Merge branch 'vendor/NCURSES'
[dragonfly.git] / sys / dev / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  * Copyright (c) 2011 The FreeBSD Foundation
27  * All rights reserved.
28  *
29  * This software was developed by Konstantin Belousov under sponsorship from
30  * the FreeBSD Foundation.
31  *
32  * Redistribution and use in source and binary forms, with or without
33  * modification, are permitted provided that the following conditions
34  * are met:
35  * 1. Redistributions of source code must retain the above copyright
36  *    notice, this list of conditions and the following disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  */
54
55 #include <machine/md_var.h>
56
57 #include <drm/drmP.h>
58 #include <drm/drm_vma_manager.h>
59 #include <drm/i915_drm.h>
60 #include "i915_drv.h"
61 #include "i915_vgpu.h"
62 #include "i915_trace.h"
63 #include "intel_drv.h"
64 #include <linux/shmem_fs.h>
65 #include <linux/slab.h>
66 #include <linux/swap.h>
67 #include <linux/pci.h>
68
69 #define RQ_BUG_ON(expr)
70
71 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
72 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
73 static void
74 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
75 static void
76 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
77 static void i915_gem_write_fence(struct drm_device *dev, int reg,
78                                  struct drm_i915_gem_object *obj);
79 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
80                                          struct drm_i915_fence_reg *fence,
81                                          bool enable);
82
83 static bool cpu_cache_is_coherent(struct drm_device *dev,
84                                   enum i915_cache_level level)
85 {
86         return HAS_LLC(dev) || level != I915_CACHE_NONE;
87 }
88
89 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
90 {
91         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
92                 return true;
93
94         return obj->pin_display;
95 }
96
97 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
98 {
99         if (obj->tiling_mode)
100                 i915_gem_release_mmap(obj);
101
102         /* As we do not have an associated fence register, we will force
103          * a tiling change if we ever need to acquire one.
104          */
105         obj->fence_dirty = false;
106         obj->fence_reg = I915_FENCE_REG_NONE;
107 }
108
109 /* some bookkeeping */
110 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
111                                   size_t size)
112 {
113         spin_lock(&dev_priv->mm.object_stat_lock);
114         dev_priv->mm.object_count++;
115         dev_priv->mm.object_memory += size;
116         spin_unlock(&dev_priv->mm.object_stat_lock);
117 }
118
119 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
120                                      size_t size)
121 {
122         spin_lock(&dev_priv->mm.object_stat_lock);
123         dev_priv->mm.object_count--;
124         dev_priv->mm.object_memory -= size;
125         spin_unlock(&dev_priv->mm.object_stat_lock);
126 }
127
128 static int
129 i915_gem_wait_for_error(struct i915_gpu_error *error)
130 {
131         int ret;
132
133 #define EXIT_COND (!i915_reset_in_progress(error) || \
134                    i915_terminally_wedged(error))
135         if (EXIT_COND)
136                 return 0;
137
138         /*
139          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
140          * userspace. If it takes that long something really bad is going on and
141          * we should simply try to bail out and fail as gracefully as possible.
142          */
143         ret = wait_event_interruptible_timeout(error->reset_queue,
144                                                EXIT_COND,
145                                                10*HZ);
146         if (ret == 0) {
147                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
148                 return -EIO;
149         } else if (ret < 0) {
150                 return ret;
151         }
152 #undef EXIT_COND
153
154         return 0;
155 }
156
157 int i915_mutex_lock_interruptible(struct drm_device *dev)
158 {
159         struct drm_i915_private *dev_priv = dev->dev_private;
160         int ret;
161
162         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
163         if (ret)
164                 return ret;
165
166         ret = mutex_lock_interruptible(&dev->struct_mutex);
167         if (ret)
168                 return ret;
169
170         WARN_ON(i915_verify_lists(dev));
171         return 0;
172 }
173
174 int
175 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
176                             struct drm_file *file)
177 {
178         struct drm_i915_private *dev_priv = dev->dev_private;
179         struct drm_i915_gem_get_aperture *args = data;
180         struct drm_i915_gem_object *obj;
181         size_t pinned;
182
183         pinned = 0;
184         mutex_lock(&dev->struct_mutex);
185         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
186                 if (i915_gem_obj_is_pinned(obj))
187                         pinned += i915_gem_obj_ggtt_size(obj);
188         mutex_unlock(&dev->struct_mutex);
189
190         args->aper_size = dev_priv->gtt.base.total;
191         args->aper_available_size = args->aper_size - pinned;
192
193         return 0;
194 }
195
196 #if 0
197 static int
198 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
199 {
200         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
201         char *vaddr = obj->phys_handle->vaddr;
202         struct sg_table *st;
203         struct scatterlist *sg;
204         int i;
205
206         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
207                 return -EINVAL;
208
209         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
210                 struct vm_page *page;
211                 char *src;
212
213                 page = shmem_read_mapping_page(mapping, i);
214                 if (IS_ERR(page))
215                         return PTR_ERR(page);
216
217                 src = kmap_atomic(page);
218                 memcpy(vaddr, src, PAGE_SIZE);
219                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
220                 kunmap_atomic(src);
221
222                 page_cache_release(page);
223                 vaddr += PAGE_SIZE;
224         }
225
226         i915_gem_chipset_flush(obj->base.dev);
227
228         st = kmalloc(sizeof(*st), GFP_KERNEL);
229         if (st == NULL)
230                 return -ENOMEM;
231
232         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
233                 kfree(st);
234                 return -ENOMEM;
235         }
236
237         sg = st->sgl;
238         sg->offset = 0;
239         sg->length = obj->base.size;
240
241         sg_dma_address(sg) = obj->phys_handle->busaddr;
242         sg_dma_len(sg) = obj->base.size;
243
244         obj->pages = st;
245         return 0;
246 }
247
248 static void
249 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
250 {
251         int ret;
252
253         BUG_ON(obj->madv == __I915_MADV_PURGED);
254
255         ret = i915_gem_object_set_to_cpu_domain(obj, true);
256         if (ret) {
257                 /* In the event of a disaster, abandon all caches and
258                  * hope for the best.
259                  */
260                 WARN_ON(ret != -EIO);
261                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
262         }
263
264         if (obj->madv == I915_MADV_DONTNEED)
265                 obj->dirty = 0;
266
267         if (obj->dirty) {
268                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
269                 char *vaddr = obj->phys_handle->vaddr;
270                 int i;
271
272                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
273                         struct page *page;
274                         char *dst;
275
276                         page = shmem_read_mapping_page(mapping, i);
277                         if (IS_ERR(page))
278                                 continue;
279
280                         dst = kmap_atomic(page);
281                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
282                         memcpy(dst, vaddr, PAGE_SIZE);
283                         kunmap_atomic(dst);
284
285                         set_page_dirty(page);
286                         if (obj->madv == I915_MADV_WILLNEED)
287                                 mark_page_accessed(page);
288                         page_cache_release(page);
289                         vaddr += PAGE_SIZE;
290                 }
291                 obj->dirty = 0;
292         }
293
294         sg_free_table(obj->pages);
295         kfree(obj->pages);
296 }
297
298 static void
299 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
300 {
301         drm_pci_free(obj->base.dev, obj->phys_handle);
302 }
303
304 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
305         .get_pages = i915_gem_object_get_pages_phys,
306         .put_pages = i915_gem_object_put_pages_phys,
307         .release = i915_gem_object_release_phys,
308 };
309 #endif
310
311 static int
312 drop_pages(struct drm_i915_gem_object *obj)
313 {
314         struct i915_vma *vma, *next;
315         int ret;
316
317         drm_gem_object_reference(&obj->base);
318         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
319                 if (i915_vma_unbind(vma))
320                         break;
321
322         ret = i915_gem_object_put_pages(obj);
323         drm_gem_object_unreference(&obj->base);
324
325         return ret;
326 }
327
328 int
329 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
330                             int align)
331 {
332         drm_dma_handle_t *phys;
333         int ret;
334
335         if (obj->phys_handle) {
336                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
337                         return -EBUSY;
338
339                 return 0;
340         }
341
342         if (obj->madv != I915_MADV_WILLNEED)
343                 return -EFAULT;
344
345 #if 0
346         if (obj->base.filp == NULL)
347                 return -EINVAL;
348 #endif
349
350         ret = drop_pages(obj);
351         if (ret)
352                 return ret;
353
354         /* create a new object */
355         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
356         if (!phys)
357                 return -ENOMEM;
358
359         obj->phys_handle = phys;
360 #if 0
361         obj->ops = &i915_gem_phys_ops;
362 #endif
363
364         return i915_gem_object_get_pages(obj);
365 }
366
367 static int
368 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
369                      struct drm_i915_gem_pwrite *args,
370                      struct drm_file *file_priv)
371 {
372         struct drm_device *dev = obj->base.dev;
373         void *vaddr = (char *)obj->phys_handle->vaddr + args->offset;
374         char __user *user_data = to_user_ptr(args->data_ptr);
375         int ret = 0;
376
377         /* We manually control the domain here and pretend that it
378          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
379          */
380         ret = i915_gem_object_wait_rendering(obj, false);
381         if (ret)
382                 return ret;
383
384         intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
385         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
386                 unsigned long unwritten;
387
388                 /* The physical object once assigned is fixed for the lifetime
389                  * of the obj, so we can safely drop the lock and continue
390                  * to access vaddr.
391                  */
392                 mutex_unlock(&dev->struct_mutex);
393                 unwritten = copy_from_user(vaddr, user_data, args->size);
394                 mutex_lock(&dev->struct_mutex);
395                 if (unwritten) {
396                         ret = -EFAULT;
397                         goto out;
398                 }
399         }
400
401         drm_clflush_virt_range(vaddr, args->size);
402         i915_gem_chipset_flush(dev);
403
404 out:
405         intel_fb_obj_flush(obj, false);
406         return ret;
407 }
408
409 void *i915_gem_object_alloc(struct drm_device *dev)
410 {
411         return kmalloc(sizeof(struct drm_i915_gem_object),
412             M_DRM, M_WAITOK | M_ZERO);
413 }
414
415 void i915_gem_object_free(struct drm_i915_gem_object *obj)
416 {
417         kfree(obj);
418 }
419
420 static int
421 i915_gem_create(struct drm_file *file,
422                 struct drm_device *dev,
423                 uint64_t size,
424                 uint32_t *handle_p)
425 {
426         struct drm_i915_gem_object *obj;
427         int ret;
428         u32 handle;
429
430         size = roundup(size, PAGE_SIZE);
431         if (size == 0)
432                 return -EINVAL;
433
434         /* Allocate the new object */
435         obj = i915_gem_alloc_object(dev, size);
436         if (obj == NULL)
437                 return -ENOMEM;
438
439         ret = drm_gem_handle_create(file, &obj->base, &handle);
440         /* drop reference from allocate - handle holds it now */
441         drm_gem_object_unreference_unlocked(&obj->base);
442         if (ret)
443                 return ret;
444
445         *handle_p = handle;
446         return 0;
447 }
448
449 int
450 i915_gem_dumb_create(struct drm_file *file,
451                      struct drm_device *dev,
452                      struct drm_mode_create_dumb *args)
453 {
454         /* have to work out size/pitch and return them */
455         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
456         args->size = args->pitch * args->height;
457         return i915_gem_create(file, dev,
458                                args->size, &args->handle);
459 }
460
461 /**
462  * Creates a new mm object and returns a handle to it.
463  */
464 int
465 i915_gem_create_ioctl(struct drm_device *dev, void *data,
466                       struct drm_file *file)
467 {
468         struct drm_i915_gem_create *args = data;
469
470         return i915_gem_create(file, dev,
471                                args->size, &args->handle);
472 }
473
474 static inline int
475 __copy_to_user_swizzled(char __user *cpu_vaddr,
476                         const char *gpu_vaddr, int gpu_offset,
477                         int length)
478 {
479         int ret, cpu_offset = 0;
480
481         while (length > 0) {
482                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
483                 int this_length = min(cacheline_end - gpu_offset, length);
484                 int swizzled_gpu_offset = gpu_offset ^ 64;
485
486                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
487                                      gpu_vaddr + swizzled_gpu_offset,
488                                      this_length);
489                 if (ret)
490                         return ret + length;
491
492                 cpu_offset += this_length;
493                 gpu_offset += this_length;
494                 length -= this_length;
495         }
496
497         return 0;
498 }
499
500 static inline int
501 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
502                           const char __user *cpu_vaddr,
503                           int length)
504 {
505         int ret, cpu_offset = 0;
506
507         while (length > 0) {
508                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
509                 int this_length = min(cacheline_end - gpu_offset, length);
510                 int swizzled_gpu_offset = gpu_offset ^ 64;
511
512                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
513                                        cpu_vaddr + cpu_offset,
514                                        this_length);
515                 if (ret)
516                         return ret + length;
517
518                 cpu_offset += this_length;
519                 gpu_offset += this_length;
520                 length -= this_length;
521         }
522
523         return 0;
524 }
525
526 /*
527  * Pins the specified object's pages and synchronizes the object with
528  * GPU accesses. Sets needs_clflush to non-zero if the caller should
529  * flush the object from the CPU cache.
530  */
531 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
532                                     int *needs_clflush)
533 {
534         int ret;
535
536         *needs_clflush = 0;
537
538 #if 0
539         if (!obj->base.filp)
540                 return -EINVAL;
541 #endif
542
543         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
544                 /* If we're not in the cpu read domain, set ourself into the gtt
545                  * read domain and manually flush cachelines (if required). This
546                  * optimizes for the case when the gpu will dirty the data
547                  * anyway again before the next pread happens. */
548                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
549                                                         obj->cache_level);
550                 ret = i915_gem_object_wait_rendering(obj, true);
551                 if (ret)
552                         return ret;
553         }
554
555         ret = i915_gem_object_get_pages(obj);
556         if (ret)
557                 return ret;
558
559         i915_gem_object_pin_pages(obj);
560
561         return ret;
562 }
563
564 /* Per-page copy function for the shmem pread fastpath.
565  * Flushes invalid cachelines before reading the target if
566  * needs_clflush is set. */
567 static int
568 shmem_pread_fast(struct vm_page *page, int shmem_page_offset, int page_length,
569                  char __user *user_data,
570                  bool page_do_bit17_swizzling, bool needs_clflush)
571 {
572         char *vaddr;
573         int ret;
574
575         if (unlikely(page_do_bit17_swizzling))
576                 return -EINVAL;
577
578         vaddr = kmap_atomic(page);
579         if (needs_clflush)
580                 drm_clflush_virt_range(vaddr + shmem_page_offset,
581                                        page_length);
582         ret = __copy_to_user_inatomic(user_data,
583                                       vaddr + shmem_page_offset,
584                                       page_length);
585         kunmap_atomic(vaddr);
586
587         return ret ? -EFAULT : 0;
588 }
589
590 static void
591 shmem_clflush_swizzled_range(char *addr, unsigned long length,
592                              bool swizzled)
593 {
594         if (unlikely(swizzled)) {
595                 unsigned long start = (unsigned long) addr;
596                 unsigned long end = (unsigned long) addr + length;
597
598                 /* For swizzling simply ensure that we always flush both
599                  * channels. Lame, but simple and it works. Swizzled
600                  * pwrite/pread is far from a hotpath - current userspace
601                  * doesn't use it at all. */
602                 start = round_down(start, 128);
603                 end = round_up(end, 128);
604
605                 drm_clflush_virt_range((void *)start, end - start);
606         } else {
607                 drm_clflush_virt_range(addr, length);
608         }
609
610 }
611
612 /* Only difference to the fast-path function is that this can handle bit17
613  * and uses non-atomic copy and kmap functions. */
614 static int
615 shmem_pread_slow(struct vm_page *page, int shmem_page_offset, int page_length,
616                  char __user *user_data,
617                  bool page_do_bit17_swizzling, bool needs_clflush)
618 {
619         char *vaddr;
620         int ret;
621
622         vaddr = kmap(page);
623         if (needs_clflush)
624                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
625                                              page_length,
626                                              page_do_bit17_swizzling);
627
628         if (page_do_bit17_swizzling)
629                 ret = __copy_to_user_swizzled(user_data,
630                                               vaddr, shmem_page_offset,
631                                               page_length);
632         else
633                 ret = __copy_to_user(user_data,
634                                      vaddr + shmem_page_offset,
635                                      page_length);
636         kunmap(page);
637
638         return ret ? - EFAULT : 0;
639 }
640
641 static int
642 i915_gem_shmem_pread(struct drm_device *dev,
643                      struct drm_i915_gem_object *obj,
644                      struct drm_i915_gem_pread *args,
645                      struct drm_file *file)
646 {
647         char __user *user_data;
648         ssize_t remain;
649         loff_t offset;
650         int shmem_page_offset, page_length, ret = 0;
651         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
652         int prefaulted = 0;
653         int needs_clflush = 0;
654         int i;
655
656         user_data = to_user_ptr(args->data_ptr);
657         remain = args->size;
658
659         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
660
661         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
662         if (ret)
663                 return ret;
664
665         offset = args->offset;
666
667         for (i = 0; i < (obj->base.size >> PAGE_SHIFT); i++) {
668                 struct vm_page *page = obj->pages[i];
669
670                 if (remain <= 0)
671                         break;
672
673                 /* Operation in this page
674                  *
675                  * shmem_page_offset = offset within page in shmem file
676                  * page_length = bytes to copy for this page
677                  */
678                 shmem_page_offset = offset_in_page(offset);
679                 page_length = remain;
680                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
681                         page_length = PAGE_SIZE - shmem_page_offset;
682
683                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
684                         (page_to_phys(page) & (1 << 17)) != 0;
685
686                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
687                                        user_data, page_do_bit17_swizzling,
688                                        needs_clflush);
689                 if (ret == 0)
690                         goto next_page;
691
692                 mutex_unlock(&dev->struct_mutex);
693
694                 if (likely(!i915.prefault_disable) && !prefaulted) {
695                         ret = fault_in_multipages_writeable(user_data, remain);
696                         /* Userspace is tricking us, but we've already clobbered
697                          * its pages with the prefault and promised to write the
698                          * data up to the first fault. Hence ignore any errors
699                          * and just continue. */
700                         (void)ret;
701                         prefaulted = 1;
702                 }
703
704                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
705                                        user_data, page_do_bit17_swizzling,
706                                        needs_clflush);
707
708                 mutex_lock(&dev->struct_mutex);
709
710                 if (ret)
711                         goto out;
712
713 next_page:
714                 remain -= page_length;
715                 user_data += page_length;
716                 offset += page_length;
717         }
718
719 out:
720         i915_gem_object_unpin_pages(obj);
721
722         return ret;
723 }
724
725 /**
726  * Reads data from the object referenced by handle.
727  *
728  * On error, the contents of *data are undefined.
729  */
730 int
731 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
732                      struct drm_file *file)
733 {
734         struct drm_i915_gem_pread *args = data;
735         struct drm_i915_gem_object *obj;
736         int ret = 0;
737
738         if (args->size == 0)
739                 return 0;
740
741         ret = i915_mutex_lock_interruptible(dev);
742         if (ret)
743                 return ret;
744
745         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
746         if (&obj->base == NULL) {
747                 ret = -ENOENT;
748                 goto unlock;
749         }
750
751         /* Bounds check source.  */
752         if (args->offset > obj->base.size ||
753             args->size > obj->base.size - args->offset) {
754                 ret = -EINVAL;
755                 goto out;
756         }
757
758         trace_i915_gem_object_pread(obj, args->offset, args->size);
759
760         ret = i915_gem_shmem_pread(dev, obj, args, file);
761
762 out:
763         drm_gem_object_unreference(&obj->base);
764 unlock:
765         mutex_unlock(&dev->struct_mutex);
766         return ret;
767 }
768
769 /* This is the fast write path which cannot handle
770  * page faults in the source data
771  */
772
773 static inline int
774 fast_user_write(struct io_mapping *mapping,
775                 loff_t page_base, int page_offset,
776                 char __user *user_data,
777                 int length)
778 {
779         void __iomem *vaddr_atomic;
780         void *vaddr;
781         unsigned long unwritten;
782
783         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
784         /* We can use the cpu mem copy function because this is X86. */
785         vaddr = (char __force*)vaddr_atomic + page_offset;
786         unwritten = __copy_from_user_inatomic_nocache(vaddr,
787                                                       user_data, length);
788         io_mapping_unmap_atomic(vaddr_atomic);
789         return unwritten;
790 }
791
792 /**
793  * This is the fast pwrite path, where we copy the data directly from the
794  * user into the GTT, uncached.
