drm/i915: Reduce diff to Linux 3.17 in i915/intel_dp.c
[dragonfly.git] / sys / dev / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/export.h>
30 #include <drm/drmP.h>
31 #include <linux/slab.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 struct dp_link_dpll {
42         int link_bw;
43         struct dpll dpll;
44 };
45
46 static const struct dp_link_dpll gen4_dpll[] = {
47         { DP_LINK_BW_1_62,
48                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49         { DP_LINK_BW_2_7,
50                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51 };
52
53 static const struct dp_link_dpll pch_dpll[] = {
54         { DP_LINK_BW_1_62,
55                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56         { DP_LINK_BW_2_7,
57                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58 };
59
60 static const struct dp_link_dpll vlv_dpll[] = {
61         { DP_LINK_BW_1_62,
62                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63         { DP_LINK_BW_2_7,
64                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65 };
66
67 /*
68  * CHV supports eDP 1.4 that have  more link rates.
69  * Below only provides the fixed rate but exclude variable rate.
70  */
71 static const struct dp_link_dpll chv_dpll[] = {
72         /*
73          * CHV requires to program fractional division for m2.
74          * m2 is stored in fixed point format using formula below
75          * (m2_int << 22) | m2_fraction
76          */
77         { DP_LINK_BW_1_62,      /* m2_int = 32, m2_fraction = 1677722 */
78                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
79         { DP_LINK_BW_2_7,       /* m2_int = 27, m2_fraction = 0 */
80                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
81         { DP_LINK_BW_5_4,       /* m2_int = 27, m2_fraction = 0 */
82                 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
83 };
84
85 /**
86  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
87  * @intel_dp: DP struct
88  *
89  * If a CPU or PCH DP output is attached to an eDP panel, this function
90  * will return true, and false otherwise.
91  */
92 static bool is_edp(struct intel_dp *intel_dp)
93 {
94         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
95
96         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
97 }
98
99 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
100 {
101         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
102
103         return intel_dig_port->base.base.dev;
104 }
105
106 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
107 {
108         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
109 }
110
111 static void intel_dp_link_down(struct intel_dp *intel_dp);
112 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
113
114 int
115 intel_dp_max_link_bw(struct intel_dp *intel_dp)
116 {
117         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
118         struct drm_device *dev = intel_dp->attached_connector->base.dev;
119
120         switch (max_link_bw) {
121         case DP_LINK_BW_1_62:
122         case DP_LINK_BW_2_7:
123                 break;
124         case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
125                 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
126                      INTEL_INFO(dev)->gen >= 8) &&
127                     intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
128                         max_link_bw = DP_LINK_BW_5_4;
129                 else
130                         max_link_bw = DP_LINK_BW_2_7;
131                 break;
132         default:
133                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
134                      max_link_bw);
135                 max_link_bw = DP_LINK_BW_1_62;
136                 break;
137         }
138         return max_link_bw;
139 }
140
141 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
142 {
143         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
144         struct drm_device *dev = intel_dig_port->base.base.dev;
145         u8 source_max, sink_max;
146
147         source_max = 4;
148         if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
149             (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
150                 source_max = 2;
151
152         sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
153
154         return min(source_max, sink_max);
155 }
156
157 /*
158  * The units on the numbers in the next two are... bizarre.  Examples will
159  * make it clearer; this one parallels an example in the eDP spec.
160  *
161  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
162  *
163  *     270000 * 1 * 8 / 10 == 216000
164  *
165  * The actual data capacity of that configuration is 2.16Gbit/s, so the
166  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
167  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
168  * 119000.  At 18bpp that's 2142000 kilobits per second.
169  *
170  * Thus the strange-looking division by 10 in intel_dp_link_required, to
171  * get the result in decakilobits instead of kilobits.
172  */
173
174 static int
175 intel_dp_link_required(int pixel_clock, int bpp)
176 {
177         return (pixel_clock * bpp + 9) / 10;
178 }
179
180 static int
181 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
182 {
183         return (max_link_clock * max_lanes * 8) / 10;
184 }
185
186 static enum drm_mode_status
187 intel_dp_mode_valid(struct drm_connector *connector,
188                     struct drm_display_mode *mode)
189 {
190         struct intel_dp *intel_dp = intel_attached_dp(connector);
191         struct intel_connector *intel_connector = to_intel_connector(connector);
192         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
193         int target_clock = mode->clock;
194         int max_rate, mode_rate, max_lanes, max_link_clock;
195
196         if (is_edp(intel_dp) && fixed_mode) {
197                 if (mode->hdisplay > fixed_mode->hdisplay)
198                         return MODE_PANEL;
199
200                 if (mode->vdisplay > fixed_mode->vdisplay)
201                         return MODE_PANEL;
202
203                 target_clock = fixed_mode->clock;
204         }
205
206         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
207         max_lanes = intel_dp_max_lane_count(intel_dp);
208
209         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
210         mode_rate = intel_dp_link_required(target_clock, 18);
211
212         if (mode_rate > max_rate)
213                 return MODE_CLOCK_HIGH;
214
215         if (mode->clock < 10000)
216                 return MODE_CLOCK_LOW;
217
218         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
219                 return MODE_H_ILLEGAL;
220
221         return MODE_OK;
222 }
223
224 static uint32_t
225 pack_aux(uint8_t *src, int src_bytes)
226 {
227         int     i;
228         uint32_t v = 0;
229
230         if (src_bytes > 4)
231                 src_bytes = 4;
232         for (i = 0; i < src_bytes; i++)
233                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
234         return v;
235 }
236
237 static void
238 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
239 {
240         int i;
241         if (dst_bytes > 4)
242                 dst_bytes = 4;
243         for (i = 0; i < dst_bytes; i++)
244                 dst[i] = src >> ((3-i) * 8);
245 }
246
247 /* hrawclock is 1/4 the FSB frequency */
248 static int
249 intel_hrawclk(struct drm_device *dev)
250 {
251         struct drm_i915_private *dev_priv = dev->dev_private;
252         uint32_t clkcfg;
253
254         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
255         if (IS_VALLEYVIEW(dev))
256                 return 200;
257
258         clkcfg = I915_READ(CLKCFG);
259         switch (clkcfg & CLKCFG_FSB_MASK) {
260         case CLKCFG_FSB_400:
261                 return 100;
262         case CLKCFG_FSB_533:
263                 return 133;
264         case CLKCFG_FSB_667:
265                 return 166;
266         case CLKCFG_FSB_800:
267                 return 200;
268         case CLKCFG_FSB_1067:
269                 return 266;
270         case CLKCFG_FSB_1333:
271                 return 333;
272         /* these two are just a guess; one of them might be right */
273         case CLKCFG_FSB_1600:
274         case CLKCFG_FSB_1600_ALT:
275                 return 400;
276         default:
277                 return 133;
278         }
279 }
280
281 static void
282 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
283                                     struct intel_dp *intel_dp,
284                                     struct edp_power_seq *out);
285 static void
286 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
287                                               struct intel_dp *intel_dp,
288                                               struct edp_power_seq *out);
289
290 static enum i915_pipe
291 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
292 {
293         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
294         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
295         struct drm_device *dev = intel_dig_port->base.base.dev;
296         struct drm_i915_private *dev_priv = dev->dev_private;
297         enum port port = intel_dig_port->port;
298         enum i915_pipe pipe;
299
300         /* modeset should have pipe */
301         if (crtc)
302                 return to_intel_crtc(crtc)->pipe;
303
304         /* init time, try to find a pipe with this port selected */
305         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
306                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
307                         PANEL_PORT_SELECT_MASK;
308                 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
309                         return pipe;
310                 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
311                         return pipe;
312         }
313
314         /* shrug */
315         return PIPE_A;
316 }
317
318 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
319 {
320         struct drm_device *dev = intel_dp_to_dev(intel_dp);
321
322         if (HAS_PCH_SPLIT(dev))
323                 return PCH_PP_CONTROL;
324         else
325                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
326 }
327
328 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
329 {
330         struct drm_device *dev = intel_dp_to_dev(intel_dp);
331
332         if (HAS_PCH_SPLIT(dev))
333                 return PCH_PP_STATUS;
334         else
335                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
336 }
337
338 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
339    This function only applicable when panel PM state is not to be tracked */
340 #if 0
341 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
342                               void *unused)
343 {
344         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
345                                                  edp_notifier);
346         struct drm_device *dev = intel_dp_to_dev(intel_dp);
347         struct drm_i915_private *dev_priv = dev->dev_private;
348         u32 pp_div;
349         u32 pp_ctrl_reg, pp_div_reg;
350         enum i915_pipe pipe = vlv_power_sequencer_pipe(intel_dp);
351
352         if (!is_edp(intel_dp) || code != SYS_RESTART)
353                 return 0;
354
355         if (IS_VALLEYVIEW(dev)) {
356                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
357                 pp_div_reg  = VLV_PIPE_PP_DIVISOR(pipe);
358                 pp_div = I915_READ(pp_div_reg);
359                 pp_div &= PP_REFERENCE_DIVIDER_MASK;
360
361                 /* 0x1F write to PP_DIV_REG sets max cycle delay */
362                 I915_WRITE(pp_div_reg, pp_div | 0x1F);
363                 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
364                 msleep(intel_dp->panel_power_cycle_delay);
365         }
366
367         return 0;
368 }
369 #endif
370
371 static bool edp_have_panel_power(struct intel_dp *intel_dp)
372 {
373         struct drm_device *dev = intel_dp_to_dev(intel_dp);
374         struct drm_i915_private *dev_priv = dev->dev_private;
375
376         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
377 }
378
379 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
380 {
381         struct drm_device *dev = intel_dp_to_dev(intel_dp);
382         struct drm_i915_private *dev_priv = dev->dev_private;
383         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
384         struct intel_encoder *intel_encoder = &intel_dig_port->base;
385         enum intel_display_power_domain power_domain;
386
387         power_domain = intel_display_port_power_domain(intel_encoder);
388         return intel_display_power_enabled(dev_priv, power_domain) &&
389                (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
390 }
391
392 static void
393 intel_dp_check_edp(struct intel_dp *intel_dp)
394 {
395         struct drm_device *dev = intel_dp_to_dev(intel_dp);
396         struct drm_i915_private *dev_priv = dev->dev_private;
397
398         if (!is_edp(intel_dp))
399                 return;
400
401         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
402                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
403                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
404                               I915_READ(_pp_stat_reg(intel_dp)),
405                               I915_READ(_pp_ctrl_reg(intel_dp)));
406         }
407 }
408
409 static uint32_t
410 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
411 {
412         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
413         struct drm_device *dev = intel_dig_port->base.base.dev;
414         struct drm_i915_private *dev_priv = dev->dev_private;
415         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
416         uint32_t status;
417         bool done;
418
419 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
420         if (has_aux_irq)
421                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
422                                           msecs_to_jiffies_timeout(10));
423         else
424                 done = wait_for_atomic(C, 10) == 0;
425         if (!done)
426                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
427                           has_aux_irq);
428 #undef C
429
430         return status;
431 }
432
433 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
434 {
435         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
436         struct drm_device *dev = intel_dig_port->base.base.dev;
437
438         /*
439          * The clock divider is based off the hrawclk, and would like to run at
440          * 2MHz.  So, take the hrawclk value and divide by 2 and use that
441          */
442         return index ? 0 : intel_hrawclk(dev) / 2;
443 }
444
445 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
446 {
447         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
448         struct drm_device *dev = intel_dig_port->base.base.dev;
449
450         if (index)
451                 return 0;
452
453         if (intel_dig_port->port == PORT_A) {
454                 if (IS_GEN6(dev) || IS_GEN7(dev))
455                         return 200; /* SNB & IVB eDP input clock at 400Mhz */
456                 else
457                         return 225; /* eDP input clock at 450Mhz */
458         } else {
459                 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
460         }
461 }
462
463 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
464 {
465         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
466         struct drm_device *dev = intel_dig_port->base.base.dev;
467         struct drm_i915_private *dev_priv = dev->dev_private;
468
469         if (intel_dig_port->port == PORT_A) {
470                 if (index)
471                         return 0;
472                 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
473         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
474                 /* Workaround for non-ULT HSW */
475                 switch (index) {
476                 case 0: return 63;
477                 case 1: return 72;
478                 default: return 0;
479                 }
480         } else  {
481                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
482         }
483 }
484
485 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
486 {
487         return index ? 0 : 100;
488 }
489
490 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
491                                       bool has_aux_irq,
492                                       int send_bytes,
493                                       uint32_t aux_clock_divider)
494 {
495         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
496         struct drm_device *dev = intel_dig_port->base.base.dev;
497         uint32_t precharge, timeout;
498
499         if (IS_GEN6(dev))
500                 precharge = 3;
501         else
502                 precharge = 5;
503
504         if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
505                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
506         else
507                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
508
509         return DP_AUX_CH_CTL_SEND_BUSY |
510                DP_AUX_CH_CTL_DONE |
511                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
512                DP_AUX_CH_CTL_TIME_OUT_ERROR |
513                timeout |
514                DP_AUX_CH_CTL_RECEIVE_ERROR |
515                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
516                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
517                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
518 }
519
520 static int
521 intel_dp_aux_ch(struct intel_dp *intel_dp,
522                 uint8_t *send, int send_bytes,
523                 uint8_t *recv, int recv_size)
524 {
525         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
526         struct drm_device *dev = intel_dig_port->base.base.dev;
527         struct drm_i915_private *dev_priv = dev->dev_private;
528         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
529         uint32_t ch_data = ch_ctl + 4;
530         uint32_t aux_clock_divider;
531         int i, ret, recv_bytes;
532         uint32_t status;
533         int try, clock = 0;
534         bool has_aux_irq = HAS_AUX_IRQ(dev);
535
536         /* dp aux is extremely sensitive to irq latency, hence request the
537          * lowest possible wakeup latency and so prevent the cpu from going into
538          * deep sleep states.
539          */
540         pm_qos_update_request(&dev_priv->pm_qos, 0);
541
542         intel_dp_check_edp(intel_dp);
543
544         intel_aux_display_runtime_get(dev_priv);
545
546         /* Try to wait for any previous AUX channel activity */
547         for (try = 0; try < 3; try++) {
548                 status = I915_READ_NOTRACE(ch_ctl);
549                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
550                         break;
551                 msleep(1);
552         }
553
554         if (try == 3) {
555                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
556                      I915_READ(ch_ctl));
557                 ret = -EBUSY;
558                 goto out;
559         }
560
561         /* Only 5 data registers! */
562         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
563                 ret = -E2BIG;
564                 goto out;
565         }
566
567         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
568                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
569                                                           has_aux_irq,
570                                                           send_bytes,
571                                                           aux_clock_divider);
572
573                 /* Must try at least 3 times according to DP spec */
574                 for (try = 0; try < 5; try++) {
575                         /* Load the send data into the aux channel data registers */
576                         for (i = 0; i < send_bytes; i += 4)
577                                 I915_WRITE(ch_data + i,
578                                            pack_aux(send + i, send_bytes - i));
579
580                         /* Send the command and wait for it to complete */
581                         I915_WRITE(ch_ctl, send_ctl);
582
583                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
584
585                         /* Clear done status and any errors */
586                         I915_WRITE(ch_ctl,
587                                    status |
588                                    DP_AUX_CH_CTL_DONE |
589                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
590                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
591
592                         if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
593                                       DP_AUX_CH_CTL_RECEIVE_ERROR))
594                                 continue;
595                         if (status & DP_AUX_CH_CTL_DONE)
596                                 break;
597                 }
598                 if (status & DP_AUX_CH_CTL_DONE)
599                         break;
600         }
601
602         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
603                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
604                 ret = -EBUSY;
605                 goto out;
606         }
607
608         /* Check for timeout or receive error.
609          * Timeouts occur when the sink is not connected
610          */
611         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
612                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
613                 ret = -EIO;
614                 goto out;
615         }
616
617         /* Timeouts occur when the device isn't connected, so they're
618          * "normal" -- don't fill the kernel log with these */
619         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
620                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
621                 ret = -ETIMEDOUT;
622                 goto out;
623         }
624
625         /* Unload any bytes sent back from the other side */
626         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
627                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
628         if (recv_bytes > recv_size)
629                 recv_bytes = recv_size;
630
631         for (i = 0; i < recv_bytes; i += 4)
632                 unpack_aux(I915_READ(ch_data + i),
633                            recv + i, recv_bytes - i);
634
635         ret = recv_bytes;
636 out:
637         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
638         intel_aux_display_runtime_put(dev_priv);
639
640         return ret;
641 }
642
643 #define BARE_ADDRESS_SIZE       3
644 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
645 static ssize_t
646 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
647 {
648         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
649         uint8_t txbuf[20], rxbuf[20];
650         size_t txsize, rxsize;
651         int ret;
652
653         txbuf[0] = msg->request << 4;
654         txbuf[1] = msg->address >> 8;
655         txbuf[2] = msg->address & 0xff;
656         txbuf[3] = msg->size - 1;
657
658         switch (msg->request & ~DP_AUX_I2C_MOT) {
659         case DP_AUX_NATIVE_WRITE:
660         case DP_AUX_I2C_WRITE:
661                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
662                 rxsize = 1;
663
664                 if (WARN_ON(txsize > 20))
665                         return -E2BIG;
666
667                 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
668
669                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
670                 if (ret > 0) {
671                         msg->reply = rxbuf[0] >> 4;
672
673                         /* Return payload size. */
674                         ret = msg->size;
675                 }
676                 break;
677
678         case DP_AUX_NATIVE_READ:
679         case DP_AUX_I2C_READ:
680                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
681                 rxsize = msg->size + 1;
682
683                 if (WARN_ON(rxsize > 20))
684                         return -E2BIG;
685
686                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
687                 if (ret > 0) {
688                         msg->reply = rxbuf[0] >> 4;
689                         /*
690                          * Assume happy day, and copy the data. The caller is
691                          * expected to check msg->reply before touching it.
692                          *
693                          * Return payload size.
