc->bge_std,
2003                             NULL) == ENOBUFS) {
2004                                 ifp->if_ierrors++;
2005                                 bge_newbuf_std(sc, sc->bge_std, m);
2006                                 continue;
2007                         }
2008                 }
2009
2010                 ifp->if_ipackets++;
2011 #ifndef __i386__
2012                 /*
2013                  * The i386 allows unaligned accesses, but for other
2014                  * platforms we must make sure the payload is aligned.
2015                  */
2016                 if (sc->bge_rx_alignment_bug) {
2017                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2018                             cur_rx->bge_len);
2019                         m->m_data += ETHER_ALIGN;
2020                 }
2021 #endif
2022                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2023                 m->m_pkthdr.rcvif = ifp;
2024
2025 #if 0 /* currently broken for some packets, possibly related to TCP options */
2026                 if (ifp->if_hwassist) {
2027                         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2028                         if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2029                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2030                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2031                                 m->m_pkthdr.csum_data =
2032                                     cur_rx->bge_tcp_udp_csum;
2033                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2034                         }
2035                 }
2036 #endif
2037
2038                 /*
2039                  * If we received a packet with a vlan tag, pass it
2040                  * to vlan_input() instead of ether_input().
2041                  */
2042                 if (have_tag) {
2043                         VLAN_INPUT_TAG(m, vlan_tag);
2044                         have_tag = vlan_tag = 0;
2045                 } else {
2046                         ifp->if_input(ifp, m);
2047                 }
2048         }
2049
2050         CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2051         if (stdcnt)
2052                 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2053         if (jumbocnt)
2054                 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2055 }
2056
2057 static void
2058 bge_txeof(struct bge_softc *sc)
2059 {
2060         struct bge_tx_bd *cur_tx = NULL;
2061         struct ifnet *ifp;
2062
2063         ifp = &sc->arpcom.ac_if;
2064
2065         /*
2066          * Go through our tx ring and free mbufs for those
2067          * frames that have been sent.
2068          */
2069         while (sc->bge_tx_saved_considx !=
2070             sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2071                 uint32_t                idx = 0;
2072
2073                 idx = sc->bge_tx_saved_considx;
2074                 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2075                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2076                         ifp->if_opackets++;
2077                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2078                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2079                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
2080                 }
2081                 sc->bge_txcnt--;
2082                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2083                 ifp->if_timer = 0;
2084         }
2085
2086         if (cur_tx != NULL)
2087                 ifp->if_flags &= ~IFF_OACTIVE;
2088 }
2089
2090 static void
2091 bge_intr(void *xsc)
2092 {
2093         struct bge_softc *sc = xsc;
2094         struct ifnet *ifp = &sc->arpcom.ac_if;
2095         uint32_t status, statusword, mimode;
2096
2097         /* XXX */
2098         statusword = loadandclear(&sc->bge_rdata->bge_status_block.bge_status);
2099
2100 #ifdef notdef
2101         /* Avoid this for now -- checking this register is expensive. */
2102         /* Make sure this is really our interrupt. */
2103         if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2104                 return;
2105 #endif
2106         /* Ack interrupt and stop others from occuring. */
2107         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2108
2109         /*
2110          * Process link state changes.
2111          * Grrr. The link status word in the status block does
2112          * not work correctly on the BCM5700 rev AX and BX chips,
2113          * according to all available information. Hence, we have
2114          * to enable MII interrupts in order to properly obtain
2115          * async link changes. Unfortunately, this also means that
2116          * we have to read the MAC status register to detect link
2117          * changes, thereby adding an additional register access to
2118          * the interrupt handler.
2119          */
2120
2121         if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
2122                 status = CSR_READ_4(sc, BGE_MAC_STS);
2123                 if (status & BGE_MACSTAT_MI_INTERRUPT) {
2124                         sc->bge_link = 0;
2125                         callout_stop(&sc->bge_stat_timer);
2126                         bge_tick_serialized(sc);
2127                         /* Clear the interrupt */
2128                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2129                             BGE_EVTENB_MI_INTERRUPT);
2130                         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
2131                         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
2132                             BRGPHY_INTRS);
2133                 }
2134         } else {
2135                 if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED) {
2136                         /*
2137                          * Sometimes PCS encoding errors are detected in
2138                          * TBI mode (on fiber NICs), and for some reason
2139                          * the chip will signal them as link changes.
