mbuf: Factor function to set mbuf hash.
[dragonfly.git] / sys / dev / netif / igb / if_igb.c
1 /*
2  * Copyright (c) 2001-2013, Intel Corporation 
3  * All rights reserved.
4  * 
5  * Redistribution and use in source and binary forms, with or without 
6  * modification, are permitted provided that the following conditions are met:
7  * 
8  *  1. Redistributions of source code must retain the above copyright notice, 
9  *     this list of conditions and the following disclaimer.
10  * 
11  *  2. Redistributions in binary form must reproduce the above copyright 
12  *     notice, this list of conditions and the following disclaimer in the 
13  *     documentation and/or other materials provided with the distribution.
14  * 
15  *  3. Neither the name of the Intel Corporation nor the names of its 
16  *     contributors may be used to endorse or promote products derived from 
17  *     this software without specific prior written permission.
18  * 
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 #include "opt_ifpoll.h"
33 #include "opt_igb.h"
34
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/endian.h>
38 #include <sys/interrupt.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/proc.h>
43 #include <sys/rman.h>
44 #include <sys/serialize.h>
45 #include <sys/serialize2.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50
51 #include <net/bpf.h>
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/ifq_var.h>
58 #include <net/toeplitz.h>
59 #include <net/toeplitz2.h>
60 #include <net/vlan/if_vlan_var.h>
61 #include <net/vlan/if_vlan_ether.h>
62 #include <net/if_poll.h>
63
64 #include <netinet/in_systm.h>
65 #include <netinet/in.h>
66 #include <netinet/ip.h>
67
68 #include <bus/pci/pcivar.h>
69 #include <bus/pci/pcireg.h>
70
71 #include <dev/netif/ig_hal/e1000_api.h>
72 #include <dev/netif/ig_hal/e1000_82575.h>
73 #include <dev/netif/ig_hal/e1000_dragonfly.h>
74 #include <dev/netif/igb/if_igb.h>
75
76 #ifdef IGB_RSS_DEBUG
77 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...) \
78 do { \
79         if (sc->rss_debug >= lvl) \
80                 if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
81 } while (0)
82 #else   /* !IGB_RSS_DEBUG */
83 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...)      ((void)0)
84 #endif  /* IGB_RSS_DEBUG */
85
86 #define IGB_NAME        "Intel(R) PRO/1000 "
87 #define IGB_DEVICE(id)  \
88         { IGB_VENDOR_ID, E1000_DEV_ID_##id, IGB_NAME #id }
89 #define IGB_DEVICE_NULL { 0, 0, NULL }
90
91 static struct igb_device {
92         uint16_t        vid;
93         uint16_t        did;
94         const char      *desc;
95 } igb_devices[] = {
96         IGB_DEVICE(82575EB_COPPER),
97         IGB_DEVICE(82575EB_FIBER_SERDES),
98         IGB_DEVICE(82575GB_QUAD_COPPER),
99         IGB_DEVICE(82576),
100         IGB_DEVICE(82576_NS),
101         IGB_DEVICE(82576_NS_SERDES),
102         IGB_DEVICE(82576_FIBER),
103         IGB_DEVICE(82576_SERDES),
104         IGB_DEVICE(82576_SERDES_QUAD),
105         IGB_DEVICE(82576_QUAD_COPPER),
106         IGB_DEVICE(82576_QUAD_COPPER_ET2),
107         IGB_DEVICE(82576_VF),
108         IGB_DEVICE(82580_COPPER),
109         IGB_DEVICE(82580_FIBER),
110         IGB_DEVICE(82580_SERDES),
111         IGB_DEVICE(82580_SGMII),
112         IGB_DEVICE(82580_COPPER_DUAL),
113         IGB_DEVICE(82580_QUAD_FIBER),
114         IGB_DEVICE(DH89XXCC_SERDES),
115         IGB_DEVICE(DH89XXCC_SGMII),
116         IGB_DEVICE(DH89XXCC_SFP),
117         IGB_DEVICE(DH89XXCC_BACKPLANE),
118         IGB_DEVICE(I350_COPPER),
119         IGB_DEVICE(I350_FIBER),
120         IGB_DEVICE(I350_SERDES),
121         IGB_DEVICE(I350_SGMII),
122         IGB_DEVICE(I350_VF),
123         IGB_DEVICE(I210_COPPER),
124         IGB_DEVICE(I210_COPPER_IT),
125         IGB_DEVICE(I210_COPPER_OEM1),
126         IGB_DEVICE(I210_COPPER_FLASHLESS),
127         IGB_DEVICE(I210_SERDES_FLASHLESS),
128         IGB_DEVICE(I210_FIBER),
129         IGB_DEVICE(I210_SERDES),
130         IGB_DEVICE(I210_SGMII),
131         IGB_DEVICE(I211_COPPER),
132         IGB_DEVICE(I354_BACKPLANE_1GBPS),
133         IGB_DEVICE(I354_BACKPLANE_2_5GBPS),
134         IGB_DEVICE(I354_SGMII),
135
136         /* required last entry */
137         IGB_DEVICE_NULL
138 };
139
140 static int      igb_probe(device_t);
141 static int      igb_attach(device_t);
142 static int      igb_detach(device_t);
143 static int      igb_shutdown(device_t);
144 static int      igb_suspend(device_t);
145 static int      igb_resume(device_t);
146
147 static boolean_t igb_is_valid_ether_addr(const uint8_t *);
148 static void     igb_setup_ifp(struct igb_softc *);
149 static boolean_t igb_txcsum_ctx(struct igb_tx_ring *, struct mbuf *);
150 static int      igb_tso_pullup(struct igb_tx_ring *, struct mbuf **);
151 static void     igb_tso_ctx(struct igb_tx_ring *, struct mbuf *, uint32_t *);
152 static void     igb_add_sysctl(struct igb_softc *);
153 static void     igb_add_intr_rate_sysctl(struct igb_softc *, int,
154                     const char *, const char *);
155 static int      igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
156 static int      igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
157 static int      igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
158 static int      igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
159 static void     igb_set_ring_inuse(struct igb_softc *, boolean_t);
160 static int      igb_get_rxring_inuse(const struct igb_softc *, boolean_t);
161 static int      igb_get_txring_inuse(const struct igb_softc *, boolean_t);
162 static void     igb_set_timer_cpuid(struct igb_softc *, boolean_t);
163 #ifdef IFPOLL_ENABLE
164 static int      igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
165 static int      igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
166 #endif
167
168 static void     igb_vf_init_stats(struct igb_softc *);
169 static void     igb_reset(struct igb_softc *, boolean_t);
170 static void     igb_update_stats_counters(struct igb_softc *);
171 static void     igb_update_vf_stats_counters(struct igb_softc *);
172 static void     igb_update_link_status(struct igb_softc *);
173 static void     igb_init_tx_unit(struct igb_softc *);
174 static void     igb_init_rx_unit(struct igb_softc *);
175 static void     igb_init_dmac(struct igb_softc *, uint32_t);
176
177 static void     igb_set_vlan(struct igb_softc *);
178 static void     igb_set_multi(struct igb_softc *);
179 static void     igb_set_promisc(struct igb_softc *);
180 static void     igb_disable_promisc(struct igb_softc *);
181
182 static int      igb_alloc_rings(struct igb_softc *);
183 static void     igb_free_rings(struct igb_softc *);
184 static int      igb_create_tx_ring(struct igb_tx_ring *);
185 static int      igb_create_rx_ring(struct igb_rx_ring *);
186 static void     igb_free_tx_ring(struct igb_tx_ring *);
187 static void     igb_free_rx_ring(struct igb_rx_ring *);
188 static void     igb_destroy_tx_ring(struct igb_tx_ring *, int);
189 static void     igb_destroy_rx_ring(struct igb_rx_ring *, int);
190 static void     igb_init_tx_ring(struct igb_tx_ring *);
191 static int      igb_init_rx_ring(struct igb_rx_ring *);
192 static int      igb_newbuf(struct igb_rx_ring *, int, boolean_t);
193 static int      igb_encap(struct igb_tx_ring *, struct mbuf **, int *, int *);
194 static void     igb_rx_refresh(struct igb_rx_ring *, int);
195 static void     igb_setup_serialize(struct igb_softc *);
196
197 static void     igb_stop(struct igb_softc *);
198 static void     igb_init(void *);
199 static int      igb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
200 static void     igb_media_status(struct ifnet *, struct ifmediareq *);
201 static int      igb_media_change(struct ifnet *);
202 static void     igb_timer(void *);
203 static void     igb_watchdog(struct ifaltq_subque *);
204 static void     igb_start(struct ifnet *, struct ifaltq_subque *);
205 #ifdef IFPOLL_ENABLE
206 static void     igb_npoll(struct ifnet *, struct ifpoll_info *);
207 static void     igb_npoll_rx(struct ifnet *, void *, int);
208 static void     igb_npoll_tx(struct ifnet *, void *, int);
209 static void     igb_npoll_status(struct ifnet *);
210 #endif
211 static void     igb_serialize(struct ifnet *, enum ifnet_serialize);
212 static void     igb_deserialize(struct ifnet *, enum ifnet_serialize);
213 static int      igb_tryserialize(struct ifnet *, enum ifnet_serialize);
214 #ifdef INVARIANTS
215 static void     igb_serialize_assert(struct ifnet *, enum ifnet_serialize,
216                     boolean_t);
217 #endif
218
219 static void     igb_intr(void *);
220 static void     igb_intr_shared(void *);
221 static void     igb_rxeof(struct igb_rx_ring *, int);
222 static void     igb_txeof(struct igb_tx_ring *, int);
223 static void     igb_set_eitr(struct igb_softc *, int, int);
224 static void     igb_enable_intr(struct igb_softc *);
225 static void     igb_disable_intr(struct igb_softc *);
226 static void     igb_init_unshared_intr(struct igb_softc *);
227 static void     igb_init_intr(struct igb_softc *);
228 static int      igb_setup_intr(struct igb_softc *);
229 static void     igb_set_txintr_mask(struct igb_tx_ring *, int *, int);
230 static void     igb_set_rxintr_mask(struct igb_rx_ring *, int *, int);
231 static void     igb_set_intr_mask(struct igb_softc *);
232 static int      igb_alloc_intr(struct igb_softc *);
233 static void     igb_free_intr(struct igb_softc *);
234 static void     igb_teardown_intr(struct igb_softc *, int);
235 static void     igb_alloc_msix(struct igb_softc *);
236 static void     igb_free_msix(struct igb_softc *, boolean_t);
237 static void     igb_msix_rx_conf(struct igb_softc *, int, int *, int);
238 static void     igb_msix_tx_conf(struct igb_softc *, int, int *, int);
239 static void     igb_msix_rx(void *);
240 static void     igb_msix_tx(void *);
241 static void     igb_msix_status(void *);
242 static void     igb_msix_rxtx(void *);
243
244 /* Management and WOL Support */
245 static void     igb_get_mgmt(struct igb_softc *);
246 static void     igb_rel_mgmt(struct igb_softc *);
247 static void     igb_get_hw_control(struct igb_softc *);
248 static void     igb_rel_hw_control(struct igb_softc *);
249 static void     igb_enable_wol(device_t);
250
251 static device_method_t igb_methods[] = {
252         /* Device interface */
253         DEVMETHOD(device_probe,         igb_probe),
254         DEVMETHOD(device_attach,        igb_attach),
255         DEVMETHOD(device_detach,        igb_detach),
256         DEVMETHOD(device_shutdown,      igb_shutdown),
257         DEVMETHOD(device_suspend,       igb_suspend),
258         DEVMETHOD(device_resume,        igb_resume),
259         DEVMETHOD_END
260 };
261
262 static driver_t igb_driver = {
263         "igb",
264         igb_methods,
265         sizeof(struct igb_softc),
266 };
267
268 static devclass_t igb_devclass;
269
270 DECLARE_DUMMY_MODULE(if_igb);
271 MODULE_DEPEND(igb, ig_hal, 1, 1, 1);
272 DRIVER_MODULE(if_igb, pci, igb_driver, igb_devclass, NULL, NULL);
273
274 static int      igb_rxd = IGB_DEFAULT_RXD;
275 static int      igb_txd = IGB_DEFAULT_TXD;
276 static int      igb_rxr = 0;
277 static int      igb_txr = 0;
278 static int      igb_msi_enable = 1;
279 static int      igb_msix_enable = 1;
280 static int      igb_msix_agg_rxtx = 1;
281 static int      igb_eee_disabled = 1;   /* Energy Efficient Ethernet */
282
283 static char     igb_flowctrl[IFM_ETH_FC_STRLEN] = IFM_ETH_FC_RXPAUSE;
284
285 /*
286  * DMA Coalescing, only for i350 - default to off,
287  * this feature is for power savings
288  */
289 static int      igb_dma_coalesce = 0;
290
291 TUNABLE_INT("hw.igb.rxd", &igb_rxd);
292 TUNABLE_INT("hw.igb.txd", &igb_txd);
293 TUNABLE_INT("hw.igb.rxr", &igb_rxr);
294 TUNABLE_INT("hw.igb.txr", &igb_txr);
295 TUNABLE_INT("hw.igb.msi.enable", &igb_msi_enable);
296 TUNABLE_INT("hw.igb.msix.enable", &igb_msix_enable);
297 TUNABLE_INT("hw.igb.msix.agg_rxtx", &igb_msix_agg_rxtx);
298 TUNABLE_STR("hw.igb.flow_ctrl", igb_flowctrl, sizeof(igb_flowctrl));
299
300 /* i350 specific */
301 TUNABLE_INT("hw.igb.eee_disabled", &igb_eee_disabled);
302 TUNABLE_INT("hw.igb.dma_coalesce", &igb_dma_coalesce);
303
304 static __inline void
305 igb_rxcsum(uint32_t staterr, struct mbuf *mp)
306 {
307         /* Ignore Checksum bit is set */
308         if (staterr & E1000_RXD_STAT_IXSM)
309                 return;
310
311         if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
312             E1000_RXD_STAT_IPCS)
313                 mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
314
315         if (staterr & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
316                 if ((staterr & E1000_RXDEXT_STATERR_TCPE) == 0) {
317                         mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
318                             CSUM_PSEUDO_HDR | CSUM_FRAG_NOT_CHECKED;
319                         mp->m_pkthdr.csum_data = htons(0xffff);
320                 }
321         }
322 }
323
324 static __inline struct pktinfo *
325 igb_rssinfo(struct mbuf *m, struct pktinfo *pi,
326     uint32_t hash, uint32_t hashtype, uint32_t staterr)
327 {
328         switch (hashtype) {
329         case E1000_RXDADV_RSSTYPE_IPV4_TCP:
330                 pi->pi_netisr = NETISR_IP;
331                 pi->pi_flags = 0;
332                 pi->pi_l3proto = IPPROTO_TCP;
333                 break;
334
335         case E1000_RXDADV_RSSTYPE_IPV4:
336                 if (staterr & E1000_RXD_STAT_IXSM)
337                         return NULL;
338
339                 if ((staterr &
340                      (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
341                     E1000_RXD_STAT_TCPCS) {
342                         pi->pi_netisr = NETISR_IP;
343                         pi->pi_flags = 0;
344                         pi->pi_l3proto = IPPROTO_UDP;
345                         break;
346                 }
347                 /* FALL THROUGH */
348         default:
349                 return NULL;
350         }
351
352         m_sethash(m, toeplitz_hash(hash));
353         return pi;
354 }
355
356 static int
357 igb_probe(device_t dev)
358 {
359         const struct igb_device *d;
360         uint16_t vid, did;
361
362         vid = pci_get_vendor(dev);
363         did = pci_get_device(dev);
364
365         for (d = igb_devices; d->desc != NULL; ++d) {
366                 if (vid == d->vid && did == d->did) {
367                         device_set_desc(dev, d->desc);
368                         return 0;
369                 }
370         }
371         return ENXIO;
372 }
373
374 static int
375 igb_attach(device_t dev)
376 {
377         struct igb_softc *sc = device_get_softc(dev);
378         uint16_t eeprom_data;
379         int error = 0, ring_max;
380         char flowctrl[IFM_ETH_FC_STRLEN];
381 #ifdef IFPOLL_ENABLE
382         int offset, offset_def;
383 #endif
384
385 #ifdef notyet
386         /* SYSCTL stuff */
387         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
388             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
389             OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
390             igb_sysctl_nvm_info, "I", "NVM Information");
391 #endif
392
393         ifmedia_init(&sc->media, IFM_IMASK | IFM_ETH_FCMASK,
394             igb_media_change, igb_media_status);
395         callout_init_mp(&sc->timer);
396         lwkt_serialize_init(&sc->main_serialize);
397
398         if_initname(&sc->arpcom.ac_if, device_get_name(dev),
399             device_get_unit(dev));
400         sc->dev = sc->osdep.dev = dev;
401
402         /* Enable bus mastering */
403         pci_enable_busmaster(dev);
404
405         /*
406          * Determine hardware and mac type
407          */
408         sc->hw.vendor_id = pci_get_vendor(dev);
409         sc->hw.device_id = pci_get_device(dev);
410         sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
411         sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
412         sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
413
414         if (e1000_set_mac_type(&sc->hw))
415                 return ENXIO;
416
417         /* Are we a VF device? */
418         if (sc->hw.mac.type == e1000_vfadapt ||
419             sc->hw.mac.type == e1000_vfadapt_i350)
420                 sc->vf_ifp = 1;
421         else
422                 sc->vf_ifp = 0;
423
424         /*
425          * Configure total supported RX/TX ring count
426          */
427         switch (sc->hw.mac.type) {
428         case e1000_82575:
429                 ring_max = IGB_MAX_RING_82575;
430                 break;
431
432         case e1000_82576:
433                 ring_max = IGB_MAX_RING_82576;
434                 break;
435
436         case e1000_82580:
437                 ring_max = IGB_MAX_RING_82580;
438                 break;
439
440         case e1000_i350:
441                 ring_max = IGB_MAX_RING_I350;
442                 break;
443
444         case e1000_i354:
445                 ring_max = IGB_MAX_RING_I354;
446                 break;
447
448         case e1000_i210:
449                 ring_max = IGB_MAX_RING_I210;
450                 break;
451
452         case e1000_i211:
453                 ring_max = IGB_MAX_RING_I211;
454                 break;
455
456         default:
457                 ring_max = IGB_MIN_RING;
458                 break;
459         }
460
461         sc->rx_ring_cnt = device_getenv_int(dev, "rxr", igb_rxr);
462         sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, ring_max);
463 #ifdef IGB_RSS_DEBUG
464         sc->rx_ring_cnt = device_getenv_int(dev, "rxr_debug", sc->rx_ring_cnt);
465 #endif
466         sc->rx_ring_inuse = sc->rx_ring_cnt;
467
468         sc->tx_ring_cnt = device_getenv_int(dev, "txr", igb_txr);
469         sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, ring_max);
470 #ifdef IGB_TSS_DEBUG
471         sc->tx_ring_cnt = device_getenv_int(dev, "txr_debug", sc->tx_ring_cnt);
472 #endif
473         sc->tx_ring_inuse = sc->tx_ring_cnt;
474
475         /* Setup flow control. */
476         device_getenv_string(dev, "flow_ctrl", flowctrl, sizeof(flowctrl),
477             igb_flowctrl);
478         sc->ifm_flowctrl = ifmedia_str2ethfc(flowctrl);
479
480         /*
481          * Allocate IO memory
482          */
483         sc->mem_rid = PCIR_BAR(0);
484         sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
485             RF_ACTIVE);
486         if (sc->mem_res == NULL) {
487                 device_printf(dev, "Unable to allocate bus resource: memory\n");
488                 error = ENXIO;
489                 goto failed;
490         }
491         sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->mem_res);
492         sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->mem_res);
493
494         sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
495
496         /* Save PCI command register for Shared Code */
497         sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
498         sc->hw.back = &sc->osdep;
499
500         /* Do Shared Code initialization */
501         if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
502                 device_printf(dev, "Setup of Shared code failed\n");
503                 error = ENXIO;
504                 goto failed;
505         }
506
507         e1000_get_bus_info(&sc->hw);
508
509         sc->hw.mac.autoneg = DO_AUTO_NEG;
510         sc->hw.phy.autoneg_wait_to_complete = FALSE;
511         sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
512
513         /* Copper options */
514         if (sc->hw.phy.media_type == e1000_media_type_copper) {
515                 sc->hw.phy.mdix = AUTO_ALL_MODES;
516                 sc->hw.phy.disable_polarity_correction = FALSE;
517                 sc->hw.phy.ms_type = IGB_MASTER_SLAVE;
518         }
519
520         /* Set the frame limits assuming  standard ethernet sized frames. */
521         sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
522
523         /* Allocate RX/TX rings */
524         error = igb_alloc_rings(sc);
525         if (error)
526                 goto failed;
527
528 #ifdef IFPOLL_ENABLE
529         /*
530          * NPOLLING RX CPU offset
531          */
532         if (sc->rx_ring_cnt == ncpus2) {
533                 offset = 0;
534         } else {
535                 offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
536                 offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
537                 if (offset >= ncpus2 ||
538                     offset % sc->rx_ring_cnt != 0) {
539                         device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
540                             offset, offset_def);
541                         offset = offset_def;
542                 }
543         }
544         sc->rx_npoll_off = offset;
545
546         /*
547          * NPOLLING TX CPU offset
548          */
549         if (sc->tx_ring_cnt == ncpus2) {
550                 offset = 0;
551         } else {
552                 offset_def = (sc->tx_ring_cnt * device_get_unit(dev)) % ncpus2;
553                 offset = device_getenv_int(dev, "npoll.txoff", offset_def);
554                 if (offset >= ncpus2 ||
555                     offset % sc->tx_ring_cnt != 0) {
556                         device_printf(dev, "invalid npoll.txoff %d, use %d\n",
557                             offset, offset_def);
558                         offset = offset_def;
559                 }
560         }
561         sc->tx_npoll_off = offset;
562 #endif
563
564         /* Allocate interrupt */
565         error = igb_alloc_intr(sc);
566         if (error)
567                 goto failed;
568
569         /* Setup serializes */
570         igb_setup_serialize(sc);
571
572         /* Allocate the appropriate stats memory */
573         if (sc->vf_ifp) {
574                 sc->stats = kmalloc(sizeof(struct e1000_vf_stats), M_DEVBUF,
575                     M_WAITOK | M_ZERO);
576                 igb_vf_init_stats(sc);
577         } else {
578                 sc->stats = kmalloc(sizeof(struct e1000_hw_stats), M_DEVBUF,
579                     M_WAITOK | M_ZERO);
580         }
581
582         /* Allocate multicast array memory. */
583         sc->mta = kmalloc(ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
584             M_DEVBUF, M_WAITOK);
585
586         /* Some adapter-specific advanced features */
587         if (sc->hw.mac.type >= e1000_i350) {
588 #ifdef notyet
589                 igb_set_sysctl_value(adapter, "dma_coalesce",
590                     "configure dma coalesce",
591                     &adapter->dma_coalesce, igb_dma_coalesce);
592                 igb_set_sysctl_value(adapter, "eee_disabled",
593                     "enable Energy Efficient Ethernet",
594                     &adapter->hw.dev_spec._82575.eee_disable,
595                     igb_eee_disabled);
596 #else
597                 sc->dma_coalesce = igb_dma_coalesce;
598                 sc->hw.dev_spec._82575.eee_disable = igb_eee_disabled;
599 #endif
600                 if (sc->hw.phy.media_type == e1000_media_type_copper) {
601                         if (sc->hw.mac.type == e1000_i354)
602                                 e1000_set_eee_i354(&sc->hw, TRUE, TRUE);
603                         else
604                                 e1000_set_eee_i350(&sc->hw, TRUE, TRUE);
605                 }
606         }
607
608         /*
609          * Start from a known state, this is important in reading the nvm and
610          * mac from that.
