drm/i915/gem: Switch to the Linux scatterlist API
[dragonfly.git] / sys / dev / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33
34 #include <linux/bitmap.h>
35 #include <linux/highmem.h>
36
37 /**
38  * DOC: Global GTT views
39  *
40  * Background and previous state
41  *
42  * Historically objects could exists (be bound) in global GTT space only as
43  * singular instances with a view representing all of the object's backing pages
44  * in a linear fashion. This view will be called a normal view.
45  *
46  * To support multiple views of the same object, where the number of mapped
47  * pages is not equal to the backing store, or where the layout of the pages
48  * is not linear, concept of a GGTT view was added.
49  *
50  * One example of an alternative view is a stereo display driven by a single
51  * image. In this case we would have a framebuffer looking like this
52  * (2x2 pages):
53  *
54  *    12
55  *    34
56  *
57  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
58  * rendering. In contrast, fed to the display engine would be an alternative
59  * view which could look something like this:
60  *
61  *   1212
62  *   3434
63  *
64  * In this example both the size and layout of pages in the alternative view is
65  * different from the normal view.
66  *
67  * Implementation and usage
68  *
69  * GGTT views are implemented using VMAs and are distinguished via enum
70  * i915_ggtt_view_type and struct i915_ggtt_view.
71  *
72  * A new flavour of core GEM functions which work with GGTT bound objects were
73  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
74  * renaming  in large amounts of code. They take the struct i915_ggtt_view
75  * parameter encapsulating all metadata required to implement a view.
76  *
77  * As a helper for callers which are only interested in the normal view,
78  * globally const i915_ggtt_view_normal singleton instance exists. All old core
79  * GEM API functions, the ones not taking the view parameter, are operating on,
80  * or with the normal GGTT view.
81  *
82  * Code wanting to add or use a new GGTT view needs to:
83  *
84  * 1. Add a new enum with a suitable name.
85  * 2. Extend the metadata in the i915_ggtt_view structure if required.
86  * 3. Add support to i915_get_vma_pages().
87  *
88  * New views are required to build a scatter-gather table from within the
89  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
90  * exists for the lifetime of an VMA.
91  *
92  * Core API is designed to have copy semantics which means that passed in
93  * struct i915_ggtt_view does not need to be persistent (left around after
94  * calling the core API functions).
95  *
96  */
97
98 static int
99 i915_get_ggtt_vma_pages(struct i915_vma *vma);
100
101 const struct i915_ggtt_view i915_ggtt_view_normal;
102 const struct i915_ggtt_view i915_ggtt_view_rotated = {
103         .type = I915_GGTT_VIEW_ROTATED
104 };
105
106 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
107 {
108         bool has_aliasing_ppgtt;
109         bool has_full_ppgtt;
110
111         has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
112         has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
113
114         if (intel_vgpu_active(dev))
115                 has_full_ppgtt = false; /* emulation is too hard */
116
117         /*
118          * We don't allow disabling PPGTT for gen9+ as it's a requirement for
119          * execlists, the sole mechanism available to submit work.
120          */
121         if (INTEL_INFO(dev)->gen < 9 &&
122             (enable_ppgtt == 0 || !has_aliasing_ppgtt))
123                 return 0;
124
125         if (enable_ppgtt == 1)
126                 return 1;
127
128         if (enable_ppgtt == 2 && has_full_ppgtt)
129                 return 2;
130
131 #ifdef CONFIG_INTEL_IOMMU
132         /* Disable ppgtt on SNB if VT-d is on. */
133         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
134                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
135                 return 0;
136         }
137 #endif
138
139         /* Early VLV doesn't have this */
140         if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
141             dev->pdev->revision < 0xb) {
142                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
143                 return 0;
144         }
145
146         if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
147                 return 2;
148         else
149                 return has_aliasing_ppgtt ? 1 : 0;
150 }
151
152 static int ppgtt_bind_vma(struct i915_vma *vma,
153                           enum i915_cache_level cache_level,
154                           u32 unused)
155 {
156         u32 pte_flags = 0;
157
158         /* Currently applicable only to VLV */
159         if (vma->obj->gt_ro)
160                 pte_flags |= PTE_READ_ONLY;
161
162         vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
163                                 cache_level, pte_flags);
164
165         return 0;
166 }
167
168 static void ppgtt_unbind_vma(struct i915_vma *vma)
169 {
170         vma->vm->clear_range(vma->vm,
171                              vma->node.start,
172                              vma->obj->base.size,
173                              true);
174 }
175
176 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
177                                   enum i915_cache_level level,
178                                   bool valid)
179 {
180         gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
181         pte |= addr;
182
183         switch (level) {
184         case I915_CACHE_NONE:
185                 pte |= PPAT_UNCACHED_INDEX;
186                 break;
187         case I915_CACHE_WT:
188                 pte |= PPAT_DISPLAY_ELLC_INDEX;
189                 break;
190         default:
191                 pte |= PPAT_CACHED_INDEX;
192                 break;
193         }
194
195         return pte;
196 }
197
198 static gen8_pde_t gen8_pde_encode(struct drm_device *dev,
199                                   dma_addr_t addr,
200                                   enum i915_cache_level level)
201 {
202         gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
203         pde |= addr;
204         if (level != I915_CACHE_NONE)
205                 pde |= PPAT_CACHED_PDE_INDEX;
206         else
207                 pde |= PPAT_UNCACHED_INDEX;
208         return pde;
209 }
210
211 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
212                                  enum i915_cache_level level,
213                                  bool valid, u32 unused)
214 {
215         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
216         pte |= GEN6_PTE_ADDR_ENCODE(addr);
217
218         switch (level) {
219         case I915_CACHE_L3_LLC:
220         case I915_CACHE_LLC:
221                 pte |= GEN6_PTE_CACHE_LLC;
222                 break;
223         case I915_CACHE_NONE:
224                 pte |= GEN6_PTE_UNCACHED;
225                 break;
226         default:
227                 MISSING_CASE(level);
228         }
229
230         return pte;
231 }
232
233 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
234                                  enum i915_cache_level level,
235                                  bool valid, u32 unused)
236 {
237         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
238         pte |= GEN6_PTE_ADDR_ENCODE(addr);
239
240         switch (level) {
241         case I915_CACHE_L3_LLC:
242                 pte |= GEN7_PTE_CACHE_L3_LLC;
243                 break;
244         case I915_CACHE_LLC:
245                 pte |= GEN6_PTE_CACHE_LLC;
246                 break;
247         case I915_CACHE_NONE:
248                 pte |= GEN6_PTE_UNCACHED;
249                 break;
250         default:
251                 MISSING_CASE(level);
252         }
253
254         return pte;
255 }
256
257 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
258                                  enum i915_cache_level level,
259                                  bool valid, u32 flags)
260 {
261         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
262         pte |= GEN6_PTE_ADDR_ENCODE(addr);
263
264         if (!(flags & PTE_READ_ONLY))
265                 pte |= BYT_PTE_WRITEABLE;
266
267         if (level != I915_CACHE_NONE)
268                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
269
270         return pte;
271 }
272
273 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
274                                  enum i915_cache_level level,
275                                  bool valid, u32 unused)
276 {
277         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
278         pte |= HSW_PTE_ADDR_ENCODE(addr);
279
280         if (level != I915_CACHE_NONE)
281                 pte |= HSW_WB_LLC_AGE3;
282
283         return pte;
284 }
285
286 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
287                                   enum i915_cache_level level,
288                                   bool valid, u32 unused)
289 {
290         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
291         pte |= HSW_PTE_ADDR_ENCODE(addr);
292
293         switch (level) {
294         case I915_CACHE_NONE:
295                 break;
296         case I915_CACHE_WT:
297                 pte |= HSW_WT_ELLC_LLC_AGE3;
298                 break;
299         default:
300                 pte |= HSW_WB_ELLC_LLC_AGE3;
301                 break;
302         }
303
304         return pte;
305 }
306
307 #define i915_dma_unmap_single(px, dev) \
308         __i915_dma_unmap_single((px)->daddr, dev)
309
310 static void __i915_dma_unmap_single(dma_addr_t daddr,
311                                     struct drm_device *dev)
312 {
313 #if 0
314         struct device *device = &dev->pdev->dev;
315
316         dma_unmap_page(device, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
317 #endif
318 }
319
320 /**
321  * i915_dma_map_single() - Create a dma mapping for a page table/dir/etc.
322  * @px: Page table/dir/etc to get a DMA map for
323  * @dev:        drm device
324  *
325  * Page table allocations are unified across all gens. They always require a
326  * single 4k allocation, as well as a DMA mapping. If we keep the structs
327  * symmetric here, the simple macro covers us for every page table type.