795  */
796 static int
797 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
798                          struct drm_i915_gem_object *obj,
799                          struct drm_i915_gem_pwrite *args,
800                          struct drm_file *file)
801 {
802         struct drm_i915_private *dev_priv = dev->dev_private;
803         ssize_t remain;
804         loff_t offset, page_base;
805         char __user *user_data;
806         int page_offset, page_length, ret;
807
808         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
809         if (ret)
810                 goto out;
811
812         ret = i915_gem_object_set_to_gtt_domain(obj, true);
813         if (ret)
814                 goto out_unpin;
815
816         ret = i915_gem_object_put_fence(obj);
817         if (ret)
818                 goto out_unpin;
819
820         user_data = to_user_ptr(args->data_ptr);
821         remain = args->size;
822
823         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
824
825         intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
826
827         while (remain > 0) {
828                 /* Operation in this page
829                  *
830                  * page_base = page offset within aperture
831                  * page_offset = offset within page
832                  * page_length = bytes to copy for this page
833                  */
834                 page_base = offset & ~PAGE_MASK;
835                 page_offset = offset_in_page(offset);
836                 page_length = remain;
837                 if ((page_offset + remain) > PAGE_SIZE)
838                         page_length = PAGE_SIZE - page_offset;
839
840                 /* If we get a fault while copying data, then (presumably) our
841                  * source page isn't available.  Return the error and we'll
842                  * retry in the slow path.
843                  */
844                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
845                                     page_offset, user_data, page_length)) {
846                         ret = -EFAULT;
847                         goto out_flush;
848                 }
849
850                 remain -= page_length;
851                 user_data += page_length;
852                 offset += page_length;
853         }
854
855 out_flush:
856         intel_fb_obj_flush(obj, false);
857 out_unpin:
858         i915_gem_object_ggtt_unpin(obj);
859 out:
860         return ret;
861 }
862
863 /* Per-page copy function for the shmem pwrite fastpath.
864  * Flushes invalid cachelines before writing to the target if
865  * needs_clflush_before is set and flushes out any written cachelines after
866  * writing if needs_clflush is set. */
867 static int
868 shmem_pwrite_fast(struct vm_page *page, int shmem_page_offset, int page_length,
869                   char __user *user_data,
870                   bool page_do_bit17_swizzling,
871                   bool needs_clflush_before,
872                   bool needs_clflush_after)
873 {
874         char *vaddr;
875         int ret;
876
877         if (unlikely(page_do_bit17_swizzling))
878                 return -EINVAL;
879
880         vaddr = kmap_atomic(page);
881         if (needs_clflush_before)
882                 drm_clflush_virt_range(vaddr + shmem_page_offset,
883                                        page_length);
884         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
885                                         user_data, page_length);
886         if (needs_clflush_after)
887                 drm_clflush_virt_range(vaddr + shmem_page_offset,
888                                        page_length);
889         kunmap_atomic(vaddr);
890
891         return ret ? -EFAULT : 0;
892 }
893
894 /* Only difference to the fast-path function is that this can handle bit17
895  * and uses non-atomic copy and kmap functions. */
896 static int
897 shmem_pwrite_slow(struct vm_page *page, int shmem_page_offset, int page_length,
898                   char __user *user_data,
899                   bool page_do_bit17_swizzling,
900                   bool needs_clflush_before,
901                   bool needs_clflush_after)
902 {
903         char *vaddr;
904         int ret;
905
906         vaddr = kmap(page);
907         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
908                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
909                                              page_length,
910                                              page_do_bit17_swizzling);
911         if (page_do_bit17_swizzling)
912                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
913                                                 user_data,
914                                                 page_length);
915         else
916                 ret = __copy_from_user(vaddr + shmem_page_offset,
917                                        user_data,
918                                        page_length);
919         if (needs_clflush_after)
920                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
921                                              page_length,
922                                              page_do_bit17_swizzling);
923         kunmap(page);
924
925         return ret ? -EFAULT : 0;
926 }
927
928 static int
929 i915_gem_shmem_pwrite(struct drm_device *dev,
930                       struct drm_i915_gem_object *obj,
931                       struct drm_i915_gem_pwrite *args,
932                       struct drm_file *file)
933 {
934         ssize_t remain;
935         loff_t offset;
936         char __user *user_data;
937         int shmem_page_offset, page_length, ret = 0;
938         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
939         int hit_slowpath = 0;
940         int needs_clflush_after = 0;
941         int needs_clflush_before = 0;
942         int i;
943
944         user_data = to_user_ptr(args->data_ptr);
945         remain = args->size;
946
947         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
948
949         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
950                 /* If we're not in the cpu write domain, set ourself into the gtt
951                  * write domain and manually flush cachelines (if required). This
952                  * optimizes for the case when the gpu will use the data
953                  * right away and we therefore have to clflush anyway. */
954                 needs_clflush_after = cpu_write_needs_clflush(obj);
955                 ret = i915_gem_object_wait_rendering(obj, false);
956                 if (ret)
957                         return ret;
958         }
959         /* Same trick applies to invalidate partially written cachelines read
960          * before writing. */
961         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
962                 needs_clflush_before =
963                         !cpu_cache_is_coherent(dev, obj->cache_level);
964
965         ret = i915_gem_object_get_pages(obj);
966         if (ret)
967                 return ret;
968
969         intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
970
971         i915_gem_object_pin_pages(obj);
972
973         offset = args->offset;
974         obj->dirty = 1;
975
976         VM_OBJECT_LOCK(obj->base.vm_obj);
977         vm_object_pip_add(obj->base.vm_obj, 1);
978         for (i = 0; i < (obj->base.size >> PAGE_SHIFT); i++) {
979                 struct vm_page *page = obj->pages[i];
980                 int partial_cacheline_write;
981
982                 if (i < offset >> PAGE_SHIFT)
983                         continue;
984
985                 if (remain <= 0)
986                         break;
987
988                 /* Operation in this page
989                  *
990                  * shmem_page_offset = offset within page in shmem file
991                  * page_length = bytes to copy for this page
992                  */
993                 shmem_page_offset = offset_in_page(offset);
994
995                 page_length = remain;
996                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
997                         page_length = PAGE_SIZE - shmem_page_offset;
998
999                 /* If we don't overwrite a cacheline completely we need to be
1000                  * careful to have up-to-date data by first clflushing. Don't
1001                  * overcomplicate things and flush the entire patch. */
1002                 partial_cacheline_write = needs_clflush_before &&
1003                         ((shmem_page_offset | page_length)
1004                                 & (cpu_clflush_line_size - 1));
1005
1006                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1007                         (page_to_phys(page) & (1 << 17)) != 0;
1008
1009                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1010                                         user_data, page_do_bit17_swizzling,
1011                                         partial_cacheline_write,
1012                                         needs_clflush_after);
1013                 if (ret == 0)
1014                         goto next_page;
1015
1016                 hit_slowpath = 1;
1017                 mutex_unlock(&dev->struct_mutex);
1018                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1019                                         user_data, page_do_bit17_swizzling,
1020                                         partial_cacheline_write,
1021                                         needs_clflush_after);
1022
1023                 mutex_lock(&dev->struct_mutex);
1024  
1025                 if (ret)
1026                         goto out;
1027
1028 next_page:
1029                 remain -= page_length;
1030                 user_data += page_length;
1031                 offset += page_length;
1032         }
1033         vm_object_pip_wakeup(obj->base.vm_obj);
1034         VM_OBJECT_UNLOCK(obj->base.vm_obj);
1035
1036 out:
1037         i915_gem_object_unpin_pages(obj);
1038
1039         if (hit_slowpath) {
1040                 /*
1041                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1042                  * cachelines in-line while writing and the object moved
1043                  * out of the cpu write domain while we've dropped the lock.
1044                  */
1045                 if (!needs_clflush_after &&
1046                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1047                         if (i915_gem_clflush_object(obj, obj->pin_display))
1048                                 i915_gem_chipset_flush(dev);
1049                 }
1050         }
1051
1052         if (needs_clflush_after)
1053                 i915_gem_chipset_flush(dev);
1054
1055         intel_fb_obj_flush(obj, false);
1056         return ret;
1057 }
1058
1059 /**
1060  * Writes data to the object referenced by handle.
1061  *
1062  * On error, the contents of the buffer that were to be modified are undefined.
1063  */
1064 int
1065 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1066                       struct drm_file *file)
1067 {
1068         struct drm_i915_private *dev_priv = dev->dev_private;
1069         struct drm_i915_gem_pwrite *args = data;
1070         struct drm_i915_gem_object *obj;
1071         int ret;
1072
1073         if (args->size == 0)
1074                 return 0;
1075
1076         if (likely(!i915.prefault_disable)) {
1077                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1078                                                    args->size);
1079                 if (ret)
1080                         return -EFAULT;
1081         }
1082
1083         intel_runtime_pm_get(dev_priv);
1084
1085         ret = i915_mutex_lock_interruptible(dev);
1086         if (ret)
1087                 goto put_rpm;
1088
1089         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1090         if (&obj->base == NULL) {
1091                 ret = -ENOENT;
1092                 goto unlock;
1093         }
1094
1095         /* Bounds check destination. */
1096         if (args->offset > obj->base.size ||
1097             args->size > obj->base.size - args->offset) {
1098                 ret = -EINVAL;
1099                 goto out;
1100         }
1101
1102         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1103
1104         ret = -EFAULT;
1105         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1106          * it would end up going through the fenced access, and we'll get
1107          * different detiling behavior between reading and writing.
1108          * pread/pwrite currently are reading and writing from the CPU
1109          * perspective, requiring manual detiling by the client.
1110          */
1111
1112         if (obj->tiling_mode == I915_TILING_NONE &&
1113             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1114             cpu_write_needs_clflush(obj)) {
1115                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1116                 /* Note that the gtt paths might fail with non-page-backed user
1117                  * pointers (e.g. gtt mappings when moving data between
1118                  * textures). Fallback to the shmem path in that case. */
1119         }
1120
1121         if (ret == -EFAULT || ret == -ENOSPC) {
1122                 if (obj->phys_handle)
1123                         ret = i915_gem_phys_pwrite(obj, args, file);
1124                 else
1125                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1126         }
1127
1128 out:
1129         drm_gem_object_unreference(&obj->base);
1130 unlock:
1131         mutex_unlock(&dev->struct_mutex);
1132 put_rpm:
1133         intel_runtime_pm_put(dev_priv);
1134
1135         return ret;
1136 }
1137
1138 int
1139 i915_gem_check_wedge(struct i915_gpu_error *error,
1140                      bool interruptible)
1141 {
1142         if (i915_reset_in_progress(error)) {
1143                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1144                  * -EIO unconditionally for these. */
1145                 if (!interruptible)
1146                         return -EIO;
1147
1148                 /* Recovery complete, but the reset failed ... */
1149                 if (i915_terminally_wedged(error))
1150                         return -EIO;
1151
1152                 /*
1153                  * Check if GPU Reset is in progress - we need intel_ring_begin
1154                  * to work properly to reinit the hw state while the gpu is
1155                  * still marked as reset-in-progress. Handle this with a flag.
1156                  */
1157                 if (!error->reload_in_reset)
1158                         return -EAGAIN;
1159         }
1160
1161         return 0;
1162 }
1163
1164 /*
1165  * Compare arbitrary request against outstanding lazy request. Emit on match.
1166  */
1167 int
1168 i915_gem_check_olr(struct drm_i915_gem_request *req)
1169 {
1170         int ret;
1171
1172         WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1173
1174         ret = 0;
1175         if (req == req->ring->outstanding_lazy_request)
1176                 ret = i915_add_request(req->ring);
1177
1178         return ret;
1179 }
1180
1181 #if 0
1182 static void fake_irq(unsigned long data)
1183 {
1184         wake_up_process((struct task_struct *)data);
1185 }
1186
1187 static bool missed_irq(struct drm_i915_private *dev_priv,
1188                        struct intel_engine_cs *ring)
1189 {
1190         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1191 }
1192 #endif
1193
1194 #if 0
1195 static int __i915_spin_request(struct drm_i915_gem_request *req)
1196 {
1197         unsigned long timeout;
1198
1199         if (i915_gem_request_get_ring(req)->irq_refcount)
1200                 return -EBUSY;
1201
1202         timeout = jiffies + 1;
1203         while (!need_resched()) {
1204                 if (i915_gem_request_completed(req, true))
1205                         return 0;
1206
1207                 if (time_after_eq(jiffies, timeout))
1208                         break;
1209
1210                 cpu_relax_lowlatency();
1211         }
1212         if (i915_gem_request_completed(req, false))
1213                 return 0;
1214
1215         return -EAGAIN;
1216 }
1217 #endif
1218
1219 /**
1220  * __i915_wait_request - wait until execution of request has finished
1221  * @req: duh!
1222  * @reset_counter: reset sequence associated with the given request
1223  * @interruptible: do an interruptible wait (normally yes)
1224  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1225  *
1226  * Note: It is of utmost importance that the passed in seqno and reset_counter
1227  * values have been read by the caller in an smp safe manner. Where read-side
1228  * locks are involved, it is sufficient to read the reset_counter before
1229  * unlocking the lock that protects the seqno. For lockless tricks, the
1230  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1231  * inserted.
1232  *
1233  * Returns 0 if the request was found within the alloted time. Else returns the
1234  * errno with remaining time filled in timeout argument.
1235  */
1236 int __i915_wait_request(struct drm_i915_gem_request *req,
1237                         unsigned reset_counter,
1238                         bool interruptible,
1239                         s64 *timeout,
1240                         struct intel_rps_client *rps)
1241 {
1242         struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1243         struct drm_device *dev = ring->dev;
1244         struct drm_i915_private *dev_priv = dev->dev_private;
1245         const bool irq_test_in_progress =
1246                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1247         unsigned long timeout_expire;
1248         long end;
1249         bool wait_forever = true;
1250         s64 before, now;
1251         int ret;
1252
1253         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1254
1255         if (list_empty(&req->list))
1256                 return 0;
1257
1258         if (i915_gem_request_completed(req, true))
1259                 return 0;
1260
1261         if (timeout != NULL)
1262                 wait_forever = false;
1263
1264         timeout_expire = timeout ?
1265                 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1266
1267         if (INTEL_INFO(dev_priv)->gen >= 6)
1268                 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1269
1270         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1271                 return -ENODEV;
1272
1273         /* Record current time in case interrupted by signal, or wedged */
1274         trace_i915_gem_request_wait_begin(req);
1275         before = ktime_get_raw_ns();
1276
1277         /* Optimistic spin for the next jiffie before touching IRQs */
1278 #if 0
1279         ret = __i915_spin_request(req);
1280         if (ret == 0)
1281                 goto out;
1282 #endif
1283
1284 #define EXIT_COND \
1285         (i915_seqno_passed(ring->get_seqno(ring, false), i915_gem_request_get_seqno(req)) || \
1286          i915_reset_in_progress(&dev_priv->gpu_error) || \
1287          reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1288         do {
1289                 if (interruptible)
1290                         end = wait_event_interruptible_timeout(ring->irq_queue,
1291                                                                EXIT_COND,
1292                                                                timeout_expire);
1293                 else
1294                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1295                                                  timeout_expire);
1296
1297                 /* We need to check whether any gpu reset happened in between
1298                  * the caller grabbing the seqno and now ... */
1299                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1300                         end = -EAGAIN;
1301
1302                 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1303                  * gone. */
1304                 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1305                 if (ret)
1306                         end = ret;
1307         } while (end == 0 && wait_forever);
1308
1309         now = ktime_get_raw_ns();
1310         trace_i915_gem_request_wait_end(req);
1311
1312         ring->irq_put(ring);
1313 #undef EXIT_COND
1314
1315         if (timeout) {
1316                 s64 tres = *timeout - (now - before);
1317
1318                 *timeout = tres < 0 ? 0 : tres;
1319
1320                 /*
1321                  * Apparently ktime isn't accurate enough and occasionally has a
1322                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1323                  * things up to make the test happy. We allow up to 1 jiffy.
1324                  *
1325                  * This is a regrssion from the timespec->ktime conversion.
1326                  */
1327                 if (ret == -ETIMEDOUT && *timeout < jiffies_to_usecs(1)*1000)
1328                         *timeout = 0;
1329         }
1330
1331         switch (end) {
1332         case -EIO:
1333         case -EAGAIN: /* Wedged */
1334         case -ERESTARTSYS: /* Signal */
1335                 return (int)end;
1336         case 0: /* Timeout */
1337                 return -ETIMEDOUT;      /* -ETIME on Linux */
1338         default: /* Completed */
1339                 WARN_ON(end < 0); /* We're not aware of other errors */
1340                 return 0;
1341         }
1342 }
1343
1344 static inline void
1345 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1346 {
1347         struct drm_i915_file_private *file_priv = request->file_priv;
1348
1349         if (!file_priv)
1350                 return;
1351
1352         spin_lock(&file_priv->mm.lock);
1353         list_del(&request->client_list);
1354         request->file_priv = NULL;
1355         spin_unlock(&file_priv->mm.lock);
1356 }
1357
1358 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1359 {
1360         trace_i915_gem_request_retire(request);
1361
1362         /* We know the GPU must have read the request to have
1363          * sent us the seqno + interrupt, so use the position
1364          * of tail of the request to update the last known position
1365          * of the GPU head.
1366          *
1367          * Note this requires that we are always called in request
1368          * completion order.
1369          */
1370         request->ringbuf->last_retired_head = request->postfix;
1371
1372         list_del_init(&request->list);
1373         i915_gem_request_remove_from_client(request);
1374
1375 #if 0
1376         put_pid(request->pid);
1377 #endif
1378
1379         i915_gem_request_unreference(request);
1380 }
1381
1382 static void
1383 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1384 {
1385         struct intel_engine_cs *engine = req->ring;
1386         struct drm_i915_gem_request *tmp;
1387
1388         lockdep_assert_held(&engine->dev->struct_mutex);
1389
1390         if (list_empty(&req->list))
1391                 return;
1392
1393         do {
1394                 tmp = list_first_entry(&engine->request_list,
1395                                        typeof(*tmp), list);
1396
1397                 i915_gem_request_retire(tmp);
1398         } while (tmp != req);
1399
1400         WARN_ON(i915_verify_lists(engine->dev));
1401 }
1402
1403 /**
1404  * Waits for a request to be signaled, and cleans up the
1405  * request and object lists appropriately for that event.
1406  */
1407 int
1408 i915_wait_request(struct drm_i915_gem_request *req)
1409 {
1410         struct drm_device *dev;
1411         struct drm_i915_private *dev_priv;
1412         bool interruptible;
1413         int ret;
1414
1415         BUG_ON(req == NULL);
1416
1417         dev = req->ring->dev;
1418         dev_priv = dev->dev_private;
1419         interruptible = dev_priv->mm.interruptible;
1420
1421         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1422
1423         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1424         if (ret)
1425                 return ret;
1426
1427         ret = i915_gem_check_olr(req);
1428         if (ret)
1429                 return ret;
1430
1431         ret = __i915_wait_request(req,
1432                                   atomic_read(&dev_priv->gpu_error.reset_counter),
1433                                   interruptible, NULL, NULL);
1434         if (ret)
1435                 return ret;
1436
1437         __i915_gem_request_retire__upto(req);
1438         return 0;
1439 }
1440
1441 /**
1442  * Ensures that all rendering to the object has completed and the object is
1443  * safe to unbind from the GTT or access from the CPU.
