Merge branch 'vendor/LIBEDIT'
[dragonfly.git] / sys / dev / netif / em / if_em.c
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - We must call lwkt_serialize_handler_enable() prior to enabling the
71  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
72  *   the hardware interrupt in order to avoid handler execution races from
73  *   scheduled interrupt threads.
74  */
75
76 #include "opt_ifpoll.h"
77
78 #include <sys/param.h>
79 #include <sys/bus.h>
80 #include <sys/endian.h>
81 #include <sys/interrupt.h>
82 #include <sys/kernel.h>
83 #include <sys/ktr.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/proc.h>
87 #include <sys/rman.h>
88 #include <sys/serialize.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/sysctl.h>
92 #include <sys/systm.h>
93
94 #include <net/bpf.h>
95 #include <net/ethernet.h>
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_poll.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104
105 #include <netinet/ip.h>
106 #include <netinet/tcp.h>
107 #include <netinet/udp.h>
108
109 #include <bus/pci/pcivar.h>
110 #include <bus/pci/pcireg.h>
111
112 #include <dev/netif/ig_hal/e1000_api.h>
113 #include <dev/netif/ig_hal/e1000_82571.h>
114 #include <dev/netif/em/if_em.h>
115
116 #define DEBUG_HW 0
117
118 #define EM_NAME "Intel(R) PRO/1000 Network Connection "
119 #define EM_VER  " 7.3.4"
120
121 #define _EM_DEVICE(id, ret)     \
122         { EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
123 #define EM_EMX_DEVICE(id)       _EM_DEVICE(id, -100)
124 #define EM_DEVICE(id)           _EM_DEVICE(id, 0)
125 #define EM_DEVICE_NULL  { 0, 0, 0, NULL }
126
127 static const struct em_vendor_info em_vendor_info_array[] = {
128         EM_DEVICE(82540EM),
129         EM_DEVICE(82540EM_LOM),
130         EM_DEVICE(82540EP),
131         EM_DEVICE(82540EP_LOM),
132         EM_DEVICE(82540EP_LP),
133
134         EM_DEVICE(82541EI),
135         EM_DEVICE(82541ER),
136         EM_DEVICE(82541ER_LOM),
137         EM_DEVICE(82541EI_MOBILE),
138         EM_DEVICE(82541GI),
139         EM_DEVICE(82541GI_LF),
140         EM_DEVICE(82541GI_MOBILE),
141
142         EM_DEVICE(82542),
143
144         EM_DEVICE(82543GC_FIBER),
145         EM_DEVICE(82543GC_COPPER),
146
147         EM_DEVICE(82544EI_COPPER),
148         EM_DEVICE(82544EI_FIBER),
149         EM_DEVICE(82544GC_COPPER),
150         EM_DEVICE(82544GC_LOM),
151
152         EM_DEVICE(82545EM_COPPER),
153         EM_DEVICE(82545EM_FIBER),
154         EM_DEVICE(82545GM_COPPER),
155         EM_DEVICE(82545GM_FIBER),
156         EM_DEVICE(82545GM_SERDES),
157
158         EM_DEVICE(82546EB_COPPER),
159         EM_DEVICE(82546EB_FIBER),
160         EM_DEVICE(82546EB_QUAD_COPPER),
161         EM_DEVICE(82546GB_COPPER),
162         EM_DEVICE(82546GB_FIBER),
163         EM_DEVICE(82546GB_SERDES),
164         EM_DEVICE(82546GB_PCIE),
165         EM_DEVICE(82546GB_QUAD_COPPER),
166         EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
167
168         EM_DEVICE(82547EI),
169         EM_DEVICE(82547EI_MOBILE),
170         EM_DEVICE(82547GI),
171
172         EM_EMX_DEVICE(82571EB_COPPER),
173         EM_EMX_DEVICE(82571EB_FIBER),
174         EM_EMX_DEVICE(82571EB_SERDES),
175         EM_EMX_DEVICE(82571EB_SERDES_DUAL),
176         EM_EMX_DEVICE(82571EB_SERDES_QUAD),
177         EM_EMX_DEVICE(82571EB_QUAD_COPPER),
178         EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
179         EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
180         EM_EMX_DEVICE(82571EB_QUAD_FIBER),
181         EM_EMX_DEVICE(82571PT_QUAD_COPPER),
182
183         EM_EMX_DEVICE(82572EI_COPPER),
184         EM_EMX_DEVICE(82572EI_FIBER),
185         EM_EMX_DEVICE(82572EI_SERDES),
186         EM_EMX_DEVICE(82572EI),
187
188         EM_EMX_DEVICE(82573E),
189         EM_EMX_DEVICE(82573E_IAMT),
190         EM_EMX_DEVICE(82573L),
191
192         EM_DEVICE(82583V),
193
194         EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
195         EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
196         EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
197         EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
198
199         EM_DEVICE(ICH8_IGP_M_AMT),
200         EM_DEVICE(ICH8_IGP_AMT),
201         EM_DEVICE(ICH8_IGP_C),
202         EM_DEVICE(ICH8_IFE),
203         EM_DEVICE(ICH8_IFE_GT),
204         EM_DEVICE(ICH8_IFE_G),
205         EM_DEVICE(ICH8_IGP_M),
206         EM_DEVICE(ICH8_82567V_3),
207
208         EM_DEVICE(ICH9_IGP_M_AMT),
209         EM_DEVICE(ICH9_IGP_AMT),
210         EM_DEVICE(ICH9_IGP_C),
211         EM_DEVICE(ICH9_IGP_M),
212         EM_DEVICE(ICH9_IGP_M_V),
213         EM_DEVICE(ICH9_IFE),
214         EM_DEVICE(ICH9_IFE_GT),
215         EM_DEVICE(ICH9_IFE_G),
216         EM_DEVICE(ICH9_BM),
217
218         EM_EMX_DEVICE(82574L),
219         EM_EMX_DEVICE(82574LA),
220
221         EM_DEVICE(ICH10_R_BM_LM),
222         EM_DEVICE(ICH10_R_BM_LF),
223         EM_DEVICE(ICH10_R_BM_V),
224         EM_DEVICE(ICH10_D_BM_LM),
225         EM_DEVICE(ICH10_D_BM_LF),
226         EM_DEVICE(ICH10_D_BM_V),
227
228         EM_DEVICE(PCH_M_HV_LM),
229         EM_DEVICE(PCH_M_HV_LC),
230         EM_DEVICE(PCH_D_HV_DM),
231         EM_DEVICE(PCH_D_HV_DC),
232
233         EM_DEVICE(PCH2_LV_LM),
234         EM_DEVICE(PCH2_LV_V),
235
236         /* required last entry */
237         EM_DEVICE_NULL
238 };
239
240 static int      em_probe(device_t);
241 static int      em_attach(device_t);
242 static int      em_detach(device_t);
243 static int      em_shutdown(device_t);
244 static int      em_suspend(device_t);
245 static int      em_resume(device_t);
246
247 static void     em_init(void *);
248 static void     em_stop(struct adapter *);
249 static int      em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
250 static void     em_start(struct ifnet *, struct ifaltq_subque *);
251 #ifdef IFPOLL_ENABLE
252 static void     em_npoll(struct ifnet *, struct ifpoll_info *);
253 static void     em_npoll_compat(struct ifnet *, void *, int);
254 #endif
255 static void     em_watchdog(struct ifnet *);
256 static void     em_media_status(struct ifnet *, struct ifmediareq *);
257 static int      em_media_change(struct ifnet *);
258 static void     em_timer(void *);
259
260 static void     em_intr(void *);
261 static void     em_intr_mask(void *);
262 static void     em_intr_body(struct adapter *, boolean_t);
263 static void     em_rxeof(struct adapter *, int);
264 static void     em_txeof(struct adapter *);
265 static void     em_tx_collect(struct adapter *);
266 static void     em_tx_purge(struct adapter *);
267 static void     em_enable_intr(struct adapter *);
268 static void     em_disable_intr(struct adapter *);
269
270 static int      em_dma_malloc(struct adapter *, bus_size_t,
271                     struct em_dma_alloc *);
272 static void     em_dma_free(struct adapter *, struct em_dma_alloc *);
273 static void     em_init_tx_ring(struct adapter *);
274 static int      em_init_rx_ring(struct adapter *);
275 static int      em_create_tx_ring(struct adapter *);
276 static int      em_create_rx_ring(struct adapter *);
277 static void     em_destroy_tx_ring(struct adapter *, int);
278 static void     em_destroy_rx_ring(struct adapter *, int);
279 static int      em_newbuf(struct adapter *, int, int);
280 static int      em_encap(struct adapter *, struct mbuf **, int *, int *);
281 static void     em_rxcsum(struct adapter *, struct e1000_rx_desc *,
282                     struct mbuf *);
283 static int      em_txcsum(struct adapter *, struct mbuf *,
284                     uint32_t *, uint32_t *);
285 static int      em_tso_pullup(struct adapter *, struct mbuf **);
286 static int      em_tso_setup(struct adapter *, struct mbuf *,
287                     uint32_t *, uint32_t *);
288
289 static int      em_get_hw_info(struct adapter *);
290 static int      em_is_valid_eaddr(const uint8_t *);
291 static int      em_alloc_pci_res(struct adapter *);
292 static void     em_free_pci_res(struct adapter *);
293 static int      em_reset(struct adapter *);
294 static void     em_setup_ifp(struct adapter *);
295 static void     em_init_tx_unit(struct adapter *);
296 static void     em_init_rx_unit(struct adapter *);
297 static void     em_update_stats(struct adapter *);
298 static void     em_set_promisc(struct adapter *);
299 static void     em_disable_promisc(struct adapter *);
300 static void     em_set_multi(struct adapter *);
301 static void     em_update_link_status(struct adapter *);
302 static void     em_smartspeed(struct adapter *);
303 static void     em_set_itr(struct adapter *, uint32_t);
304 static void     em_disable_aspm(struct adapter *);
305
306 /* Hardware workarounds */
307 static int      em_82547_fifo_workaround(struct adapter *, int);
308 static void     em_82547_update_fifo_head(struct adapter *, int);
309 static int      em_82547_tx_fifo_reset(struct adapter *);
310 static void     em_82547_move_tail(void *);
311 static void     em_82547_move_tail_serialized(struct adapter *);
312 static uint32_t em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
313
314 static void     em_print_debug_info(struct adapter *);
315 static void     em_print_nvm_info(struct adapter *);
316 static void     em_print_hw_stats(struct adapter *);
317
318 static int      em_sysctl_stats(SYSCTL_HANDLER_ARGS);
319 static int      em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
320 static int      em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
321 static int      em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
322 static void     em_add_sysctl(struct adapter *adapter);
323
324 /* Management and WOL Support */
325 static void     em_get_mgmt(struct adapter *);
326 static void     em_rel_mgmt(struct adapter *);
327 static void     em_get_hw_control(struct adapter *);
328 static void     em_rel_hw_control(struct adapter *);
329 static void     em_enable_wol(device_t);
330
331 static device_method_t em_methods[] = {
332         /* Device interface */
333         DEVMETHOD(device_probe,         em_probe),
334         DEVMETHOD(device_attach,        em_attach),
335         DEVMETHOD(device_detach,        em_detach),
336         DEVMETHOD(device_shutdown,      em_shutdown),
337         DEVMETHOD(device_suspend,       em_suspend),
338         DEVMETHOD(device_resume,        em_resume),
339         DEVMETHOD_END
340 };
341
342 static driver_t em_driver = {
343         "em",
344         em_methods,
345         sizeof(struct adapter),
346 };
347
348 static devclass_t em_devclass;
349
350 DECLARE_DUMMY_MODULE(if_em);
351 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
352 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
353
354 /*
355  * Tunables
356  */
357 static int      em_int_throttle_ceil = EM_DEFAULT_ITR;
358 static int      em_rxd = EM_DEFAULT_RXD;
359 static int      em_txd = EM_DEFAULT_TXD;
360 static int      em_smart_pwr_down = 0;
361
362 /* Controls whether promiscuous also shows bad packets */
363 static int      em_debug_sbp = FALSE;
364
365 static int      em_82573_workaround = 1;
366 static int      em_msi_enable = 1;
367
368 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
369 TUNABLE_INT("hw.em.rxd", &em_rxd);
370 TUNABLE_INT("hw.em.txd", &em_txd);
371 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
372 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
373 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
374 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
375
376 /* Global used in WOL setup with multiport cards */
377 static int      em_global_quad_port_a = 0;
378
379 /* Set this to one to display debug statistics */
380 static int      em_display_debug_stats = 0;
381
382 #if !defined(KTR_IF_EM)
383 #define KTR_IF_EM       KTR_ALL
384 #endif
385 KTR_INFO_MASTER(if_em);
386 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
387 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
388 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
389 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
390 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
391 #define logif(name)     KTR_LOG(if_em_ ## name)
392
393 static int
394 em_probe(device_t dev)
395 {
396         const struct em_vendor_info *ent;
397         uint16_t vid, did;
398
399         vid = pci_get_vendor(dev);
400         did = pci_get_device(dev);
401
402         for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
403                 if (vid == ent->vendor_id && did == ent->device_id) {
404                         device_set_desc(dev, ent->desc);
405                         device_set_async_attach(dev, TRUE);
406                         return (ent->ret);
407                 }
408         }
409         return (ENXIO);
410 }
411
412 static int
413 em_attach(device_t dev)
414 {
415         struct adapter *adapter = device_get_softc(dev);
416         struct ifnet *ifp = &adapter->arpcom.ac_if;
417         int tsize, rsize;
418         int error = 0;
419         uint16_t eeprom_data, device_id, apme_mask;
420         driver_intr_t *intr_func;
421
422         adapter->dev = adapter->osdep.dev = dev;
423
424         callout_init_mp(&adapter->timer);
425         callout_init_mp(&adapter->tx_fifo_timer);
426
427         /* Determine hardware and mac info */
428         error = em_get_hw_info(adapter);
429         if (error) {
430                 device_printf(dev, "Identify hardware failed\n");
431                 goto fail;
432         }
433
434         /* Setup PCI resources */
435         error = em_alloc_pci_res(adapter);
436         if (error) {
437                 device_printf(dev, "Allocation of PCI resources failed\n");
438                 goto fail;
439         }
440
441         /*
442          * For ICH8 and family we need to map the flash memory,
443          * and this must happen after the MAC is identified.
444          */
445         if (adapter->hw.mac.type == e1000_ich8lan ||
446             adapter->hw.mac.type == e1000_ich9lan ||
447             adapter->hw.mac.type == e1000_ich10lan ||
448             adapter->hw.mac.type == e1000_pchlan ||
449             adapter->hw.mac.type == e1000_pch2lan) {
450                 adapter->flash_rid = EM_BAR_FLASH;
451
452                 adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
453                                         &adapter->flash_rid, RF_ACTIVE);
454                 if (adapter->flash == NULL) {
455                         device_printf(dev, "Mapping of Flash failed\n");
456                         error = ENXIO;
457                         goto fail;
458                 }
459                 adapter->osdep.flash_bus_space_tag =
460                     rman_get_bustag(adapter->flash);
461                 adapter->osdep.flash_bus_space_handle =
462                     rman_get_bushandle(adapter->flash);
463
464                 /*
465                  * This is used in the shared code
466                  * XXX this goof is actually not used.
467                  */
468                 adapter->hw.flash_address = (uint8_t *)adapter->flash;
469         }
470
471         switch (adapter->hw.mac.type) {
472         case e1000_82571:
473         case e1000_82572:
474                 /*
475                  * Pullup extra 4bytes into the first data segment, see:
476                  * 82571/82572 specification update errata #7
477                  *
478                  * NOTE:
479                  * 4bytes instead of 2bytes, which are mentioned in the
480                  * errata, are pulled; mainly to keep rest of the data
481                  * properly aligned.
482                  */
483                 adapter->flags |= EM_FLAG_TSO_PULLEX;
484                 /* FALL THROUGH */
485
486         case e1000_82573:
487         case e1000_82574:
488         case e1000_80003es2lan:
489                 adapter->flags |= EM_FLAG_TSO;
490                 break;
491
492         default:
493                 break;
494         }
495
496         /* Do Shared Code initialization */
497         if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
498                 device_printf(dev, "Setup of Shared code failed\n");
499                 error = ENXIO;
500                 goto fail;
501         }
502
503         e1000_get_bus_info(&adapter->hw);
504
505         /*
506          * Validate number of transmit and receive descriptors.  It
507          * must not exceed hardware maximum, and must be multiple
508          * of E1000_DBA_ALIGN.