328  *
329  * Return: 0 if success.
330  */
331 #define i915_dma_map_single(px, dev) \
332         i915_dma_map_page_single((px)->page, (dev), &(px)->daddr)
333
334 static int i915_dma_map_page_single(struct vm_page *page,
335                                     struct drm_device *dev,
336                                     dma_addr_t *daddr)
337 {
338         struct device *device = dev->pdev->dev;
339
340         *daddr = dma_map_page(device, page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
341         if (dma_mapping_error(device, *daddr))
342                 return -ENOMEM;
343
344         return 0;
345 }
346
347 static void unmap_and_free_pt(struct i915_page_table *pt,
348                                struct drm_device *dev)
349 {
350         if (WARN_ON(!pt->page))
351                 return;
352
353         i915_dma_unmap_single(pt, dev);
354         __free_page(pt->page);
355         kfree(pt->used_ptes);
356         kfree(pt);
357 }
358
359 static void gen8_initialize_pt(struct i915_address_space *vm,
360                                struct i915_page_table *pt)
361 {
362         gen8_pte_t *pt_vaddr, scratch_pte;
363         int i;
364
365         pt_vaddr = kmap_atomic(pt->page);
366         scratch_pte = gen8_pte_encode(vm->scratch.addr,
367                                       I915_CACHE_LLC, true);
368
369         for (i = 0; i < GEN8_PTES; i++)
370                 pt_vaddr[i] = scratch_pte;
371
372         if (!HAS_LLC(vm->dev))
373                 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
374         kunmap_atomic(pt_vaddr);
375 }
376
377 static struct i915_page_table *alloc_pt_single(struct drm_device *dev)
378 {
379         struct i915_page_table *pt;
380         const size_t count = INTEL_INFO(dev)->gen >= 8 ?
381                 GEN8_PTES : GEN6_PTES;
382         int ret = -ENOMEM;
383
384         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
385         if (!pt)
386                 return ERR_PTR(-ENOMEM);
387
388         pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
389                                 GFP_KERNEL);
390
391         if (!pt->used_ptes)
392                 goto fail_bitmap;
393
394         pt->page = alloc_page(GFP_KERNEL);
395         if (!pt->page)
396                 goto fail_page;
397
398         ret = i915_dma_map_single(pt, dev);
399         if (ret)
400                 goto fail_dma;
401
402         return pt;
403
404 fail_dma:
405         __free_page(pt->page);
406 fail_page:
407         kfree(pt->used_ptes);
408 fail_bitmap:
409         kfree(pt);
410
411         return ERR_PTR(ret);
412 }
413
414 /**
415  * alloc_pt_range() - Allocate a multiple page tables
416  * @pd:         The page directory which will have at least @count entries
417  *              available to point to the allocated page tables.
418  * @pde:        First page directory entry for which we are allocating.
419  * @count:      Number of pages to allocate.
420  * @dev:        DRM device.
421  *
422  * Allocates multiple page table pages and sets the appropriate entries in the
423  * page table structure within the page directory. Function cleans up after
424  * itself on any failures.
425  *
426  * Return: 0 if allocation succeeded.
427  */
428 static int alloc_pt_range(struct i915_page_directory *pd, uint16_t pde, size_t count,
429                           struct drm_device *dev)
430 {
431         int i, ret;
432
433         /* 512 is the max page tables per page_directory on any platform. */
434         if (WARN_ON(pde + count > I915_PDES))
435                 return -EINVAL;
436
437         for (i = pde; i < pde + count; i++) {
438                 struct i915_page_table *pt = alloc_pt_single(dev);
439
440                 if (IS_ERR(pt)) {
441                         ret = PTR_ERR(pt);
442                         goto err_out;
443                 }
444                 WARN(pd->page_table[i],
445                      "Leaking page directory entry %d (%p)\n",
446                      i, pd->page_table[i]);
447                 pd->page_table[i] = pt;
448         }
449
450         return 0;
451
452 err_out:
453         while (i-- > pde)
454                 unmap_and_free_pt(pd->page_table[i], dev);
455         return ret;
456 }
457
458 static void unmap_and_free_pd(struct i915_page_directory *pd,
459                               struct drm_device *dev)
460 {
461         if (pd->page) {
462                 i915_dma_unmap_single(pd, dev);
463                 __free_page(pd->page);
464                 kfree(pd->used_pdes);
465                 kfree(pd);
466         }
467 }
468
469 static struct i915_page_directory *alloc_pd_single(struct drm_device *dev)
470 {
471         struct i915_page_directory *pd;
472         int ret = -ENOMEM;
473
474         pd = kzalloc(sizeof(*pd), GFP_KERNEL);
475         if (!pd)
476                 return ERR_PTR(-ENOMEM);
477
478         pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
479                                 sizeof(*pd->used_pdes), GFP_KERNEL);
480         if (!pd->used_pdes)
481                 goto free_pd;
482
483         pd->page = alloc_page(GFP_KERNEL);
484         if (!pd->page)
485                 goto free_bitmap;
486
487         ret = i915_dma_map_single(pd, dev);
488         if (ret)
489                 goto free_page;
490
491         return pd;
492
493 free_page:
494         __free_page(pd->page);
495 free_bitmap:
496         kfree(pd->used_pdes);
497 free_pd:
498         kfree(pd);
499
500         return ERR_PTR(ret);
501 }
502
503 /* Broadwell Page Directory Pointer Descriptors */
504 static int gen8_write_pdp(struct intel_engine_cs *ring,
505                           unsigned entry,
506                           dma_addr_t addr)
507 {
508         int ret;
509
510         BUG_ON(entry >= 4);
511
512         ret = intel_ring_begin(ring, 6);
513         if (ret)
514                 return ret;
515
516         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
517         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
518         intel_ring_emit(ring, upper_32_bits(addr));
519         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
520         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
521         intel_ring_emit(ring, lower_32_bits(addr));
522         intel_ring_advance(ring);
523
524         return 0;
525 }
526
527 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
528                           struct intel_engine_cs *ring)
529 {
530         int i, ret;
531
532         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
533                 struct i915_page_directory *pd = ppgtt->pdp.page_directory[i];
534                 dma_addr_t pd_daddr = pd ? pd->daddr : ppgtt->scratch_pd->daddr;
535                 /* The page directory might be NULL, but we need to clear out
536                  * whatever the previous context might have used. */
537                 ret = gen8_write_pdp(ring, i, pd_daddr);
538                 if (ret)
539                         return ret;
540         }
541
542         return 0;
543 }
544
545 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
546                                    uint64_t start,
547                                    uint64_t length,
548                                    bool use_scratch)
549 {
550         struct i915_hw_ppgtt *ppgtt =
551                 container_of(vm, struct i915_hw_ppgtt, base);
552         gen8_pte_t *pt_vaddr, scratch_pte;
553         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
554         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
555         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
556         unsigned num_entries = length >> PAGE_SHIFT;
557         unsigned last_pte, i;
558
559         scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
560                                       I915_CACHE_LLC, use_scratch);
561
562         while (num_entries) {
563                 struct i915_page_directory *pd;
564                 struct i915_page_table *pt;
565                 struct vm_page *page_table;
566
567                 if (WARN_ON(!ppgtt->pdp.page_directory[pdpe]))
568                         break;
569
570                 pd = ppgtt->pdp.page_directory[pdpe];
571
572                 if (WARN_ON(!pd->page_table[pde]))
573                         break;
574
575                 pt = pd->page_table[pde];
576
577                 if (WARN_ON(!pt->page))
578                         break;
579
580                 page_table = pt->page;
581
582                 last_pte = pte + num_entries;
583                 if (last_pte > GEN8_PTES)
584                         last_pte = GEN8_PTES;
585
586                 pt_vaddr = kmap_atomic(page_table);
587
588                 for (i = pte; i < last_pte; i++) {
589                         pt_vaddr[i] = scratch_pte;
590                         num_entries--;
591                 }
592
593                 if (!HAS_LLC(ppgtt->base.dev))
594                         drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
595                 kunmap_atomic(pt_vaddr);
596
597                 pte = 0;
598                 if (++pde == I915_PDES) {
599                         pdpe++;
600                         pde = 0;
601                 }
602         }
603 }
604
605 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
606                                       struct sg_table *pages,
607                                       uint64_t start,
608                                       enum i915_cache_level cache_level, u32 unused)
609 {
610         struct i915_hw_ppgtt *ppgtt =
611                 container_of(vm, struct i915_hw_ppgtt, base);
612         gen8_pte_t *pt_vaddr;
613         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
614         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
615         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
616         struct sg_page_iter sg_iter;
617
618         pt_vaddr = NULL;
619
620         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
621                 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPES))
622                         break;
623
624                 if (pt_vaddr == NULL) {
625                         struct i915_page_directory *pd = ppgtt->pdp.page_directory[pdpe];
626                         struct i915_page_table *pt = pd->page_table[pde];