1444  */
1445 int
1446 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1447                                bool readonly)
1448 {
1449         int ret, i;
1450
1451         if (!obj->active)
1452                 return 0;
1453
1454         if (readonly) {
1455                 if (obj->last_write_req != NULL) {
1456                         ret = i915_wait_request(obj->last_write_req);
1457                         if (ret)
1458                                 return ret;
1459
1460                         i = obj->last_write_req->ring->id;
1461                         if (obj->last_read_req[i] == obj->last_write_req)
1462                                 i915_gem_object_retire__read(obj, i);
1463                         else
1464                                 i915_gem_object_retire__write(obj);
1465                 }
1466         } else {
1467                 for (i = 0; i < I915_NUM_RINGS; i++) {
1468                         if (obj->last_read_req[i] == NULL)
1469                                 continue;
1470
1471                         ret = i915_wait_request(obj->last_read_req[i]);
1472                         if (ret)
1473                                 return ret;
1474
1475                         i915_gem_object_retire__read(obj, i);
1476                 }
1477                 RQ_BUG_ON(obj->active);
1478         }
1479
1480         return 0;
1481 }
1482
1483 static void
1484 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1485                                struct drm_i915_gem_request *req)
1486 {
1487         int ring = req->ring->id;
1488
1489         if (obj->last_read_req[ring] == req)
1490                 i915_gem_object_retire__read(obj, ring);
1491         else if (obj->last_write_req == req)
1492                 i915_gem_object_retire__write(obj);
1493
1494         __i915_gem_request_retire__upto(req);
1495 }
1496
1497 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1498  * as the object state may change during this call.
1499  */
1500 static __must_check int
1501 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1502                                             struct intel_rps_client *rps,
1503                                             bool readonly)
1504 {
1505         struct drm_device *dev = obj->base.dev;
1506         struct drm_i915_private *dev_priv = dev->dev_private;
1507         struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1508         unsigned reset_counter;
1509         int ret, i, n = 0;
1510
1511         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1512         BUG_ON(!dev_priv->mm.interruptible);
1513
1514         if (!obj->active)
1515                 return 0;
1516
1517         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1518         if (ret)
1519                 return ret;
1520
1521         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1522
1523         if (readonly) {
1524                 struct drm_i915_gem_request *req;
1525
1526                 req = obj->last_write_req;
1527                 if (req == NULL)
1528                         return 0;
1529
1530                 ret = i915_gem_check_olr(req);
1531                 if (ret)
1532                         goto err;
1533
1534                 requests[n++] = i915_gem_request_reference(req);
1535         } else {
1536                 for (i = 0; i < I915_NUM_RINGS; i++) {
1537                         struct drm_i915_gem_request *req;
1538
1539                         req = obj->last_read_req[i];
1540                         if (req == NULL)
1541                                 continue;
1542
1543                         ret = i915_gem_check_olr(req);
1544                         if (ret)
1545                                 goto err;
1546
1547                         requests[n++] = i915_gem_request_reference(req);
1548                 }
1549         }
1550
1551         mutex_unlock(&dev->struct_mutex);
1552         for (i = 0; ret == 0 && i < n; i++)
1553                 ret = __i915_wait_request(requests[i], reset_counter, true,
1554                                           NULL, rps);
1555         mutex_lock(&dev->struct_mutex);
1556
1557 err:
1558         for (i = 0; i < n; i++) {
1559                 if (ret == 0)
1560                         i915_gem_object_retire_request(obj, requests[i]);
1561                 i915_gem_request_unreference(requests[i]);
1562         }
1563
1564         return ret;
1565 }
1566
1567 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1568 {
1569         struct drm_i915_file_private *fpriv = file->driver_priv;
1570         return &fpriv->rps;
1571 }
1572
1573 /**
1574  * Called when user space prepares to use an object with the CPU, either
1575  * through the mmap ioctl's mapping or a GTT mapping.
1576  */
1577 int
1578 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1579                           struct drm_file *file)
1580 {
1581         struct drm_i915_gem_set_domain *args = data;
1582         struct drm_i915_gem_object *obj;
1583         uint32_t read_domains = args->read_domains;
1584         uint32_t write_domain = args->write_domain;
1585         int ret;
1586
1587         /* Only handle setting domains to types used by the CPU. */
1588         if (write_domain & I915_GEM_GPU_DOMAINS)
1589                 return -EINVAL;
1590
1591         if (read_domains & I915_GEM_GPU_DOMAINS)
1592                 return -EINVAL;
1593
1594         /* Having something in the write domain implies it's in the read
1595          * domain, and only that read domain.  Enforce that in the request.
1596          */
1597         if (write_domain != 0 && read_domains != write_domain)
1598                 return -EINVAL;
1599
1600         ret = i915_mutex_lock_interruptible(dev);
1601         if (ret)
1602                 return ret;
1603
1604         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1605         if (&obj->base == NULL) {
1606                 ret = -ENOENT;
1607                 goto unlock;
1608         }
1609
1610         /* Try to flush the object off the GPU without holding the lock.
1611          * We will repeat the flush holding the lock in the normal manner
1612          * to catch cases where we are gazumped.
1613          */
1614         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1615                                                           to_rps_client(file),
1616                                                           !write_domain);
1617         if (ret)
1618                 goto unref;
1619
1620         if (read_domains & I915_GEM_DOMAIN_GTT)
1621                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1622         else
1623                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1624
1625 unref:
1626         drm_gem_object_unreference(&obj->base);
1627 unlock:
1628         mutex_unlock(&dev->struct_mutex);
1629         return ret;
1630 }
1631
1632 /**
1633  * Called when user space has done writes to this buffer
1634  */
1635 int
1636 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1637                          struct drm_file *file)
1638 {
1639         struct drm_i915_gem_sw_finish *args = data;
1640         struct drm_i915_gem_object *obj;
1641         int ret = 0;
1642
1643         ret = i915_mutex_lock_interruptible(dev);
1644         if (ret)
1645                 return ret;
1646
1647         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1648         if (&obj->base == NULL) {
1649                 ret = -ENOENT;
1650                 goto unlock;
1651         }
1652
1653         /* Pinned buffers may be scanout, so flush the cache */
1654         if (obj->pin_display)
1655                 i915_gem_object_flush_cpu_write_domain(obj);
1656
1657         drm_gem_object_unreference(&obj->base);
1658 unlock:
1659         mutex_unlock(&dev->struct_mutex);
1660         return ret;
1661 }
1662
1663 /**
1664  * Maps the contents of an object, returning the address it is mapped
1665  * into.
1666  *
1667  * While the mapping holds a reference on the contents of the object, it doesn't
1668  * imply a ref on the object itself.
1669  *
1670  * IMPORTANT:
1671  *
1672  * DRM driver writers who look a this function as an example for how to do GEM
1673  * mmap support, please don't implement mmap support like here. The modern way
1674  * to implement DRM mmap support is with an mmap offset ioctl (like
1675  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1676  * That way debug tooling like valgrind will understand what's going on, hiding
1677  * the mmap call in a driver private ioctl will break that. The i915 driver only
1678  * does cpu mmaps this way because we didn't know better.
1679  */
1680 int
1681 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1682                     struct drm_file *file)
1683 {
1684         struct drm_i915_gem_mmap *args = data;
1685         struct drm_gem_object *obj;
1686         unsigned long addr;
1687         struct proc *p = curproc;
1688         vm_map_t map = &p->p_vmspace->vm_map;
1689         vm_size_t size;
1690         int error = 0, rv;
1691
1692         obj = drm_gem_object_lookup(dev, file, args->handle);
1693         if (obj == NULL)
1694                 return -ENOENT;
1695
1696         if (args->size == 0)
1697                 goto out;
1698
1699         size = round_page(args->size);
1700         if (map->size + size > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
1701                 error = -ENOMEM;
1702                 goto out;
1703         }
1704
1705         /*
1706          * Call hint to ensure that NULL is not returned as a valid address
1707          * and to reduce vm_map traversals. XXX causes instability, use a
1708          * fixed low address as the start point instead to avoid the NULL
1709          * return issue.
1710          */
1711         addr = PAGE_SIZE;
1712
1713         /*
1714          * Use 256KB alignment.  It is unclear why this matters for a
1715          * virtual address but it appears to fix a number of application/X
1716          * crashes and kms console switching is much faster.
1717          */
1718         vm_object_hold(obj->vm_obj);
1719         vm_object_reference_locked(obj->vm_obj);
1720         vm_object_drop(obj->vm_obj);
1721
1722         rv = vm_map_find(map, obj->vm_obj, NULL,
1723                          args->offset, &addr, args->size,
1724                          256 * 1024, /* align */
1725                          TRUE, /* fitit */
1726                          VM_MAPTYPE_NORMAL, /* maptype */
1727                          VM_PROT_READ | VM_PROT_WRITE, /* prot */
1728                          VM_PROT_READ | VM_PROT_WRITE, /* max */
1729                          MAP_SHARED /* cow */);
1730         if (rv != KERN_SUCCESS) {
1731                 vm_object_deallocate(obj->vm_obj);
1732                 error = -vm_mmap_to_errno(rv);
1733         } else {
1734                 args->addr_ptr = (uint64_t)addr;
1735         }
1736 out:
1737         drm_gem_object_unreference(obj);
1738         return (error);
1739 }
1740
1741 /**
1742  * i915_gem_fault - fault a page into the GTT
1743  *
1744  * vm_obj is locked on entry and expected to be locked on return.
1745  *
1746  * The vm_pager has placemarked the object with an anonymous memory page
1747  * which we must replace atomically to avoid races against concurrent faults
1748  * on the same page.  XXX we currently are unable to do this atomically.
1749  *
1750  * If we are to return an error we should not touch the anonymous page,
1751  * the caller will deallocate it.
1752  *
1753  * XXX Most GEM calls appear to be interruptable, but we can't hard loop
1754  * in that case.  Release all resources and wait 1 tick before retrying.
1755  * This is a huge problem which needs to be fixed by getting rid of most
1756  * of the interruptability.  The linux code does not retry but does appear
1757  * to have some sort of mechanism (VM_FAULT_NOPAGE ?) for the higher level
1758  * to be able to retry.
1759  *
1760  * --
1761  *
1762  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1763  * from userspace.  The fault handler takes care of binding the object to
1764  * the GTT (if needed), allocating and programming a fence register (again,
1765  * only if needed based on whether the old reg is still valid or the object
1766  * is tiled) and inserting a new PTE into the faulting process.
1767  *
1768  * Note that the faulting process may involve evicting existing objects
1769  * from the GTT and/or fence registers to make room.  So performance may
1770  * suffer if the GTT working set is large or there are few fence registers
1771  * left.
1772  *
1773  * vm_obj is locked on entry and expected to be locked on return.  The VM
1774  * pager has placed an anonymous memory page at (obj,offset) which we have
1775  * to replace.
1776  */
1777 int i915_gem_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot, vm_page_t *mres)
1778 {
1779         struct drm_i915_gem_object *obj = to_intel_bo(vm_obj->handle);
1780         struct drm_device *dev = obj->base.dev;
1781         struct drm_i915_private *dev_priv = dev->dev_private;
1782         unsigned long page_offset;
1783         vm_page_t m, oldm = NULL;
1784         int ret = 0;
1785         int didpip = 0;
1786         bool write = !!(prot & VM_PROT_WRITE);
1787
1788         intel_runtime_pm_get(dev_priv);
1789
1790         /* We don't use vmf->pgoff since that has the fake offset */
1791         page_offset = (unsigned long)offset;
1792
1793 retry:
1794         ret = i915_mutex_lock_interruptible(dev);
1795         if (ret)
1796                 goto out;
1797
1798         trace_i915_gem_object_fault(obj, page_offset, true, write);
1799
1800         /* Try to flush the object off the GPU first without holding the lock.
1801          * Upon reacquiring the lock, we will perform our sanity checks and then
1802          * repeat the flush holding the lock in the normal manner to catch cases
1803          * where we are gazumped.
1804          */
1805         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1806         if (ret)
1807                 goto unlock;
1808
1809         /* Access to snoopable pages through the GTT is incoherent. */
1810         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1811                 ret = -EFAULT;
1812                 goto unlock;
1813         }
1814
1815         /* Now bind it into the GTT if needed */
1816         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1817         if (ret)
1818                 goto unlock;
1819
1820         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1821         if (ret)
1822                 goto unpin;
1823
1824         ret = i915_gem_object_get_fence(obj);
1825         if (ret)
1826                 goto unpin;
1827
1828         /*
1829          * START FREEBSD MAGIC
1830          *
1831          * Add a pip count to avoid destruction and certain other
1832          * complex operations (such as collapses?) while unlocked.
1833          */
1834         if (didpip == 0) {
1835                 vm_object_pip_add(vm_obj, 1);
1836                 didpip = 1;
1837         }
1838
1839         /*
1840          * XXX We must currently remove the placeholder page now to avoid
1841          * a deadlock against a concurrent i915_gem_release_mmap().
1842          * Otherwise concurrent operation will block on the busy page
1843          * while holding locks which we need to obtain.
1844          */
1845         if (*mres != NULL) {
1846                 oldm = *mres;
1847                 if ((oldm->flags & PG_BUSY) == 0)
1848                         kprintf("i915_gem_fault: Page was not busy\n");
1849                 else
1850                         vm_page_remove(oldm);
1851                 *mres = NULL;
1852         } else {
1853                 oldm = NULL;
1854         }
1855
1856         ret = 0;
1857         m = NULL;
1858
1859         /*
1860          * Since the object lock was dropped, another thread might have
1861          * faulted on the same GTT address and instantiated the mapping.
1862          * Recheck.
1863          */
1864         m = vm_page_lookup(vm_obj, OFF_TO_IDX(offset));
1865         if (m != NULL) {
1866                 /*
1867                  * Try to busy the page, retry on failure (non-zero ret).
1868                  */
1869                 if (vm_page_busy_try(m, false)) {
1870                         kprintf("i915_gem_fault: PG_BUSY\n");
1871                         ret = -EINTR;
1872                         goto unlock;
1873                 }
1874                 goto have_page;
1875         }
1876         /*
1877          * END FREEBSD MAGIC
1878          */
1879
1880         obj->fault_mappable = true;
1881
1882         m = vm_phys_fictitious_to_vm_page(dev_priv->gtt.mappable_base +
1883                                           i915_gem_obj_ggtt_offset(obj) +
1884                                           offset);
1885         if (m == NULL) {
1886                 ret = -EFAULT;
1887                 goto unpin;
1888         }
1889         KASSERT((m->flags & PG_FICTITIOUS) != 0, ("not fictitious %p", m));
1890         KASSERT(m->wire_count == 1, ("wire_count not 1 %p", m));
1891
1892         /*
1893          * Try to busy the page.  Fails on non-zero return.
1894          */
1895         if (vm_page_busy_try(m, false)) {
1896                 kprintf("i915_gem_fault: PG_BUSY(2)\n");
1897                 ret = -EINTR;
1898                 goto unpin;
1899         }
1900         m->valid = VM_PAGE_BITS_ALL;
1901
1902         /*
1903          * Finally, remap it using the new GTT offset.
1904          *
1905          * (object expected to be in a locked state)
1906          */
1907         vm_page_insert(m, vm_obj, OFF_TO_IDX(offset));
1908 have_page:
1909         *mres = m;
1910
1911         i915_gem_object_ggtt_unpin(obj);
1912         mutex_unlock(&dev->struct_mutex);
1913         ret = VM_PAGER_OK;
1914         goto done;
1915
1916         /*
1917          * ALTERNATIVE ERROR RETURN.
1918          *
1919          * OBJECT EXPECTED TO BE LOCKED.
1920          */
1921 unpin:
1922         i915_gem_object_ggtt_unpin(obj);
1923 unlock:
1924         mutex_unlock(&dev->struct_mutex);
1925 out:
1926         switch (ret) {
1927         case -EIO:
1928                 /*
1929                  * We eat errors when the gpu is terminally wedged to avoid
1930                  * userspace unduly crashing (gl has no provisions for mmaps to
1931                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1932                  * and so needs to be reported.
1933                  */
1934                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1935 //                      ret = VM_FAULT_SIGBUS;
1936                         break;
1937                 }
1938                 /* fall through */
1939         case -EAGAIN:
1940                 /*
1941                  * EAGAIN means the gpu is hung and we'll wait for the error
1942                  * handler to reset everything when re-faulting in
1943                  * i915_mutex_lock_interruptible.
1944                  */
1945                 /* fall through */
1946         case -ERESTARTSYS:
1947         case -EINTR:
1948                 VM_OBJECT_UNLOCK(vm_obj);
1949                 int dummy;
1950                 tsleep(&dummy, 0, "delay", 1); /* XXX */
1951                 VM_OBJECT_LOCK(vm_obj);
1952                 goto retry;
1953         default:
1954                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1955                 ret = VM_PAGER_ERROR;
1956                 break;
1957         }
1958
1959 done:
1960         if (oldm != NULL)
1961                 vm_page_free(oldm);
1962         if (didpip)
1963                 vm_object_pip_wakeup(vm_obj);
1964
1965         intel_runtime_pm_put(dev_priv);
1966         return ret;
1967 }
1968
1969 /**
1970  * i915_gem_release_mmap - remove physical page mappings
1971  * @obj: obj in question
1972  *
1973  * Preserve the reservation of the mmapping with the DRM core code, but
1974  * relinquish ownership of the pages back to the system.
1975  *
1976  * It is vital that we remove the page mapping if we have mapped a tiled
1977  * object through the GTT and then lose the fence register due to
1978  * resource pressure. Similarly if the object has been moved out of the
1979  * aperture, than pages mapped into userspace must be revoked. Removing the
1980  * mapping will then trigger a page fault on the next user access, allowing
1981  * fixup by i915_gem_fault().
1982  */
1983 void
1984 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1985 {
1986         vm_object_t devobj;
1987         vm_page_t m;
1988         int i, page_count;
1989
1990         if (!obj->fault_mappable)
1991                 return;
1992
1993         devobj = cdev_pager_lookup(obj);
1994         if (devobj != NULL) {
1995                 page_count = OFF_TO_IDX(obj->base.size);
1996
1997                 VM_OBJECT_LOCK(devobj);
1998                 for (i = 0; i < page_count; i++) {
1999                         m = vm_page_lookup_busy_wait(devobj, i, TRUE, "915unm");
2000                         if (m == NULL)
2001                                 continue;
2002                         cdev_pager_free_page(devobj, m);
2003                 }
2004                 VM_OBJECT_UNLOCK(devobj);
2005                 vm_object_deallocate(devobj);
2006         }
2007
2008         obj->fault_mappable = false;
2009 }
2010
2011 void
2012 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2013 {
2014         struct drm_i915_gem_object *obj;
2015
2016         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
2017                 i915_gem_release_mmap(obj);
2018 }
2019
2020 uint32_t
2021 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2022 {
2023         uint32_t gtt_size;
2024
2025         if (INTEL_INFO(dev)->gen >= 4 ||
2026             tiling_mode == I915_TILING_NONE)
2027                 return size;
2028
2029         /* Previous chips need a power-of-two fence region when tiling */
2030         if (INTEL_INFO(dev)->gen == 3)
2031                 gtt_size = 1024*1024;
2032         else
2033                 gtt_size = 512*1024;
2034
2035         while (gtt_size < size)
2036                 gtt_size <<= 1;
2037
2038         return gtt_size;
2039 }
2040
2041 /**
2042  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2043  * @obj: object to check
2044  *
2045  * Return the required GTT alignment for an object, taking into account
2046  * potential fence register mapping.
2047  */
2048 uint32_t
2049 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2050                            int tiling_mode, bool fenced)
2051 {
2052         /*
2053          * Minimum alignment is 4k (GTT page size), but might be greater
2054          * if a fence register is needed for the object.
2055          */
2056         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2057             tiling_mode == I915_TILING_NONE)
2058                 return 4096;
2059
2060         /*
2061          * Previous chips need to be aligned to the size of the smallest
2062          * fence register that can contain the object.
2063          */
2064         return i915_gem_get_gtt_size(dev, size, tiling_mode);
2065 }
2066
2067 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2068 {
2069         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2070         int ret;
2071
2072 #if 0
2073         if (drm_vma_node_has_offset(&obj->base.vma_node))
2074                 return 0;
2075 #endif
2076
2077         dev_priv->mm.shrinker_no_lock_stealing = true;
2078
2079         ret = drm_gem_create_mmap_offset(&obj->base);
2080         if (ret != -ENOSPC)
2081                 goto out;
2082
2083         /* Badly fragmented mmap space? The only way we can recover
2084          * space is by destroying unwanted objects. We can't randomly release
2085          * mmap_offsets as userspace expects them to be persistent for the
2086          * lifetime of the objects. The closest we can is to release the
2087          * offsets on purgeable objects by truncating it and marking it purged,
2088          * which prevents userspace from ever using that object again.