611          */
612         e1000_reset_hw(&sc->hw);
613
614         /* Make sure we have a good EEPROM before we read from it */
615         if (sc->hw.mac.type != e1000_i210 && sc->hw.mac.type != e1000_i211 &&
616             e1000_validate_nvm_checksum(&sc->hw) < 0) {
617                 /*
618                  * Some PCI-E parts fail the first check due to
619                  * the link being in sleep state, call it again,
620                  * if it fails a second time its a real issue.
621                  */
622                 if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
623                         device_printf(dev,
624                             "The EEPROM Checksum Is Not Valid\n");
625                         error = EIO;
626                         goto failed;
627                 }
628         }
629
630         /* Copy the permanent MAC address out of the EEPROM */
631         if (e1000_read_mac_addr(&sc->hw) < 0) {
632                 device_printf(dev, "EEPROM read error while reading MAC"
633                     " address\n");
634                 error = EIO;
635                 goto failed;
636         }
637         if (!igb_is_valid_ether_addr(sc->hw.mac.addr)) {
638                 device_printf(dev, "Invalid MAC address\n");
639                 error = EIO;
640                 goto failed;
641         }
642
643         /* Setup OS specific network interface */
644         igb_setup_ifp(sc);
645
646         /* Add sysctl tree, must after igb_setup_ifp() */
647         igb_add_sysctl(sc);
648
649         /* Now get a good starting state */
650         igb_reset(sc, FALSE);
651
652         /* Initialize statistics */
653         igb_update_stats_counters(sc);
654
655         sc->hw.mac.get_link_status = 1;
656         igb_update_link_status(sc);
657
658         /* Indicate SOL/IDER usage */
659         if (e1000_check_reset_block(&sc->hw)) {
660                 device_printf(dev,
661                     "PHY reset is blocked due to SOL/IDER session.\n");
662         }
663
664         /* Determine if we have to control management hardware */
665         if (e1000_enable_mng_pass_thru(&sc->hw))
666                 sc->flags |= IGB_FLAG_HAS_MGMT;
667
668         /*
669          * Setup Wake-on-Lan
670          */
671         /* APME bit in EEPROM is mapped to WUC.APME */
672         eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
673         if (eeprom_data)
674                 sc->wol = E1000_WUFC_MAG;
675         /* XXX disable WOL */
676         sc->wol = 0; 
677
678 #ifdef notyet
679         /* Register for VLAN events */
680         adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
681              igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
682         adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
683              igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
684 #endif
685
686 #ifdef notyet
687         igb_add_hw_stats(adapter);
688 #endif
689
690         /*
691          * Disable interrupt to prevent spurious interrupts (line based
692          * interrupt, MSI or even MSI-X), which had been observed on
693          * several types of LOMs, from being handled.
694          */
695         igb_disable_intr(sc);
696
697         error = igb_setup_intr(sc);
698         if (error) {
699                 ether_ifdetach(&sc->arpcom.ac_if);
700                 goto failed;
701         }
702         return 0;
703
704 failed:
705         igb_detach(dev);
706         return error;
707 }
708
709 static int
710 igb_detach(device_t dev)
711 {
712         struct igb_softc *sc = device_get_softc(dev);
713
714         if (device_is_attached(dev)) {
715                 struct ifnet *ifp = &sc->arpcom.ac_if;
716
717                 ifnet_serialize_all(ifp);
718
719                 igb_stop(sc);
720
721                 e1000_phy_hw_reset(&sc->hw);
722
723                 /* Give control back to firmware */
724                 igb_rel_mgmt(sc);
725                 igb_rel_hw_control(sc);
726
727                 if (sc->wol) {
728                         E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
729                         E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
730                         igb_enable_wol(dev);
731                 }
732
733                 igb_teardown_intr(sc, sc->intr_cnt);
734
735                 ifnet_deserialize_all(ifp);
736
737                 ether_ifdetach(ifp);
738         } else if (sc->mem_res != NULL) {
739                 igb_rel_hw_control(sc);
740         }
741
742         ifmedia_removeall(&sc->media);
743         bus_generic_detach(dev);
744
745         igb_free_intr(sc);
746
747         if (sc->msix_mem_res != NULL) {
748                 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_mem_rid,
749                     sc->msix_mem_res);
750         }
751         if (sc->mem_res != NULL) {
752                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid,
753                     sc->mem_res);
754         }
755
756         igb_free_rings(sc);
757
758         if (sc->mta != NULL)
759                 kfree(sc->mta, M_DEVBUF);
760         if (sc->stats != NULL)
761                 kfree(sc->stats, M_DEVBUF);
762         if (sc->serializes != NULL)
763                 kfree(sc->serializes, M_DEVBUF);
764
765         return 0;
766 }
767
768 static int
769 igb_shutdown(device_t dev)
770 {
771         return igb_suspend(dev);
772 }
773
774 static int
775 igb_suspend(device_t dev)
776 {
777         struct igb_softc *sc = device_get_softc(dev);
778         struct ifnet *ifp = &sc->arpcom.ac_if;
779
780         ifnet_serialize_all(ifp);
781
782         igb_stop(sc);
783
784         igb_rel_mgmt(sc);
785         igb_rel_hw_control(sc);
786
787         if (sc->wol) {
788                 E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
789                 E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
790                 igb_enable_wol(dev);
791         }
792
793         ifnet_deserialize_all(ifp);
794
795         return bus_generic_suspend(dev);
796 }
797
798 static int
799 igb_resume(device_t dev)
800 {
801         struct igb_softc *sc = device_get_softc(dev);
802         struct ifnet *ifp = &sc->arpcom.ac_if;
803         int i;
804
805         ifnet_serialize_all(ifp);
806
807         igb_init(sc);
808         igb_get_mgmt(sc);
809
810         for (i = 0; i < sc->tx_ring_inuse; ++i)
811                 ifsq_devstart_sched(sc->tx_rings[i].ifsq);
812
813         ifnet_deserialize_all(ifp);
814
815         return bus_generic_resume(dev);
816 }
817
818 static int
819 igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
820 {
821         struct igb_softc *sc = ifp->if_softc;
822         struct ifreq *ifr = (struct ifreq *)data;
823         int max_frame_size, mask, reinit;
824         int error = 0;
825
826         ASSERT_IFNET_SERIALIZED_ALL(ifp);
827
828         switch (command) {
829         case SIOCSIFMTU:
830                 max_frame_size = 9234;
831                 if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
832                     ETHER_CRC_LEN) {
833                         error = EINVAL;
834                         break;
835                 }
836
837                 ifp->if_mtu = ifr->ifr_mtu;
838                 sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
839                     ETHER_CRC_LEN;
840
841                 if (ifp->if_flags & IFF_RUNNING)
842                         igb_init(sc);
843                 break;
844
845         case SIOCSIFFLAGS:
846                 if (ifp->if_flags & IFF_UP) {
847                         if (ifp->if_flags & IFF_RUNNING) {
848                                 if ((ifp->if_flags ^ sc->if_flags) &
849                                     (IFF_PROMISC | IFF_ALLMULTI)) {
850                                         igb_disable_promisc(sc);
851                                         igb_set_promisc(sc);
852                                 }
853                         } else {
854                                 igb_init(sc);
855                         }
856                 } else if (ifp->if_flags & IFF_RUNNING) {
857                         igb_stop(sc);
858                 }
859                 sc->if_flags = ifp->if_flags;
860                 break;
861
862         case SIOCADDMULTI:
863         case SIOCDELMULTI:
864                 if (ifp->if_flags & IFF_RUNNING) {
865                         igb_disable_intr(sc);
866                         igb_set_multi(sc);
867 #ifdef IFPOLL_ENABLE
868                         if (!(ifp->if_flags & IFF_NPOLLING))
869 #endif
870                                 igb_enable_intr(sc);
871                 }
872                 break;
873
874         case SIOCSIFMEDIA:
875                 /* Check SOL/IDER usage */
876                 if (e1000_check_reset_block(&sc->hw)) {
877                         if_printf(ifp, "Media change is "
878                             "blocked due to SOL/IDER session.\n");
879                         break;
880                 }
881                 /* FALL THROUGH */
882
883         case SIOCGIFMEDIA:
884                 error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
885                 break;
886
887         case SIOCSIFCAP:
888                 reinit = 0;
889                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
890                 if (mask & IFCAP_RXCSUM) {
891                         ifp->if_capenable ^= IFCAP_RXCSUM;
892                         reinit = 1;
893                 }
894                 if (mask & IFCAP_VLAN_HWTAGGING) {
895                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
896                         reinit = 1;
897                 }
898                 if (mask & IFCAP_TXCSUM) {
899                         ifp->if_capenable ^= IFCAP_TXCSUM;
900                         if (ifp->if_capenable & IFCAP_TXCSUM)
901                                 ifp->if_hwassist |= IGB_CSUM_FEATURES;
902                         else
903                                 ifp->if_hwassist &= ~IGB_CSUM_FEATURES;
904                 }
905                 if (mask & IFCAP_TSO) {
906                         ifp->if_capenable ^= IFCAP_TSO;
907                         if (ifp->if_capenable & IFCAP_TSO)
908                                 ifp->if_hwassist |= CSUM_TSO;
909                         else
910                                 ifp->if_hwassist &= ~CSUM_TSO;
911                 }
912                 if (mask & IFCAP_RSS)
913                         ifp->if_capenable ^= IFCAP_RSS;
914                 if (reinit && (ifp->if_flags & IFF_RUNNING))
915                         igb_init(sc);
916                 break;
917
918         default:
919                 error = ether_ioctl(ifp, command, data);
920                 break;
921         }
922         return error;
923 }
924
925 static void
926 igb_init(void *xsc)
927 {
928         struct igb_softc *sc = xsc;
929         struct ifnet *ifp = &sc->arpcom.ac_if;
930         boolean_t polling;
931         int i;
932
933         ASSERT_IFNET_SERIALIZED_ALL(ifp);
934
935         igb_stop(sc);
936
937         /* Get the latest mac address, User can use a LAA */
938         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
939
940         /* Put the address into the Receive Address Array */
941         e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
942
943         igb_reset(sc, FALSE);
944         igb_update_link_status(sc);
945
946         E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
947
948         /* Configure for OS presence */
949         igb_get_mgmt(sc);
950
951         polling = FALSE;
952 #ifdef IFPOLL_ENABLE
953         if (ifp->if_flags & IFF_NPOLLING)
954                 polling = TRUE;
955 #endif
956
957         /* Configured used RX/TX rings */
958         igb_set_ring_inuse(sc, polling);
959         ifq_set_subq_mask(&ifp->if_snd, sc->tx_ring_inuse - 1);
960
961         /* Initialize interrupt */
962         igb_init_intr(sc);
963
964         /* Prepare transmit descriptors and buffers */
965         for (i = 0; i < sc->tx_ring_inuse; ++i)
966                 igb_init_tx_ring(&sc->tx_rings[i]);
967         igb_init_tx_unit(sc);
968
969         /* Setup Multicast table */
970         igb_set_multi(sc);
971
972 #if 0
973         /*
974          * Figure out the desired mbuf pool
975          * for doing jumbo/packetsplit
976          */
977         if (adapter->max_frame_size <= 2048)
978                 adapter->rx_mbuf_sz = MCLBYTES;
979         else if (adapter->max_frame_size <= 4096)
980                 adapter->rx_mbuf_sz = MJUMPAGESIZE;
981         else
982                 adapter->rx_mbuf_sz = MJUM9BYTES;
983 #endif
984
985         /* Prepare receive descriptors and buffers */
986         for (i = 0; i < sc->rx_ring_inuse; ++i) {
987                 int error;
988
989                 error = igb_init_rx_ring(&sc->rx_rings[i]);
990                 if (error) {
991                         if_printf(ifp, "Could not setup receive structures\n");
992                         igb_stop(sc);
993                         return;
994                 }
995         }
996         igb_init_rx_unit(sc);
997
998         /* Enable VLAN support */
999         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
1000                 igb_set_vlan(sc);
1001
1002         /* Don't lose promiscuous settings */
1003         igb_set_promisc(sc);
1004
1005         ifp->if_flags |= IFF_RUNNING;
1006         for (i = 0; i < sc->tx_ring_inuse; ++i) {
1007                 ifsq_clr_oactive(sc->tx_rings[i].ifsq);
1008                 ifsq_watchdog_start(&sc->tx_rings[i].tx_watchdog);
1009         }
1010
1011         igb_set_timer_cpuid(sc, polling);
1012         callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1013         e1000_clear_hw_cntrs_base_generic(&sc->hw);
1014
1015         /* This clears any pending interrupts */
1016         E1000_READ_REG(&sc->hw, E1000_ICR);
1017
1018         /*
1019          * Only enable interrupts if we are not polling, make sure
1020          * they are off otherwise.
1021          */
1022         if (polling) {
1023                 igb_disable_intr(sc);
1024         } else {
1025                 igb_enable_intr(sc);
1026                 E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
1027         }
1028
1029         /* Set Energy Efficient Ethernet */
1030         if (sc->hw.phy.media_type == e1000_media_type_copper) {
1031                 if (sc->hw.mac.type == e1000_i354)
1032                         e1000_set_eee_i354(&sc->hw, TRUE, TRUE);
1033                 else
1034                         e1000_set_eee_i350(&sc->hw, TRUE, TRUE);
1035         }
1036 }
1037
1038 static void
1039 igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1040 {
1041         struct igb_softc *sc = ifp->if_softc;
1042
1043         ASSERT_IFNET_SERIALIZED_ALL(ifp);
1044
1045         if ((ifp->if_flags & IFF_RUNNING) == 0)
1046                 sc->hw.mac.get_link_status = 1;
1047         igb_update_link_status(sc);
1048
1049         ifmr->ifm_status = IFM_AVALID;
1050         ifmr->ifm_active = IFM_ETHER;
1051
1052         if (!sc->link_active) {
1053                 if (sc->hw.mac.autoneg)
1054                         ifmr->ifm_active |= IFM_NONE;
1055                 else
1056                         ifmr->ifm_active |= sc->media.ifm_media;
1057                 return;
1058         }
1059
1060         ifmr->ifm_status |= IFM_ACTIVE;
1061         if (sc->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1062                 ifmr->ifm_active |= sc->ifm_flowctrl;
1063
1064         switch (sc->link_speed) {
1065         case 10:
1066                 ifmr->ifm_active |= IFM_10_T;
1067                 break;
1068
1069         case 100:
1070                 /*
1071                  * Support for 100Mb SFP - these are Fiber 
1072                  * but the media type appears as serdes
1073                  */
1074                 if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1075                     sc->hw.phy.media_type == e1000_media_type_internal_serdes)
1076                         ifmr->ifm_active |= IFM_100_FX;
1077                 else
1078                         ifmr->ifm_active |= IFM_100_TX;
1079                 break;
1080
1081         case 1000:
1082                 if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1083                     sc->hw.phy.media_type == e1000_media_type_internal_serdes)
1084                         ifmr->ifm_active |= IFM_1000_SX;
1085                 else
1086                         ifmr->ifm_active |= IFM_1000_T;
1087                 break;
1088
1089         case 2500:
1090                 ifmr->ifm_active |= IFM_2500_SX;
1091                 break;
1092         }
1093
1094         if (sc->link_duplex == FULL_DUPLEX)
1095                 ifmr->ifm_active |= IFM_FDX;
1096         else
1097                 ifmr->ifm_active |= IFM_HDX;
1098
1099         if (sc->link_duplex == FULL_DUPLEX)
1100                 ifmr->ifm_active |= e1000_fc2ifmedia(sc->hw.fc.current_mode);
1101 }
1102
1103 static int
1104 igb_media_change(struct ifnet *ifp)
1105 {
1106         struct igb_softc *sc = ifp->if_softc;
1107         struct ifmedia *ifm = &sc->media;
1108
1109         ASSERT_IFNET_SERIALIZED_ALL(ifp);
1110
1111         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1112                 return EINVAL;
1113
1114         switch (IFM_SUBTYPE(ifm->ifm_media)) {
1115         case IFM_AUTO:
1116                 sc->hw.mac.autoneg = DO_AUTO_NEG;
1117                 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1118                 break;
1119
1120         case IFM_1000_SX:
1121         case IFM_1000_T:
1122                 sc->hw.mac.autoneg = DO_AUTO_NEG;
1123                 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1124                 break;
1125
1126         case IFM_100_TX:
1127                 if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1128                         sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1129                 } else {
1130                         if (IFM_OPTIONS(ifm->ifm_media) &
1131                             (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1132                                 if (bootverbose) {
1133                                         if_printf(ifp, "Flow control is not "
1134                                             "allowed for half-duplex\n");
1135                                 }
1136                                 return EINVAL;
1137                         }
1138                         sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1139                 }
1140                 sc->hw.mac.autoneg = FALSE;
1141                 sc->hw.phy.autoneg_advertised = 0;
1142                 break;
1143
1144         case IFM_10_T:
1145                 if (IFM_OPTIONS(ifm->ifm_media) & IFM_FDX) {
1146                         sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1147                 } else {
1148                         if (IFM_OPTIONS(ifm->ifm_media) &
1149                             (IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) {
1150                                 if (bootverbose) {
1151                                         if_printf(ifp, "Flow control is not "
1152                                             "allowed for half-duplex\n");
1153                                 }
1154                                 return EINVAL;
1155                         }
1156                         sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1157                 }
1158                 sc->hw.mac.autoneg = FALSE;
1159                 sc->hw.phy.autoneg_advertised = 0;
1160                 break;
1161
1162         default:
1163                 if (bootverbose) {
1164                         if_printf(ifp, "Unsupported media type %d\n",
1165                             IFM_SUBTYPE(ifm->ifm_media));
1166                 }
1167                 return EINVAL;
1168         }
1169         sc->ifm_flowctrl = ifm->ifm_media & IFM_ETH_FCMASK;
1170
1171         if (ifp->if_flags & IFF_RUNNING)
1172                 igb_init(sc);
1173
1174         return 0;
1175 }
1176
1177 static void
1178 igb_set_promisc(struct igb_softc *sc)
1179 {
1180         struct ifnet *ifp = &sc->arpcom.ac_if;
1181         struct e1000_hw *hw = &sc->hw;
1182         uint32_t reg;
1183
1184         if (sc->vf_ifp) {
1185                 e1000_promisc_set_vf(hw, e1000_promisc_enabled);
1186                 return;
1187         }
1188
1189         reg = E1000_READ_REG(hw, E1000_RCTL);
1190         if (ifp->if_flags & IFF_PROMISC) {
1191                 reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1192                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1193         } else if (ifp->if_flags & IFF_ALLMULTI) {
1194                 reg |= E1000_RCTL_MPE;
1195                 reg &= ~E1000_RCTL_UPE;
1196                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1197         }
1198 }
1199
1200 static void
1201 igb_disable_promisc(struct igb_softc *sc)
1202 {
1203         struct e1000_hw *hw = &sc->hw;
1204         struct ifnet *ifp = &sc->arpcom.ac_if;
1205         uint32_t reg;
1206         int mcnt = 0;
1207
1208         if (sc->vf_ifp) {
1209                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
1210                 return;
1211         }
1212         reg = E1000_READ_REG(hw, E1000_RCTL);
1213         reg &= ~E1000_RCTL_UPE;
1214         if (ifp->if_flags & IFF_ALLMULTI) {
1215                 mcnt = MAX_NUM_MULTICAST_ADDRESSES;
1216         } else {
1217                 struct  ifmultiaddr *ifma;
1218                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1219                         if (ifma->ifma_addr->sa_family != AF_LINK)
1220                                 continue;
1221                         if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1222                                 break;
1223                         mcnt++;
1224                 }
1225         }
1226         /* Don't disable if in MAX groups */
1227         if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
1228                 reg &= ~E1000_RCTL_MPE;
1229         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1230 }
1231
1232 static void
1233 igb_set_multi(struct igb_softc *sc)
1234 {
1235         struct ifnet *ifp = &sc->arpcom.ac_if;
1236         struct ifmultiaddr *ifma;
1237         uint32_t reg_rctl = 0;
1238         uint8_t *mta;
1239         int mcnt = 0;
1240
1241         mta = sc->mta;
1242         bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1243
1244         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1245                 if (ifma->ifma_addr->sa_family != AF_LINK)
1246                         continue;
1247
1248                 if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1249                         break;
1250
1251                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1252                     &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
1253                 mcnt++;
1254         }
1255
1256         if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1257                 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1258                 reg_rctl |= E1000_RCTL_MPE;
1259                 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1260         } else {
1261                 e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1262         }
1263 }
1264
1265 static void
1266 igb_timer(void *xsc)
1267 {
1268         struct igb_softc *sc = xsc;
1269
1270         lwkt_serialize_enter(&sc->main_serialize);
1271
1272         igb_update_link_status(sc);
1273         igb_update_stats_counters(sc);
1274
1275         callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1276
1277         lwkt_serialize_exit(&sc->main_serialize);
1278 }
1279
1280 static void
1281 igb_update_link_status(struct igb_softc *sc)
1282 {
1283         struct ifnet *ifp = &sc->arpcom.ac_if;
1284         struct e1000_hw *hw = &sc->hw;
1285         uint32_t link_check, thstat, ctrl;
1286
1287         link_check = thstat = ctrl = 0;
1288
1289         /* Get the cached link value or read for real */
1290         switch (hw->phy.media_type) {
1291         case e1000_media_type_copper:
1292                 if (hw->mac.get_link_status) {
1293                         /* Do the work to read phy */
1294                         e1000_check_for_link(hw);
1295                         link_check = !hw->mac.get_link_status;
1296                 } else {
1297                         link_check = TRUE;
1298                 }
1299                 break;
1300
1301         case e1000_media_type_fiber:
1302                 e1000_check_for_link(hw);
1303                 link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1304                 break;
1305
1306         case e1000_media_type_internal_serdes:
1307                 e1000_check_for_link(hw);
1308                 link_check = hw->mac.serdes_has_link;
1309                 break;
1310
1311         /* VF device is type_unknown */
1312         case e1000_media_type_unknown:
1313                 e1000_check_for_link(hw);
1314                 link_check = !hw->mac.get_link_status;
1315                 /* Fall thru */
1316         default:
1317                 break;
1318         }
1319
1320         /* Check for thermal downshift or shutdown */
1321         if (hw->mac.type == e1000_i350) {
1322                 thstat = E1000_READ_REG(hw, E1000_THSTAT);
1323                 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1324         }
1325
1326         /* Now we check if a transition has happened */
1327         if (link_check && sc->link_active == 0) {
1328                 e1000_get_speed_and_duplex(hw, 
1329                     &sc->link_speed, &sc->link_duplex);
1330                 if (bootverbose) {
1331                         char flowctrl[IFM_ETH_FC_STRLEN];
1332
1333                         /* Get the flow control for display */
1334                         e1000_fc2str(hw->fc.current_mode, flowctrl,
1335                             sizeof(flowctrl));
1336
1337                         if_printf(ifp, "Link is up %d Mbps %s, "
1338                             "Flow control: %s\n",
1339                             sc->link_speed,
1340                             sc->link_duplex == FULL_DUPLEX ?