627                         struct vm_page *page_table = pt->page;
628
629                         pt_vaddr = kmap_atomic(page_table);
630                 }
631
632                 pt_vaddr[pte] =
633                         gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
634                                         cache_level, true);
635                 if (++pte == GEN8_PTES) {
636                         if (!HAS_LLC(ppgtt->base.dev))
637                                 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
638                         kunmap_atomic(pt_vaddr);
639                         pt_vaddr = NULL;
640                         if (++pde == I915_PDES) {
641                                 pdpe++;
642                                 pde = 0;
643                         }
644                         pte = 0;
645                 }
646         }
647         if (pt_vaddr) {
648                 if (!HAS_LLC(ppgtt->base.dev))
649                         drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
650                 kunmap_atomic(pt_vaddr);
651         }
652 }
653
654 static void __gen8_do_map_pt(gen8_pde_t * const pde,
655                              struct i915_page_table *pt,
656                              struct drm_device *dev)
657 {
658         gen8_pde_t entry =
659                 gen8_pde_encode(dev, pt->daddr, I915_CACHE_LLC);
660         *pde = entry;
661 }
662
663 static void gen8_initialize_pd(struct i915_address_space *vm,
664                                struct i915_page_directory *pd)
665 {
666         struct i915_hw_ppgtt *ppgtt =
667                         container_of(vm, struct i915_hw_ppgtt, base);
668         gen8_pde_t *page_directory;
669         struct i915_page_table *pt;
670         int i;
671
672         page_directory = kmap_atomic(pd->page);
673         pt = ppgtt->scratch_pt;
674         for (i = 0; i < I915_PDES; i++)
675                 /* Map the PDE to the page table */
676                 __gen8_do_map_pt(page_directory + i, pt, vm->dev);
677
678         if (!HAS_LLC(vm->dev))
679                 drm_clflush_virt_range(page_directory, PAGE_SIZE);
680         kunmap_atomic(page_directory);
681 }
682
683 static void gen8_free_page_tables(struct i915_page_directory *pd, struct drm_device *dev)
684 {
685         int i;
686
687         if (!pd->page)
688                 return;
689
690         for_each_set_bit(i, pd->used_pdes, I915_PDES) {
691                 if (WARN_ON(!pd->page_table[i]))
692                         continue;
693
694                 unmap_and_free_pt(pd->page_table[i], dev);
695                 pd->page_table[i] = NULL;
696         }
697 }
698
699 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
700 {
701         struct i915_hw_ppgtt *ppgtt =
702                 container_of(vm, struct i915_hw_ppgtt, base);
703         int i;
704
705         for_each_set_bit(i, ppgtt->pdp.used_pdpes, GEN8_LEGACY_PDPES) {
706                 if (WARN_ON(!ppgtt->pdp.page_directory[i]))
707                         continue;
708
709                 gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
710                 unmap_and_free_pd(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
711         }
712
713         unmap_and_free_pd(ppgtt->scratch_pd, ppgtt->base.dev);
714         unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
715 }
716
717 /**
718  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
719  * @ppgtt:      Master ppgtt structure.
720  * @pd:         Page directory for this address range.
721  * @start:      Starting virtual address to begin allocations.
722  * @length      Size of the allocations.
723  * @new_pts:    Bitmap set by function with new allocations. Likely used by the
724  *              caller to free on error.
725  *
726  * Allocate the required number of page tables. Extremely similar to
727  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
728  * the page directory boundary (instead of the page directory pointer). That
729  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
730  * possible, and likely that the caller will need to use multiple calls of this
731  * function to achieve the appropriate allocation.
732  *
733  * Return: 0 if success; negative error code otherwise.
734  */
735 static int gen8_ppgtt_alloc_pagetabs(struct i915_hw_ppgtt *ppgtt,
736                                      struct i915_page_directory *pd,
737                                      uint64_t start,
738                                      uint64_t length,
739                                      unsigned long *new_pts)
740 {
741         struct drm_device *dev = ppgtt->base.dev;
742         struct i915_page_table *pt;
743         uint64_t temp;
744         uint32_t pde;
745
746         gen8_for_each_pde(pt, pd, start, length, temp, pde) {
747                 /* Don't reallocate page tables */
748                 if (pt) {
749                         /* Scratch is never allocated this way */
750                         WARN_ON(pt == ppgtt->scratch_pt);
751                         continue;
752                 }
753
754                 pt = alloc_pt_single(dev);
755                 if (IS_ERR(pt))
756                         goto unwind_out;
757
758                 gen8_initialize_pt(&ppgtt->base, pt);
759                 pd->page_table[pde] = pt;
760                 set_bit(pde, new_pts);
761         }
762
763         return 0;
764
765 unwind_out:
766         for_each_set_bit(pde, new_pts, I915_PDES)
767                 unmap_and_free_pt(pd->page_table[pde], dev);
768
769         return -ENOMEM;
770 }
771
772 /**
773  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
774  * @ppgtt:      Master ppgtt structure.
775  * @pdp:        Page directory pointer for this address range.
776  * @start:      Starting virtual address to begin allocations.
777  * @length      Size of the allocations.
778  * @new_pds     Bitmap set by function with new allocations. Likely used by the
779  *              caller to free on error.
780  *
781  * Allocate the required number of page directories starting at the pde index of
782  * @start, and ending at the pde index @start + @length. This function will skip
783  * over already allocated page directories within the range, and only allocate
784  * new ones, setting the appropriate pointer within the pdp as well as the
785  * correct position in the bitmap @new_pds.
786  *
787  * The function will only allocate the pages within the range for a give page
788  * directory pointer. In other words, if @start + @length straddles a virtually
789  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
790  * required by the caller, This is not currently possible, and the BUG in the
791  * code will prevent it.
792  *
793  * Return: 0 if success; negative error code otherwise.
794  */
795 static int gen8_ppgtt_alloc_page_directories(struct i915_hw_ppgtt *ppgtt,
796                                      struct i915_page_directory_pointer *pdp,
797                                      uint64_t start,
798                                      uint64_t length,
799                                      unsigned long *new_pds)
800 {
801         struct drm_device *dev = ppgtt->base.dev;
802         struct i915_page_directory *pd;
803         uint64_t temp;
804         uint32_t pdpe;
805
806         WARN_ON(!bitmap_empty(new_pds, GEN8_LEGACY_PDPES));
807
808         /* FIXME: upper bound must not overflow 32 bits  */
809         WARN_ON((start + length) > (1ULL << 32));
810
811         gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
812                 if (pd)
813                         continue;
814
815                 pd = alloc_pd_single(dev);
816                 if (IS_ERR(pd))
817                         goto unwind_out;
818
819                 gen8_initialize_pd(&ppgtt->base, pd);
820                 pdp->page_directory[pdpe] = pd;
821                 set_bit(pdpe, new_pds);
822         }
823
824         return 0;
825
826 unwind_out:
827         for_each_set_bit(pdpe, new_pds, GEN8_LEGACY_PDPES)
828                 unmap_and_free_pd(pdp->page_directory[pdpe], dev);
829
830         return -ENOMEM;
831 }
832
833 static void
834 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long **new_pts)
835 {
836         int i;
837
838         for (i = 0; i < GEN8_LEGACY_PDPES; i++)
839                 kfree(new_pts[i]);
840         kfree(new_pts);
841         kfree(new_pds);
842 }
843
844 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
845  * of these are based on the number of PDPEs in the system.
846  */
847 static
848 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
849                                          unsigned long ***new_pts)
850 {
851         int i;
852         unsigned long *pds;
853         unsigned long **pts;
854
855         pds = kcalloc(BITS_TO_LONGS(GEN8_LEGACY_PDPES), sizeof(unsigned long), GFP_KERNEL);
856         if (!pds)
857                 return -ENOMEM;
858
859         pts = kcalloc(GEN8_LEGACY_PDPES, sizeof(unsigned long *), GFP_KERNEL);
860         if (!pts) {
861                 kfree(pds);
862                 return -ENOMEM;
863         }
864
865         for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
866                 pts[i] = kcalloc(BITS_TO_LONGS(I915_PDES),
867                                  sizeof(unsigned long), GFP_KERNEL);
868                 if (!pts[i])
869                         goto err_out;
870         }
871
872         *new_pds = pds;
873         *new_pts = pts;
874
875         return 0;
876
877 err_out:
878         free_gen8_temp_bitmaps(pds, pts);
879         return -ENOMEM;
880 }
881
882 static int gen8_alloc_va_range(struct i915_address_space *vm,
883                                uint64_t start,
884                                uint64_t length)
885 {
886         struct i915_hw_ppgtt *ppgtt =
887                 container_of(vm, struct i915_hw_ppgtt, base);
888         unsigned long *new_page_dirs, **new_page_tables;
889         struct i915_page_directory *pd;
890         const uint64_t orig_start = start;
891         const uint64_t orig_length = length;
892         uint64_t temp;
893         uint32_t pdpe;
894         int ret;
895
896         /* Wrap is never okay since we can only represent 48b, and we don't
897          * actually use the other side of the canonical address space.