2089          */
2090         i915_gem_shrink(dev_priv,
2091                         obj->base.size >> PAGE_SHIFT,
2092                         I915_SHRINK_BOUND |
2093                         I915_SHRINK_UNBOUND |
2094                         I915_SHRINK_PURGEABLE);
2095         ret = drm_gem_create_mmap_offset(&obj->base);
2096         if (ret != -ENOSPC)
2097                 goto out;
2098
2099         i915_gem_shrink_all(dev_priv);
2100         ret = drm_gem_create_mmap_offset(&obj->base);
2101 out:
2102         dev_priv->mm.shrinker_no_lock_stealing = false;
2103
2104         return ret;
2105 }
2106
2107 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2108 {
2109         drm_gem_free_mmap_offset(&obj->base);
2110 }
2111
2112 int
2113 i915_gem_mmap_gtt(struct drm_file *file,
2114                   struct drm_device *dev,
2115                   uint32_t handle,
2116                   uint64_t *offset)
2117 {
2118         struct drm_i915_gem_object *obj;
2119         int ret;
2120
2121         ret = i915_mutex_lock_interruptible(dev);
2122         if (ret)
2123                 return ret;
2124
2125         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2126         if (&obj->base == NULL) {
2127                 ret = -ENOENT;
2128                 goto unlock;
2129         }
2130
2131         if (obj->madv != I915_MADV_WILLNEED) {
2132                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2133                 ret = -EFAULT;
2134                 goto out;
2135         }
2136
2137         ret = i915_gem_object_create_mmap_offset(obj);
2138         if (ret)
2139                 goto out;
2140
2141         *offset = DRM_GEM_MAPPING_OFF(obj->base.map_list.key) |
2142             DRM_GEM_MAPPING_KEY;
2143
2144 out:
2145         drm_gem_object_unreference(&obj->base);
2146 unlock:
2147         mutex_unlock(&dev->struct_mutex);
2148         return ret;
2149 }
2150
2151 /**
2152  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2153  * @dev: DRM device
2154  * @data: GTT mapping ioctl data
2155  * @file: GEM object info
2156  *
2157  * Simply returns the fake offset to userspace so it can mmap it.
2158  * The mmap call will end up in drm_gem_mmap(), which will set things
2159  * up so we can get faults in the handler above.
2160  *
2161  * The fault handler will take care of binding the object into the GTT
2162  * (since it may have been evicted to make room for something), allocating
2163  * a fence register, and mapping the appropriate aperture address into
2164  * userspace.
2165  */
2166 int
2167 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2168                         struct drm_file *file)
2169 {
2170         struct drm_i915_gem_mmap_gtt *args = data;
2171
2172         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2173 }
2174
2175 /* Immediately discard the backing storage */
2176 static void
2177 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2178 {
2179         vm_object_t vm_obj;
2180
2181         vm_obj = obj->base.vm_obj;
2182         VM_OBJECT_LOCK(vm_obj);
2183         vm_object_page_remove(vm_obj, 0, 0, false);
2184         VM_OBJECT_UNLOCK(vm_obj);
2185
2186         obj->madv = __I915_MADV_PURGED;
2187 }
2188
2189 /* Try to discard unwanted pages */
2190 static void
2191 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2192 {
2193 #if 0
2194         struct address_space *mapping;
2195 #endif
2196
2197         switch (obj->madv) {
2198         case I915_MADV_DONTNEED:
2199                 i915_gem_object_truncate(obj);
2200         case __I915_MADV_PURGED:
2201                 return;
2202         }
2203
2204 #if 0
2205         if (obj->base.filp == NULL)
2206                 return;
2207
2208         mapping = file_inode(obj->base.filp)->i_mapping,
2209         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2210 #endif
2211 }
2212
2213 static void
2214 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2215 {
2216         int page_count = obj->base.size / PAGE_SIZE;
2217         int i, ret;
2218
2219         if (!obj->pages)
2220                 return;
2221
2222         BUG_ON(obj->madv == __I915_MADV_PURGED);
2223
2224         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2225         if (ret) {
2226                 /* In the event of a disaster, abandon all caches and
2227                  * hope for the best.
2228                  */
2229                 WARN_ON(ret != -EIO);
2230                 i915_gem_clflush_object(obj, true);
2231                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2232         }
2233
2234         i915_gem_gtt_finish_object(obj);
2235
2236         if (i915_gem_object_needs_bit17_swizzle(obj))
2237                 i915_gem_object_save_bit_17_swizzle(obj);
2238
2239         if (obj->madv == I915_MADV_DONTNEED)
2240                 obj->dirty = 0;
2241
2242         for (i = 0; i < page_count; i++) {
2243                 struct vm_page *page = obj->pages[i];
2244
2245                 if (obj->dirty)
2246                         set_page_dirty(page);
2247
2248                 if (obj->madv == I915_MADV_WILLNEED)
2249                         mark_page_accessed(page);
2250
2251                 vm_page_busy_wait(obj->pages[i], FALSE, "i915gem");
2252                 vm_page_unwire(obj->pages[i], 1);
2253                 vm_page_wakeup(obj->pages[i]);
2254         }
2255         obj->dirty = 0;
2256
2257         kfree(obj->pages);
2258         obj->pages = NULL;
2259 }
2260
2261 int
2262 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2263 {
2264         const struct drm_i915_gem_object_ops *ops = obj->ops;
2265
2266         if (obj->pages == NULL)
2267                 return 0;
2268
2269         if (obj->pages_pin_count)
2270                 return -EBUSY;
2271
2272         BUG_ON(i915_gem_obj_bound_any(obj));
2273
2274         /* ->put_pages might need to allocate memory for the bit17 swizzle
2275          * array, hence protect them from being reaped by removing them from gtt
2276          * lists early. */
2277         list_del(&obj->global_list);
2278
2279         ops->put_pages(obj);
2280         obj->pages = NULL;
2281
2282         i915_gem_object_invalidate(obj);
2283
2284         return 0;
2285 }
2286
2287 static int
2288 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2289 {
2290         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2291         int page_count, i, j;
2292         vm_object_t vm_obj;
2293         struct vm_page *page;
2294         int ret = -EIO;
2295
2296         /* Assert that the object is not currently in any GPU domain. As it
2297          * wasn't in the GTT, there shouldn't be any way it could have been in
2298          * a GPU cache
2299          */
2300         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2301         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2302
2303         page_count = obj->base.size / PAGE_SIZE;
2304         obj->pages = kmalloc(page_count * sizeof(vm_page_t), M_DRM,
2305             M_WAITOK);
2306
2307         /* Get the list of pages out of our struct file.  They'll be pinned
2308          * at this point until we release them.
2309          *
2310          * Fail silently without starting the shrinker
2311          */
2312         vm_obj = obj->base.vm_obj;
2313         VM_OBJECT_LOCK(vm_obj);
2314         for (i = 0; i < page_count; i++) {
2315                 page = shmem_read_mapping_page(vm_obj, i);
2316                 if (IS_ERR(page)) {
2317                         i915_gem_shrink(dev_priv,
2318                                         page_count,
2319                                         I915_SHRINK_BOUND |
2320                                         I915_SHRINK_UNBOUND |
2321                                         I915_SHRINK_PURGEABLE);
2322                         page = shmem_read_mapping_page(vm_obj, i);
2323                 }
2324                 if (IS_ERR(page)) {
2325                         /* We've tried hard to allocate the memory by reaping
2326                          * our own buffer, now let the real VM do its job and
2327                          * go down in flames if truly OOM.
2328                          */
2329
2330                         i915_gem_shrink_all(dev_priv);
2331                         page = shmem_read_mapping_page(vm_obj, i);
2332                         if (IS_ERR(page)) {
2333                                 ret = PTR_ERR(page);
2334                                 goto err_pages;
2335                         }
2336                 }
2337 #ifdef CONFIG_SWIOTLB
2338                 if (swiotlb_nr_tbl()) {
2339                         st->nents++;
2340                         sg_set_page(sg, page, PAGE_SIZE, 0);
2341                         sg = sg_next(sg);
2342                         continue;
2343                 }
2344 #endif
2345                 obj->pages[i] = page;
2346         }
2347 #ifdef CONFIG_SWIOTLB
2348         if (!swiotlb_nr_tbl())
2349 #endif
2350         VM_OBJECT_UNLOCK(vm_obj);
2351
2352         ret = i915_gem_gtt_prepare_object(obj);
2353         if (ret)
2354                 goto err_pages;
2355
2356         if (i915_gem_object_needs_bit17_swizzle(obj))
2357                 i915_gem_object_do_bit_17_swizzle(obj);
2358
2359         if (obj->tiling_mode != I915_TILING_NONE &&
2360             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2361                 i915_gem_object_pin_pages(obj);
2362
2363         return 0;
2364
2365 err_pages:
2366         for (j = 0; j < i; j++) {
2367                 page = obj->pages[j];
2368                 vm_page_busy_wait(page, FALSE, "i915gem");
2369                 vm_page_unwire(page, 0);
2370                 vm_page_wakeup(page);
2371         }
2372         VM_OBJECT_UNLOCK(vm_obj);
2373         kfree(obj->pages);
2374         obj->pages = NULL;
2375
2376         /* shmemfs first checks if there is enough memory to allocate the page
2377          * and reports ENOSPC should there be insufficient, along with the usual
2378          * ENOMEM for a genuine allocation failure.
2379          *
2380          * We use ENOSPC in our driver to mean that we have run out of aperture
2381          * space and so want to translate the error from shmemfs back to our
2382          * usual understanding of ENOMEM.
2383          */
2384         if (ret == -ENOSPC)
2385                 ret = -ENOMEM;
2386
2387         return ret;
2388 }
2389
2390 /* Ensure that the associated pages are gathered from the backing storage
2391  * and pinned into our object. i915_gem_object_get_pages() may be called
2392  * multiple times before they are released by a single call to
2393  * i915_gem_object_put_pages() - once the pages are no longer referenced
2394  * either as a result of memory pressure (reaping pages under the shrinker)
2395  * or as the object is itself released.
2396  */
2397 int
2398 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2399 {
2400         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2401         const struct drm_i915_gem_object_ops *ops = obj->ops;
2402         int ret;
2403
2404         if (obj->pages)
2405                 return 0;
2406
2407         if (obj->madv != I915_MADV_WILLNEED) {
2408                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2409                 return -EFAULT;
2410         }
2411
2412         BUG_ON(obj->pages_pin_count);
2413
2414         ret = ops->get_pages(obj);
2415         if (ret)
2416                 return ret;
2417
2418         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2419         return 0;
2420 }
2421
2422 void i915_vma_move_to_active(struct i915_vma *vma,
2423                              struct intel_engine_cs *ring)
2424 {
2425         struct drm_i915_gem_object *obj = vma->obj;
2426
2427         /* Add a reference if we're newly entering the active list. */
2428         if (obj->active == 0)
2429                 drm_gem_object_reference(&obj->base);
2430         obj->active |= intel_ring_flag(ring);
2431
2432         list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2433         i915_gem_request_assign(&obj->last_read_req[ring->id],
2434                                 intel_ring_get_request(ring));
2435
2436         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2437 }
2438
2439 static void
2440 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2441 {
2442         RQ_BUG_ON(obj->last_write_req == NULL);
2443         RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2444
2445         i915_gem_request_assign(&obj->last_write_req, NULL);
2446         intel_fb_obj_flush(obj, true);
2447 }
2448
2449 static void
2450 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2451 {
2452         struct i915_vma *vma;
2453
2454         RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2455         RQ_BUG_ON(!(obj->active & (1 << ring)));
2456
2457         list_del_init(&obj->ring_list[ring]);
2458         i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2459
2460         if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2461                 i915_gem_object_retire__write(obj);
2462
2463         obj->active &= ~(1 << ring);
2464         if (obj->active)
2465                 return;
2466
2467         list_for_each_entry(vma, &obj->vma_list, vma_link) {
2468                 if (!list_empty(&vma->mm_list))
2469                         list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2470         }
2471
2472         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2473         drm_gem_object_unreference(&obj->base);
2474 }
2475
2476 static int
2477 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2478 {
2479         struct drm_i915_private *dev_priv = dev->dev_private;
2480         struct intel_engine_cs *ring;
2481         int ret, i, j;
2482
2483         /* Carefully retire all requests without writing to the rings */
2484         for_each_ring(ring, dev_priv, i) {
2485                 ret = intel_ring_idle(ring);
2486                 if (ret)
2487                         return ret;
2488         }
2489         i915_gem_retire_requests(dev);
2490
2491         /* Finally reset hw state */
2492         for_each_ring(ring, dev_priv, i) {
2493                 intel_ring_init_seqno(ring, seqno);
2494
2495                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2496                         ring->semaphore.sync_seqno[j] = 0;
2497         }
2498
2499         return 0;
2500 }
2501
2502 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2503 {
2504         struct drm_i915_private *dev_priv = dev->dev_private;
2505         int ret;
2506
2507         if (seqno == 0)
2508                 return -EINVAL;
2509
2510         /* HWS page needs to be set less than what we
2511          * will inject to ring
2512          */
2513         ret = i915_gem_init_seqno(dev, seqno - 1);
2514         if (ret)
2515                 return ret;
2516
2517         /* Carefully set the last_seqno value so that wrap
2518          * detection still works
2519          */
2520         dev_priv->next_seqno = seqno;
2521         dev_priv->last_seqno = seqno - 1;
2522         if (dev_priv->last_seqno == 0)
2523                 dev_priv->last_seqno--;
2524
2525         return 0;
2526 }
2527
2528 int
2529 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2530 {
2531         struct drm_i915_private *dev_priv = dev->dev_private;
2532
2533         /* reserve 0 for non-seqno */
2534         if (dev_priv->next_seqno == 0) {
2535                 int ret = i915_gem_init_seqno(dev, 0);
2536                 if (ret)
2537                         return ret;
2538
2539                 dev_priv->next_seqno = 1;
2540         }
2541
2542         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2543         return 0;
2544 }
2545
2546 int __i915_add_request(struct intel_engine_cs *ring,
2547                        struct drm_file *file,
2548                        struct drm_i915_gem_object *obj)
2549 {
2550         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2551         struct drm_i915_gem_request *request;
2552         struct intel_ringbuffer *ringbuf;
2553         u32 request_start;
2554         int ret;
2555
2556         request = ring->outstanding_lazy_request;
2557         if (WARN_ON(request == NULL))
2558                 return -ENOMEM;
2559
2560         if (i915.enable_execlists) {
2561                 ringbuf = request->ctx->engine[ring->id].ringbuf;
2562         } else
2563                 ringbuf = ring->buffer;
2564
2565         request_start = intel_ring_get_tail(ringbuf);
2566         /*
2567          * Emit any outstanding flushes - execbuf can fail to emit the flush
2568          * after having emitted the batchbuffer command. Hence we need to fix
2569          * things up similar to emitting the lazy request. The difference here
2570          * is that the flush _must_ happen before the next request, no matter
2571          * what.
2572          */
2573         if (i915.enable_execlists) {
2574                 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2575                 if (ret)
2576                         return ret;
2577         } else {
2578                 ret = intel_ring_flush_all_caches(ring);
2579                 if (ret)
2580                         return ret;
2581         }
2582
2583         /* Record the position of the start of the request so that
2584          * should we detect the updated seqno part-way through the
2585          * GPU processing the request, we never over-estimate the
2586          * position of the head.
2587          */
2588         request->postfix = intel_ring_get_tail(ringbuf);
2589
2590         if (i915.enable_execlists) {
2591                 ret = ring->emit_request(ringbuf, request);
2592                 if (ret)
2593                         return ret;
2594         } else {
2595                 ret = ring->add_request(ring);
2596                 if (ret)
2597                         return ret;
2598
2599                 request->tail = intel_ring_get_tail(ringbuf);
2600         }
2601
2602         request->head = request_start;
2603
2604         /* Whilst this request exists, batch_obj will be on the
2605          * active_list, and so will hold the active reference. Only when this
2606          * request is retired will the the batch_obj be moved onto the
2607          * inactive_list and lose its active reference. Hence we do not need
2608          * to explicitly hold another reference here.
2609          */
2610         request->batch_obj = obj;
2611
2612         if (!i915.enable_execlists) {
2613                 /* Hold a reference to the current context so that we can inspect
2614                  * it later in case a hangcheck error event fires.
2615                  */
2616                 request->ctx = ring->last_context;
2617                 if (request->ctx)
2618                         i915_gem_context_reference(request->ctx);
2619         }
2620
2621         request->emitted_jiffies = jiffies;
2622         ring->last_submitted_seqno = request->seqno;
2623         list_add_tail(&request->list, &ring->request_list);
2624         request->file_priv = NULL;
2625
2626         if (file) {
2627                 struct drm_i915_file_private *file_priv = file->driver_priv;
2628
2629                 spin_lock(&file_priv->mm.lock);
2630                 request->file_priv = file_priv;
2631                 list_add_tail(&request->client_list,
2632                               &file_priv->mm.request_list);
2633                 spin_unlock(&file_priv->mm.lock);
2634
2635                 request->pid = curproc->p_pid;
2636         }
2637
2638         trace_i915_gem_request_add(request);
2639         ring->outstanding_lazy_request = NULL;
2640
2641         i915_queue_hangcheck(ring->dev);
2642
2643         queue_delayed_work(dev_priv->wq,
2644                            &dev_priv->mm.retire_work,
2645                            round_jiffies_up_relative(HZ));
2646         intel_mark_busy(dev_priv->dev);
2647
2648         return 0;
2649 }
2650
2651 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2652                                    const struct intel_context *ctx)
2653 {
2654         unsigned long elapsed;
2655
2656         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2657
2658         if (ctx->hang_stats.banned)
2659                 return true;
2660
2661         if (ctx->hang_stats.ban_period_seconds &&
2662             elapsed <= ctx->hang_stats.ban_period_seconds) {
2663                 if (!i915_gem_context_is_default(ctx)) {
2664                         DRM_DEBUG("context hanging too fast, banning!\n");
2665                         return true;
2666                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2667                         if (i915_stop_ring_allow_warn(dev_priv))
2668                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2669                         return true;
2670                 }
2671         }
2672
2673         return false;
2674 }
2675
2676 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2677                                   struct intel_context *ctx,
2678                                   const bool guilty)
2679 {
2680         struct i915_ctx_hang_stats *hs;
2681
2682         if (WARN_ON(!ctx))
2683                 return;
2684
2685         hs = &ctx->hang_stats;
2686
2687         if (guilty) {
2688                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2689                 hs->batch_active++;
2690                 hs->guilty_ts = get_seconds();
2691         } else {
2692                 hs->batch_pending++;
2693         }
2694 }
2695
2696 void i915_gem_request_free(struct kref *req_ref)
2697 {
2698         struct drm_i915_gem_request *req = container_of(req_ref,
2699                                                  typeof(*req), ref);
2700         struct intel_context *ctx = req->ctx;
2701
2702         if (ctx) {
2703                 if (i915.enable_execlists) {
2704                         struct intel_engine_cs *ring = req->ring;
2705
2706                         if (ctx != ring->default_context)
2707                                 intel_lr_context_unpin(ring, ctx);
2708                 }
2709
2710                 i915_gem_context_unreference(ctx);
2711         }
2712
2713         kfree(req);
2714 }
2715
2716 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2717                            struct intel_context *ctx)
2718 {
2719         struct drm_i915_private *dev_priv = to_i915(ring->dev);
2720         struct drm_i915_gem_request *req;
2721         int ret;
2722
2723         if (ring->outstanding_lazy_request)
2724                 return 0;
2725
2726         req = kzalloc(sizeof(*req), GFP_KERNEL);
2727         if (req == NULL)
2728                 return -ENOMEM;
2729
2730         kref_init(&req->ref);
2731         req->i915 = dev_priv;
2732
2733         ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2734         if (ret)
2735                 goto err;
2736
2737         req->ring = ring;
2738
2739         if (i915.enable_execlists)
2740                 ret = intel_logical_ring_alloc_request_extras(req, ctx);
2741         else
2742                 ret = intel_ring_alloc_request_extras(req);
2743         if (ret)
2744                 goto err;
2745
2746         ring->outstanding_lazy_request = req;
2747         return 0;
2748
2749 err:
2750         kfree(req);
2751         return ret;
2752 }
2753
2754 struct drm_i915_gem_request *
2755 i915_gem_find_active_request(struct intel_engine_cs *ring)
2756 {
2757         struct drm_i915_gem_request *request;
2758
2759         list_for_each_entry(request, &ring->request_list, list) {
2760                 if (i915_gem_request_completed(request, false))
2761                         continue;
2762
2763                 return request;
2764         }
2765
2766         return NULL;
2767 }
2768
2769 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2770                                        struct intel_engine_cs *ring)
2771 {
2772         struct drm_i915_gem_request *request;
2773         bool ring_hung;
2774
2775         request = i915_gem_find_active_request(ring);
2776
2777         if (request == NULL)
2778                 return;
2779
2780         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2781
2782         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2783
2784         list_for_each_entry_continue(request, &ring->request_list, list)
2785                 i915_set_reset_status(dev_priv, request->ctx, false);
2786 }
2787
2788 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2789                                         struct intel_engine_cs *ring)
2790 {
2791         while (!list_empty(&ring->active_list)) {
2792                 struct drm_i915_gem_object *obj;
2793
2794                 obj = list_first_entry(&ring->active_list,
2795                                        struct drm_i915_gem_object,
2796                                        ring_list[ring->id]);
2797
2798                 i915_gem_object_retire__read(obj, ring->id);
2799         }
2800
2801         /*
2802          * Clear the execlists queue up before freeing the requests, as those
2803          * are the ones that keep the context and ringbuffer backing objects
2804          * pinned in place.