1341                             "Full Duplex" : "Half Duplex",
1342                             flowctrl);
1343                 }
1344                 if (sc->ifm_flowctrl & IFM_ETH_FORCEPAUSE)
1345                         e1000_force_flowctrl(hw, sc->ifm_flowctrl);
1346                 sc->link_active = 1;
1347
1348                 ifp->if_baudrate = sc->link_speed * 1000000;
1349                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1350                     (thstat & E1000_THSTAT_LINK_THROTTLE))
1351                         if_printf(ifp, "Link: thermal downshift\n");
1352                 /* Delay Link Up for Phy update */
1353                 if ((hw->mac.type == e1000_i210 ||
1354                      hw->mac.type == e1000_i211) &&
1355                     hw->phy.id == I210_I_PHY_ID)
1356                         msec_delay(IGB_I210_LINK_DELAY);
1357                 /*
1358                  * Reset if the media type changed.
1359                  * Support AutoMediaDetect for Marvell M88 PHY in i354.
1360                  */
1361                 if (hw->dev_spec._82575.media_changed) {
1362                         hw->dev_spec._82575.media_changed = FALSE;
1363                         igb_reset(sc, TRUE);
1364                 }
1365                 /* This can sleep */
1366                 ifp->if_link_state = LINK_STATE_UP;
1367                 if_link_state_change(ifp);
1368         } else if (!link_check && sc->link_active == 1) {
1369                 ifp->if_baudrate = sc->link_speed = 0;
1370                 sc->link_duplex = 0;
1371                 if (bootverbose)
1372                         if_printf(ifp, "Link is Down\n");
1373                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1374                     (thstat & E1000_THSTAT_PWR_DOWN))
1375                         if_printf(ifp, "Link: thermal shutdown\n");
1376                 sc->link_active = 0;
1377                 /* This can sleep */
1378                 ifp->if_link_state = LINK_STATE_DOWN;
1379                 if_link_state_change(ifp);
1380         }
1381 }
1382
1383 static void
1384 igb_stop(struct igb_softc *sc)
1385 {
1386         struct ifnet *ifp = &sc->arpcom.ac_if;
1387         int i;
1388
1389         ASSERT_IFNET_SERIALIZED_ALL(ifp);
1390
1391         igb_disable_intr(sc);
1392
1393         callout_stop(&sc->timer);
1394
1395         ifp->if_flags &= ~IFF_RUNNING;
1396         for (i = 0; i < sc->tx_ring_cnt; ++i) {
1397                 ifsq_clr_oactive(sc->tx_rings[i].ifsq);
1398                 ifsq_watchdog_stop(&sc->tx_rings[i].tx_watchdog);
1399                 sc->tx_rings[i].tx_flags &= ~IGB_TXFLAG_ENABLED;
1400         }
1401
1402         e1000_reset_hw(&sc->hw);
1403         E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1404
1405         e1000_led_off(&sc->hw);
1406         e1000_cleanup_led(&sc->hw);
1407
1408         for (i = 0; i < sc->tx_ring_cnt; ++i)
1409                 igb_free_tx_ring(&sc->tx_rings[i]);
1410         for (i = 0; i < sc->rx_ring_cnt; ++i)
1411                 igb_free_rx_ring(&sc->rx_rings[i]);
1412 }
1413
1414 static void
1415 igb_reset(struct igb_softc *sc, boolean_t media_reset)
1416 {
1417         struct ifnet *ifp = &sc->arpcom.ac_if;
1418         struct e1000_hw *hw = &sc->hw;
1419         struct e1000_fc_info *fc = &hw->fc;
1420         uint32_t pba = 0;
1421         uint16_t hwm;
1422
1423         /* Let the firmware know the OS is in control */
1424         igb_get_hw_control(sc);
1425
1426         /*
1427          * Packet Buffer Allocation (PBA)
1428          * Writing PBA sets the receive portion of the buffer
1429          * the remainder is used for the transmit buffer.
1430          */
1431         switch (hw->mac.type) {
1432         case e1000_82575:
1433                 pba = E1000_PBA_32K;
1434                 break;
1435
1436         case e1000_82576:
1437         case e1000_vfadapt:
1438                 pba = E1000_READ_REG(hw, E1000_RXPBS);
1439                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1440                 break;
1441
1442         case e1000_82580:
1443         case e1000_i350:
1444         case e1000_i354:
1445         case e1000_vfadapt_i350:
1446                 pba = E1000_READ_REG(hw, E1000_RXPBS);
1447                 pba = e1000_rxpbs_adjust_82580(pba);
1448                 break;
1449
1450         case e1000_i210:
1451         case e1000_i211:
1452                 pba = E1000_PBA_34K;
1453                 break;
1454
1455         default:
1456                 break;
1457         }
1458
1459         /* Special needs in case of Jumbo frames */
1460         if (hw->mac.type == e1000_82575 && ifp->if_mtu > ETHERMTU) {
1461                 uint32_t tx_space, min_tx, min_rx;
1462
1463                 pba = E1000_READ_REG(hw, E1000_PBA);
1464                 tx_space = pba >> 16;
1465                 pba &= 0xffff;
1466
1467                 min_tx = (sc->max_frame_size +
1468                     sizeof(struct e1000_tx_desc) - ETHER_CRC_LEN) * 2;
1469                 min_tx = roundup2(min_tx, 1024);
1470                 min_tx >>= 10;
1471                 min_rx = sc->max_frame_size;
1472                 min_rx = roundup2(min_rx, 1024);
1473                 min_rx >>= 10;
1474                 if (tx_space < min_tx && (min_tx - tx_space) < pba) {
1475                         pba = pba - (min_tx - tx_space);
1476                         /*
1477                          * if short on rx space, rx wins
1478                          * and must trump tx adjustment
1479                          */
1480                         if (pba < min_rx)
1481                                 pba = min_rx;
1482                 }
1483                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1484         }
1485
1486         /*
1487          * These parameters control the automatic generation (Tx) and
1488          * response (Rx) to Ethernet PAUSE frames.
1489          * - High water mark should allow for at least two frames to be
1490          *   received after sending an XOFF.
1491          * - Low water mark works best when it is very near the high water mark.
1492          *   This allows the receiver to restart by sending XON when it has
1493          *   drained a bit.
1494          */
1495         hwm = min(((pba << 10) * 9 / 10),
1496             ((pba << 10) - 2 * sc->max_frame_size));
1497
1498         if (hw->mac.type < e1000_82576) {
1499                 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1500                 fc->low_water = fc->high_water - 8;
1501         } else {
1502                 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1503                 fc->low_water = fc->high_water - 16;
1504         }
1505         fc->pause_time = IGB_FC_PAUSE_TIME;
1506         fc->send_xon = TRUE;
1507         fc->requested_mode = e1000_ifmedia2fc(sc->ifm_flowctrl);
1508
1509         /* Issue a global reset */
1510         e1000_reset_hw(hw);
1511         E1000_WRITE_REG(hw, E1000_WUC, 0);
1512
1513         /* Reset for AutoMediaDetect */
1514         if (media_reset) {
1515                 e1000_setup_init_funcs(hw, TRUE);
1516                 e1000_get_bus_info(hw);
1517         }
1518
1519         if (e1000_init_hw(hw) < 0)
1520                 if_printf(ifp, "Hardware Initialization Failed\n");
1521
1522         /* Setup DMA Coalescing */
1523         igb_init_dmac(sc, pba);
1524
1525         E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1526         e1000_get_phy_info(hw);
1527         e1000_check_for_link(hw);
1528 }
1529
1530 static void
1531 igb_setup_ifp(struct igb_softc *sc)
1532 {
1533         struct ifnet *ifp = &sc->arpcom.ac_if;
1534         int i;
1535
1536         ifp->if_softc = sc;
1537         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1538         ifp->if_init = igb_init;
1539         ifp->if_ioctl = igb_ioctl;
1540         ifp->if_start = igb_start;
1541         ifp->if_serialize = igb_serialize;
1542         ifp->if_deserialize = igb_deserialize;
1543         ifp->if_tryserialize = igb_tryserialize;
1544 #ifdef INVARIANTS
1545         ifp->if_serialize_assert = igb_serialize_assert;
1546 #endif
1547 #ifdef IFPOLL_ENABLE
1548         ifp->if_npoll = igb_npoll;
1549 #endif
1550
1551         ifp->if_nmbclusters = sc->rx_ring_cnt * sc->rx_rings[0].num_rx_desc;
1552
1553         ifq_set_maxlen(&ifp->if_snd, sc->tx_rings[0].num_tx_desc - 1);
1554         ifq_set_ready(&ifp->if_snd);
1555         ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
1556
1557         ifp->if_mapsubq = ifq_mapsubq_mask;
1558         ifq_set_subq_mask(&ifp->if_snd, 0);
1559
1560         ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1561
1562         ifp->if_capabilities =
1563             IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_TSO;
1564         if (IGB_ENABLE_HWRSS(sc))
1565                 ifp->if_capabilities |= IFCAP_RSS;
1566         ifp->if_capenable = ifp->if_capabilities;
1567         ifp->if_hwassist = IGB_CSUM_FEATURES | CSUM_TSO;
1568
1569         /*
1570          * Tell the upper layer(s) we support long frames
1571          */
1572         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1573
1574         /* Setup TX rings and subqueues */
1575         for (i = 0; i < sc->tx_ring_cnt; ++i) {
1576                 struct ifaltq_subque *ifsq = ifq_get_subq(&ifp->if_snd, i);
1577                 struct igb_tx_ring *txr = &sc->tx_rings[i];
1578
1579                 ifsq_set_cpuid(ifsq, txr->tx_intr_cpuid);
1580                 ifsq_set_priv(ifsq, txr);
1581                 ifsq_set_hw_serialize(ifsq, &txr->tx_serialize);
1582                 txr->ifsq = ifsq;
1583
1584                 ifsq_watchdog_init(&txr->tx_watchdog, ifsq, igb_watchdog);
1585         }
1586
1587         /*
1588          * Specify the media types supported by this adapter and register
1589          * callbacks to update media and link information
1590          */
1591         if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1592             sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1593                 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1594                     0, NULL);
1595         } else {
1596                 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1597                 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1598                     0, NULL);
1599                 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1600                 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1601                     0, NULL);
1602                 if (sc->hw.phy.type != e1000_phy_ife) {
1603                         ifmedia_add(&sc->media,
1604                             IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1605                 }
1606         }
1607         ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1608         ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO | sc->ifm_flowctrl);
1609 }
1610
1611 static void
1612 igb_add_sysctl(struct igb_softc *sc)
1613 {
1614         struct sysctl_ctx_list *ctx;
1615         struct sysctl_oid *tree;
1616 #if defined(IGB_RSS_DEBUG) || defined(IGB_TSS_DEBUG)
1617         char node[32];
1618         int i;
1619 #endif
1620
1621         ctx = device_get_sysctl_ctx(sc->dev);
1622         tree = device_get_sysctl_tree(sc->dev);
1623         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1624             OID_AUTO, "rxr", CTLFLAG_RD, &sc->rx_ring_cnt, 0, "# of RX rings");
1625         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1626             OID_AUTO, "rxr_inuse", CTLFLAG_RD, &sc->rx_ring_inuse, 0,
1627             "# of RX rings used");
1628         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1629             OID_AUTO, "txr", CTLFLAG_RD, &sc->tx_ring_cnt, 0, "# of TX rings");
1630         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1631             OID_AUTO, "txr_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
1632             "# of TX rings used");
1633         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1634             OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_rings[0].num_rx_desc, 0,
1635             "# of RX descs");
1636         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1637             OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_rings[0].num_tx_desc, 0,
1638             "# of TX descs");
1639
1640 #define IGB_ADD_INTR_RATE_SYSCTL(sc, use, name) \
1641 do { \
1642         igb_add_intr_rate_sysctl(sc, IGB_INTR_USE_##use, #name "_intr_rate", \
1643             #use " interrupt rate"); \
1644 } while (0)
1645
1646         IGB_ADD_INTR_RATE_SYSCTL(sc, RXTX, rxtx);
1647         IGB_ADD_INTR_RATE_SYSCTL(sc, RX, rx);
1648         IGB_ADD_INTR_RATE_SYSCTL(sc, TX, tx);
1649         IGB_ADD_INTR_RATE_SYSCTL(sc, STATUS, sts);
1650
1651 #undef IGB_ADD_INTR_RATE_SYSCTL
1652
1653         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1654             OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1655             sc, 0, igb_sysctl_tx_intr_nsegs, "I",
1656             "# of segments per TX interrupt");
1657
1658         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1659             OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1660             sc, 0, igb_sysctl_tx_wreg_nsegs, "I",
1661             "# of segments sent before write to hardware register");
1662
1663         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1664             OID_AUTO, "rx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1665             sc, 0, igb_sysctl_rx_wreg_nsegs, "I",
1666             "# of segments received before write to hardware register");
1667
1668 #ifdef IFPOLL_ENABLE
1669         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1670             OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
1671             sc, 0, igb_sysctl_npoll_rxoff, "I", "NPOLLING RX cpu offset");
1672         SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1673             OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
1674             sc, 0, igb_sysctl_npoll_txoff, "I", "NPOLLING TX cpu offset");
1675 #endif
1676
1677 #ifdef IGB_RSS_DEBUG
1678         SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree),
1679             OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug, 0,
1680             "RSS debug level");
1681         for (i = 0; i < sc->rx_ring_cnt; ++i) {
1682                 ksnprintf(node, sizeof(node), "rx%d_pkt", i);
1683                 SYSCTL_ADD_ULONG(ctx,
1684                     SYSCTL_CHILDREN(tree), OID_AUTO, node,
1685                     CTLFLAG_RW, &sc->rx_rings[i].rx_packets, "RXed packets");
1686         }
1687 #endif
1688 #ifdef IGB_TSS_DEBUG
1689         for  (i = 0; i < sc->tx_ring_cnt; ++i) {
1690                 ksnprintf(node, sizeof(node), "tx%d_pkt", i);
1691                 SYSCTL_ADD_ULONG(ctx,
1692                     SYSCTL_CHILDREN(tree), OID_AUTO, node,
1693                     CTLFLAG_RW, &sc->tx_rings[i].tx_packets, "TXed packets");
1694         }
1695 #endif
1696 }
1697
1698 static int
1699 igb_alloc_rings(struct igb_softc *sc)
1700 {
1701         int error, i;
1702
1703         /*
1704          * Create top level busdma tag
1705          */
1706         error = bus_dma_tag_create(NULL, 1, 0,
1707             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1708             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1709             &sc->parent_tag);
1710         if (error) {
1711                 device_printf(sc->dev, "could not create top level DMA tag\n");
1712                 return error;
1713         }
1714
1715         /*
1716          * Allocate TX descriptor rings and buffers
1717          */
1718         sc->tx_rings = kmalloc_cachealign(
1719             sizeof(struct igb_tx_ring) * sc->tx_ring_cnt,
1720             M_DEVBUF, M_WAITOK | M_ZERO);
1721         for (i = 0; i < sc->tx_ring_cnt; ++i) {
1722                 struct igb_tx_ring *txr = &sc->tx_rings[i];
1723
1724                 /* Set up some basics */
1725                 txr->sc = sc;
1726                 txr->me = i;
1727                 lwkt_serialize_init(&txr->tx_serialize);
1728
1729                 error = igb_create_tx_ring(txr);
1730                 if (error)
1731                         return error;
1732         }
1733
1734         /*
1735          * Allocate RX descriptor rings and buffers
1736          */ 
1737         sc->rx_rings = kmalloc_cachealign(
1738             sizeof(struct igb_rx_ring) * sc->rx_ring_cnt,
1739             M_DEVBUF, M_WAITOK | M_ZERO);
1740         for (i = 0; i < sc->rx_ring_cnt; ++i) {
1741                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
1742
1743                 /* Set up some basics */
1744                 rxr->sc = sc;
1745                 rxr->me = i;
1746                 lwkt_serialize_init(&rxr->rx_serialize);
1747
1748                 error = igb_create_rx_ring(rxr);
1749                 if (error)
1750                         return error;
1751         }
1752
1753         return 0;
1754 }
1755
1756 static void
1757 igb_free_rings(struct igb_softc *sc)
1758 {
1759         int i;
1760
1761         if (sc->tx_rings != NULL) {
1762                 for (i = 0; i < sc->tx_ring_cnt; ++i) {
1763                         struct igb_tx_ring *txr = &sc->tx_rings[i];
1764
1765                         igb_destroy_tx_ring(txr, txr->num_tx_desc);
1766                 }
1767                 kfree(sc->tx_rings, M_DEVBUF);
1768         }
1769
1770         if (sc->rx_rings != NULL) {
1771                 for (i = 0; i < sc->rx_ring_cnt; ++i) {
1772                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
1773
1774                         igb_destroy_rx_ring(rxr, rxr->num_rx_desc);
1775                 }
1776                 kfree(sc->rx_rings, M_DEVBUF);
1777         }
1778 }
1779
1780 static int
1781 igb_create_tx_ring(struct igb_tx_ring *txr)
1782 {
1783         int tsize, error, i, ntxd;
1784
1785         /*
1786          * Validate number of transmit descriptors. It must not exceed
1787          * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1788          */
1789         ntxd = device_getenv_int(txr->sc->dev, "txd", igb_txd);
1790         if ((ntxd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN != 0 ||
1791             ntxd > IGB_MAX_TXD || ntxd < IGB_MIN_TXD) {
1792                 device_printf(txr->sc->dev,
1793                     "Using %d TX descriptors instead of %d!\n",
1794                     IGB_DEFAULT_TXD, ntxd);
1795                 txr->num_tx_desc = IGB_DEFAULT_TXD;
1796         } else {
1797                 txr->num_tx_desc = ntxd;
1798         }
1799
1800         /*
1801          * Allocate TX descriptor ring
1802          */
1803         tsize = roundup2(txr->num_tx_desc * sizeof(union e1000_adv_tx_desc),
1804             IGB_DBA_ALIGN);
1805         txr->txdma.dma_vaddr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1806             IGB_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1807             &txr->txdma.dma_tag, &txr->txdma.dma_map, &txr->txdma.dma_paddr);
1808         if (txr->txdma.dma_vaddr == NULL) {
1809                 device_printf(txr->sc->dev,
1810                     "Unable to allocate TX Descriptor memory\n");
1811                 return ENOMEM;
1812         }
1813         txr->tx_base = txr->txdma.dma_vaddr;
1814         bzero(txr->tx_base, tsize);
1815
1816         tsize = __VM_CACHELINE_ALIGN(
1817             sizeof(struct igb_tx_buf) * txr->num_tx_desc);
1818         txr->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
1819
1820         /*
1821          * Allocate TX head write-back buffer
1822          */
1823         txr->tx_hdr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1824             __VM_CACHELINE_SIZE, __VM_CACHELINE_SIZE, BUS_DMA_WAITOK,
1825             &txr->tx_hdr_dtag, &txr->tx_hdr_dmap, &txr->tx_hdr_paddr);
1826         if (txr->tx_hdr == NULL) {
1827                 device_printf(txr->sc->dev,
1828                     "Unable to allocate TX head write-back buffer\n");
1829                 return ENOMEM;
1830         }
1831
1832         /*
1833          * Create DMA tag for TX buffers
1834          */
1835         error = bus_dma_tag_create(txr->sc->parent_tag,
1836             1, 0,               /* alignment, bounds */
1837             BUS_SPACE_MAXADDR,  /* lowaddr */
1838             BUS_SPACE_MAXADDR,  /* highaddr */
1839             NULL, NULL,         /* filter, filterarg */
1840             IGB_TSO_SIZE,       /* maxsize */
1841             IGB_MAX_SCATTER,    /* nsegments */
1842             PAGE_SIZE,          /* maxsegsize */
1843             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1844             BUS_DMA_ONEBPAGE,   /* flags */
1845             &txr->tx_tag);
1846         if (error) {
1847                 device_printf(txr->sc->dev, "Unable to allocate TX DMA tag\n");
1848                 kfree(txr->tx_buf, M_DEVBUF);
1849                 txr->tx_buf = NULL;
1850                 return error;
1851         }
1852
1853         /*
1854          * Create DMA maps for TX buffers
1855          */
1856         for (i = 0; i < txr->num_tx_desc; ++i) {
1857                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1858
1859                 error = bus_dmamap_create(txr->tx_tag,
1860                     BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &txbuf->map);
1861                 if (error) {
1862                         device_printf(txr->sc->dev,
1863                             "Unable to create TX DMA map\n");
1864                         igb_destroy_tx_ring(txr, i);
1865                         return error;
1866                 }
1867         }
1868
1869         if (txr->sc->hw.mac.type == e1000_82575)
1870                 txr->tx_flags |= IGB_TXFLAG_TSO_IPLEN0;
1871
1872         /*
1873          * Initialize various watermark
1874          */
1875         txr->intr_nsegs = txr->num_tx_desc / 16;
1876         txr->wreg_nsegs = IGB_DEF_TXWREG_NSEGS;
1877
1878         return 0;
1879 }
1880
1881 static void
1882 igb_free_tx_ring(struct igb_tx_ring *txr)
1883 {
1884         int i;
1885
1886         for (i = 0; i < txr->num_tx_desc; ++i) {
1887                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1888
1889                 if (txbuf->m_head != NULL) {
1890                         bus_dmamap_unload(txr->tx_tag, txbuf->map);
1891                         m_freem(txbuf->m_head);
1892                         txbuf->m_head = NULL;
1893                 }
1894         }
1895 }
1896
1897 static void
1898 igb_destroy_tx_ring(struct igb_tx_ring *txr, int ndesc)
1899 {
1900         int i;
1901
1902         if (txr->txdma.dma_vaddr != NULL) {
1903                 bus_dmamap_unload(txr->txdma.dma_tag, txr->txdma.dma_map);
1904                 bus_dmamem_free(txr->txdma.dma_tag, txr->txdma.dma_vaddr,
1905                     txr->txdma.dma_map);
1906                 bus_dma_tag_destroy(txr->txdma.dma_tag);
1907                 txr->txdma.dma_vaddr = NULL;
1908         }
1909
1910         if (txr->tx_hdr != NULL) {
1911                 bus_dmamap_unload(txr->tx_hdr_dtag, txr->tx_hdr_dmap);
1912                 bus_dmamem_free(txr->tx_hdr_dtag, txr->tx_hdr,
1913                     txr->tx_hdr_dmap);
1914                 bus_dma_tag_destroy(txr->tx_hdr_dtag);
1915                 txr->tx_hdr = NULL;
1916         }
1917
1918         if (txr->tx_buf == NULL)
1919                 return;
1920
1921         for (i = 0; i < ndesc; ++i) {
1922                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1923
1924                 KKASSERT(txbuf->m_head == NULL);
1925                 bus_dmamap_destroy(txr->tx_tag, txbuf->map);
1926         }
1927         bus_dma_tag_destroy(txr->tx_tag);
1928
1929         kfree(txr->tx_buf, M_DEVBUF);
1930         txr->tx_buf = NULL;
1931 }
1932
1933 static void
1934 igb_init_tx_ring(struct igb_tx_ring *txr)
1935 {
1936         /* Clear the old descriptor contents */
1937         bzero(txr->tx_base,
1938             sizeof(union e1000_adv_tx_desc) * txr->num_tx_desc);
1939
1940         /* Clear TX head write-back buffer */
1941         *(txr->tx_hdr) = 0;
1942
1943         /* Reset indices */
1944         txr->next_avail_desc = 0;
1945         txr->next_to_clean = 0;
1946         txr->tx_nsegs = 0;
1947
1948         /* Set number of descriptors available */
1949         txr->tx_avail = txr->num_tx_desc;
1950
1951         /* Enable this TX ring */
1952         txr->tx_flags |= IGB_TXFLAG_ENABLED;
1953 }
1954
1955 static void
1956 igb_init_tx_unit(struct igb_softc *sc)
1957 {
1958         struct e1000_hw *hw = &sc->hw;
1959         uint32_t tctl;
1960         int i;
1961
1962         /* Setup the Tx Descriptor Rings */
1963         for (i = 0; i < sc->tx_ring_inuse; ++i) {
1964                 struct igb_tx_ring *txr = &sc->tx_rings[i];
1965                 uint64_t bus_addr = txr->txdma.dma_paddr;
1966                 uint64_t hdr_paddr = txr->tx_hdr_paddr;
1967                 uint32_t txdctl = 0;
1968                 uint32_t dca_txctrl;
1969
1970                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
1971                     txr->num_tx_desc * sizeof(struct e1000_tx_desc));
1972                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
1973                     (uint32_t)(bus_addr >> 32));
1974                 E1000_WRITE_REG(hw, E1000_TDBAL(i),
1975                     (uint32_t)bus_addr);
1976
1977                 /* Setup the HW Tx Head and Tail descriptor pointers */
1978                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
1979                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
1980
1981                 dca_txctrl = E1000_READ_REG(hw, E1000_DCA_TXCTRL(i));
1982                 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1983                 E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(i), dca_txctrl);
1984
1985                 /*
1986                  * Don't set WB_on_EITR:
1987                  * - 82575 does not have it
1988                  * - It almost has no effect on 82576, see:
1989                  *   82576 specification update errata #26
1990                  * - It causes unnecessary bus traffic
1991                  */
1992                 E1000_WRITE_REG(hw, E1000_TDWBAH(i),
1993                     (uint32_t)(hdr_paddr >> 32));
1994                 E1000_WRITE_REG(hw, E1000_TDWBAL(i),
1995                     ((uint32_t)hdr_paddr) | E1000_TX_HEAD_WB_ENABLE);
1996
1997                 /*
1998                  * WTHRESH is ignored by the hardware, since header
1999                  * write back mode is used.