898          */
899         if (WARN_ON(start + length < start))
900                 return -ERANGE;
901
902         ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables);
903         if (ret)
904                 return ret;
905
906         /* Do the allocations first so we can easily bail out */
907         ret = gen8_ppgtt_alloc_page_directories(ppgtt, &ppgtt->pdp, start, length,
908                                         new_page_dirs);
909         if (ret) {
910                 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
911                 return ret;
912         }
913
914         /* For every page directory referenced, allocate page tables */
915         gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) {
916                 ret = gen8_ppgtt_alloc_pagetabs(ppgtt, pd, start, length,
917                                                 new_page_tables[pdpe]);
918                 if (ret)
919                         goto err_out;
920         }
921
922         start = orig_start;
923         length = orig_length;
924
925         /* Allocations have completed successfully, so set the bitmaps, and do
926          * the mappings. */
927         gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) {
928                 gen8_pde_t *const page_directory = kmap_atomic(pd->page);
929                 struct i915_page_table *pt;
930                 uint64_t pd_len = gen8_clamp_pd(start, length);
931                 uint64_t pd_start = start;
932                 uint32_t pde;
933
934                 /* Every pd should be allocated, we just did that above. */
935                 WARN_ON(!pd);
936
937                 gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
938                         /* Same reasoning as pd */
939                         WARN_ON(!pt);
940                         WARN_ON(!pd_len);
941                         WARN_ON(!gen8_pte_count(pd_start, pd_len));
942
943                         /* Set our used ptes within the page table */
944                         bitmap_set(pt->used_ptes,
945                                    gen8_pte_index(pd_start),
946                                    gen8_pte_count(pd_start, pd_len));
947
948                         /* Our pde is now pointing to the pagetable, pt */
949                         set_bit(pde, pd->used_pdes);
950
951                         /* Map the PDE to the page table */
952                         __gen8_do_map_pt(page_directory + pde, pt, vm->dev);
953
954                         /* NB: We haven't yet mapped ptes to pages. At this
955                          * point we're still relying on insert_entries() */
956                 }
957
958                 if (!HAS_LLC(vm->dev))
959                         drm_clflush_virt_range(page_directory, PAGE_SIZE);
960
961                 kunmap_atomic(page_directory);
962
963                 set_bit(pdpe, ppgtt->pdp.used_pdpes);
964         }
965
966         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
967         return 0;
968
969 err_out:
970         while (pdpe--) {
971                 for_each_set_bit(temp, new_page_tables[pdpe], I915_PDES)
972                         unmap_and_free_pt(ppgtt->pdp.page_directory[pdpe]->page_table[temp], vm->dev);
973         }
974
975         for_each_set_bit(pdpe, new_page_dirs, GEN8_LEGACY_PDPES)
976                 unmap_and_free_pd(ppgtt->pdp.page_directory[pdpe], vm->dev);
977
978         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
979         return ret;
980 }
981
982 /*
983  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
984  * with a net effect resembling a 2-level page table in normal x86 terms. Each
985  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
986  * space.
987  *
988  */
989 static int gen8_ppgtt_init_common(struct i915_hw_ppgtt *ppgtt, uint64_t size)
990 {
991         ppgtt->scratch_pt = alloc_pt_single(ppgtt->base.dev);
992         if (IS_ERR(ppgtt->scratch_pt))
993                 return PTR_ERR(ppgtt->scratch_pt);
994
995         ppgtt->scratch_pd = alloc_pd_single(ppgtt->base.dev);
996         if (IS_ERR(ppgtt->scratch_pd))
997                 return PTR_ERR(ppgtt->scratch_pd);
998
999         gen8_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
1000         gen8_initialize_pd(&ppgtt->base, ppgtt->scratch_pd);
1001
1002         ppgtt->base.start = 0;
1003         ppgtt->base.total = size;
1004         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1005         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1006         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1007         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1008         ppgtt->base.bind_vma = ppgtt_bind_vma;
1009
1010         ppgtt->switch_mm = gen8_mm_switch;
1011
1012         return 0;
1013 }
1014
1015 static int gen8_aliasing_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1016 {
1017         struct drm_device *dev = ppgtt->base.dev;
1018         struct drm_i915_private *dev_priv = dev->dev_private;
1019         uint64_t start = 0, size = dev_priv->gtt.base.total;
1020         int ret;
1021
1022         ret = gen8_ppgtt_init_common(ppgtt, dev_priv->gtt.base.total);
1023         if (ret)
1024                 return ret;
1025
1026         /* Aliasing PPGTT has to always work and be mapped because of the way we
1027          * use RESTORE_INHIBIT in the context switch. This will be fixed
1028          * eventually. */
1029         ret = gen8_alloc_va_range(&ppgtt->base, start, size);
1030         if (ret) {
1031                 unmap_and_free_pd(ppgtt->scratch_pd, ppgtt->base.dev);
1032                 unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1033                 return ret;
1034         }
1035
1036         ppgtt->base.allocate_va_range = NULL;
1037         ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1038
1039         return 0;
1040 }
1041
1042 /*
1043  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1044  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1045  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1046  * space.
1047  *
1048  */
1049 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1050 {
1051         ppgtt->scratch_pt = alloc_pt_single(ppgtt->base.dev);
1052         if (IS_ERR(ppgtt->scratch_pt))
1053                 return PTR_ERR(ppgtt->scratch_pt);
1054
1055         ppgtt->scratch_pd = alloc_pd_single(ppgtt->base.dev);
1056         if (IS_ERR(ppgtt->scratch_pd))
1057                 return PTR_ERR(ppgtt->scratch_pd);
1058
1059         gen8_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
1060         gen8_initialize_pd(&ppgtt->base, ppgtt->scratch_pd);
1061
1062         ppgtt->base.start = 0;
1063         ppgtt->base.total = 1ULL << 32;
1064 #define CONFIG_X86_32 0
1065         if (IS_ENABLED(CONFIG_X86_32))
1066                 /* While we have a proliferation of size_t variables
1067                  * we cannot represent the full ppgtt size on 32bit,
1068                  * so limit it to the same size as the GGTT (currently
1069                  * 2GiB).