2805          */
2806         while (!list_empty(&ring->execlist_queue)) {
2807                 struct drm_i915_gem_request *submit_req;
2808
2809                 submit_req = list_first_entry(&ring->execlist_queue,
2810                                 struct drm_i915_gem_request,
2811                                 execlist_link);
2812                 list_del(&submit_req->execlist_link);
2813
2814                 if (submit_req->ctx != ring->default_context)
2815                         intel_lr_context_unpin(ring, submit_req->ctx);
2816
2817                 i915_gem_request_unreference(submit_req);
2818         }
2819
2820         /*
2821          * We must free the requests after all the corresponding objects have
2822          * been moved off active lists. Which is the same order as the normal
2823          * retire_requests function does. This is important if object hold
2824          * implicit references on things like e.g. ppgtt address spaces through
2825          * the request.
2826          */
2827         while (!list_empty(&ring->request_list)) {
2828                 struct drm_i915_gem_request *request;
2829
2830                 request = list_first_entry(&ring->request_list,
2831                                            struct drm_i915_gem_request,
2832                                            list);
2833
2834                 i915_gem_request_retire(request);
2835         }
2836
2837         /* This may not have been flushed before the reset, so clean it now */
2838         i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2839 }
2840
2841 void i915_gem_restore_fences(struct drm_device *dev)
2842 {
2843         struct drm_i915_private *dev_priv = dev->dev_private;
2844         int i;
2845
2846         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2847                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2848
2849                 /*
2850                  * Commit delayed tiling changes if we have an object still
2851                  * attached to the fence, otherwise just clear the fence.
2852                  */
2853                 if (reg->obj) {
2854                         i915_gem_object_update_fence(reg->obj, reg,
2855                                                      reg->obj->tiling_mode);
2856                 } else {
2857                         i915_gem_write_fence(dev, i, NULL);
2858                 }
2859         }
2860 }
2861
2862 void i915_gem_reset(struct drm_device *dev)
2863 {
2864         struct drm_i915_private *dev_priv = dev->dev_private;
2865         struct intel_engine_cs *ring;
2866         int i;
2867
2868         /*
2869          * Before we free the objects from the requests, we need to inspect
2870          * them for finding the guilty party. As the requests only borrow
2871          * their reference to the objects, the inspection must be done first.
2872          */
2873         for_each_ring(ring, dev_priv, i)
2874                 i915_gem_reset_ring_status(dev_priv, ring);
2875
2876         for_each_ring(ring, dev_priv, i)
2877                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2878
2879         i915_gem_context_reset(dev);
2880
2881         i915_gem_restore_fences(dev);
2882
2883         WARN_ON(i915_verify_lists(dev));
2884 }
2885
2886 /**
2887  * This function clears the request list as sequence numbers are passed.
2888  */
2889 void
2890 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2891 {
2892         WARN_ON(i915_verify_lists(ring->dev));
2893
2894         /* Retire requests first as we use it above for the early return.
2895          * If we retire requests last, we may use a later seqno and so clear
2896          * the requests lists without clearing the active list, leading to
2897          * confusion.
2898          */
2899         while (!list_empty(&ring->request_list)) {
2900                 struct drm_i915_gem_request *request;
2901
2902                 request = list_first_entry(&ring->request_list,
2903                                            struct drm_i915_gem_request,
2904                                            list);
2905
2906                 if (!i915_gem_request_completed(request, true))
2907                         break;
2908
2909                 i915_gem_request_retire(request);
2910         }
2911
2912         /* Move any buffers on the active list that are no longer referenced
2913          * by the ringbuffer to the flushing/inactive lists as appropriate,
2914          * before we free the context associated with the requests.
2915          */
2916         while (!list_empty(&ring->active_list)) {
2917                 struct drm_i915_gem_object *obj;
2918
2919                 obj = list_first_entry(&ring->active_list,
2920                                       struct drm_i915_gem_object,
2921                                       ring_list[ring->id]);
2922
2923                 if (!list_empty(&obj->last_read_req[ring->id]->list))
2924                         break;
2925
2926                 i915_gem_object_retire__read(obj, ring->id);
2927         }
2928
2929         if (unlikely(ring->trace_irq_req &&
2930                      i915_gem_request_completed(ring->trace_irq_req, true))) {
2931                 ring->irq_put(ring);
2932                 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2933         }
2934
2935         WARN_ON(i915_verify_lists(ring->dev));
2936 }
2937
2938 bool
2939 i915_gem_retire_requests(struct drm_device *dev)
2940 {
2941         struct drm_i915_private *dev_priv = dev->dev_private;
2942         struct intel_engine_cs *ring;
2943         bool idle = true;
2944         int i;
2945
2946         for_each_ring(ring, dev_priv, i) {
2947                 i915_gem_retire_requests_ring(ring);
2948                 idle &= list_empty(&ring->request_list);
2949                 if (i915.enable_execlists) {
2950
2951                         lockmgr(&ring->execlist_lock, LK_EXCLUSIVE);
2952                         idle &= list_empty(&ring->execlist_queue);
2953                         lockmgr(&ring->execlist_lock, LK_RELEASE);
2954
2955                         intel_execlists_retire_requests(ring);
2956                 }
2957         }
2958
2959         if (idle)
2960                 mod_delayed_work(dev_priv->wq,
2961                                    &dev_priv->mm.idle_work,
2962                                    msecs_to_jiffies(100));
2963
2964         return idle;
2965 }
2966
2967 static void
2968 i915_gem_retire_work_handler(struct work_struct *work)
2969 {
2970         struct drm_i915_private *dev_priv =
2971                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2972         struct drm_device *dev = dev_priv->dev;
2973         bool idle;
2974
2975         /* Come back later if the device is busy... */
2976         idle = false;
2977         if (mutex_trylock(&dev->struct_mutex)) {
2978                 idle = i915_gem_retire_requests(dev);
2979                 mutex_unlock(&dev->struct_mutex);
2980         }
2981         if (!idle)
2982                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2983                                    round_jiffies_up_relative(HZ));
2984 }
2985
2986 static void
2987 i915_gem_idle_work_handler(struct work_struct *work)
2988 {
2989         struct drm_i915_private *dev_priv =
2990                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2991         struct drm_device *dev = dev_priv->dev;
2992         struct intel_engine_cs *ring;
2993         int i;
2994
2995         for_each_ring(ring, dev_priv, i)
2996                 if (!list_empty(&ring->request_list))
2997                         return;
2998
2999         intel_mark_idle(dev);
3000
3001         if (mutex_trylock(&dev->struct_mutex)) {
3002                 struct intel_engine_cs *ring;
3003                 int i;
3004
3005                 for_each_ring(ring, dev_priv, i)
3006                         i915_gem_batch_pool_fini(&ring->batch_pool);
3007
3008                 mutex_unlock(&dev->struct_mutex);
3009         }
3010 }
3011
3012 /**
3013  * Ensures that an object will eventually get non-busy by flushing any required
3014  * write domains, emitting any outstanding lazy request and retiring and
3015  * completed requests.
3016  */
3017 static int
3018 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3019 {
3020         int ret, i;
3021
3022         if (!obj->active)
3023                 return 0;
3024
3025         for (i = 0; i < I915_NUM_RINGS; i++) {
3026                 struct drm_i915_gem_request *req;
3027
3028                 req = obj->last_read_req[i];
3029                 if (req == NULL)
3030                         continue;
3031
3032                 if (list_empty(&req->list))
3033                         goto retire;
3034
3035                 ret = i915_gem_check_olr(req);
3036                 if (ret)
3037                         return ret;
3038
3039                 if (i915_gem_request_completed(req, true)) {
3040                         __i915_gem_request_retire__upto(req);
3041 retire:
3042                         i915_gem_object_retire__read(obj, i);
3043                 }
3044         }
3045
3046         return 0;
3047 }
3048
3049 /**
3050  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3051  * @DRM_IOCTL_ARGS: standard ioctl arguments
3052  *
3053  * Returns 0 if successful, else an error is returned with the remaining time in
3054  * the timeout parameter.
3055  *  -ETIME: object is still busy after timeout
3056  *  -ERESTARTSYS: signal interrupted the wait
3057  *  -ENONENT: object doesn't exist
3058  * Also possible, but rare:
3059  *  -EAGAIN: GPU wedged
3060  *  -ENOMEM: damn
3061  *  -ENODEV: Internal IRQ fail
3062  *  -E?: The add request failed
3063  *
3064  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3065  * non-zero timeout parameter the wait ioctl will wait for the given number of
3066  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3067  * without holding struct_mutex the object may become re-busied before this
3068  * function completes. A similar but shorter * race condition exists in the busy
3069  * ioctl
3070  */
3071 int
3072 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3073 {
3074         struct drm_i915_private *dev_priv = dev->dev_private;
3075         struct drm_i915_gem_wait *args = data;
3076         struct drm_i915_gem_object *obj;
3077         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3078         unsigned reset_counter;
3079         int i, n = 0;
3080         int ret;
3081
3082         if (args->flags != 0)
3083                 return -EINVAL;
3084
3085         ret = i915_mutex_lock_interruptible(dev);
3086         if (ret)
3087                 return ret;
3088
3089         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3090         if (&obj->base == NULL) {
3091                 mutex_unlock(&dev->struct_mutex);
3092                 return -ENOENT;
3093         }
3094
3095         /* Need to make sure the object gets inactive eventually. */
3096         ret = i915_gem_object_flush_active(obj);
3097         if (ret)
3098                 goto out;
3099
3100         if (!obj->active)
3101                 goto out;
3102
3103         /* Do this after OLR check to make sure we make forward progress polling
3104          * on this IOCTL with a timeout == 0 (like busy ioctl)
3105          */
3106         if (args->timeout_ns == 0) {
3107                 ret = -ETIME;
3108                 goto out;
3109         }
3110
3111         drm_gem_object_unreference(&obj->base);
3112         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3113
3114         for (i = 0; i < I915_NUM_RINGS; i++) {
3115                 if (obj->last_read_req[i] == NULL)
3116                         continue;
3117
3118                 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3119         }
3120
3121         mutex_unlock(&dev->struct_mutex);
3122
3123         for (i = 0; i < n; i++) {
3124                 if (ret == 0)
3125                         ret = __i915_wait_request(req[i], reset_counter, true,
3126                                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3127                                                   file->driver_priv);
3128                 i915_gem_request_unreference__unlocked(req[i]);
3129         }
3130         return ret;
3131
3132 out:
3133         drm_gem_object_unreference(&obj->base);
3134         mutex_unlock(&dev->struct_mutex);
3135         return ret;
3136 }
3137
3138 static int
3139 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3140                        struct intel_engine_cs *to,
3141                        struct drm_i915_gem_request *req)
3142 {
3143         struct intel_engine_cs *from;
3144         int ret;
3145
3146         from = i915_gem_request_get_ring(req);
3147         if (to == from)
3148                 return 0;
3149
3150         if (i915_gem_request_completed(req, true))
3151                 return 0;
3152
3153         ret = i915_gem_check_olr(req);
3154         if (ret)
3155                 return ret;
3156
3157         if (!i915_semaphore_is_enabled(obj->base.dev)) {
3158                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3159                 ret = __i915_wait_request(req,
3160                                           atomic_read(&i915->gpu_error.reset_counter),
3161                                           i915->mm.interruptible,
3162                                           NULL,
3163                                           &i915->rps.semaphores);
3164                 if (ret)
3165                         return ret;
3166
3167                 i915_gem_object_retire_request(obj, req);
3168         } else {
3169                 int idx = intel_ring_sync_index(from, to);
3170                 u32 seqno = i915_gem_request_get_seqno(req);
3171
3172                 if (seqno <= from->semaphore.sync_seqno[idx])
3173                         return 0;
3174
3175                 trace_i915_gem_ring_sync_to(from, to, req);
3176                 ret = to->semaphore.sync_to(to, from, seqno);
3177                 if (ret)
3178                         return ret;
3179
3180                 /* We use last_read_req because sync_to()
3181                  * might have just caused seqno wrap under
3182                  * the radar.
3183                  */
3184                 from->semaphore.sync_seqno[idx] =
3185                         i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3186         }
3187
3188         return 0;
3189 }
3190
3191 /**
3192  * i915_gem_object_sync - sync an object to a ring.
3193  *
3194  * @obj: object which may be in use on another ring.
3195  * @to: ring we wish to use the object on. May be NULL.
3196  *
3197  * This code is meant to abstract object synchronization with the GPU.
3198  * Calling with NULL implies synchronizing the object with the CPU
3199  * rather than a particular GPU ring. Conceptually we serialise writes
3200  * between engines inside the GPU. We only allow on engine to write
3201  * into a buffer at any time, but multiple readers. To ensure each has
3202  * a coherent view of memory, we must:
3203  *
3204  * - If there is an outstanding write request to the object, the new
3205  *   request must wait for it to complete (either CPU or in hw, requests
3206  *   on the same ring will be naturally ordered).
3207  *
3208  * - If we are a write request (pending_write_domain is set), the new
3209  *   request must wait for outstanding read requests to complete.
3210  *
3211  * Returns 0 if successful, else propagates up the lower layer error.
3212  */
3213 int
3214 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3215                      struct intel_engine_cs *to)
3216 {
3217         const bool readonly = obj->base.pending_write_domain == 0;
3218         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3219         int ret, i, n;
3220
3221         if (!obj->active)
3222                 return 0;
3223
3224         if (to == NULL)
3225                 return i915_gem_object_wait_rendering(obj, readonly);
3226
3227         n = 0;
3228         if (readonly) {
3229                 if (obj->last_write_req)
3230                         req[n++] = obj->last_write_req;
3231         } else {
3232                 for (i = 0; i < I915_NUM_RINGS; i++)
3233                         if (obj->last_read_req[i])
3234                                 req[n++] = obj->last_read_req[i];
3235         }
3236         for (i = 0; i < n; i++) {
3237                 ret = __i915_gem_object_sync(obj, to, req[i]);
3238                 if (ret)
3239                         return ret;
3240         }
3241
3242         return 0;
3243 }
3244
3245 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3246 {
3247         u32 old_write_domain, old_read_domains;
3248
3249         /* Force a pagefault for domain tracking on next user access */
3250         i915_gem_release_mmap(obj);
3251
3252         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3253                 return;
3254
3255         /* Wait for any direct GTT access to complete */
3256         mb();
3257
3258         old_read_domains = obj->base.read_domains;
3259         old_write_domain = obj->base.write_domain;
3260
3261         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3262         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3263
3264         trace_i915_gem_object_change_domain(obj,
3265                                             old_read_domains,
3266                                             old_write_domain);
3267 }
3268
3269 int i915_vma_unbind(struct i915_vma *vma)
3270 {
3271         struct drm_i915_gem_object *obj = vma->obj;
3272         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3273         int ret;
3274
3275         if (list_empty(&vma->vma_link))
3276                 return 0;
3277
3278         if (!drm_mm_node_allocated(&vma->node)) {
3279                 i915_gem_vma_destroy(vma);
3280                 return 0;
3281         }
3282
3283         if (vma->pin_count)
3284                 return -EBUSY;
3285
3286         BUG_ON(obj->pages == NULL);
3287
3288         ret = i915_gem_object_wait_rendering(obj, false);
3289         if (ret)
3290                 return ret;
3291         /* Continue on if we fail due to EIO, the GPU is hung so we
3292          * should be safe and we need to cleanup or else we might
3293          * cause memory corruption through use-after-free.
3294          */
3295
3296         if (i915_is_ggtt(vma->vm) &&
3297             vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3298                 i915_gem_object_finish_gtt(obj);
3299
3300                 /* release the fence reg _after_ flushing */
3301                 ret = i915_gem_object_put_fence(obj);
3302                 if (ret)
3303                         return ret;
3304         }
3305
3306         trace_i915_vma_unbind(vma);
3307
3308         vma->vm->unbind_vma(vma);
3309         vma->bound = 0;
3310
3311         list_del_init(&vma->mm_list);
3312         if (i915_is_ggtt(vma->vm)) {
3313                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3314                         obj->map_and_fenceable = false;
3315                 } else if (vma->ggtt_view.pages) {
3316                         kfree(vma->ggtt_view.pages);
3317                 }
3318                 vma->ggtt_view.pages = NULL;
3319         }
3320
3321         drm_mm_remove_node(&vma->node);
3322         i915_gem_vma_destroy(vma);
3323
3324         /* Since the unbound list is global, only move to that list if
3325          * no more VMAs exist. */
3326         if (list_empty(&obj->vma_list))
3327                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3328
3329         /* And finally now the object is completely decoupled from this vma,
3330          * we can drop its hold on the backing storage and allow it to be
3331          * reaped by the shrinker.
3332          */
3333         i915_gem_object_unpin_pages(obj);
3334
3335         return 0;
3336 }
3337
3338 int i915_gpu_idle(struct drm_device *dev)
3339 {
3340         struct drm_i915_private *dev_priv = dev->dev_private;
3341         struct intel_engine_cs *ring;
3342         int ret, i;
3343
3344         /* Flush everything onto the inactive list. */
3345         for_each_ring(ring, dev_priv, i) {
3346                 if (!i915.enable_execlists) {
3347                         ret = i915_switch_context(ring, ring->default_context);
3348                         if (ret)
3349                                 return ret;
3350                 }
3351
3352                 ret = intel_ring_idle(ring);
3353                 if (ret)
3354                         return ret;
3355         }
3356
3357         WARN_ON(i915_verify_lists(dev));
3358         return 0;
3359 }
3360
3361 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3362                                  struct drm_i915_gem_object *obj)
3363 {
3364         struct drm_i915_private *dev_priv = dev->dev_private;
3365         int fence_reg;
3366         int fence_pitch_shift;
3367
3368         if (INTEL_INFO(dev)->gen >= 6) {
3369                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3370                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3371         } else {
3372                 fence_reg = FENCE_REG_965_0;
3373                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3374         }
3375
3376         fence_reg += reg * 8;
3377
3378         /* To w/a incoherency with non-atomic 64-bit register updates,
3379          * we split the 64-bit update into two 32-bit writes. In order
3380          * for a partial fence not to be evaluated between writes, we
3381          * precede the update with write to turn off the fence register,
3382          * and only enable the fence as the last step.
3383          *
3384          * For extra levels of paranoia, we make sure each step lands
3385          * before applying the next step.