2000                  */
2001                 txdctl |= IGB_TX_PTHRESH;
2002                 txdctl |= IGB_TX_HTHRESH << 8;
2003                 txdctl |= IGB_TX_WTHRESH << 16;
2004                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2005                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
2006         }
2007
2008         if (sc->vf_ifp)
2009                 return;
2010
2011         e1000_config_collision_dist(hw);
2012
2013         /* Program the Transmit Control Register */
2014         tctl = E1000_READ_REG(hw, E1000_TCTL);
2015         tctl &= ~E1000_TCTL_CT;
2016         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2017             (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
2018
2019         /* This write will effectively turn on the transmit unit. */
2020         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
2021 }
2022
2023 static boolean_t
2024 igb_txcsum_ctx(struct igb_tx_ring *txr, struct mbuf *mp)
2025 {
2026         struct e1000_adv_tx_context_desc *TXD;
2027         uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
2028         int ehdrlen, ctxd, ip_hlen = 0;
2029         boolean_t offload = TRUE;
2030
2031         if ((mp->m_pkthdr.csum_flags & IGB_CSUM_FEATURES) == 0)
2032                 offload = FALSE;
2033
2034         vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
2035
2036         ctxd = txr->next_avail_desc;
2037         TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
2038
2039         /*
2040          * In advanced descriptors the vlan tag must 
2041          * be placed into the context descriptor, thus
2042          * we need to be here just for that setup.
2043          */
2044         if (mp->m_flags & M_VLANTAG) {
2045                 uint16_t vlantag;
2046
2047                 vlantag = htole16(mp->m_pkthdr.ether_vlantag);
2048                 vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
2049         } else if (!offload) {
2050                 return FALSE;
2051         }
2052
2053         ehdrlen = mp->m_pkthdr.csum_lhlen;
2054         KASSERT(ehdrlen > 0, ("invalid ether hlen"));
2055
2056         /* Set the ether header length */
2057         vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
2058         if (mp->m_pkthdr.csum_flags & CSUM_IP) {
2059                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
2060                 ip_hlen = mp->m_pkthdr.csum_iphlen;
2061                 KASSERT(ip_hlen > 0, ("invalid ip hlen"));
2062         }
2063         vlan_macip_lens |= ip_hlen;
2064
2065         type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
2066         if (mp->m_pkthdr.csum_flags & CSUM_TCP)
2067                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
2068         else if (mp->m_pkthdr.csum_flags & CSUM_UDP)
2069                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
2070
2071         /*
2072          * 82575 needs the TX context index added; the queue
2073          * index is used as TX context index here.
2074          */
2075         if (txr->sc->hw.mac.type == e1000_82575)
2076                 mss_l4len_idx = txr->me << 4;
2077
2078         /* Now copy bits into descriptor */
2079         TXD->vlan_macip_lens = htole32(vlan_macip_lens);
2080         TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
2081         TXD->seqnum_seed = htole32(0);
2082         TXD->mss_l4len_idx = htole32(mss_l4len_idx);
2083
2084         /* We've consumed the first desc, adjust counters */
2085         if (++ctxd == txr->num_tx_desc)
2086                 ctxd = 0;
2087         txr->next_avail_desc = ctxd;
2088         --txr->tx_avail;
2089
2090         return offload;
2091 }
2092
2093 static void
2094 igb_txeof(struct igb_tx_ring *txr, int hdr)
2095 {
2096         int first, avail;
2097
2098         if (txr->tx_avail == txr->num_tx_desc)
2099                 return;
2100
2101         first = txr->next_to_clean;
2102         if (first == hdr)
2103                 return;
2104
2105         avail = txr->tx_avail;
2106         while (first != hdr) {
2107                 struct igb_tx_buf *txbuf = &txr->tx_buf[first];
2108
2109                 ++avail;
2110                 if (txbuf->m_head) {
2111                         bus_dmamap_unload(txr->tx_tag, txbuf->map);
2112                         m_freem(txbuf->m_head);
2113                         txbuf->m_head = NULL;
2114                 }
2115                 if (++first == txr->num_tx_desc)
2116                         first = 0;
2117         }
2118         txr->next_to_clean = first;
2119         txr->tx_avail = avail;
2120
2121         /*
2122          * If we have a minimum free, clear OACTIVE
2123          * to tell the stack that it is OK to send packets.
2124          */
2125         if (txr->tx_avail > IGB_MAX_SCATTER + IGB_TX_RESERVED) {
2126                 ifsq_clr_oactive(txr->ifsq);
2127
2128                 /*
2129                  * We have enough TX descriptors, turn off
2130                  * the watchdog.  We allow small amount of
2131                  * packets (roughly intr_nsegs) pending on
2132                  * the transmit ring.
2133                  */
2134                 txr->tx_watchdog.wd_timer = 0;
2135         }
2136 }
2137
2138 static int
2139 igb_create_rx_ring(struct igb_rx_ring *rxr)
2140 {
2141         int rsize, i, error, nrxd;
2142
2143         /*
2144          * Validate number of receive descriptors. It must not exceed
2145          * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
2146          */
2147         nrxd = device_getenv_int(rxr->sc->dev, "rxd", igb_rxd);
2148         if ((nrxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN != 0 ||
2149             nrxd > IGB_MAX_RXD || nrxd < IGB_MIN_RXD) {
2150                 device_printf(rxr->sc->dev,
2151                     "Using %d RX descriptors instead of %d!\n",
2152                     IGB_DEFAULT_RXD, nrxd);
2153                 rxr->num_rx_desc = IGB_DEFAULT_RXD;
2154         } else {
2155                 rxr->num_rx_desc = nrxd;
2156         }
2157
2158         /*
2159          * Allocate RX descriptor ring
2160          */
2161         rsize = roundup2(rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc),
2162             IGB_DBA_ALIGN);
2163         rxr->rxdma.dma_vaddr = bus_dmamem_coherent_any(rxr->sc->parent_tag,
2164             IGB_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2165             &rxr->rxdma.dma_tag, &rxr->rxdma.dma_map,
2166             &rxr->rxdma.dma_paddr);
2167         if (rxr->rxdma.dma_vaddr == NULL) {
2168                 device_printf(rxr->sc->dev,
2169                     "Unable to allocate RxDescriptor memory\n");
2170                 return ENOMEM;
2171         }
2172         rxr->rx_base = rxr->rxdma.dma_vaddr;
2173         bzero(rxr->rx_base, rsize);
2174
2175         rsize = __VM_CACHELINE_ALIGN(
2176             sizeof(struct igb_rx_buf) * rxr->num_rx_desc);
2177         rxr->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2178
2179         /*
2180          * Create DMA tag for RX buffers
2181          */
2182         error = bus_dma_tag_create(rxr->sc->parent_tag,
2183             1, 0,               /* alignment, bounds */
2184             BUS_SPACE_MAXADDR,  /* lowaddr */
2185             BUS_SPACE_MAXADDR,  /* highaddr */
2186             NULL, NULL,         /* filter, filterarg */
2187             MCLBYTES,           /* maxsize */
2188             1,                  /* nsegments */
2189             MCLBYTES,           /* maxsegsize */
2190             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2191             &rxr->rx_tag);
2192         if (error) {
2193                 device_printf(rxr->sc->dev,
2194                     "Unable to create RX payload DMA tag\n");
2195                 kfree(rxr->rx_buf, M_DEVBUF);
2196                 rxr->rx_buf = NULL;
2197                 return error;
2198         }
2199
2200         /*
2201          * Create spare DMA map for RX buffers
2202          */
2203         error = bus_dmamap_create(rxr->rx_tag, BUS_DMA_WAITOK,
2204             &rxr->rx_sparemap);
2205         if (error) {
2206                 device_printf(rxr->sc->dev,
2207                     "Unable to create spare RX DMA maps\n");
2208                 bus_dma_tag_destroy(rxr->rx_tag);
2209                 kfree(rxr->rx_buf, M_DEVBUF);
2210                 rxr->rx_buf = NULL;
2211                 return error;
2212         }
2213
2214         /*
2215          * Create DMA maps for RX buffers
2216          */
2217         for (i = 0; i < rxr->num_rx_desc; i++) {
2218                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2219
2220                 error = bus_dmamap_create(rxr->rx_tag,
2221                     BUS_DMA_WAITOK, &rxbuf->map);
2222                 if (error) {
2223                         device_printf(rxr->sc->dev,
2224                             "Unable to create RX DMA maps\n");
2225                         igb_destroy_rx_ring(rxr, i);
2226                         return error;
2227                 }
2228         }
2229
2230         /*
2231          * Initialize various watermark
2232          */
2233         rxr->wreg_nsegs = IGB_DEF_RXWREG_NSEGS;
2234
2235         return 0;
2236 }
2237
2238 static void
2239 igb_free_rx_ring(struct igb_rx_ring *rxr)
2240 {
2241         int i;
2242
2243         for (i = 0; i < rxr->num_rx_desc; ++i) {
2244                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2245
2246                 if (rxbuf->m_head != NULL) {
2247                         bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2248                         m_freem(rxbuf->m_head);
2249                         rxbuf->m_head = NULL;
2250                 }
2251         }
2252
2253         if (rxr->fmp != NULL)
2254                 m_freem(rxr->fmp);
2255         rxr->fmp = NULL;
2256         rxr->lmp = NULL;
2257 }
2258
2259 static void
2260 igb_destroy_rx_ring(struct igb_rx_ring *rxr, int ndesc)
2261 {
2262         int i;
2263
2264         if (rxr->rxdma.dma_vaddr != NULL) {
2265                 bus_dmamap_unload(rxr->rxdma.dma_tag, rxr->rxdma.dma_map);
2266                 bus_dmamem_free(rxr->rxdma.dma_tag, rxr->rxdma.dma_vaddr,
2267                     rxr->rxdma.dma_map);
2268                 bus_dma_tag_destroy(rxr->rxdma.dma_tag);
2269                 rxr->rxdma.dma_vaddr = NULL;
2270         }
2271
2272         if (rxr->rx_buf == NULL)
2273                 return;
2274
2275         for (i = 0; i < ndesc; ++i) {
2276                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2277
2278                 KKASSERT(rxbuf->m_head == NULL);
2279                 bus_dmamap_destroy(rxr->rx_tag, rxbuf->map);
2280         }
2281         bus_dmamap_destroy(rxr->rx_tag, rxr->rx_sparemap);
2282         bus_dma_tag_destroy(rxr->rx_tag);
2283
2284         kfree(rxr->rx_buf, M_DEVBUF);
2285         rxr->rx_buf = NULL;
2286 }
2287
2288 static void
2289 igb_setup_rxdesc(union e1000_adv_rx_desc *rxd, const struct igb_rx_buf *rxbuf)
2290 {
2291         rxd->read.pkt_addr = htole64(rxbuf->paddr);
2292         rxd->wb.upper.status_error = 0;
2293 }
2294
2295 static int
2296 igb_newbuf(struct igb_rx_ring *rxr, int i, boolean_t wait)
2297 {
2298         struct mbuf *m;
2299         bus_dma_segment_t seg;
2300         bus_dmamap_t map;
2301         struct igb_rx_buf *rxbuf;
2302         int error, nseg;
2303
2304         m = m_getcl(wait ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
2305         if (m == NULL) {
2306                 if (wait) {
2307                         if_printf(&rxr->sc->arpcom.ac_if,
2308                             "Unable to allocate RX mbuf\n");
2309                 }
2310                 return ENOBUFS;
2311         }
2312         m->m_len = m->m_pkthdr.len = MCLBYTES;
2313
2314         if (rxr->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2315                 m_adj(m, ETHER_ALIGN);
2316
2317         error = bus_dmamap_load_mbuf_segment(rxr->rx_tag,
2318             rxr->rx_sparemap, m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
2319         if (error) {
2320                 m_freem(m);
2321                 if (wait) {
2322                         if_printf(&rxr->sc->arpcom.ac_if,
2323                             "Unable to load RX mbuf\n");
2324                 }
2325                 return error;
2326         }
2327
2328         rxbuf = &rxr->rx_buf[i];
2329         if (rxbuf->m_head != NULL)
2330                 bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2331
2332         map = rxbuf->map;
2333         rxbuf->map = rxr->rx_sparemap;
2334         rxr->rx_sparemap = map;
2335
2336         rxbuf->m_head = m;
2337         rxbuf->paddr = seg.ds_addr;
2338
2339         igb_setup_rxdesc(&rxr->rx_base[i], rxbuf);
2340         return 0;
2341 }
2342
2343 static int
2344 igb_init_rx_ring(struct igb_rx_ring *rxr)
2345 {
2346         int i;
2347
2348         /* Clear the ring contents */
2349         bzero(rxr->rx_base,
2350             rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc));
2351
2352         /* Now replenish the ring mbufs */
2353         for (i = 0; i < rxr->num_rx_desc; ++i) {
2354                 int error;
2355
2356                 error = igb_newbuf(rxr, i, TRUE);
2357                 if (error)
2358                         return error;
2359         }
2360
2361         /* Setup our descriptor indices */
2362         rxr->next_to_check = 0;
2363
2364         rxr->fmp = NULL;
2365         rxr->lmp = NULL;
2366         rxr->discard = FALSE;
2367
2368         return 0;
2369 }
2370
2371 static void
2372 igb_init_rx_unit(struct igb_softc *sc)
2373 {
2374         struct ifnet *ifp = &sc->arpcom.ac_if;
2375         struct e1000_hw *hw = &sc->hw;
2376         uint32_t rctl, rxcsum, srrctl = 0;
2377         int i;
2378
2379         /*
2380          * Make sure receives are disabled while setting
2381          * up the descriptor ring
2382          */
2383         rctl = E1000_READ_REG(hw, E1000_RCTL);
2384         E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2385
2386 #if 0
2387         /*
2388         ** Set up for header split
2389         */
2390         if (igb_header_split) {
2391                 /* Use a standard mbuf for the header */
2392                 srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2393                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2394         } else
2395 #endif
2396                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2397
2398         /*
2399         ** Set up for jumbo frames
2400         */
2401         if (ifp->if_mtu > ETHERMTU) {
2402                 rctl |= E1000_RCTL_LPE;
2403 #if 0
2404                 if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
2405                         srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2406                         rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
2407                 } else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
2408                         srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2409                         rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
2410                 }
2411                 /* Set maximum packet len */
2412                 psize = adapter->max_frame_size;
2413                 /* are we on a vlan? */
2414                 if (adapter->ifp->if_vlantrunk != NULL)
2415                         psize += VLAN_TAG_SIZE;
2416                 E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
2417 #else
2418                 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2419                 rctl |= E1000_RCTL_SZ_2048;
2420 #endif
2421         } else {
2422                 rctl &= ~E1000_RCTL_LPE;
2423                 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2424                 rctl |= E1000_RCTL_SZ_2048;
2425         }
2426
2427         /* Setup the Base and Length of the Rx Descriptor Rings */
2428         for (i = 0; i < sc->rx_ring_inuse; ++i) {
2429                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
2430                 uint64_t bus_addr = rxr->rxdma.dma_paddr;
2431                 uint32_t rxdctl;
2432
2433                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
2434                     rxr->num_rx_desc * sizeof(struct e1000_rx_desc));
2435                 E1000_WRITE_REG(hw, E1000_RDBAH(i),
2436                     (uint32_t)(bus_addr >> 32));
2437                 E1000_WRITE_REG(hw, E1000_RDBAL(i),
2438                     (uint32_t)bus_addr);
2439                 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2440                 /* Enable this Queue */
2441                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2442                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2443                 rxdctl &= 0xFFF00000;
2444                 rxdctl |= IGB_RX_PTHRESH;
2445                 rxdctl |= IGB_RX_HTHRESH << 8;
2446                 /*
2447                  * Don't set WTHRESH to a value above 1 on 82576, see:
2448                  * 82576 specification update errata #26
2449                  */
2450                 rxdctl |= IGB_RX_WTHRESH << 16;
2451                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2452         }
2453
2454         rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2455         rxcsum &= ~(E1000_RXCSUM_PCSS_MASK | E1000_RXCSUM_IPPCSE);
2456
2457         /*
2458          * Receive Checksum Offload for TCP and UDP
2459          *
2460          * Checksum offloading is also enabled if multiple receive
2461          * queue is to be supported, since we need it to figure out
2462          * fragments.