1070                  */
1071                 ppgtt->base.total = to_i915(ppgtt->base.dev)->gtt.base.total;
1072         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1073         ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1074         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1075         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1076         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1077         ppgtt->base.bind_vma = ppgtt_bind_vma;
1078
1079         ppgtt->switch_mm = gen8_mm_switch;
1080
1081         return 0;
1082 }
1083
1084 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1085 {
1086         struct i915_address_space *vm = &ppgtt->base;
1087         struct i915_page_table *unused;
1088         gen6_pte_t scratch_pte;
1089         uint32_t pd_entry;
1090         uint32_t  pte, pde, temp;
1091         uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1092
1093         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
1094
1095         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
1096                 u32 expected;
1097                 gen6_pte_t *pt_vaddr;
1098                 dma_addr_t pt_addr = ppgtt->pd.page_table[pde]->daddr;
1099                 pd_entry = readl(ppgtt->pd_addr + pde);
1100                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1101
1102                 if (pd_entry != expected)
1103                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1104                                    pde,
1105                                    pd_entry,
1106                                    expected);
1107                 seq_printf(m, "\tPDE: %x\n", pd_entry);
1108
1109                 pt_vaddr = kmap_atomic(ppgtt->pd.page_table[pde]->page);
1110                 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1111                         unsigned long va =
1112                                 (pde * PAGE_SIZE * GEN6_PTES) +
1113                                 (pte * PAGE_SIZE);
1114                         int i;
1115                         bool found = false;
1116                         for (i = 0; i < 4; i++)
1117                                 if (pt_vaddr[pte + i] != scratch_pte)
1118                                         found = true;
1119                         if (!found)
1120                                 continue;
1121
1122                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1123                         for (i = 0; i < 4; i++) {
1124                                 if (pt_vaddr[pte + i] != scratch_pte)
1125                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
1126                                 else
1127                                         seq_puts(m, "  SCRATCH ");
1128                         }
1129                         seq_puts(m, "\n");
1130                 }
1131                 kunmap_atomic(pt_vaddr);
1132         }
1133 }
1134
1135 /* Write pde (index) from the page directory @pd to the page table @pt */
1136 static void gen6_write_pde(struct i915_page_directory *pd,
1137                             const int pde, struct i915_page_table *pt)
1138 {
1139         /* Caller needs to make sure the write completes if necessary */
1140         struct i915_hw_ppgtt *ppgtt =
1141                 container_of(pd, struct i915_hw_ppgtt, pd);
1142         u32 pd_entry;
1143
1144         pd_entry = GEN6_PDE_ADDR_ENCODE(pt->daddr);
1145         pd_entry |= GEN6_PDE_VALID;
1146
1147         writel(pd_entry, ppgtt->pd_addr + pde);
1148 }
1149
1150 /* Write all the page tables found in the ppgtt structure to incrementing page
1151  * directories. */
1152 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1153                                   struct i915_page_directory *pd,
1154                                   uint32_t start, uint32_t length)
1155 {
1156         struct i915_page_table *pt;
1157         uint32_t pde, temp;
1158
1159         gen6_for_each_pde(pt, pd, start, length, temp, pde)
1160                 gen6_write_pde(pd, pde, pt);
1161
1162         /* Make sure write is complete before other code can use this page
1163          * table. Also require for WC mapped PTEs */
1164         readl(dev_priv->gtt.gsm);
1165 }
1166
1167 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1168 {
1169         BUG_ON(ppgtt->pd.pd_offset & 0x3f);
1170
1171         return (ppgtt->pd.pd_offset / 64) << 16;
1172 }
1173
1174 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1175                          struct intel_engine_cs *ring)
1176 {
1177         int ret;
1178
1179         /* NB: TLBs must be flushed and invalidated before a switch */
1180         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1181         if (ret)
1182                 return ret;
1183
1184         ret = intel_ring_begin(ring, 6);
1185         if (ret)
1186                 return ret;
1187
1188         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1189         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1190         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1191         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1192         intel_ring_emit(ring, get_pd_offset(ppgtt));
1193         intel_ring_emit(ring, MI_NOOP);
1194         intel_ring_advance(ring);
1195
1196         return 0;
1197 }
1198
1199 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1200                           struct intel_engine_cs *ring)
1201 {
1202         struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1203
1204         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1205         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1206         return 0;
1207 }
1208
1209 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1210                           struct intel_engine_cs *ring)
1211 {
1212         int ret;
1213
1214         /* NB: TLBs must be flushed and invalidated before a switch */
1215         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1216         if (ret)
1217                 return ret;
1218
1219         ret = intel_ring_begin(ring, 6);
1220         if (ret)
1221                 return ret;
1222
1223         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1224         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1225         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1226         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1227         intel_ring_emit(ring, get_pd_offset(ppgtt));
1228         intel_ring_emit(ring, MI_NOOP);
1229         intel_ring_advance(ring);
1230
1231         /* XXX: RCS is the only one to auto invalidate the TLBs? */
1232         if (ring->id != RCS) {
1233                 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1234                 if (ret)
1235                         return ret;
1236         }
1237
1238         return 0;
1239 }
1240
1241 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1242                           struct intel_engine_cs *ring)
1243 {
1244         struct drm_device *dev = ppgtt->base.dev;
1245         struct drm_i915_private *dev_priv = dev->dev_private;
1246
1247
1248         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1249         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1250
1251         POSTING_READ(RING_PP_DIR_DCLV(ring));
1252
1253         return 0;
1254 }
1255
1256 static void gen8_ppgtt_enable(struct drm_device *dev)
1257 {
1258         struct drm_i915_private *dev_priv = dev->dev_private;
1259         struct intel_engine_cs *ring;
1260         int j;
1261
1262         for_each_ring(ring, dev_priv, j) {
1263                 I915_WRITE(RING_MODE_GEN7(ring),
1264                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1265         }
1266 }
1267
1268 static void gen7_ppgtt_enable(struct drm_device *dev)
1269 {
1270         struct drm_i915_private *dev_priv = dev->dev_private;
1271         struct intel_engine_cs *ring;
1272         uint32_t ecochk, ecobits;
1273         int i;
1274
1275         ecobits = I915_READ(GAC_ECO_BITS);
1276         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1277
1278         ecochk = I915_READ(GAM_ECOCHK);
1279         if (IS_HASWELL(dev)) {
1280                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1281         } else {
1282                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1283                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1284         }
1285         I915_WRITE(GAM_ECOCHK, ecochk);
1286
1287         for_each_ring(ring, dev_priv, i) {
1288                 /* GFX_MODE is per-ring on gen7+ */
1289                 I915_WRITE(RING_MODE_GEN7(ring),
1290                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1291         }
1292 }
1293
1294 static void gen6_ppgtt_enable(struct drm_device *dev)
1295 {
1296         struct drm_i915_private *dev_priv = dev->dev_private;
1297         uint32_t ecochk, gab_ctl, ecobits;
1298
1299         ecobits = I915_READ(GAC_ECO_BITS);
1300         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1301                    ECOBITS_PPGTT_CACHE64B);
1302
1303         gab_ctl = I915_READ(GAB_CTL);
1304         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1305
1306         ecochk = I915_READ(GAM_ECOCHK);
1307         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1308
1309         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1310 }
1311
1312 /* PPGTT support for Sandybdrige/Gen6 and later */
1313 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1314                                    uint64_t start,
1315                                    uint64_t length,
1316                                    bool use_scratch)
1317 {
1318         struct i915_hw_ppgtt *ppgtt =
1319                 container_of(vm, struct i915_hw_ppgtt, base);
1320         gen6_pte_t *pt_vaddr, scratch_pte;
1321         unsigned first_entry = start >> PAGE_SHIFT;
1322         unsigned num_entries = length >> PAGE_SHIFT;
1323         unsigned act_pt = first_entry / GEN6_PTES;
1324         unsigned first_pte = first_entry % GEN6_PTES;
1325         unsigned last_pte, i;
1326
1327         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
1328
1329         while (num_entries) {
1330                 last_pte = first_pte + num_entries;
1331                 if (last_pte > GEN6_PTES)
1332                         last_pte = GEN6_PTES;
1333
1334                 pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page);
1335
1336                 for (i = first_pte; i < last_pte; i++)
1337                         pt_vaddr[i] = scratch_pte;
1338
1339                 kunmap_atomic(pt_vaddr);
1340
1341                 num_entries -= last_pte - first_pte;
1342                 first_pte = 0;
1343                 act_pt++;
1344         }
1345 }
1346
1347 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1348                                       struct sg_table *pages,
1349                                       uint64_t start,
1350                                       enum i915_cache_level cache_level, u32 flags)
1351 {
1352         struct i915_hw_ppgtt *ppgtt =
1353                 container_of(vm, struct i915_hw_ppgtt, base);
1354         gen6_pte_t *pt_vaddr;
1355         unsigned first_entry = start >> PAGE_SHIFT;
1356         unsigned act_pt = first_entry / GEN6_PTES;
1357         unsigned act_pte = first_entry % GEN6_PTES;
1358         struct sg_page_iter sg_iter;
1359
1360         pt_vaddr = NULL;
1361         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1362                 if (pt_vaddr == NULL)
1363                         pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page);
1364
1365                 pt_vaddr[act_pte] =
1366                         vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1367                                        cache_level, true, flags);
1368
1369                 if (++act_pte == GEN6_PTES) {
1370                         kunmap_atomic(pt_vaddr);
1371                         pt_vaddr = NULL;
1372                         act_pt++;
1373                         act_pte = 0;
1374                 }
1375         }
1376         if (pt_vaddr)
1377                 kunmap_atomic(pt_vaddr);
1378 }
1379
1380 /* PDE TLBs are a pain invalidate pre GEN8. It requires a context reload. If we
1381  * are switching between contexts with the same LRCA, we also must do a force
1382  * restore.