3386          */
3387         I915_WRITE(fence_reg, 0);
3388         POSTING_READ(fence_reg);
3389
3390         if (obj) {
3391                 u32 size = i915_gem_obj_ggtt_size(obj);
3392                 uint64_t val;
3393
3394                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3395                                  0xfffff000) << 32;
3396                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3397                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3398                 if (obj->tiling_mode == I915_TILING_Y)
3399                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3400                 val |= I965_FENCE_REG_VALID;
3401
3402                 I915_WRITE(fence_reg + 4, val >> 32);
3403                 POSTING_READ(fence_reg + 4);
3404
3405                 I915_WRITE(fence_reg + 0, val);
3406                 POSTING_READ(fence_reg);
3407         } else {
3408                 I915_WRITE(fence_reg + 4, 0);
3409                 POSTING_READ(fence_reg + 4);
3410         }
3411 }
3412
3413 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3414                                  struct drm_i915_gem_object *obj)
3415 {
3416         struct drm_i915_private *dev_priv = dev->dev_private;
3417         u32 val;
3418
3419         if (obj) {
3420                 u32 size = i915_gem_obj_ggtt_size(obj);
3421                 int pitch_val;
3422                 int tile_width;
3423
3424                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3425                      (size & -size) != size ||
3426                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3427                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3428                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3429
3430                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3431                         tile_width = 128;
3432                 else
3433                         tile_width = 512;
3434
3435                 /* Note: pitch better be a power of two tile widths */
3436                 pitch_val = obj->stride / tile_width;
3437                 pitch_val = ffs(pitch_val) - 1;
3438
3439                 val = i915_gem_obj_ggtt_offset(obj);
3440                 if (obj->tiling_mode == I915_TILING_Y)
3441                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3442                 val |= I915_FENCE_SIZE_BITS(size);
3443                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3444                 val |= I830_FENCE_REG_VALID;
3445         } else
3446                 val = 0;
3447
3448         if (reg < 8)
3449                 reg = FENCE_REG_830_0 + reg * 4;
3450         else
3451                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3452
3453         I915_WRITE(reg, val);
3454         POSTING_READ(reg);
3455 }
3456
3457 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3458                                 struct drm_i915_gem_object *obj)
3459 {
3460         struct drm_i915_private *dev_priv = dev->dev_private;
3461         uint32_t val;
3462
3463         if (obj) {
3464                 u32 size = i915_gem_obj_ggtt_size(obj);
3465                 uint32_t pitch_val;
3466
3467                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3468                      (size & -size) != size ||
3469                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3470                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3471                      i915_gem_obj_ggtt_offset(obj), size);
3472
3473                 pitch_val = obj->stride / 128;
3474                 pitch_val = ffs(pitch_val) - 1;
3475
3476                 val = i915_gem_obj_ggtt_offset(obj);
3477                 if (obj->tiling_mode == I915_TILING_Y)
3478                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3479                 val |= I830_FENCE_SIZE_BITS(size);
3480                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3481                 val |= I830_FENCE_REG_VALID;
3482         } else
3483                 val = 0;
3484
3485         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3486         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3487 }
3488
3489 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3490 {
3491         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3492 }
3493
3494 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3495                                  struct drm_i915_gem_object *obj)
3496 {
3497         struct drm_i915_private *dev_priv = dev->dev_private;
3498
3499         /* Ensure that all CPU reads are completed before installing a fence
3500          * and all writes before removing the fence.
3501          */
3502         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3503                 mb();
3504
3505         WARN(obj && (!obj->stride || !obj->tiling_mode),
3506              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3507              obj->stride, obj->tiling_mode);
3508
3509         if (IS_GEN2(dev))
3510                 i830_write_fence_reg(dev, reg, obj);
3511         else if (IS_GEN3(dev))
3512                 i915_write_fence_reg(dev, reg, obj);
3513         else if (INTEL_INFO(dev)->gen >= 4)
3514                 i965_write_fence_reg(dev, reg, obj);
3515
3516         /* And similarly be paranoid that no direct access to this region
3517          * is reordered to before the fence is installed.
3518          */
3519         if (i915_gem_object_needs_mb(obj))
3520                 mb();
3521 }
3522
3523 static inline int fence_number(struct drm_i915_private *dev_priv,
3524                                struct drm_i915_fence_reg *fence)
3525 {
3526         return fence - dev_priv->fence_regs;
3527 }
3528
3529 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3530                                          struct drm_i915_fence_reg *fence,
3531                                          bool enable)
3532 {
3533         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3534         int reg = fence_number(dev_priv, fence);
3535
3536         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3537
3538         if (enable) {
3539                 obj->fence_reg = reg;
3540                 fence->obj = obj;
3541                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3542         } else {
3543                 obj->fence_reg = I915_FENCE_REG_NONE;
3544                 fence->obj = NULL;
3545                 list_del_init(&fence->lru_list);
3546         }
3547         obj->fence_dirty = false;
3548 }
3549
3550 static int
3551 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3552 {
3553         if (obj->last_fenced_req) {
3554                 int ret = i915_wait_request(obj->last_fenced_req);
3555                 if (ret)
3556                         return ret;
3557
3558                 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3559         }
3560
3561         return 0;
3562 }
3563
3564 int
3565 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3566 {
3567         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3568         struct drm_i915_fence_reg *fence;
3569         int ret;
3570
3571         ret = i915_gem_object_wait_fence(obj);
3572         if (ret)
3573                 return ret;
3574
3575         if (obj->fence_reg == I915_FENCE_REG_NONE)
3576                 return 0;
3577
3578         fence = &dev_priv->fence_regs[obj->fence_reg];
3579
3580         if (WARN_ON(fence->pin_count))
3581                 return -EBUSY;
3582
3583         i915_gem_object_fence_lost(obj);
3584         i915_gem_object_update_fence(obj, fence, false);
3585
3586         return 0;
3587 }
3588
3589 static struct drm_i915_fence_reg *
3590 i915_find_fence_reg(struct drm_device *dev)
3591 {
3592         struct drm_i915_private *dev_priv = dev->dev_private;
3593         struct drm_i915_fence_reg *reg, *avail;
3594         int i;
3595
3596         /* First try to find a free reg */
3597         avail = NULL;
3598         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3599                 reg = &dev_priv->fence_regs[i];
3600                 if (!reg->obj)
3601                         return reg;
3602
3603                 if (!reg->pin_count)
3604                         avail = reg;
3605         }
3606
3607         if (avail == NULL)
3608                 goto deadlock;
3609
3610         /* None available, try to steal one or wait for a user to finish */
3611         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3612                 if (reg->pin_count)
3613                         continue;
3614
3615                 return reg;
3616         }
3617
3618 deadlock:
3619         /* Wait for completion of pending flips which consume fences */
3620         if (intel_has_pending_fb_unpin(dev))
3621                 return ERR_PTR(-EAGAIN);
3622
3623         return ERR_PTR(-EDEADLK);
3624 }
3625
3626 /**
3627  * i915_gem_object_get_fence - set up fencing for an object
3628  * @obj: object to map through a fence reg
3629  *
3630  * When mapping objects through the GTT, userspace wants to be able to write
3631  * to them without having to worry about swizzling if the object is tiled.
3632  * This function walks the fence regs looking for a free one for @obj,
3633  * stealing one if it can't find any.
3634  *
3635  * It then sets up the reg based on the object's properties: address, pitch
3636  * and tiling format.
3637  *
3638  * For an untiled surface, this removes any existing fence.
3639  */
3640 int
3641 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3642 {
3643         struct drm_device *dev = obj->base.dev;
3644         struct drm_i915_private *dev_priv = dev->dev_private;
3645         bool enable = obj->tiling_mode != I915_TILING_NONE;
3646         struct drm_i915_fence_reg *reg;
3647         int ret;
3648
3649         /* Have we updated the tiling parameters upon the object and so
3650          * will need to serialise the write to the associated fence register?
3651          */
3652         if (obj->fence_dirty) {
3653                 ret = i915_gem_object_wait_fence(obj);
3654                 if (ret)
3655                         return ret;
3656         }
3657
3658         /* Just update our place in the LRU if our fence is getting reused. */
3659         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3660                 reg = &dev_priv->fence_regs[obj->fence_reg];
3661                 if (!obj->fence_dirty) {
3662                         list_move_tail(&reg->lru_list,
3663                                        &dev_priv->mm.fence_list);
3664                         return 0;
3665                 }
3666         } else if (enable) {
3667                 if (WARN_ON(!obj->map_and_fenceable))
3668                         return -EINVAL;
3669
3670                 reg = i915_find_fence_reg(dev);
3671                 if (IS_ERR(reg))
3672                         return PTR_ERR(reg);
3673
3674                 if (reg->obj) {
3675                         struct drm_i915_gem_object *old = reg->obj;
3676
3677                         ret = i915_gem_object_wait_fence(old);
3678                         if (ret)
3679                                 return ret;
3680
3681                         i915_gem_object_fence_lost(old);
3682                 }
3683         } else
3684                 return 0;
3685
3686         i915_gem_object_update_fence(obj, reg, enable);
3687
3688         return 0;
3689 }
3690
3691 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3692                                      unsigned long cache_level)
3693 {
3694         struct drm_mm_node *gtt_space = &vma->node;
3695         struct drm_mm_node *other;
3696
3697         /*
3698          * On some machines we have to be careful when putting differing types
3699          * of snoopable memory together to avoid the prefetcher crossing memory
3700          * domains and dying. During vm initialisation, we decide whether or not
3701          * these constraints apply and set the drm_mm.color_adjust
3702          * appropriately.
3703          */
3704         if (vma->vm->mm.color_adjust == NULL)
3705                 return true;
3706
3707         if (!drm_mm_node_allocated(gtt_space))
3708                 return true;
3709
3710         if (list_empty(&gtt_space->node_list))
3711                 return true;
3712
3713         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3714         if (other->allocated && !other->hole_follows && other->color != cache_level)
3715                 return false;
3716
3717         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3718         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3719                 return false;
3720
3721         return true;
3722 }
3723
3724 /**
3725  * Finds free space in the GTT aperture and binds the object or a view of it
3726  * there.
3727  */
3728 static struct i915_vma *
3729 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3730                            struct i915_address_space *vm,
3731                            const struct i915_ggtt_view *ggtt_view,
3732                            unsigned alignment,
3733                            uint64_t flags)
3734 {
3735         struct drm_device *dev = obj->base.dev;
3736         struct drm_i915_private *dev_priv = dev->dev_private;
3737         u32 size, fence_size, fence_alignment, unfenced_alignment;
3738         unsigned long start =
3739                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3740         unsigned long end =
3741                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3742         struct i915_vma *vma;
3743         int ret;
3744
3745         if (i915_is_ggtt(vm)) {
3746                 u32 view_size;
3747
3748                 if (WARN_ON(!ggtt_view))
3749                         return ERR_PTR(-EINVAL);
3750
3751                 view_size = i915_ggtt_view_size(obj, ggtt_view);
3752
3753                 fence_size = i915_gem_get_gtt_size(dev,
3754                                                    view_size,
3755                                                    obj->tiling_mode);
3756                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3757                                                              view_size,
3758                                                              obj->tiling_mode,
3759                                                              true);
3760                 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3761                                                                 view_size,
3762                                                                 obj->tiling_mode,
3763                                                                 false);
3764                 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3765         } else {
3766                 fence_size = i915_gem_get_gtt_size(dev,
3767                                                    obj->base.size,
3768                                                    obj->tiling_mode);
3769                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3770                                                              obj->base.size,
3771                                                              obj->tiling_mode,
3772                                                              true);
3773                 unfenced_alignment =
3774                         i915_gem_get_gtt_alignment(dev,
3775                                                    obj->base.size,
3776                                                    obj->tiling_mode,
3777                                                    false);
3778                 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3779         }
3780
3781         if (alignment == 0)
3782                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3783                                                 unfenced_alignment;
3784         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3785                 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3786                           ggtt_view ? ggtt_view->type : 0,
3787                           alignment);
3788                 return ERR_PTR(-EINVAL);
3789         }
3790
3791         /* If binding the object/GGTT view requires more space than the entire
3792          * aperture has, reject it early before evicting everything in a vain
3793          * attempt to find space.
3794          */
3795         if (size > end) {
3796                 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
3797                           ggtt_view ? ggtt_view->type : 0,
3798                           size,
3799                           flags & PIN_MAPPABLE ? "mappable" : "total",
3800                           end);
3801                 return ERR_PTR(-E2BIG);
3802         }
3803
3804         ret = i915_gem_object_get_pages(obj);
3805         if (ret)
3806                 return ERR_PTR(ret);
3807
3808         i915_gem_object_pin_pages(obj);
3809
3810         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3811                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3812
3813         if (IS_ERR(vma))
3814                 goto err_unpin;
3815
3816 search_free:
3817         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3818                                                   size, alignment,
3819                                                   obj->cache_level,
3820                                                   start, end,
3821                                                   DRM_MM_SEARCH_DEFAULT,
3822                                                   DRM_MM_CREATE_DEFAULT);
3823         if (ret) {
3824                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3825                                                obj->cache_level,
3826                                                start, end,
3827                                                flags);
3828                 if (ret == 0)
3829                         goto search_free;
3830
3831                 goto err_free_vma;
3832         }
3833         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3834                 ret = -EINVAL;
3835                 goto err_remove_node;
3836         }
3837
3838         trace_i915_vma_bind(vma, flags);
3839         ret = i915_vma_bind(vma, obj->cache_level, flags);
3840         if (ret)
3841                 goto err_remove_node;
3842
3843         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3844         list_add_tail(&vma->mm_list, &vm->inactive_list);
3845
3846         return vma;
3847
3848 err_remove_node:
3849         drm_mm_remove_node(&vma->node);
3850 err_free_vma:
3851         i915_gem_vma_destroy(vma);
3852         vma = ERR_PTR(ret);
3853 err_unpin:
3854         i915_gem_object_unpin_pages(obj);
3855         return vma;
3856 }
3857
3858 bool
3859 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3860                         bool force)
3861 {
3862         /* If we don't have a page list set up, then we're not pinned
3863          * to GPU, and we can ignore the cache flush because it'll happen
3864          * again at bind time.
3865          */
3866         if (obj->pages == NULL)
3867                 return false;
3868
3869         /*
3870          * Stolen memory is always coherent with the GPU as it is explicitly
3871          * marked as wc by the system, or the system is cache-coherent.
3872          */
3873         if (obj->stolen)
3874                 return false;
3875
3876         /* If the GPU is snooping the contents of the CPU cache,
3877          * we do not need to manually clear the CPU cache lines.  However,
3878          * the caches are only snooped when the render cache is
3879          * flushed/invalidated.  As we always have to emit invalidations
3880          * and flushes when moving into and out of the RENDER domain, correct
3881          * snooping behaviour occurs naturally as the result of our domain
3882          * tracking.
3883          */
3884         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3885                 obj->cache_dirty = true;
3886                 return false;
3887         }
3888
3889         trace_i915_gem_object_clflush(obj);
3890         drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
3891         obj->cache_dirty = false;
3892
3893         return true;
3894 }
3895
3896 /** Flushes the GTT write domain for the object if it's dirty. */
3897 static void
3898 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3899 {
3900         uint32_t old_write_domain;
3901
3902         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3903                 return;
3904
3905         /* No actual flushing is required for the GTT write domain.  Writes
3906          * to it immediately go to main memory as far as we know, so there's
3907          * no chipset flush.  It also doesn't land in render cache.
3908          *
3909          * However, we do have to enforce the order so that all writes through
3910          * the GTT land before any writes to the device, such as updates to
3911          * the GATT itself.
3912          */
3913         wmb();
3914
3915         old_write_domain = obj->base.write_domain;
3916         obj->base.write_domain = 0;
3917
3918         intel_fb_obj_flush(obj, false);
3919
3920         intel_fb_obj_flush(obj, false);
3921
3922         trace_i915_gem_object_change_domain(obj,
3923                                             obj->base.read_domains,
3924                                             old_write_domain);
3925 }
3926
3927 /** Flushes the CPU write domain for the object if it's dirty. */
3928 static void
3929 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3930 {
3931         uint32_t old_write_domain;
3932
3933         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3934                 return;
3935
3936         if (i915_gem_clflush_object(obj, obj->pin_display))
3937                 i915_gem_chipset_flush(obj->base.dev);
3938
3939         old_write_domain = obj->base.write_domain;
3940         obj->base.write_domain = 0;
3941
3942         trace_i915_gem_object_change_domain(obj,
3943                                             obj->base.read_domains,
3944                                             old_write_domain);
3945 }
3946
3947 /**
3948  * Moves a single object to the GTT read, and possibly write domain.
3949  *
3950  * This function returns when the move is complete, including waiting on
3951  * flushes to occur.
3952  */
3953 int
3954 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3955 {
3956         uint32_t old_write_domain, old_read_domains;
3957         struct i915_vma *vma;
3958         int ret;
3959
3960         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3961                 return 0;
3962
3963         ret = i915_gem_object_wait_rendering(obj, !write);
3964         if (ret)
3965                 return ret;
3966
3967         /* Flush and acquire obj->pages so that we are coherent through
3968          * direct access in memory with previous cached writes through
3969          * shmemfs and that our cache domain tracking remains valid.
3970          * For example, if the obj->filp was moved to swap without us
3971          * being notified and releasing the pages, we would mistakenly
3972          * continue to assume that the obj remained out of the CPU cached
3973          * domain.
3974          */
3975         ret = i915_gem_object_get_pages(obj);
3976         if (ret)
3977                 return ret;
3978
3979         i915_gem_object_flush_cpu_write_domain(obj);
3980
3981         /* Serialise direct access to this object with the barriers for
3982          * coherent writes from the GPU, by effectively invalidating the
3983          * GTT domain upon first access.
3984          */
3985         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3986                 mb();
3987
3988         old_write_domain = obj->base.write_domain;
3989         old_read_domains = obj->base.read_domains;
3990
3991         /* It should now be out of any other write domains, and we can update
3992          * the domain values for our changes.
3993          */
3994         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3995         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3996         if (write) {
3997                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3998                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3999                 obj->dirty = 1;
4000         }
4001
4002         if (write)
4003                 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
4004
4005         trace_i915_gem_object_change_domain(obj,
4006                                             old_read_domains,
4007                                             old_write_domain);
4008
4009         /* And bump the LRU for this access */
4010         vma = i915_gem_obj_to_ggtt(obj);
4011         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4012                 list_move_tail(&vma->mm_list,
4013                                &to_i915(obj->base.dev)->gtt.base.inactive_list);
4014
4015         return 0;
4016 }
4017
4018 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4019                                     enum i915_cache_level cache_level)
4020 {
4021         struct drm_device *dev = obj->base.dev;
4022         struct i915_vma *vma, *next;
4023         int ret;
4024
4025         if (obj->cache_level == cache_level)
4026                 return 0;
4027
4028         if (i915_gem_obj_is_pinned(obj)) {
4029                 DRM_DEBUG("can not change the cache level of pinned objects\n");
4030                 return -EBUSY;
4031         }
4032
4033         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4034                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4035                         ret = i915_vma_unbind(vma);
4036                         if (ret)
4037                                 return ret;
4038                 }
4039         }
4040
4041         if (i915_gem_obj_bound_any(obj)) {
4042                 ret = i915_gem_object_wait_rendering(obj, false);
4043                 if (ret)
4044                         return ret;
4045
4046                 i915_gem_object_finish_gtt(obj);
4047
4048                 /* Before SandyBridge, you could not use tiling or fence
4049                  * registers with snooped memory, so relinquish any fences
4050                  * currently pointing to our region in the aperture.