509          */
510         if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
511             (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
512             (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
513             em_txd < EM_MIN_TXD) {
514                 device_printf(dev, "Using %d TX descriptors instead of %d!\n",
515                     EM_DEFAULT_TXD, em_txd);
516                 adapter->num_tx_desc = EM_DEFAULT_TXD;
517         } else {
518                 adapter->num_tx_desc = em_txd;
519         }
520         if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
521             (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
522             (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
523             em_rxd < EM_MIN_RXD) {
524                 device_printf(dev, "Using %d RX descriptors instead of %d!\n",
525                     EM_DEFAULT_RXD, em_rxd);
526                 adapter->num_rx_desc = EM_DEFAULT_RXD;
527         } else {
528                 adapter->num_rx_desc = em_rxd;
529         }
530
531         adapter->hw.mac.autoneg = DO_AUTO_NEG;
532         adapter->hw.phy.autoneg_wait_to_complete = FALSE;
533         adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
534         adapter->rx_buffer_len = MCLBYTES;
535
536         /*
537          * Interrupt throttle rate
538          */
539         if (em_int_throttle_ceil == 0) {
540                 adapter->int_throttle_ceil = 0;
541         } else {
542                 int throttle = em_int_throttle_ceil;
543
544                 if (throttle < 0)
545                         throttle = EM_DEFAULT_ITR;
546
547                 /* Recalculate the tunable value to get the exact frequency. */
548                 throttle = 1000000000 / 256 / throttle;
549
550                 /* Upper 16bits of ITR is reserved and should be zero */
551                 if (throttle & 0xffff0000)
552                         throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
553
554                 adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
555         }
556
557         e1000_init_script_state_82541(&adapter->hw, TRUE);
558         e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
559
560         /* Copper options */
561         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
562                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
563                 adapter->hw.phy.disable_polarity_correction = FALSE;
564                 adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
565         }
566
567         /* Set the frame limits assuming standard ethernet sized frames. */
568         adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
569         adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
570
571         /* This controls when hardware reports transmit completion status. */
572         adapter->hw.mac.report_tx_early = 1;
573
574         /*
575          * Create top level busdma tag
576          */
577         error = bus_dma_tag_create(NULL, 1, 0,
578                         BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
579                         NULL, NULL,
580                         BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
581                         0, &adapter->parent_dtag);
582         if (error) {
583                 device_printf(dev, "could not create top level DMA tag\n");
584                 goto fail;
585         }
586
587         /*
588          * Allocate Transmit Descriptor ring
589          */
590         tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
591                          EM_DBA_ALIGN);
592         error = em_dma_malloc(adapter, tsize, &adapter->txdma);
593         if (error) {
594                 device_printf(dev, "Unable to allocate tx_desc memory\n");
595                 goto fail;
596         }
597         adapter->tx_desc_base = adapter->txdma.dma_vaddr;
598
599         /*
600          * Allocate Receive Descriptor ring
601          */
602         rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
603                          EM_DBA_ALIGN);
604         error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
605         if (error) {
606                 device_printf(dev, "Unable to allocate rx_desc memory\n");
607                 goto fail;
608         }
609         adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
610
611         /* Allocate multicast array memory. */
612         adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
613             M_DEVBUF, M_WAITOK);
614
615         /* Indicate SOL/IDER usage */
616         if (e1000_check_reset_block(&adapter->hw)) {
617                 device_printf(dev,
618                     "PHY reset is blocked due to SOL/IDER session.\n");
619         }
620
621         /*
622          * Start from a known state, this is important in reading the
623          * nvm and mac from that.
624          */
625         e1000_reset_hw(&adapter->hw);
626
627         /* Make sure we have a good EEPROM before we read from it */
628         if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
629                 /*
630                  * Some PCI-E parts fail the first check due to
631                  * the link being in sleep state, call it again,
632                  * if it fails a second time its a real issue.
633                  */
634                 if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
635                         device_printf(dev,
636                             "The EEPROM Checksum Is Not Valid\n");
637                         error = EIO;
638                         goto fail;
639                 }
640         }
641
642         /* Copy the permanent MAC address out of the EEPROM */
643         if (e1000_read_mac_addr(&adapter->hw) < 0) {
644                 device_printf(dev, "EEPROM read error while reading MAC"
645                     " address\n");
646                 error = EIO;
647                 goto fail;
648         }
649         if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
650                 device_printf(dev, "Invalid MAC address\n");
651                 error = EIO;
652                 goto fail;
653         }
654
655         /* Allocate transmit descriptors and buffers */
656         error = em_create_tx_ring(adapter);
657         if (error) {
658                 device_printf(dev, "Could not setup transmit structures\n");
659                 goto fail;
660         }
661
662         /* Allocate receive descriptors and buffers */
663         error = em_create_rx_ring(adapter);
664         if (error) {
665                 device_printf(dev, "Could not setup receive structures\n");
666                 goto fail;
667         }
668
669         /* Manually turn off all interrupts */
670         E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
671
672         /* Determine if we have to control management hardware */
673         if (e1000_enable_mng_pass_thru(&adapter->hw))
674                 adapter->flags |= EM_FLAG_HAS_MGMT;
675
676         /*
677          * Setup Wake-on-Lan
678          */
679         apme_mask = EM_EEPROM_APME;
680         eeprom_data = 0;
681         switch (adapter->hw.mac.type) {
682         case e1000_82542:
683         case e1000_82543:
684                 break;
685
686         case e1000_82573:
687         case e1000_82583:
688                 adapter->flags |= EM_FLAG_HAS_AMT;
689                 /* FALL THROUGH */
690
691         case e1000_82546:
692         case e1000_82546_rev_3:
693         case e1000_82571:
694         case e1000_82572:
695         case e1000_80003es2lan:
696                 if (adapter->hw.bus.func == 1) {
697                         e1000_read_nvm(&adapter->hw,
698                             NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
699                 } else {
700                         e1000_read_nvm(&adapter->hw,
701                             NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
702                 }
703                 break;
704
705         case e1000_ich8lan:
706         case e1000_ich9lan:
707         case e1000_ich10lan:
708         case e1000_pchlan:
709         case e1000_pch2lan:
710                 apme_mask = E1000_WUC_APME;
711                 adapter->flags |= EM_FLAG_HAS_AMT;
712                 eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
713                 break;
714
715         default:
716                 e1000_read_nvm(&adapter->hw,
717                     NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
718                 break;
719         }
720         if (eeprom_data & apme_mask)
721                 adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
722
723         /*
724          * We have the eeprom settings, now apply the special cases
725          * where the eeprom may be wrong or the board won't support
726          * wake on lan on a particular port
727          */
728         device_id = pci_get_device(dev);
729         switch (device_id) {
730         case E1000_DEV_ID_82546GB_PCIE:
731                 adapter->wol = 0;
732                 break;
733
734         case E1000_DEV_ID_82546EB_FIBER:
735         case E1000_DEV_ID_82546GB_FIBER:
736         case E1000_DEV_ID_82571EB_FIBER:
737                 /*
738                  * Wake events only supported on port A for dual fiber
739                  * regardless of eeprom setting
740                  */
741                 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
742                     E1000_STATUS_FUNC_1)
743                         adapter->wol = 0;
744                 break;
745
746         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
747         case E1000_DEV_ID_82571EB_QUAD_COPPER:
748         case E1000_DEV_ID_82571EB_QUAD_FIBER:
749         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
750                 /* if quad port adapter, disable WoL on all but port A */
751                 if (em_global_quad_port_a != 0)
752                         adapter->wol = 0;
753                 /* Reset for multiple quad port adapters */
754                 if (++em_global_quad_port_a == 4)
755                         em_global_quad_port_a = 0;
756                 break;
757         }
758
759         /* XXX disable wol */
760         adapter->wol = 0;
761
762         /* Setup OS specific network interface */
763         em_setup_ifp(adapter);
764
765         /* Add sysctl tree, must after em_setup_ifp() */
766         em_add_sysctl(adapter);
767
768 #ifdef IFPOLL_ENABLE
769         /* Polling setup */
770         ifpoll_compat_setup(&adapter->npoll,
771             &adapter->sysctl_ctx, adapter->sysctl_tree, device_get_unit(dev),
772             ifp->if_serializer);
773 #endif
774
775         /* Reset the hardware */
776         error = em_reset(adapter);
777         if (error) {
778                 device_printf(dev, "Unable to reset the hardware\n");
779                 goto fail;
780         }
781
782         /* Initialize statistics */
783         em_update_stats(adapter);
784
785         adapter->hw.mac.get_link_status = 1;
786         em_update_link_status(adapter);
787
788         /* Do we need workaround for 82544 PCI-X adapter? */
789         if (adapter->hw.bus.type == e1000_bus_type_pcix &&
790             adapter->hw.mac.type == e1000_82544)
791                 adapter->pcix_82544 = TRUE;
792         else
793                 adapter->pcix_82544 = FALSE;
794
795         if (adapter->pcix_82544) {
796                 /*
797                  * 82544 on PCI-X may split one TX segment
798                  * into two TX descs, so we double its number
799                  * of spare TX desc here.
800                  */
801                 adapter->spare_tx_desc = 2 * EM_TX_SPARE;
802         } else {
803                 adapter->spare_tx_desc = EM_TX_SPARE;
804         }
805         if (adapter->flags & EM_FLAG_TSO)
806                 adapter->spare_tx_desc = EM_TX_SPARE_TSO;
807         adapter->tx_wreg_nsegs = EM_DEFAULT_TXWREG;
808
809         /*
810          * Keep following relationship between spare_tx_desc, oact_tx_desc
811          * and tx_int_nsegs:
812          * (spare_tx_desc + EM_TX_RESERVED) <=
813          * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
814          */
815         adapter->oact_tx_desc = adapter->num_tx_desc / 8;
816         if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
817                 adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
818         if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
819                 adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
820
821         adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
822         if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
823                 adapter->tx_int_nsegs = adapter->oact_tx_desc;
824
825         /* Non-AMT based hardware can now take control from firmware */
826         if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
827             EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
828                 em_get_hw_control(adapter);
829
830         ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
831
832         /*
833          * Missing Interrupt Following ICR read:
834          *
835          * 82571/82572 specification update errata #76
836          * 82573 specification update errata #31
837          * 82574 specification update errata #12
838          * 82583 specification update errata #4
839          */
840         intr_func = em_intr;
841         if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
842             (adapter->hw.mac.type == e1000_82571 ||
843              adapter->hw.mac.type == e1000_82572 ||
844              adapter->hw.mac.type == e1000_82573 ||
845              adapter->hw.mac.type == e1000_82574 ||
846              adapter->hw.mac.type == e1000_82583))
847                 intr_func = em_intr_mask;
848
849         error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
850                                intr_func, adapter, &adapter->intr_tag,
851                                ifp->if_serializer);
852         if (error) {
853                 device_printf(dev, "Failed to register interrupt handler");
854                 ether_ifdetach(&adapter->arpcom.ac_if);
855                 goto fail;
856         }
857         return (0);
858 fail:
859         em_detach(dev);
860         return (error);
861 }
862
863 static int
864 em_detach(device_t dev)
865 {
866         struct adapter *adapter = device_get_softc(dev);
867
868         if (device_is_attached(dev)) {
869                 struct ifnet *ifp = &adapter->arpcom.ac_if;
870
871                 lwkt_serialize_enter(ifp->if_serializer);
872
873                 em_stop(adapter);
874
875                 e1000_phy_hw_reset(&adapter->hw);
876
877                 em_rel_mgmt(adapter);
878                 em_rel_hw_control(adapter);
879
880                 if (adapter->wol) {
881                         E1000_WRITE_REG(&adapter->hw, E1000_WUC,
882                                         E1000_WUC_PME_EN);
883                         E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
884                         em_enable_wol(dev);
885                 }
886
887                 bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
888
889                 lwkt_serialize_exit(ifp->if_serializer);
890
891                 ether_ifdetach(ifp);
892         } else if (adapter->memory != NULL) {
893                 em_rel_hw_control(adapter);
894         }
895         bus_generic_detach(dev);
896
897         em_free_pci_res(adapter);
898
899         em_destroy_tx_ring(adapter, adapter->num_tx_desc);
900         em_destroy_rx_ring(adapter, adapter->num_rx_desc);
901
902         /* Free Transmit Descriptor ring */
903         if (adapter->tx_desc_base)
904                 em_dma_free(adapter, &adapter->txdma);
905
906         /* Free Receive Descriptor ring */
907         if (adapter->rx_desc_base)
908                 em_dma_free(adapter, &adapter->rxdma);
909
910         /* Free top level busdma tag */
911         if (adapter->parent_dtag != NULL)
912                 bus_dma_tag_destroy(adapter->parent_dtag);
913
914         /* Free sysctl tree */
915         if (adapter->sysctl_tree != NULL)
916                 sysctl_ctx_free(&adapter->sysctl_ctx);
917
918         if (adapter->mta != NULL)
919                 kfree(adapter->mta, M_DEVBUF);
920
921         return (0);
922 }
923
924 static int
925 em_shutdown(device_t dev)
926 {
927         return em_suspend(dev);
928 }
929
930 static int
931 em_suspend(device_t dev)
932 {
933         struct adapter *adapter = device_get_softc(dev);
934         struct ifnet *ifp = &adapter->arpcom.ac_if;
935
936         lwkt_serialize_enter(ifp->if_serializer);
937
938         em_stop(adapter);
939
940         em_rel_mgmt(adapter);
941         em_rel_hw_control(adapter);
942
943         if (adapter->wol) {
944                 E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
945                 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
946                 em_enable_wol(dev);
947         }
948
949         lwkt_serialize_exit(ifp->if_serializer);
950
951         return bus_generic_suspend(dev);
952 }
953
954 static int
955 em_resume(device_t dev)
956 {
957         struct adapter *adapter = device_get_softc(dev);
958         struct ifnet *ifp = &adapter->arpcom.ac_if;
959
960         lwkt_serialize_enter(ifp->if_serializer);
961
962         if (adapter->hw.mac.type == e1000_pch2lan)
963                 e1000_resume_workarounds_pchlan(&adapter->hw);
964
965         em_init(adapter);
966         em_get_mgmt(adapter);
967         if_devstart(ifp);
968
969         lwkt_serialize_exit(ifp->if_serializer);
970
971         return bus_generic_resume(dev);
972 }
973
974 static void
975 em_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
976 {
977         struct adapter *adapter = ifp->if_softc;
978         struct mbuf *m_head;
979         int idx = -1, nsegs = 0;
980
981         ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
982         ASSERT_SERIALIZED(ifp->if_serializer);
983
984         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
985                 return;
986
987         if (!adapter->link_active) {
988                 ifq_purge(&ifp->if_snd);
989                 return;
990         }
991
992         while (!ifq_is_empty(&ifp->if_snd)) {
993                 /* Now do we at least have a minimal? */
994                 if (EM_IS_OACTIVE(adapter)) {
995                         em_tx_collect(adapter);
996                         if (EM_IS_OACTIVE(adapter)) {
997                                 ifq_set_oactive(&ifp->if_snd);
998                                 adapter->no_tx_desc_avail1++;
999                                 break;
1000                         }
1001                 }
1002
1003                 logif(pkt_txqueue);
1004                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
1005                 if (m_head == NULL)
1006                         break;
1007
1008                 if (em_encap(adapter, &m_head, &nsegs, &idx)) {
1009                         IFNET_STAT_INC(ifp, oerrors, 1);
1010                         em_tx_collect(adapter);
1011                         continue;
1012                 }
1013
1014                 if (nsegs >= adapter->tx_wreg_nsegs && idx >= 0) {
1015                         E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1016                         nsegs = 0;
1017                         idx = -1;
1018                 }
1019
1020                 /* Send a copy of the frame to the BPF listener */
1021                 ETHER_BPF_MTAP(ifp, m_head);
1022
1023                 /* Set timeout in case hardware has problems transmitting. */
1024                 ifp->if_timer = EM_TX_TIMEOUT;
1025         }
1026         if (idx >= 0)
1027                 E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1028 }
1029
1030 static int
1031 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1032 {
1033         struct adapter *adapter = ifp->if_softc;
1034         struct ifreq *ifr = (struct ifreq *)data;
1035         uint16_t eeprom_data = 0;
1036         int max_frame_size, mask, reinit;
1037         int error = 0;
1038
1039         ASSERT_SERIALIZED(ifp->if_serializer);
1040
1041         switch (command) {
1042         case SIOCSIFMTU:
1043                 switch (adapter->hw.mac.type) {
1044                 case e1000_82573:
1045                         /*
1046                          * 82573 only supports jumbo frames
1047                          * if ASPM is disabled.