694                          */
695                         ret--;
696                         memcpy(msg->buffer, rxbuf + 1, ret);
697                 }
698                 break;
699
700         default:
701                 ret = -EINVAL;
702                 break;
703         }
704
705         return ret;
706 }
707
708 static int
709 intel_dp_i2c_aux_ch(struct device *adapter, int mode,
710                     uint8_t write_byte, uint8_t *read_byte)
711 {
712         struct i2c_algo_dp_aux_data *data = device_get_softc(adapter);
713         struct intel_dp *intel_dp = data->priv;
714         uint16_t address = data->address;
715         uint8_t msg[5];
716         uint8_t reply[2];
717         unsigned retry;
718         int msg_bytes;
719         int reply_bytes;
720         int ret;
721
722         intel_edp_panel_vdd_on(intel_dp);
723         intel_dp_check_edp(intel_dp);
724         /* Set up the command byte */
725         if (mode & MODE_I2C_READ)
726                 msg[0] = DP_AUX_I2C_READ << 4;
727         else
728                 msg[0] = DP_AUX_I2C_WRITE << 4;
729
730         if (!(mode & MODE_I2C_STOP))
731                 msg[0] |= DP_AUX_I2C_MOT << 4;
732
733         msg[1] = address >> 8;
734         msg[2] = address;
735
736         switch (mode) {
737         case MODE_I2C_WRITE:
738                 msg[3] = 0;
739                 msg[4] = write_byte;
740                 msg_bytes = 5;
741                 reply_bytes = 1;
742                 break;
743         case MODE_I2C_READ:
744                 msg[3] = 0;
745                 msg_bytes = 4;
746                 reply_bytes = 2;
747                 break;
748         default:
749                 msg_bytes = 3;
750                 reply_bytes = 1;
751                 break;
752         }
753
754         /*
755          * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device is
756          * required to retry at least seven times upon receiving AUX_DEFER
757          * before giving up the AUX transaction.
758          */
759         for (retry = 0; retry < 7; retry++) {
760                 ret = intel_dp_aux_ch(intel_dp,
761                                       msg, msg_bytes,
762                                       reply, reply_bytes);
763                 if (ret < 0) {
764                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
765                         goto out;
766                 }
767
768                 switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
769                 case DP_AUX_NATIVE_REPLY_ACK:
770                         /* I2C-over-AUX Reply field is only valid
771                          * when paired with AUX ACK.
772                          */
773                         break;
774                 case DP_AUX_NATIVE_REPLY_NACK:
775                         DRM_DEBUG_KMS("aux_ch native nack\n");
776                         ret = -EREMOTEIO;
777                         goto out;
778                 case DP_AUX_NATIVE_REPLY_DEFER:
779                         /*
780                          * For now, just give more slack to branch devices. We
781                          * could check the DPCD for I2C bit rate capabilities,
782                          * and if available, adjust the interval. We could also
783                          * be more careful with DP-to-Legacy adapters where a
784                          * long legacy cable may force very low I2C bit rates.
785                          */
786                         if (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
787                             DP_DWN_STRM_PORT_PRESENT)
788                                 usleep_range(500, 600);
789                         else
790                                 usleep_range(300, 400);
791                         continue;
792                 default:
793                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
794                                   reply[0]);
795                         ret = -EREMOTEIO;
796                         goto out;
797                 }
798
799                 switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
800                 case DP_AUX_I2C_REPLY_ACK:
801                         if (mode == MODE_I2C_READ) {
802                                 *read_byte = reply[1];
803                         }
804                         ret = 0;        /* reply_bytes - 1 */
805                         goto out;
806                 case DP_AUX_I2C_REPLY_NACK:
807                         DRM_DEBUG_KMS("aux_i2c nack\n");
808                         ret = -EREMOTEIO;
809                         goto out;
810                 case DP_AUX_I2C_REPLY_DEFER:
811                         DRM_DEBUG_KMS("aux_i2c defer\n");
812                         udelay(100);
813                         break;
814                 default:
815                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
816                         ret = -EREMOTEIO;
817                         goto out;
818                 }
819         }
820
821         DRM_ERROR("too many retries, giving up\n");
822         ret = -EREMOTEIO;
823
824 out:
825         return ret;
826 }
827
828 static void
829 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
830 {
831         struct drm_device *dev = intel_dp_to_dev(intel_dp);
832         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
833         enum port port = intel_dig_port->port;
834         const char *name = NULL;
835         int ret;
836
837         switch (port) {
838         case PORT_A:
839                 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
840                 name = "DPDDC-A";
841                 break;
842         case PORT_B:
843                 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
844                 name = "DPDDC-B";
845                 break;
846         case PORT_C:
847                 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
848                 name = "DPDDC-C";
849                 break;
850         case PORT_D:
851                 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
852                 name = "DPDDC-D";
853                 break;
854         default:
855                 BUG();
856         }
857
858         if (!HAS_DDI(dev))
859                 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
860
861         intel_dp->aux.name = name;
862         intel_dp->aux.dev = dev->dev;
863         intel_dp->aux.transfer = intel_dp_aux_transfer;
864
865         DRM_DEBUG_KMS("i2c_init %s\n", name);
866         ret = iic_dp_aux_add_bus(connector->base.dev->dev, name,
867             intel_dp_i2c_aux_ch, intel_dp, &intel_dp->dp_iic_bus,
868             &intel_dp->aux.ddc);
869         WARN(ret, "intel_dp_i2c_init failed with error %d for port %c\n",
870              ret, port_name(port));
871
872 }
873
874 static void
875 intel_dp_connector_unregister(struct intel_connector *intel_connector)
876 {
877         intel_connector_unregister(intel_connector);
878 }
879
880 #if 0
881 static int
882 intel_dp_i2c_init(struct intel_dp *intel_dp,
883                   struct intel_connector *intel_connector, const char *name)
884 {
885         int     ret;
886
887         DRM_DEBUG_KMS("i2c_init %s\n", name);
888 #if 0
889         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
890         intel_dp->adapter.owner = THIS_MODULE;
891         intel_dp->adapter.class = I2C_CLASS_DDC;
892         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
893         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
894         intel_dp->adapter.algo_data = &intel_dp->algo;
895         intel_dp->adapter.dev.parent = intel_connector->base.dev->dev;
896
897         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
898         if (ret < 0)
899                 return ret;
900
901         ret = sysfs_create_link(&intel_connector->base.kdev->kobj,
902                                 &intel_dp->adapter.dev.kobj,
903                                 intel_dp->adapter.dev.kobj.name);
904 #endif
905         ret = iic_dp_aux_add_bus(intel_connector->base.dev->dev, name,
906             intel_dp_i2c_aux_ch, intel_dp, &intel_dp->dp_iic_bus,
907             &intel_dp->adapter);
908
909         return ret;
910 }
911 #endif
912
913 static void
914 hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
915 {
916         switch (link_bw) {
917         case DP_LINK_BW_1_62:
918                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
919                 break;
920         case DP_LINK_BW_2_7:
921                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
922                 break;
923         case DP_LINK_BW_5_4:
924                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
925                 break;
926         }
927 }
928
929 static void
930 intel_dp_set_clock(struct intel_encoder *encoder,
931                    struct intel_crtc_config *pipe_config, int link_bw)
932 {
933         struct drm_device *dev = encoder->base.dev;
934         const struct dp_link_dpll *divisor = NULL;
935         int i, count = 0;
936
937         if (IS_G4X(dev)) {
938                 divisor = gen4_dpll;
939                 count = ARRAY_SIZE(gen4_dpll);
940         } else if (HAS_PCH_SPLIT(dev)) {
941                 divisor = pch_dpll;
942                 count = ARRAY_SIZE(pch_dpll);
943         } else if (IS_CHERRYVIEW(dev)) {
944                 divisor = chv_dpll;
945                 count = ARRAY_SIZE(chv_dpll);
946         } else if (IS_VALLEYVIEW(dev)) {
947                 divisor = vlv_dpll;
948                 count = ARRAY_SIZE(vlv_dpll);
949         }
950
951         if (divisor && count) {
952                 for (i = 0; i < count; i++) {
953                         if (link_bw == divisor[i].link_bw) {
954                                 pipe_config->dpll = divisor[i].dpll;
955                                 pipe_config->clock_set = true;
956                                 break;
957                         }
958                 }
959         }
960 }
961
962 static void
963 intel_dp_set_m2_n2(struct intel_crtc *crtc, struct intel_link_m_n *m_n)
964 {
965         struct drm_device *dev = crtc->base.dev;
966         struct drm_i915_private *dev_priv = dev->dev_private;
967         enum transcoder transcoder = crtc->config.cpu_transcoder;
968
969         I915_WRITE(PIPE_DATA_M2(transcoder),
970                 TU_SIZE(m_n->tu) | m_n->gmch_m);
971         I915_WRITE(PIPE_DATA_N2(transcoder), m_n->gmch_n);
972         I915_WRITE(PIPE_LINK_M2(transcoder), m_n->link_m);
973         I915_WRITE(PIPE_LINK_N2(transcoder), m_n->link_n);
974 }
975
976 bool
977 intel_dp_compute_config(struct intel_encoder *encoder,
978                         struct intel_crtc_config *pipe_config)
979 {
980         struct drm_device *dev = encoder->base.dev;
981         struct drm_i915_private *dev_priv = dev->dev_private;
982         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
983         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
984         enum port port = dp_to_dig_port(intel_dp)->port;
985         struct intel_crtc *intel_crtc = encoder->new_crtc;
986         struct intel_connector *intel_connector = intel_dp->attached_connector;
987         int lane_count, clock;
988         int min_lane_count = 1;
989         int max_lane_count = intel_dp_max_lane_count(intel_dp);
990         /* Conveniently, the link BW constants become indices with a shift...*/
991         int min_clock = 0;
992         int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
993         int bpp, mode_rate;
994         static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
995         int link_avail, link_clock;
996
997         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
998                 pipe_config->has_pch_encoder = true;
999
1000         pipe_config->has_dp_encoder = true;
1001         pipe_config->has_audio = intel_dp->has_audio;
1002
1003         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1004                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1005                                        adjusted_mode);
1006                 if (!HAS_PCH_SPLIT(dev))
1007                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
1008                                                  intel_connector->panel.fitting_mode);
1009                 else
1010                         intel_pch_panel_fitting(intel_crtc, pipe_config,
1011                                                 intel_connector->panel.fitting_mode);
1012         }
1013
1014         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1015                 return false;
1016
1017         DRM_DEBUG_KMS("DP link computation with max lane count %i "
1018                       "max bw %02x pixel clock %iKHz\n",
1019                       max_lane_count, bws[max_clock],
1020                       adjusted_mode->crtc_clock);
1021
1022         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1023          * bpc in between. */
1024         bpp = pipe_config->pipe_bpp;
1025         if (is_edp(intel_dp)) {
1026                 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
1027                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1028                                       dev_priv->vbt.edp_bpp);
1029                         bpp = dev_priv->vbt.edp_bpp;
1030                 }
1031
1032                 if (IS_BROADWELL(dev)) {
1033                         /* Yes, it's an ugly hack. */
1034                         min_lane_count = max_lane_count;
1035                         DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
1036                                       min_lane_count);
1037                 } else if (dev_priv->vbt.edp_lanes) {
1038                         min_lane_count = min(dev_priv->vbt.edp_lanes,
1039                                              max_lane_count);
1040                         DRM_DEBUG_KMS("using min %u lanes per VBT\n",
1041                                       min_lane_count);
1042                 }
1043
1044                 if (dev_priv->vbt.edp_rate) {
1045                         min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
1046                         DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
1047                                       bws[min_clock]);
1048                 }
1049         }
1050
1051         for (; bpp >= 6*3; bpp -= 2*3) {
1052                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1053                                                    bpp);
1054
1055                 for (clock = min_clock; clock <= max_clock; clock++) {
1056                         for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
1057                                 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
1058                                 link_avail = intel_dp_max_data_rate(link_clock,
1059                                                                     lane_count);
1060
1061                                 if (mode_rate <= link_avail) {
1062                                         goto found;
1063                                 }
1064                         }
1065                 }
1066         }
1067
1068         return false;
1069
1070 found:
1071         if (intel_dp->color_range_auto) {
1072                 /*
1073                  * See:
1074                  * CEA-861-E - 5.1 Default Encoding Parameters
1075                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1076                  */
1077                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
1078                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
1079                 else
1080                         intel_dp->color_range = 0;
1081         }
1082
1083         if (intel_dp->color_range)
1084                 pipe_config->limited_color_range = true;
1085
1086         intel_dp->link_bw = bws[clock];
1087         intel_dp->lane_count = lane_count;
1088         pipe_config->pipe_bpp = bpp;
1089         pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
1090
1091         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1092                       intel_dp->link_bw, intel_dp->lane_count,
1093                       pipe_config->port_clock, bpp);
1094         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1095                       mode_rate, link_avail);
1096
1097         intel_link_compute_m_n(bpp, lane_count,
1098                                adjusted_mode->crtc_clock,
1099                                pipe_config->port_clock,
1100                                &pipe_config->dp_m_n);
1101
1102         if (intel_connector->panel.downclock_mode != NULL &&
1103                 intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
1104                         intel_link_compute_m_n(bpp, lane_count,
1105                                 intel_connector->panel.downclock_mode->clock,
1106                                 pipe_config->port_clock,
1107                                 &pipe_config->dp_m2_n2);
1108         }
1109
1110         if (HAS_DDI(dev))
1111                 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
1112         else
1113                 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
1114
1115         return true;
1116 }
1117
1118 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1119 {
1120         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1121         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1122         struct drm_device *dev = crtc->base.dev;
1123         struct drm_i915_private *dev_priv = dev->dev_private;
1124         u32 dpa_ctl;
1125
1126         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
1127         dpa_ctl = I915_READ(DP_A);
1128         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1129
1130         if (crtc->config.port_clock == 162000) {
1131                 /* For a long time we've carried around a ILK-DevA w/a for the
1132                  * 160MHz clock. If we're really unlucky, it's still required.
1133                  */
1134                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1135                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1136                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1137         } else {
1138                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1139                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1140         }
1141
1142         I915_WRITE(DP_A, dpa_ctl);
1143
1144         POSTING_READ(DP_A);
1145         udelay(500);
1146 }
1147
1148 static void intel_dp_prepare(struct intel_encoder *encoder)
1149 {
1150         struct drm_device *dev = encoder->base.dev;
1151         struct drm_i915_private *dev_priv = dev->dev_private;
1152         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1153         enum port port = dp_to_dig_port(intel_dp)->port;
1154         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1155         struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1156
1157         /*
1158          * There are four kinds of DP registers:
1159          *
1160          *      IBX PCH
1161          *      SNB CPU
1162          *      IVB CPU
1163          *      CPT PCH
1164          *
1165          * IBX PCH and CPU are the same for almost everything,
1166          * except that the CPU DP PLL is configured in this
1167          * register
1168          *
1169          * CPT PCH is quite different, having many bits moved
1170          * to the TRANS_DP_CTL register instead. That
1171          * configuration happens (oddly) in ironlake_pch_enable
1172          */
1173
1174         /* Preserve the BIOS-computed detected bit. This is
1175          * supposed to be read-only.