2140                          * If we get a link change event, but the 'PCS
2141                          * encoding error' bit in the MAC status register
2142                          * is set, don't bother doing a link check.
2143                          * This avoids spurious "gigabit link up" messages
2144                          * that sometimes appear on fiber NICs during
2145                          * periods of heavy traffic. (There should be no
2146                          * effect on copper NICs.)
2147                          *
2148                          * If we do have a copper NIC (bge_tbi == 0) then
2149                          * check that the AUTOPOLL bit is set before
2150                          * processing the event as a real link change.
2151                          * Turning AUTOPOLL on and off in the MII read/write
2152                          * functions will often trigger a link status
2153                          * interrupt for no reason.
2154                          */
2155                         status = CSR_READ_4(sc, BGE_MAC_STS);
2156                         mimode = CSR_READ_4(sc, BGE_MI_MODE);
2157                         if (!(status & (BGE_MACSTAT_PORT_DECODE_ERROR |
2158                                         BGE_MACSTAT_MI_COMPLETE)) &&
2159                             (!sc->bge_tbi && (mimode & BGE_MIMODE_AUTOPOLL))) {
2160                                 sc->bge_link = 0;
2161                                 callout_stop(&sc->bge_stat_timer);
2162                                 bge_tick_serialized(sc);
2163                         }
2164                         sc->bge_link = 0;
2165                         callout_stop(&sc->bge_stat_timer);
2166                         bge_tick_serialized(sc);
2167                         /* Clear the interrupt */
2168                         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2169                             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2170                             BGE_MACSTAT_LINK_CHANGED);
2171
2172                         /* Force flush the status block cached by PCI bridge */
2173                         CSR_READ_4(sc, BGE_MBX_IRQ0_LO);
2174                 }
2175         }
2176
2177         if (ifp->if_flags & IFF_RUNNING) {
2178                 /* Check RX return ring producer/consumer */
2179                 bge_rxeof(sc);
2180
2181                 /* Check TX ring producer/consumer */
2182                 bge_txeof(sc);
2183         }
2184
2185         bge_handle_events(sc);
2186
2187         /* Re-enable interrupts. */
2188         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2189
2190         if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
2191                 (*ifp->if_start)(ifp);
2192 }
2193
2194 static void
2195 bge_tick(void *xsc)
2196 {
2197         struct bge_softc *sc = xsc;
2198         struct ifnet *ifp = &sc->arpcom.ac_if;
2199
2200         lwkt_serialize_enter(ifp->if_serializer);
2201         bge_tick_serialized(xsc);
2202         lwkt_serialize_exit(ifp->if_serializer);
2203 }
2204
2205 static void
2206 bge_tick_serialized(void *xsc)
2207 {
2208         struct bge_softc *sc = xsc;
2209         struct ifnet *ifp = &sc->arpcom.ac_if;
2210         struct mii_data *mii = NULL;
2211         struct ifmedia *ifm = NULL;
2212
2213         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
2214             sc->bge_asicrev == BGE_ASICREV_BCM5750)
2215                 bge_stats_update_regs(sc);
2216         else
2217                 bge_stats_update(sc);
2218
2219         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2220
2221         if (sc->bge_link) {
2222                 return;
2223         }
2224
2225         if (sc->bge_tbi) {
2226                 ifm = &sc->bge_ifmedia;
2227                 if (CSR_READ_4(sc, BGE_MAC_STS) &
2228                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
2229                         sc->bge_link++;
2230                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2231                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
2232                                            BGE_MACMODE_TBI_SEND_CFGS);
2233                         }
2234                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2235                         if_printf(ifp, "gigabit link up\n");
2236                         if (!ifq_is_empty(&ifp->if_snd))
2237                                 (*ifp->if_start)(ifp);
2238                 }
2239                 return;
2240         }
2241
2242         mii = device_get_softc(sc->bge_miibus);
2243         mii_tick(mii);
2244  
2245         if (!sc->bge_link) {
2246                 mii_pollstat(mii);
2247                 if (mii->mii_media_status & IFM_ACTIVE &&