4051                  */
4052                 if (INTEL_INFO(dev)->gen < 6) {
4053                         ret = i915_gem_object_put_fence(obj);
4054                         if (ret)
4055                                 return ret;
4056                 }
4057
4058                 list_for_each_entry(vma, &obj->vma_list, vma_link)
4059                         if (drm_mm_node_allocated(&vma->node)) {
4060                                 ret = i915_vma_bind(vma, cache_level,
4061                                                     PIN_UPDATE);
4062                                 if (ret)
4063                                         return ret;
4064                         }
4065         }
4066
4067         list_for_each_entry(vma, &obj->vma_list, vma_link)
4068                 vma->node.color = cache_level;
4069         obj->cache_level = cache_level;
4070
4071         if (obj->cache_dirty &&
4072             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4073             cpu_write_needs_clflush(obj)) {
4074                 if (i915_gem_clflush_object(obj, true))
4075                         i915_gem_chipset_flush(obj->base.dev);
4076         }
4077
4078         return 0;
4079 }
4080
4081 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4082                                struct drm_file *file)
4083 {
4084         struct drm_i915_gem_caching *args = data;
4085         struct drm_i915_gem_object *obj;
4086
4087         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4088         if (&obj->base == NULL)
4089                 return -ENOENT;
4090
4091         switch (obj->cache_level) {
4092         case I915_CACHE_LLC:
4093         case I915_CACHE_L3_LLC:
4094                 args->caching = I915_CACHING_CACHED;
4095                 break;
4096
4097         case I915_CACHE_WT:
4098                 args->caching = I915_CACHING_DISPLAY;
4099                 break;
4100
4101         default:
4102                 args->caching = I915_CACHING_NONE;
4103                 break;
4104         }
4105
4106         drm_gem_object_unreference_unlocked(&obj->base);
4107         return 0;
4108 }
4109
4110 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4111                                struct drm_file *file)
4112 {
4113         struct drm_i915_gem_caching *args = data;
4114         struct drm_i915_gem_object *obj;
4115         enum i915_cache_level level;
4116         int ret;
4117
4118         switch (args->caching) {
4119         case I915_CACHING_NONE:
4120                 level = I915_CACHE_NONE;
4121                 break;
4122         case I915_CACHING_CACHED:
4123                 level = I915_CACHE_LLC;
4124                 break;
4125         case I915_CACHING_DISPLAY:
4126                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4127                 break;
4128         default:
4129                 return -EINVAL;
4130         }
4131
4132         ret = i915_mutex_lock_interruptible(dev);
4133         if (ret)
4134                 return ret;
4135
4136         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4137         if (&obj->base == NULL) {
4138                 ret = -ENOENT;
4139                 goto unlock;
4140         }
4141
4142         ret = i915_gem_object_set_cache_level(obj, level);
4143
4144         drm_gem_object_unreference(&obj->base);
4145 unlock:
4146         mutex_unlock(&dev->struct_mutex);
4147         return ret;
4148 }
4149
4150 /*
4151  * Prepare buffer for display plane (scanout, cursors, etc).
4152  * Can be called from an uninterruptible phase (modesetting) and allows
4153  * any flushes to be pipelined (for pageflips).
4154  */
4155 int
4156 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4157                                      u32 alignment,
4158                                      struct intel_engine_cs *pipelined,
4159                                      const struct i915_ggtt_view *view)
4160 {
4161         u32 old_read_domains, old_write_domain;
4162         int ret;
4163
4164         ret = i915_gem_object_sync(obj, pipelined);
4165         if (ret)
4166                 return ret;
4167
4168         /* Mark the pin_display early so that we account for the
4169          * display coherency whilst setting up the cache domains.
4170          */
4171         obj->pin_display++;
4172
4173         /* The display engine is not coherent with the LLC cache on gen6.  As
4174          * a result, we make sure that the pinning that is about to occur is
4175          * done with uncached PTEs. This is lowest common denominator for all
4176          * chipsets.
4177          *
4178          * However for gen6+, we could do better by using the GFDT bit instead
4179          * of uncaching, which would allow us to flush all the LLC-cached data
4180          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4181          */
4182         ret = i915_gem_object_set_cache_level(obj,
4183                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4184         if (ret)
4185                 goto err_unpin_display;
4186
4187         /* As the user may map the buffer once pinned in the display plane
4188          * (e.g. libkms for the bootup splash), we have to ensure that we
4189          * always use map_and_fenceable for all scanout buffers.
4190          */
4191         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4192                                        view->type == I915_GGTT_VIEW_NORMAL ?
4193                                        PIN_MAPPABLE : 0);
4194         if (ret)
4195                 goto err_unpin_display;
4196
4197         i915_gem_object_flush_cpu_write_domain(obj);
4198
4199         old_write_domain = obj->base.write_domain;
4200         old_read_domains = obj->base.read_domains;
4201
4202         /* It should now be out of any other write domains, and we can update
4203          * the domain values for our changes.
4204          */
4205         obj->base.write_domain = 0;
4206         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4207
4208         trace_i915_gem_object_change_domain(obj,
4209                                             old_read_domains,
4210                                             old_write_domain);
4211
4212         return 0;
4213
4214 err_unpin_display:
4215         obj->pin_display--;
4216         return ret;
4217 }
4218
4219 void
4220 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4221                                          const struct i915_ggtt_view *view)
4222 {
4223         if (WARN_ON(obj->pin_display == 0))
4224                 return;
4225
4226         i915_gem_object_ggtt_unpin_view(obj, view);
4227
4228         obj->pin_display--;
4229 }
4230
4231 /**
4232  * Moves a single object to the CPU read, and possibly write domain.
4233  *
4234  * This function returns when the move is complete, including waiting on
4235  * flushes to occur.
4236  */
4237 int
4238 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4239 {
4240         uint32_t old_write_domain, old_read_domains;
4241         int ret;
4242
4243         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4244                 return 0;
4245
4246         ret = i915_gem_object_wait_rendering(obj, !write);
4247         if (ret)
4248                 return ret;
4249
4250         i915_gem_object_flush_gtt_write_domain(obj);
4251
4252         old_write_domain = obj->base.write_domain;
4253         old_read_domains = obj->base.read_domains;
4254
4255         /* Flush the CPU cache if it's still invalid. */
4256         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4257                 i915_gem_clflush_object(obj, false);
4258
4259                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4260         }
4261
4262         /* It should now be out of any other write domains, and we can update
4263          * the domain values for our changes.
4264          */
4265         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4266
4267         /* If we're writing through the CPU, then the GPU read domains will
4268          * need to be invalidated at next use.
4269          */
4270         if (write) {
4271                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4272                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4273         }
4274
4275         if (write)
4276                 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4277
4278         trace_i915_gem_object_change_domain(obj,
4279                                             old_read_domains,
4280                                             old_write_domain);
4281
4282         return 0;
4283 }
4284
4285 /* Throttle our rendering by waiting until the ring has completed our requests
4286  * emitted over 20 msec ago.
4287  *
4288  * Note that if we were to use the current jiffies each time around the loop,
4289  * we wouldn't escape the function with any frames outstanding if the time to
4290  * render a frame was over 20ms.
4291  *
4292  * This should get us reasonable parallelism between CPU and GPU but also
4293  * relatively low latency when blocking on a particular request to finish.
4294  */
4295 static int
4296 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4297 {
4298         struct drm_i915_private *dev_priv = dev->dev_private;
4299         struct drm_i915_file_private *file_priv = file->driver_priv;
4300         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4301         struct drm_i915_gem_request *request, *target = NULL;
4302         unsigned reset_counter;
4303         int ret;
4304
4305         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4306         if (ret)
4307                 return ret;
4308
4309         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4310         if (ret)
4311                 return ret;
4312
4313         spin_lock(&file_priv->mm.lock);
4314         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4315                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4316                         break;
4317
4318                 target = request;
4319         }
4320         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4321         if (target)
4322                 i915_gem_request_reference(target);
4323         spin_unlock(&file_priv->mm.lock);
4324
4325         if (target == NULL)
4326                 return 0;
4327
4328         ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4329         if (ret == 0)
4330                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4331
4332         i915_gem_request_unreference__unlocked(target);
4333
4334         return ret;
4335 }
4336
4337 static bool
4338 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4339 {
4340         struct drm_i915_gem_object *obj = vma->obj;
4341
4342         if (alignment &&
4343             vma->node.start & (alignment - 1))
4344                 return true;
4345
4346         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4347                 return true;
4348
4349         if (flags & PIN_OFFSET_BIAS &&
4350             vma->node.start < (flags & PIN_OFFSET_MASK))
4351                 return true;
4352
4353         return false;
4354 }
4355
4356 static int
4357 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4358                        struct i915_address_space *vm,
4359                        const struct i915_ggtt_view *ggtt_view,
4360                        uint32_t alignment,
4361                        uint64_t flags)
4362 {
4363         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4364         struct i915_vma *vma;
4365         unsigned bound;
4366         int ret;
4367
4368         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4369                 return -ENODEV;
4370
4371         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4372                 return -EINVAL;
4373
4374         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4375                 return -EINVAL;
4376
4377         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4378                 return -EINVAL;
4379
4380         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4381                           i915_gem_obj_to_vma(obj, vm);
4382
4383         if (IS_ERR(vma))
4384                 return PTR_ERR(vma);
4385
4386         if (vma) {
4387                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4388                         return -EBUSY;
4389
4390                 if (i915_vma_misplaced(vma, alignment, flags)) {
4391                         unsigned long offset;
4392                         offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4393                                              i915_gem_obj_offset(obj, vm);
4394                         WARN(vma->pin_count,
4395                              "bo is already pinned in %s with incorrect alignment:"
4396                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4397                              " obj->map_and_fenceable=%d\n",
4398                              ggtt_view ? "ggtt" : "ppgtt",
4399                              offset,
4400                              alignment,
4401                              !!(flags & PIN_MAPPABLE),
4402                              obj->map_and_fenceable);
4403                         ret = i915_vma_unbind(vma);
4404                         if (ret)
4405                                 return ret;
4406
4407                         vma = NULL;
4408                 }
4409         }
4410
4411         bound = vma ? vma->bound : 0;
4412         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4413                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4414                                                  flags);
4415                 if (IS_ERR(vma))
4416                         return PTR_ERR(vma);
4417         } else {
4418                 ret = i915_vma_bind(vma, obj->cache_level, flags);
4419                 if (ret)
4420                         return ret;
4421         }
4422
4423         if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4424             (bound ^ vma->bound) & GLOBAL_BIND) {
4425                 bool mappable, fenceable;
4426                 u32 fence_size, fence_alignment;
4427
4428                 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4429                                                    obj->base.size,
4430                                                    obj->tiling_mode);
4431                 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4432                                                              obj->base.size,
4433                                                              obj->tiling_mode,
4434                                                              true);
4435
4436                 fenceable = (vma->node.size == fence_size &&
4437                              (vma->node.start & (fence_alignment - 1)) == 0);
4438
4439                 mappable = (vma->node.start + fence_size <=
4440                             dev_priv->gtt.mappable_end);
4441
4442                 obj->map_and_fenceable = mappable && fenceable;
4443
4444                 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4445         }
4446
4447         vma->pin_count++;
4448         return 0;
4449 }
4450
4451 int
4452 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4453                     struct i915_address_space *vm,
4454                     uint32_t alignment,
4455                     uint64_t flags)
4456 {
4457         return i915_gem_object_do_pin(obj, vm,
4458                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4459                                       alignment, flags);
4460 }
4461
4462 int
4463 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4464                          const struct i915_ggtt_view *view,
4465                          uint32_t alignment,
4466                          uint64_t flags)
4467 {
4468         if (WARN_ONCE(!view, "no view specified"))
4469                 return -EINVAL;
4470
4471         return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4472                                       alignment, flags | PIN_GLOBAL);
4473 }
4474
4475 void
4476 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4477                                 const struct i915_ggtt_view *view)
4478 {
4479         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4480
4481         BUG_ON(!vma);
4482         WARN_ON(vma->pin_count == 0);
4483         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4484
4485         --vma->pin_count;
4486 }
4487
4488 bool
4489 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4490 {
4491         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4492                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4493                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4494
4495                 WARN_ON(!ggtt_vma ||
4496                         dev_priv->fence_regs[obj->fence_reg].pin_count >
4497                         ggtt_vma->pin_count);
4498                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4499                 return true;
4500         } else
4501                 return false;
4502 }
4503
4504 void
4505 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4506 {
4507         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4508                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4509                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4510                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4511         }
4512 }
4513
4514 int
4515 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4516                     struct drm_file *file)
4517 {
4518         struct drm_i915_gem_busy *args = data;
4519         struct drm_i915_gem_object *obj;
4520         int ret;
4521
4522         ret = i915_mutex_lock_interruptible(dev);
4523         if (ret)
4524                 return ret;
4525
4526         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4527         if (&obj->base == NULL) {
4528                 ret = -ENOENT;
4529                 goto unlock;
4530         }
4531
4532         /* Count all active objects as busy, even if they are currently not used
4533          * by the gpu. Users of this interface expect objects to eventually
4534          * become non-busy without any further actions, therefore emit any
4535          * necessary flushes here.
4536          */
4537         ret = i915_gem_object_flush_active(obj);
4538         if (ret)
4539                 goto unref;
4540
4541         BUILD_BUG_ON(I915_NUM_RINGS > 16);
4542         args->busy = obj->active << 16;
4543         if (obj->last_write_req)
4544                 args->busy |= obj->last_write_req->ring->id;
4545
4546 unref:
4547         drm_gem_object_unreference(&obj->base);
4548 unlock:
4549         mutex_unlock(&dev->struct_mutex);
4550         return ret;
4551 }
4552
4553 int
4554 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4555                         struct drm_file *file_priv)
4556 {
4557         return i915_gem_ring_throttle(dev, file_priv);
4558 }
4559
4560 int
4561 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4562                        struct drm_file *file_priv)
4563 {
4564         struct drm_i915_private *dev_priv = dev->dev_private;
4565         struct drm_i915_gem_madvise *args = data;
4566         struct drm_i915_gem_object *obj;
4567         int ret;
4568
4569         switch (args->madv) {
4570         case I915_MADV_DONTNEED:
4571         case I915_MADV_WILLNEED:
4572             break;
4573         default:
4574             return -EINVAL;
4575         }
4576
4577         ret = i915_mutex_lock_interruptible(dev);
4578         if (ret)
4579                 return ret;
4580
4581         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4582         if (&obj->base == NULL) {
4583                 ret = -ENOENT;
4584                 goto unlock;
4585         }
4586
4587         if (i915_gem_obj_is_pinned(obj)) {
4588                 ret = -EINVAL;
4589                 goto out;
4590         }
4591
4592         if (obj->pages &&
4593             obj->tiling_mode != I915_TILING_NONE &&
4594             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4595                 if (obj->madv == I915_MADV_WILLNEED)
4596                         i915_gem_object_unpin_pages(obj);
4597                 if (args->madv == I915_MADV_WILLNEED)
4598                         i915_gem_object_pin_pages(obj);
4599         }
4600
4601         if (obj->madv != __I915_MADV_PURGED)
4602                 obj->madv = args->madv;
4603
4604         /* if the object is no longer attached, discard its backing storage */
4605         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4606                 i915_gem_object_truncate(obj);
4607
4608         args->retained = obj->madv != __I915_MADV_PURGED;
4609
4610 out:
4611         drm_gem_object_unreference(&obj->base);
4612 unlock:
4613         mutex_unlock(&dev->struct_mutex);
4614         return ret;
4615 }
4616
4617 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4618                           const struct drm_i915_gem_object_ops *ops)
4619 {
4620         int i;
4621
4622         INIT_LIST_HEAD(&obj->global_list);
4623         for (i = 0; i < I915_NUM_RINGS; i++)
4624                 INIT_LIST_HEAD(&obj->ring_list[i]);
4625         INIT_LIST_HEAD(&obj->obj_exec_link);
4626         INIT_LIST_HEAD(&obj->vma_list);
4627         INIT_LIST_HEAD(&obj->batch_pool_link);
4628
4629         obj->ops = ops;
4630
4631         obj->fence_reg = I915_FENCE_REG_NONE;
4632         obj->madv = I915_MADV_WILLNEED;
4633
4634         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4635 }
4636
4637 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4638         .get_pages = i915_gem_object_get_pages_gtt,
4639         .put_pages = i915_gem_object_put_pages_gtt,
4640 };
4641
4642 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4643                                                   size_t size)
4644 {
4645         struct drm_i915_gem_object *obj;
4646 #if 0
4647         struct address_space *mapping;
4648         gfp_t mask;
4649 #endif
4650
4651         obj = i915_gem_object_alloc(dev);
4652         if (obj == NULL)
4653                 return NULL;
4654
4655         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4656                 i915_gem_object_free(obj);
4657                 return NULL;
4658         }
4659
4660 #if 0
4661         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4662         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4663                 /* 965gm cannot relocate objects above 4GiB. */
4664                 mask &= ~__GFP_HIGHMEM;
4665                 mask |= __GFP_DMA32;
4666         }
4667
4668         mapping = file_inode(obj->base.filp)->i_mapping;
4669         mapping_set_gfp_mask(mapping, mask);
4670 #endif
4671
4672         i915_gem_object_init(obj, &i915_gem_object_ops);
4673
4674         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4675         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4676
4677         if (HAS_LLC(dev)) {
4678                 /* On some devices, we can have the GPU use the LLC (the CPU
4679                  * cache) for about a 10% performance improvement
4680                  * compared to uncached.  Graphics requests other than
4681                  * display scanout are coherent with the CPU in
4682                  * accessing this cache.  This means in this mode we
4683                  * don't need to clflush on the CPU side, and on the
4684                  * GPU side we only need to flush internal caches to
4685                  * get data visible to the CPU.
4686                  *
4687                  * However, we maintain the display planes as UC, and so
4688                  * need to rebind when first used as such.
4689                  */
4690                 obj->cache_level = I915_CACHE_LLC;
4691         } else
4692                 obj->cache_level = I915_CACHE_NONE;
4693
4694         trace_i915_gem_object_create(obj);
4695
4696         return obj;
4697 }
4698
4699 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4700 {
4701         /* If we are the last user of the backing storage (be it shmemfs
4702          * pages or stolen etc), we know that the pages are going to be
4703          * immediately released. In this case, we can then skip copying
4704          * back the contents from the GPU.
4705          */
4706
4707         if (obj->madv != I915_MADV_WILLNEED)
4708                 return false;
4709
4710         if (obj->base.vm_obj == NULL)
4711                 return true;
4712
4713         /* At first glance, this looks racy, but then again so would be
4714          * userspace racing mmap against close. However, the first external
4715          * reference to the filp can only be obtained through the
4716          * i915_gem_mmap_ioctl() which safeguards us against the user
4717          * acquiring such a reference whilst we are in the middle of
4718          * freeing the object.