1048                          */
1049                         e1000_read_nvm(&adapter->hw,
1050                             NVM_INIT_3GIO_3, 1, &eeprom_data);
1051                         if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1052                                 max_frame_size = ETHER_MAX_LEN;
1053                                 break;
1054                         }
1055                         /* FALL THROUGH */
1056
1057                 /* Limit Jumbo Frame size */
1058                 case e1000_82571:
1059                 case e1000_82572:
1060                 case e1000_ich9lan:
1061                 case e1000_ich10lan:
1062                 case e1000_pch2lan:
1063                 case e1000_82574:
1064                 case e1000_82583:
1065                 case e1000_80003es2lan:
1066                         max_frame_size = 9234;
1067                         break;
1068
1069                 case e1000_pchlan:
1070                         max_frame_size = 4096;
1071                         break;
1072
1073                 /* Adapters that do not support jumbo frames */
1074                 case e1000_82542:
1075                 case e1000_ich8lan:
1076                         max_frame_size = ETHER_MAX_LEN;
1077                         break;
1078
1079                 default:
1080                         max_frame_size = MAX_JUMBO_FRAME_SIZE;
1081                         break;
1082                 }
1083                 if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1084                     ETHER_CRC_LEN) {
1085                         error = EINVAL;
1086                         break;
1087                 }
1088
1089                 ifp->if_mtu = ifr->ifr_mtu;
1090                 adapter->max_frame_size =
1091                     ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1092
1093                 if (ifp->if_flags & IFF_RUNNING)
1094                         em_init(adapter);
1095                 break;
1096
1097         case SIOCSIFFLAGS:
1098                 if (ifp->if_flags & IFF_UP) {
1099                         if ((ifp->if_flags & IFF_RUNNING)) {
1100                                 if ((ifp->if_flags ^ adapter->if_flags) &
1101                                     (IFF_PROMISC | IFF_ALLMULTI)) {
1102                                         em_disable_promisc(adapter);
1103                                         em_set_promisc(adapter);
1104                                 }
1105                         } else {
1106                                 em_init(adapter);
1107                         }
1108                 } else if (ifp->if_flags & IFF_RUNNING) {
1109                         em_stop(adapter);
1110                 }
1111                 adapter->if_flags = ifp->if_flags;
1112                 break;
1113
1114         case SIOCADDMULTI:
1115         case SIOCDELMULTI:
1116                 if (ifp->if_flags & IFF_RUNNING) {
1117                         em_disable_intr(adapter);
1118                         em_set_multi(adapter);
1119                         if (adapter->hw.mac.type == e1000_82542 &&
1120                             adapter->hw.revision_id == E1000_REVISION_2)
1121                                 em_init_rx_unit(adapter);
1122 #ifdef IFPOLL_ENABLE
1123                         if (!(ifp->if_flags & IFF_NPOLLING))
1124 #endif
1125                                 em_enable_intr(adapter);
1126                 }
1127                 break;
1128
1129         case SIOCSIFMEDIA:
1130                 /* Check SOL/IDER usage */
1131                 if (e1000_check_reset_block(&adapter->hw)) {
1132                         device_printf(adapter->dev, "Media change is"
1133                             " blocked due to SOL/IDER session.\n");
1134                         break;
1135                 }
1136                 /* FALL THROUGH */
1137
1138         case SIOCGIFMEDIA:
1139                 error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1140                 break;
1141
1142         case SIOCSIFCAP:
1143                 reinit = 0;
1144                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1145                 if (mask & IFCAP_RXCSUM) {
1146                         ifp->if_capenable ^= IFCAP_RXCSUM;
1147                         reinit = 1;
1148                 }
1149                 if (mask & IFCAP_TXCSUM) {
1150                         ifp->if_capenable ^= IFCAP_TXCSUM;
1151                         if (ifp->if_capenable & IFCAP_TXCSUM)
1152                                 ifp->if_hwassist |= EM_CSUM_FEATURES;
1153                         else
1154                                 ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1155                 }
1156                 if (mask & IFCAP_TSO) {
1157                         ifp->if_capenable ^= IFCAP_TSO;
1158                         if (ifp->if_capenable & IFCAP_TSO)
1159                                 ifp->if_hwassist |= CSUM_TSO;
1160                         else
1161                                 ifp->if_hwassist &= ~CSUM_TSO;
1162                 }
1163                 if (mask & IFCAP_VLAN_HWTAGGING) {
1164                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1165                         reinit = 1;
1166                 }
1167                 if (reinit && (ifp->if_flags & IFF_RUNNING))
1168                         em_init(adapter);
1169                 break;
1170
1171         default:
1172                 error = ether_ioctl(ifp, command, data);
1173                 break;
1174         }
1175         return (error);
1176 }
1177
1178 static void
1179 em_watchdog(struct ifnet *ifp)
1180 {
1181         struct adapter *adapter = ifp->if_softc;
1182
1183         ASSERT_SERIALIZED(ifp->if_serializer);
1184
1185         /*
1186          * The timer is set to 5 every time start queues a packet.
1187          * Then txeof keeps resetting it as long as it cleans at
1188          * least one descriptor.
1189          * Finally, anytime all descriptors are clean the timer is
1190          * set to 0.
1191          */
1192
1193         if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1194             E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1195                 /*
1196                  * If we reach here, all TX jobs are completed and
1197                  * the TX engine should have been idled for some time.
1198                  * We don't need to call if_devstart() here.
1199                  */
1200                 ifq_clr_oactive(&ifp->if_snd);
1201                 ifp->if_timer = 0;
1202                 return;
1203         }
1204
1205         /*
1206          * If we are in this routine because of pause frames, then
1207          * don't reset the hardware.
1208          */
1209         if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1210             E1000_STATUS_TXOFF) {
1211                 ifp->if_timer = EM_TX_TIMEOUT;
1212                 return;
1213         }
1214
1215         if (e1000_check_for_link(&adapter->hw) == 0)
1216                 if_printf(ifp, "watchdog timeout -- resetting\n");
1217
1218         IFNET_STAT_INC(ifp, oerrors, 1);
1219         adapter->watchdog_events++;
1220
1221         em_init(adapter);
1222
1223         if (!ifq_is_empty(&ifp->if_snd))
1224                 if_devstart(ifp);
1225 }
1226
1227 static void
1228 em_init(void *xsc)
1229 {
1230         struct adapter *adapter = xsc;
1231         struct ifnet *ifp = &adapter->arpcom.ac_if;
1232         device_t dev = adapter->dev;
1233
1234         ASSERT_SERIALIZED(ifp->if_serializer);
1235
1236         em_stop(adapter);
1237
1238         /* Get the latest mac address, User can use a LAA */
1239         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1240
1241         /* Put the address into the Receive Address Array */
1242         e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1243
1244         /*
1245          * With the 82571 adapter, RAR[0] may be overwritten
1246          * when the other port is reset, we make a duplicate
1247          * in RAR[14] for that eventuality, this assures
1248          * the interface continues to function.
1249          */
1250         if (adapter->hw.mac.type == e1000_82571) {
1251                 e1000_set_laa_state_82571(&adapter->hw, TRUE);
1252                 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1253                     E1000_RAR_ENTRIES - 1);
1254         }
1255
1256         /* Reset the hardware */
1257         if (em_reset(adapter)) {
1258                 device_printf(dev, "Unable to reset the hardware\n");
1259                 /* XXX em_stop()? */
1260                 return;
1261         }
1262         em_update_link_status(adapter);
1263
1264         /* Setup VLAN support, basic and offload if available */
1265         E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1266
1267         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1268                 uint32_t ctrl;
1269
1270                 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1271                 ctrl |= E1000_CTRL_VME;
1272                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1273         }
1274
1275         /* Configure for OS presence */
1276         em_get_mgmt(adapter);
1277
1278         /* Prepare transmit descriptors and buffers */
1279         em_init_tx_ring(adapter);
1280         em_init_tx_unit(adapter);
1281
1282         /* Setup Multicast table */
1283         em_set_multi(adapter);
1284
1285         /* Prepare receive descriptors and buffers */
1286         if (em_init_rx_ring(adapter)) {
1287                 device_printf(dev, "Could not setup receive structures\n");
1288                 em_stop(adapter);
1289                 return;
1290         }
1291         em_init_rx_unit(adapter);
1292
1293         /* Don't lose promiscuous settings */
1294         em_set_promisc(adapter);
1295
1296         ifp->if_flags |= IFF_RUNNING;
1297         ifq_clr_oactive(&ifp->if_snd);
1298
1299         callout_reset(&adapter->timer, hz, em_timer, adapter);
1300         e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1301
1302         /* MSI/X configuration for 82574 */
1303         if (adapter->hw.mac.type == e1000_82574) {
1304                 int tmp;
1305
1306                 tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1307                 tmp |= E1000_CTRL_EXT_PBA_CLR;
1308                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1309                 /*
1310                  * XXX MSIX
1311                  * Set the IVAR - interrupt vector routing.
1312                  * Each nibble represents a vector, high bit
1313                  * is enable, other 3 bits are the MSIX table
1314                  * entry, we map RXQ0 to 0, TXQ0 to 1, and
1315                  * Link (other) to 2, hence the magic number.
1316                  */
1317                 E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1318         }
1319
1320 #ifdef IFPOLL_ENABLE
1321         /*
1322          * Only enable interrupts if we are not polling, make sure
1323          * they are off otherwise.
1324          */
1325         if (ifp->if_flags & IFF_NPOLLING)
1326                 em_disable_intr(adapter);
1327         else
1328 #endif /* IFPOLL_ENABLE */
1329                 em_enable_intr(adapter);
1330
1331         /* AMT based hardware can now take control from firmware */
1332         if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1333             (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1334             adapter->hw.mac.type >= e1000_82571)
1335                 em_get_hw_control(adapter);
1336 }
1337
1338 #ifdef IFPOLL_ENABLE
1339
1340 static void
1341 em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1342 {
1343         struct adapter *adapter = ifp->if_softc;
1344
1345         ASSERT_SERIALIZED(ifp->if_serializer);
1346
1347         if (adapter->npoll.ifpc_stcount-- == 0) {
1348                 uint32_t reg_icr;
1349
1350                 adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1351
1352                 reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1353                 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1354                         callout_stop(&adapter->timer);
1355                         adapter->hw.mac.get_link_status = 1;
1356                         em_update_link_status(adapter);
1357                         callout_reset(&adapter->timer, hz, em_timer, adapter);
1358                 }
1359         }
1360
1361         em_rxeof(adapter, count);
1362         em_txeof(adapter);
1363
1364         if (!ifq_is_empty(&ifp->if_snd))
1365                 if_devstart(ifp);
1366 }
1367
1368 static void
1369 em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1370 {
1371         struct adapter *adapter = ifp->if_softc;
1372
1373         ASSERT_SERIALIZED(ifp->if_serializer);
1374
1375         if (info != NULL) {
1376                 int cpuid = adapter->npoll.ifpc_cpuid;
1377
1378                 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1379                 info->ifpi_rx[cpuid].arg = NULL;
1380                 info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1381
1382                 if (ifp->if_flags & IFF_RUNNING)
1383                         em_disable_intr(adapter);
1384                 ifq_set_cpuid(&ifp->if_snd, cpuid);
1385         } else {
1386                 if (ifp->if_flags & IFF_RUNNING)
1387                         em_enable_intr(adapter);
1388                 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
1389         }
1390 }
1391
1392 #endif /* IFPOLL_ENABLE */
1393
1394 static void
1395 em_intr(void *xsc)
1396 {
1397         em_intr_body(xsc, TRUE);
1398 }
1399
1400 static void
1401 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1402 {
1403         struct ifnet *ifp = &adapter->arpcom.ac_if;
1404         uint32_t reg_icr;
1405
1406         logif(intr_beg);
1407         ASSERT_SERIALIZED(ifp->if_serializer);
1408
1409         reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1410
1411         if (chk_asserted &&
1412             ((adapter->hw.mac.type >= e1000_82571 &&
1413               (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1414              reg_icr == 0)) {
1415                 logif(intr_end);
1416                 return;
1417         }
1418
1419         /*
1420          * XXX: some laptops trigger several spurious interrupts
1421          * on em(4) when in the resume cycle. The ICR register
1422          * reports all-ones value in this case. Processing such
1423          * interrupts would lead to a freeze. I don't know why.
1424          */
1425         if (reg_icr == 0xffffffff) {
1426                 logif(intr_end);
1427                 return;
1428         }
1429
1430         if (ifp->if_flags & IFF_RUNNING) {
1431                 if (reg_icr &
1432                     (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1433                         em_rxeof(adapter, -1);
1434                 if (reg_icr & E1000_ICR_TXDW) {
1435                         em_txeof(adapter);
1436                         if (!ifq_is_empty(&ifp->if_snd))
1437                                 if_devstart(ifp);
1438                 }
1439         }
1440
1441         /* Link status change */
1442         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1443                 callout_stop(&adapter->timer);
1444                 adapter->hw.mac.get_link_status = 1;
1445                 em_update_link_status(adapter);
1446
1447                 /* Deal with TX cruft when link lost */
1448                 em_tx_purge(adapter);
1449
1450                 callout_reset(&adapter->timer, hz, em_timer, adapter);
1451         }
1452
1453         if (reg_icr & E1000_ICR_RXO)
1454                 adapter->rx_overruns++;
1455
1456         logif(intr_end);
1457 }
1458
1459 static void
1460 em_intr_mask(void *xsc)
1461 {
1462         struct adapter *adapter = xsc;
1463
1464         E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1465         /*
1466          * NOTE:
1467          * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1468          * so don't check it.
1469          */
1470         em_intr_body(adapter, FALSE);
1471         E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1472 }
1473
1474 static void
1475 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1476 {
1477         struct adapter *adapter = ifp->if_softc;
1478         u_char fiber_type = IFM_1000_SX;
1479
1480         ASSERT_SERIALIZED(ifp->if_serializer);
1481
1482         em_update_link_status(adapter);
1483
1484         ifmr->ifm_status = IFM_AVALID;
1485         ifmr->ifm_active = IFM_ETHER;
1486
1487         if (!adapter->link_active)
1488                 return;
1489
1490         ifmr->ifm_status |= IFM_ACTIVE;
1491
1492         if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1493             adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1494                 if (adapter->hw.mac.type == e1000_82545)
1495                         fiber_type = IFM_1000_LX;
1496                 ifmr->ifm_active |= fiber_type | IFM_FDX;
1497         } else {
1498                 switch (adapter->link_speed) {
1499                 case 10:
1500                         ifmr->ifm_active |= IFM_10_T;
1501                         break;
1502                 case 100:
1503                         ifmr->ifm_active |= IFM_100_TX;
1504                         break;
1505
1506                 case 1000:
1507                         ifmr->ifm_active |= IFM_1000_T;
1508                         break;
1509                 }
1510                 if (adapter->link_duplex == FULL_DUPLEX)
1511                         ifmr->ifm_active |= IFM_FDX;
1512                 else
1513                         ifmr->ifm_active |= IFM_HDX;
1514         }
1515 }
1516
1517 static int
1518 em_media_change(struct ifnet *ifp)
1519 {
1520         struct adapter *adapter = ifp->if_softc;
1521         struct ifmedia *ifm = &adapter->media;
1522
1523         ASSERT_SERIALIZED(ifp->if_serializer);
1524
1525         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1526                 return (EINVAL);
1527
1528         switch (IFM_SUBTYPE(ifm->ifm_media)) {
1529         case IFM_AUTO:
1530                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1531                 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1532                 break;
1533
1534         case IFM_1000_LX:
1535         case IFM_1000_SX:
1536         case IFM_1000_T:
1537                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1538                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1539                 break;
1540
1541         case IFM_100_TX:
1542                 adapter->hw.mac.autoneg = FALSE;
1543                 adapter->hw.phy.autoneg_advertised = 0;
1544                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1545                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1546                 else
1547                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1548                 break;
1549
1550         case IFM_10_T:
1551                 adapter->hw.mac.autoneg = FALSE;
1552                 adapter->hw.phy.autoneg_advertised = 0;
1553                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1554                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1555                 else
1556                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1557                 break;
1558
1559         default:
1560                 if_printf(ifp, "Unsupported media type\n");
1561                 break;
1562         }
1563
1564         em_init(adapter);
1565
1566         return (0);
1567 }
1568
1569 static int
1570 em_encap(struct adapter *adapter, struct mbuf **m_headp,
1571     int *segs_used, int *idx)
1572 {
1573         bus_dma_segment_t segs[EM_MAX_SCATTER];
1574         bus_dmamap_t map;
1575         struct em_buffer *tx_buffer, *tx_buffer_mapped;
1576         struct e1000_tx_desc *ctxd = NULL;
1577         struct mbuf *m_head = *m_headp;
1578         uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1579         int maxsegs, nsegs, i, j, first, last = 0, error;
1580
1581         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1582                 error = em_tso_pullup(adapter, m_headp);
1583                 if (error)
1584                         return error;
1585                 m_head = *m_headp;
1586         }
1587
1588         txd_upper = txd_lower = 0;
1589         txd_used = 0;
1590
1591         /*
1592          * Capture the first descriptor index, this descriptor
1593          * will have the index of the EOP which is the only one
1594          * that now gets a DONE bit writeback.
1595          */
1596         first = adapter->next_avail_tx_desc;
1597         tx_buffer = &adapter->tx_buffer_area[first];
1598         tx_buffer_mapped = tx_buffer;
1599         map = tx_buffer->map;
1600
1601         maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1602         KASSERT(maxsegs >= adapter->spare_tx_desc,
1603                 ("not enough spare TX desc"));
1604         if (adapter->pcix_82544) {
1605                 /* Half it; see the comment in em_attach() */
1606                 maxsegs >>= 1;
1607         }
1608         if (maxsegs > EM_MAX_SCATTER)
1609                 maxsegs = EM_MAX_SCATTER;
1610
1611         error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1612                         segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1613         if (error) {
1614                 if (error == ENOBUFS)
1615                         adapter->mbuf_alloc_failed++;
1616                 else
1617                         adapter->no_tx_dma_setup++;
1618
1619                 m_freem(*m_headp);
1620                 *m_headp = NULL;
1621                 return error;
1622         }
1623         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1624
1625         m_head = *m_headp;
1626         adapter->tx_nsegs += nsegs;
1627         *segs_used += nsegs;
1628
1629         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1630                 /* TSO will consume one TX desc */
1631                 i = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
1632                 adapter->tx_nsegs += i;
1633                 *segs_used += i;
1634         } else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1635                 /* TX csum offloading will consume one TX desc */
1636                 i = em_txcsum(adapter, m_head, &txd_upper, &txd_lower);
1637                 adapter->tx_nsegs += i;
1638                 *segs_used += i;
1639         }
1640         i = adapter->next_avail_tx_desc;
1641
1642         /* Set up our transmit descriptors */
1643         for (j = 0; j < nsegs; j++) {
1644                 /* If adapter is 82544 and on PCIX bus */
1645                 if(adapter->pcix_82544) {
1646                         DESC_ARRAY desc_array;
1647                         uint32_t array_elements, counter;
1648
1649                         /*
1650                          * Check the Address and Length combination and
1651                          * split the data accordingly
1652                          */
1653                         array_elements = em_82544_fill_desc(segs[j].ds_addr,
1654                                                 segs[j].ds_len, &desc_array);
1655                         for (counter = 0; counter < array_elements; counter++) {
1656                                 KKASSERT(txd_used < adapter->num_tx_desc_avail);
1657
1658                                 tx_buffer = &adapter->tx_buffer_area[i];
1659                                 ctxd = &adapter->tx_desc_base[i];
1660
1661                                 ctxd->buffer_addr = htole64(
1662                                     desc_array.descriptor[counter].address);
1663                                 ctxd->lower.data = htole32(
1664                                     E1000_TXD_CMD_IFCS | txd_lower |
1665                                     desc_array.descriptor[counter].length);
1666                                 ctxd->upper.data = htole32(txd_upper);
1667
1668                                 last = i;
1669                                 if (++i == adapter->num_tx_desc)
1670                                         i = 0;
1671
1672                                 txd_used++;
1673                         }
1674                 } else {
1675                         tx_buffer = &adapter->tx_buffer_area[i];
1676                         ctxd = &adapter->tx_desc_base[i];
1677
1678                         ctxd->buffer_addr = htole64(segs[j].ds_addr);
1679                         ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1680                                                    txd_lower | segs[j].ds_len);
1681                         ctxd->upper.data = htole32(txd_upper);
1682
1683                         last = i;
1684                         if (++i == adapter->num_tx_desc)
1685                                 i = 0;
1686                 }
1687         }
1688
1689         adapter->next_avail_tx_desc = i;
1690         if (adapter->pcix_82544) {
1691                 KKASSERT(adapter->num_tx_desc_avail > txd_used);
1692                 adapter->num_tx_desc_avail -= txd_used;
1693         } else {
1694                 KKASSERT(adapter->num_tx_desc_avail > nsegs);
1695                 adapter->num_tx_desc_avail -= nsegs;
1696         }
1697
1698         /* Handle VLAN tag */
1699         if (m_head->m_flags & M_VLANTAG) {
1700                 /* Set the vlan id. */
1701                 ctxd->upper.fields.special =
1702                     htole16(m_head->m_pkthdr.ether_vlantag);
1703
1704                 /* Tell hardware to add tag */
1705                 ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1706         }
1707
1708         tx_buffer->m_head = m_head;
1709         tx_buffer_mapped->map = tx_buffer->map;
1710         tx_buffer->map = map;
1711
1712         if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1713                 adapter->tx_nsegs = 0;
1714
1715                 /*
1716                  * Report Status (RS) is turned on
1717                  * every tx_int_nsegs descriptors.