2248                     IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2249                         sc->bge_link++;
2250                         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2251                             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2252                                 if_printf(ifp, "gigabit link up\n");
2253                         if (!ifq_is_empty(&ifp->if_snd))
2254                                 (*ifp->if_start)(ifp);
2255                 }
2256         }
2257 }
2258
2259 static void
2260 bge_stats_update_regs(struct bge_softc *sc)
2261 {
2262         struct ifnet *ifp = &sc->arpcom.ac_if;
2263         struct bge_mac_stats_regs stats;
2264         uint32_t *s;
2265         int i;
2266
2267         s = (uint32_t *)&stats;
2268         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2269                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
2270                 s++;
2271         }
2272
2273         ifp->if_collisions +=
2274            (stats.dot3StatsSingleCollisionFrames +
2275            stats.dot3StatsMultipleCollisionFrames +
2276            stats.dot3StatsExcessiveCollisions +
2277            stats.dot3StatsLateCollisions) -
2278            ifp->if_collisions;
2279 }
2280
2281 static void
2282 bge_stats_update(struct bge_softc *sc)
2283 {
2284         struct ifnet *ifp = &sc->arpcom.ac_if;
2285         struct bge_stats *stats;
2286
2287         stats = (struct bge_stats *)(sc->bge_vhandle +
2288             BGE_MEMWIN_START + BGE_STATS_BLOCK);
2289
2290         ifp->if_collisions +=
2291            (stats->txstats.dot3StatsSingleCollisionFrames.bge_addr_lo +
2292            stats->txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo +
2293            stats->txstats.dot3StatsExcessiveCollisions.bge_addr_lo +
2294            stats->txstats.dot3StatsLateCollisions.bge_addr_lo) -
2295            ifp->if_collisions;
2296
2297 #ifdef notdef
2298         ifp->if_collisions +=
2299            (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2300            sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2301            sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2302            sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2303            ifp->if_collisions;
2304 #endif
2305 }
2306
2307 /*
2308  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2309  * pointers to descriptors.
2310  */
2311 static int
2312 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2313 {
2314         struct bge_tx_bd *f = NULL;
2315         struct mbuf *m;
2316         uint32_t frag, cur, cnt = 0;
2317         uint16_t csum_flags = 0;
2318         struct ifvlan *ifv = NULL;
2319
2320         if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2321             m_head->m_pkthdr.rcvif != NULL &&
2322             m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2323                 ifv = m_head->m_pkthdr.rcvif->if_softc;
2324
2325         m = m_head;
2326         cur = frag = *txidx;
2327
2328         if (m_head->m_pkthdr.csum_flags) {
2329                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2330                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2331                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2332                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2333                 if (m_head->m_flags & M_LASTFRAG)
2334                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2335                 else if (m_head->m_flags & M_FRAG)
2336                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2337         }
2338         /*
2339          * Start packing the mbufs in this chain into
2340          * the fragment pointers. Stop when we run out
2341          * of fragments or hit the end of the mbuf chain.
2342          */
2343         for (m = m_head; m != NULL; m = m->m_next) {
2344                 if (m->m_len != 0) {
2345                         f = &sc->bge_rdata->bge_tx_ring[frag];
2346                         if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2347                                 break;
2348                         BGE_HOSTADDR(f->bge_addr,
2349                             vtophys(mtod(m, vm_offset_t)));
2350                         f->bge_len = m->m_len;
2351                         f->bge_flags = csum_flags;
2352                         if (ifv != NULL) {
2353                                 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2354                                 f->bge_vlan_tag = ifv->ifv_tag;
2355                         } else {
2356                                 f->bge_vlan_tag = 0;
2357                         }
2358                         /*
2359                          * Sanity check: avoid coming within 16 descriptors
2360                          * of the end of the ring.