1176          */
1177         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1178
1179         /* Handle DP bits in common between all three register formats */
1180         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1181         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1182
1183         if (crtc->config.has_audio) {
1184                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1185                                  pipe_name(crtc->pipe));
1186                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1187                 intel_write_eld(&encoder->base, adjusted_mode);
1188         }
1189
1190         /* Split out the IBX/CPU vs CPT settings */
1191
1192         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1193                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1194                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1195                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1196                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1197                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1198
1199                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1200                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1201
1202                 intel_dp->DP |= crtc->pipe << 29;
1203         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1204                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1205                         intel_dp->DP |= intel_dp->color_range;
1206
1207                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1208                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1209                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1210                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1211                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1212
1213                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1214                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1215
1216                 if (!IS_CHERRYVIEW(dev)) {
1217                         if (crtc->pipe == 1)
1218                                 intel_dp->DP |= DP_PIPEB_SELECT;
1219                 } else {
1220                         intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1221                 }
1222         } else {
1223                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1224         }
1225 }
1226
1227 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1228 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1229
1230 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1231 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1232
1233 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1234 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1235
1236 static void wait_panel_status(struct intel_dp *intel_dp,
1237                                        u32 mask,
1238                                        u32 value)
1239 {
1240         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1241         struct drm_i915_private *dev_priv = dev->dev_private;
1242         u32 pp_stat_reg, pp_ctrl_reg;
1243
1244         pp_stat_reg = _pp_stat_reg(intel_dp);
1245         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1246
1247         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1248                         mask, value,
1249                         I915_READ(pp_stat_reg),
1250                         I915_READ(pp_ctrl_reg));
1251
1252         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1253                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1254                                 I915_READ(pp_stat_reg),
1255                                 I915_READ(pp_ctrl_reg));
1256         }
1257
1258         DRM_DEBUG_KMS("Wait complete\n");
1259 }
1260
1261 static void wait_panel_on(struct intel_dp *intel_dp)
1262 {
1263         DRM_DEBUG_KMS("Wait for panel power on\n");
1264         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1265 }
1266
1267 static void wait_panel_off(struct intel_dp *intel_dp)
1268 {
1269         DRM_DEBUG_KMS("Wait for panel power off time\n");
1270         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1271 }
1272
1273 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1274 {
1275         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1276
1277         /* When we disable the VDD override bit last we have to do the manual
1278          * wait. */
1279         wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1280                                        intel_dp->panel_power_cycle_delay);
1281
1282         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1283 }
1284
1285 static void wait_backlight_on(struct intel_dp *intel_dp)
1286 {
1287         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1288                                        intel_dp->backlight_on_delay);
1289 }
1290
1291 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1292 {
1293         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1294                                        intel_dp->backlight_off_delay);
1295 }
1296
1297 /* Read the current pp_control value, unlocking the register if it
1298  * is locked
1299  */
1300
1301 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1302 {
1303         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1304         struct drm_i915_private *dev_priv = dev->dev_private;
1305         u32 control;
1306
1307         control = I915_READ(_pp_ctrl_reg(intel_dp));
1308         control &= ~PANEL_UNLOCK_MASK;
1309         control |= PANEL_UNLOCK_REGS;
1310         return control;
1311 }
1312
1313 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1314 {
1315         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1316         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1317         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1318         struct drm_i915_private *dev_priv = dev->dev_private;
1319         enum intel_display_power_domain power_domain;
1320         u32 pp;
1321         u32 pp_stat_reg, pp_ctrl_reg;
1322
1323         if (!is_edp(intel_dp))
1324                 return;
1325
1326         WARN(intel_dp->want_panel_vdd,
1327              "eDP VDD already requested on\n");
1328
1329         intel_dp->want_panel_vdd = true;
1330
1331         if (edp_have_panel_vdd(intel_dp))
1332                 return;
1333
1334         power_domain = intel_display_port_power_domain(intel_encoder);
1335         intel_display_power_get(dev_priv, power_domain);
1336
1337         DRM_DEBUG_KMS("Turning eDP VDD on\n");
1338
1339         if (!edp_have_panel_power(intel_dp))
1340                 wait_panel_power_cycle(intel_dp);
1341
1342         pp = ironlake_get_pp_control(intel_dp);
1343         pp |= EDP_FORCE_VDD;
1344
1345         pp_stat_reg = _pp_stat_reg(intel_dp);
1346         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1347
1348         I915_WRITE(pp_ctrl_reg, pp);
1349         POSTING_READ(pp_ctrl_reg);
1350         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1351                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1352         /*
1353          * If the panel wasn't on, delay before accessing aux channel
1354          */
1355         if (!edp_have_panel_power(intel_dp)) {
1356                 DRM_DEBUG_KMS("eDP was not running\n");
1357                 msleep(intel_dp->panel_power_up_delay);
1358         }
1359 }
1360
1361 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1362 {
1363         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1364         struct drm_i915_private *dev_priv = dev->dev_private;
1365         u32 pp;
1366         u32 pp_stat_reg, pp_ctrl_reg;
1367
1368         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1369
1370         if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1371                 struct intel_digital_port *intel_dig_port =
1372                                                 dp_to_dig_port(intel_dp);
1373                 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1374                 enum intel_display_power_domain power_domain;
1375
1376                 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1377
1378                 pp = ironlake_get_pp_control(intel_dp);
1379                 pp &= ~EDP_FORCE_VDD;
1380
1381                 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1382                 pp_stat_reg = _pp_stat_reg(intel_dp);
1383
1384                 I915_WRITE(pp_ctrl_reg, pp);
1385                 POSTING_READ(pp_ctrl_reg);
1386
1387                 /* Make sure sequencer is idle before allowing subsequent activity */
1388                 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1389                 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1390
1391                 if ((pp & POWER_TARGET_ON) == 0)
1392                         intel_dp->last_power_cycle = jiffies;
1393
1394                 power_domain = intel_display_port_power_domain(intel_encoder);
1395                 intel_display_power_put(dev_priv, power_domain);
1396         }
1397 }
1398
1399 static void edp_panel_vdd_work(struct work_struct *__work)
1400 {
1401         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1402                                                  struct intel_dp, panel_vdd_work);
1403         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1404
1405         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
1406         edp_panel_vdd_off_sync(intel_dp);
1407         drm_modeset_unlock(&dev->mode_config.connection_mutex);
1408 }
1409
1410 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1411 {
1412         unsigned long delay;
1413
1414         /*
1415          * Queue the timer to fire a long time from now (relative to the power
1416          * down delay) to keep the panel power up across a sequence of
1417          * operations.
1418          */
1419         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1420         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1421 }
1422
1423 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1424 {
1425         if (!is_edp(intel_dp))
1426                 return;
1427
1428         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1429
1430         intel_dp->want_panel_vdd = false;
1431
1432         if (sync)
1433                 edp_panel_vdd_off_sync(intel_dp);
1434         else
1435                 edp_panel_vdd_schedule_off(intel_dp);
1436 }
1437
1438 void intel_edp_panel_on(struct intel_dp *intel_dp)
1439 {
1440         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1441         struct drm_i915_private *dev_priv = dev->dev_private;
1442         u32 pp;
1443         u32 pp_ctrl_reg;
1444
1445         if (!is_edp(intel_dp))
1446                 return;
1447
1448         DRM_DEBUG_KMS("Turn eDP power on\n");
1449
1450         if (edp_have_panel_power(intel_dp)) {
1451                 DRM_DEBUG_KMS("eDP power already on\n");
1452                 return;
1453         }
1454
1455         wait_panel_power_cycle(intel_dp);
1456
1457         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1458         pp = ironlake_get_pp_control(intel_dp);
1459         if (IS_GEN5(dev)) {
1460                 /* ILK workaround: disable reset around power sequence */
1461                 pp &= ~PANEL_POWER_RESET;
1462                 I915_WRITE(pp_ctrl_reg, pp);
1463                 POSTING_READ(pp_ctrl_reg);
1464         }
1465
1466         pp |= POWER_TARGET_ON;
1467         if (!IS_GEN5(dev))
1468                 pp |= PANEL_POWER_RESET;
1469
1470         I915_WRITE(pp_ctrl_reg, pp);
1471         POSTING_READ(pp_ctrl_reg);
1472
1473         wait_panel_on(intel_dp);
1474         intel_dp->last_power_on = jiffies;
1475
1476         if (IS_GEN5(dev)) {
1477                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1478                 I915_WRITE(pp_ctrl_reg, pp);
1479                 POSTING_READ(pp_ctrl_reg);
1480         }
1481 }
1482
1483 void intel_edp_panel_off(struct intel_dp *intel_dp)
1484 {
1485         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1486         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1487         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1488         struct drm_i915_private *dev_priv = dev->dev_private;
1489         enum intel_display_power_domain power_domain;
1490         u32 pp;
1491         u32 pp_ctrl_reg;
1492
1493         if (!is_edp(intel_dp))
1494                 return;
1495
1496         DRM_DEBUG_KMS("Turn eDP power off\n");
1497
1498         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1499
1500         pp = ironlake_get_pp_control(intel_dp);
1501         /* We need to switch off panel power _and_ force vdd, for otherwise some
1502          * panels get very unhappy and cease to work. */
1503         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1504                 EDP_BLC_ENABLE);
1505
1506         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1507
1508         intel_dp->want_panel_vdd = false;
1509
1510         I915_WRITE(pp_ctrl_reg, pp);
1511         POSTING_READ(pp_ctrl_reg);
1512
1513         intel_dp->last_power_cycle = jiffies;
1514         wait_panel_off(intel_dp);
1515
1516         /* We got a reference when we enabled the VDD. */
1517         power_domain = intel_display_port_power_domain(intel_encoder);
1518         intel_display_power_put(dev_priv, power_domain);
1519 }
1520
1521 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1522 {
1523         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1524         struct drm_device *dev = intel_dig_port->base.base.dev;
1525         struct drm_i915_private *dev_priv = dev->dev_private;
1526         u32 pp;
1527         u32 pp_ctrl_reg;
1528
1529         if (!is_edp(intel_dp))
1530                 return;
1531
1532         DRM_DEBUG_KMS("\n");
1533
1534         intel_panel_enable_backlight(intel_dp->attached_connector);
1535
1536         /*
1537          * If we enable the backlight right away following a panel power
1538          * on, we may see slight flicker as the panel syncs with the eDP
1539          * link.  So delay a bit to make sure the image is solid before
1540          * allowing it to appear.
1541          */
1542         wait_backlight_on(intel_dp);
1543         pp = ironlake_get_pp_control(intel_dp);
1544         pp |= EDP_BLC_ENABLE;
1545
1546         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1547
1548         I915_WRITE(pp_ctrl_reg, pp);
1549         POSTING_READ(pp_ctrl_reg);
1550 }
1551
1552 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1553 {
1554         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1555         struct drm_i915_private *dev_priv = dev->dev_private;
1556         u32 pp;
1557         u32 pp_ctrl_reg;
1558
1559         if (!is_edp(intel_dp))
1560                 return;
1561
1562         DRM_DEBUG_KMS("\n");
1563         pp = ironlake_get_pp_control(intel_dp);
1564         pp &= ~EDP_BLC_ENABLE;
1565
1566         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1567
1568         I915_WRITE(pp_ctrl_reg, pp);
1569         POSTING_READ(pp_ctrl_reg);
1570         intel_dp->last_backlight_off = jiffies;
1571
1572         edp_wait_backlight_off(intel_dp);
1573
1574         intel_panel_disable_backlight(intel_dp->attached_connector);
1575 }
1576
1577 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1578 {
1579         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1580         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1581         struct drm_device *dev = crtc->dev;
1582         struct drm_i915_private *dev_priv = dev->dev_private;
1583         u32 dpa_ctl;
1584
1585         assert_pipe_disabled(dev_priv,
1586                              to_intel_crtc(crtc)->pipe);
1587
1588         DRM_DEBUG_KMS("\n");
1589         dpa_ctl = I915_READ(DP_A);
1590         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1591         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1592
1593         /* We don't adjust intel_dp->DP while tearing down the link, to
1594          * facilitate link retraining (e.g. after hotplug). Hence clear all
1595          * enable bits here to ensure that we don't enable too much. */
1596         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1597         intel_dp->DP |= DP_PLL_ENABLE;
1598         I915_WRITE(DP_A, intel_dp->DP);
1599         POSTING_READ(DP_A);
1600         udelay(200);
1601 }
1602
1603 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1604 {
1605         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1606         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1607         struct drm_device *dev = crtc->dev;
1608         struct drm_i915_private *dev_priv = dev->dev_private;
1609         u32 dpa_ctl;
1610
1611         assert_pipe_disabled(dev_priv,
1612                              to_intel_crtc(crtc)->pipe);
1613
1614         dpa_ctl = I915_READ(DP_A);
1615         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1616              "dp pll off, should be on\n");
1617         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1618
1619         /* We can't rely on the value tracked for the DP register in
1620          * intel_dp->DP because link_down must not change that (otherwise link
1621          * re-training will fail. */
1622         dpa_ctl &= ~DP_PLL_ENABLE;
1623         I915_WRITE(DP_A, dpa_ctl);
1624         POSTING_READ(DP_A);
1625         udelay(200);
1626 }
1627
1628 /* If the sink supports it, try to set the power state appropriately */
1629 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1630 {
1631         int ret, i;
1632
1633         /* Should have a valid DPCD by this point */
1634         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1635                 return;
1636
1637         if (mode != DRM_MODE_DPMS_ON) {
1638                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1639                                          DP_SET_POWER_D3);
1640                 if (ret != 1)
1641                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1642         } else {
1643                 /*
1644                  * When turning on, we need to retry for 1ms to give the sink
1645                  * time to wake up.
1646                  */
1647                 for (i = 0; i < 3; i++) {
1648                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1649                                                  DP_SET_POWER_D0);
1650                         if (ret == 1)
1651                                 break;
1652                         msleep(1);
1653                 }
1654         }
1655 }
1656
1657 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1658                                   enum i915_pipe *pipe)
1659 {
1660         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1661         enum port port = dp_to_dig_port(intel_dp)->port;
1662         struct drm_device *dev = encoder->base.dev;
1663         struct drm_i915_private *dev_priv = dev->dev_private;
1664         enum intel_display_power_domain power_domain;
1665         u32 tmp;
1666
1667         power_domain = intel_display_port_power_domain(encoder);
1668         if (!intel_display_power_enabled(dev_priv, power_domain))
1669                 return false;
1670
1671         tmp = I915_READ(intel_dp->output_reg);
1672
1673         if (!(tmp & DP_PORT_EN))
1674                 return false;
1675
1676         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1677                 *pipe = PORT_TO_PIPE_CPT(tmp);
1678         } else if (IS_CHERRYVIEW(dev)) {
1679                 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1680         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1681                 *pipe = PORT_TO_PIPE(tmp);
1682         } else {
1683                 u32 trans_sel;
1684                 u32 trans_dp;
1685                 int i;
1686
1687                 switch (intel_dp->output_reg) {
1688                 case PCH_DP_B:
1689                         trans_sel = TRANS_DP_PORT_SEL_B;
1690                         break;
1691                 case PCH_DP_C:
1692                         trans_sel = TRANS_DP_PORT_SEL_C;
1693                         break;
1694                 case PCH_DP_D:
1695                         trans_sel = TRANS_DP_PORT_SEL_D;
1696                         break;
1697                 default:
1698                         return true;
1699                 }
1700
1701                 for_each_pipe(i) {
1702                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1703                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1704                                 *pipe = i;
1705                                 return true;
1706                         }
1707                 }
1708
1709                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1710                               intel_dp->output_reg);
1711         }
1712
1713         return true;
1714 }
1715
1716 static void intel_dp_get_config(struct intel_encoder *encoder,
1717                                 struct intel_crtc_config *pipe_config)
1718 {
1719         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1720         u32 tmp, flags = 0;
1721         struct drm_device *dev = encoder->base.dev;
1722         struct drm_i915_private *dev_priv = dev->dev_private;
1723         enum port port = dp_to_dig_port(intel_dp)->port;
1724         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1725         int dotclock;
1726
1727         tmp = I915_READ(intel_dp->output_reg);
1728         if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1729                 pipe_config->has_audio = true;
1730
1731         if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1732                 if (tmp & DP_SYNC_HS_HIGH)
1733                         flags |= DRM_MODE_FLAG_PHSYNC;
1734                 else
1735                         flags |= DRM_MODE_FLAG_NHSYNC;
1736
1737                 if (tmp & DP_SYNC_VS_HIGH)
1738                         flags |= DRM_MODE_FLAG_PVSYNC;
1739                 else
1740                         flags |= DRM_MODE_FLAG_NVSYNC;
1741         } else {
1742                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1743                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1744                         flags |= DRM_MODE_FLAG_PHSYNC;
1745                 else
1746                         flags |= DRM_MODE_FLAG_NHSYNC;
1747
1748                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1749                         flags |= DRM_MODE_FLAG_PVSYNC;
1750                 else
1751                         flags |= DRM_MODE_FLAG_NVSYNC;
1752         }
1753
1754         pipe_config->adjusted_mode.flags |= flags;
1755
1756         if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1757             tmp & DP_COLOR_RANGE_16_235)
1758                 pipe_config->limited_color_range = true;
1759
1760         pipe_config->has_dp_encoder = true;
1761
1762         intel_dp_get_m_n(crtc, pipe_config);
1763
1764         if (port == PORT_A) {
1765                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1766                         pipe_config->port_clock = 162000;
1767                 else
1768                         pipe_config->port_clock = 270000;
1769         }
1770
1771         dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1772                                             &pipe_config->dp_m_n);
1773
1774         if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1775                 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1776
1777         pipe_config->adjusted_mode.crtc_clock = dotclock;
1778
1779         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1780             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1781                 /*
1782                  * This is a big fat ugly hack.
1783                  *
1784                  * Some machines in UEFI boot mode provide us a VBT that has 18
1785                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1786                  * unknown we fail to light up. Yet the same BIOS boots up with
1787                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1788                  * max, not what it tells us to use.
1789                  *
1790                  * Note: This will still be broken if the eDP panel is not lit
1791                  * up by the BIOS, and thus we can't get the mode at module
1792                  * load.