1383  */
1384 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1385 {
1386         /* If current vm != vm, */
1387         ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1388 }
1389
1390 static void gen6_initialize_pt(struct i915_address_space *vm,
1391                 struct i915_page_table *pt)
1392 {
1393         gen6_pte_t *pt_vaddr, scratch_pte;
1394         int i;
1395
1396         WARN_ON(vm->scratch.addr == 0);
1397
1398         scratch_pte = vm->pte_encode(vm->scratch.addr,
1399                         I915_CACHE_LLC, true, 0);
1400
1401         pt_vaddr = kmap_atomic(pt->page);
1402
1403         for (i = 0; i < GEN6_PTES; i++)
1404                 pt_vaddr[i] = scratch_pte;
1405
1406         kunmap_atomic(pt_vaddr);
1407 }
1408
1409 static int gen6_alloc_va_range(struct i915_address_space *vm,
1410                                uint64_t start, uint64_t length)
1411 {
1412         DECLARE_BITMAP(new_page_tables, I915_PDES);
1413         struct drm_device *dev = vm->dev;
1414         struct drm_i915_private *dev_priv = dev->dev_private;
1415         struct i915_hw_ppgtt *ppgtt =
1416                                 container_of(vm, struct i915_hw_ppgtt, base);
1417         struct i915_page_table *pt;
1418         const uint32_t start_save = start, length_save = length;
1419         uint32_t pde, temp;
1420         int ret;
1421
1422         WARN_ON(upper_32_bits(start));
1423
1424         bitmap_zero(new_page_tables, I915_PDES);
1425
1426         /* The allocation is done in two stages so that we can bail out with
1427          * minimal amount of pain. The first stage finds new page tables that
1428          * need allocation. The second stage marks use ptes within the page
1429          * tables.
1430          */
1431         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1432                 if (pt != ppgtt->scratch_pt) {
1433                         WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1434                         continue;
1435                 }
1436
1437                 /* We've already allocated a page table */
1438                 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1439
1440                 pt = alloc_pt_single(dev);
1441                 if (IS_ERR(pt)) {
1442                         ret = PTR_ERR(pt);
1443                         goto unwind_out;
1444                 }
1445
1446                 gen6_initialize_pt(vm, pt);
1447
1448                 ppgtt->pd.page_table[pde] = pt;
1449                 set_bit(pde, new_page_tables);
1450                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1451         }
1452
1453         start = start_save;
1454         length = length_save;
1455
1456         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1457                 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1458
1459                 bitmap_zero(tmp_bitmap, GEN6_PTES);
1460                 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1461                            gen6_pte_count(start, length));
1462
1463                 if (test_and_clear_bit(pde, new_page_tables))
1464                         gen6_write_pde(&ppgtt->pd, pde, pt);
1465
1466                 trace_i915_page_table_entry_map(vm, pde, pt,
1467                                          gen6_pte_index(start),
1468                                          gen6_pte_count(start, length),
1469                                          GEN6_PTES);
1470                 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1471                                 GEN6_PTES);
1472         }
1473
1474         WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1475
1476         /* Make sure write is complete before other code can use this page
1477          * table. Also require for WC mapped PTEs */
1478         readl(dev_priv->gtt.gsm);
1479
1480         mark_tlbs_dirty(ppgtt);
1481         return 0;
1482
1483 unwind_out:
1484         for_each_set_bit(pde, new_page_tables, I915_PDES) {
1485                 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1486
1487                 ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1488                 unmap_and_free_pt(pt, vm->dev);
1489         }
1490
1491         mark_tlbs_dirty(ppgtt);
1492         return ret;
1493 }
1494
1495 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1496 {
1497         struct i915_hw_ppgtt *ppgtt =
1498                 container_of(vm, struct i915_hw_ppgtt, base);
1499         struct i915_page_table *pt;
1500         uint32_t pde;
1501
1502
1503         drm_mm_remove_node(&ppgtt->node);
1504
1505         gen6_for_all_pdes(pt, ppgtt, pde) {
1506                 if (pt != ppgtt->scratch_pt)
1507                         unmap_and_free_pt(pt, ppgtt->base.dev);
1508         }
1509
1510         unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1511         unmap_and_free_pd(&ppgtt->pd, ppgtt->base.dev);
1512 }
1513
1514 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1515 {
1516         struct drm_device *dev = ppgtt->base.dev;
1517         struct drm_i915_private *dev_priv = dev->dev_private;
1518         bool retried = false;
1519         int ret;
1520
1521         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1522          * allocator works in address space sizes, so it's multiplied by page
1523          * size. We allocate at the top of the GTT to avoid fragmentation.
1524          */
1525         BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1526         ppgtt->scratch_pt = alloc_pt_single(ppgtt->base.dev);
1527         if (IS_ERR(ppgtt->scratch_pt))
1528                 return PTR_ERR(ppgtt->scratch_pt);
1529
1530         gen6_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
1531
1532 alloc:
1533         ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1534                                                   &ppgtt->node, GEN6_PD_SIZE,
1535                                                   GEN6_PD_ALIGN, 0,
1536                                                   0, dev_priv->gtt.base.total,
1537                                                   DRM_MM_TOPDOWN);
1538         if (ret == -ENOSPC && !retried) {
1539                 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1540                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
1541                                                I915_CACHE_NONE,
1542                                                0, dev_priv->gtt.base.total,
1543                                                0);
1544                 if (ret)
1545                         goto err_out;
1546
1547                 retried = true;
1548                 goto alloc;
1549         }
1550
1551         if (ret)
1552                 goto err_out;
1553
1554
1555         if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1556                 DRM_DEBUG("Forced to use aperture for PDEs\n");
1557
1558         return 0;
1559
1560 err_out:
1561         unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1562         return ret;
1563 }
1564
1565 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1566 {
1567         return gen6_ppgtt_allocate_page_directories(ppgtt);
1568 }
1569
1570 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1571                                   uint64_t start, uint64_t length)
1572 {
1573         struct i915_page_table *unused;
1574         uint32_t pde, temp;
1575
1576         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
1577                 ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1578 }
1579
1580 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt, bool aliasing)
1581 {
1582         struct drm_device *dev = ppgtt->base.dev;
1583         struct drm_i915_private *dev_priv = dev->dev_private;
1584         int ret;
1585
1586         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1587         if (IS_GEN6(dev)) {
1588                 ppgtt->switch_mm = gen6_mm_switch;
1589         } else if (IS_HASWELL(dev)) {
1590                 ppgtt->switch_mm = hsw_mm_switch;
1591         } else if (IS_GEN7(dev)) {
1592                 ppgtt->switch_mm = gen7_mm_switch;
1593         } else
1594                 BUG();
1595
1596         if (intel_vgpu_active(dev))
1597                 ppgtt->switch_mm = vgpu_mm_switch;
1598
1599         ret = gen6_ppgtt_alloc(ppgtt);
1600         if (ret)
1601                 return ret;
1602
1603         if (aliasing) {
1604                 /* preallocate all pts */
1605                 ret = alloc_pt_range(&ppgtt->pd, 0, I915_PDES,
1606                                 ppgtt->base.dev);
1607
1608                 if (ret) {
1609                         gen6_ppgtt_cleanup(&ppgtt->base);
1610                         return ret;
1611                 }
1612         }
1613
1614         ppgtt->base.allocate_va_range = aliasing ? NULL : gen6_alloc_va_range;
1615         ppgtt->base.allocate_va_range = gen6_alloc_va_range;
1616         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1617         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1618         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1619         ppgtt->base.bind_vma = ppgtt_bind_vma;
1620         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1621         ppgtt->base.start = 0;
1622         ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
1623         ppgtt->debug_dump = gen6_dump_ppgtt;
1624
1625         ppgtt->pd.pd_offset =
1626                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1627
1628         ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
1629                 ppgtt->pd.pd_offset / sizeof(gen6_pte_t);
1630
1631         if (aliasing)
1632                 ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1633         else
1634                 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1635
1636         gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
1637
1638         DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
1639                          ppgtt->node.size >> 20,
1640                          ppgtt->node.start / PAGE_SIZE);
1641
1642         DRM_DEBUG("Adding PPGTT at offset %x\n",
1643                   ppgtt->pd.pd_offset << 10);