2361                          */
2362                         if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2363                                 return(ENOBUFS);
2364                         cur = frag;
2365                         BGE_INC(frag, BGE_TX_RING_CNT);
2366                         cnt++;
2367                 }
2368         }
2369
2370         if (m != NULL)
2371                 return(ENOBUFS);
2372
2373         if (frag == sc->bge_tx_saved_considx)
2374                 return(ENOBUFS);
2375
2376         sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2377         sc->bge_cdata.bge_tx_chain[cur] = m_head;
2378         sc->bge_txcnt += cnt;
2379
2380         *txidx = frag;
2381
2382         return(0);
2383 }
2384
2385 /*
2386  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2387  * to the mbuf data regions directly in the transmit descriptors.
2388  */
2389 static void
2390 bge_start(struct ifnet *ifp)
2391 {
2392         struct bge_softc *sc;
2393         struct mbuf *m_head = NULL;
2394         uint32_t prodidx = 0;
2395         int need_trans;
2396
2397         sc = ifp->if_softc;
2398
2399         if (!sc->bge_link)
2400                 return;
2401
2402         prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2403
2404         need_trans = 0;
2405         while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2406                 m_head = ifq_poll(&ifp->if_snd);
2407                 if (m_head == NULL)
2408                         break;
2409
2410                 /*
2411                  * XXX
2412                  * safety overkill.  If this is a fragmented packet chain
2413                  * with delayed TCP/UDP checksums, then only encapsulate
2414                  * it if we have enough descriptors to handle the entire
2415                  * chain at once.
2416                  * (paranoia -- may not actually be needed)
2417                  */
2418                 if (m_head->m_flags & M_FIRSTFRAG &&
2419                     m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2420                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2421                             m_head->m_pkthdr.csum_data + 16) {
2422                                 ifp->if_flags |= IFF_OACTIVE;
2423                                 break;
2424                         }
2425                 }
2426
2427                 /*
2428                  * Pack the data into the transmit ring. If we
2429                  * don't have room, set the OACTIVE flag and wait
2430                  * for the NIC to drain the ring.
2431                  */
2432                 if (bge_encap(sc, m_head, &prodidx)) {
2433                         ifp->if_flags |= IFF_OACTIVE;
2434                         break;
2435                 }
2436                 ifq_dequeue(&ifp->if_snd, m_head);
2437                 need_trans = 1;
2438
2439                 BPF_MTAP(ifp, m_head);
2440         }
2441
2442         if (!need_trans)
2443                 return;
2444
2445         /* Transmit */
2446         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2447         /* 5700 b2 errata */
2448         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2449                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2450
2451         /*
2452          * Set a timeout in case the chip goes out to lunch.
2453          */
2454         ifp->if_timer = 5;
2455 }
2456
2457 static void
2458 bge_init(void *xsc)
2459 {
2460         struct bge_softc *sc = xsc;
2461         struct ifnet *ifp = &sc->arpcom.ac_if;
2462         uint16_t *m;
2463
2464         if (ifp->if_flags & IFF_RUNNING) {
2465                 return;
2466         }
2467
2468         /* Cancel pending I/O and flush buffers. */
2469         bge_stop(sc);
2470         bge_reset(sc);
2471         bge_chipinit(sc);
2472
2473         /*
2474          * Init the various state machines, ring
2475          * control blocks and firmware.
2476          */
2477         if (bge_blockinit(sc)) {
2478                 if_printf(ifp, "initialization failure\n");
2479                 return;
2480         }
2481
2482         /* Specify MTU. */
2483         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2484             ETHER_HDR_LEN + ETHER_CRC_LEN);
2485
2486         /* Load our MAC address. */
2487         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2488         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2489         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2490
2491         /* Enable or disable promiscuous mode as needed. */
2492         if (ifp->if_flags & IFF_PROMISC) {
2493                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2494         } else {
2495                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2496         }
2497
2498         /* Program multicast filter. */
2499         bge_setmulti(sc);
2500
2501         /* Init RX ring. */
2502         bge_init_rx_ring_std(sc);
2503
2504         /*
2505          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2506          * memory to insure that the chip has in fact read the first
2507          * entry of the ring.