1793                  */
1794                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1795                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1796                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1797         }
1798 }
1799
1800 static bool is_edp_psr(struct intel_dp *intel_dp)
1801 {
1802         return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1803 }
1804
1805 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1806 {
1807         struct drm_i915_private *dev_priv = dev->dev_private;
1808
1809         if (!HAS_PSR(dev))
1810                 return false;
1811
1812         return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1813 }
1814
1815 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1816                                     struct edp_vsc_psr *vsc_psr)
1817 {
1818         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1819         struct drm_device *dev = dig_port->base.base.dev;
1820         struct drm_i915_private *dev_priv = dev->dev_private;
1821         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1822         u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1823         u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1824         uint32_t *data = (uint32_t *) vsc_psr;
1825         unsigned int i;
1826
1827         /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1828            the video DIP being updated before program video DIP data buffer
1829            registers for DIP being updated. */
1830         I915_WRITE(ctl_reg, 0);
1831         POSTING_READ(ctl_reg);
1832
1833         for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1834                 if (i < sizeof(struct edp_vsc_psr))
1835                         I915_WRITE(data_reg + i, *data++);
1836                 else
1837                         I915_WRITE(data_reg + i, 0);
1838         }
1839
1840         I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1841         POSTING_READ(ctl_reg);
1842 }
1843
1844 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1845 {
1846         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1847         struct drm_i915_private *dev_priv = dev->dev_private;
1848         struct edp_vsc_psr psr_vsc;
1849
1850         /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1851         memset(&psr_vsc, 0, sizeof(psr_vsc));
1852         psr_vsc.sdp_header.HB0 = 0;
1853         psr_vsc.sdp_header.HB1 = 0x7;
1854         psr_vsc.sdp_header.HB2 = 0x2;
1855         psr_vsc.sdp_header.HB3 = 0x8;
1856         intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1857
1858         /* Avoid continuous PSR exit by masking memup and hpd */
1859         I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1860                    EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1861 }
1862
1863 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1864 {
1865         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1866         struct drm_device *dev = dig_port->base.base.dev;
1867         struct drm_i915_private *dev_priv = dev->dev_private;
1868         uint32_t aux_clock_divider;
1869         int precharge = 0x3;
1870         int msg_size = 5;       /* Header(4) + Message(1) */
1871         bool only_standby = false;
1872
1873         aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1874
1875         if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1876                 only_standby = true;
1877
1878         /* Enable PSR in sink */
1879         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
1880                 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1881                                    DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1882         else
1883                 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1884                                    DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1885
1886         /* Setup AUX registers */
1887         I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1888         I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1889         I915_WRITE(EDP_PSR_AUX_CTL(dev),
1890                    DP_AUX_CH_CTL_TIME_OUT_400us |
1891                    (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1892                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1893                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1894 }
1895
1896 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1897 {
1898         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1899         struct drm_device *dev = dig_port->base.base.dev;
1900         struct drm_i915_private *dev_priv = dev->dev_private;
1901         uint32_t max_sleep_time = 0x1f;
1902         uint32_t idle_frames = 1;
1903         uint32_t val = 0x0;
1904         const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1905         bool only_standby = false;
1906
1907         if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1908                 only_standby = true;
1909
1910         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
1911                 val |= EDP_PSR_LINK_STANDBY;
1912                 val |= EDP_PSR_TP2_TP3_TIME_0us;
1913                 val |= EDP_PSR_TP1_TIME_0us;
1914                 val |= EDP_PSR_SKIP_AUX_EXIT;
1915                 val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
1916         } else
1917                 val |= EDP_PSR_LINK_DISABLE;
1918
1919         I915_WRITE(EDP_PSR_CTL(dev), val |
1920                    (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1921                    max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1922                    idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1923                    EDP_PSR_ENABLE);
1924 }
1925
1926 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1927 {
1928         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1929         struct drm_device *dev = dig_port->base.base.dev;
1930         struct drm_i915_private *dev_priv = dev->dev_private;
1931         struct drm_crtc *crtc = dig_port->base.base.crtc;
1932         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1933
1934 #if 0
1935         lockdep_assert_held(&dev_priv->psr.lock);
1936 #endif
1937         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1938         WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
1939
1940         dev_priv->psr.source_ok = false;
1941
1942         if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
1943                 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1944                 return false;
1945         }
1946
1947         if (!i915.enable_psr) {
1948                 DRM_DEBUG_KMS("PSR disable by flag\n");
1949                 return false;
1950         }
1951
1952         /* Below limitations aren't valid for Broadwell */
1953         if (IS_BROADWELL(dev))
1954                 goto out;
1955
1956         if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1957             S3D_ENABLE) {
1958                 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1959                 return false;
1960         }
1961
1962         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1963                 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1964                 return false;
1965         }
1966
1967  out:
1968         dev_priv->psr.source_ok = true;
1969         return true;
1970 }
1971
1972 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1973 {
1974         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1975         struct drm_device *dev = intel_dig_port->base.base.dev;
1976         struct drm_i915_private *dev_priv = dev->dev_private;
1977
1978         WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1979         WARN_ON(dev_priv->psr.active);
1980 #if 0
1981         lockdep_assert_held(&dev_priv->psr.lock);
1982 #endif
1983
1984         /* Enable PSR on the panel */
1985         intel_edp_psr_enable_sink(intel_dp);
1986
1987         /* Enable PSR on the host */
1988         intel_edp_psr_enable_source(intel_dp);
1989
1990         dev_priv->psr.active = true;
1991 }
1992
1993 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1994 {
1995         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1996         struct drm_i915_private *dev_priv = dev->dev_private;
1997
1998         if (!HAS_PSR(dev)) {
1999                 DRM_DEBUG_KMS("PSR not supported on this platform\n");
2000                 return;
2001         }
2002
2003         if (!is_edp_psr(intel_dp)) {
2004                 DRM_DEBUG_KMS("PSR not supported by this panel\n");
2005                 return;
2006         }
2007
2008         mutex_lock(&dev_priv->psr.lock);
2009         if (dev_priv->psr.enabled) {
2010                 DRM_DEBUG_KMS("PSR already in use\n");
2011                 mutex_unlock(&dev_priv->psr.lock);
2012                 return;
2013         }
2014
2015         dev_priv->psr.busy_frontbuffer_bits = 0;
2016
2017         /* Setup PSR once */
2018         intel_edp_psr_setup(intel_dp);
2019
2020         if (intel_edp_psr_match_conditions(intel_dp))
2021                 dev_priv->psr.enabled = intel_dp;
2022         mutex_unlock(&dev_priv->psr.lock);
2023 }
2024
2025 void intel_edp_psr_disable(struct intel_dp *intel_dp)
2026 {
2027         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2028         struct drm_i915_private *dev_priv = dev->dev_private;
2029
2030         mutex_lock(&dev_priv->psr.lock);
2031         if (!dev_priv->psr.enabled) {
2032                 mutex_unlock(&dev_priv->psr.lock);
2033                 return;
2034         }
2035
2036         if (dev_priv->psr.active) {
2037                 I915_WRITE(EDP_PSR_CTL(dev),
2038                            I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
2039
2040                 /* Wait till PSR is idle */
2041                 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
2042                                EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
2043                         DRM_ERROR("Timed out waiting for PSR Idle State\n");
2044
2045                 dev_priv->psr.active = false;
2046         } else {
2047                 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
2048         }
2049
2050         dev_priv->psr.enabled = NULL;
2051         mutex_unlock(&dev_priv->psr.lock);
2052
2053         cancel_delayed_work_sync(&dev_priv->psr.work);
2054 }
2055
2056 static void intel_edp_psr_work(struct work_struct *work)
2057 {
2058         struct drm_i915_private *dev_priv =
2059                 container_of(work, typeof(*dev_priv), psr.work.work);
2060         struct intel_dp *intel_dp = dev_priv->psr.enabled;
2061
2062         mutex_lock(&dev_priv->psr.lock);
2063         intel_dp = dev_priv->psr.enabled;
2064
2065         if (!intel_dp)
2066                 goto unlock;
2067
2068         /*
2069          * The delayed work can race with an invalidate hence we need to
2070          * recheck. Since psr_flush first clears this and then reschedules we
2071          * won't ever miss a flush when bailing out here.
2072          */
2073         if (dev_priv->psr.busy_frontbuffer_bits)
2074                 goto unlock;
2075
2076         intel_edp_psr_do_enable(intel_dp);
2077 unlock:
2078         mutex_unlock(&dev_priv->psr.lock);
2079 }
2080
2081 static void intel_edp_psr_do_exit(struct drm_device *dev)
2082 {
2083         struct drm_i915_private *dev_priv = dev->dev_private;
2084
2085         if (dev_priv->psr.active) {
2086                 u32 val = I915_READ(EDP_PSR_CTL(dev));
2087
2088                 WARN_ON(!(val & EDP_PSR_ENABLE));
2089
2090                 I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
2091
2092                 dev_priv->psr.active = false;
2093         }
2094
2095 }
2096
2097 void intel_edp_psr_invalidate(struct drm_device *dev,
2098                               unsigned frontbuffer_bits)
2099 {
2100         struct drm_i915_private *dev_priv = dev->dev_private;
2101         struct drm_crtc *crtc;
2102         enum i915_pipe pipe;
2103
2104         mutex_lock(&dev_priv->psr.lock);
2105         if (!dev_priv->psr.enabled) {
2106                 mutex_unlock(&dev_priv->psr.lock);
2107                 return;
2108         }
2109
2110         crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2111         pipe = to_intel_crtc(crtc)->pipe;
2112
2113         intel_edp_psr_do_exit(dev);
2114
2115         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
2116
2117         dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
2118         mutex_unlock(&dev_priv->psr.lock);
2119 }
2120
2121 void intel_edp_psr_flush(struct drm_device *dev,
2122                          unsigned frontbuffer_bits)
2123 {
2124         struct drm_i915_private *dev_priv = dev->dev_private;
2125         struct drm_crtc *crtc;
2126         enum i915_pipe pipe;
2127
2128         mutex_lock(&dev_priv->psr.lock);
2129         if (!dev_priv->psr.enabled) {
2130                 mutex_unlock(&dev_priv->psr.lock);
2131                 return;
2132         }
2133
2134         crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2135         pipe = to_intel_crtc(crtc)->pipe;
2136         dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
2137
2138         /*
2139          * On Haswell sprite plane updates don't result in a psr invalidating
2140          * signal in the hardware. Which means we need to manually fake this in
2141          * software for all flushes, not just when we've seen a preceding
2142          * invalidation through frontbuffer rendering.
2143          */
2144         if (IS_HASWELL(dev) &&
2145             (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
2146                 intel_edp_psr_do_exit(dev);
2147
2148         if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
2149                 schedule_delayed_work(&dev_priv->psr.work,
2150                                       msecs_to_jiffies(100));
2151         mutex_unlock(&dev_priv->psr.lock);
2152 }
2153
2154 void intel_edp_psr_init(struct drm_device *dev)
2155 {
2156         struct drm_i915_private *dev_priv = dev->dev_private;
2157
2158         INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
2159         lockinit(&dev_priv->psr.lock, "i915dpl", 0, LK_CANRECURSE);
2160 }
2161
2162 static void intel_disable_dp(struct intel_encoder *encoder)
2163 {
2164         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2165         enum port port = dp_to_dig_port(intel_dp)->port;
2166         struct drm_device *dev = encoder->base.dev;
2167
2168         /* Make sure the panel is off before trying to change the mode. But also
2169          * ensure that we have vdd while we switch off the panel. */
2170         intel_edp_panel_vdd_on(intel_dp);
2171         intel_edp_backlight_off(intel_dp);
2172         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2173         intel_edp_panel_off(intel_dp);
2174
2175         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
2176         if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
2177                 intel_dp_link_down(intel_dp);
2178 }
2179
2180 static void g4x_post_disable_dp(struct intel_encoder *encoder)
2181 {
2182         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2183         enum port port = dp_to_dig_port(intel_dp)->port;
2184
2185         if (port != PORT_A)
2186                 return;
2187
2188         intel_dp_link_down(intel_dp);
2189         ironlake_edp_pll_off(intel_dp);
2190 }
2191
2192 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2193 {
2194         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2195
2196         intel_dp_link_down(intel_dp);
2197 }
2198
2199 static void chv_post_disable_dp(struct intel_encoder *encoder)
2200 {
2201         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2202         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2203         struct drm_device *dev = encoder->base.dev;
2204         struct drm_i915_private *dev_priv = dev->dev_private;
2205         struct intel_crtc *intel_crtc =
2206                 to_intel_crtc(encoder->base.crtc);
2207         enum dpio_channel ch = vlv_dport_to_channel(dport);
2208         enum i915_pipe pipe = intel_crtc->pipe;
2209         u32 val;
2210
2211         intel_dp_link_down(intel_dp);
2212
2213         mutex_lock(&dev_priv->dpio_lock);
2214
2215         /* Propagate soft reset to data lane reset */
2216         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2217         val |= CHV_PCS_REQ_SOFTRESET_EN;
2218         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2219
2220         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2221         val |= CHV_PCS_REQ_SOFTRESET_EN;
2222         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2223
2224         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2225         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2226         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2227
2228         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2229         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2230         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2231
2232         mutex_unlock(&dev_priv->dpio_lock);
2233 }
2234
2235 static void intel_enable_dp(struct intel_encoder *encoder)
2236 {
2237         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2238         struct drm_device *dev = encoder->base.dev;
2239         struct drm_i915_private *dev_priv = dev->dev_private;
2240         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2241
2242         if (WARN_ON(dp_reg & DP_PORT_EN))
2243                 return;
2244
2245         intel_edp_panel_vdd_on(intel_dp);
2246         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2247         intel_dp_start_link_train(intel_dp);
2248         intel_edp_panel_on(intel_dp);
2249         edp_panel_vdd_off(intel_dp, true);
2250         intel_dp_complete_link_train(intel_dp);
2251         intel_dp_stop_link_train(intel_dp);
2252 }
2253
2254 static void g4x_enable_dp(struct intel_encoder *encoder)
2255 {
2256         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2257
2258         intel_enable_dp(encoder);
2259         intel_edp_backlight_on(intel_dp);
2260 }
2261
2262 static void vlv_enable_dp(struct intel_encoder *encoder)
2263 {
2264         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2265
2266         intel_edp_backlight_on(intel_dp);
2267 }
2268
2269 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2270 {
2271         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2272         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2273
2274         intel_dp_prepare(encoder);
2275
2276         /* Only ilk+ has port A */
2277         if (dport->port == PORT_A) {
2278                 ironlake_set_pll_cpu_edp(intel_dp);
2279                 ironlake_edp_pll_on(intel_dp);
2280         }
2281 }
2282
2283 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2284 {
2285         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2286         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2287         struct drm_device *dev = encoder->base.dev;
2288         struct drm_i915_private *dev_priv = dev->dev_private;
2289         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2290         enum dpio_channel port = vlv_dport_to_channel(dport);
2291         int pipe = intel_crtc->pipe;
2292         struct edp_power_seq power_seq;
2293         u32 val;
2294
2295         mutex_lock(&dev_priv->dpio_lock);
2296
2297         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2298         val = 0;
2299         if (pipe)
2300                 val |= (1<<21);
2301         else
2302                 val &= ~(1<<21);
2303         val |= 0x001000c4;
2304         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2305         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2306         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2307
2308         mutex_unlock(&dev_priv->dpio_lock);
2309
2310         if (is_edp(intel_dp)) {
2311                 /* init power sequencer on this pipe and port */
2312                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2313                 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2314                                                               &power_seq);
2315         }
2316
2317         intel_enable_dp(encoder);
2318
2319         vlv_wait_port_ready(dev_priv, dport);
2320 }
2321
2322 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2323 {
2324         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2325         struct drm_device *dev = encoder->base.dev;
2326         struct drm_i915_private *dev_priv = dev->dev_private;
2327         struct intel_crtc *intel_crtc =
2328                 to_intel_crtc(encoder->base.crtc);
2329         enum dpio_channel port = vlv_dport_to_channel(dport);
2330         int pipe = intel_crtc->pipe;
2331
2332         intel_dp_prepare(encoder);
2333
2334         /* Program Tx lane resets to default */
2335         mutex_lock(&dev_priv->dpio_lock);
2336         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2337                          DPIO_PCS_TX_LANE2_RESET |
2338                          DPIO_PCS_TX_LANE1_RESET);
2339         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2340                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2341                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2342                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2343                                  DPIO_PCS_CLK_SOFT_RESET);
2344
2345         /* Fix up inter-pair skew failure */
2346         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2347         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2348         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2349         mutex_unlock(&dev_priv->dpio_lock);
2350 }
2351
2352 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2353 {
2354         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2355         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2356         struct drm_device *dev = encoder->base.dev;
2357         struct drm_i915_private *dev_priv = dev->dev_private;
2358         struct edp_power_seq power_seq;
2359         struct intel_crtc *intel_crtc =
2360                 to_intel_crtc(encoder->base.crtc);
2361         enum dpio_channel ch = vlv_dport_to_channel(dport);
2362         int pipe = intel_crtc->pipe;
2363         int data, i;
2364         u32 val;
2365
2366         mutex_lock(&dev_priv->dpio_lock);
2367
2368         /* Deassert soft data lane reset*/
2369         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2370         val |= CHV_PCS_REQ_SOFTRESET_EN;
2371         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2372
2373         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2374         val |= CHV_PCS_REQ_SOFTRESET_EN;
2375         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2376
2377         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2378         val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2379         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2380
2381         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2382         val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2383         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2384
2385         /* Program Tx lane latency optimal setting*/
2386         for (i = 0; i < 4; i++) {
2387                 /* Set the latency optimal bit */
2388                 data = (i == 1) ? 0x0 : 0x6;
2389                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2390                                 data << DPIO_FRC_LATENCY_SHFIT);
2391
2392                 /* Set the upar bit */
2393                 data = (i == 1) ? 0x0 : 0x1;
2394                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2395                                 data << DPIO_UPAR_SHIFT);
2396         }
2397
2398         /* Data lane stagger programming */
2399         /* FIXME: Fix up value only after power analysis */
2400
2401         mutex_unlock(&dev_priv->dpio_lock);
2402
2403         if (is_edp(intel_dp)) {
2404                 /* init power sequencer on this pipe and port */
2405                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2406                 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2407                                                               &power_seq);
2408         }
2409
2410         intel_enable_dp(encoder);
2411
2412         vlv_wait_port_ready(dev_priv, dport);
2413 }
2414
2415 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2416 {
2417         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2418         struct drm_device *dev = encoder->base.dev;
2419         struct drm_i915_private *dev_priv = dev->dev_private;
2420         struct intel_crtc *intel_crtc =
2421                 to_intel_crtc(encoder->base.crtc);
2422         enum dpio_channel ch = vlv_dport_to_channel(dport);
2423         enum i915_pipe pipe = intel_crtc->pipe;
2424         u32 val;
2425
2426         mutex_lock(&dev_priv->dpio_lock);
2427
2428         /* program left/right clock distribution */
2429         if (pipe != PIPE_B) {
2430                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2431                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2432                 if (ch == DPIO_CH0)
2433                         val |= CHV_BUFLEFTENA1_FORCE;
2434                 if (ch == DPIO_CH1)
2435                         val |= CHV_BUFRIGHTENA1_FORCE;
2436                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2437         } else {
2438                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2439                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2440                 if (ch == DPIO_CH0)
2441                         val |= CHV_BUFLEFTENA2_FORCE;
2442                 if (ch == DPIO_CH1)
2443                         val |= CHV_BUFRIGHTENA2_FORCE;
2444                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2445         }
2446
2447         /* program clock channel usage */
2448         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2449         val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2450         if (pipe != PIPE_B)
2451                 val &= ~CHV_PCS_USEDCLKCHANNEL;
2452         else
2453                 val |= CHV_PCS_USEDCLKCHANNEL;
2454         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2455
2456         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2457         val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2458         if (pipe != PIPE_B)
2459                 val &= ~CHV_PCS_USEDCLKCHANNEL;
2460         else
2461                 val |= CHV_PCS_USEDCLKCHANNEL;
2462         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2463
2464         /*
2465          * This a a bit weird since generally CL
2466          * matches the pipe, but here we need to
2467          * pick the CL based on the port.
2468          */
2469         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2470         if (pipe != PIPE_B)
2471                 val &= ~CHV_CMN_USEDCLKCHANNEL;
2472         else
2473                 val |= CHV_CMN_USEDCLKCHANNEL;
2474         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2475
2476         mutex_unlock(&dev_priv->dpio_lock);
2477 }
2478
2479 /*
2480  * Native read with retry for link status and receiver capability reads for
2481  * cases where the sink may still be asleep.