2463          */
2464         if ((ifp->if_capenable & IFCAP_RXCSUM) || IGB_ENABLE_HWRSS(sc)) {
2465                 /*
2466                  * NOTE:
2467                  * PCSD must be enabled to enable multiple
2468                  * receive queues.
2469                  */
2470                 rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2471                     E1000_RXCSUM_PCSD;
2472         } else {
2473                 rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2474                     E1000_RXCSUM_PCSD);
2475         }
2476         E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2477
2478         if (IGB_ENABLE_HWRSS(sc)) {
2479                 uint8_t key[IGB_NRSSRK * IGB_RSSRK_SIZE];
2480                 uint32_t reta_shift;
2481                 int j, r;
2482
2483                 /*
2484                  * NOTE:
2485                  * When we reach here, RSS has already been disabled
2486                  * in igb_stop(), so we could safely configure RSS key
2487                  * and redirect table.
2488                  */
2489
2490                 /*
2491                  * Configure RSS key
2492                  */
2493                 toeplitz_get_key(key, sizeof(key));
2494                 for (i = 0; i < IGB_NRSSRK; ++i) {
2495                         uint32_t rssrk;
2496
2497                         rssrk = IGB_RSSRK_VAL(key, i);
2498                         IGB_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2499
2500                         E1000_WRITE_REG(hw, E1000_RSSRK(i), rssrk);
2501                 }
2502
2503                 /*
2504                  * Configure RSS redirect table in following fashion:
2505                  * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2506                  */
2507                 reta_shift = IGB_RETA_SHIFT;
2508                 if (hw->mac.type == e1000_82575)
2509                         reta_shift = IGB_RETA_SHIFT_82575;
2510
2511                 r = 0;
2512                 for (j = 0; j < IGB_NRETA; ++j) {
2513                         uint32_t reta = 0;
2514
2515                         for (i = 0; i < IGB_RETA_SIZE; ++i) {
2516                                 uint32_t q;
2517
2518                                 q = (r % sc->rx_ring_inuse) << reta_shift;
2519                                 reta |= q << (8 * i);
2520                                 ++r;
2521                         }
2522                         IGB_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2523                         E1000_WRITE_REG(hw, E1000_RETA(j), reta);
2524                 }
2525
2526                 /*
2527                  * Enable multiple receive queues.
2528                  * Enable IPv4 RSS standard hash functions.
2529                  * Disable RSS interrupt on 82575
2530                  */
2531                 E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2532                                 E1000_MRQC_ENABLE_RSS_4Q |
2533                                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2534                                 E1000_MRQC_RSS_FIELD_IPV4);
2535         }
2536
2537         /* Setup the Receive Control Register */
2538         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2539         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2540             E1000_RCTL_RDMTS_HALF |
2541             (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2542         /* Strip CRC bytes. */
2543         rctl |= E1000_RCTL_SECRC;
2544         /* Make sure VLAN Filters are off */
2545         rctl &= ~E1000_RCTL_VFE;
2546         /* Don't store bad packets */
2547         rctl &= ~E1000_RCTL_SBP;
2548
2549         /* Enable Receives */
2550         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2551
2552         /*
2553          * Setup the HW Rx Head and Tail Descriptor Pointers
2554          *   - needs to be after enable
2555          */
2556         for (i = 0; i < sc->rx_ring_inuse; ++i) {
2557                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
2558
2559                 E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
2560                 E1000_WRITE_REG(hw, E1000_RDT(i), rxr->num_rx_desc - 1);
2561         }
2562 }
2563
2564 static void
2565 igb_rx_refresh(struct igb_rx_ring *rxr, int i)
2566 {
2567         if (--i < 0)
2568                 i = rxr->num_rx_desc - 1;
2569         E1000_WRITE_REG(&rxr->sc->hw, E1000_RDT(rxr->me), i);
2570 }
2571
2572 static void
2573 igb_rxeof(struct igb_rx_ring *rxr, int count)
2574 {
2575         struct ifnet *ifp = &rxr->sc->arpcom.ac_if;
2576         union e1000_adv_rx_desc *cur;
2577         uint32_t staterr;
2578         int i, ncoll = 0, cpuid = mycpuid;
2579
2580         i = rxr->next_to_check;
2581         cur = &rxr->rx_base[i];
2582         staterr = le32toh(cur->wb.upper.status_error);
2583
2584         if ((staterr & E1000_RXD_STAT_DD) == 0)
2585                 return;
2586
2587         while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2588                 struct pktinfo *pi = NULL, pi0;
2589                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2590                 struct mbuf *m = NULL;
2591                 boolean_t eop;
2592
2593                 eop = (staterr & E1000_RXD_STAT_EOP) ? TRUE : FALSE;
2594                 if (eop)
2595                         --count;
2596
2597                 ++ncoll;
2598                 if ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) == 0 &&
2599                     !rxr->discard) {
2600                         struct mbuf *mp = rxbuf->m_head;
2601                         uint32_t hash, hashtype;
2602                         uint16_t vlan;
2603                         int len;
2604
2605                         len = le16toh(cur->wb.upper.length);
2606                         if ((rxr->sc->hw.mac.type == e1000_i350 ||
2607                              rxr->sc->hw.mac.type == e1000_i354) &&
2608                             (staterr & E1000_RXDEXT_STATERR_LB))
2609                                 vlan = be16toh(cur->wb.upper.vlan);
2610                         else
2611                                 vlan = le16toh(cur->wb.upper.vlan);
2612
2613                         hash = le32toh(cur->wb.lower.hi_dword.rss);
2614                         hashtype = le32toh(cur->wb.lower.lo_dword.data) &
2615                             E1000_RXDADV_RSSTYPE_MASK;
2616
2617                         IGB_RSS_DPRINTF(rxr->sc, 10,
2618                             "ring%d, hash 0x%08x, hashtype %u\n",
2619                             rxr->me, hash, hashtype);
2620
2621                         bus_dmamap_sync(rxr->rx_tag, rxbuf->map,
2622                             BUS_DMASYNC_POSTREAD);
2623
2624                         if (igb_newbuf(rxr, i, FALSE) != 0) {
2625                                 IFNET_STAT_INC(ifp, iqdrops, 1);
2626                                 goto discard;
2627                         }
2628
2629                         mp->m_len = len;
2630                         if (rxr->fmp == NULL) {
2631                                 mp->m_pkthdr.len = len;
2632                                 rxr->fmp = mp;
2633                                 rxr->lmp = mp;
2634                         } else {
2635                                 rxr->lmp->m_next = mp;
2636                                 rxr->lmp = rxr->lmp->m_next;
2637                                 rxr->fmp->m_pkthdr.len += len;
2638                         }
2639
2640                         if (eop) {
2641                                 m = rxr->fmp;
2642                                 rxr->fmp = NULL;
2643                                 rxr->lmp = NULL;
2644
2645                                 m->m_pkthdr.rcvif = ifp;
2646                                 IFNET_STAT_INC(ifp, ipackets, 1);
2647
2648                                 if (ifp->if_capenable & IFCAP_RXCSUM)
2649                                         igb_rxcsum(staterr, m);
2650
2651                                 if (staterr & E1000_RXD_STAT_VP) {
2652                                         m->m_pkthdr.ether_vlantag = vlan;
2653                                         m->m_flags |= M_VLANTAG;
2654                                 }
2655
2656                                 if (ifp->if_capenable & IFCAP_RSS) {
2657                                         pi = igb_rssinfo(m, &pi0,
2658                                             hash, hashtype, staterr);
2659                                 }
2660 #ifdef IGB_RSS_DEBUG
2661                                 rxr->rx_packets++;
2662 #endif
2663                         }
2664                 } else {
2665                         IFNET_STAT_INC(ifp, ierrors, 1);
2666 discard:
2667                         igb_setup_rxdesc(cur, rxbuf);
2668                         if (!eop)
2669                                 rxr->discard = TRUE;
2670                         else
2671                                 rxr->discard = FALSE;
2672                         if (rxr->fmp != NULL) {
2673                                 m_freem(rxr->fmp);
2674                                 rxr->fmp = NULL;
2675                                 rxr->lmp = NULL;
2676                         }
2677                         m = NULL;
2678                 }
2679
2680                 if (m != NULL)
2681                         ifp->if_input(ifp, m, pi, cpuid);
2682
2683                 /* Advance our pointers to the next descriptor. */
2684                 if (++i == rxr->num_rx_desc)
2685                         i = 0;
2686
2687                 if (ncoll >= rxr->wreg_nsegs) {
2688                         igb_rx_refresh(rxr, i);
2689                         ncoll = 0;
2690                 }
2691
2692                 cur = &rxr->rx_base[i];
2693                 staterr = le32toh(cur->wb.upper.status_error);
2694         }
2695         rxr->next_to_check = i;
2696
2697         if (ncoll > 0)
2698                 igb_rx_refresh(rxr, i);
2699 }
2700
2701
2702 static void
2703 igb_set_vlan(struct igb_softc *sc)
2704 {
2705         struct e1000_hw *hw = &sc->hw;
2706         uint32_t reg;
2707 #if 0
2708         struct ifnet *ifp = sc->arpcom.ac_if;
2709 #endif
2710
2711         if (sc->vf_ifp) {
2712                 e1000_rlpml_set_vf(hw, sc->max_frame_size + VLAN_TAG_SIZE);
2713                 return;
2714         }
2715
2716         reg = E1000_READ_REG(hw, E1000_CTRL);
2717         reg |= E1000_CTRL_VME;
2718         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2719
2720 #if 0
2721         /* Enable the Filter Table */
2722         if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
2723                 reg = E1000_READ_REG(hw, E1000_RCTL);
2724                 reg &= ~E1000_RCTL_CFIEN;
2725                 reg |= E1000_RCTL_VFE;
2726                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
2727         }
2728 #endif
2729
2730         /* Update the frame size */
2731         E1000_WRITE_REG(&sc->hw, E1000_RLPML,
2732             sc->max_frame_size + VLAN_TAG_SIZE);
2733
2734 #if 0
2735         /* Don't bother with table if no vlans */
2736         if ((adapter->num_vlans == 0) ||
2737             ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
2738                 return;
2739         /*
2740         ** A soft reset zero's out the VFTA, so
2741         ** we need to repopulate it now.
2742         */
2743         for (int i = 0; i < IGB_VFTA_SIZE; i++)
2744                 if (adapter->shadow_vfta[i] != 0) {
2745                         if (adapter->vf_ifp)
2746                                 e1000_vfta_set_vf(hw,
2747                                     adapter->shadow_vfta[i], TRUE);
2748                         else
2749                                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
2750                                  i, adapter->shadow_vfta[i]);
2751                 }
2752 #endif
2753 }
2754
2755 static void
2756 igb_enable_intr(struct igb_softc *sc)
2757 {
2758         int i;
2759
2760         for (i = 0; i < sc->intr_cnt; ++i)
2761                 lwkt_serialize_handler_enable(sc->intr_data[i].intr_serialize);
2762
2763         if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2764                 if (sc->intr_type == PCI_INTR_TYPE_MSIX)
2765                         E1000_WRITE_REG(&sc->hw, E1000_EIAC, sc->intr_mask);
2766                 else
2767                         E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2768                 E1000_WRITE_REG(&sc->hw, E1000_EIAM, sc->intr_mask);
2769                 E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
2770                 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
2771         } else {
2772                 E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2773         }
2774         E1000_WRITE_FLUSH(&sc->hw);
2775 }
2776
2777 static void
2778 igb_disable_intr(struct igb_softc *sc)
2779 {
2780         int i;
2781
2782         if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2783                 E1000_WRITE_REG(&sc->hw, E1000_EIMC, 0xffffffff);
2784                 E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2785         }
2786         E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2787         E1000_WRITE_FLUSH(&sc->hw);
2788
2789         for (i = 0; i < sc->intr_cnt; ++i)
2790                 lwkt_serialize_handler_disable(sc->intr_data[i].intr_serialize);
2791 }
2792
2793 /*
2794  * Bit of a misnomer, what this really means is
2795  * to enable OS management of the system... aka
2796  * to disable special hardware management features 
2797  */
2798 static void
2799 igb_get_mgmt(struct igb_softc *sc)
2800 {
2801         if (sc->flags & IGB_FLAG_HAS_MGMT) {
2802                 int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2803                 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2804
2805                 /* disable hardware interception of ARP */
2806                 manc &= ~E1000_MANC_ARP_EN;
2807
2808                 /* enable receiving management packets to the host */
2809                 manc |= E1000_MANC_EN_MNG2HOST;
2810                 manc2h |= 1 << 5; /* Mng Port 623 */
2811                 manc2h |= 1 << 6; /* Mng Port 664 */
2812                 E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2813                 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2814         }
2815 }
2816
2817 /*
2818  * Give control back to hardware management controller
2819  * if there is one.
2820  */
2821 static void
2822 igb_rel_mgmt(struct igb_softc *sc)
2823 {
2824         if (sc->flags & IGB_FLAG_HAS_MGMT) {
2825                 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2826
2827                 /* Re-enable hardware interception of ARP */
2828                 manc |= E1000_MANC_ARP_EN;
2829                 manc &= ~E1000_MANC_EN_MNG2HOST;
2830
2831                 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2832         }
2833 }
2834
2835 /*
2836  * Sets CTRL_EXT:DRV_LOAD bit.
2837  *
2838  * For ASF and Pass Through versions of f/w this means that
2839  * the driver is loaded. 
2840  */
2841 static void
2842 igb_get_hw_control(struct igb_softc *sc)
2843 {
2844         uint32_t ctrl_ext;
2845
2846         if (sc->vf_ifp)
2847                 return;
2848
2849         /* Let firmware know the driver has taken over */
2850         ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2851         E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2852             ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2853 }
2854
2855 /*
2856  * Resets CTRL_EXT:DRV_LOAD bit.
2857  *
2858  * For ASF and Pass Through versions of f/w this means that the
2859  * driver is no longer loaded.
2860  */
2861 static void
2862 igb_rel_hw_control(struct igb_softc *sc)
2863 {
2864         uint32_t ctrl_ext;
2865
2866         if (sc->vf_ifp)
2867                 return;
2868
2869         /* Let firmware taken over control of h/w */
2870         ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2871         E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2872             ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2873 }
2874
2875 static boolean_t
2876 igb_is_valid_ether_addr(const uint8_t *addr)
2877 {
2878         uint8_t zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2879
2880         if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
2881                 return FALSE;
2882         return TRUE;
2883 }
2884
2885 /*
2886  * Enable PCI Wake On Lan capability
2887  */
2888 static void
2889 igb_enable_wol(device_t dev)
2890 {
2891         uint16_t cap, status;
2892         uint8_t id;
2893
2894         /* First find the capabilities pointer*/
2895         cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
2896
2897         /* Read the PM Capabilities */
2898         id = pci_read_config(dev, cap, 1);
2899         if (id != PCIY_PMG)     /* Something wrong */
2900                 return;
2901
2902         /*
2903          * OK, we have the power capabilities,
2904          * so now get the status register
2905          */
2906         cap += PCIR_POWER_STATUS;
2907         status = pci_read_config(dev, cap, 2);
2908         status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2909         pci_write_config(dev, cap, status, 2);
2910 }
2911
2912 static void
2913 igb_update_stats_counters(struct igb_softc *sc)
2914 {
2915         struct e1000_hw *hw = &sc->hw;
2916         struct e1000_hw_stats *stats;
2917         struct ifnet *ifp = &sc->arpcom.ac_if;
2918
2919         /* 
2920          * The virtual function adapter has only a
2921          * small controlled set of stats, do only 
2922          * those and return.
2923          */
2924         if (sc->vf_ifp) {
2925                 igb_update_vf_stats_counters(sc);
2926                 return;
2927         }
2928         stats = sc->stats;
2929
2930         if (sc->hw.phy.media_type == e1000_media_type_copper ||
2931             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
2932                 stats->symerrs +=
2933                     E1000_READ_REG(hw,E1000_SYMERRS);
2934                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
2935         }
2936
2937         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
2938         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
2939         stats->scc += E1000_READ_REG(hw, E1000_SCC);
2940         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
2941
2942         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
2943         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
2944         stats->colc += E1000_READ_REG(hw, E1000_COLC);
2945         stats->dc += E1000_READ_REG(hw, E1000_DC);
2946         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
2947         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
2948         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
2949
2950         /*
2951          * For watchdog management we need to know if we have been
2952          * paused during the last interval, so capture that here.
2953          */ 
2954         sc->pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
2955         stats->xoffrxc += sc->pause_frames;
2956         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
2957         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
2958         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
2959         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
2960         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
2961         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
2962         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
2963         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
2964         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
2965         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
2966         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
2967         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
2968
2969         /* For the 64-bit byte counters the low dword must be read first. */
2970         /* Both registers clear on the read of the high dword */
2971
2972         stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
2973             ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
2974         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
2975             ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
2976
2977         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
2978         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
2979         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
2980         stats->roc += E1000_READ_REG(hw, E1000_ROC);
2981         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
2982
2983         stats->tor += E1000_READ_REG(hw, E1000_TORH);
2984         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
2985
2986         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
2987         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
2988         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
2989         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
2990         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
2991         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
2992         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
2993         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
2994         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
2995         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
2996
2997         /* Interrupt Counts */
2998
2999         stats->iac += E1000_READ_REG(hw, E1000_IAC);
3000         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
3001         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
3002         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
3003         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
3004         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
3005         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
3006         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
3007         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
3008
3009         /* Host to Card Statistics */
3010
3011         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
3012         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
3013         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
3014         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
3015         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
3016         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
3017         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
3018         stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
3019             ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32));
3020         stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
3021             ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
3022         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
3023         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
3024         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
3025
3026         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
3027         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
3028         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
3029         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
3030         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
3031         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
3032
3033         IFNET_STAT_SET(ifp, collisions, stats->colc);
3034
3035         /* Rx Errors */
3036         IFNET_STAT_SET(ifp, ierrors,
3037             stats->rxerrc + stats->crcerrs + stats->algnerrc +
3038             stats->ruc + stats->roc + stats->mpc + stats->cexterr);
3039
3040         /* Tx Errors */
3041         IFNET_STAT_SET(ifp, oerrors,
3042             stats->ecol + stats->latecol + sc->watchdog_events);
3043
3044         /* Driver specific counters */
3045         sc->device_control = E1000_READ_REG(hw, E1000_CTRL);
3046         sc->rx_control = E1000_READ_REG(hw, E1000_RCTL);
3047         sc->int_mask = E1000_READ_REG(hw, E1000_IMS);
3048         sc->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
3049         sc->packet_buf_alloc_tx =
3050             ((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
3051         sc->packet_buf_alloc_rx =
3052             (E1000_READ_REG(hw, E1000_PBA) & 0xffff);
3053 }
3054
3055 static void
3056 igb_vf_init_stats(struct igb_softc *sc)
3057 {
3058         struct e1000_hw *hw = &sc->hw;
3059         struct e1000_vf_stats *stats;
3060
3061         stats = sc->stats;
3062         stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
3063         stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
3064         stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
3065         stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
3066         stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
3067 }
3068  
3069 static void
3070 igb_update_vf_stats_counters(struct igb_softc *sc)
3071 {
3072         struct e1000_hw *hw = &sc->hw;
3073         struct e1000_vf_stats *stats;
3074
3075         if (sc->link_speed == 0)
3076                 return;
3077
3078         stats = sc->stats;
3079         UPDATE_VF_REG(E1000_VFGPRC, stats->last_gprc, stats->gprc);
3080         UPDATE_VF_REG(E1000_VFGORC, stats->last_gorc, stats->gorc);
3081         UPDATE_VF_REG(E1000_VFGPTC, stats->last_gptc, stats->gptc);
3082         UPDATE_VF_REG(E1000_VFGOTC, stats->last_gotc, stats->gotc);
3083         UPDATE_VF_REG(E1000_VFMPRC, stats->last_mprc, stats->mprc);
3084 }
3085
3086 #ifdef IFPOLL_ENABLE
3087
3088 static void
3089 igb_npoll_status(struct ifnet *ifp)
3090 {
3091         struct igb_softc *sc = ifp->if_softc;
3092         uint32_t reg_icr;
3093
3094         ASSERT_SERIALIZED(&sc->main_serialize);
3095
3096         reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3097         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3098                 sc->hw.mac.get_link_status = 1;
3099                 igb_update_link_status(sc);
3100         }
3101 }
3102
3103 static void
3104 igb_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
3105 {
3106         struct igb_tx_ring *txr = arg;
3107
3108         ASSERT_SERIALIZED(&txr->tx_serialize);
3109
3110         igb_txeof(txr, *(txr->tx_hdr));
3111         if (!ifsq_is_empty(txr->ifsq))
3112                 ifsq_devstart(txr->ifsq);
3113 }
3114
3115 static void
3116 igb_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3117 {
3118         struct igb_rx_ring *rxr = arg;
3119
3120         ASSERT_SERIALIZED(&rxr->rx_serialize);
3121
3122         igb_rxeof(rxr, cycle);
3123 }
3124
3125 static void
3126 igb_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3127 {
3128         struct igb_softc *sc = ifp->if_softc;
3129         int i, txr_cnt, rxr_cnt;
3130
3131         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3132
3133         if (info) {
3134                 int off;
3135
3136                 info->ifpi_status.status_func = igb_npoll_status;
3137                 info->ifpi_status.serializer = &sc->main_serialize;
3138
3139                 txr_cnt = igb_get_txring_inuse(sc, TRUE);
3140                 off = sc->tx_npoll_off;
3141                 for (i = 0; i < txr_cnt; ++i) {
3142                         struct igb_tx_ring *txr = &sc->tx_rings[i];
3143                         int idx = i + off;
3144
3145                         KKASSERT(idx < ncpus2);
3146                         info->ifpi_tx[idx].poll_func = igb_npoll_tx;
3147                         info->ifpi_tx[idx].arg = txr;
3148                         info->ifpi_tx[idx].serializer = &txr->tx_serialize;
3149                         ifsq_set_cpuid(txr->ifsq, idx);
3150                 }
3151
3152                 rxr_cnt = igb_get_rxring_inuse(sc, TRUE);
3153                 off = sc->rx_npoll_off;
3154                 for (i = 0; i < rxr_cnt; ++i) {
3155                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
3156                         int idx = i + off;
3157
3158                         KKASSERT(idx < ncpus2);
3159                         info->ifpi_rx[idx].poll_func = igb_npoll_rx;
3160                         info->ifpi_rx[idx].arg = rxr;
3161                         info->ifpi_rx[idx].serializer = &rxr->rx_serialize;
3162                 }
3163
3164                 if (ifp->if_flags & IFF_RUNNING) {
3165                         if (rxr_cnt == sc->rx_ring_inuse &&
3166                             txr_cnt == sc->tx_ring_inuse) {
3167                                 igb_set_timer_cpuid(sc, TRUE);
3168                                 igb_disable_intr(sc);
3169                         } else {
3170                                 igb_init(sc);
3171                         }
3172                 }
3173         } else {
3174                 for (i = 0; i < sc->tx_ring_cnt; ++i) {
3175                         struct igb_tx_ring *txr = &sc->tx_rings[i];
3176
3177                         ifsq_set_cpuid(txr->ifsq, txr->tx_intr_cpuid);
3178                 }
3179
3180                 if (ifp->if_flags & IFF_RUNNING) {
3181                         txr_cnt = igb_get_txring_inuse(sc, FALSE);
3182                         rxr_cnt = igb_get_rxring_inuse(sc, FALSE);
3183
3184                         if (rxr_cnt == sc->rx_ring_inuse &&
3185                             txr_cnt == sc->tx_ring_inuse) {
3186                                 igb_set_timer_cpuid(sc, FALSE);
3187                                 igb_enable_intr(sc);
3188                         } else {
3189                                 igb_init(sc);
3190                         }
3191                 }
3192         }
3193 }
3194
3195 #endif /* IFPOLL_ENABLE */
3196
3197 static void
3198 igb_intr(void *xsc)
3199 {
3200         struct igb_softc *sc = xsc;
3201         struct ifnet *ifp = &sc->arpcom.ac_if;
3202         uint32_t eicr;
3203
3204         ASSERT_SERIALIZED(&sc->main_serialize);
3205
3206         eicr = E1000_READ_REG(&sc->hw, E1000_EICR);
3207
3208         if (eicr == 0)
3209                 return;
3210
3211         if (ifp->if_flags & IFF_RUNNING) {
3212                 struct igb_tx_ring *txr = &sc->tx_rings[0];
3213                 int i;
3214
3215                 for (i = 0; i < sc->rx_ring_inuse; ++i) {
3216                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
3217
3218                         if (eicr & rxr->rx_intr_mask) {
3219                                 lwkt_serialize_enter(&rxr->rx_serialize);
3220                                 igb_rxeof(rxr, -1);
3221                                 lwkt_serialize_exit(&rxr->rx_serialize);
3222                         }
3223                 }
3224
3225                 if (eicr & txr->tx_intr_mask) {
3226                         lwkt_serialize_enter(&txr->tx_serialize);
3227                         igb_txeof(txr, *(txr->tx_hdr));
3228                         if (!ifsq_is_empty(txr->ifsq))
3229                                 ifsq_devstart(txr->ifsq);
3230                         lwkt_serialize_exit(&txr->tx_serialize);
3231                 }
3232         }
3233
3234         if (eicr & E1000_EICR_OTHER) {
3235                 uint32_t icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3236
3237                 /* Link status change */
3238                 if (icr & E1000_ICR_LSC) {
3239                         sc->hw.mac.get_link_status = 1;
3240                         igb_update_link_status(sc);
3241                 }
3242         }
3243
3244         /*
3245          * Reading EICR has the side effect to clear interrupt mask,
3246          * so all interrupts need to be enabled here.