1718                  */
1719                 cmd = E1000_TXD_CMD_RS;
1720
1721                 /*
1722                  * Keep track of the descriptor, which will
1723                  * be written back by hardware.
1724                  */
1725                 adapter->tx_dd[adapter->tx_dd_tail] = last;
1726                 EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1727                 KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1728         }
1729
1730         /*
1731          * Last Descriptor of Packet needs End Of Packet (EOP)
1732          */
1733         ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1734
1735         if (adapter->hw.mac.type == e1000_82547) {
1736                 /*
1737                  * Advance the Transmit Descriptor Tail (TDT), this tells the
1738                  * E1000 that this frame is available to transmit.
1739                  */
1740                 if (adapter->link_duplex == HALF_DUPLEX) {
1741                         em_82547_move_tail_serialized(adapter);
1742                 } else {
1743                         E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1744                         em_82547_update_fifo_head(adapter,
1745                             m_head->m_pkthdr.len);
1746                 }
1747         } else {
1748                 /*
1749                  * Defer TDT updating, until enough descriptors are setup
1750                  */
1751                 *idx = i;
1752         }
1753         return (0);
1754 }
1755
1756 /*
1757  * 82547 workaround to avoid controller hang in half-duplex environment.
1758  * The workaround is to avoid queuing a large packet that would span
1759  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1760  * in this case.  We do that only when FIFO is quiescent.
1761  */
1762 static void
1763 em_82547_move_tail_serialized(struct adapter *adapter)
1764 {
1765         struct e1000_tx_desc *tx_desc;
1766         uint16_t hw_tdt, sw_tdt, length = 0;
1767         bool eop = 0;
1768
1769         ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1770
1771         hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1772         sw_tdt = adapter->next_avail_tx_desc;
1773
1774         while (hw_tdt != sw_tdt) {
1775                 tx_desc = &adapter->tx_desc_base[hw_tdt];
1776                 length += tx_desc->lower.flags.length;
1777                 eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1778                 if (++hw_tdt == adapter->num_tx_desc)
1779                         hw_tdt = 0;
1780
1781                 if (eop) {
1782                         if (em_82547_fifo_workaround(adapter, length)) {
1783                                 adapter->tx_fifo_wrk_cnt++;
1784                                 callout_reset(&adapter->tx_fifo_timer, 1,
1785                                         em_82547_move_tail, adapter);
1786                                 break;
1787                         }
1788                         E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1789                         em_82547_update_fifo_head(adapter, length);
1790                         length = 0;
1791                 }
1792         }
1793 }
1794
1795 static void
1796 em_82547_move_tail(void *xsc)
1797 {
1798         struct adapter *adapter = xsc;
1799         struct ifnet *ifp = &adapter->arpcom.ac_if;
1800
1801         lwkt_serialize_enter(ifp->if_serializer);
1802         em_82547_move_tail_serialized(adapter);
1803         lwkt_serialize_exit(ifp->if_serializer);
1804 }
1805
1806 static int
1807 em_82547_fifo_workaround(struct adapter *adapter, int len)
1808 {       
1809         int fifo_space, fifo_pkt_len;
1810
1811         fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1812
1813         if (adapter->link_duplex == HALF_DUPLEX) {
1814                 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1815
1816                 if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1817                         if (em_82547_tx_fifo_reset(adapter))
1818                                 return (0);
1819                         else
1820                                 return (1);
1821                 }
1822         }
1823         return (0);
1824 }
1825
1826 static void
1827 em_82547_update_fifo_head(struct adapter *adapter, int len)
1828 {
1829         int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1830
1831         /* tx_fifo_head is always 16 byte aligned */
1832         adapter->tx_fifo_head += fifo_pkt_len;
1833         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1834                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
1835 }
1836
1837 static int
1838 em_82547_tx_fifo_reset(struct adapter *adapter)
1839 {
1840         uint32_t tctl;
1841
1842         if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1843              E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1844             (E1000_READ_REG(&adapter->hw, E1000_TDFT) == 
1845              E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1846             (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1847              E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1848             (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1849                 /* Disable TX unit */
1850                 tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1851                 E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1852                     tctl & ~E1000_TCTL_EN);
1853
1854                 /* Reset FIFO pointers */
1855                 E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1856                     adapter->tx_head_addr);
1857                 E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1858                     adapter->tx_head_addr);
1859                 E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1860                     adapter->tx_head_addr);
1861                 E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1862                     adapter->tx_head_addr);
1863
1864                 /* Re-enable TX unit */
1865                 E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1866                 E1000_WRITE_FLUSH(&adapter->hw);
1867
1868                 adapter->tx_fifo_head = 0;
1869                 adapter->tx_fifo_reset_cnt++;
1870
1871                 return (TRUE);
1872         } else {
1873                 return (FALSE);
1874         }
1875 }
1876
1877 static void
1878 em_set_promisc(struct adapter *adapter)
1879 {
1880         struct ifnet *ifp = &adapter->arpcom.ac_if;
1881         uint32_t reg_rctl;
1882
1883         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1884
1885         if (ifp->if_flags & IFF_PROMISC) {
1886                 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1887                 /* Turn this on if you want to see bad packets */
1888                 if (em_debug_sbp)
1889                         reg_rctl |= E1000_RCTL_SBP;
1890                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1891         } else if (ifp->if_flags & IFF_ALLMULTI) {
1892                 reg_rctl |= E1000_RCTL_MPE;
1893                 reg_rctl &= ~E1000_RCTL_UPE;
1894                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1895         }
1896 }
1897
1898 static void
1899 em_disable_promisc(struct adapter *adapter)
1900 {
1901         uint32_t reg_rctl;
1902
1903         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1904
1905         reg_rctl &= ~E1000_RCTL_UPE;
1906         reg_rctl &= ~E1000_RCTL_MPE;
1907         reg_rctl &= ~E1000_RCTL_SBP;
1908         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1909 }
1910
1911 static void
1912 em_set_multi(struct adapter *adapter)
1913 {
1914         struct ifnet *ifp = &adapter->arpcom.ac_if;
1915         struct ifmultiaddr *ifma;
1916         uint32_t reg_rctl = 0;
1917         uint8_t *mta;
1918         int mcnt = 0;
1919
1920         mta = adapter->mta;
1921         bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1922
1923         if (adapter->hw.mac.type == e1000_82542 && 
1924             adapter->hw.revision_id == E1000_REVISION_2) {
1925                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1926                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1927                         e1000_pci_clear_mwi(&adapter->hw);
1928                 reg_rctl |= E1000_RCTL_RST;
1929                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1930                 msec_delay(5);
1931         }
1932
1933         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1934                 if (ifma->ifma_addr->sa_family != AF_LINK)
1935                         continue;
1936
1937                 if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1938                         break;
1939
1940                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1941                     &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1942                 mcnt++;
1943         }
1944
1945         if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1946                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1947                 reg_rctl |= E1000_RCTL_MPE;
1948                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1949         } else {
1950                 e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1951         }
1952
1953         if (adapter->hw.mac.type == e1000_82542 && 
1954             adapter->hw.revision_id == E1000_REVISION_2) {
1955                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1956                 reg_rctl &= ~E1000_RCTL_RST;
1957                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1958                 msec_delay(5);
1959                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1960                         e1000_pci_set_mwi(&adapter->hw);
1961         }
1962 }
1963
1964 /*
1965  * This routine checks for link status and updates statistics.
1966  */
1967 static void
1968 em_timer(void *xsc)
1969 {
1970         struct adapter *adapter = xsc;
1971         struct ifnet *ifp = &adapter->arpcom.ac_if;
1972
1973         lwkt_serialize_enter(ifp->if_serializer);
1974
1975         em_update_link_status(adapter);
1976         em_update_stats(adapter);
1977
1978         /* Reset LAA into RAR[0] on 82571 */
1979         if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
1980                 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1981
1982         if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1983                 em_print_hw_stats(adapter);
1984
1985         em_smartspeed(adapter);
1986
1987         callout_reset(&adapter->timer, hz, em_timer, adapter);
1988
1989         lwkt_serialize_exit(ifp->if_serializer);
1990 }
1991
1992 static void
1993 em_update_link_status(struct adapter *adapter)
1994 {
1995         struct e1000_hw *hw = &adapter->hw;
1996         struct ifnet *ifp = &adapter->arpcom.ac_if;
1997         device_t dev = adapter->dev;
1998         uint32_t link_check = 0;
1999
2000         /* Get the cached link value or read phy for real */
2001         switch (hw->phy.media_type) {
2002         case e1000_media_type_copper:
2003                 if (hw->mac.get_link_status) {
2004                         /* Do the work to read phy */
2005                         e1000_check_for_link(hw);
2006                         link_check = !hw->mac.get_link_status;
2007                         if (link_check) /* ESB2 fix */
2008                                 e1000_cfg_on_link_up(hw);
2009                 } else {
2010                         link_check = TRUE;
2011                 }
2012                 break;
2013
2014         case e1000_media_type_fiber:
2015                 e1000_check_for_link(hw);
2016                 link_check =
2017                         E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2018                 break;
2019
2020         case e1000_media_type_internal_serdes:
2021                 e1000_check_for_link(hw);
2022                 link_check = adapter->hw.mac.serdes_has_link;
2023                 break;
2024
2025         case e1000_media_type_unknown:
2026         default:
2027                 break;
2028         }
2029
2030         /* Now check for a transition */
2031         if (link_check && adapter->link_active == 0) {
2032                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2033                     &adapter->link_duplex);
2034
2035                 /*
2036                  * Check if we should enable/disable SPEED_MODE bit on
2037                  * 82571/82572
2038                  */
2039                 if (adapter->link_speed != SPEED_1000 &&
2040                     (hw->mac.type == e1000_82571 ||
2041                      hw->mac.type == e1000_82572)) {
2042                         int tarc0;
2043
2044                         tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2045                         tarc0 &= ~SPEED_MODE_BIT;
2046                         E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2047                 }
2048                 if (bootverbose) {
2049                         device_printf(dev, "Link is up %d Mbps %s\n",
2050                             adapter->link_speed,
2051                             ((adapter->link_duplex == FULL_DUPLEX) ?
2052                             "Full Duplex" : "Half Duplex"));
2053                 }
2054                 adapter->link_active = 1;
2055                 adapter->smartspeed = 0;
2056                 ifp->if_baudrate = adapter->link_speed * 1000000;
2057                 ifp->if_link_state = LINK_STATE_UP;
2058                 if_link_state_change(ifp);
2059         } else if (!link_check && adapter->link_active == 1) {
2060                 ifp->if_baudrate = adapter->link_speed = 0;
2061                 adapter->link_duplex = 0;
2062                 if (bootverbose)
2063                         device_printf(dev, "Link is Down\n");
2064                 adapter->link_active = 0;
2065 #if 0
2066                 /* Link down, disable watchdog */
2067                 if->if_timer = 0;
2068 #endif
2069                 ifp->if_link_state = LINK_STATE_DOWN;
2070                 if_link_state_change(ifp);
2071         }
2072 }
2073
2074 static void
2075 em_stop(struct adapter *adapter)
2076 {
2077         struct ifnet *ifp = &adapter->arpcom.ac_if;
2078         int i;
2079
2080         ASSERT_SERIALIZED(ifp->if_serializer);
2081
2082         em_disable_intr(adapter);
2083
2084         callout_stop(&adapter->timer);
2085         callout_stop(&adapter->tx_fifo_timer);
2086
2087         ifp->if_flags &= ~IFF_RUNNING;
2088         ifq_clr_oactive(&ifp->if_snd);
2089         ifp->if_timer = 0;
2090
2091         e1000_reset_hw(&adapter->hw);
2092         if (adapter->hw.mac.type >= e1000_82544)
2093                 E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2094
2095         for (i = 0; i < adapter->num_tx_desc; i++) {
2096                 struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2097
2098                 if (tx_buffer->m_head != NULL) {
2099                         bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2100                         m_freem(tx_buffer->m_head);
2101                         tx_buffer->m_head = NULL;
2102                 }
2103         }
2104
2105         for (i = 0; i < adapter->num_rx_desc; i++) {
2106                 struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2107
2108                 if (rx_buffer->m_head != NULL) {
2109                         bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2110                         m_freem(rx_buffer->m_head);
2111                         rx_buffer->m_head = NULL;
2112                 }
2113         }
2114
2115         if (adapter->fmp != NULL)
2116                 m_freem(adapter->fmp);
2117         adapter->fmp = NULL;
2118         adapter->lmp = NULL;
2119
2120         adapter->csum_flags = 0;
2121         adapter->csum_lhlen = 0;
2122         adapter->csum_iphlen = 0;
2123         adapter->csum_thlen = 0;
2124         adapter->csum_mss = 0;
2125         adapter->csum_pktlen = 0;
2126
2127         adapter->tx_dd_head = 0;
2128         adapter->tx_dd_tail = 0;
2129         adapter->tx_nsegs = 0;
2130 }
2131
2132 static int
2133 em_get_hw_info(struct adapter *adapter)
2134 {
2135         device_t dev = adapter->dev;
2136
2137         /* Save off the information about this board */
2138         adapter->hw.vendor_id = pci_get_vendor(dev);
2139         adapter->hw.device_id = pci_get_device(dev);
2140         adapter->hw.revision_id = pci_get_revid(dev);
2141         adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2142         adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2143
2144         /* Do Shared Code Init and Setup */
2145         if (e1000_set_mac_type(&adapter->hw))
2146                 return ENXIO;
2147         return 0;
2148 }
2149
2150 static int
2151 em_alloc_pci_res(struct adapter *adapter)
2152 {
2153         device_t dev = adapter->dev;
2154         u_int intr_flags;
2155         int val, rid, msi_enable;
2156
2157         /* Enable bus mastering */
2158         pci_enable_busmaster(dev);
2159
2160         adapter->memory_rid = EM_BAR_MEM;
2161         adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2162                                 &adapter->memory_rid, RF_ACTIVE);
2163         if (adapter->memory == NULL) {
2164                 device_printf(dev, "Unable to allocate bus resource: memory\n");
2165                 return (ENXIO);
2166         }
2167         adapter->osdep.mem_bus_space_tag =
2168             rman_get_bustag(adapter->memory);
2169         adapter->osdep.mem_bus_space_handle =
2170             rman_get_bushandle(adapter->memory);
2171
2172         /* XXX This is quite goofy, it is not actually used */
2173         adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2174
2175         /* Only older adapters use IO mapping */
2176         if (adapter->hw.mac.type > e1000_82543 &&
2177             adapter->hw.mac.type < e1000_82571) {
2178                 /* Figure our where our IO BAR is ? */
2179                 for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2180                         val = pci_read_config(dev, rid, 4);
2181                         if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2182                                 adapter->io_rid = rid;
2183                                 break;
2184                         }
2185                         rid += 4;
2186                         /* check for 64bit BAR */
2187                         if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2188                                 rid += 4;
2189                 }
2190                 if (rid >= PCIR_CARDBUSCIS) {
2191                         device_printf(dev, "Unable to locate IO BAR\n");
2192                         return (ENXIO);
2193                 }
2194                 adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2195                                         &adapter->io_rid, RF_ACTIVE);
2196                 if (adapter->ioport == NULL) {
2197                         device_printf(dev, "Unable to allocate bus resource: "
2198                             "ioport\n");
2199                         return (ENXIO);
2200                 }
2201                 adapter->hw.io_base = 0;
2202                 adapter->osdep.io_bus_space_tag =
2203                     rman_get_bustag(adapter->ioport);
2204                 adapter->osdep.io_bus_space_handle =
2205                     rman_get_bushandle(adapter->ioport);
2206         }
2207
2208         /*
2209          * Don't enable MSI-X on 82574, see:
2210          * 82574 specification update errata #15
2211          *
2212          * Don't enable MSI on PCI/PCI-X chips, see:
2213          * 82540 specification update errata #6
2214          * 82545 specification update errata #4
2215          *
2216          * Don't enable MSI on 82571/82572, see:
2217          * 82571/82572 specification update errata #63
2218          */
2219         msi_enable = em_msi_enable;
2220         if (msi_enable &&
2221             (!pci_is_pcie(dev) ||
2222              adapter->hw.mac.type == e1000_82571 ||
2223              adapter->hw.mac.type == e1000_82572))
2224                 msi_enable = 0;
2225
2226         adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2227             &adapter->intr_rid, &intr_flags);
2228
2229         if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2230                 int unshared;
2231
2232                 unshared = device_getenv_int(dev, "irq.unshared", 0);
2233                 if (!unshared) {
2234                         adapter->flags |= EM_FLAG_SHARED_INTR;
2235                         if (bootverbose)
2236                                 device_printf(dev, "IRQ shared\n");
2237                 } else {
2238                         intr_flags &= ~RF_SHAREABLE;
2239                         if (bootverbose)
2240                                 device_printf(dev, "IRQ unshared\n");
2241                 }
2242         }
2243
2244         adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2245             &adapter->intr_rid, intr_flags);
2246         if (adapter->intr_res == NULL) {
2247                 device_printf(dev, "Unable to allocate bus resource: "
2248                     "interrupt\n");
2249                 return (ENXIO);
2250         }
2251
2252         adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2253         adapter->hw.back = &adapter->osdep;
2254         return (0);
2255 }
2256
2257 static void
2258 em_free_pci_res(struct adapter *adapter)
2259 {
2260         device_t dev = adapter->dev;
2261
2262         if (adapter->intr_res != NULL) {
2263                 bus_release_resource(dev, SYS_RES_IRQ,
2264                     adapter->intr_rid, adapter->intr_res);
2265         }
2266
2267         if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2268                 pci_release_msi(dev);
2269
2270         if (adapter->memory != NULL) {
2271                 bus_release_resource(dev, SYS_RES_MEMORY,
2272                     adapter->memory_rid, adapter->memory);
2273         }
2274
2275         if (adapter->flash != NULL) {
2276                 bus_release_resource(dev, SYS_RES_MEMORY,
2277                     adapter->flash_rid, adapter->flash);
2278         }
2279
2280         if (adapter->ioport != NULL) {
2281                 bus_release_resource(dev, SYS_RES_IOPORT,
2282                     adapter->io_rid, adapter->ioport);
2283         }
2284 }
2285
2286 static int
2287 em_reset(struct adapter *adapter)
2288 {
2289         device_t dev = adapter->dev;
2290         uint16_t rx_buffer_size;
2291         uint32_t pba;
2292
2293         /* When hardware is reset, fifo_head is also reset */
2294         adapter->tx_fifo_head = 0;
2295
2296         /* Set up smart power down as default off on newer adapters. */
2297         if (!em_smart_pwr_down &&
2298             (adapter->hw.mac.type == e1000_82571 ||
2299              adapter->hw.mac.type == e1000_82572)) {
2300                 uint16_t phy_tmp = 0;
2301
2302                 /* Speed up time to link by disabling smart power down. */
2303                 e1000_read_phy_reg(&adapter->hw,
2304                     IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2305                 phy_tmp &= ~IGP02E1000_PM_SPD;
2306                 e1000_write_phy_reg(&adapter->hw,
2307                     IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2308         }
2309
2310         /*
2311          * Packet Buffer Allocation (PBA)
2312          * Writing PBA sets the receive portion of the buffer
2313          * the remainder is used for the transmit buffer.