4719          */
4720 #if 0
4721         return atomic_long_read(&obj->base.filp->f_count) == 1;
4722 #else
4723         return false;
4724 #endif
4725 }
4726
4727 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4728 {
4729         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4730         struct drm_device *dev = obj->base.dev;
4731         struct drm_i915_private *dev_priv = dev->dev_private;
4732         struct i915_vma *vma, *next;
4733
4734         intel_runtime_pm_get(dev_priv);
4735
4736         trace_i915_gem_object_destroy(obj);
4737
4738         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4739                 int ret;
4740
4741                 vma->pin_count = 0;
4742                 ret = i915_vma_unbind(vma);
4743                 if (WARN_ON(ret == -ERESTARTSYS)) {
4744                         bool was_interruptible;
4745
4746                         was_interruptible = dev_priv->mm.interruptible;
4747                         dev_priv->mm.interruptible = false;
4748
4749                         WARN_ON(i915_vma_unbind(vma));
4750
4751                         dev_priv->mm.interruptible = was_interruptible;
4752                 }
4753         }
4754
4755         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4756          * before progressing. */
4757         if (obj->stolen)
4758                 i915_gem_object_unpin_pages(obj);
4759
4760         WARN_ON(obj->frontbuffer_bits);
4761
4762         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4763             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4764             obj->tiling_mode != I915_TILING_NONE)
4765                 i915_gem_object_unpin_pages(obj);
4766
4767         if (WARN_ON(obj->pages_pin_count))
4768                 obj->pages_pin_count = 0;
4769         if (discard_backing_storage(obj))
4770                 obj->madv = I915_MADV_DONTNEED;
4771         i915_gem_object_put_pages(obj);
4772         i915_gem_object_free_mmap_offset(obj);
4773
4774         BUG_ON(obj->pages);
4775
4776 #if 0
4777         if (obj->base.import_attach)
4778                 drm_prime_gem_destroy(&obj->base, NULL);
4779 #endif
4780
4781         if (obj->ops->release)
4782                 obj->ops->release(obj);
4783
4784         drm_gem_object_release(&obj->base);
4785         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4786
4787         kfree(obj->bit_17);
4788         i915_gem_object_free(obj);
4789
4790         intel_runtime_pm_put(dev_priv);
4791 }
4792
4793 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4794                                      struct i915_address_space *vm)
4795 {
4796         struct i915_vma *vma;
4797         list_for_each_entry(vma, &obj->vma_list, vma_link) {
4798                 if (i915_is_ggtt(vma->vm) &&
4799                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4800                         continue;
4801                 if (vma->vm == vm)
4802                         return vma;
4803         }
4804         return NULL;
4805 }
4806
4807 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4808                                            const struct i915_ggtt_view *view)
4809 {
4810         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4811         struct i915_vma *vma;
4812
4813         if (WARN_ONCE(!view, "no view specified"))
4814                 return ERR_PTR(-EINVAL);
4815
4816         list_for_each_entry(vma, &obj->vma_list, vma_link)
4817                 if (vma->vm == ggtt &&
4818                     i915_ggtt_view_equal(&vma->ggtt_view, view))
4819                         return vma;
4820         return NULL;
4821 }
4822
4823 void i915_gem_vma_destroy(struct i915_vma *vma)
4824 {
4825         struct i915_address_space *vm = NULL;
4826         WARN_ON(vma->node.allocated);
4827
4828         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4829         if (!list_empty(&vma->exec_list))
4830                 return;
4831
4832         vm = vma->vm;
4833
4834         if (!i915_is_ggtt(vm))
4835                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4836
4837         list_del(&vma->vma_link);
4838
4839         kfree(vma);
4840 }
4841
4842 static void
4843 i915_gem_stop_ringbuffers(struct drm_device *dev)
4844 {
4845         struct drm_i915_private *dev_priv = dev->dev_private;
4846         struct intel_engine_cs *ring;
4847         int i;
4848
4849         for_each_ring(ring, dev_priv, i)
4850                 dev_priv->gt.stop_ring(ring);
4851 }
4852
4853 int
4854 i915_gem_suspend(struct drm_device *dev)
4855 {
4856         struct drm_i915_private *dev_priv = dev->dev_private;
4857         int ret = 0;
4858
4859         mutex_lock(&dev->struct_mutex);
4860         ret = i915_gpu_idle(dev);
4861         if (ret)
4862                 goto err;
4863
4864         i915_gem_retire_requests(dev);
4865
4866         i915_gem_stop_ringbuffers(dev);
4867         mutex_unlock(&dev->struct_mutex);
4868
4869         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4870         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4871 #if 0
4872         flush_delayed_work(&dev_priv->mm.idle_work);
4873 #endif
4874
4875         /* Assert that we sucessfully flushed all the work and
4876          * reset the GPU back to its idle, low power state.
4877          */
4878         WARN_ON(dev_priv->mm.busy);
4879
4880         return 0;
4881
4882 err:
4883         mutex_unlock(&dev->struct_mutex);
4884         return ret;
4885 }
4886
4887 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4888 {
4889         struct drm_device *dev = ring->dev;
4890         struct drm_i915_private *dev_priv = dev->dev_private;
4891         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4892         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4893         int i, ret;
4894
4895         if (!HAS_L3_DPF(dev) || !remap_info)
4896                 return 0;
4897
4898         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4899         if (ret)
4900                 return ret;
4901
4902         /*
4903          * Note: We do not worry about the concurrent register cacheline hang
4904          * here because no other code should access these registers other than
4905          * at initialization time.
4906          */
4907         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4908                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4909                 intel_ring_emit(ring, reg_base + i);
4910                 intel_ring_emit(ring, remap_info[i/4]);
4911         }
4912
4913         intel_ring_advance(ring);
4914
4915         return ret;
4916 }
4917
4918 void i915_gem_init_swizzling(struct drm_device *dev)
4919 {
4920         struct drm_i915_private *dev_priv = dev->dev_private;
4921
4922         if (INTEL_INFO(dev)->gen < 5 ||
4923             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4924                 return;
4925
4926         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4927                                  DISP_TILE_SURFACE_SWIZZLING);
4928
4929         if (IS_GEN5(dev))
4930                 return;
4931
4932         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4933         if (IS_GEN6(dev))
4934                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4935         else if (IS_GEN7(dev))
4936                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4937         else if (IS_GEN8(dev))
4938                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4939         else
4940                 BUG();
4941 }
4942
4943 static bool
4944 intel_enable_blt(struct drm_device *dev)
4945 {
4946         if (!HAS_BLT(dev))
4947                 return false;
4948
4949         /* The blitter was dysfunctional on early prototypes */
4950         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4951                 DRM_INFO("BLT not supported on this pre-production hardware;"
4952                          " graphics performance will be degraded.\n");
4953                 return false;
4954         }
4955
4956         return true;
4957 }
4958
4959 static void init_unused_ring(struct drm_device *dev, u32 base)
4960 {
4961         struct drm_i915_private *dev_priv = dev->dev_private;
4962
4963         I915_WRITE(RING_CTL(base), 0);
4964         I915_WRITE(RING_HEAD(base), 0);
4965         I915_WRITE(RING_TAIL(base), 0);
4966         I915_WRITE(RING_START(base), 0);
4967 }
4968
4969 static void init_unused_rings(struct drm_device *dev)
4970 {
4971         if (IS_I830(dev)) {
4972                 init_unused_ring(dev, PRB1_BASE);
4973                 init_unused_ring(dev, SRB0_BASE);
4974                 init_unused_ring(dev, SRB1_BASE);
4975                 init_unused_ring(dev, SRB2_BASE);
4976                 init_unused_ring(dev, SRB3_BASE);
4977         } else if (IS_GEN2(dev)) {
4978                 init_unused_ring(dev, SRB0_BASE);
4979                 init_unused_ring(dev, SRB1_BASE);
4980         } else if (IS_GEN3(dev)) {
4981                 init_unused_ring(dev, PRB1_BASE);
4982                 init_unused_ring(dev, PRB2_BASE);
4983         }
4984 }
4985
4986 int i915_gem_init_rings(struct drm_device *dev)
4987 {
4988         struct drm_i915_private *dev_priv = dev->dev_private;
4989         int ret;
4990
4991         ret = intel_init_render_ring_buffer(dev);
4992         if (ret)
4993                 return ret;
4994
4995         if (HAS_BSD(dev)) {
4996                 ret = intel_init_bsd_ring_buffer(dev);
4997                 if (ret)
4998                         goto cleanup_render_ring;
4999         }
5000
5001         if (intel_enable_blt(dev)) {
5002                 ret = intel_init_blt_ring_buffer(dev);
5003                 if (ret)
5004                         goto cleanup_bsd_ring;
5005         }
5006
5007         if (HAS_VEBOX(dev)) {
5008                 ret = intel_init_vebox_ring_buffer(dev);
5009                 if (ret)
5010                         goto cleanup_blt_ring;
5011         }
5012
5013         if (HAS_BSD2(dev)) {
5014                 ret = intel_init_bsd2_ring_buffer(dev);
5015                 if (ret)
5016                         goto cleanup_vebox_ring;
5017         }
5018
5019         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
5020         if (ret)
5021                 goto cleanup_bsd2_ring;
5022
5023         return 0;
5024
5025 cleanup_bsd2_ring:
5026         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
5027 cleanup_vebox_ring:
5028         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
5029 cleanup_blt_ring:
5030         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
5031 cleanup_bsd_ring:
5032         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
5033 cleanup_render_ring:
5034         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
5035
5036         return ret;
5037 }
5038
5039 int
5040 i915_gem_init_hw(struct drm_device *dev)
5041 {
5042         struct drm_i915_private *dev_priv = dev->dev_private;
5043         struct intel_engine_cs *ring;
5044         int ret, i;
5045
5046 #if 0
5047         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
5048                 return -EIO;
5049 #endif
5050
5051         /* Double layer security blanket, see i915_gem_init() */
5052         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5053
5054         if (dev_priv->ellc_size)
5055                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5056
5057         if (IS_HASWELL(dev))
5058                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5059                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5060
5061         if (HAS_PCH_NOP(dev)) {
5062                 if (IS_IVYBRIDGE(dev)) {
5063                         u32 temp = I915_READ(GEN7_MSG_CTL);
5064                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5065                         I915_WRITE(GEN7_MSG_CTL, temp);
5066                 } else if (INTEL_INFO(dev)->gen >= 7) {
5067                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5068                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5069                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5070                 }
5071         }
5072
5073         i915_gem_init_swizzling(dev);
5074
5075         /*
5076          * At least 830 can leave some of the unused rings
5077          * "active" (ie. head != tail) after resume which
5078          * will prevent c3 entry. Makes sure all unused rings
5079          * are totally idle.
5080          */
5081         init_unused_rings(dev);
5082
5083         for_each_ring(ring, dev_priv, i) {
5084                 ret = ring->init_hw(ring);
5085                 if (ret)
5086                         goto out;
5087         }
5088
5089         for (i = 0; i < NUM_L3_SLICES(dev); i++)
5090                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
5091
5092         ret = i915_ppgtt_init_hw(dev);
5093         if (ret && ret != -EIO) {
5094                 DRM_ERROR("PPGTT enable failed %d\n", ret);
5095                 i915_gem_cleanup_ringbuffer(dev);
5096         }
5097
5098         ret = i915_gem_context_enable(dev_priv);
5099         if (ret && ret != -EIO) {
5100                 DRM_ERROR("Context enable failed %d\n", ret);
5101                 i915_gem_cleanup_ringbuffer(dev);
5102
5103                 goto out;
5104         }
5105
5106 out:
5107         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5108         return ret;
5109 }
5110
5111 int i915_gem_init(struct drm_device *dev)
5112 {
5113         struct drm_i915_private *dev_priv = dev->dev_private;
5114         int ret;
5115
5116         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5117                         i915.enable_execlists);
5118
5119         mutex_lock(&dev->struct_mutex);
5120
5121         if (IS_VALLEYVIEW(dev)) {
5122                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
5123                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
5124                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
5125                               VLV_GTLC_ALLOWWAKEACK), 10))
5126                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5127         }
5128
5129         if (!i915.enable_execlists) {
5130                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5131                 dev_priv->gt.init_rings = i915_gem_init_rings;
5132                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5133                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5134         } else {
5135                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5136                 dev_priv->gt.init_rings = intel_logical_rings_init;
5137                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5138                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
5139         }
5140
5141         /* This is just a security blanket to placate dragons.
5142          * On some systems, we very sporadically observe that the first TLBs
5143          * used by the CS may be stale, despite us poking the TLB reset. If
5144          * we hold the forcewake during initialisation these problems
5145          * just magically go away.
5146          */
5147         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5148
5149         ret = i915_gem_init_userptr(dev);
5150         if (ret)
5151                 goto out_unlock;
5152
5153         i915_gem_init_global_gtt(dev);
5154
5155         ret = i915_gem_context_init(dev);
5156         if (ret)
5157                 goto out_unlock;
5158
5159         ret = dev_priv->gt.init_rings(dev);
5160         if (ret)
5161                 goto out_unlock;
5162
5163         ret = i915_gem_init_hw(dev);
5164         if (ret == -EIO) {
5165                 /* Allow ring initialisation to fail by marking the GPU as
5166                  * wedged. But we only want to do this where the GPU is angry,
5167                  * for all other failure, such as an allocation failure, bail.
5168                  */
5169                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5170                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5171                 ret = 0;
5172         }
5173
5174 out_unlock:
5175         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5176         mutex_unlock(&dev->struct_mutex);
5177
5178         return ret;
5179 }
5180
5181 void
5182 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5183 {
5184         struct drm_i915_private *dev_priv = dev->dev_private;
5185         struct intel_engine_cs *ring;
5186         int i;
5187
5188         for_each_ring(ring, dev_priv, i)
5189                 dev_priv->gt.cleanup_ring(ring);
5190 }
5191
5192 static void
5193 init_ring_lists(struct intel_engine_cs *ring)
5194 {
5195         INIT_LIST_HEAD(&ring->active_list);
5196         INIT_LIST_HEAD(&ring->request_list);
5197 }
5198
5199 void i915_init_vm(struct drm_i915_private *dev_priv,
5200                   struct i915_address_space *vm)
5201 {
5202         if (!i915_is_ggtt(vm))
5203                 drm_mm_init(&vm->mm, vm->start, vm->total);
5204         vm->dev = dev_priv->dev;
5205         INIT_LIST_HEAD(&vm->active_list);
5206         INIT_LIST_HEAD(&vm->inactive_list);
5207         INIT_LIST_HEAD(&vm->global_link);
5208         list_add_tail(&vm->global_link, &dev_priv->vm_list);
5209 }
5210
5211 void
5212 i915_gem_load(struct drm_device *dev)
5213 {
5214         struct drm_i915_private *dev_priv = dev->dev_private;
5215         int i;
5216
5217         INIT_LIST_HEAD(&dev_priv->vm_list);
5218         i915_init_vm(dev_priv, &dev_priv->gtt.base);
5219
5220         INIT_LIST_HEAD(&dev_priv->context_list);
5221         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5222         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5223         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5224         for (i = 0; i < I915_NUM_RINGS; i++)
5225                 init_ring_lists(&dev_priv->ring[i]);
5226         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5227                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5228         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5229                           i915_gem_retire_work_handler);
5230         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5231                           i915_gem_idle_work_handler);
5232         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5233
5234         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5235
5236         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5237                 dev_priv->num_fence_regs = 32;
5238         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5239                 dev_priv->num_fence_regs = 16;
5240         else
5241                 dev_priv->num_fence_regs = 8;
5242
5243         if (intel_vgpu_active(dev))
5244                 dev_priv->num_fence_regs =
5245                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5246
5247         /* Initialize fence registers to zero */
5248         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5249         i915_gem_restore_fences(dev);
5250
5251         i915_gem_detect_bit_6_swizzle(dev);
5252         init_waitqueue_head(&dev_priv->pending_flip_queue);
5253
5254         dev_priv->mm.interruptible = true;
5255
5256         i915_gem_shrinker_init(dev_priv);
5257
5258         lockinit(&dev_priv->fb_tracking.lock, "drmftl", 0, LK_CANRECURSE);
5259 }
5260
5261 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5262 {
5263         struct drm_i915_file_private *file_priv = file->driver_priv;
5264
5265         /* Clean up our request list when the client is going away, so that
5266          * later retire_requests won't dereference our soon-to-be-gone
5267          * file_priv.
5268          */
5269         spin_lock(&file_priv->mm.lock);
5270         while (!list_empty(&file_priv->mm.request_list)) {
5271                 struct drm_i915_gem_request *request;
5272
5273                 request = list_first_entry(&file_priv->mm.request_list,
5274                                            struct drm_i915_gem_request,
5275                                            client_list);
5276                 list_del(&request->client_list);
5277                 request->file_priv = NULL;
5278         }
5279         spin_unlock(&file_priv->mm.lock);
5280
5281         if (!list_empty(&file_priv->rps.link)) {
5282                 spin_lock(&to_i915(dev)->rps.client_lock);
5283                 list_del(&file_priv->rps.link);
5284                 spin_unlock(&to_i915(dev)->rps.client_lock);
5285         }
5286 }
5287
5288 int
5289 i915_gem_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
5290     vm_ooffset_t foff, struct ucred *cred, u_short *color)
5291 {
5292         *color = 0; /* XXXKIB */
5293         return (0);
5294 }
5295
5296 void
5297 i915_gem_pager_dtor(void *handle)
5298 {
5299         struct drm_gem_object *obj;
5300         struct drm_device *dev;
5301
5302         obj = handle;
5303         dev = obj->dev;
5304
5305         mutex_lock(&dev->struct_mutex);
5306         drm_gem_free_mmap_offset(obj);
5307         i915_gem_release_mmap(to_intel_bo(obj));
5308         drm_gem_object_unreference(obj);
5309         mutex_unlock(&dev->struct_mutex);
5310 }
5311
5312 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5313 {
5314         struct drm_i915_file_private *file_priv;
5315         int ret;
5316
5317         DRM_DEBUG_DRIVER("\n");
5318
5319         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5320         if (!file_priv)
5321                 return -ENOMEM;
5322
5323         file->driver_priv = file_priv;
5324         file_priv->dev_priv = dev->dev_private;
5325         file_priv->file = file;
5326         INIT_LIST_HEAD(&file_priv->rps.link);
5327
5328         spin_init(&file_priv->mm.lock, "i915_priv");
5329         INIT_LIST_HEAD(&file_priv->mm.request_list);
5330
5331         ret = i915_gem_context_open(dev, file);
5332         if (ret)
5333                 kfree(file_priv);
5334
5335         return ret;
5336 }
5337
5338 /**
5339  * i915_gem_track_fb - update frontbuffer tracking
5340  * old: current GEM buffer for the frontbuffer slots
5341  * new: new GEM buffer for the frontbuffer slots
5342  * frontbuffer_bits: bitmask of frontbuffer slots
5343  *
5344  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5345  * from @old and setting them in @new. Both @old and @new can be NULL.
5346  */
5347 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5348                        struct drm_i915_gem_object *new,
5349                        unsigned frontbuffer_bits)
5350 {
5351         if (old) {
5352                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5353                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5354                 old->frontbuffer_bits &= ~frontbuffer_bits;
5355         }
5356
5357         if (new) {
5358                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5359                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5360                 new->frontbuffer_bits |= frontbuffer_bits;
5361         }
5362 }
5363
5364 /* All the new VM stuff */
5365 unsigned long
5366 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5367                     struct i915_address_space *vm)
5368 {
5369         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5370         struct i915_vma *vma;
5371
5372         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5373
5374         list_for_each_entry(vma, &o->vma_list, vma_link) {
5375                 if (i915_is_ggtt(vma->vm) &&
5376                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5377                         continue;
5378                 if (vma->vm == vm)
5379                         return vma->node.start;
5380         }
5381
5382         WARN(1, "%s vma for this object not found.\n",
5383              i915_is_ggtt(vm) ? "global" : "ppgtt");
5384         return -1;
5385 }
5386
5387 unsigned long
5388 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5389                               const struct i915_ggtt_view *view)
5390 {
5391         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5392         struct i915_vma *vma;
5393
5394         list_for_each_entry(vma, &o->vma_list, vma_link)
5395                 if (vma->vm == ggtt &&
5396                     i915_ggtt_view_equal(&vma->ggtt_view, view))
5397                         return vma->node.start;
5398
5399         WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5400         return -1;
5401 }
5402
5403 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5404                         struct i915_address_space *vm)
5405 {
5406         struct i915_vma *vma;
5407
5408         list_for_each_entry(vma, &o->vma_list, vma_link) {
5409                 if (i915_is_ggtt(vma->vm) &&
5410                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5411                         continue;
5412                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5413                         return true;
5414         }
5415
5416         return false;
5417 }
5418
5419 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5420                                   const struct i915_ggtt_view *view)
5421 {
5422         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5423         struct i915_vma *vma;
5424
5425         list_for_each_entry(vma, &o->vma_list, vma_link)
5426                 if (vma->vm == ggtt &&
5427                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5428                     drm_mm_node_allocated(&vma->node))
5429                         return true;
5430
5431         return false;
5432 }
5433
5434 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5435 {
5436         struct i915_vma *vma;
5437
5438         list_for_each_entry(vma, &o->vma_list, vma_link)
5439                 if (drm_mm_node_allocated(&vma->node))
5440                         return true;
5441
5442         return false;
5443 }
5444
5445 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5446                                 struct i915_address_space *vm)
5447 {
5448         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5449         struct i915_vma *vma;
5450
5451         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5452
5453         BUG_ON(list_empty(&o->vma_list));
5454
5455         list_for_each_entry(vma, &o->vma_list, vma_link) {
5456                 if (i915_is_ggtt(vma->vm) &&
5457                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5458                         continue;
5459                 if (vma->vm == vm)
5460                         return vma->node.size;
5461         }
5462         return 0;
5463 }
5464
5465 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5466 {
5467         struct i915_vma *vma;
5468         list_for_each_entry(vma, &obj->vma_list, vma_link)
5469                 if (vma->pin_count > 0)
5470                         return true;
5471
5472         return false;
5473 }
5474