1644
1645         return 0;
1646 }
1647
1648 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt,
1649                 bool aliasing)
1650 {
1651         struct drm_i915_private *dev_priv = dev->dev_private;
1652
1653         ppgtt->base.dev = dev;
1654         ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1655
1656         if (INTEL_INFO(dev)->gen < 8)
1657                 return gen6_ppgtt_init(ppgtt, aliasing);
1658         else if (aliasing)
1659                 return gen8_aliasing_ppgtt_init(ppgtt);
1660         else
1661                 return gen8_ppgtt_init(ppgtt);
1662 }
1663 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1664 {
1665         struct drm_i915_private *dev_priv = dev->dev_private;
1666         int ret = 0;
1667
1668         ret = __hw_ppgtt_init(dev, ppgtt, false);
1669         if (ret == 0) {
1670                 kref_init(&ppgtt->ref);
1671                 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1672                             ppgtt->base.total);
1673                 i915_init_vm(dev_priv, &ppgtt->base);
1674         }
1675
1676         return ret;
1677 }
1678
1679 int i915_ppgtt_init_hw(struct drm_device *dev)
1680 {
1681         struct drm_i915_private *dev_priv = dev->dev_private;
1682         struct intel_engine_cs *ring;
1683         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1684         int i, ret = 0;
1685
1686         /* In the case of execlists, PPGTT is enabled by the context descriptor
1687          * and the PDPs are contained within the context itself.  We don't
1688          * need to do anything here. */
1689         if (i915.enable_execlists)
1690                 return 0;
1691
1692         if (!USES_PPGTT(dev))
1693                 return 0;
1694
1695         if (IS_GEN6(dev))
1696                 gen6_ppgtt_enable(dev);
1697         else if (IS_GEN7(dev))
1698                 gen7_ppgtt_enable(dev);
1699         else if (INTEL_INFO(dev)->gen >= 8)
1700                 gen8_ppgtt_enable(dev);
1701         else
1702                 MISSING_CASE(INTEL_INFO(dev)->gen);
1703
1704         if (ppgtt) {
1705                 for_each_ring(ring, dev_priv, i) {
1706                         ret = ppgtt->switch_mm(ppgtt, ring);
1707                         if (ret != 0)
1708                                 return ret;
1709                 }
1710         }
1711
1712         return ret;
1713 }
1714 struct i915_hw_ppgtt *
1715 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
1716 {
1717         struct i915_hw_ppgtt *ppgtt;
1718         int ret;
1719
1720         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1721         if (!ppgtt)
1722                 return ERR_PTR(-ENOMEM);
1723
1724         ret = i915_ppgtt_init(dev, ppgtt);
1725         if (ret) {
1726                 kfree(ppgtt);
1727                 return ERR_PTR(ret);
1728         }
1729
1730         ppgtt->file_priv = fpriv;
1731
1732         trace_i915_ppgtt_create(&ppgtt->base);
1733
1734         return ppgtt;
1735 }
1736
1737 void  i915_ppgtt_release(struct kref *kref)
1738 {
1739         struct i915_hw_ppgtt *ppgtt =
1740                 container_of(kref, struct i915_hw_ppgtt, ref);
1741
1742         trace_i915_ppgtt_release(&ppgtt->base);
1743
1744         /* vmas should already be unbound */
1745         WARN_ON(!list_empty(&ppgtt->base.active_list));
1746         WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1747
1748         list_del(&ppgtt->base.global_link);
1749         drm_mm_takedown(&ppgtt->base.mm);
1750
1751         ppgtt->base.cleanup(&ppgtt->base);
1752         kfree(ppgtt);
1753 }
1754
1755 extern int intel_iommu_gfx_mapped;
1756 /* Certain Gen5 chipsets require require idling the GPU before
1757  * unmapping anything from the GTT when VT-d is enabled.
1758  */
1759 static bool needs_idle_maps(struct drm_device *dev)
1760 {
1761 #ifdef CONFIG_INTEL_IOMMU
1762         /* Query intel_iommu to see if we need the workaround. Presumably that
1763          * was loaded first.
1764          */
1765         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1766                 return true;
1767 #endif
1768         return false;
1769 }
1770
1771 static bool do_idling(struct drm_i915_private *dev_priv)
1772 {
1773         bool ret = dev_priv->mm.interruptible;
1774
1775         if (unlikely(dev_priv->gtt.do_idle_maps)) {
1776                 dev_priv->mm.interruptible = false;
1777                 if (i915_gpu_idle(dev_priv->dev)) {
1778                         DRM_ERROR("Couldn't idle GPU\n");
1779                         /* Wait a bit, in hopes it avoids the hang */
1780                         udelay(10);
1781                 }
1782         }
1783
1784         return ret;
1785 }
1786
1787 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1788 {
1789         if (unlikely(dev_priv->gtt.do_idle_maps))
1790                 dev_priv->mm.interruptible = interruptible;
1791 }
1792
1793 void i915_check_and_clear_faults(struct drm_device *dev)
1794 {
1795         struct drm_i915_private *dev_priv = dev->dev_private;
1796         struct intel_engine_cs *ring;
1797         int i;
1798
1799         if (INTEL_INFO(dev)->gen < 6)
1800                 return;
1801
1802         for_each_ring(ring, dev_priv, i) {
1803                 u32 fault_reg;
1804                 fault_reg = I915_READ(RING_FAULT_REG(ring));
1805                 if (fault_reg & RING_FAULT_VALID) {
1806 #if 0
1807                         DRM_DEBUG_DRIVER("Unexpected fault\n"
1808                                          "\tAddr: 0x%08lx\n"
1809                                          "\tAddress space: %s\n"
1810                                          "\tSource ID: %d\n"
1811                                          "\tType: %d\n",
1812                                          fault_reg & PAGE_MASK,
1813                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1814                                          RING_FAULT_SRCID(fault_reg),
1815                                          RING_FAULT_FAULT_TYPE(fault_reg));
1816 #endif
1817                         I915_WRITE(RING_FAULT_REG(ring),
1818                                    fault_reg & ~RING_FAULT_VALID);
1819                 }
1820         }
1821         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1822 }
1823
1824 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
1825 {
1826         if (INTEL_INFO(dev_priv->dev)->gen < 6) {
1827                 intel_gtt_chipset_flush();
1828         } else {
1829                 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1830                 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1831         }
1832 }
1833
1834 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1835 {
1836         struct drm_i915_private *dev_priv = dev->dev_private;
1837
1838         /* Don't bother messing with faults pre GEN6 as we have little
1839          * documentation supporting that it's a good idea.
1840          */
1841         if (INTEL_INFO(dev)->gen < 6)
1842                 return;
1843
1844         i915_check_and_clear_faults(dev);
1845
1846         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1847                                        dev_priv->gtt.base.start,
1848                                        dev_priv->gtt.base.total,
1849                                        true);
1850
1851         i915_ggtt_flush(dev_priv);
1852 }
1853
1854 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1855 {
1856         if (!dma_map_sg(obj->base.dev->pdev->dev,
1857                         obj->pages->sgl, obj->pages->nents,
1858                         PCI_DMA_BIDIRECTIONAL))
1859                 return -ENOSPC;
1860
1861         return 0;
1862 }
1863
1864 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
1865 {
1866 #if 0
1867         writeq(pte, addr);
1868 #else
1869         iowrite32((u32)pte, addr);
1870         iowrite32(pte >> 32, addr + 4);
1871 #endif
1872 }
1873
1874 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1875                                      struct sg_table *st,
1876                                      uint64_t start,
1877                                      enum i915_cache_level level, u32 unused)
1878 {
1879         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1880         unsigned first_entry = start >> PAGE_SHIFT;
1881         gen8_pte_t __iomem *gtt_entries =
1882                 (gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1883         int i = 0;
1884         struct sg_page_iter sg_iter;
1885         dma_addr_t addr = 0; /* shut up gcc */
1886
1887         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1888                 addr = sg_dma_address(sg_iter.sg) +
1889                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
1890                 gen8_set_pte(&gtt_entries[i],
1891                              gen8_pte_encode(addr, level, true));
1892                 i++;
1893         }
1894
1895         /*
1896          * XXX: This serves as a posting read to make sure that the PTE has
1897          * actually been updated. There is some concern that even though
1898          * registers and PTEs are within the same BAR that they are potentially
1899          * of NUMA access patterns. Therefore, even with the way we assume
1900          * hardware should work, we must keep this posting read for paranoia.
1901          */
1902         if (i != 0)
1903                 WARN_ON(readq(&gtt_entries[i-1])
1904                         != gen8_pte_encode(addr, level, true));
1905
1906         /* This next bit makes the above posting read even more important. We
1907          * want to flush the TLBs only after we're certain all the PTE updates
1908          * have finished.
1909          */
1910         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1911         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1912 }
1913
1914 /*
1915  * Binds an object into the global gtt with the specified cache level. The object
1916  * will be accessible to the GPU via commands whose operands reference offsets
1917  * within the global GTT as well as accessible by the GPU through the GMADR
1918  * mapped BAR (dev_priv->mm.gtt->gtt).