2314          *
2315          * Devices before the 82547 had a Packet Buffer of 64K.
2316          *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
2317          * After the 82547 the buffer was reduced to 40K.
2318          *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
2319          *   Note: default does not leave enough room for Jumbo Frame >10k.
2320          */
2321         switch (adapter->hw.mac.type) {
2322         case e1000_82547:
2323         case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
2324                 if (adapter->max_frame_size > 8192)
2325                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2326                 else
2327                         pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2328                 adapter->tx_fifo_head = 0;
2329                 adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
2330                 adapter->tx_fifo_size =
2331                     (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
2332                 break;
2333
2334         /* Total Packet Buffer on these is 48K */
2335         case e1000_82571:
2336         case e1000_82572:
2337         case e1000_80003es2lan:
2338                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2339                 break;
2340
2341         case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2342                 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2343                 break;
2344
2345         case e1000_82574:
2346         case e1000_82583:
2347                 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2348                 break;
2349
2350         case e1000_ich8lan:
2351                 pba = E1000_PBA_8K;
2352                 break;
2353
2354         case e1000_ich9lan:
2355         case e1000_ich10lan:
2356 #define E1000_PBA_10K   0x000A
2357                 pba = E1000_PBA_10K;
2358                 break;
2359
2360         case e1000_pchlan:
2361         case e1000_pch2lan:
2362                 pba = E1000_PBA_26K;
2363                 break;
2364
2365         default:
2366                 /* Devices before 82547 had a Packet Buffer of 64K.   */
2367                 if (adapter->max_frame_size > 8192)
2368                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2369                 else
2370                         pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2371         }
2372         E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2373
2374         /*
2375          * These parameters control the automatic generation (Tx) and
2376          * response (Rx) to Ethernet PAUSE frames.
2377          * - High water mark should allow for at least two frames to be
2378          *   received after sending an XOFF.
2379          * - Low water mark works best when it is very near the high water mark.
2380          *   This allows the receiver to restart by sending XON when it has
2381          *   drained a bit. Here we use an arbitary value of 1500 which will
2382          *   restart after one full frame is pulled from the buffer. There
2383          *   could be several smaller frames in the buffer and if so they will
2384          *   not trigger the XON until their total number reduces the buffer
2385          *   by 1500.
2386          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2387          */
2388         rx_buffer_size =
2389                 (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2390
2391         adapter->hw.fc.high_water = rx_buffer_size -
2392                                     roundup2(adapter->max_frame_size, 1024);
2393         adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2394
2395         if (adapter->hw.mac.type == e1000_80003es2lan)
2396                 adapter->hw.fc.pause_time = 0xFFFF;
2397         else
2398                 adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2399
2400         adapter->hw.fc.send_xon = TRUE;
2401
2402         adapter->hw.fc.requested_mode = e1000_fc_full;
2403
2404         /*
2405          * Device specific overrides/settings
2406          */
2407         switch (adapter->hw.mac.type) {
2408         case e1000_pchlan:
2409                 /* Workaround: no TX flow ctrl for PCH */
2410                 adapter->hw.fc.requested_mode = e1000_fc_rx_pause;
2411                 adapter->hw.fc.pause_time = 0xFFFF; /* override */
2412                 if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2413                         adapter->hw.fc.high_water = 0x3500;
2414                         adapter->hw.fc.low_water = 0x1500;
2415                 } else {
2416                         adapter->hw.fc.high_water = 0x5000;
2417                         adapter->hw.fc.low_water = 0x3000;
2418                 }
2419                 adapter->hw.fc.refresh_time = 0x1000;
2420                 break;
2421
2422         case e1000_pch2lan:
2423                 adapter->hw.fc.high_water = 0x5C20;
2424                 adapter->hw.fc.low_water = 0x5048;
2425                 adapter->hw.fc.pause_time = 0x0650;
2426                 adapter->hw.fc.refresh_time = 0x0400;
2427                 /* Jumbos need adjusted PBA */
2428                 if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2429                         E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2430                 else
2431                         E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2432                 break;
2433
2434         case e1000_ich9lan:
2435         case e1000_ich10lan:
2436                 if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2437                         adapter->hw.fc.high_water = 0x2800;
2438                         adapter->hw.fc.low_water =
2439                             adapter->hw.fc.high_water - 8;
2440                         break;
2441                 }
2442                 /* FALL THROUGH */
2443         default:
2444                 if (adapter->hw.mac.type == e1000_80003es2lan)
2445                         adapter->hw.fc.pause_time = 0xFFFF;
2446                 break;
2447         }
2448
2449         /* Issue a global reset */
2450         e1000_reset_hw(&adapter->hw);
2451         if (adapter->hw.mac.type >= e1000_82544)
2452                 E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2453         em_disable_aspm(adapter);
2454
2455         if (e1000_init_hw(&adapter->hw) < 0) {
2456                 device_printf(dev, "Hardware Initialization Failed\n");
2457                 return (EIO);
2458         }
2459
2460         E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2461         e1000_get_phy_info(&adapter->hw);
2462         e1000_check_for_link(&adapter->hw);
2463
2464         return (0);
2465 }
2466
2467 static void
2468 em_setup_ifp(struct adapter *adapter)
2469 {
2470         struct ifnet *ifp = &adapter->arpcom.ac_if;
2471
2472         if_initname(ifp, device_get_name(adapter->dev),
2473                     device_get_unit(adapter->dev));
2474         ifp->if_softc = adapter;
2475         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2476         ifp->if_init =  em_init;
2477         ifp->if_ioctl = em_ioctl;
2478         ifp->if_start = em_start;
2479 #ifdef IFPOLL_ENABLE
2480         ifp->if_npoll = em_npoll;
2481 #endif
2482         ifp->if_watchdog = em_watchdog;
2483         ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2484         ifq_set_ready(&ifp->if_snd);
2485
2486         ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2487
2488         ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2489         if (adapter->hw.mac.type >= e1000_82543)
2490                 ifp->if_capabilities |= IFCAP_HWCSUM;
2491         if (adapter->flags & EM_FLAG_TSO)
2492                 ifp->if_capabilities |= IFCAP_TSO;
2493         ifp->if_capenable = ifp->if_capabilities;
2494
2495         if (ifp->if_capenable & IFCAP_TXCSUM)
2496                 ifp->if_hwassist |= EM_CSUM_FEATURES;
2497         if (ifp->if_capenable & IFCAP_TSO)
2498                 ifp->if_hwassist |= CSUM_TSO;
2499
2500         /*
2501          * Tell the upper layer(s) we support long frames.
2502          */
2503         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2504
2505         /*
2506          * Specify the media types supported by this adapter and register
2507          * callbacks to update media and link information
2508          */
2509         ifmedia_init(&adapter->media, IFM_IMASK,
2510                      em_media_change, em_media_status);
2511         if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2512             adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2513                 u_char fiber_type = IFM_1000_SX; /* default type */
2514
2515                 if (adapter->hw.mac.type == e1000_82545)
2516                         fiber_type = IFM_1000_LX;
2517                 ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 
2518                             0, NULL);
2519                 ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2520         } else {
2521                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2522                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2523                             0, NULL);
2524                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2525                             0, NULL);
2526                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2527                             0, NULL);
2528                 if (adapter->hw.phy.type != e1000_phy_ife) {
2529                         ifmedia_add(&adapter->media,
2530                                 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2531                         ifmedia_add(&adapter->media,
2532                                 IFM_ETHER | IFM_1000_T, 0, NULL);
2533                 }
2534         }
2535         ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2536         ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2537 }
2538
2539
2540 /*
2541  * Workaround for SmartSpeed on 82541 and 82547 controllers
2542  */
2543 static void
2544 em_smartspeed(struct adapter *adapter)
2545 {
2546         uint16_t phy_tmp;
2547
2548         if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2549             adapter->hw.mac.autoneg == 0 ||
2550             (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2551                 return;
2552
2553         if (adapter->smartspeed == 0) {
2554                 /*
2555                  * If Master/Slave config fault is asserted twice,
2556                  * we assume back-to-back
2557                  */
2558                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2559                 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2560                         return;
2561                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2562                 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2563                         e1000_read_phy_reg(&adapter->hw,
2564                             PHY_1000T_CTRL, &phy_tmp);
2565                         if (phy_tmp & CR_1000T_MS_ENABLE) {
2566                                 phy_tmp &= ~CR_1000T_MS_ENABLE;
2567                                 e1000_write_phy_reg(&adapter->hw,
2568                                     PHY_1000T_CTRL, phy_tmp);
2569                                 adapter->smartspeed++;
2570                                 if (adapter->hw.mac.autoneg &&
2571                                     !e1000_phy_setup_autoneg(&adapter->hw) &&
2572                                     !e1000_read_phy_reg(&adapter->hw,
2573                                      PHY_CONTROL, &phy_tmp)) {
2574                                         phy_tmp |= MII_CR_AUTO_NEG_EN |
2575                                                    MII_CR_RESTART_AUTO_NEG;
2576                                         e1000_write_phy_reg(&adapter->hw,
2577                                             PHY_CONTROL, phy_tmp);
2578                                 }
2579                         }
2580                 }
2581                 return;
2582         } else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2583                 /* If still no link, perhaps using 2/3 pair cable */
2584                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2585                 phy_tmp |= CR_1000T_MS_ENABLE;
2586                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2587                 if (adapter->hw.mac.autoneg &&
2588                     !e1000_phy_setup_autoneg(&adapter->hw) &&
2589                     !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2590                         phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2591                         e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2592                 }
2593         }
2594
2595         /* Restart process after EM_SMARTSPEED_MAX iterations */
2596         if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2597                 adapter->smartspeed = 0;
2598 }
2599
2600 static int
2601 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2602               struct em_dma_alloc *dma)
2603 {
2604         dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2605                                 EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2606                                 &dma->dma_tag, &dma->dma_map,
2607                                 &dma->dma_paddr);
2608         if (dma->dma_vaddr == NULL)
2609                 return ENOMEM;
2610         else
2611                 return 0;
2612 }
2613
2614 static void
2615 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2616 {
2617         if (dma->dma_tag == NULL)
2618                 return;
2619         bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2620         bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2621         bus_dma_tag_destroy(dma->dma_tag);
2622 }
2623
2624 static int
2625 em_create_tx_ring(struct adapter *adapter)
2626 {
2627         device_t dev = adapter->dev;
2628         struct em_buffer *tx_buffer;
2629         int error, i;
2630
2631         adapter->tx_buffer_area =
2632                 kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2633                         M_DEVBUF, M_WAITOK | M_ZERO);
2634
2635         /*
2636          * Create DMA tags for tx buffers
2637          */
2638         error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2639                         1, 0,                   /* alignment, bounds */
2640                         BUS_SPACE_MAXADDR,      /* lowaddr */
2641                         BUS_SPACE_MAXADDR,      /* highaddr */
2642                         NULL, NULL,             /* filter, filterarg */
2643                         EM_TSO_SIZE,            /* maxsize */
2644                         EM_MAX_SCATTER,         /* nsegments */
2645                         PAGE_SIZE,              /* maxsegsize */
2646                         BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2647                         BUS_DMA_ONEBPAGE,       /* flags */
2648                         &adapter->txtag);
2649         if (error) {
2650                 device_printf(dev, "Unable to allocate TX DMA tag\n");
2651                 kfree(adapter->tx_buffer_area, M_DEVBUF);
2652                 adapter->tx_buffer_area = NULL;
2653                 return error;
2654         }
2655
2656         /*
2657          * Create DMA maps for tx buffers
2658          */
2659         for (i = 0; i < adapter->num_tx_desc; i++) {
2660                 tx_buffer = &adapter->tx_buffer_area[i];
2661
2662                 error = bus_dmamap_create(adapter->txtag,
2663                                           BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2664                                           &tx_buffer->map);
2665                 if (error) {
2666                         device_printf(dev, "Unable to create TX DMA map\n");
2667                         em_destroy_tx_ring(adapter, i);
2668                         return error;
2669                 }
2670         }
2671         return (0);
2672 }
2673
2674 static void
2675 em_init_tx_ring(struct adapter *adapter)
2676 {
2677         /* Clear the old ring contents */
2678         bzero(adapter->tx_desc_base,
2679             (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2680
2681         /* Reset state */
2682         adapter->next_avail_tx_desc = 0;
2683         adapter->next_tx_to_clean = 0;
2684         adapter->num_tx_desc_avail = adapter->num_tx_desc;
2685 }
2686
2687 static void
2688 em_init_tx_unit(struct adapter *adapter)
2689 {
2690         uint32_t tctl, tarc, tipg = 0;
2691         uint64_t bus_addr;
2692
2693         /* Setup the Base and Length of the Tx Descriptor Ring */
2694         bus_addr = adapter->txdma.dma_paddr;
2695         E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2696             adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2697         E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2698             (uint32_t)(bus_addr >> 32));
2699         E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2700             (uint32_t)bus_addr);
2701         /* Setup the HW Tx Head and Tail descriptor pointers */
2702         E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2703         E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2704
2705         /* Set the default values for the Tx Inter Packet Gap timer */
2706         switch (adapter->hw.mac.type) {
2707         case e1000_82542:
2708                 tipg = DEFAULT_82542_TIPG_IPGT;
2709                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2710                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2711                 break;
2712
2713         case e1000_80003es2lan:
2714                 tipg = DEFAULT_82543_TIPG_IPGR1;
2715                 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2716                     E1000_TIPG_IPGR2_SHIFT;
2717                 break;
2718
2719         default:
2720                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2721                     adapter->hw.phy.media_type ==
2722                     e1000_media_type_internal_serdes)
2723                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2724                 else
2725                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2726                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2727                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2728                 break;
2729         }
2730
2731         E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2732
2733         /* NOTE: 0 is not allowed for TIDV */
2734         E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2735         if(adapter->hw.mac.type >= e1000_82540)
2736                 E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2737
2738         if (adapter->hw.mac.type == e1000_82571 ||
2739             adapter->hw.mac.type == e1000_82572) {
2740                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2741                 tarc |= SPEED_MODE_BIT;
2742                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2743         } else if (adapter->hw.mac.type == e1000_80003es2lan) {
2744                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2745                 tarc |= 1;
2746                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2747                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2748                 tarc |= 1;
2749                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2750         }
2751
2752         /* Program the Transmit Control Register */
2753         tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2754         tctl &= ~E1000_TCTL_CT;
2755         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2756                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2757
2758         if (adapter->hw.mac.type >= e1000_82571)
2759                 tctl |= E1000_TCTL_MULR;
2760
2761         /* This write will effectively turn on the transmit unit. */
2762         E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2763
2764         if (adapter->hw.mac.type == e1000_82571 ||
2765             adapter->hw.mac.type == e1000_82572 ||
2766             adapter->hw.mac.type == e1000_80003es2lan) {
2767                 /* Bit 28 of TARC1 must be cleared when MULR is enabled */
2768                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2769                 tarc &= ~(1 << 28);
2770                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2771         }
2772 }
2773
2774 static void
2775 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2776 {
2777         struct em_buffer *tx_buffer;
2778         int i;
2779
2780         if (adapter->tx_buffer_area == NULL)
2781                 return;
2782
2783         for (i = 0; i < ndesc; i++) {
2784                 tx_buffer = &adapter->tx_buffer_area[i];
2785
2786                 KKASSERT(tx_buffer->m_head == NULL);
2787                 bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2788         }
2789         bus_dma_tag_destroy(adapter->txtag);
2790
2791         kfree(adapter->tx_buffer_area, M_DEVBUF);
2792         adapter->tx_buffer_area = NULL;
2793 }
2794
2795 /*
2796  * The offload context needs to be set when we transfer the first
2797  * packet of a particular protocol (TCP/UDP).  This routine has been
2798  * enhanced to deal with inserted VLAN headers.