3247          */
3248         E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
3249 }
3250
3251 static void
3252 igb_intr_shared(void *xsc)
3253 {
3254         struct igb_softc *sc = xsc;
3255         struct ifnet *ifp = &sc->arpcom.ac_if;
3256         uint32_t reg_icr;
3257
3258         ASSERT_SERIALIZED(&sc->main_serialize);
3259
3260         reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3261
3262         /* Hot eject?  */
3263         if (reg_icr == 0xffffffff)
3264                 return;
3265
3266         /* Definitely not our interrupt.  */
3267         if (reg_icr == 0x0)
3268                 return;
3269
3270         if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
3271                 return;
3272
3273         if (ifp->if_flags & IFF_RUNNING) {
3274                 if (reg_icr &
3275                     (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
3276                         int i;
3277
3278                         for (i = 0; i < sc->rx_ring_inuse; ++i) {
3279                                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
3280
3281                                 lwkt_serialize_enter(&rxr->rx_serialize);
3282                                 igb_rxeof(rxr, -1);
3283                                 lwkt_serialize_exit(&rxr->rx_serialize);
3284                         }
3285                 }
3286
3287                 if (reg_icr & E1000_ICR_TXDW) {
3288                         struct igb_tx_ring *txr = &sc->tx_rings[0];
3289
3290                         lwkt_serialize_enter(&txr->tx_serialize);
3291                         igb_txeof(txr, *(txr->tx_hdr));
3292                         if (!ifsq_is_empty(txr->ifsq))
3293                                 ifsq_devstart(txr->ifsq);
3294                         lwkt_serialize_exit(&txr->tx_serialize);
3295                 }
3296         }
3297
3298         /* Link status change */
3299         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3300                 sc->hw.mac.get_link_status = 1;
3301                 igb_update_link_status(sc);
3302         }
3303
3304         if (reg_icr & E1000_ICR_RXO)
3305                 sc->rx_overruns++;
3306 }
3307
3308 static int
3309 igb_encap(struct igb_tx_ring *txr, struct mbuf **m_headp,
3310     int *segs_used, int *idx)
3311 {
3312         bus_dma_segment_t segs[IGB_MAX_SCATTER];
3313         bus_dmamap_t map;
3314         struct igb_tx_buf *tx_buf, *tx_buf_mapped;
3315         union e1000_adv_tx_desc *txd = NULL;
3316         struct mbuf *m_head = *m_headp;
3317         uint32_t olinfo_status = 0, cmd_type_len = 0, cmd_rs = 0;
3318         int maxsegs, nsegs, i, j, error;
3319         uint32_t hdrlen = 0;
3320
3321         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3322                 error = igb_tso_pullup(txr, m_headp);
3323                 if (error)
3324                         return error;
3325                 m_head = *m_headp;
3326         }
3327
3328         /* Set basic descriptor constants */
3329         cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
3330         cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
3331         if (m_head->m_flags & M_VLANTAG)
3332                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3333
3334         /*
3335          * Map the packet for DMA.
3336          */
3337         tx_buf = &txr->tx_buf[txr->next_avail_desc];
3338         tx_buf_mapped = tx_buf;
3339         map = tx_buf->map;
3340
3341         maxsegs = txr->tx_avail - IGB_TX_RESERVED;
3342         if (maxsegs > IGB_MAX_SCATTER)
3343                 maxsegs = IGB_MAX_SCATTER;
3344
3345         error = bus_dmamap_load_mbuf_defrag(txr->tx_tag, map, m_headp,
3346             segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3347         if (error) {
3348                 if (error == ENOBUFS)
3349                         txr->sc->mbuf_defrag_failed++;
3350                 else
3351                         txr->sc->no_tx_dma_setup++;
3352
3353                 m_freem(*m_headp);
3354                 *m_headp = NULL;
3355                 return error;
3356         }
3357         bus_dmamap_sync(txr->tx_tag, map, BUS_DMASYNC_PREWRITE);
3358
3359         m_head = *m_headp;
3360
3361         /*
3362          * Set up the TX context descriptor, if any hardware offloading is
3363          * needed.  This includes CSUM, VLAN, and TSO.  It will consume one
3364          * TX descriptor.
3365          *
3366          * Unlike these chips' predecessors (em/emx), TX context descriptor
3367          * will _not_ interfere TX data fetching pipelining.
3368          */
3369         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3370                 igb_tso_ctx(txr, m_head, &hdrlen);
3371                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3372                 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3373                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3374                 txr->tx_nsegs++;
3375                 (*segs_used)++;
3376         } else if (igb_txcsum_ctx(txr, m_head)) {
3377                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3378                         olinfo_status |= (E1000_TXD_POPTS_IXSM << 8);
3379                 if (m_head->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_TCP))
3380                         olinfo_status |= (E1000_TXD_POPTS_TXSM << 8);
3381                 txr->tx_nsegs++;
3382                 (*segs_used)++;
3383         }
3384
3385         *segs_used += nsegs;
3386         txr->tx_nsegs += nsegs;
3387         if (txr->tx_nsegs >= txr->intr_nsegs) {
3388                 /*
3389                  * Report Status (RS) is turned on every intr_nsegs
3390                  * descriptors (roughly).
3391                  */
3392                 txr->tx_nsegs = 0;
3393                 cmd_rs = E1000_ADVTXD_DCMD_RS;
3394         }
3395
3396         /* Calculate payload length */
3397         olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
3398             << E1000_ADVTXD_PAYLEN_SHIFT);
3399
3400         /*
3401          * 82575 needs the TX context index added; the queue
3402          * index is used as TX context index here.
3403          */
3404         if (txr->sc->hw.mac.type == e1000_82575)
3405                 olinfo_status |= txr->me << 4;
3406
3407         /* Set up our transmit descriptors */
3408         i = txr->next_avail_desc;
3409         for (j = 0; j < nsegs; j++) {
3410                 bus_size_t seg_len;
3411                 bus_addr_t seg_addr;
3412
3413                 tx_buf = &txr->tx_buf[i];
3414                 txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
3415                 seg_addr = segs[j].ds_addr;
3416                 seg_len = segs[j].ds_len;
3417
3418                 txd->read.buffer_addr = htole64(seg_addr);
3419                 txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
3420                 txd->read.olinfo_status = htole32(olinfo_status);
3421                 if (++i == txr->num_tx_desc)
3422                         i = 0;
3423                 tx_buf->m_head = NULL;
3424         }
3425
3426         KASSERT(txr->tx_avail > nsegs, ("invalid avail TX desc\n"));
3427         txr->next_avail_desc = i;
3428         txr->tx_avail -= nsegs;
3429
3430         tx_buf->m_head = m_head;
3431         tx_buf_mapped->map = tx_buf->map;
3432         tx_buf->map = map;
3433
3434         /*
3435          * Last Descriptor of Packet needs End Of Packet (EOP)
3436          */
3437         txd->read.cmd_type_len |= htole32(E1000_ADVTXD_DCMD_EOP | cmd_rs);
3438
3439         /*
3440          * Defer TDT updating, until enough descrptors are setup
3441          */
3442         *idx = i;
3443 #ifdef IGB_TSS_DEBUG
3444         ++txr->tx_packets;
3445 #endif
3446
3447         return 0;
3448 }
3449
3450 static void
3451 igb_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3452 {
3453         struct igb_softc *sc = ifp->if_softc;
3454         struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3455         struct mbuf *m_head;
3456         int idx = -1, nsegs = 0;
3457
3458         KKASSERT(txr->ifsq == ifsq);
3459         ASSERT_SERIALIZED(&txr->tx_serialize);
3460
3461         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
3462                 return;
3463
3464         if (!sc->link_active || (txr->tx_flags & IGB_TXFLAG_ENABLED) == 0) {
3465                 ifsq_purge(ifsq);
3466                 return;
3467         }
3468
3469         while (!ifsq_is_empty(ifsq)) {
3470                 if (txr->tx_avail <= IGB_MAX_SCATTER + IGB_TX_RESERVED) {
3471                         ifsq_set_oactive(ifsq);
3472                         /* Set watchdog on */
3473                         txr->tx_watchdog.wd_timer = 5;
3474                         break;
3475                 }
3476
3477                 m_head = ifsq_dequeue(ifsq);
3478                 if (m_head == NULL)
3479                         break;
3480
3481                 if (igb_encap(txr, &m_head, &nsegs, &idx)) {
3482                         IFNET_STAT_INC(ifp, oerrors, 1);
3483                         continue;
3484                 }
3485
3486                 /*
3487                  * TX interrupt are aggressively aggregated, so increasing
3488                  * opackets at TX interrupt time will make the opackets
3489                  * statistics vastly inaccurate; we do the opackets increment
3490                  * now.
3491                  */
3492                 IFNET_STAT_INC(ifp, opackets, 1);
3493
3494                 if (nsegs >= txr->wreg_nsegs) {
3495                         E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3496                         idx = -1;
3497                         nsegs = 0;
3498                 }
3499
3500                 /* Send a copy of the frame to the BPF listener */
3501                 ETHER_BPF_MTAP(ifp, m_head);
3502         }
3503         if (idx >= 0)
3504                 E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3505 }
3506
3507 static void
3508 igb_watchdog(struct ifaltq_subque *ifsq)
3509 {
3510         struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3511         struct ifnet *ifp = ifsq_get_ifp(ifsq);
3512         struct igb_softc *sc = ifp->if_softc;
3513         int i;
3514
3515         KKASSERT(txr->ifsq == ifsq);
3516         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3517
3518         /* 
3519          * If flow control has paused us since last checking
3520          * it invalidates the watchdog timing, so dont run it.
3521          */
3522         if (sc->pause_frames) {
3523                 sc->pause_frames = 0;
3524                 txr->tx_watchdog.wd_timer = 5;
3525                 return;
3526         }
3527
3528         if_printf(ifp, "Watchdog timeout -- resetting\n");
3529         if_printf(ifp, "Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
3530             E1000_READ_REG(&sc->hw, E1000_TDH(txr->me)),
3531             E1000_READ_REG(&sc->hw, E1000_TDT(txr->me)));
3532         if_printf(ifp, "TX(%d) desc avail = %d, "
3533             "Next TX to Clean = %d\n",
3534             txr->me, txr->tx_avail, txr->next_to_clean);
3535
3536         IFNET_STAT_INC(ifp, oerrors, 1);
3537         sc->watchdog_events++;
3538
3539         igb_init(sc);
3540         for (i = 0; i < sc->tx_ring_inuse; ++i)
3541                 ifsq_devstart_sched(sc->tx_rings[i].ifsq);
3542 }
3543
3544 static void
3545 igb_set_eitr(struct igb_softc *sc, int idx, int rate)
3546 {
3547         uint32_t eitr = 0;
3548
3549         if (rate > 0) {
3550                 if (sc->hw.mac.type == e1000_82575) {
3551                         eitr = 1000000000 / 256 / rate;
3552                         /*
3553                          * NOTE:
3554                          * Document is wrong on the 2 bits left shift
3555                          */
3556                 } else {
3557                         eitr = 1000000 / rate;
3558                         eitr <<= IGB_EITR_INTVL_SHIFT;
3559                 }
3560
3561                 if (eitr == 0) {
3562                         /* Don't disable it */
3563                         eitr = 1 << IGB_EITR_INTVL_SHIFT;
3564                 } else if (eitr > IGB_EITR_INTVL_MASK) {
3565                         /* Don't allow it to be too large */
3566                         eitr = IGB_EITR_INTVL_MASK;
3567                 }
3568         }
3569         if (sc->hw.mac.type == e1000_82575)
3570                 eitr |= eitr << 16;
3571         else
3572                 eitr |= E1000_EITR_CNT_IGNR;
3573         E1000_WRITE_REG(&sc->hw, E1000_EITR(idx), eitr);
3574 }
3575
3576 static void
3577 igb_add_intr_rate_sysctl(struct igb_softc *sc, int use,
3578     const char *name, const char *desc)
3579 {
3580         int i;
3581
3582         for (i = 0; i < sc->intr_cnt; ++i) {
3583                 if (sc->intr_data[i].intr_use == use) {
3584                         SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
3585                             SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
3586                             OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW,
3587                             sc, use, igb_sysctl_intr_rate, "I", desc);
3588                         break;
3589                 }
3590         }
3591 }
3592
3593 static int
3594 igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3595 {
3596         struct igb_softc *sc = (void *)arg1;
3597         int use = arg2;
3598         struct ifnet *ifp = &sc->arpcom.ac_if;
3599         int error, rate, i;
3600         struct igb_intr_data *intr;
3601
3602         rate = 0;
3603         for (i = 0; i < sc->intr_cnt; ++i) {
3604                 intr = &sc->intr_data[i];
3605                 if (intr->intr_use == use) {
3606                         rate = intr->intr_rate;
3607                         break;
3608                 }
3609         }
3610
3611         error = sysctl_handle_int(oidp, &rate, 0, req);
3612         if (error || req->newptr == NULL)
3613                 return error;
3614         if (rate <= 0)
3615                 return EINVAL;
3616
3617         ifnet_serialize_all(ifp);
3618
3619         for (i = 0; i < sc->intr_cnt; ++i) {
3620                 intr = &sc->intr_data[i];
3621                 if (intr->intr_use == use && intr->intr_rate != rate) {
3622                         intr->intr_rate = rate;
3623                         if (ifp->if_flags & IFF_RUNNING)
3624                                 igb_set_eitr(sc, i, rate);
3625                 }
3626         }
3627
3628         ifnet_deserialize_all(ifp);
3629
3630         return error;
3631 }
3632
3633 static int
3634 igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3635 {
3636         struct igb_softc *sc = (void *)arg1;
3637         struct ifnet *ifp = &sc->arpcom.ac_if;
3638         struct igb_tx_ring *txr = &sc->tx_rings[0];
3639         int error, nsegs;
3640
3641         nsegs = txr->intr_nsegs;
3642         error = sysctl_handle_int(oidp, &nsegs, 0, req);
3643         if (error || req->newptr == NULL)
3644                 return error;
3645         if (nsegs <= 0)
3646                 return EINVAL;
3647
3648         ifnet_serialize_all(ifp);
3649
3650         if (nsegs >= txr->num_tx_desc - IGB_MAX_SCATTER - IGB_TX_RESERVED) {
3651                 error = EINVAL;
3652         } else {
3653                 int i;
3654
3655                 error = 0;
3656                 for (i = 0; i < sc->tx_ring_cnt; ++i)
3657                         sc->tx_rings[i].intr_nsegs = nsegs;
3658         }
3659
3660         ifnet_deserialize_all(ifp);
3661
3662         return error;
3663 }
3664
3665 static int
3666 igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3667 {
3668         struct igb_softc *sc = (void *)arg1;
3669         struct ifnet *ifp = &sc->arpcom.ac_if;
3670         int error, nsegs, i;
3671
3672         nsegs = sc->rx_rings[0].wreg_nsegs;
3673         error = sysctl_handle_int(oidp, &nsegs, 0, req);
3674         if (error || req->newptr == NULL)
3675                 return error;
3676
3677         ifnet_serialize_all(ifp);
3678         for (i = 0; i < sc->rx_ring_cnt; ++i)
3679                 sc->rx_rings[i].wreg_nsegs = nsegs;
3680         ifnet_deserialize_all(ifp);
3681
3682         return 0;
3683 }
3684
3685 static int
3686 igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3687 {
3688         struct igb_softc *sc = (void *)arg1;
3689         struct ifnet *ifp = &sc->arpcom.ac_if;
3690         int error, nsegs, i;
3691
3692         nsegs = sc->tx_rings[0].wreg_nsegs;
3693         error = sysctl_handle_int(oidp, &nsegs, 0, req);
3694         if (error || req->newptr == NULL)
3695                 return error;
3696
3697         ifnet_serialize_all(ifp);
3698         for (i = 0; i < sc->tx_ring_cnt; ++i)
3699                 sc->tx_rings[i].wreg_nsegs = nsegs;
3700         ifnet_deserialize_all(ifp);
3701
3702         return 0;
3703 }
3704
3705 #ifdef IFPOLL_ENABLE
3706
3707 static int
3708 igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3709 {
3710         struct igb_softc *sc = (void *)arg1;
3711         struct ifnet *ifp = &sc->arpcom.ac_if;
3712         int error, off;
3713
3714         off = sc->rx_npoll_off;
3715         error = sysctl_handle_int(oidp, &off, 0, req);
3716         if (error || req->newptr == NULL)
3717                 return error;
3718         if (off < 0)
3719                 return EINVAL;
3720
3721         ifnet_serialize_all(ifp);
3722         if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3723                 error = EINVAL;
3724         } else {
3725                 error = 0;
3726                 sc->rx_npoll_off = off;
3727         }
3728         ifnet_deserialize_all(ifp);
3729
3730         return error;
3731 }
3732
3733 static int
3734 igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3735 {
3736         struct igb_softc *sc = (void *)arg1;
3737         struct ifnet *ifp = &sc->arpcom.ac_if;
3738         int error, off;
3739
3740         off = sc->tx_npoll_off;
3741         error = sysctl_handle_int(oidp, &off, 0, req);
3742         if (error || req->newptr == NULL)
3743                 return error;
3744         if (off < 0)
3745                 return EINVAL;
3746
3747         ifnet_serialize_all(ifp);
3748         if (off >= ncpus2 || off % sc->tx_ring_cnt != 0) {
3749                 error = EINVAL;
3750         } else {
3751                 error = 0;
3752                 sc->tx_npoll_off = off;
3753         }
3754         ifnet_deserialize_all(ifp);
3755
3756         return error;
3757 }
3758
3759 #endif  /* IFPOLL_ENABLE */
3760
3761 static void
3762 igb_init_intr(struct igb_softc *sc)
3763 {
3764         int i;
3765
3766         igb_set_intr_mask(sc);
3767
3768         if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0)
3769                 igb_init_unshared_intr(sc);
3770
3771         for (i = 0; i < sc->intr_cnt; ++i)
3772                 igb_set_eitr(sc, i, sc->intr_data[i].intr_rate);
3773 }
3774
3775 static void
3776 igb_init_unshared_intr(struct igb_softc *sc)
3777 {
3778         struct e1000_hw *hw = &sc->hw;
3779         const struct igb_rx_ring *rxr;
3780         const struct igb_tx_ring *txr;
3781         uint32_t ivar, index;
3782         int i;
3783
3784         /*
3785          * Enable extended mode
3786          */
3787         if (sc->hw.mac.type != e1000_82575) {
3788                 uint32_t gpie;
3789                 int ivar_max;
3790
3791                 gpie = E1000_GPIE_NSICR;
3792                 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3793                         gpie |= E1000_GPIE_MSIX_MODE |
3794                             E1000_GPIE_EIAME |
3795                             E1000_GPIE_PBA;
3796                 }
3797                 E1000_WRITE_REG(hw, E1000_GPIE, gpie);
3798
3799                 /*
3800                  * Clear IVARs
3801                  */
3802                 switch (sc->hw.mac.type) {
3803                 case e1000_82576:
3804                         ivar_max = IGB_MAX_IVAR_82576;
3805                         break;
3806
3807                 case e1000_82580:
3808                         ivar_max = IGB_MAX_IVAR_82580;
3809                         break;
3810
3811                 case e1000_i350:
3812                         ivar_max = IGB_MAX_IVAR_I350;
3813                         break;
3814
3815                 case e1000_i354:
3816                         ivar_max = IGB_MAX_IVAR_I354;
3817                         break;
3818
3819                 case e1000_vfadapt:
3820                 case e1000_vfadapt_i350:
3821                         ivar_max = IGB_MAX_IVAR_VF;
3822                         break;
3823
3824                 case e1000_i210:
3825                         ivar_max = IGB_MAX_IVAR_I210;
3826                         break;
3827
3828                 case e1000_i211:
3829                         ivar_max = IGB_MAX_IVAR_I211;
3830                         break;
3831
3832                 default:
3833                         panic("unknown mac type %d\n", sc->hw.mac.type);
3834                 }
3835                 for (i = 0; i < ivar_max; ++i)
3836                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, 0);
3837                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, 0);
3838         } else {
3839                 uint32_t tmp;
3840
3841                 KASSERT(sc->intr_type != PCI_INTR_TYPE_MSIX,
3842                     ("82575 w/ MSI-X"));
3843                 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
3844                 tmp |= E1000_CTRL_EXT_IRCA;
3845                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
3846         }
3847
3848         /*
3849          * Map TX/RX interrupts to EICR
3850          */
3851         switch (sc->hw.mac.type) {
3852         case e1000_82580:
3853         case e1000_i350:
3854         case e1000_i354:
3855         case e1000_vfadapt:
3856         case e1000_vfadapt_i350:
3857         case e1000_i210:
3858         case e1000_i211:
3859                 /* RX entries */
3860                 for (i = 0; i < sc->rx_ring_inuse; ++i) {
3861                         rxr = &sc->rx_rings[i];
3862
3863                         index = i >> 1;
3864                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3865
3866                         if (i & 1) {
3867                                 ivar &= 0xff00ffff;
3868                                 ivar |=
3869                                 (rxr->rx_intr_vec | E1000_IVAR_VALID) << 16;
3870                         } else {
3871                                 ivar &= 0xffffff00;
3872                                 ivar |=
3873                                 (rxr->rx_intr_vec | E1000_IVAR_VALID);
3874                         }
3875                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3876                 }
3877                 /* TX entries */
3878                 for (i = 0; i < sc->tx_ring_inuse; ++i) {
3879                         txr = &sc->tx_rings[i];
3880
3881                         index = i >> 1;
3882                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3883
3884                         if (i & 1) {
3885                                 ivar &= 0x00ffffff;
3886                                 ivar |=
3887                                 (txr->tx_intr_vec | E1000_IVAR_VALID) << 24;
3888                         } else {
3889                                 ivar &= 0xffff00ff;
3890                                 ivar |=
3891                                 (txr->tx_intr_vec | E1000_IVAR_VALID) << 8;
3892                         }
3893                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3894                 }
3895                 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3896                         ivar = (sc->sts_msix_vec | E1000_IVAR_VALID) << 8;
3897                         E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3898                 }
3899                 break;
3900
3901         case e1000_82576:
3902                 /* RX entries */
3903                 for (i = 0; i < sc->rx_ring_inuse; ++i) {
3904                         rxr = &sc->rx_rings[i];
3905
3906                         index = i & 0x7; /* Each IVAR has two entries */
3907                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3908
3909                         if (i < 8) {
3910                                 ivar &= 0xffffff00;
3911                                 ivar |=
3912                                 (rxr->rx_intr_vec | E1000_IVAR_VALID);
3913                         } else {
3914                                 ivar &= 0xff00ffff;
3915                                 ivar |=
3916                                 (rxr->rx_intr_vec | E1000_IVAR_VALID) << 16;
3917                         }
3918                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3919                 }
3920                 /* TX entries */
3921                 for (i = 0; i < sc->tx_ring_inuse; ++i) {
3922                         txr = &sc->tx_rings[i];
3923
3924                         index = i & 0x7; /* Each IVAR has two entries */
3925                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3926
3927                         if (i < 8) {
3928                                 ivar &= 0xffff00ff;
3929                                 ivar |=
3930                                 (txr->tx_intr_vec | E1000_IVAR_VALID) << 8;
3931                         } else {
3932                                 ivar &= 0x00ffffff;
3933                                 ivar |=
3934                                 (txr->tx_intr_vec | E1000_IVAR_VALID) << 24;
3935                         }
3936                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3937                 }
3938                 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3939                         ivar = (sc->sts_msix_vec | E1000_IVAR_VALID) << 8;
3940                         E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3941                 }
3942                 break;
3943
3944         case e1000_82575:
3945                 /*
3946                  * Enable necessary interrupt bits.