2482  *
2483  * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2484  * supposed to retry 3 times per the spec.
2485  */
2486 static ssize_t
2487 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2488                         void *buffer, size_t size)
2489 {
2490         ssize_t ret;
2491         int i;
2492
2493         for (i = 0; i < 3; i++) {
2494                 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2495                 if (ret == size)
2496                         return ret;
2497                 msleep(1);
2498         }
2499
2500         return ret;
2501 }
2502
2503 /*
2504  * Fetch AUX CH registers 0x202 - 0x207 which contain
2505  * link status information
2506  */
2507 static bool
2508 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2509 {
2510         return intel_dp_dpcd_read_wake(&intel_dp->aux,
2511                                        DP_LANE0_1_STATUS,
2512                                        link_status,
2513                                        DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2514 }
2515
2516 /* These are source-specific values. */
2517 static uint8_t
2518 intel_dp_voltage_max(struct intel_dp *intel_dp)
2519 {
2520         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2521         enum port port = dp_to_dig_port(intel_dp)->port;
2522
2523         if (IS_VALLEYVIEW(dev))
2524                 return DP_TRAIN_VOLTAGE_SWING_1200;
2525         else if (IS_GEN7(dev) && port == PORT_A)
2526                 return DP_TRAIN_VOLTAGE_SWING_800;
2527         else if (HAS_PCH_CPT(dev) && port != PORT_A)
2528                 return DP_TRAIN_VOLTAGE_SWING_1200;
2529         else
2530                 return DP_TRAIN_VOLTAGE_SWING_800;
2531 }
2532
2533 static uint8_t
2534 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2535 {
2536         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2537         enum port port = dp_to_dig_port(intel_dp)->port;
2538
2539         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2540                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2541                 case DP_TRAIN_VOLTAGE_SWING_400:
2542                         return DP_TRAIN_PRE_EMPHASIS_9_5;
2543                 case DP_TRAIN_VOLTAGE_SWING_600:
2544                         return DP_TRAIN_PRE_EMPHASIS_6;
2545                 case DP_TRAIN_VOLTAGE_SWING_800:
2546                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2547                 case DP_TRAIN_VOLTAGE_SWING_1200:
2548                 default:
2549                         return DP_TRAIN_PRE_EMPHASIS_0;
2550                 }
2551         } else if (IS_VALLEYVIEW(dev)) {
2552                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2553                 case DP_TRAIN_VOLTAGE_SWING_400:
2554                         return DP_TRAIN_PRE_EMPHASIS_9_5;
2555                 case DP_TRAIN_VOLTAGE_SWING_600:
2556                         return DP_TRAIN_PRE_EMPHASIS_6;
2557                 case DP_TRAIN_VOLTAGE_SWING_800:
2558                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2559                 case DP_TRAIN_VOLTAGE_SWING_1200:
2560                 default:
2561                         return DP_TRAIN_PRE_EMPHASIS_0;
2562                 }
2563         } else if (IS_GEN7(dev) && port == PORT_A) {
2564                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2565                 case DP_TRAIN_VOLTAGE_SWING_400:
2566                         return DP_TRAIN_PRE_EMPHASIS_6;
2567                 case DP_TRAIN_VOLTAGE_SWING_600:
2568                 case DP_TRAIN_VOLTAGE_SWING_800:
2569                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2570                 default:
2571                         return DP_TRAIN_PRE_EMPHASIS_0;
2572                 }
2573         } else {
2574                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2575                 case DP_TRAIN_VOLTAGE_SWING_400:
2576                         return DP_TRAIN_PRE_EMPHASIS_6;
2577                 case DP_TRAIN_VOLTAGE_SWING_600:
2578                         return DP_TRAIN_PRE_EMPHASIS_6;
2579                 case DP_TRAIN_VOLTAGE_SWING_800:
2580                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2581                 case DP_TRAIN_VOLTAGE_SWING_1200:
2582                 default:
2583                         return DP_TRAIN_PRE_EMPHASIS_0;
2584                 }
2585         }
2586 }
2587
2588 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2589 {
2590         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2591         struct drm_i915_private *dev_priv = dev->dev_private;
2592         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2593         struct intel_crtc *intel_crtc =
2594                 to_intel_crtc(dport->base.base.crtc);
2595         unsigned long demph_reg_value, preemph_reg_value,
2596                 uniqtranscale_reg_value;
2597         uint8_t train_set = intel_dp->train_set[0];
2598         enum dpio_channel port = vlv_dport_to_channel(dport);
2599         int pipe = intel_crtc->pipe;
2600
2601         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2602         case DP_TRAIN_PRE_EMPHASIS_0:
2603                 preemph_reg_value = 0x0004000;
2604                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2605                 case DP_TRAIN_VOLTAGE_SWING_400:
2606                         demph_reg_value = 0x2B405555;
2607                         uniqtranscale_reg_value = 0x552AB83A;
2608                         break;
2609                 case DP_TRAIN_VOLTAGE_SWING_600:
2610                         demph_reg_value = 0x2B404040;
2611                         uniqtranscale_reg_value = 0x5548B83A;
2612                         break;
2613                 case DP_TRAIN_VOLTAGE_SWING_800:
2614                         demph_reg_value = 0x2B245555;
2615                         uniqtranscale_reg_value = 0x5560B83A;
2616                         break;
2617                 case DP_TRAIN_VOLTAGE_SWING_1200:
2618                         demph_reg_value = 0x2B405555;
2619                         uniqtranscale_reg_value = 0x5598DA3A;
2620                         break;
2621                 default:
2622                         return 0;
2623                 }
2624                 break;
2625         case DP_TRAIN_PRE_EMPHASIS_3_5:
2626                 preemph_reg_value = 0x0002000;
2627                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2628                 case DP_TRAIN_VOLTAGE_SWING_400:
2629                         demph_reg_value = 0x2B404040;
2630                         uniqtranscale_reg_value = 0x5552B83A;
2631                         break;
2632                 case DP_TRAIN_VOLTAGE_SWING_600:
2633                         demph_reg_value = 0x2B404848;
2634                         uniqtranscale_reg_value = 0x5580B83A;
2635                         break;
2636                 case DP_TRAIN_VOLTAGE_SWING_800:
2637                         demph_reg_value = 0x2B404040;
2638                         uniqtranscale_reg_value = 0x55ADDA3A;
2639                         break;
2640                 default:
2641                         return 0;
2642                 }
2643                 break;
2644         case DP_TRAIN_PRE_EMPHASIS_6:
2645                 preemph_reg_value = 0x0000000;
2646                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2647                 case DP_TRAIN_VOLTAGE_SWING_400:
2648                         demph_reg_value = 0x2B305555;
2649                         uniqtranscale_reg_value = 0x5570B83A;
2650                         break;
2651                 case DP_TRAIN_VOLTAGE_SWING_600:
2652                         demph_reg_value = 0x2B2B4040;
2653                         uniqtranscale_reg_value = 0x55ADDA3A;
2654                         break;
2655                 default:
2656                         return 0;
2657                 }
2658                 break;
2659         case DP_TRAIN_PRE_EMPHASIS_9_5:
2660                 preemph_reg_value = 0x0006000;
2661                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2662                 case DP_TRAIN_VOLTAGE_SWING_400:
2663                         demph_reg_value = 0x1B405555;
2664                         uniqtranscale_reg_value = 0x55ADDA3A;
2665                         break;
2666                 default:
2667                         return 0;
2668                 }
2669                 break;
2670         default:
2671                 return 0;
2672         }
2673
2674         mutex_lock(&dev_priv->dpio_lock);
2675         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2676         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2677         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2678                          uniqtranscale_reg_value);
2679         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2680         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2681         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2682         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2683         mutex_unlock(&dev_priv->dpio_lock);
2684
2685         return 0;
2686 }
2687
2688 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2689 {
2690         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2691         struct drm_i915_private *dev_priv = dev->dev_private;
2692         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2693         struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2694         u32 deemph_reg_value, margin_reg_value, val;
2695         uint8_t train_set = intel_dp->train_set[0];
2696         enum dpio_channel ch = vlv_dport_to_channel(dport);
2697         enum i915_pipe pipe = intel_crtc->pipe;
2698         int i;
2699
2700         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2701         case DP_TRAIN_PRE_EMPHASIS_0:
2702                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2703                 case DP_TRAIN_VOLTAGE_SWING_400:
2704                         deemph_reg_value = 128;
2705                         margin_reg_value = 52;
2706                         break;
2707                 case DP_TRAIN_VOLTAGE_SWING_600:
2708                         deemph_reg_value = 128;
2709                         margin_reg_value = 77;
2710                         break;
2711                 case DP_TRAIN_VOLTAGE_SWING_800:
2712                         deemph_reg_value = 128;
2713                         margin_reg_value = 102;
2714                         break;
2715                 case DP_TRAIN_VOLTAGE_SWING_1200:
2716                         deemph_reg_value = 128;
2717                         margin_reg_value = 154;
2718                         /* FIXME extra to set for 1200 */
2719                         break;
2720                 default:
2721                         return 0;
2722                 }
2723                 break;
2724         case DP_TRAIN_PRE_EMPHASIS_3_5:
2725                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2726                 case DP_TRAIN_VOLTAGE_SWING_400:
2727                         deemph_reg_value = 85;
2728                         margin_reg_value = 78;
2729                         break;
2730                 case DP_TRAIN_VOLTAGE_SWING_600:
2731                         deemph_reg_value = 85;
2732                         margin_reg_value = 116;
2733                         break;
2734                 case DP_TRAIN_VOLTAGE_SWING_800:
2735                         deemph_reg_value = 85;
2736                         margin_reg_value = 154;
2737                         break;
2738                 default:
2739                         return 0;
2740                 }
2741                 break;
2742         case DP_TRAIN_PRE_EMPHASIS_6:
2743                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2744                 case DP_TRAIN_VOLTAGE_SWING_400:
2745                         deemph_reg_value = 64;
2746                         margin_reg_value = 104;
2747                         break;
2748                 case DP_TRAIN_VOLTAGE_SWING_600:
2749                         deemph_reg_value = 64;
2750                         margin_reg_value = 154;
2751                         break;
2752                 default:
2753                         return 0;
2754                 }
2755                 break;
2756         case DP_TRAIN_PRE_EMPHASIS_9_5:
2757                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2758                 case DP_TRAIN_VOLTAGE_SWING_400:
2759                         deemph_reg_value = 43;
2760                         margin_reg_value = 154;
2761                         break;
2762                 default:
2763                         return 0;
2764                 }
2765                 break;
2766         default:
2767                 return 0;
2768         }
2769
2770         mutex_lock(&dev_priv->dpio_lock);
2771
2772         /* Clear calc init */
2773         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2774         val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2775         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2776
2777         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2778         val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2779         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2780
2781         /* Program swing deemph */
2782         for (i = 0; i < 4; i++) {
2783                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
2784                 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2785                 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2786                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
2787         }
2788
2789         /* Program swing margin */
2790         for (i = 0; i < 4; i++) {
2791                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2792                 val &= ~DPIO_SWING_MARGIN_MASK;
2793                 val |= margin_reg_value << DPIO_SWING_MARGIN_SHIFT;
2794                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2795         }
2796
2797         /* Disable unique transition scale */
2798         for (i = 0; i < 4; i++) {
2799                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2800                 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2801                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2802         }
2803
2804         if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
2805                         == DP_TRAIN_PRE_EMPHASIS_0) &&
2806                 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
2807                         == DP_TRAIN_VOLTAGE_SWING_1200)) {
2808
2809                 /*
2810                  * The document said it needs to set bit 27 for ch0 and bit 26
2811                  * for ch1. Might be a typo in the doc.
2812                  * For now, for this unique transition scale selection, set bit
2813                  * 27 for ch0 and ch1.
2814                  */
2815                 for (i = 0; i < 4; i++) {
2816                         val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2817                         val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
2818                         vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2819                 }
2820
2821                 for (i = 0; i < 4; i++) {
2822                         val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2823                         val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2824                         val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2825                         vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2826                 }
2827         }
2828
2829         /* Start swing calculation */
2830         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2831         val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2832         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2833
2834         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2835         val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2836         vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2837
2838         /* LRC Bypass */
2839         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
2840         val |= DPIO_LRC_BYPASS;
2841         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
2842
2843         mutex_unlock(&dev_priv->dpio_lock);
2844
2845         return 0;
2846 }
2847
2848 static void
2849 intel_get_adjust_train(struct intel_dp *intel_dp,
2850                        const uint8_t link_status[DP_LINK_STATUS_SIZE])
2851 {
2852         uint8_t v = 0;
2853         uint8_t p = 0;
2854         int lane;
2855         uint8_t voltage_max;
2856         uint8_t preemph_max;
2857
2858         for (lane = 0; lane < intel_dp->lane_count; lane++) {
2859                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2860                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2861
2862                 if (this_v > v)
2863                         v = this_v;
2864                 if (this_p > p)
2865                         p = this_p;
2866         }
2867
2868         voltage_max = intel_dp_voltage_max(intel_dp);
2869         if (v >= voltage_max)
2870                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2871
2872         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2873         if (p >= preemph_max)
2874                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2875
2876         for (lane = 0; lane < 4; lane++)
2877                 intel_dp->train_set[lane] = v | p;
2878 }
2879
2880 static uint32_t
2881 intel_gen4_signal_levels(uint8_t train_set)
2882 {
2883         uint32_t        signal_levels = 0;
2884
2885         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2886         case DP_TRAIN_VOLTAGE_SWING_400:
2887         default:
2888                 signal_levels |= DP_VOLTAGE_0_4;
2889                 break;
2890         case DP_TRAIN_VOLTAGE_SWING_600:
2891                 signal_levels |= DP_VOLTAGE_0_6;
2892                 break;
2893         case DP_TRAIN_VOLTAGE_SWING_800:
2894                 signal_levels |= DP_VOLTAGE_0_8;
2895                 break;
2896         case DP_TRAIN_VOLTAGE_SWING_1200:
2897                 signal_levels |= DP_VOLTAGE_1_2;
2898                 break;
2899         }
2900         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2901         case DP_TRAIN_PRE_EMPHASIS_0:
2902         default:
2903                 signal_levels |= DP_PRE_EMPHASIS_0;
2904                 break;
2905         case DP_TRAIN_PRE_EMPHASIS_3_5:
2906                 signal_levels |= DP_PRE_EMPHASIS_3_5;
2907                 break;
2908         case DP_TRAIN_PRE_EMPHASIS_6:
2909                 signal_levels |= DP_PRE_EMPHASIS_6;
2910                 break;
2911         case DP_TRAIN_PRE_EMPHASIS_9_5:
2912                 signal_levels |= DP_PRE_EMPHASIS_9_5;
2913                 break;
2914         }
2915         return signal_levels;
2916 }
2917
2918 /* Gen6's DP voltage swing and pre-emphasis control */
2919 static uint32_t
2920 intel_gen6_edp_signal_levels(uint8_t train_set)
2921 {
2922         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2923                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2924         switch (signal_levels) {
2925         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2926         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2927                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2928         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2929                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2930         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2931         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2932                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2933         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2934         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2935                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2936         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2937         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2938                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2939         default:
2940                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2941                               "0x%x\n", signal_levels);
2942                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2943         }
2944 }
2945
2946 /* Gen7's DP voltage swing and pre-emphasis control */
2947 static uint32_t
2948 intel_gen7_edp_signal_levels(uint8_t train_set)
2949 {
2950         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2951                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2952         switch (signal_levels) {
2953         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2954                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2955         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2956                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2957         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2958                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2959
2960         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2961                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2962         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2963                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2964
2965         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2966                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2967         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2968                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2969
2970         default:
2971                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2972                               "0x%x\n", signal_levels);
2973                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2974         }
2975 }
2976
2977 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2978 static uint32_t
2979 intel_hsw_signal_levels(uint8_t train_set)
2980 {
2981         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2982                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2983         switch (signal_levels) {
2984         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2985                 return DDI_BUF_EMP_400MV_0DB_HSW;
2986         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2987                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2988         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2989                 return DDI_BUF_EMP_400MV_6DB_HSW;
2990         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2991                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2992
2993         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2994                 return DDI_BUF_EMP_600MV_0DB_HSW;
2995         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2996                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2997         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2998                 return DDI_BUF_EMP_600MV_6DB_HSW;
2999
3000         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
3001                 return DDI_BUF_EMP_800MV_0DB_HSW;
3002         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
3003                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
3004         default:
3005                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3006                               "0x%x\n", signal_levels);
3007                 return DDI_BUF_EMP_400MV_0DB_HSW;
3008         }
3009 }
3010
3011 /* Properly updates "DP" with the correct signal levels. */
3012 static void
3013 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3014 {
3015         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3016         enum port port = intel_dig_port->port;
3017         struct drm_device *dev = intel_dig_port->base.base.dev;
3018         uint32_t signal_levels, mask;
3019         uint8_t train_set = intel_dp->train_set[0];
3020
3021         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3022                 signal_levels = intel_hsw_signal_levels(train_set);
3023                 mask = DDI_BUF_EMP_MASK;
3024         } else if (IS_CHERRYVIEW(dev)) {
3025                 signal_levels = intel_chv_signal_levels(intel_dp);
3026                 mask = 0;
3027         } else if (IS_VALLEYVIEW(dev)) {
3028                 signal_levels = intel_vlv_signal_levels(intel_dp);
3029                 mask = 0;
3030         } else if (IS_GEN7(dev) && port == PORT_A) {
3031                 signal_levels = intel_gen7_edp_signal_levels(train_set);
3032                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3033         } else if (IS_GEN6(dev) && port == PORT_A) {
3034                 signal_levels = intel_gen6_edp_signal_levels(train_set);
3035                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3036         } else {
3037                 signal_levels = intel_gen4_signal_levels(train_set);
3038                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3039         }
3040
3041         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3042
3043         *DP = (*DP & ~mask) | signal_levels;
3044 }
3045
3046 static bool
3047 intel_dp_set_link_train(struct intel_dp *intel_dp,
3048                         uint32_t *DP,
3049                         uint8_t dp_train_pat)
3050 {
3051         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3052         struct drm_device *dev = intel_dig_port->base.base.dev;
3053         struct drm_i915_private *dev_priv = dev->dev_private;
3054         enum port port = intel_dig_port->port;
3055         uint8_t buf[sizeof(intel_dp->train_set) + 1];
3056         int ret, len;
3057
3058         if (HAS_DDI(dev)) {
3059                 uint32_t temp = I915_READ(DP_TP_CTL(port));
3060
3061                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
3062                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
3063                 else
3064                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
3065
3066                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3067                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3068                 case DP_TRAINING_PATTERN_DISABLE:
3069                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
3070
3071                         break;
3072                 case DP_TRAINING_PATTERN_1:
3073                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
3074                         break;
3075                 case DP_TRAINING_PATTERN_2:
3076                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
3077                         break;
3078                 case DP_TRAINING_PATTERN_3:
3079                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
3080                         break;
3081                 }
3082                 I915_WRITE(DP_TP_CTL(port), temp);
3083
3084         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3085                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
3086
3087                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3088                 case DP_TRAINING_PATTERN_DISABLE:
3089                         *DP |= DP_LINK_TRAIN_OFF_CPT;
3090                         break;
3091                 case DP_TRAINING_PATTERN_1:
3092                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
3093                         break;
3094                 case DP_TRAINING_PATTERN_2:
3095                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3096                         break;
3097                 case DP_TRAINING_PATTERN_3:
3098                         DRM_ERROR("DP training pattern 3 not supported\n");
3099                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3100                         break;
3101                 }
3102
3103         } else {
3104                 *DP &= ~DP_LINK_TRAIN_MASK;
3105
3106                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3107                 case DP_TRAINING_PATTERN_DISABLE:
3108                         *DP |= DP_LINK_TRAIN_OFF;
3109                         break;
3110                 case DP_TRAINING_PATTERN_1:
3111                         *DP |= DP_LINK_TRAIN_PAT_1;
3112                         break;
3113                 case DP_TRAINING_PATTERN_2:
3114                         *DP |= DP_LINK_TRAIN_PAT_2;
3115                         break;
3116                 case DP_TRAINING_PATTERN_3:
3117                         DRM_ERROR("DP training pattern 3 not supported\n");
3118                         *DP |= DP_LINK_TRAIN_PAT_2;
3119                         break;
3120                 }
3121         }
3122
3123         I915_WRITE(intel_dp->output_reg, *DP);
3124         POSTING_READ(intel_dp->output_reg);
3125
3126         buf[0] = dp_train_pat;
3127         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3128             DP_TRAINING_PATTERN_DISABLE) {
3129                 /* don't write DP_TRAINING_LANEx_SET on disable */
3130                 len = 1;
3131         } else {
3132                 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3133                 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3134                 len = intel_dp->lane_count + 1;
3135         }
3136
3137         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3138                                 buf, len);
3139
3140         return ret == len;
3141 }
3142
3143 static bool
3144 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3145                         uint8_t dp_train_pat)
3146 {
3147         memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3148         intel_dp_set_signal_levels(intel_dp, DP);
3149         return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3150 }
3151
3152 static bool
3153 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3154                            const uint8_t link_status[DP_LINK_STATUS_SIZE])
3155 {
3156         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3157         struct drm_device *dev = intel_dig_port->base.base.dev;
3158         struct drm_i915_private *dev_priv = dev->dev_private;
3159         int ret;
3160
3161         intel_get_adjust_train(intel_dp, link_status);
3162         intel_dp_set_signal_levels(intel_dp, DP);
3163
3164         I915_WRITE(intel_dp->output_reg, *DP);
3165         POSTING_READ(intel_dp->output_reg);
3166
3167         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3168                                 intel_dp->train_set, intel_dp->lane_count);
3169
3170         return ret == intel_dp->lane_count;
3171 }
3172
3173 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3174 {
3175         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3176         struct drm_device *dev = intel_dig_port->base.base.dev;
3177         struct drm_i915_private *dev_priv = dev->dev_private;
3178         enum port port = intel_dig_port->port;
3179         uint32_t val;
3180
3181         if (!HAS_DDI(dev))
3182                 return;
3183
3184         val = I915_READ(DP_TP_CTL(port));
3185         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3186         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3187         I915_WRITE(DP_TP_CTL(port), val);
3188
3189         /*
3190          * On PORT_A we can have only eDP in SST mode. There the only reason
3191          * we need to set idle transmission mode is to work around a HW issue
3192          * where we enable the pipe while not in idle link-training mode.