2508          */
2509         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2510                 uint32_t                v, i;
2511                 for (i = 0; i < 10; i++) {
2512                         DELAY(20);
2513                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2514                         if (v == (MCLBYTES - ETHER_ALIGN))
2515                                 break;
2516                 }
2517                 if (i == 10)
2518                         if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
2519         }
2520
2521         /* Init jumbo RX ring. */
2522         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2523                 bge_init_rx_ring_jumbo(sc);
2524
2525         /* Init our RX return ring index */
2526         sc->bge_rx_saved_considx = 0;
2527
2528         /* Init TX ring. */
2529         bge_init_tx_ring(sc);
2530
2531         /* Turn on transmitter */
2532         BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2533
2534         /* Turn on receiver */
2535         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2536
2537         /* Tell firmware we're alive. */
2538         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2539
2540         /* Enable host interrupts. */
2541         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2542         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2543         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2544
2545         bge_ifmedia_upd(ifp);
2546
2547         ifp->if_flags |= IFF_RUNNING;
2548         ifp->if_flags &= ~IFF_OACTIVE;
2549
2550         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2551 }
2552
2553 /*
2554  * Set media options.
2555  */
2556 static int
2557 bge_ifmedia_upd(struct ifnet *ifp)
2558 {
2559         struct bge_softc *sc = ifp->if_softc;
2560         struct ifmedia *ifm = &sc->bge_ifmedia;
2561         struct mii_data *mii;
2562
2563         /* If this is a 1000baseX NIC, enable the TBI port. */
2564         if (sc->bge_tbi) {
2565                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2566                         return(EINVAL);
2567                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2568                 case IFM_AUTO:
2569 #ifndef BGE_FAKE_AUTONEG
2570                         /*
2571                          * The BCM5704 ASIC appears to have a special
2572                          * mechanism for programming the autoneg
2573                          * advertisement registers in TBI mode.
2574                          */
2575                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2576                                 uint32_t sgdig;
2577
2578                                 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
2579                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
2580                                 sgdig |= BGE_SGDIGCFG_AUTO |
2581                                          BGE_SGDIGCFG_PAUSE_CAP |
2582                                          BGE_SGDIGCFG_ASYM_PAUSE;
2583                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
2584                                             sgdig | BGE_SGDIGCFG_SEND);
2585                                 DELAY(5);
2586                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
2587                         }
2588 #endif  /* !BEG_FAKE_AUTONEG */
2589                         break;
2590                 case IFM_1000_SX:
2591                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2592                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
2593                                     BGE_MACMODE_HALF_DUPLEX);
2594                         } else {
2595                                 BGE_SETBIT(sc, BGE_MAC_MODE,
2596                                     BGE_MACMODE_HALF_DUPLEX);
2597                         }
2598                         break;
2599                 default:
2600                         return(EINVAL);
2601                 }
2602                 return(0);
2603         }
2604
2605         mii = device_get_softc(sc->bge_miibus);
2606         sc->bge_link = 0;
2607         if (mii->mii_instance) {
2608                 struct mii_softc *miisc;
2609                 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2610                     miisc = LIST_NEXT(miisc, mii_list))
2611                         mii_phy_reset(miisc);
2612         }
2613         mii_mediachg(mii);
2614
2615         return(0);
2616 }
2617
2618 /*
2619  * Report current media status.