3947                  *
3948                  * The name of the register is confusing; in addition to
3949                  * configuring the first vector of MSI-X, it also configures
3950                  * which bits of EICR could be set by the hardware even when
3951                  * MSI or line interrupt is used; it thus controls interrupt
3952                  * generation.  It MUST be configured explicitly; the default
3953                  * value mentioned in the datasheet is wrong: RX queue0 and
3954                  * TX queue0 are NOT enabled by default.
3955                  */
3956                 E1000_WRITE_REG(&sc->hw, E1000_MSIXBM(0), sc->intr_mask);
3957                 break;
3958
3959         default:
3960                 panic("unknown mac type %d\n", sc->hw.mac.type);
3961         }
3962 }
3963
3964 static int
3965 igb_setup_intr(struct igb_softc *sc)
3966 {
3967         int i;
3968
3969         for (i = 0; i < sc->intr_cnt; ++i) {
3970                 struct igb_intr_data *intr = &sc->intr_data[i];
3971                 int error;
3972
3973                 error = bus_setup_intr_descr(sc->dev, intr->intr_res,
3974                     INTR_MPSAFE, intr->intr_func, intr->intr_funcarg,
3975                     &intr->intr_hand, intr->intr_serialize, intr->intr_desc);
3976                 if (error) {
3977                         device_printf(sc->dev, "can't setup %dth intr\n", i);
3978                         igb_teardown_intr(sc, i);
3979                         return error;
3980                 }
3981         }
3982         return 0;
3983 }
3984
3985 static void
3986 igb_set_txintr_mask(struct igb_tx_ring *txr, int *intr_vec0, int intr_vecmax)
3987 {
3988         if (txr->sc->hw.mac.type == e1000_82575) {
3989                 txr->tx_intr_vec = 0;   /* unused */
3990                 switch (txr->me) {
3991                 case 0:
3992                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE0;
3993                         break;
3994                 case 1:
3995                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE1;
3996                         break;
3997                 case 2:
3998                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE2;
3999                         break;
4000                 case 3:
4001                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE3;
4002                         break;
4003                 default:
4004                         panic("unsupported # of TX ring, %d\n", txr->me);
4005                 }
4006         } else {
4007                 int intr_vec = *intr_vec0;
4008
4009                 txr->tx_intr_vec = intr_vec % intr_vecmax;
4010                 txr->tx_intr_mask = 1 << txr->tx_intr_vec;
4011
4012                 *intr_vec0 = intr_vec + 1;
4013         }
4014 }
4015
4016 static void
4017 igb_set_rxintr_mask(struct igb_rx_ring *rxr, int *intr_vec0, int intr_vecmax)
4018 {
4019         if (rxr->sc->hw.mac.type == e1000_82575) {
4020                 rxr->rx_intr_vec = 0;   /* unused */
4021                 switch (rxr->me) {
4022                 case 0:
4023                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE0;
4024                         break;
4025                 case 1:
4026                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE1;
4027                         break;
4028                 case 2:
4029                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE2;
4030                         break;
4031                 case 3:
4032                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE3;
4033                         break;
4034                 default:
4035                         panic("unsupported # of RX ring, %d\n", rxr->me);
4036                 }
4037         } else {
4038                 int intr_vec = *intr_vec0;
4039
4040                 rxr->rx_intr_vec = intr_vec % intr_vecmax;
4041                 rxr->rx_intr_mask = 1 << rxr->rx_intr_vec;
4042
4043                 *intr_vec0 = intr_vec + 1;
4044         }
4045 }
4046
4047 static void
4048 igb_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
4049 {
4050         struct igb_softc *sc = ifp->if_softc;
4051
4052         ifnet_serialize_array_enter(sc->serializes, sc->serialize_cnt, slz);
4053 }
4054
4055 static void
4056 igb_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4057 {
4058         struct igb_softc *sc = ifp->if_softc;
4059
4060         ifnet_serialize_array_exit(sc->serializes, sc->serialize_cnt, slz);
4061 }
4062
4063 static int
4064 igb_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
4065 {
4066         struct igb_softc *sc = ifp->if_softc;
4067
4068         return ifnet_serialize_array_try(sc->serializes, sc->serialize_cnt,
4069             slz);
4070 }
4071
4072 #ifdef INVARIANTS
4073
4074 static void
4075 igb_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
4076     boolean_t serialized)
4077 {
4078         struct igb_softc *sc = ifp->if_softc;
4079
4080         ifnet_serialize_array_assert(sc->serializes, sc->serialize_cnt,
4081             slz, serialized);
4082 }
4083
4084 #endif  /* INVARIANTS */
4085
4086 static void
4087 igb_set_intr_mask(struct igb_softc *sc)
4088 {
4089         int i;
4090
4091         sc->intr_mask = sc->sts_intr_mask;
4092         for (i = 0; i < sc->rx_ring_inuse; ++i)
4093                 sc->intr_mask |= sc->rx_rings[i].rx_intr_mask;
4094         for (i = 0; i < sc->tx_ring_inuse; ++i)
4095                 sc->intr_mask |= sc->tx_rings[i].tx_intr_mask;
4096         if (bootverbose) {
4097                 if_printf(&sc->arpcom.ac_if, "intr mask 0x%08x\n",
4098                     sc->intr_mask);
4099         }
4100 }
4101
4102 static int
4103 igb_alloc_intr(struct igb_softc *sc)
4104 {
4105         struct igb_intr_data *intr;
4106         int i, intr_vec, intr_vecmax;
4107         u_int intr_flags;
4108
4109         igb_alloc_msix(sc);
4110         if (sc->intr_type == PCI_INTR_TYPE_MSIX)
4111                 goto done;
4112
4113         if (sc->intr_data != NULL)
4114                 kfree(sc->intr_data, M_DEVBUF);
4115
4116         sc->intr_cnt = 1;
4117         sc->intr_data = kmalloc(sizeof(struct igb_intr_data), M_DEVBUF,
4118             M_WAITOK | M_ZERO);
4119         intr = &sc->intr_data[0];
4120
4121         /*
4122          * Allocate MSI/legacy interrupt resource
4123          */
4124         sc->intr_type = pci_alloc_1intr(sc->dev, igb_msi_enable,
4125             &intr->intr_rid, &intr_flags);
4126
4127         if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
4128                 int unshared;
4129
4130                 unshared = device_getenv_int(sc->dev, "irq.unshared", 0);
4131                 if (!unshared) {
4132                         sc->flags |= IGB_FLAG_SHARED_INTR;
4133                         if (bootverbose)
4134                                 device_printf(sc->dev, "IRQ shared\n");
4135                 } else {
4136                         intr_flags &= ~RF_SHAREABLE;
4137                         if (bootverbose)
4138                                 device_printf(sc->dev, "IRQ unshared\n");
4139                 }
4140         }
4141
4142         intr->intr_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4143             &intr->intr_rid, intr_flags);
4144         if (intr->intr_res == NULL) {
4145                 device_printf(sc->dev, "Unable to allocate bus resource: "
4146                     "interrupt\n");
4147                 return ENXIO;
4148         }
4149
4150         intr->intr_serialize = &sc->main_serialize;
4151         intr->intr_cpuid = rman_get_cpuid(intr->intr_res);
4152         intr->intr_func = (sc->flags & IGB_FLAG_SHARED_INTR) ?
4153             igb_intr_shared : igb_intr;
4154         intr->intr_funcarg = sc;
4155         intr->intr_rate = IGB_INTR_RATE;
4156         intr->intr_use = IGB_INTR_USE_RXTX;
4157
4158         for (i = 0; i < sc->tx_ring_cnt; ++i)
4159                 sc->tx_rings[i].tx_intr_cpuid = intr->intr_cpuid;
4160
4161         /*
4162          * Setup MSI/legacy interrupt mask
4163          */
4164         switch (sc->hw.mac.type) {
4165         case e1000_82575:
4166                 intr_vecmax = IGB_MAX_TXRXINT_82575;
4167                 break;
4168
4169         case e1000_82576:
4170                 intr_vecmax = IGB_MAX_TXRXINT_82576;
4171                 break;
4172
4173         case e1000_82580:
4174                 intr_vecmax = IGB_MAX_TXRXINT_82580;
4175                 break;
4176
4177         case e1000_i350:
4178                 intr_vecmax = IGB_MAX_TXRXINT_I350;
4179                 break;
4180
4181         case e1000_i354:
4182                 intr_vecmax = IGB_MAX_TXRXINT_I354;
4183                 break;
4184
4185         case e1000_i210:
4186                 intr_vecmax = IGB_MAX_TXRXINT_I210;
4187                 break;
4188
4189         case e1000_i211:
4190                 intr_vecmax = IGB_MAX_TXRXINT_I211;
4191                 break;
4192
4193         default:
4194                 intr_vecmax = IGB_MIN_TXRXINT;
4195                 break;
4196         }
4197         intr_vec = 0;
4198         for (i = 0; i < sc->tx_ring_cnt; ++i)
4199                 igb_set_txintr_mask(&sc->tx_rings[i], &intr_vec, intr_vecmax);
4200         for (i = 0; i < sc->rx_ring_cnt; ++i)
4201                 igb_set_rxintr_mask(&sc->rx_rings[i], &intr_vec, intr_vecmax);
4202         sc->sts_intr_mask = E1000_EICR_OTHER;
4203 done:
4204         igb_set_ring_inuse(sc, FALSE);
4205         igb_set_intr_mask(sc);
4206         return 0;
4207 }
4208
4209 static void
4210 igb_free_intr(struct igb_softc *sc)
4211 {
4212         if (sc->intr_data == NULL)
4213                 return;
4214
4215         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
4216                 struct igb_intr_data *intr = &sc->intr_data[0];
4217
4218                 KKASSERT(sc->intr_cnt == 1);
4219                 if (intr->intr_res != NULL) {
4220                         bus_release_resource(sc->dev, SYS_RES_IRQ,
4221                             intr->intr_rid, intr->intr_res);
4222                 }
4223                 if (sc->intr_type == PCI_INTR_TYPE_MSI)
4224                         pci_release_msi(sc->dev);
4225
4226                 kfree(sc->intr_data, M_DEVBUF);
4227         } else {
4228                 igb_free_msix(sc, TRUE);
4229         }
4230 }
4231
4232 static void
4233 igb_teardown_intr(struct igb_softc *sc, int intr_cnt)
4234 {
4235         int i;
4236
4237         if (sc->intr_data == NULL)
4238                 return;
4239
4240         for (i = 0; i < intr_cnt; ++i) {
4241                 struct igb_intr_data *intr = &sc->intr_data[i];
4242
4243                 bus_teardown_intr(sc->dev, intr->intr_res, intr->intr_hand);
4244         }
4245 }
4246
4247 static void
4248 igb_alloc_msix(struct igb_softc *sc)
4249 {
4250         int msix_enable, msix_cnt, msix_cnt2, alloc_cnt;
4251         int i, x, error;
4252         int offset, offset_def, agg_rxtx, ring_max;
4253         struct igb_intr_data *intr;
4254         boolean_t aggregate, setup = FALSE;
4255
4256         /*
4257          * Don't enable MSI-X on 82575, see:
4258          * 82575 specification update errata #25
4259          */
4260         if (sc->hw.mac.type == e1000_82575)
4261                 return;
4262
4263         /* Don't enable MSI-X on VF */
4264         if (sc->vf_ifp)
4265                 return;
4266
4267         msix_enable = device_getenv_int(sc->dev, "msix.enable",
4268             igb_msix_enable);
4269         if (!msix_enable)
4270                 return;
4271
4272         msix_cnt = pci_msix_count(sc->dev);
4273 #ifdef IGB_MSIX_DEBUG
4274         msix_cnt = device_getenv_int(sc->dev, "msix.count", msix_cnt);
4275 #endif
4276         if (msix_cnt <= 1) {
4277                 /* One MSI-X model does not make sense */
4278                 return;
4279         }
4280
4281         i = 0;
4282         while ((1 << (i + 1)) <= msix_cnt)
4283                 ++i;
4284         msix_cnt2 = 1 << i;
4285
4286         if (bootverbose) {
4287                 device_printf(sc->dev, "MSI-X count %d/%d\n",
4288                     msix_cnt2, msix_cnt);
4289         }
4290
4291         KKASSERT(msix_cnt2 <= msix_cnt);
4292         if (msix_cnt == msix_cnt2) {
4293                 /* We need at least one MSI-X for link status */
4294                 msix_cnt2 >>= 1;
4295                 if (msix_cnt2 <= 1) {
4296                         /* One MSI-X for RX/TX does not make sense */
4297                         device_printf(sc->dev, "not enough MSI-X for TX/RX, "
4298                             "MSI-X count %d/%d\n", msix_cnt2, msix_cnt);
4299                         return;
4300                 }
4301                 KKASSERT(msix_cnt > msix_cnt2);
4302
4303                 if (bootverbose) {
4304                         device_printf(sc->dev, "MSI-X count fixup %d/%d\n",
4305                             msix_cnt2, msix_cnt);
4306                 }
4307         }
4308
4309         sc->rx_ring_msix = sc->rx_ring_cnt;
4310         if (sc->rx_ring_msix > msix_cnt2)
4311                 sc->rx_ring_msix = msix_cnt2;
4312
4313         sc->tx_ring_msix = sc->tx_ring_cnt;
4314         if (sc->tx_ring_msix > msix_cnt2)
4315                 sc->tx_ring_msix = msix_cnt2;
4316
4317         ring_max = sc->rx_ring_msix;
4318         if (ring_max < sc->tx_ring_msix)
4319                 ring_max = sc->tx_ring_msix;
4320
4321         /* Allow user to force independent RX/TX MSI-X handling */
4322         agg_rxtx = device_getenv_int(sc->dev, "msix.agg_rxtx",
4323             igb_msix_agg_rxtx);
4324
4325         if (!agg_rxtx && msix_cnt >= sc->tx_ring_msix + sc->rx_ring_msix + 1) {
4326                 /*
4327                  * Independent TX/RX MSI-X
4328                  */
4329                 aggregate = FALSE;
4330                 if (bootverbose)
4331                         device_printf(sc->dev, "independent TX/RX MSI-X\n");
4332                 alloc_cnt = sc->tx_ring_msix + sc->rx_ring_msix;
4333         } else {
4334                 /*
4335                  * Aggregate TX/RX MSI-X
4336                  */
4337                 aggregate = TRUE;
4338                 if (bootverbose)
4339                         device_printf(sc->dev, "aggregate TX/RX MSI-X\n");
4340                 alloc_cnt = msix_cnt2;
4341                 if (alloc_cnt > ring_max)
4342                         alloc_cnt = ring_max;
4343                 KKASSERT(alloc_cnt >= sc->rx_ring_msix &&
4344                     alloc_cnt >= sc->tx_ring_msix);
4345         }
4346         ++alloc_cnt;    /* For link status */
4347
4348         if (bootverbose) {
4349                 device_printf(sc->dev, "MSI-X alloc %d, "
4350                     "RX ring %d, TX ring %d\n", alloc_cnt,
4351                     sc->rx_ring_msix, sc->tx_ring_msix);
4352         }
4353
4354         sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR);
4355         sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4356             &sc->msix_mem_rid, RF_ACTIVE);
4357         if (sc->msix_mem_res == NULL) {
4358                 sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR_ALT);
4359                 sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4360                     &sc->msix_mem_rid, RF_ACTIVE);
4361                 if (sc->msix_mem_res == NULL) {
4362                         device_printf(sc->dev, "Unable to map MSI-X table\n");
4363                         return;
4364                 }
4365         }
4366
4367         sc->intr_cnt = alloc_cnt;
4368         sc->intr_data = kmalloc(sizeof(struct igb_intr_data) * sc->intr_cnt,
4369             M_DEVBUF, M_WAITOK | M_ZERO);
4370         for (x = 0; x < sc->intr_cnt; ++x) {
4371                 intr = &sc->intr_data[x];
4372                 intr->intr_rid = -1;
4373                 intr->intr_rate = IGB_INTR_RATE;
4374         }
4375
4376         x = 0;
4377         if (!aggregate) {
4378                 /*
4379                  * RX rings
4380                  */
4381                 if (sc->rx_ring_msix == ncpus2) {
4382                         offset = 0;
4383                 } else {
4384                         offset_def = (sc->rx_ring_msix *
4385                             device_get_unit(sc->dev)) % ncpus2;
4386
4387                         offset = device_getenv_int(sc->dev,
4388                             "msix.rxoff", offset_def);
4389                         if (offset >= ncpus2 ||
4390                             offset % sc->rx_ring_msix != 0) {
4391                                 device_printf(sc->dev,
4392                                     "invalid msix.rxoff %d, use %d\n",
4393                                     offset, offset_def);
4394                                 offset = offset_def;
4395                         }
4396                 }
4397                 igb_msix_rx_conf(sc, 0, &x, offset);
4398
4399                 /*
4400                  * TX rings
4401                  */
4402                 if (sc->tx_ring_msix == ncpus2) {
4403                         offset = 0;
4404                 } else {
4405                         offset_def = (sc->tx_ring_msix *
4406                             device_get_unit(sc->dev)) % ncpus2;
4407
4408                         offset = device_getenv_int(sc->dev,
4409                             "msix.txoff", offset_def);
4410                         if (offset >= ncpus2 ||
4411                             offset % sc->tx_ring_msix != 0) {
4412                                 device_printf(sc->dev,
4413                                     "invalid msix.txoff %d, use %d\n",
4414                                     offset, offset_def);
4415                                 offset = offset_def;
4416                         }
4417                 }
4418                 igb_msix_tx_conf(sc, 0, &x, offset);
4419         } else {
4420                 int ring_agg;
4421
4422                 ring_agg = sc->rx_ring_msix;
4423                 if (ring_agg > sc->tx_ring_msix)
4424                         ring_agg = sc->tx_ring_msix;
4425
4426                 if (ring_max == ncpus2) {
4427                         offset = 0;
4428                 } else {
4429                         offset_def = (ring_max * device_get_unit(sc->dev)) %
4430                             ncpus2;
4431
4432                         offset = device_getenv_int(sc->dev, "msix.off",
4433                             offset_def);
4434                         if (offset >= ncpus2 || offset % ring_max != 0) {
4435                                 device_printf(sc->dev,
4436                                     "invalid msix.off %d, use %d\n",
4437                                     offset, offset_def);
4438                                 offset = offset_def;
4439                         }
4440                 }
4441
4442                 for (i = 0; i < ring_agg; ++i) {
4443                         struct igb_tx_ring *txr = &sc->tx_rings[i];
4444                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
4445
4446                         KKASSERT(x < sc->intr_cnt);
4447                         rxr->rx_intr_vec = x;
4448                         rxr->rx_intr_mask = 1 << rxr->rx_intr_vec;
4449                         rxr->rx_txr = txr;
4450                         txr->tx_intr_vec = rxr->rx_intr_vec;