2799  *
2800  * If the new packet's ether header length, ip header length and
2801  * csum offloading type are same as the previous packet, we should
2802  * avoid allocating a new csum context descriptor; mainly to take
2803  * advantage of the pipeline effect of the TX data read request.
2804  *
2805  * This function returns number of TX descrptors allocated for
2806  * csum context.
2807  */
2808 static int
2809 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2810           uint32_t *txd_upper, uint32_t *txd_lower)
2811 {
2812         struct e1000_context_desc *TXD;
2813         int curr_txd, ehdrlen, csum_flags;
2814         uint32_t cmd, hdr_len, ip_hlen;
2815
2816         csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2817         ip_hlen = mp->m_pkthdr.csum_iphlen;
2818         ehdrlen = mp->m_pkthdr.csum_lhlen;
2819
2820         if (adapter->csum_lhlen == ehdrlen &&
2821             adapter->csum_iphlen == ip_hlen &&
2822             adapter->csum_flags == csum_flags) {
2823                 /*
2824                  * Same csum offload context as the previous packets;
2825                  * just return.
2826                  */
2827                 *txd_upper = adapter->csum_txd_upper;
2828                 *txd_lower = adapter->csum_txd_lower;
2829                 return 0;
2830         }
2831
2832         /*
2833          * Setup a new csum offload context.
2834          */
2835
2836         curr_txd = adapter->next_avail_tx_desc;
2837         TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2838
2839         cmd = 0;
2840
2841         /* Setup of IP header checksum. */
2842         if (csum_flags & CSUM_IP) {
2843                 /*
2844                  * Start offset for header checksum calculation.
2845                  * End offset for header checksum calculation.
2846                  * Offset of place to put the checksum.
2847                  */
2848                 TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2849                 TXD->lower_setup.ip_fields.ipcse =
2850                     htole16(ehdrlen + ip_hlen - 1);
2851                 TXD->lower_setup.ip_fields.ipcso =
2852                     ehdrlen + offsetof(struct ip, ip_sum);
2853                 cmd |= E1000_TXD_CMD_IP;
2854                 *txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2855         }
2856         hdr_len = ehdrlen + ip_hlen;
2857
2858         if (csum_flags & CSUM_TCP) {
2859                 /*
2860                  * Start offset for payload checksum calculation.
2861                  * End offset for payload checksum calculation.
2862                  * Offset of place to put the checksum.
2863                  */
2864                 TXD->upper_setup.tcp_fields.tucss = hdr_len;
2865                 TXD->upper_setup.tcp_fields.tucse = htole16(0);
2866                 TXD->upper_setup.tcp_fields.tucso =
2867                     hdr_len + offsetof(struct tcphdr, th_sum);
2868                 cmd |= E1000_TXD_CMD_TCP;
2869                 *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2870         } else if (csum_flags & CSUM_UDP) {
2871                 /*
2872                  * Start offset for header checksum calculation.
2873                  * End offset for header checksum calculation.
2874                  * Offset of place to put the checksum.
2875                  */
2876                 TXD->upper_setup.tcp_fields.tucss = hdr_len;
2877                 TXD->upper_setup.tcp_fields.tucse = htole16(0);
2878                 TXD->upper_setup.tcp_fields.tucso =
2879                     hdr_len + offsetof(struct udphdr, uh_sum);
2880                 *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2881         }
2882
2883         *txd_lower = E1000_TXD_CMD_DEXT |       /* Extended descr type */
2884                      E1000_TXD_DTYP_D;          /* Data descr */
2885
2886         /* Save the information for this csum offloading context */
2887         adapter->csum_lhlen = ehdrlen;
2888         adapter->csum_iphlen = ip_hlen;
2889         adapter->csum_flags = csum_flags;
2890         adapter->csum_txd_upper = *txd_upper;
2891         adapter->csum_txd_lower = *txd_lower;
2892
2893         TXD->tcp_seg_setup.data = htole32(0);
2894         TXD->cmd_and_length =
2895             htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2896
2897         if (++curr_txd == adapter->num_tx_desc)
2898                 curr_txd = 0;
2899
2900         KKASSERT(adapter->num_tx_desc_avail > 0);
2901         adapter->num_tx_desc_avail--;
2902
2903         adapter->next_avail_tx_desc = curr_txd;
2904         return 1;
2905 }
2906
2907 static void
2908 em_txeof(struct adapter *adapter)
2909 {
2910         struct ifnet *ifp = &adapter->arpcom.ac_if;
2911         struct em_buffer *tx_buffer;
2912         int first, num_avail;
2913
2914         if (adapter->tx_dd_head == adapter->tx_dd_tail)
2915                 return;
2916
2917         if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2918                 return;
2919
2920         num_avail = adapter->num_tx_desc_avail;
2921         first = adapter->next_tx_to_clean;
2922
2923         while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2924                 struct e1000_tx_desc *tx_desc;
2925                 int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2926
2927                 tx_desc = &adapter->tx_desc_base[dd_idx];
2928                 if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2929                         EM_INC_TXDD_IDX(adapter->tx_dd_head);
2930
2931                         if (++dd_idx == adapter->num_tx_desc)
2932                                 dd_idx = 0;
2933
2934                         while (first != dd_idx) {
2935                                 logif(pkt_txclean);
2936
2937                                 num_avail++;
2938
2939                                 tx_buffer = &adapter->tx_buffer_area[first];
2940                                 if (tx_buffer->m_head) {
2941                                         IFNET_STAT_INC(ifp, opackets, 1);
2942                                         bus_dmamap_unload(adapter->txtag,
2943                                                           tx_buffer->map);
2944                                         m_freem(tx_buffer->m_head);
2945                                         tx_buffer->m_head = NULL;
2946                                 }
2947
2948                                 if (++first == adapter->num_tx_desc)
2949                                         first = 0;
2950                         }
2951                 } else {
2952                         break;
2953                 }
2954         }
2955         adapter->next_tx_to_clean = first;
2956         adapter->num_tx_desc_avail = num_avail;
2957
2958         if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2959                 adapter->tx_dd_head = 0;
2960                 adapter->tx_dd_tail = 0;
2961         }
2962
2963         if (!EM_IS_OACTIVE(adapter)) {
2964                 ifq_clr_oactive(&ifp->if_snd);
2965
2966                 /* All clean, turn off the timer */
2967                 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2968                         ifp->if_timer = 0;
2969         }
2970 }
2971
2972 static void
2973 em_tx_collect(struct adapter *adapter)
2974 {
2975         struct ifnet *ifp = &adapter->arpcom.ac_if;
2976         struct em_buffer *tx_buffer;
2977         int tdh, first, num_avail, dd_idx = -1;
2978
2979         if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2980                 return;
2981
2982         tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
2983         if (tdh == adapter->next_tx_to_clean)
2984                 return;
2985
2986         if (adapter->tx_dd_head != adapter->tx_dd_tail)
2987                 dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2988
2989         num_avail = adapter->num_tx_desc_avail;
2990         first = adapter->next_tx_to_clean;
2991
2992         while (first != tdh) {
2993                 logif(pkt_txclean);
2994
2995                 num_avail++;
2996
2997                 tx_buffer = &adapter->tx_buffer_area[first];
2998                 if (tx_buffer->m_head) {
2999                         IFNET_STAT_INC(ifp, opackets, 1);
3000                         bus_dmamap_unload(adapter->txtag,
3001                                           tx_buffer->map);
3002                         m_freem(tx_buffer->m_head);
3003                         tx_buffer->m_head = NULL;
3004                 }
3005
3006                 if (first == dd_idx) {
3007                         EM_INC_TXDD_IDX(adapter->tx_dd_head);
3008                         if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3009                                 adapter->tx_dd_head = 0;
3010                                 adapter->tx_dd_tail = 0;
3011                                 dd_idx = -1;
3012                         } else {
3013                                 dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3014                         }
3015                 }
3016
3017                 if (++first == adapter->num_tx_desc)
3018                         first = 0;
3019         }
3020         adapter->next_tx_to_clean = first;
3021         adapter->num_tx_desc_avail = num_avail;
3022
3023         if (!EM_IS_OACTIVE(adapter)) {
3024                 ifq_clr_oactive(&ifp->if_snd);
3025
3026                 /* All clean, turn off the timer */
3027                 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3028                         ifp->if_timer = 0;
3029         }
3030 }
3031
3032 /*
3033  * When Link is lost sometimes there is work still in the TX ring
3034  * which will result in a watchdog, rather than allow that do an
3035  * attempted cleanup and then reinit here.  Note that this has been
3036  * seens mostly with fiber adapters.
3037  */
3038 static void
3039 em_tx_purge(struct adapter *adapter)
3040 {
3041         struct ifnet *ifp = &adapter->arpcom.ac_if;
3042
3043         if (!adapter->link_active && ifp->if_timer) {
3044                 em_tx_collect(adapter);
3045                 if (ifp->if_timer) {
3046                         if_printf(ifp, "Link lost, TX pending, reinit\n");
3047                         ifp->if_timer = 0;
3048                         em_init(adapter);
3049                 }
3050         }
3051 }
3052
3053 static int
3054 em_newbuf(struct adapter *adapter, int i, int init)
3055 {
3056         struct mbuf *m;
3057         bus_dma_segment_t seg;
3058         bus_dmamap_t map;
3059         struct em_buffer *rx_buffer;
3060         int error, nseg;
3061
3062         m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
3063         if (m == NULL) {
3064                 adapter->mbuf_cluster_failed++;
3065                 if (init) {
3066                         if_printf(&adapter->arpcom.ac_if,
3067                                   "Unable to allocate RX mbuf\n");
3068                 }
3069                 return (ENOBUFS);
3070         }
3071         m->m_len = m->m_pkthdr.len = MCLBYTES;
3072
3073         if (adapter->max_frame_size <= MCLBYTES - ETHER_ALIGN)
3074                 m_adj(m, ETHER_ALIGN);
3075
3076         error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3077                         adapter->rx_sparemap, m,
3078                         &seg, 1, &nseg, BUS_DMA_NOWAIT);
3079         if (error) {
3080                 m_freem(m);
3081                 if (init) {
3082                         if_printf(&adapter->arpcom.ac_if,
3083                                   "Unable to load RX mbuf\n");
3084                 }
3085                 return (error);
3086         }
3087
3088         rx_buffer = &adapter->rx_buffer_area[i];
3089         if (rx_buffer->m_head != NULL)
3090                 bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3091
3092         map = rx_buffer->map;
3093         rx_buffer->map = adapter->rx_sparemap;
3094         adapter->rx_sparemap = map;
3095
3096         rx_buffer->m_head = m;
3097
3098         adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3099         return (0);
3100 }
3101
3102 static int
3103 em_create_rx_ring(struct adapter *adapter)
3104 {
3105         device_t dev = adapter->dev;
3106         struct em_buffer *rx_buffer;
3107         int i, error;
3108
3109         adapter->rx_buffer_area =
3110                 kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3111                         M_DEVBUF, M_WAITOK | M_ZERO);
3112
3113         /*
3114          * Create DMA tag for rx buffers
3115          */
3116         error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3117                         1, 0,                   /* alignment, bounds */
3118                         BUS_SPACE_MAXADDR,      /* lowaddr */
3119                         BUS_SPACE_MAXADDR,      /* highaddr */
3120                         NULL, NULL,             /* filter, filterarg */
3121                         MCLBYTES,               /* maxsize */
3122                         1,                      /* nsegments */
3123                         MCLBYTES,               /* maxsegsize */
3124                         BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3125                         &adapter->rxtag);
3126         if (error) {
3127                 device_printf(dev, "Unable to allocate RX DMA tag\n");
3128                 kfree(adapter->rx_buffer_area, M_DEVBUF);
3129                 adapter->rx_buffer_area = NULL;
3130                 return error;
3131         }
3132
3133         /*
3134          * Create spare DMA map for rx buffers
3135          */
3136         error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3137                                   &adapter->rx_sparemap);
3138         if (error) {
3139                 device_printf(dev, "Unable to create spare RX DMA map\n");
3140                 bus_dma_tag_destroy(adapter->rxtag);
3141                 kfree(adapter->rx_buffer_area, M_DEVBUF);
3142                 adapter->rx_buffer_area = NULL;
3143                 return error;
3144         }
3145
3146         /*
3147          * Create DMA maps for rx buffers
3148          */
3149         for (i = 0; i < adapter->num_rx_desc; i++) {
3150                 rx_buffer = &adapter->rx_buffer_area[i];
3151
3152                 error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3153                                           &rx_buffer->map);
3154                 if (error) {
3155                         device_printf(dev, "Unable to create RX DMA map\n");
3156                         em_destroy_rx_ring(adapter, i);
3157                         return error;
3158                 }
3159         }
3160         return (0);
3161 }
3162
3163 static int
3164 em_init_rx_ring(struct adapter *adapter)
3165 {
3166         int i, error;
3167
3168         /* Reset descriptor ring */
3169         bzero(adapter->rx_desc_base,
3170             (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3171
3172         /* Allocate new ones. */
3173         for (i = 0; i < adapter->num_rx_desc; i++) {
3174                 error = em_newbuf(adapter, i, 1);
3175                 if (error)
3176                         return (error);
3177         }
3178
3179         /* Setup our descriptor pointers */
3180         adapter->next_rx_desc_to_check = 0;
3181
3182         return (0);
3183 }
3184
3185 static void
3186 em_init_rx_unit(struct adapter *adapter)
3187 {
3188         struct ifnet *ifp = &adapter->arpcom.ac_if;
3189         uint64_t bus_addr;
3190         uint32_t rctl;
3191
3192         /*
3193          * Make sure receives are disabled while setting
3194          * up the descriptor ring
3195          */
3196         rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3197         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3198
3199         if (adapter->hw.mac.type >= e1000_82540) {
3200                 uint32_t itr;
3201
3202                 /*
3203                  * Set the interrupt throttling rate. Value is calculated
3204                  * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3205                  */
3206                 if (adapter->int_throttle_ceil)
3207                         itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3208                 else
3209                         itr = 0;
3210                 em_set_itr(adapter, itr);
3211         }
3212
3213         /* Disable accelerated ackknowledge */
3214         if (adapter->hw.mac.type == e1000_82574) {
3215                 E1000_WRITE_REG(&adapter->hw,
3216                     E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3217         }
3218
3219         /* Receive Checksum Offload for TCP and UDP */
3220         if (ifp->if_capenable & IFCAP_RXCSUM) {
3221                 uint32_t rxcsum;
3222
3223                 rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3224                 rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3225                 E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3226         }
3227
3228         /*
3229          * XXX TEMPORARY WORKAROUND: on some systems with 82573
3230          * long latencies are observed, like Lenovo X60. This
3231          * change eliminates the problem, but since having positive
3232          * values in RDTR is a known source of problems on other
3233          * platforms another solution is being sought.