3193          * In this case there is requirement to wait for a minimum number of
3194          * idle patterns to be sent.
3195          */
3196         if (port == PORT_A)
3197                 return;
3198
3199         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3200                      1))
3201                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3202 }
3203
3204 /* Enable corresponding port and start training pattern 1 */
3205 void
3206 intel_dp_start_link_train(struct intel_dp *intel_dp)
3207 {
3208         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3209         struct drm_device *dev = encoder->dev;
3210         int i;
3211         uint8_t voltage;
3212         int voltage_tries, loop_tries;
3213         uint32_t DP = intel_dp->DP;
3214         uint8_t link_config[2];
3215
3216         if (HAS_DDI(dev))
3217                 intel_ddi_prepare_link_retrain(encoder);
3218
3219         /* Write the link configuration data */
3220         link_config[0] = intel_dp->link_bw;
3221         link_config[1] = intel_dp->lane_count;
3222         if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3223                 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3224         drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3225
3226         link_config[0] = 0;
3227         link_config[1] = DP_SET_ANSI_8B10B;
3228         drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3229
3230         DP |= DP_PORT_EN;
3231
3232         /* clock recovery */
3233         if (!intel_dp_reset_link_train(intel_dp, &DP,
3234                                        DP_TRAINING_PATTERN_1 |
3235                                        DP_LINK_SCRAMBLING_DISABLE)) {
3236                 DRM_ERROR("failed to enable link training\n");
3237                 return;
3238         }
3239
3240         voltage = 0xff;
3241         voltage_tries = 0;
3242         loop_tries = 0;
3243         for (;;) {
3244                 uint8_t link_status[DP_LINK_STATUS_SIZE];
3245
3246                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3247                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3248                         DRM_ERROR("failed to get link status\n");
3249                         break;
3250                 }
3251
3252                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3253                         DRM_DEBUG_KMS("clock recovery OK\n");
3254                         break;
3255                 }
3256
3257                 /* Check to see if we've tried the max voltage */
3258                 for (i = 0; i < intel_dp->lane_count; i++)
3259                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3260                                 break;
3261                 if (i == intel_dp->lane_count) {
3262                         ++loop_tries;
3263                         if (loop_tries == 5) {
3264                                 DRM_ERROR("too many full retries, give up\n");
3265                                 break;
3266                         }
3267                         intel_dp_reset_link_train(intel_dp, &DP,
3268                                                   DP_TRAINING_PATTERN_1 |
3269                                                   DP_LINK_SCRAMBLING_DISABLE);
3270                         voltage_tries = 0;
3271                         continue;
3272                 }
3273
3274                 /* Check to see if we've tried the same voltage 5 times */
3275                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3276                         ++voltage_tries;
3277                         if (voltage_tries == 5) {
3278                                 DRM_ERROR("too many voltage retries, give up\n");
3279                                 break;
3280                         }
3281                 } else
3282                         voltage_tries = 0;
3283                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3284
3285                 /* Update training set as requested by target */
3286                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3287                         DRM_ERROR("failed to update link training\n");
3288                         break;
3289                 }
3290         }
3291
3292         intel_dp->DP = DP;
3293 }
3294
3295 void
3296 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3297 {
3298         bool channel_eq = false;
3299         int tries, cr_tries;
3300         uint32_t DP = intel_dp->DP;
3301         uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3302
3303         /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3304         if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3305                 training_pattern = DP_TRAINING_PATTERN_3;
3306
3307         /* channel equalization */
3308         if (!intel_dp_set_link_train(intel_dp, &DP,
3309                                      training_pattern |
3310                                      DP_LINK_SCRAMBLING_DISABLE)) {
3311                 DRM_ERROR("failed to start channel equalization\n");
3312                 return;
3313         }
3314
3315         tries = 0;
3316         cr_tries = 0;
3317         channel_eq = false;
3318         for (;;) {
3319                 uint8_t link_status[DP_LINK_STATUS_SIZE];
3320
3321                 if (cr_tries > 5) {
3322                         DRM_ERROR("failed to train DP, aborting\n");
3323                         break;
3324                 }
3325
3326                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3327                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3328                         DRM_ERROR("failed to get link status\n");
3329                         break;
3330                 }
3331
3332                 /* Make sure clock is still ok */
3333                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3334                         intel_dp_start_link_train(intel_dp);
3335                         intel_dp_set_link_train(intel_dp, &DP,
3336                                                 training_pattern |
3337                                                 DP_LINK_SCRAMBLING_DISABLE);
3338                         cr_tries++;
3339                         continue;
3340                 }
3341
3342                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3343                         channel_eq = true;
3344                         break;
3345                 }
3346
3347                 /* Try 5 times, then try clock recovery if that fails */
3348                 if (tries > 5) {
3349                         intel_dp_link_down(intel_dp);
3350                         intel_dp_start_link_train(intel_dp);
3351                         intel_dp_set_link_train(intel_dp, &DP,
3352                                                 training_pattern |
3353                                                 DP_LINK_SCRAMBLING_DISABLE);
3354                         tries = 0;
3355                         cr_tries++;
3356                         continue;
3357                 }
3358
3359                 /* Update training set as requested by target */
3360                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3361                         DRM_ERROR("failed to update link training\n");
3362                         break;
3363                 }
3364                 ++tries;
3365         }
3366
3367         intel_dp_set_idle_link_train(intel_dp);
3368
3369         intel_dp->DP = DP;
3370
3371         if (channel_eq)
3372                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3373
3374 }
3375
3376 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3377 {
3378         intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3379                                 DP_TRAINING_PATTERN_DISABLE);
3380 }
3381
3382 static void
3383 intel_dp_link_down(struct intel_dp *intel_dp)
3384 {
3385         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3386         enum port port = intel_dig_port->port;
3387         struct drm_device *dev = intel_dig_port->base.base.dev;
3388         struct drm_i915_private *dev_priv = dev->dev_private;
3389         struct intel_crtc *intel_crtc =
3390                 to_intel_crtc(intel_dig_port->base.base.crtc);
3391         uint32_t DP = intel_dp->DP;
3392
3393         if (WARN_ON(HAS_DDI(dev)))
3394                 return;
3395
3396         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3397                 return;
3398
3399         DRM_DEBUG_KMS("\n");
3400
3401         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3402                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3403                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3404         } else {
3405                 DP &= ~DP_LINK_TRAIN_MASK;
3406                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3407         }
3408         POSTING_READ(intel_dp->output_reg);
3409
3410         if (HAS_PCH_IBX(dev) &&
3411             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3412                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3413
3414                 /* Hardware workaround: leaving our transcoder select
3415                  * set to transcoder B while it's off will prevent the
3416                  * corresponding HDMI output on transcoder A.
3417                  *
3418                  * Combine this with another hardware workaround:
3419                  * transcoder select bit can only be cleared while the
3420                  * port is enabled.
3421                  */
3422                 DP &= ~DP_PIPEB_SELECT;
3423                 I915_WRITE(intel_dp->output_reg, DP);
3424
3425                 /* Changes to enable or select take place the vblank
3426                  * after being written.
3427                  */
3428                 if (WARN_ON(crtc == NULL)) {
3429                         /* We should never try to disable a port without a crtc
3430                          * attached. For paranoia keep the code around for a
3431                          * bit. */
3432                         POSTING_READ(intel_dp->output_reg);
3433                         msleep(50);
3434                 } else
3435                         intel_wait_for_vblank(dev, intel_crtc->pipe);
3436         }
3437
3438         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3439         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3440         POSTING_READ(intel_dp->output_reg);
3441         msleep(intel_dp->panel_power_down_delay);
3442 }
3443
3444 static bool
3445 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3446 {
3447         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3448         struct drm_device *dev = dig_port->base.base.dev;
3449         struct drm_i915_private *dev_priv = dev->dev_private;
3450
3451         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
3452
3453         if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3454                                     sizeof(intel_dp->dpcd)) < 0)
3455                 return false; /* aux transfer failed */
3456
3457         ksnprintf(dpcd_hex_dump,
3458                   sizeof(dpcd_hex_dump),
3459                   "%02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
3460                   intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
3461                   intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
3462                   intel_dp->dpcd[6], intel_dp->dpcd[7]);
3463         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
3464
3465         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3466                 return false; /* DPCD not present */
3467
3468         /* Check if the panel supports PSR */
3469         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3470         if (is_edp(intel_dp)) {
3471                 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3472                                         intel_dp->psr_dpcd,
3473                                         sizeof(intel_dp->psr_dpcd));
3474                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3475                         dev_priv->psr.sink_support = true;
3476                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3477                 }
3478         }
3479
3480         /* Training Pattern 3 support */
3481         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3482             intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3483                 intel_dp->use_tps3 = true;
3484                 DRM_DEBUG_KMS("Displayport TPS3 supported");
3485         } else
3486                 intel_dp->use_tps3 = false;
3487
3488         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3489               DP_DWN_STRM_PORT_PRESENT))
3490                 return true; /* native DP sink */
3491
3492         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3493                 return true; /* no per-port downstream info */
3494
3495         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3496                                     intel_dp->downstream_ports,
3497                                     DP_MAX_DOWNSTREAM_PORTS) < 0)
3498                 return false; /* downstream port status fetch failed */
3499
3500         return true;
3501 }
3502
3503 static void
3504 intel_dp_probe_oui(struct intel_dp *intel_dp)
3505 {
3506         u8 buf[3];
3507
3508         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3509                 return;
3510
3511         intel_edp_panel_vdd_on(intel_dp);
3512
3513         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3514                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3515                               buf[0], buf[1], buf[2]);
3516
3517         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3518                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3519                               buf[0], buf[1], buf[2]);
3520
3521         edp_panel_vdd_off(intel_dp, false);
3522 }
3523
3524 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3525 {
3526         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3527         struct drm_device *dev = intel_dig_port->base.base.dev;
3528         struct intel_crtc *intel_crtc =
3529                 to_intel_crtc(intel_dig_port->base.base.crtc);
3530         u8 buf[1];
3531
3532         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3533                 return -EAGAIN;
3534
3535         if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3536                 return -ENOTTY;
3537
3538         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3539                                DP_TEST_SINK_START) < 0)
3540                 return -EAGAIN;
3541
3542         /* Wait 2 vblanks to be sure we will have the correct CRC value */
3543         intel_wait_for_vblank(dev, intel_crtc->pipe);
3544         intel_wait_for_vblank(dev, intel_crtc->pipe);
3545
3546         if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3547                 return -EAGAIN;
3548
3549         drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3550         return 0;
3551 }
3552
3553 static bool
3554 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3555 {
3556         return intel_dp_dpcd_read_wake(&intel_dp->aux,
3557                                        DP_DEVICE_SERVICE_IRQ_VECTOR,
3558                                        sink_irq_vector, 1) == 1;
3559 }
3560
3561 static void
3562 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3563 {
3564         /* NAK by default */
3565         drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3566 }
3567
3568 /*
3569  * According to DP spec
3570  * 5.1.2:
3571  *  1. Read DPCD
3572  *  2. Configure link according to Receiver Capabilities
3573  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
3574  *  4. Check link status on receipt of hot-plug interrupt
3575  */
3576 void
3577 intel_dp_check_link_status(struct intel_dp *intel_dp)
3578 {
3579         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3580         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3581         u8 sink_irq_vector;
3582         u8 link_status[DP_LINK_STATUS_SIZE];
3583
3584         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3585
3586         if (!intel_encoder->connectors_active)
3587                 return;
3588
3589         if (WARN_ON(!intel_encoder->base.crtc))
3590                 return;
3591
3592         if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3593                 return;
3594
3595         /* Try to read receiver status if the link appears to be up */
3596         if (!intel_dp_get_link_status(intel_dp, link_status)) {
3597                 return;
3598         }
3599
3600         /* Now read the DPCD to see if it's actually running */
3601         if (!intel_dp_get_dpcd(intel_dp)) {
3602                 return;
3603         }
3604
3605         /* Try to read the source of the interrupt */
3606         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3607             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3608                 /* Clear interrupt source */
3609                 drm_dp_dpcd_writeb(&intel_dp->aux,
3610                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
3611                                    sink_irq_vector);
3612
3613                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3614                         intel_dp_handle_test_request(intel_dp);
3615                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3616                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3617         }
3618
3619         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3620                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3621                               intel_encoder->base.name);
3622                 intel_dp_start_link_train(intel_dp);
3623                 intel_dp_complete_link_train(intel_dp);
3624                 intel_dp_stop_link_train(intel_dp);
3625         }
3626 }
3627
3628 /* XXX this is probably wrong for multiple downstream ports */
3629 static enum drm_connector_status
3630 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3631 {
3632         uint8_t *dpcd = intel_dp->dpcd;
3633         uint8_t type;
3634
3635         if (!intel_dp_get_dpcd(intel_dp))
3636                 return connector_status_disconnected;
3637
3638         /* if there's no downstream port, we're done */
3639         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3640                 return connector_status_connected;
3641
3642         /* If we're HPD-aware, SINK_COUNT changes dynamically */
3643         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3644             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3645                 uint8_t reg;
3646
3647                 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3648                                             &reg, 1) < 0)
3649                         return connector_status_unknown;
3650
3651                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3652                                               : connector_status_disconnected;
3653         }
3654
3655         /* If no HPD, poke DDC gently */
3656         if (drm_probe_ddc(intel_dp->aux.ddc))
3657                 return connector_status_connected;
3658
3659         /* Well we tried, say unknown for unreliable port types */
3660         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3661                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3662                 if (type == DP_DS_PORT_TYPE_VGA ||
3663                     type == DP_DS_PORT_TYPE_NON_EDID)
3664                         return connector_status_unknown;
3665         } else {
3666                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3667                         DP_DWN_STRM_PORT_TYPE_MASK;
3668                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3669                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
3670                         return connector_status_unknown;
3671         }
3672
3673         /* Anything else is out of spec, warn and ignore */
3674         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3675         return connector_status_disconnected;
3676 }
3677
3678 static enum drm_connector_status
3679 ironlake_dp_detect(struct intel_dp *intel_dp)
3680 {
3681         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3682         struct drm_i915_private *dev_priv = dev->dev_private;
3683         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3684         enum drm_connector_status status;
3685
3686         /* Can't disconnect eDP, but you can close the lid... */
3687         if (is_edp(intel_dp)) {
3688                 status = intel_panel_detect(dev);
3689                 if (status == connector_status_unknown)
3690                         status = connector_status_connected;
3691                 return status;
3692         }
3693
3694         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3695                 return connector_status_disconnected;
3696
3697         return intel_dp_detect_dpcd(intel_dp);
3698 }
3699
3700 static int g4x_digital_port_connected(struct drm_device *dev,
3701                                        struct intel_digital_port *intel_dig_port)
3702 {
3703         struct drm_i915_private *dev_priv = dev->dev_private;
3704         uint32_t bit;
3705
3706         if (IS_VALLEYVIEW(dev)) {
3707                 switch (intel_dig_port->port) {
3708                 case PORT_B:
3709                         bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3710                         break;
3711                 case PORT_C:
3712                         bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3713                         break;
3714                 case PORT_D:
3715                         bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3716                         break;
3717                 default:
3718                         return -EINVAL;
3719                 }
3720         } else {
3721                 switch (intel_dig_port->port) {
3722                 case PORT_B:
3723                         bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3724                         break;
3725                 case PORT_C:
3726                         bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3727                         break;
3728                 case PORT_D:
3729                         bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3730                         break;
3731                 default:
3732                         return -EINVAL;
3733                 }
3734         }
3735
3736         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3737                 return 0;
3738         return 1;
3739 }
3740
3741 static enum drm_connector_status
3742 g4x_dp_detect(struct intel_dp *intel_dp)
3743 {
3744         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3745         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3746         int ret;
3747