4451                         txr->tx_intr_mask = rxr->rx_intr_mask;
4452
4453                         intr = &sc->intr_data[x++];
4454
4455                         intr->intr_serialize = &rxr->rx_serialize;
4456                         intr->intr_func = igb_msix_rxtx;
4457                         intr->intr_funcarg = rxr;
4458                         intr->intr_use = IGB_INTR_USE_RXTX;
4459
4460                         intr->intr_cpuid = i + offset;
4461                         KKASSERT(intr->intr_cpuid < ncpus2);
4462                         txr->tx_intr_cpuid = intr->intr_cpuid;
4463
4464                         ksnprintf(intr->intr_desc0, sizeof(intr->intr_desc0),
4465                             "%s rxtx%d", device_get_nameunit(sc->dev), i);
4466                         intr->intr_desc = intr->intr_desc0;
4467                 }
4468
4469                 if (ring_agg != ring_max) {
4470                         if (ring_max == sc->tx_ring_msix)
4471                                 igb_msix_tx_conf(sc, i, &x, offset);
4472                         else
4473                                 igb_msix_rx_conf(sc, i, &x, offset);
4474                 }
4475         }
4476
4477         /*
4478          * Link status
4479          */
4480         KKASSERT(x < sc->intr_cnt);
4481         sc->sts_msix_vec = x;
4482         sc->sts_intr_mask = 1 << sc->sts_msix_vec;
4483
4484         intr = &sc->intr_data[x++];
4485
4486         intr->intr_serialize = &sc->main_serialize;
4487         intr->intr_func = igb_msix_status;
4488         intr->intr_funcarg = sc;
4489         intr->intr_cpuid = 0;
4490         intr->intr_use = IGB_INTR_USE_STATUS;
4491
4492         ksnprintf(intr->intr_desc0, sizeof(intr->intr_desc0), "%s sts",
4493             device_get_nameunit(sc->dev));
4494         intr->intr_desc = intr->intr_desc0;
4495
4496         KKASSERT(x == sc->intr_cnt);
4497
4498         error = pci_setup_msix(sc->dev);
4499         if (error) {
4500                 device_printf(sc->dev, "Setup MSI-X failed\n");
4501                 goto back;
4502         }
4503         setup = TRUE;
4504
4505         for (i = 0; i < sc->intr_cnt; ++i) {
4506                 intr = &sc->intr_data[i];
4507
4508                 error = pci_alloc_msix_vector(sc->dev, i, &intr->intr_rid,
4509                     intr->intr_cpuid);
4510                 if (error) {
4511                         device_printf(sc->dev,
4512                             "Unable to allocate MSI-X %d on cpu%d\n", i,
4513                             intr->intr_cpuid);
4514                         goto back;
4515                 }
4516
4517                 intr->intr_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4518                     &intr->intr_rid, RF_ACTIVE);
4519                 if (intr->intr_res == NULL) {
4520                         device_printf(sc->dev,
4521                             "Unable to allocate MSI-X %d resource\n", i);
4522                         error = ENOMEM;
4523                         goto back;
4524                 }
4525         }
4526
4527         pci_enable_msix(sc->dev);
4528         sc->intr_type = PCI_INTR_TYPE_MSIX;
4529 back:
4530         if (error)
4531                 igb_free_msix(sc, setup);
4532 }
4533
4534 static void
4535 igb_free_msix(struct igb_softc *sc, boolean_t setup)
4536 {
4537         int i;
4538
4539         KKASSERT(sc->intr_cnt > 1);
4540
4541         for (i = 0; i < sc->intr_cnt; ++i) {
4542                 struct igb_intr_data *intr = &sc->intr_data[i];
4543
4544                 if (intr->intr_res != NULL) {
4545                         bus_release_resource(sc->dev, SYS_RES_IRQ,
4546                             intr->intr_rid, intr->intr_res);
4547                 }
4548                 if (intr->intr_rid >= 0)
4549                         pci_release_msix_vector(sc->dev, intr->intr_rid);
4550         }
4551         if (setup)
4552                 pci_teardown_msix(sc->dev);
4553
4554         sc->intr_cnt = 0;
4555         kfree(sc->intr_data, M_DEVBUF);
4556         sc->intr_data = NULL;
4557 }
4558
4559 static void
4560 igb_msix_rx(void *arg)
4561 {
4562         struct igb_rx_ring *rxr = arg;
4563
4564         ASSERT_SERIALIZED(&rxr->rx_serialize);
4565         igb_rxeof(rxr, -1);
4566
4567         E1000_WRITE_REG(&rxr->sc->hw, E1000_EIMS, rxr->rx_intr_mask);
4568 }
4569
4570 static void
4571 igb_msix_tx(void *arg)
4572 {
4573         struct igb_tx_ring *txr = arg;
4574
4575         ASSERT_SERIALIZED(&txr->tx_serialize);
4576
4577         igb_txeof(txr, *(txr->tx_hdr));
4578         if (!ifsq_is_empty(txr->ifsq))
4579                 ifsq_devstart(txr->ifsq);
4580
4581         E1000_WRITE_REG(&txr->sc->hw, E1000_EIMS, txr->tx_intr_mask);
4582 }
4583
4584 static void
4585 igb_msix_status(void *arg)
4586 {
4587         struct igb_softc *sc = arg;
4588         uint32_t icr;
4589
4590         ASSERT_SERIALIZED(&sc->main_serialize);
4591
4592         icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4593         if (icr & E1000_ICR_LSC) {
4594                 sc->hw.mac.get_link_status = 1;
4595                 igb_update_link_status(sc);
4596         }
4597
4598         E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->sts_intr_mask);
4599 }
4600
4601 static void
4602 igb_set_ring_inuse(struct igb_softc *sc, boolean_t polling)
4603 {
4604         sc->rx_ring_inuse = igb_get_rxring_inuse(sc, polling);
4605         sc->tx_ring_inuse = igb_get_txring_inuse(sc, polling);
4606         if (bootverbose) {
4607                 if_printf(&sc->arpcom.ac_if, "RX rings %d/%d, TX rings %d/%d\n",
4608                     sc->rx_ring_inuse, sc->rx_ring_cnt,
4609                     sc->tx_ring_inuse, sc->tx_ring_cnt);
4610         }
4611 }
4612
4613 static int
4614 igb_get_rxring_inuse(const struct igb_softc *sc, boolean_t polling)
4615 {
4616         if (!IGB_ENABLE_HWRSS(sc))
4617                 return 1;
4618
4619         if (polling)
4620                 return sc->rx_ring_cnt;
4621         else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4622                 return IGB_MIN_RING_RSS;
4623         else
4624                 return sc->rx_ring_msix;
4625 }
4626
4627 static int
4628 igb_get_txring_inuse(const struct igb_softc *sc, boolean_t polling)
4629 {
4630         if (!IGB_ENABLE_HWTSS(sc))
4631                 return 1;
4632
4633         if (polling)
4634                 return sc->tx_ring_cnt;
4635         else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4636                 return IGB_MIN_RING;
4637         else
4638                 return sc->tx_ring_msix;
4639 }
4640
4641 static int
4642 igb_tso_pullup(struct igb_tx_ring *txr, struct mbuf **mp)
4643 {
4644         int hoff, iphlen, thoff;
4645         struct mbuf *m;
4646
4647         m = *mp;
4648         KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4649
4650         iphlen = m->m_pkthdr.csum_iphlen;
4651         thoff = m->m_pkthdr.csum_thlen;
4652         hoff = m->m_pkthdr.csum_lhlen;
4653
4654         KASSERT(iphlen > 0, ("invalid ip hlen"));
4655         KASSERT(thoff > 0, ("invalid tcp hlen"));
4656         KASSERT(hoff > 0, ("invalid ether hlen"));
4657
4658         if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
4659                 m = m_pullup(m, hoff + iphlen + thoff);
4660                 if (m == NULL) {
4661                         *mp = NULL;
4662                         return ENOBUFS;
4663                 }
4664                 *mp = m;
4665         }
4666         if (txr->tx_flags & IGB_TXFLAG_TSO_IPLEN0) {
4667                 struct ip *ip;
4668
4669                 ip = mtodoff(m, struct ip *, hoff);
4670                 ip->ip_len = 0;
4671         }
4672
4673         return 0;
4674 }
4675
4676 static void
4677 igb_tso_ctx(struct igb_tx_ring *txr, struct mbuf *m, uint32_t *hlen)
4678 {
4679         struct e1000_adv_tx_context_desc *TXD;
4680         uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
4681         int hoff, ctxd, iphlen, thoff;
4682
4683         iphlen = m->m_pkthdr.csum_iphlen;
4684         thoff = m->m_pkthdr.csum_thlen;
4685         hoff = m->m_pkthdr.csum_lhlen;
4686
4687         vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
4688
4689         ctxd = txr->next_avail_desc;
4690         TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
4691
4692         if (m->m_flags & M_VLANTAG) {
4693                 uint16_t vlantag;
4694
4695                 vlantag = htole16(m->m_pkthdr.ether_vlantag);
4696                 vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
4697         }
4698
4699         vlan_macip_lens |= (hoff << E1000_ADVTXD_MACLEN_SHIFT);
4700         vlan_macip_lens |= iphlen;
4701
4702         type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4703         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
4704         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
4705
4706         mss_l4len_idx |= (m->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT);
4707         mss_l4len_idx |= (thoff << E1000_ADVTXD_L4LEN_SHIFT);
4708
4709         /*
4710          * 82575 needs the TX context index added; the queue
4711          * index is used as TX context index here.
4712          */
4713         if (txr->sc->hw.mac.type == e1000_82575)
4714                 mss_l4len_idx |= txr->me << 4;
4715
4716         TXD->vlan_macip_lens = htole32(vlan_macip_lens);
4717         TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
4718         TXD->seqnum_seed = htole32(0);
4719         TXD->mss_l4len_idx = htole32(mss_l4len_idx);
4720
4721         /* We've consumed the first desc, adjust counters */
4722         if (++ctxd == txr->num_tx_desc)
4723                 ctxd = 0;
4724         txr->next_avail_desc = ctxd;
4725         --txr->tx_avail;
4726
4727         *hlen = hoff + iphlen + thoff;
4728 }
4729
4730 static void
4731 igb_setup_serialize(struct igb_softc *sc)
4732 {
4733         int i = 0, j;
4734
4735         /* Main + RX + TX */
4736         sc->serialize_cnt = 1 + sc->rx_ring_cnt + sc->tx_ring_cnt;
4737         sc->serializes =
4738             kmalloc(sc->serialize_cnt * sizeof(struct lwkt_serialize *),
4739                 M_DEVBUF, M_WAITOK | M_ZERO);
4740
4741         /*
4742          * Setup serializes
4743          *
4744          * NOTE: Order is critical
4745          */
4746
4747         KKASSERT(i < sc->serialize_cnt);
4748         sc->serializes[i++] = &sc->main_serialize;
4749
4750         for (j = 0; j < sc->rx_ring_cnt; ++j) {
4751                 KKASSERT(i < sc->serialize_cnt);
4752                 sc->serializes[i++] = &sc->rx_rings[j].rx_serialize;
4753         }
4754
4755         for (j = 0; j < sc->tx_ring_cnt; ++j) {
4756                 KKASSERT(i < sc->serialize_cnt);
4757                 sc->serializes[i++] = &sc->tx_rings[j].tx_serialize;
4758         }
4759
4760         KKASSERT(i == sc->serialize_cnt);
4761 }
4762
4763 static void
4764 igb_msix_rx_conf(struct igb_softc *sc, int i, int *x0, int offset)
4765 {
4766         int x = *x0;
4767
4768         for (; i < sc->rx_ring_msix; ++i) {
4769                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
4770                 struct igb_intr_data *intr;
4771
4772                 KKASSERT(x < sc->intr_cnt);
4773                 rxr->rx_intr_vec = x;
4774                 rxr->rx_intr_mask = 1 << rxr->rx_intr_vec;
4775
4776                 intr = &sc->intr_data[x++];
4777
4778                 intr->intr_serialize = &rxr->rx_serialize;
4779                 intr->intr_func = igb_msix_rx;
4780                 intr->intr_funcarg = rxr;
4781                 intr->intr_rate = IGB_MSIX_RX_RATE;
4782                 intr->intr_use = IGB_INTR_USE_RX;
4783
4784                 intr->intr_cpuid = i + offset;
4785                 KKASSERT(intr->intr_cpuid < ncpus2);
4786
4787                 ksnprintf(intr->intr_desc0, sizeof(intr->intr_desc0), "%s rx%d",
4788                     device_get_nameunit(sc->dev), i);
4789                 intr->intr_desc = intr->intr_desc0;
4790         }
4791         *x0 = x;
4792 }
4793
4794 static void
4795 igb_msix_tx_conf(struct igb_softc *sc, int i, int *x0, int offset)
4796 {
4797         int x = *x0;
4798
4799         for (; i < sc->tx_ring_msix; ++i) {
4800                 struct igb_tx_ring *txr = &sc->tx_rings[i];
4801                 struct igb_intr_data *intr;
4802
4803                 KKASSERT(x < sc->intr_cnt);
4804                 txr->tx_intr_vec = x;
4805                 txr->tx_intr_mask = 1 << txr->tx_intr_vec;
4806
4807                 intr = &sc->intr_data[x++];
4808
4809                 intr->intr_serialize = &txr->tx_serialize;
4810                 intr->intr_func = igb_msix_tx;
4811                 intr->intr_funcarg = txr;
4812                 intr->intr_rate = IGB_MSIX_TX_RATE;
4813                 intr->intr_use = IGB_INTR_USE_TX;
4814
4815                 intr->intr_cpuid = i + offset;
4816                 KKASSERT(intr->intr_cpuid < ncpus2);
4817                 txr->tx_intr_cpuid = intr->intr_cpuid;
4818
4819                 ksnprintf(intr->intr_desc0, sizeof(intr->intr_desc0), "%s tx%d",
4820                     device_get_nameunit(sc->dev), i);
4821                 intr->intr_desc = intr->intr_desc0;
4822         }
4823         *x0 = x;
4824 }
4825
4826 static void
4827 igb_msix_rxtx(void *arg)
4828 {
4829         struct igb_rx_ring *rxr = arg;
4830         struct igb_tx_ring *txr;
4831         int hdr;
4832
4833         ASSERT_SERIALIZED(&rxr->rx_serialize);
4834
4835         igb_rxeof(rxr, -1);
4836
4837         /*
4838          * NOTE:
4839          * Since next_to_clean is only changed by igb_txeof(),
4840          * which is called only in interrupt handler, the
4841          * check w/o holding tx serializer is MPSAFE.
4842          */
4843         txr = rxr->rx_txr;
4844         hdr = *(txr->tx_hdr);
4845         if (hdr != txr->next_to_clean) {
4846                 lwkt_serialize_enter(&txr->tx_serialize);
4847                 igb_txeof(txr, hdr);
4848                 if (!ifsq_is_empty(txr->ifsq))
4849                         ifsq_devstart(txr->ifsq);
4850                 lwkt_serialize_exit(&txr->tx_serialize);
4851         }
4852
4853         E1000_WRITE_REG(&rxr->sc->hw, E1000_EIMS, rxr->rx_intr_mask);
4854 }
4855
4856 static void
4857 igb_set_timer_cpuid(struct igb_softc *sc, boolean_t polling)
4858 {
4859         if (polling || sc->intr_type == PCI_INTR_TYPE_MSIX)
4860                 sc->timer_cpuid = 0; /* XXX fixed */
4861         else
4862                 sc->timer_cpuid = rman_get_cpuid(sc->intr_data[0].intr_res);
4863 }
4864
4865 static void
4866 igb_init_dmac(struct igb_softc *sc, uint32_t pba)
4867 {
4868         struct e1000_hw *hw = &sc->hw;
4869         uint32_t reg;
4870
4871         if (hw->mac.type == e1000_i211)
4872                 return;
4873
4874         if (hw->mac.type > e1000_82580) {
4875                 uint32_t dmac;
4876                 uint16_t hwm;
4877
4878                 if (sc->dma_coalesce == 0) { /* Disabling it */
4879                         reg = ~E1000_DMACR_DMAC_EN;
4880                         E1000_WRITE_REG(hw, E1000_DMACR, reg);
4881                         return;
4882                 } else {
4883                         if_printf(&sc->arpcom.ac_if,
4884                             "DMA Coalescing enabled\n");
4885                 }
4886
4887                 /* Set starting threshold */
4888                 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
4889
4890                 hwm = 64 * pba - sc->max_frame_size / 16;
4891                 if (hwm < 64 * (pba - 6))
4892                         hwm = 64 * (pba - 6);
4893                 reg = E1000_READ_REG(hw, E1000_FCRTC);
4894                 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
4895                 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
4896                     & E1000_FCRTC_RTH_COAL_MASK);
4897                 E1000_WRITE_REG(hw, E1000_FCRTC, reg);
4898
4899                 dmac = pba - sc->max_frame_size / 512;
4900                 if (dmac < pba - 10)
4901                         dmac = pba - 10;
4902                 reg = E1000_READ_REG(hw, E1000_DMACR);
4903                 reg &= ~E1000_DMACR_DMACTHR_MASK;
4904                 reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
4905                     & E1000_DMACR_DMACTHR_MASK);
4906
4907                 /* transition to L0x or L1 if available..*/
4908                 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
4909
4910                 /*
4911                  * Check if status is 2.5Gb backplane connection
4912                  * before configuration of watchdog timer, which
4913                  * is in msec values in 12.8usec intervals watchdog
4914                  * timer = msec values in 32usec intervals for non
4915                  * 2.5Gb connection.
4916                  */
4917                 if (hw->mac.type == e1000_i354) {
4918                         int status = E1000_READ_REG(hw, E1000_STATUS);
4919
4920                         if ((status & E1000_STATUS_2P5_SKU) &&
4921                             !(status & E1000_STATUS_2P5_SKU_OVER))
4922                                 reg |= ((sc->dma_coalesce * 5) >> 6);
4923                         else
4924                                 reg |= (sc->dma_coalesce >> 5);
4925                 } else {
4926                         reg |= (sc->dma_coalesce >> 5);
4927                 }
4928
4929                 E1000_WRITE_REG(hw, E1000_DMACR, reg);
4930
4931                 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
4932
4933                 /* Set the interval before transition */
4934                 reg = E1000_READ_REG(hw, E1000_DMCTLX);
4935                 if (hw->mac.type == e1000_i350)
4936                         reg |= IGB_DMCTLX_DCFLUSH_DIS;
4937                 /*
4938                  * In 2.5Gb connection, TTLX unit is 0.4 usec, which
4939                  * is 0x4*2 = 0xA.  But delay is still 4 usec.
4940                  */
4941                 if (hw->mac.type == e1000_i354) {
4942                         int status = E1000_READ_REG(hw, E1000_STATUS);
4943
4944                         if ((status & E1000_STATUS_2P5_SKU) &&
4945                             !(status & E1000_STATUS_2P5_SKU_OVER))
4946                                 reg |= 0xA;
4947                         else
4948                                 reg |= 0x4;
4949                 } else {
4950                         reg |= 0x4;
4951                 }
4952                 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
4953
4954                 /* Free space in tx packet buffer to wake from DMA coal */
4955                 E1000_WRITE_REG(hw, E1000_DMCTXTH,
4956                     (IGB_TXPBSIZE - (2 * sc->max_frame_size)) >> 6);
4957
4958                 /* Make low power state decision controlled by DMA coal */
4959                 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
4960                 reg &= ~E1000_PCIEMISC_LX_DECISION;
4961                 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
4962         } else if (hw->mac.type == e1000_82580) {
4963                 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
4964                 E1000_WRITE_REG(hw, E1000_PCIEMISC,
4965                     reg & ~E1000_PCIEMISC_LX_DECISION);
4966                 E1000_WRITE_REG(hw, E1000_DMACR, 0);
4967         }
4968 }