3234          */
3235         if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3236                 E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3237                 E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3238         }
3239
3240         /*
3241          * Setup the Base and Length of the Rx Descriptor Ring
3242          */
3243         bus_addr = adapter->rxdma.dma_paddr;
3244         E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3245             adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3246         E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3247             (uint32_t)(bus_addr >> 32));
3248         E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3249             (uint32_t)bus_addr);
3250
3251         /*
3252          * Setup the HW Rx Head and Tail Descriptor Pointers
3253          */
3254         E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3255         E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3256
3257         /* Set PTHRESH for improved jumbo performance */
3258         if (((adapter->hw.mac.type == e1000_ich9lan) ||
3259             (adapter->hw.mac.type == e1000_pch2lan) ||
3260             (adapter->hw.mac.type == e1000_ich10lan)) &&
3261             (ifp->if_mtu > ETHERMTU)) {
3262                 uint32_t rxdctl;
3263
3264                 rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3265                 E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3266         }
3267
3268         if (adapter->hw.mac.type == e1000_pch2lan) {
3269                 if (ifp->if_mtu > ETHERMTU)
3270                         e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3271                 else
3272                         e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3273         }
3274
3275         /* Setup the Receive Control Register */
3276         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3277         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3278                 E1000_RCTL_RDMTS_HALF |
3279                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3280
3281         /* Make sure VLAN Filters are off */
3282         rctl &= ~E1000_RCTL_VFE;
3283
3284         if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3285                 rctl |= E1000_RCTL_SBP;
3286         else
3287                 rctl &= ~E1000_RCTL_SBP;
3288
3289         switch (adapter->rx_buffer_len) {
3290         default:
3291         case 2048:
3292                 rctl |= E1000_RCTL_SZ_2048;
3293                 break;
3294
3295         case 4096:
3296                 rctl |= E1000_RCTL_SZ_4096 |
3297                     E1000_RCTL_BSEX | E1000_RCTL_LPE;
3298                 break;
3299
3300         case 8192:
3301                 rctl |= E1000_RCTL_SZ_8192 |
3302                     E1000_RCTL_BSEX | E1000_RCTL_LPE;
3303                 break;
3304
3305         case 16384:
3306                 rctl |= E1000_RCTL_SZ_16384 |
3307                     E1000_RCTL_BSEX | E1000_RCTL_LPE;
3308                 break;
3309         }
3310
3311         if (ifp->if_mtu > ETHERMTU)
3312                 rctl |= E1000_RCTL_LPE;
3313         else
3314                 rctl &= ~E1000_RCTL_LPE;
3315
3316         /* Enable Receives */
3317         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3318 }
3319
3320 static void
3321 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3322 {
3323         struct em_buffer *rx_buffer;
3324         int i;
3325
3326         if (adapter->rx_buffer_area == NULL)
3327                 return;
3328
3329         for (i = 0; i < ndesc; i++) {
3330                 rx_buffer = &adapter->rx_buffer_area[i];
3331
3332                 KKASSERT(rx_buffer->m_head == NULL);
3333                 bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3334         }
3335         bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3336         bus_dma_tag_destroy(adapter->rxtag);
3337
3338         kfree(adapter->rx_buffer_area, M_DEVBUF);
3339         adapter->rx_buffer_area = NULL;
3340 }
3341
3342 static void
3343 em_rxeof(struct adapter *adapter, int count)
3344 {
3345         struct ifnet *ifp = &adapter->arpcom.ac_if;
3346         uint8_t status, accept_frame = 0, eop = 0;
3347         uint16_t len, desc_len, prev_len_adj;
3348         struct e1000_rx_desc *current_desc;
3349         struct mbuf *mp;
3350         int i;
3351
3352         i = adapter->next_rx_desc_to_check;
3353         current_desc = &adapter->rx_desc_base[i];
3354
3355         if (!(current_desc->status & E1000_RXD_STAT_DD))
3356                 return;
3357
3358         while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3359                 struct mbuf *m = NULL;
3360
3361                 logif(pkt_receive);
3362
3363                 mp = adapter->rx_buffer_area[i].m_head;
3364
3365                 /*
3366                  * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3367                  * needs to access the last received byte in the mbuf.
3368                  */
3369                 bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3370                                 BUS_DMASYNC_POSTREAD);
3371
3372                 accept_frame = 1;
3373                 prev_len_adj = 0;
3374                 desc_len = le16toh(current_desc->length);
3375                 status = current_desc->status;
3376                 if (status & E1000_RXD_STAT_EOP) {
3377                         count--;
3378                         eop = 1;
3379                         if (desc_len < ETHER_CRC_LEN) {
3380                                 len = 0;
3381                                 prev_len_adj = ETHER_CRC_LEN - desc_len;
3382                         } else {
3383                                 len = desc_len - ETHER_CRC_LEN;
3384                         }
3385                 } else {
3386                         eop = 0;
3387                         len = desc_len;
3388                 }
3389
3390                 if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3391                         uint8_t last_byte;
3392                         uint32_t pkt_len = desc_len;
3393
3394                         if (adapter->fmp != NULL)
3395                                 pkt_len += adapter->fmp->m_pkthdr.len;
3396
3397                         last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3398                         if (TBI_ACCEPT(&adapter->hw, status,
3399                             current_desc->errors, pkt_len, last_byte,
3400                             adapter->min_frame_size, adapter->max_frame_size)) {
3401                                 e1000_tbi_adjust_stats_82543(&adapter->hw,
3402                                     &adapter->stats, pkt_len,
3403                                     adapter->hw.mac.addr,
3404                                     adapter->max_frame_size);
3405                                 if (len > 0)
3406                                         len--;
3407                         } else {
3408                                 accept_frame = 0;
3409                         }
3410                 }
3411
3412                 if (accept_frame) {
3413                         if (em_newbuf(adapter, i, 0) != 0) {
3414                                 IFNET_STAT_INC(ifp, iqdrops, 1);
3415                                 goto discard;
3416                         }
3417
3418                         /* Assign correct length to the current fragment */
3419                         mp->m_len = len;
3420
3421                         if (adapter->fmp == NULL) {
3422                                 mp->m_pkthdr.len = len;
3423                                 adapter->fmp = mp; /* Store the first mbuf */
3424                                 adapter->lmp = mp;
3425                         } else {
3426                                 /*
3427                                  * Chain mbuf's together
3428                                  */
3429
3430                                 /*
3431                                  * Adjust length of previous mbuf in chain if
3432                                  * we received less than 4 bytes in the last
3433                                  * descriptor.
3434                                  */
3435                                 if (prev_len_adj > 0) {
3436                                         adapter->lmp->m_len -= prev_len_adj;
3437                                         adapter->fmp->m_pkthdr.len -=
3438                                             prev_len_adj;
3439                                 }
3440                                 adapter->lmp->m_next = mp;
3441                                 adapter->lmp = adapter->lmp->m_next;
3442                                 adapter->fmp->m_pkthdr.len += len;
3443                         }
3444
3445                         if (eop) {
3446                                 adapter->fmp->m_pkthdr.rcvif = ifp;
3447                                 IFNET_STAT_INC(ifp, ipackets, 1);
3448
3449                                 if (ifp->if_capenable & IFCAP_RXCSUM) {
3450                                         em_rxcsum(adapter, current_desc,
3451                                                   adapter->fmp);
3452                                 }
3453
3454                                 if (status & E1000_RXD_STAT_VP) {
3455                                         adapter->fmp->m_pkthdr.ether_vlantag =
3456                                             (le16toh(current_desc->special) &
3457                                             E1000_RXD_SPC_VLAN_MASK);
3458                                         adapter->fmp->m_flags |= M_VLANTAG;
3459                                 }
3460                                 m = adapter->fmp;
3461                                 adapter->fmp = NULL;
3462                                 adapter->lmp = NULL;
3463                         }
3464                 } else {
3465                         IFNET_STAT_INC(ifp, ierrors, 1);
3466 discard:
3467 #ifdef foo
3468                         /* Reuse loaded DMA map and just update mbuf chain */
3469                         mp = adapter->rx_buffer_area[i].m_head;
3470                         mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3471                         mp->m_data = mp->m_ext.ext_buf;
3472                         mp->m_next = NULL;
3473                         if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
3474                                 m_adj(mp, ETHER_ALIGN);
3475 #endif
3476                         if (adapter->fmp != NULL) {
3477                                 m_freem(adapter->fmp);
3478                                 adapter->fmp = NULL;
3479                                 adapter->lmp = NULL;
3480                         }
3481                         m = NULL;
3482                 }
3483
3484                 /* Zero out the receive descriptors status. */
3485                 current_desc->status = 0;
3486
3487                 if (m != NULL)
3488                         ifp->if_input(ifp, m);
3489
3490                 /* Advance our pointers to the next descriptor. */
3491                 if (++i == adapter->num_rx_desc)
3492                         i = 0;
3493                 current_desc = &adapter->rx_desc_base[i];
3494         }
3495         adapter->next_rx_desc_to_check = i;
3496
3497         /* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3498         if (--i < 0)
3499                 i = adapter->num_rx_desc - 1;
3500         E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3501 }
3502
3503 static void
3504 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3505           struct mbuf *mp)
3506 {
3507         /* 82543 or newer only */
3508         if (adapter->hw.mac.type < e1000_82543 ||
3509             /* Ignore Checksum bit is set */
3510             (rx_desc->status & E1000_RXD_STAT_IXSM))
3511                 return;
3512
3513         if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3514             !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3515                 /* IP Checksum Good */
3516                 mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3517         }
3518
3519         if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3520             !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3521                 mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3522                                            CSUM_PSEUDO_HDR |
3523                                            CSUM_FRAG_NOT_CHECKED;
3524                 mp->m_pkthdr.csum_data = htons(0xffff);
3525         }
3526 }
3527
3528 static void
3529 em_enable_intr(struct adapter *adapter)
3530 {
3531         uint32_t ims_mask = IMS_ENABLE_MASK;
3532
3533         lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3534
3535 #if 0
3536         /* XXX MSIX */
3537         if (adapter->hw.mac.type == e1000_82574) {
3538                 E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3539                 ims_mask |= EM_MSIX_MASK;
3540         }
3541 #endif
3542         E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3543 }
3544
3545 static void
3546 em_disable_intr(struct adapter *adapter)
3547 {
3548         uint32_t clear = 0xffffffff;
3549
3550         /*
3551          * The first version of 82542 had an errata where when link was forced
3552          * it would stay up even up even if the cable was disconnected.
3553          * Sequence errors were used to detect the disconnect and then the
3554          * driver would unforce the link.  This code in the in the ISR.  For
3555          * this to work correctly the Sequence error interrupt had to be
3556          * enabled all the time.
3557          */
3558         if (adapter->hw.mac.type == e1000_82542 &&
3559             adapter->hw.revision_id == E1000_REVISION_2)
3560                 clear &= ~E1000_ICR_RXSEQ;
3561         else if (adapter->hw.mac.type == e1000_82574)
3562                 E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3563
3564         E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3565
3566         adapter->npoll.ifpc_stcount = 0;
3567
3568         lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3569 }
3570
3571 /*
3572  * Bit of a misnomer, what this really means is
3573  * to enable OS management of the system... aka
3574  * to disable special hardware management features 
3575  */
3576 static void
3577 em_get_mgmt(struct adapter *adapter)
3578 {
3579         /* A shared code workaround */
3580 #define E1000_82542_MANC2H E1000_MANC2H
3581         if (adapter->flags & EM_FLAG_HAS_MGMT) {
3582                 int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3583                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3584
3585                 /* disable hardware interception of ARP */
3586                 manc &= ~(E1000_MANC_ARP_EN);
3587
3588                 /* enable receiving management packets to the host */
3589                 if (adapter->hw.mac.type >= e1000_82571) {
3590                         manc |= E1000_MANC_EN_MNG2HOST;
3591 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3592 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3593                         manc2h |= E1000_MNG2HOST_PORT_623;
3594                         manc2h |= E1000_MNG2HOST_PORT_664;
3595                         E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3596                 }
3597
3598                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3599         }
3600 }
3601
3602 /*
3603  * Give control back to hardware management
3604  * controller if there is one.
3605  */
3606 static void
3607 em_rel_mgmt(struct adapter *adapter)
3608 {
3609         if (adapter->flags & EM_FLAG_HAS_MGMT) {
3610                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3611
3612                 /* re-enable hardware interception of ARP */
3613                 manc |= E1000_MANC_ARP_EN;
3614
3615                 if (adapter->hw.mac.type >= e1000_82571)
3616                         manc &= ~E1000_MANC_EN_MNG2HOST;
3617
3618                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3619         }
3620 }
3621
3622 /*
3623  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3624  * For ASF and Pass Through versions of f/w this means that
3625  * the driver is loaded.  For AMT version (only with 82573)
3626  * of the f/w this means that the network i/f is open.
3627  */
3628 static void
3629 em_get_hw_control(struct adapter *adapter)
3630 {
3631         /* Let firmware know the driver has taken over */
3632         if (adapter->hw.mac.type == e1000_82573) {
3633                 uint32_t swsm;
3634
3635                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3636                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3637                     swsm | E1000_SWSM_DRV_LOAD);
3638         } else {
3639                 uint32_t ctrl_ext;
3640
3641                 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3642                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3643                     ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3644         }
3645         adapter->flags |= EM_FLAG_HW_CTRL;
3646 }
3647
3648 /*
3649  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3650  * For ASF and Pass Through versions of f/w this means that the
3651  * driver is no longer loaded.  For AMT version (only with 82573)
3652  * of the f/w this means that the network i/f is closed.
3653  */
3654 static void
3655 em_rel_hw_control(struct adapter *adapter)
3656 {
3657         if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3658                 return;
3659         adapter->flags &= ~EM_FLAG_HW_CTRL;
3660
3661         /* Let firmware taken over control of h/w */
3662         if (adapter->hw.mac.type == e1000_82573) {
3663                 uint32_t swsm;
3664
3665                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3666                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3667                     swsm & ~E1000_SWSM_DRV_LOAD);
3668         } else {
3669                 uint32_t ctrl_ext;
3670
3671                 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3672                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3673                     ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3674         }
3675 }
3676
3677 static int
3678 em_is_valid_eaddr(const uint8_t *addr)
3679 {
3680         char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3681
3682         if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3683                 return (FALSE);
3684
3685         return (TRUE);
3686 }
3687
3688 /*
3689  * Enable PCI Wake On Lan capability
3690  */
3691 void
3692 em_enable_wol(device_t dev)
3693 {
3694         uint16_t cap, status;
3695         uint8_t id;
3696
3697         /* First find the capabilities pointer*/
3698         cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3699
3700         /* Read the PM Capabilities */
3701         id = pci_read_config(dev, cap, 1);
3702         if (id != PCIY_PMG)     /* Something wrong */
3703                 return;
3704
3705         /*
3706          * OK, we have the power capabilities,
3707          * so now get the status register
3708          */
3709         cap += PCIR_POWER_STATUS;
3710         status = pci_read_config(dev, cap, 2);
3711         status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3712         pci_write_config(dev, cap, status, 2);
3713 }
3714
3715
3716 /*
3717  * 82544 Coexistence issue workaround.
3718  *    There are 2 issues.
3719  *       1. Transmit Hang issue.
3720  *    To detect this issue, following equation can be used...
3721  *        SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3722  *        If SUM[3:0] is in between 1 to 4, we will have this issue.
3723  *
3724  *       2. DAC issue.
3725  *    To detect this issue, following equation can be used...
3726  *        SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3727  *        If SUM[3:0] is in between 9 to c, we will have this issue.
3728  *
3729  *    WORKAROUND:
3730  *        Make sure we do not have ending address
3731  *        as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3732  */
3733 static uint32_t
3734 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3735 {
3736         uint32_t safe_terminator;
3737
3738         /*
3739          * Since issue is sensitive to length and address.
3740          * Let us first check the address...