3748         /* Can't disconnect eDP, but you can close the lid... */
3749         if (is_edp(intel_dp)) {
3750                 enum drm_connector_status status;
3751
3752                 status = intel_panel_detect(dev);
3753                 if (status == connector_status_unknown)
3754                         status = connector_status_connected;
3755                 return status;
3756         }
3757
3758         ret = g4x_digital_port_connected(dev, intel_dig_port);
3759         if (ret == -EINVAL)
3760                 return connector_status_unknown;
3761         else if (ret == 0)
3762                 return connector_status_disconnected;
3763
3764         return intel_dp_detect_dpcd(intel_dp);
3765 }
3766
3767 static struct edid *
3768 intel_dp_get_edid(struct drm_connector *connector, struct device *adapter)
3769 {
3770         struct intel_connector *intel_connector = to_intel_connector(connector);
3771
3772         /* use cached edid if we have one */
3773         if (intel_connector->edid) {
3774                 /* invalid edid */
3775                 if (IS_ERR(intel_connector->edid))
3776                         return NULL;
3777
3778                 return drm_edid_duplicate(intel_connector->edid);
3779         }
3780
3781         return drm_get_edid(connector, adapter);
3782 }
3783
3784 static int
3785 intel_dp_get_edid_modes(struct drm_connector *connector, struct device *adapter)
3786 {
3787         struct intel_connector *intel_connector = to_intel_connector(connector);
3788
3789         /* use cached edid if we have one */
3790         if (intel_connector->edid) {
3791                 /* invalid edid */
3792                 if (IS_ERR(intel_connector->edid))
3793                         return 0;
3794
3795                 return intel_connector_update_modes(connector,
3796                                                     intel_connector->edid);
3797         }
3798
3799         return intel_ddc_get_modes(connector, adapter);
3800 }
3801
3802 static enum drm_connector_status
3803 intel_dp_detect(struct drm_connector *connector, bool force)
3804 {
3805         struct intel_dp *intel_dp = intel_attached_dp(connector);
3806         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3807         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3808         struct drm_device *dev = connector->dev;
3809         struct drm_i915_private *dev_priv = dev->dev_private;
3810         enum drm_connector_status status;
3811         enum intel_display_power_domain power_domain;
3812         struct edid *edid = NULL;
3813
3814         power_domain = intel_display_port_power_domain(intel_encoder);
3815         intel_display_power_get(dev_priv, power_domain);
3816
3817         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3818                       connector->base.id, connector->name);
3819
3820         intel_dp->has_audio = false;
3821
3822         if (HAS_PCH_SPLIT(dev))
3823                 status = ironlake_dp_detect(intel_dp);
3824         else
3825                 status = g4x_dp_detect(intel_dp);
3826
3827         if (status != connector_status_connected)
3828                 goto out;
3829
3830         intel_dp_probe_oui(intel_dp);
3831
3832         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3833                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3834         } else {
3835                 edid = intel_dp_get_edid(connector, intel_dp->aux.ddc);
3836                 if (edid) {
3837                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
3838                         kfree(edid);
3839                 }
3840         }
3841
3842         if (intel_encoder->type != INTEL_OUTPUT_EDP)
3843                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3844         status = connector_status_connected;
3845
3846 out:
3847         intel_display_power_put(dev_priv, power_domain);
3848         return status;
3849 }
3850
3851 static int intel_dp_get_modes(struct drm_connector *connector)
3852 {
3853         struct intel_dp *intel_dp = intel_attached_dp(connector);
3854         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3855         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3856         struct intel_connector *intel_connector = to_intel_connector(connector);
3857         struct drm_device *dev = connector->dev;
3858         struct drm_i915_private *dev_priv = dev->dev_private;
3859         enum intel_display_power_domain power_domain;
3860         int ret;
3861
3862         /* We should parse the EDID data and find out if it has an audio sink
3863          */
3864
3865         power_domain = intel_display_port_power_domain(intel_encoder);
3866         intel_display_power_get(dev_priv, power_domain);
3867
3868         ret = intel_dp_get_edid_modes(connector, intel_dp->aux.ddc);
3869         intel_display_power_put(dev_priv, power_domain);
3870         if (ret)
3871                 return ret;
3872
3873         /* if eDP has no EDID, fall back to fixed mode */
3874         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3875                 struct drm_display_mode *mode;
3876                 mode = drm_mode_duplicate(dev,
3877                                           intel_connector->panel.fixed_mode);
3878                 if (mode) {
3879                         drm_mode_probed_add(connector, mode);
3880                         return 1;
3881                 }
3882         }
3883         return 0;
3884 }
3885
3886 static bool
3887 intel_dp_detect_audio(struct drm_connector *connector)
3888 {
3889         struct intel_dp *intel_dp = intel_attached_dp(connector);
3890         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3891         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3892         struct drm_device *dev = connector->dev;
3893         struct drm_i915_private *dev_priv = dev->dev_private;
3894         enum intel_display_power_domain power_domain;
3895         struct edid *edid;
3896         bool has_audio = false;
3897
3898         power_domain = intel_display_port_power_domain(intel_encoder);
3899         intel_display_power_get(dev_priv, power_domain);
3900
3901         edid = intel_dp_get_edid(connector, intel_dp->aux.ddc);
3902         if (edid) {
3903                 has_audio = drm_detect_monitor_audio(edid);
3904                 kfree(edid);
3905         }
3906
3907         intel_display_power_put(dev_priv, power_domain);
3908
3909         return has_audio;
3910 }
3911
3912 static int
3913 intel_dp_set_property(struct drm_connector *connector,
3914                       struct drm_property *property,
3915                       uint64_t val)
3916 {
3917         struct drm_i915_private *dev_priv = connector->dev->dev_private;
3918         struct intel_connector *intel_connector = to_intel_connector(connector);
3919         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3920         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3921         int ret;
3922
3923         ret = drm_object_property_set_value(&connector->base, property, val);
3924         if (ret)
3925                 return ret;
3926
3927         if (property == dev_priv->force_audio_property) {
3928                 int i = val;
3929                 bool has_audio;
3930
3931                 if (i == intel_dp->force_audio)
3932                         return 0;
3933
3934                 intel_dp->force_audio = i;
3935
3936                 if (i == HDMI_AUDIO_AUTO)
3937                         has_audio = intel_dp_detect_audio(connector);
3938                 else
3939                         has_audio = (i == HDMI_AUDIO_ON);
3940
3941                 if (has_audio == intel_dp->has_audio)
3942                         return 0;
3943
3944                 intel_dp->has_audio = has_audio;
3945                 goto done;
3946         }
3947
3948         if (property == dev_priv->broadcast_rgb_property) {
3949                 bool old_auto = intel_dp->color_range_auto;
3950                 uint32_t old_range = intel_dp->color_range;
3951
3952                 switch (val) {
3953                 case INTEL_BROADCAST_RGB_AUTO:
3954                         intel_dp->color_range_auto = true;
3955                         break;
3956                 case INTEL_BROADCAST_RGB_FULL:
3957                         intel_dp->color_range_auto = false;
3958                         intel_dp->color_range = 0;
3959                         break;
3960                 case INTEL_BROADCAST_RGB_LIMITED:
3961                         intel_dp->color_range_auto = false;
3962                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
3963                         break;
3964                 default:
3965                         return -EINVAL;
3966                 }
3967
3968                 if (old_auto == intel_dp->color_range_auto &&
3969                     old_range == intel_dp->color_range)
3970                         return 0;
3971
3972                 goto done;
3973         }
3974
3975         if (is_edp(intel_dp) &&
3976             property == connector->dev->mode_config.scaling_mode_property) {
3977                 if (val == DRM_MODE_SCALE_NONE) {
3978                         DRM_DEBUG_KMS("no scaling not supported\n");
3979                         return -EINVAL;
3980                 }
3981
3982                 if (intel_connector->panel.fitting_mode == val) {
3983                         /* the eDP scaling property is not changed */
3984                         return 0;
3985                 }
3986                 intel_connector->panel.fitting_mode = val;
3987
3988                 goto done;
3989         }
3990
3991         return -EINVAL;
3992
3993 done:
3994         if (intel_encoder->base.crtc)
3995                 intel_crtc_restore_mode(intel_encoder->base.crtc);
3996
3997         return 0;
3998 }
3999
4000 static void
4001 intel_dp_connector_destroy(struct drm_connector *connector)
4002 {
4003         struct intel_connector *intel_connector = to_intel_connector(connector);
4004
4005         if (!IS_ERR_OR_NULL(intel_connector->edid))
4006                 kfree(intel_connector->edid);
4007
4008         /* Can't call is_edp() since the encoder may have been destroyed
4009          * already. */
4010         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4011                 intel_panel_fini(&intel_connector->panel);
4012
4013         drm_connector_cleanup(connector);
4014         kfree(connector);
4015 }
4016
4017 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4018 {
4019         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4020         struct intel_dp *intel_dp = &intel_dig_port->dp;
4021         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4022
4023         if (intel_dp->dp_iic_bus != NULL) {
4024                 if (intel_dp->aux.ddc != NULL) {
4025                         device_delete_child(intel_dp->dp_iic_bus,
4026                             intel_dp->aux.ddc);
4027                 }
4028                 device_delete_child(dev->dev, intel_dp->dp_iic_bus);
4029         }
4030
4031         drm_encoder_cleanup(encoder);
4032         if (is_edp(intel_dp)) {
4033                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4034                 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4035                 edp_panel_vdd_off_sync(intel_dp);
4036                 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4037 #if 0
4038                 if (intel_dp->edp_notifier.notifier_call) {
4039                         unregister_reboot_notifier(&intel_dp->edp_notifier);
4040                         intel_dp->edp_notifier.notifier_call = NULL;
4041                 }
4042 #endif
4043         }
4044         kfree(intel_dig_port);
4045 }
4046
4047 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4048 {
4049         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4050
4051         if (!is_edp(intel_dp))
4052                 return;
4053
4054         edp_panel_vdd_off_sync(intel_dp);
4055 }
4056
4057 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4058 {
4059         intel_edp_panel_vdd_sanitize(to_intel_encoder(encoder));
4060 }
4061
4062 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4063         .dpms = intel_connector_dpms,
4064         .detect = intel_dp_detect,
4065         .fill_modes = drm_helper_probe_single_connector_modes,
4066         .set_property = intel_dp_set_property,
4067         .destroy = intel_dp_connector_destroy,
4068 };
4069
4070 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4071         .get_modes = intel_dp_get_modes,
4072         .mode_valid = intel_dp_mode_valid,
4073         .best_encoder = intel_best_encoder,
4074 };
4075
4076 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4077         .reset = intel_dp_encoder_reset,
4078         .destroy = intel_dp_encoder_destroy,
4079 };
4080
4081 void
4082 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4083 {
4084         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4085
4086         intel_dp_check_link_status(intel_dp);
4087 }
4088
4089 bool
4090 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4091 {
4092         struct intel_dp *intel_dp = &intel_dig_port->dp;
4093         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4094         struct drm_device *dev = intel_dig_port->base.base.dev;
4095         struct drm_i915_private *dev_priv = dev->dev_private;
4096         enum intel_display_power_domain power_domain;
4097         bool ret = true;
4098
4099         if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4100                 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4101
4102         DRM_DEBUG_KMS("got hpd irq on port %d - %s\n", intel_dig_port->port,
4103                       long_hpd ? "long" : "short");
4104
4105         power_domain = intel_display_port_power_domain(intel_encoder);
4106         intel_display_power_get(dev_priv, power_domain);
4107
4108         if (long_hpd) {
4109                 ret = true;
4110                 goto put_power;
4111         }
4112
4113         /*
4114          * we'll check the link status via the normal hot plug path later -
4115          * but for short hpds we should check it now
4116          */
4117         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4118         intel_dp_check_link_status(intel_dp);
4119         drm_modeset_unlock(&dev->mode_config.connection_mutex);
4120         ret = false;
4121
4122 put_power:
4123         intel_display_power_put(dev_priv, power_domain);
4124
4125         return ret;
4126 }
4127
4128 /* Return which DP Port should be selected for Transcoder DP control */
4129 int
4130 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4131 {
4132         struct drm_device *dev = crtc->dev;
4133         struct intel_encoder *intel_encoder;
4134         struct intel_dp *intel_dp;
4135
4136         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4137                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4138
4139                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4140                     intel_encoder->type == INTEL_OUTPUT_EDP)
4141                         return intel_dp->output_reg;
4142         }
4143
4144         return -1;
4145 }
4146
4147 /* check the VBT to see whether the eDP is on DP-D port */
4148 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4149 {
4150         struct drm_i915_private *dev_priv = dev->dev_private;
4151         union child_device_config *p_child;
4152         int i;
4153         static const short port_mapping[] = {
4154                 [PORT_B] = PORT_IDPB,
4155                 [PORT_C] = PORT_IDPC,
4156                 [PORT_D] = PORT_IDPD,
4157         };
4158
4159         if (port == PORT_A)
4160                 return true;
4161
4162         if (!dev_priv->vbt.child_dev_num)
4163                 return false;
4164
4165         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4166                 p_child = dev_priv->vbt.child_dev + i;
4167
4168                 if (p_child->common.dvo_port == port_mapping[port] &&
4169                     (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4170                     (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4171                         return true;
4172         }
4173         return false;
4174 }
4175
4176 void
4177 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4178 {
4179         struct intel_connector *intel_connector = to_intel_connector(connector);
4180
4181         intel_attach_force_audio_property(connector);
4182         intel_attach_broadcast_rgb_property(connector);
4183         intel_dp->color_range_auto = true;
4184
4185         if (is_edp(intel_dp)) {
4186                 drm_mode_create_scaling_mode_property(connector->dev);
4187                 drm_object_attach_property(
4188                         &connector->base,
4189                         connector->dev->mode_config.scaling_mode_property,
4190                         DRM_MODE_SCALE_ASPECT);
4191                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4192         }
4193 }
4194
4195 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4196 {
4197         intel_dp->last_power_cycle = jiffies;
4198         intel_dp->last_power_on = jiffies;
4199         intel_dp->last_backlight_off = jiffies;
4200 }
4201
4202 static void
4203 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4204                                     struct intel_dp *intel_dp,
4205                                     struct edp_power_seq *out)
4206 {
4207         struct drm_i915_private *dev_priv = dev->dev_private;
4208         struct edp_power_seq cur, vbt, spec, final;
4209         u32 pp_on, pp_off, pp_div, pp;
4210         int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4211
4212         if (HAS_PCH_SPLIT(dev)) {
4213                 pp_ctrl_reg = PCH_PP_CONTROL;
4214                 pp_on_reg = PCH_PP_ON_DELAYS;
4215                 pp_off_reg = PCH_PP_OFF_DELAYS;
4216                 pp_div_reg = PCH_PP_DIVISOR;
4217         } else {
4218                 enum i915_pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4219
4220                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4221                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4222                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4223                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4224         }
4225
4226         /* Workaround: Need to write PP_CONTROL with the unlock key as
4227          * the very first thing. */
4228         pp = ironlake_get_pp_control(intel_dp);
4229         I915_WRITE(pp_ctrl_reg, pp);
4230
4231         pp_on = I915_READ(pp_on_reg);
4232         pp_off = I915_READ(pp_off_reg);
4233         pp_div = I915_READ(pp_div_reg);
4234
4235         /* Pull timing values out of registers */
4236         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4237                 PANEL_POWER_UP_DELAY_SHIFT;
4238
4239         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4240                 PANEL_LIGHT_ON_DELAY_SHIFT;
4241
4242         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4243                 PANEL_LIGHT_OFF_DELAY_SHIFT;
4244
4245         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4246                 PANEL_POWER_DOWN_DELAY_SHIFT;
4247
4248         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4249                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4250
4251         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4252                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4253
4254         vbt = dev_priv->vbt.edp_pps;
4255
4256         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4257          * our hw here, which are all in 100usec. */
4258         spec.t1_t3 = 210 * 10;
4259         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4260         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4261         spec.t10 = 500 * 10;
4262         /* This one is special and actually in units of 100ms, but zero
4263          * based in the hw (so we need to add 100 ms). But the sw vbt
4264          * table multiplies it with 1000 to make it in units of 100usec,
4265          * too. */
4266         spec.t11_t12 = (510 + 100) * 10;
4267
4268         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4269                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4270
4271         /* Use the max of the register settings and vbt. If both are
4272          * unset, fall back to the spec limits. */
4273 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
4274                                        spec.field : \
4275                                        max(cur.field, vbt.field))
4276         assign_final(t1_t3);
4277         assign_final(t8);
4278         assign_final(t9);
4279         assign_final(t10);
4280         assign_final(t11_t12);
4281 #undef assign_final
4282
4283 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
4284         intel_dp->panel_power_up_delay = get_delay(t1_t3);
4285         intel_dp->backlight_on_delay = get_delay(t8);
4286         intel_dp->backlight_off_delay = get_delay(t9);
4287         intel_dp->panel_power_down_delay = get_delay(t10);
4288         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4289 #undef get_delay
4290
4291         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4292                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4293                       intel_dp->panel_power_cycle_delay);
4294
4295         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4296                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4297
4298         if (out)
4299                 *out = final;
4300 }
4301
4302 static void
4303 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4304                                               struct intel_dp *intel_dp,
4305                                               struct edp_power_seq *seq)
4306 {
4307         struct drm_i915_private *dev_priv = dev->dev_private;
4308         u32 pp_on, pp_off, pp_div, port_sel = 0;
4309         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4310         int pp_on_reg, pp_off_reg, pp_div_reg;
4311
4312         if (HAS_PCH_SPLIT(dev)) {
4313                 pp_on_reg = PCH_PP_ON_DELAYS;
4314                 pp_off_reg = PCH_PP_OFF_DELAYS;
4315                 pp_div_reg = PCH_PP_DIVISOR;
4316         } else {
4317                 enum i915_pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4318
4319                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4320                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4321                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4322         }
4323
4324         /*
4325          * And finally store the new values in the power sequencer. The
4326          * backlight delays are set to 1 because we do manual waits on them. For
4327          * T8, even BSpec recommends doing it. For T9, if we don't do this,
4328          * we'll end up waiting for the backlight off delay twice: once when we
4329          * do the manual sleep, and once when we disable the panel and wait for
4330          * the PP_STATUS bit to become zero.