2620  */
2621 static void
2622 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2623 {
2624         struct bge_softc *sc = ifp->if_softc;
2625         struct mii_data *mii;
2626
2627         if (sc->bge_tbi) {
2628                 ifmr->ifm_status = IFM_AVALID;
2629                 ifmr->ifm_active = IFM_ETHER;
2630                 if (CSR_READ_4(sc, BGE_MAC_STS) &
2631                     BGE_MACSTAT_TBI_PCS_SYNCHED)
2632                         ifmr->ifm_status |= IFM_ACTIVE;
2633                 ifmr->ifm_active |= IFM_1000_SX;
2634                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2635                         ifmr->ifm_active |= IFM_HDX;    
2636                 else
2637                         ifmr->ifm_active |= IFM_FDX;
2638                 return;
2639         }
2640
2641         mii = device_get_softc(sc->bge_miibus);
2642         mii_pollstat(mii);
2643         ifmr->ifm_active = mii->mii_media_active;
2644         ifmr->ifm_status = mii->mii_media_status;
2645 }
2646
2647 static int
2648 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2649 {
2650         struct bge_softc *sc = ifp->if_softc;
2651         struct ifreq *ifr = (struct ifreq *) data;
2652         int mask, error = 0;
2653         struct mii_data *mii;
2654
2655         switch(command) {
2656         case SIOCSIFMTU:
2657                 /* Disallow jumbo frames on 5705/5750. */
2658                 if (((sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
2659                       sc->bge_asicrev == BGE_ASICREV_BCM5750) &&
2660                      ifr->ifr_mtu > ETHERMTU) || ifr->ifr_mtu > BGE_JUMBO_MTU)
2661                         error = EINVAL;
2662                 else {
2663                         ifp->if_mtu = ifr->ifr_mtu;
2664                         ifp->if_flags &= ~IFF_RUNNING;
2665                         bge_init(sc);
2666                 }
2667                 break;
2668         case SIOCSIFFLAGS:
2669                 if (ifp->if_flags & IFF_UP) {
2670                         /*
2671                          * If only the state of the PROMISC flag changed,
2672                          * then just use the 'set promisc mode' command
2673                          * instead of reinitializing the entire NIC. Doing
2674                          * a full re-init means reloading the firmware and
2675                          * waiting for it to start up, which may take a
2676                          * second or two.
2677                          */
2678                         if (ifp->if_flags & IFF_RUNNING &&
2679                             ifp->if_flags & IFF_PROMISC &&
2680                             !(sc->bge_if_flags & IFF_PROMISC)) {
2681                                 BGE_SETBIT(sc, BGE_RX_MODE,
2682                                     BGE_RXMODE_RX_PROMISC);
2683                         } else if (ifp->if_flags & IFF_RUNNING &&
2684                             !(ifp->if_flags & IFF_PROMISC) &&
2685                             sc->bge_if_flags & IFF_PROMISC) {
2686                                 BGE_CLRBIT(sc, BGE_RX_MODE,
2687                                     BGE_RXMODE_RX_PROMISC);
2688                         } else
2689                                 bge_init(sc);
2690                 } else {
2691                         if (ifp->if_flags & IFF_RUNNING) {
2692                                 bge_stop(sc);
2693                         }
2694                 }
2695                 sc->bge_if_flags = ifp->if_flags;
2696                 error = 0;
2697                 break;
2698         case SIOCADDMULTI:
2699         case SIOCDELMULTI:
2700                 if (ifp->if_flags & IFF_RUNNING) {
2701                         bge_setmulti(sc);
2702                         error = 0;
2703                 }
2704                 break;
2705         case SIOCSIFMEDIA:
2706         case SIOCGIFMEDIA:
2707                 if (sc->bge_tbi) {
2708                         error = ifmedia_ioctl(ifp, ifr,
2709                             &sc->bge_ifmedia, command);
2710                 } else {
2711                         mii = device_get_softc(sc->bge_miibus);
2712                         error = ifmedia_ioctl(ifp, ifr,
2713                             &mii->mii_media, command);
2714                 }
2715                 break;
2716         case SIOCSIFCAP:
2717                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2718                 if (mask & IFCAP_HWCSUM) {
2719                         if (IFCAP_HWCSUM & ifp->if_capenable)
2720                                 ifp->if_capenable &= ~IFCAP_HWCSUM;
2721                         else
2722                                 ifp->if_capenable |= IFCAP_HWCSUM;
2723                 }
2724                 error = 0;
2725                 break;
2726         default:
2727                 error = ether_ioctl(ifp, command, data);
2728                 break;
2729         }
2730         return(error);
2731 }
2732
2733 static void
2734 bge_watchdog(struct ifnet *ifp)
2735 {
2736         struct bge_softc *sc = ifp->if_softc;
2737
2738         if_printf(ifp, "watchdog timeout -- resetting\n");
2739
2740         ifp->if_flags &= ~IFF_RUNNING;
2741         bge_init(sc);
2742
2743         ifp->if_oerrors++;
2744
2745         if (!ifq_is_empty(&ifp->if_snd))
2746                 ifp->if_start(ifp);
2747 }
2748
2749 /*
2750  * Stop the adapter and free any mbufs allocated to the
2751  * RX and TX lists.