3741          */
3742         if (length <= 4) {
3743                 desc_array->descriptor[0].address = address;
3744                 desc_array->descriptor[0].length = length;
3745                 desc_array->elements = 1;
3746                 return (desc_array->elements);
3747         }
3748
3749         safe_terminator =
3750         (uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3751
3752         /* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3753         if (safe_terminator == 0 ||
3754             (safe_terminator > 4 && safe_terminator < 9) ||
3755             (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3756                 desc_array->descriptor[0].address = address;
3757                 desc_array->descriptor[0].length = length;
3758                 desc_array->elements = 1;
3759                 return (desc_array->elements);
3760         }
3761
3762         desc_array->descriptor[0].address = address;
3763         desc_array->descriptor[0].length = length - 4;
3764         desc_array->descriptor[1].address = address + (length - 4);
3765         desc_array->descriptor[1].length = 4;
3766         desc_array->elements = 2;
3767         return (desc_array->elements);
3768 }
3769
3770 static void
3771 em_update_stats(struct adapter *adapter)
3772 {
3773         struct ifnet *ifp = &adapter->arpcom.ac_if;
3774
3775         if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3776             (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3777                 adapter->stats.symerrs +=
3778                         E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3779                 adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3780         }
3781         adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3782         adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3783         adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3784         adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3785
3786         adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3787         adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3788         adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3789         adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3790         adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3791         adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3792         adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3793         adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3794         adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3795         adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3796         adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3797         adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3798         adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3799         adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3800         adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3801         adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3802         adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3803         adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3804         adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3805         adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3806
3807         /* For the 64-bit byte counters the low dword must be read first. */
3808         /* Both registers clear on the read of the high dword */
3809
3810         adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3811         adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3812
3813         adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3814         adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3815         adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3816         adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3817         adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3818
3819         adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3820         adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3821
3822         adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3823         adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3824         adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3825         adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3826         adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3827         adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3828         adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3829         adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3830         adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3831         adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3832
3833         if (adapter->hw.mac.type >= e1000_82543) {
3834                 adapter->stats.algnerrc += 
3835                 E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3836                 adapter->stats.rxerrc += 
3837                 E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3838                 adapter->stats.tncrs += 
3839                 E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3840                 adapter->stats.cexterr += 
3841                 E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3842                 adapter->stats.tsctc += 
3843                 E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3844                 adapter->stats.tsctfc += 
3845                 E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3846         }
3847
3848         IFNET_STAT_SET(ifp, collisions, adapter->stats.colc);
3849
3850         /* Rx Errors */
3851         IFNET_STAT_SET(ifp, ierrors,
3852             adapter->dropped_pkts + adapter->stats.rxerrc +
3853             adapter->stats.crcerrs + adapter->stats.algnerrc +
3854             adapter->stats.ruc + adapter->stats.roc +
3855             adapter->stats.mpc + adapter->stats.cexterr);
3856
3857         /* Tx Errors */
3858         IFNET_STAT_SET(ifp, oerrors,
3859             adapter->stats.ecol + adapter->stats.latecol +
3860             adapter->watchdog_events);
3861 }
3862
3863 static void
3864 em_print_debug_info(struct adapter *adapter)
3865 {
3866         device_t dev = adapter->dev;
3867         uint8_t *hw_addr = adapter->hw.hw_addr;
3868
3869         device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3870         device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3871             E1000_READ_REG(&adapter->hw, E1000_CTRL),
3872             E1000_READ_REG(&adapter->hw, E1000_RCTL));
3873         device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3874             ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3875             (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3876         device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3877             adapter->hw.fc.high_water,
3878             adapter->hw.fc.low_water);
3879         device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3880             E1000_READ_REG(&adapter->hw, E1000_TIDV),
3881             E1000_READ_REG(&adapter->hw, E1000_TADV));
3882         device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3883             E1000_READ_REG(&adapter->hw, E1000_RDTR),
3884             E1000_READ_REG(&adapter->hw, E1000_RADV));
3885         device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3886             (long long)adapter->tx_fifo_wrk_cnt,
3887             (long long)adapter->tx_fifo_reset_cnt);
3888         device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3889             E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3890             E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3891         device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3892             E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3893             E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3894         device_printf(dev, "Num Tx descriptors avail = %d\n",
3895             adapter->num_tx_desc_avail);
3896         device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3897             adapter->no_tx_desc_avail1);
3898         device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3899             adapter->no_tx_desc_avail2);
3900         device_printf(dev, "Std mbuf failed = %ld\n",
3901             adapter->mbuf_alloc_failed);
3902         device_printf(dev, "Std mbuf cluster failed = %ld\n",
3903             adapter->mbuf_cluster_failed);
3904         device_printf(dev, "Driver dropped packets = %ld\n",
3905             adapter->dropped_pkts);
3906         device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3907             adapter->no_tx_dma_setup);
3908 }
3909
3910 static void
3911 em_print_hw_stats(struct adapter *adapter)
3912 {
3913         device_t dev = adapter->dev;
3914
3915         device_printf(dev, "Excessive collisions = %lld\n",
3916             (long long)adapter->stats.ecol);
3917 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3918         device_printf(dev, "Symbol errors = %lld\n",
3919             (long long)adapter->stats.symerrs);
3920 #endif
3921         device_printf(dev, "Sequence errors = %lld\n",
3922             (long long)adapter->stats.sec);
3923         device_printf(dev, "Defer count = %lld\n",
3924             (long long)adapter->stats.dc);
3925         device_printf(dev, "Missed Packets = %lld\n",
3926             (long long)adapter->stats.mpc);
3927         device_printf(dev, "Receive No Buffers = %lld\n",
3928             (long long)adapter->stats.rnbc);
3929         /* RLEC is inaccurate on some hardware, calculate our own. */
3930         device_printf(dev, "Receive Length Errors = %lld\n",
3931             ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3932         device_printf(dev, "Receive errors = %lld\n",
3933             (long long)adapter->stats.rxerrc);
3934         device_printf(dev, "Crc errors = %lld\n",
3935             (long long)adapter->stats.crcerrs);
3936         device_printf(dev, "Alignment errors = %lld\n",
3937             (long long)adapter->stats.algnerrc);
3938         device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3939             (long long)adapter->stats.cexterr);
3940         device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3941         device_printf(dev, "watchdog timeouts = %ld\n",
3942             adapter->watchdog_events);
3943         device_printf(dev, "XON Rcvd = %lld\n",
3944             (long long)adapter->stats.xonrxc);
3945         device_printf(dev, "XON Xmtd = %lld\n",
3946             (long long)adapter->stats.xontxc);
3947         device_printf(dev, "XOFF Rcvd = %lld\n",
3948             (long long)adapter->stats.xoffrxc);
3949         device_printf(dev, "XOFF Xmtd = %lld\n",
3950             (long long)adapter->stats.xofftxc);
3951         device_printf(dev, "Good Packets Rcvd = %lld\n",
3952             (long long)adapter->stats.gprc);
3953         device_printf(dev, "Good Packets Xmtd = %lld\n",
3954             (long long)adapter->stats.gptc);
3955 }
3956
3957 static void
3958 em_print_nvm_info(struct adapter *adapter)
3959 {
3960         uint16_t eeprom_data;
3961         int i, j, row = 0;
3962
3963         /* Its a bit crude, but it gets the job done */
3964         kprintf("\nInterface EEPROM Dump:\n");
3965         kprintf("Offset\n0x0000  ");
3966         for (i = 0, j = 0; i < 32; i++, j++) {
3967                 if (j == 8) { /* Make the offset block */
3968                         j = 0; ++row;
3969                         kprintf("\n0x00%x0  ",row);
3970                 }
3971                 e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
3972                 kprintf("%04x ", eeprom_data);
3973         }
3974         kprintf("\n");
3975 }
3976
3977 static int
3978 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3979 {
3980         struct adapter *adapter;
3981         struct ifnet *ifp;
3982         int error, result;
3983
3984         result = -1;
3985         error = sysctl_handle_int(oidp, &result, 0, req);
3986         if (error || !req->newptr)
3987                 return (error);
3988
3989         adapter = (struct adapter *)arg1;
3990         ifp = &adapter->arpcom.ac_if;
3991
3992         lwkt_serialize_enter(ifp->if_serializer);
3993
3994         if (result == 1)
3995                 em_print_debug_info(adapter);
3996
3997         /*
3998          * This value will cause a hex dump of the
3999          * first 32 16-bit words of the EEPROM to
4000          * the screen.
4001          */
4002         if (result == 2)
4003                 em_print_nvm_info(adapter);
4004
4005         lwkt_serialize_exit(ifp->if_serializer);
4006
4007         return (error);
4008 }
4009
4010 static int
4011 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4012 {
4013         int error, result;
4014
4015         result = -1;
4016         error = sysctl_handle_int(oidp, &result, 0, req);
4017         if (error || !req->newptr)
4018                 return (error);
4019
4020         if (result == 1) {
4021                 struct adapter *adapter = (struct adapter *)arg1;
4022                 struct ifnet *ifp = &adapter->arpcom.ac_if;
4023
4024                 lwkt_serialize_enter(ifp->if_serializer);
4025                 em_print_hw_stats(adapter);
4026                 lwkt_serialize_exit(ifp->if_serializer);
4027         }
4028         return (error);
4029 }
4030
4031 static void
4032 em_add_sysctl(struct adapter *adapter)
4033 {
4034         sysctl_ctx_init(&adapter->sysctl_ctx);
4035         adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
4036                                         SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
4037                                         device_get_nameunit(adapter->dev),
4038                                         CTLFLAG_RD, 0, "");
4039         if (adapter->sysctl_tree == NULL) {
4040                 device_printf(adapter->dev, "can't add sysctl node\n");
4041         } else {
4042                 SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4043                     SYSCTL_CHILDREN(adapter->sysctl_tree),
4044                     OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4045                     em_sysctl_debug_info, "I", "Debug Information");
4046
4047                 SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4048                     SYSCTL_CHILDREN(adapter->sysctl_tree),
4049                     OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4050                     em_sysctl_stats, "I", "Statistics");
4051
4052                 SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4053                     SYSCTL_CHILDREN(adapter->sysctl_tree),
4054                     OID_AUTO, "rxd", CTLFLAG_RD,
4055                     &adapter->num_rx_desc, 0, NULL);
4056                 SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4057                     SYSCTL_CHILDREN(adapter->sysctl_tree),
4058                     OID_AUTO, "txd", CTLFLAG_RD,
4059                     &adapter->num_tx_desc, 0, NULL);
4060
4061                 if (adapter->hw.mac.type >= e1000_82540) {
4062                         SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4063                             SYSCTL_CHILDREN(adapter->sysctl_tree),
4064                             OID_AUTO, "int_throttle_ceil",
4065                             CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4066                             em_sysctl_int_throttle, "I",
4067                             "interrupt throttling rate");
4068                 }
4069                 SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4070                     SYSCTL_CHILDREN(adapter->sysctl_tree),
4071                     OID_AUTO, "int_tx_nsegs",
4072                     CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4073                     em_sysctl_int_tx_nsegs, "I",
4074                     "# segments per TX interrupt");
4075                 SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4076                     SYSCTL_CHILDREN(adapter->sysctl_tree),
4077                     OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
4078                     &adapter->tx_wreg_nsegs, 0,
4079                     "# segments before write to hardware register");
4080         }
4081 }
4082
4083 static int
4084 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4085 {
4086         struct adapter *adapter = (void *)arg1;
4087         struct ifnet *ifp = &adapter->arpcom.ac_if;
4088         int error, throttle;
4089
4090         throttle = adapter->int_throttle_ceil;
4091         error = sysctl_handle_int(oidp, &throttle, 0, req);
4092         if (error || req->newptr == NULL)
4093                 return error;
4094         if (throttle < 0 || throttle > 1000000000 / 256)
4095                 return EINVAL;
4096
4097         if (throttle) {
4098                 /*
4099                  * Set the interrupt throttling rate in 256ns increments,
4100                  * recalculate sysctl value assignment to get exact frequency.
4101                  */
4102                 throttle = 1000000000 / 256 / throttle;
4103
4104                 /* Upper 16bits of ITR is reserved and should be zero */
4105                 if (throttle & 0xffff0000)
4106                         return EINVAL;
4107         }
4108
4109         lwkt_serialize_enter(ifp->if_serializer);
4110
4111         if (throttle)
4112                 adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4113         else
4114                 adapter->int_throttle_ceil = 0;
4115
4116         if (ifp->if_flags & IFF_RUNNING)
4117                 em_set_itr(adapter, throttle);
4118
4119         lwkt_serialize_exit(ifp->if_serializer);
4120
4121         if (bootverbose) {
4122                 if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4123                           adapter->int_throttle_ceil);
4124         }
4125         return 0;
4126 }
4127
4128 static int
4129 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4130 {
4131         struct adapter *adapter = (void *)arg1;
4132         struct ifnet *ifp = &adapter->arpcom.ac_if;
4133         int error, segs;
4134
4135         segs = adapter->tx_int_nsegs;
4136         error = sysctl_handle_int(oidp, &segs, 0, req);
4137         if (error || req->newptr == NULL)
4138                 return error;
4139         if (segs <= 0)
4140                 return EINVAL;
4141
4142         lwkt_serialize_enter(ifp->if_serializer);
4143
4144         /*
4145          * Don't allow int_tx_nsegs to become:
4146          * o  Less the oact_tx_desc
4147          * o  Too large that no TX desc will cause TX interrupt to
4148          *    be generated (OACTIVE will never recover)
4149          * o  Too small that will cause tx_dd[] overflow
4150          */
4151         if (segs < adapter->oact_tx_desc ||
4152             segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4153             segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4154                 error = EINVAL;
4155         } else {
4156                 error = 0;
4157                 adapter->tx_int_nsegs = segs;
4158         }
4159
4160         lwkt_serialize_exit(ifp->if_serializer);
4161
4162         return error;
4163 }
4164
4165 static void
4166 em_set_itr(struct adapter *adapter, uint32_t itr)
4167 {
4168         E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4169         if (adapter->hw.mac.type == e1000_82574) {
4170                 int i;
4171
4172                 /*
4173                  * When using MSIX interrupts we need to
4174                  * throttle using the EITR register
4175                  */
4176                 for (i = 0; i < 4; ++i) {
4177                         E1000_WRITE_REG(&adapter->hw,
4178                             E1000_EITR_82574(i), itr);
4179                 }
4180         }
4181 }
4182
4183 static void
4184 em_disable_aspm(struct adapter *adapter)
4185 {
4186         uint16_t link_cap, link_ctrl, disable;
4187         uint8_t pcie_ptr, reg;
4188         device_t dev = adapter->dev;
4189
4190         switch (adapter->hw.mac.type) {
4191         case e1000_82571:
4192         case e1000_82572:
4193         case e1000_82573:
4194                 /*
4195                  * 82573 specification update
4196                  * errata #8 disable L0s
4197                  * errata #41 disable L1
4198                  *
4199                  * 82571/82572 specification update
4200                  # errata #13 disable L1
4201                  * errata #68 disable L0s
4202                  */
4203                 disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4204                 break;
4205
4206         case e1000_82574:
4207         case e1000_82583:
4208                 /*
4209                  * 82574 specification update errata #20
4210                  * 82583 specification update errata #9
4211                  *
4212                  * There is no need to disable L1
4213                  */
4214                 disable = PCIEM_LNKCTL_ASPM_L0S;
4215                 break;
4216
4217         default:
4218                 return;
4219         }
4220
4221         pcie_ptr = pci_get_pciecap_ptr(dev);
4222         if (pcie_ptr == 0)
4223                 return;
4224
4225         link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4226         if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4227                 return;
4228
4229         if (bootverbose) {
4230                 if_printf(&adapter->arpcom.ac_if,
4231                     "disable ASPM %#02x\n", disable);
4232         }
4233
4234         reg = pcie_ptr + PCIER_LINKCTRL;
4235         link_ctrl = pci_read_config(dev, reg, 2);
4236         link_ctrl &= ~disable;
4237         pci_write_config(dev, reg, link_ctrl, 2);
4238 }
4239
4240 static int
4241 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4242 {
4243         int iphlen, hoff, thoff, ex = 0;
4244         struct mbuf *m;
4245         struct ip *ip;
4246
4247         m = *mp;
4248         KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4249
4250         iphlen = m->m_pkthdr.csum_iphlen;
4251         thoff = m->m_pkthdr.csum_thlen;
4252         hoff = m->m_pkthdr.csum_lhlen;
4253
4254         KASSERT(iphlen > 0, ("invalid ip hlen"));
4255         KASSERT(thoff > 0, ("invalid tcp hlen"));
4256         KASSERT(hoff > 0, ("invalid ether hlen"));
4257
4258         if (adapter->flags & EM_FLAG_TSO_PULLEX)
4259                 ex = 4;
4260
4261         if (m->m_len < hoff + iphlen + thoff + ex) {
4262                 m = m_pullup(m, hoff + iphlen + thoff + ex);
4263                 if (m == NULL) {
4264                         *mp = NULL;
4265                         return ENOBUFS;
4266                 }
4267                 *mp = m;
4268         }
4269         ip = mtodoff(m, struct ip *, hoff);
4270         ip->ip_len = 0;
4271
4272         return 0;
4273 }
4274
4275 static int
4276 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4277     uint32_t *txd_upper, uint32_t *txd_lower)
4278 {
4279         struct e1000_context_desc *TXD;
4280         int hoff, iphlen, thoff, hlen;
4281         int mss, pktlen, curr_txd;
4282
4283         iphlen = mp->m_pkthdr.csum_iphlen;
4284         thoff = mp->m_pkthdr.csum_thlen;
4285         hoff = mp->m_pkthdr.csum_lhlen;
4286         mss = mp->m_pkthdr.tso_segsz;
4287         pktlen = mp->m_pkthdr.len;
4288
4289         if (adapter->csum_flags == CSUM_TSO &&
4290             adapter->csum_iphlen == iphlen &&
4291             adapter->csum_lhlen == hoff &&
4292             adapter->csum_thlen == thoff &&
4293             adapter->csum_mss == mss &&
4294             adapter->csum_pktlen == pktlen) {
4295                 *txd_upper = adapter->csum_txd_upper;
4296                 *txd_lower = adapter->csum_txd_lower;
4297                 return 0;
4298         }
4299         hlen = hoff + iphlen + thoff;
4300
4301         /*
4302          * Setup a new TSO context.
4303          */
4304
4305         curr_txd = adapter->next_avail_tx_desc;
4306         TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4307
4308         *txd_lower = E1000_TXD_CMD_DEXT |       /* Extended descr type */
4309                      E1000_TXD_DTYP_D |         /* Data descr type */
4310                      E1000_TXD_CMD_TSE;         /* Do TSE on this packet */
4311
4312         /* IP and/or TCP header checksum calculation and insertion. */
4313         *txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4314
4315         /*
4316          * Start offset for header checksum calculation.
4317          * End offset for header checksum calculation.
4318          * Offset of place put the checksum.
4319          */
4320         TXD->lower_setup.ip_fields.ipcss = hoff;
4321         TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4322         TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4323
4324         /*
4325          * Start offset for payload checksum calculation.
4326          * End offset for payload checksum calculation.
4327          * Offset of place to put the checksum.
4328          */
4329         TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4330         TXD->upper_setup.tcp_fields.tucse = 0;
4331         TXD->upper_setup.tcp_fields.tucso =
4332             hoff + iphlen + offsetof(struct tcphdr, th_sum);
4333
4334         /*
4335          * Payload size per packet w/o any headers.
4336          * Length of all headers up to payload.
4337          */
4338         TXD->tcp_seg_setup.fields.mss = htole16(mss);
4339         TXD->tcp_seg_setup.fields.hdr_len = hlen;
4340         TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4341                                 E1000_TXD_CMD_DEXT |    /* Extended descr */
4342                                 E1000_TXD_CMD_TSE |     /* TSE context */
4343                                 E1000_TXD_CMD_IP |      /* Do IP csum */
4344                                 E1000_TXD_CMD_TCP |     /* Do TCP checksum */
4345                                 (pktlen - hlen));       /* Total len */
4346
4347         /* Save the information for this TSO context */
4348         adapter->csum_flags = CSUM_TSO;
4349         adapter->csum_lhlen = hoff;
4350         adapter->csum_iphlen = iphlen;
4351         adapter->csum_thlen = thoff;
4352         adapter->csum_mss = mss;
4353         adapter->csum_pktlen = pktlen;
4354         adapter->csum_txd_upper = *txd_upper;
4355         adapter->csum_txd_lower = *txd_lower;
4356
4357         if (++curr_txd == adapter->num_tx_desc)
4358                 curr_txd = 0;
4359
4360         KKASSERT(adapter->num_tx_desc_avail > 0);
4361         adapter->num_tx_desc_avail--;
4362
4363         adapter->next_avail_tx_desc = curr_txd;
4364         return 1;
4365 }