4331          */
4332         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4333                 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4334         pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4335                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4336         /* Compute the divisor for the pp clock, simply match the Bspec
4337          * formula. */
4338         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4339         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4340                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
4341
4342         /* Haswell doesn't have any port selection bits for the panel
4343          * power sequencer any more. */
4344         if (IS_VALLEYVIEW(dev)) {
4345                 if (dp_to_dig_port(intel_dp)->port == PORT_B)
4346                         port_sel = PANEL_PORT_SELECT_DPB_VLV;
4347                 else
4348                         port_sel = PANEL_PORT_SELECT_DPC_VLV;
4349         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4350                 if (dp_to_dig_port(intel_dp)->port == PORT_A)
4351                         port_sel = PANEL_PORT_SELECT_DPA;
4352                 else
4353                         port_sel = PANEL_PORT_SELECT_DPD;
4354         }
4355
4356         pp_on |= port_sel;
4357
4358         I915_WRITE(pp_on_reg, pp_on);
4359         I915_WRITE(pp_off_reg, pp_off);
4360         I915_WRITE(pp_div_reg, pp_div);
4361
4362         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4363                       I915_READ(pp_on_reg),
4364                       I915_READ(pp_off_reg),
4365                       I915_READ(pp_div_reg));
4366 }
4367
4368 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4369 {
4370         struct drm_i915_private *dev_priv = dev->dev_private;
4371         struct intel_encoder *encoder;
4372         struct intel_dp *intel_dp = NULL;
4373         struct intel_crtc_config *config = NULL;
4374         struct intel_crtc *intel_crtc = NULL;
4375         struct intel_connector *intel_connector = dev_priv->drrs.connector;
4376         u32 reg, val;
4377         enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4378
4379         if (refresh_rate <= 0) {
4380                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4381                 return;
4382         }
4383
4384         if (intel_connector == NULL) {
4385                 DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4386                 return;
4387         }
4388
4389         /*
4390          * FIXME: This needs proper synchronization with psr state. But really
4391          * hard to tell without seeing the user of this function of this code.
4392          * Check locking and ordering once that lands.
4393          */
4394         if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4395                 DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4396                 return;
4397         }
4398
4399         encoder = intel_attached_encoder(&intel_connector->base);
4400         intel_dp = enc_to_intel_dp(&encoder->base);
4401         intel_crtc = encoder->new_crtc;
4402
4403         if (!intel_crtc) {
4404                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4405                 return;
4406         }
4407
4408         config = &intel_crtc->config;
4409
4410         if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4411                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4412                 return;
4413         }
4414
4415         if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4416                 index = DRRS_LOW_RR;
4417
4418         if (index == intel_dp->drrs_state.refresh_rate_type) {
4419                 DRM_DEBUG_KMS(
4420                         "DRRS requested for previously set RR...ignoring\n");
4421                 return;
4422         }
4423
4424         if (!intel_crtc->active) {
4425                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4426                 return;
4427         }
4428
4429         if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4430                 reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4431                 val = I915_READ(reg);
4432                 if (index > DRRS_HIGH_RR) {
4433                         val |= PIPECONF_EDP_RR_MODE_SWITCH;
4434                         intel_dp_set_m2_n2(intel_crtc, &config->dp_m2_n2);
4435                 } else {
4436                         val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4437                 }
4438                 I915_WRITE(reg, val);
4439         }
4440
4441         /*
4442          * mutex taken to ensure that there is no race between differnt
4443          * drrs calls trying to update refresh rate. This scenario may occur
4444          * in future when idleness detection based DRRS in kernel and
4445          * possible calls from user space to set differnt RR are made.
4446          */
4447
4448         mutex_lock(&intel_dp->drrs_state.mutex);
4449
4450         intel_dp->drrs_state.refresh_rate_type = index;
4451
4452         mutex_unlock(&intel_dp->drrs_state.mutex);
4453
4454         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4455 }
4456
4457 static struct drm_display_mode *
4458 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4459                         struct intel_connector *intel_connector,
4460                         struct drm_display_mode *fixed_mode)
4461 {
4462         struct drm_connector *connector = &intel_connector->base;
4463         struct intel_dp *intel_dp = &intel_dig_port->dp;
4464         struct drm_device *dev = intel_dig_port->base.base.dev;
4465         struct drm_i915_private *dev_priv = dev->dev_private;
4466         struct drm_display_mode *downclock_mode = NULL;
4467
4468         if (INTEL_INFO(dev)->gen <= 6) {
4469                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4470                 return NULL;
4471         }
4472
4473         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4474                 DRM_INFO("VBT doesn't support DRRS\n");
4475                 return NULL;
4476         }
4477
4478         downclock_mode = intel_find_panel_downclock
4479                                         (dev, fixed_mode, connector);
4480
4481         if (!downclock_mode) {
4482                 DRM_INFO("DRRS not supported\n");
4483                 return NULL;
4484         }
4485
4486         dev_priv->drrs.connector = intel_connector;
4487
4488         lockinit(&intel_dp->drrs_state.mutex, "i915dsm", 0, LK_CANRECURSE);
4489
4490         intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4491
4492         intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4493         DRM_INFO("seamless DRRS supported for eDP panel.\n");
4494         return downclock_mode;
4495 }
4496
4497 void intel_edp_panel_vdd_sanitize(struct intel_encoder *intel_encoder)
4498 {
4499         struct drm_device *dev = intel_encoder->base.dev;
4500         struct drm_i915_private *dev_priv = dev->dev_private;
4501         struct intel_dp *intel_dp;
4502         enum intel_display_power_domain power_domain;
4503
4504         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4505                 return;
4506
4507         intel_dp = enc_to_intel_dp(&intel_encoder->base);
4508         if (!edp_have_panel_vdd(intel_dp))
4509                 return;
4510         /*
4511          * The VDD bit needs a power domain reference, so if the bit is
4512          * already enabled when we boot or resume, grab this reference and
4513          * schedule a vdd off, so we don't hold on to the reference
4514          * indefinitely.
4515          */
4516         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4517         power_domain = intel_display_port_power_domain(intel_encoder);
4518         intel_display_power_get(dev_priv, power_domain);
4519
4520         edp_panel_vdd_schedule_off(intel_dp);
4521 }
4522
4523 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4524                                      struct intel_connector *intel_connector,
4525                                      struct edp_power_seq *power_seq)
4526 {
4527         struct drm_connector *connector = &intel_connector->base;
4528         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4529         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4530         struct drm_device *dev = intel_encoder->base.dev;
4531         struct drm_i915_private *dev_priv = dev->dev_private;
4532         struct drm_display_mode *fixed_mode = NULL;
4533         struct drm_display_mode *downclock_mode = NULL;
4534         bool has_dpcd;
4535         struct drm_display_mode *scan;
4536         struct edid *edid;
4537
4538         intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4539
4540         if (!is_edp(intel_dp))
4541                 return true;
4542
4543         intel_edp_panel_vdd_sanitize(intel_encoder);
4544
4545         /* Cache DPCD and EDID for edp. */
4546         intel_edp_panel_vdd_on(intel_dp);
4547         has_dpcd = intel_dp_get_dpcd(intel_dp);
4548         edp_panel_vdd_off(intel_dp, false);
4549
4550         if (has_dpcd) {
4551                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4552                         dev_priv->no_aux_handshake =
4553                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4554                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4555         } else {
4556                 /* if this fails, presume the device is a ghost */
4557                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
4558                 return false;
4559         }
4560
4561         /* We now know it's not a ghost, init power sequence regs. */
4562         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4563
4564         mutex_lock(&dev->mode_config.mutex);
4565         edid = drm_get_edid(connector, intel_dp->aux.ddc);
4566         if (edid) {
4567                 if (drm_add_edid_modes(connector, edid)) {
4568                         drm_mode_connector_update_edid_property(connector,
4569                                                                 edid);
4570                         drm_edid_to_eld(connector, edid);
4571                 } else {
4572                         kfree(edid);
4573                         edid = ERR_PTR(-EINVAL);
4574                 }
4575         } else {
4576                 edid = ERR_PTR(-ENOENT);
4577         }
4578         intel_connector->edid = edid;
4579
4580         /* prefer fixed mode from EDID if available */
4581         list_for_each_entry(scan, &connector->probed_modes, head) {
4582                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
4583                         fixed_mode = drm_mode_duplicate(dev, scan);
4584                         downclock_mode = intel_dp_drrs_init(
4585                                                 intel_dig_port,
4586                                                 intel_connector, fixed_mode);
4587                         break;
4588                 }
4589         }
4590
4591         /* fallback to VBT if available for eDP */
4592         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
4593                 fixed_mode = drm_mode_duplicate(dev,
4594                                         dev_priv->vbt.lfp_lvds_vbt_mode);
4595                 if (fixed_mode)
4596                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
4597         }
4598         mutex_unlock(&dev->mode_config.mutex);
4599
4600 #if 0
4601         if (IS_VALLEYVIEW(dev)) {
4602                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
4603                 register_reboot_notifier(&intel_dp->edp_notifier);
4604         }
4605 #endif
4606
4607         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4608         intel_panel_setup_backlight(connector);
4609
4610         return true;
4611 }
4612
4613 bool
4614 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
4615                         struct intel_connector *intel_connector)
4616 {
4617         struct drm_connector *connector = &intel_connector->base;
4618         struct intel_dp *intel_dp = &intel_dig_port->dp;
4619         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4620         struct drm_device *dev = intel_encoder->base.dev;
4621         struct drm_i915_private *dev_priv = dev->dev_private;
4622         enum port port = intel_dig_port->port;
4623         struct edp_power_seq power_seq = { 0 };
4624         int type;
4625
4626         /* intel_dp vfuncs */
4627         if (IS_VALLEYVIEW(dev))
4628                 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
4629         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4630                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
4631         else if (HAS_PCH_SPLIT(dev))
4632                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
4633         else
4634                 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
4635
4636         intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
4637
4638         /* Preserve the current hw state. */
4639         intel_dp->DP = I915_READ(intel_dp->output_reg);
4640         intel_dp->attached_connector = intel_connector;
4641
4642         if (intel_dp_is_edp(dev, port))
4643                 type = DRM_MODE_CONNECTOR_eDP;
4644         else
4645                 type = DRM_MODE_CONNECTOR_DisplayPort;
4646
4647         /*
4648          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
4649          * for DP the encoder type can be set by the caller to
4650          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
4651          */
4652         if (type == DRM_MODE_CONNECTOR_eDP)
4653                 intel_encoder->type = INTEL_OUTPUT_EDP;
4654
4655         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
4656                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
4657                         port_name(port));
4658
4659         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
4660         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
4661
4662         connector->interlace_allowed = true;
4663         connector->doublescan_allowed = 0;
4664
4665         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
4666                           edp_panel_vdd_work);
4667
4668         intel_connector_attach_encoder(intel_connector, intel_encoder);
4669         drm_connector_register(connector);
4670
4671         if (HAS_DDI(dev))
4672                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
4673         else
4674                 intel_connector->get_hw_state = intel_connector_get_hw_state;
4675         intel_connector->unregister = intel_dp_connector_unregister;
4676
4677         /* Set up the hotplug pin. */
4678         switch (port) {
4679         case PORT_A:
4680                 intel_encoder->hpd_pin = HPD_PORT_A;
4681                 break;
4682         case PORT_B:
4683                 intel_encoder->hpd_pin = HPD_PORT_B;
4684                 break;
4685         case PORT_C:
4686                 intel_encoder->hpd_pin = HPD_PORT_C;
4687                 break;
4688         case PORT_D:
4689                 intel_encoder->hpd_pin = HPD_PORT_D;
4690                 break;
4691         default:
4692                 BUG();
4693         }
4694
4695         if (is_edp(intel_dp)) {
4696                 intel_dp_init_panel_power_timestamps(intel_dp);
4697                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
4698         }
4699
4700         intel_dp_aux_init(intel_dp, intel_connector);
4701
4702         if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
4703 #if 0
4704                 drm_dp_aux_unregister(&intel_dp->aux);
4705                 i2c_del_adapter(&intel_dp->adapter);
4706 #endif
4707                 if (is_edp(intel_dp)) {
4708                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4709                         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4710                         edp_panel_vdd_off_sync(intel_dp);
4711                         drm_modeset_unlock(&dev->mode_config.connection_mutex);
4712                 }
4713                 drm_connector_unregister(connector);
4714                 drm_connector_cleanup(connector);
4715                 return false;
4716         }
4717
4718         intel_dp_add_properties(intel_dp, connector);
4719
4720         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
4721          * 0xd.  Failure to do so will result in spurious interrupts being
4722          * generated on the port when a cable is not attached.
4723          */
4724         if (IS_G4X(dev) && !IS_GM45(dev)) {
4725                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
4726                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
4727         }
4728
4729         return true;
4730 }
4731
4732 void
4733 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
4734 {
4735         struct drm_i915_private *dev_priv = dev->dev_private;
4736         struct intel_digital_port *intel_dig_port;
4737         struct intel_encoder *intel_encoder;
4738         struct drm_encoder *encoder;
4739         struct intel_connector *intel_connector;
4740
4741         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
4742         if (!intel_dig_port)
4743                 return;
4744
4745         intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
4746         if (!intel_connector) {
4747                 kfree(intel_dig_port);
4748                 return;
4749         }
4750
4751         intel_encoder = &intel_dig_port->base;
4752         encoder = &intel_encoder->base;
4753
4754         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
4755                          DRM_MODE_ENCODER_TMDS);
4756
4757         intel_encoder->compute_config = intel_dp_compute_config;
4758         intel_encoder->disable = intel_disable_dp;
4759         intel_encoder->get_hw_state = intel_dp_get_hw_state;
4760         intel_encoder->get_config = intel_dp_get_config;
4761         intel_encoder->suspend = intel_dp_encoder_suspend;
4762         if (IS_CHERRYVIEW(dev)) {
4763                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
4764                 intel_encoder->pre_enable = chv_pre_enable_dp;
4765                 intel_encoder->enable = vlv_enable_dp;
4766                 intel_encoder->post_disable = chv_post_disable_dp;
4767         } else if (IS_VALLEYVIEW(dev)) {
4768                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
4769                 intel_encoder->pre_enable = vlv_pre_enable_dp;
4770                 intel_encoder->enable = vlv_enable_dp;
4771                 intel_encoder->post_disable = vlv_post_disable_dp;
4772         } else {
4773                 intel_encoder->pre_enable = g4x_pre_enable_dp;
4774                 intel_encoder->enable = g4x_enable_dp;
4775                 intel_encoder->post_disable = g4x_post_disable_dp;
4776         }
4777
4778         intel_dig_port->port = port;
4779         intel_dig_port->dp.output_reg = output_reg;
4780
4781         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4782         if (IS_CHERRYVIEW(dev)) {
4783                 if (port == PORT_D)
4784                         intel_encoder->crtc_mask = 1 << 2;
4785                 else
4786                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
4787         } else {
4788                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
4789         }
4790         intel_encoder->cloneable = 0;
4791         intel_encoder->hot_plug = intel_dp_hot_plug;
4792
4793         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
4794         dev_priv->hpd_irq_port[port] = intel_dig_port;
4795
4796         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
4797                 drm_encoder_cleanup(encoder);
4798                 kfree(intel_dig_port);
4799                 kfree(intel_connector);
4800         }
4801 }