2752  */
2753 static void
2754 bge_stop(struct bge_softc *sc)
2755 {
2756         struct ifnet *ifp = &sc->arpcom.ac_if;
2757         struct ifmedia_entry *ifm;
2758         struct mii_data *mii = NULL;
2759         int mtmp, itmp;
2760
2761         if (!sc->bge_tbi)
2762                 mii = device_get_softc(sc->bge_miibus);
2763
2764         callout_stop(&sc->bge_stat_timer);
2765
2766         /*
2767          * Disable all of the receiver blocks
2768          */
2769         BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2770         BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2771         BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2772         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2773             sc->bge_asicrev != BGE_ASICREV_BCM5750)
2774                 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2775         BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2776         BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2777         BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2778
2779         /*
2780          * Disable all of the transmit blocks
2781          */
2782         BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2783         BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2784         BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2785         BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2786         BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2787         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2788             sc->bge_asicrev != BGE_ASICREV_BCM5750)
2789                 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2790         BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2791
2792         /*
2793          * Shut down all of the memory managers and related
2794          * state machines.
2795          */
2796         BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2797         BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2798         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2799             sc->bge_asicrev != BGE_ASICREV_BCM5750)
2800                 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2801         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2802         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2803         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2804             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
2805                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2806                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2807         }
2808
2809         /* Disable host interrupts. */
2810         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2811         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2812
2813         /*
2814          * Tell firmware we're shutting down.
2815          */
2816         BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2817
2818         /* Free the RX lists. */
2819         bge_free_rx_ring_std(sc);
2820
2821         /* Free jumbo RX list. */
2822         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2823             sc->bge_asicrev != BGE_ASICREV_BCM5750)
2824                 bge_free_rx_ring_jumbo(sc);
2825
2826         /* Free TX buffers. */
2827         bge_free_tx_ring(sc);
2828
2829         /*
2830          * Isolate/power down the PHY, but leave the media selection
2831          * unchanged so that things will be put back to normal when
2832          * we bring the interface back up.
2833          */
2834         if (!sc->bge_tbi) {
2835                 itmp = ifp->if_flags;
2836                 ifp->if_flags |= IFF_UP;
2837                 ifm = mii->mii_media.ifm_cur;
2838                 mtmp = ifm->ifm_media;
2839                 ifm->ifm_media = IFM_ETHER|IFM_NONE;
2840                 mii_mediachg(mii);
2841                 ifm->ifm_media = mtmp;
2842                 ifp->if_flags = itmp;
2843         }
2844
2845         sc->bge_link = 0;
2846
2847         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2848
2849         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2850 }
2851
2852 /*
2853  * Stop all chip I/O so that the kernel's probe routines don't
2854  * get confused by errant DMAs when rebooting.
2855  */
2856 static void
2857 bge_shutdown(device_t dev)
2858 {
2859         struct bge_softc *sc = device_get_softc(dev);
2860
2861         bge_stop(sc); 
2862         bge_reset(sc);
2863 }