1919  */
1920 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1921                                      struct sg_table *st,
1922                                      uint64_t start,
1923                                      enum i915_cache_level level, u32 flags)
1924 {
1925         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1926         unsigned first_entry = start >> PAGE_SHIFT;
1927         gen6_pte_t __iomem *gtt_entries =
1928                 (gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1929         int i = 0;
1930         struct sg_page_iter sg_iter;
1931         dma_addr_t addr = 0;
1932
1933         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1934                 addr = sg_page_iter_dma_address(&sg_iter);
1935                 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1936                 i++;
1937         }
1938
1939         /* XXX: This serves as a posting read to make sure that the PTE has
1940          * actually been updated. There is some concern that even though
1941          * registers and PTEs are within the same BAR that they are potentially
1942          * of NUMA access patterns. Therefore, even with the way we assume
1943          * hardware should work, we must keep this posting read for paranoia.
1944          */
1945         if (i != 0) {
1946                 unsigned long gtt = readl(&gtt_entries[i-1]);
1947                 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1948         }
1949
1950         /* This next bit makes the above posting read even more important. We
1951          * want to flush the TLBs only after we're certain all the PTE updates
1952          * have finished.
1953          */
1954         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1955         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1956 }
1957
1958 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1959                                   uint64_t start,
1960                                   uint64_t length,
1961                                   bool use_scratch)
1962 {
1963         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1964         unsigned first_entry = start >> PAGE_SHIFT;
1965         unsigned num_entries = length >> PAGE_SHIFT;
1966         gen8_pte_t scratch_pte, __iomem *gtt_base =
1967                 (gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1968         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1969         int i;
1970
1971         if (WARN(num_entries > max_entries,
1972                  "First entry = %d; Num entries = %d (max=%d)\n",
1973                  first_entry, num_entries, max_entries))
1974                 num_entries = max_entries;
1975
1976         scratch_pte = gen8_pte_encode(vm->scratch.addr,
1977                                       I915_CACHE_LLC,
1978                                       use_scratch);
1979         for (i = 0; i < num_entries; i++)
1980                 gen8_set_pte(&gtt_base[i], scratch_pte);
1981         readl(gtt_base);
1982 }
1983
1984 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1985                                   uint64_t start,
1986                                   uint64_t length,
1987                                   bool use_scratch)
1988 {
1989         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1990         unsigned first_entry = start >> PAGE_SHIFT;
1991         unsigned num_entries = length >> PAGE_SHIFT;
1992         gen6_pte_t scratch_pte, __iomem *gtt_base =
1993                 (gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1994         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1995         int i;
1996
1997         if (WARN(num_entries > max_entries,
1998                  "First entry = %d; Num entries = %d (max=%d)\n",
1999                  first_entry, num_entries, max_entries))
2000                 num_entries = max_entries;
2001
2002         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0);
2003
2004         for (i = 0; i < num_entries; i++)
2005                 iowrite32(scratch_pte, &gtt_base[i]);
2006         readl(gtt_base);
2007 }
2008
2009 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2010                                      struct sg_table *pages,
2011                                      uint64_t start,
2012                                      enum i915_cache_level cache_level, u32 unused)
2013 {
2014         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2015                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2016
2017         intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2018 }
2019
2020 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2021                                   uint64_t start,
2022                                   uint64_t length,
2023                                   bool unused)
2024 {
2025         unsigned first_entry = start >> PAGE_SHIFT;
2026         unsigned num_entries = length >> PAGE_SHIFT;
2027         intel_gtt_clear_range(first_entry, num_entries);
2028 }
2029
2030 static int ggtt_bind_vma(struct i915_vma *vma,
2031                          enum i915_cache_level cache_level,
2032                          u32 flags)
2033 {
2034         struct drm_device *dev = vma->vm->dev;
2035         struct drm_i915_private *dev_priv = dev->dev_private;
2036         struct drm_i915_gem_object *obj = vma->obj;
2037         struct sg_table *pages = obj->pages;
2038         u32 pte_flags = 0;
2039         int ret;
2040
2041         ret = i915_get_ggtt_vma_pages(vma);
2042         if (ret)
2043                 return ret;
2044         pages = vma->ggtt_view.pages;
2045
2046         /* Currently applicable only to VLV */
2047         if (obj->gt_ro)
2048                 pte_flags |= PTE_READ_ONLY;
2049
2050
2051         if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
2052                 vma->vm->insert_entries(vma->vm, pages,
2053                                         vma->node.start,
2054                                         cache_level, pte_flags);
2055
2056                 /* Note the inconsistency here is due to absence of the
2057                  * aliasing ppgtt on gen4 and earlier. Though we always
2058                  * request PIN_USER for execbuffer (translated to LOCAL_BIND),
2059                  * without the appgtt, we cannot honour that request and so
2060                  * must substitute it with a global binding. Since we do this
2061                  * behind the upper layers back, we need to explicitly set
2062                  * the bound flag ourselves.
2063                  */
2064                 vma->bound |= GLOBAL_BIND;
2065
2066         }
2067
2068         if (dev_priv->mm.aliasing_ppgtt && flags & LOCAL_BIND) {
2069                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2070                 appgtt->base.insert_entries(&appgtt->base, pages,
2071                                             vma->node.start,
2072                                             cache_level, pte_flags);
2073         }
2074
2075         return 0;
2076 }
2077
2078 static void ggtt_unbind_vma(struct i915_vma *vma)
2079 {
2080         struct drm_device *dev = vma->vm->dev;
2081         struct drm_i915_private *dev_priv = dev->dev_private;
2082         struct drm_i915_gem_object *obj = vma->obj;
2083         const uint64_t size = min_t(uint64_t,
2084                                     obj->base.size,
2085                                     vma->node.size);
2086
2087         if (vma->bound & GLOBAL_BIND) {
2088                 vma->vm->clear_range(vma->vm,
2089                                      vma->node.start,
2090                                      size,
2091                                      true);
2092         }
2093
2094         if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2095                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2096
2097                 appgtt->base.clear_range(&appgtt->base,
2098                                          vma->node.start,
2099                                          size,
2100                                          true);
2101         }
2102 }
2103
2104 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2105 {
2106         struct drm_device *dev = obj->base.dev;
2107         struct drm_i915_private *dev_priv = dev->dev_private;
2108         bool interruptible;
2109
2110         interruptible = do_idling(dev_priv);
2111
2112         dma_unmap_sg(dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2113                      PCI_DMA_BIDIRECTIONAL);
2114
2115         undo_idling(dev_priv, interruptible);
2116 }
2117
2118 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2119                                   unsigned long color,
2120                                   u64 *start,
2121                                   u64 *end)
2122 {
2123         if (node->color != color)
2124                 *start += 4096;
2125
2126         if (!list_empty(&node->node_list)) {
2127                 node = list_entry(node->node_list.next,
2128                                   struct drm_mm_node,
2129                                   node_list);
2130                 if (node->allocated && node->color != color)
2131                         *end -= 4096;
2132         }
2133 }
2134
2135 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2136                                      unsigned long start,
2137                                      unsigned long mappable_end,
2138                                      unsigned long end)
2139 {
2140         /* Let GEM Manage all of the aperture.
2141          *
2142          * However, leave one page at the end still bound to the scratch page.
2143          * There are a number of places where the hardware apparently prefetches
2144          * past the end of the object, and we've seen multiple hangs with the
2145          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2146          * aperture.  One page should be enough to keep any prefetching inside
2147          * of the aperture.
2148          */
2149         struct drm_i915_private *dev_priv = dev->dev_private;
2150         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2151         unsigned long mappable;
2152         int error;
2153         struct drm_mm_node *entry;
2154         struct drm_i915_gem_object *obj;
2155         unsigned long hole_start, hole_end;
2156         int ret;
2157
2158         mappable = min(end, mappable_end) - start;
2159         BUG_ON(mappable_end > end);
2160
2161         /* Subtract the guard page ... */
2162         drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
2163
2164         dev_priv->gtt.base.start = start;
2165         dev_priv->gtt.base.total = end - start;
2166
2167         if (intel_vgpu_active(dev)) {
2168                 ret = intel_vgt_balloon(dev);
2169                 if (ret)
2170                         return ret;
2171         }
2172
2173         if (!HAS_LLC(dev))
2174                 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
2175
2176         /* Mark any preallocated objects as occupied */
2177         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2178                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2179
2180                 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
2181                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
2182
2183                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2184                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2185                 if (ret) {
2186                         DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2187                         return ret;
2188                 }
2189                 vma->bound |= GLOBAL_BIND;
2190         }
2191
2192         /* Clear any non-preallocated blocks */
2193         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2194                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2195                               hole_start, hole_end);
2196                 ggtt_vm->clear_range(ggtt_vm, hole_start,
2197                                      hole_end - hole_start, true);
2198         }
2199
2200 #ifdef __DragonFly__
2201         device_printf(dev->dev,
2202             "taking over the fictitious range 0x%lx-0x%lx\n",
2203             dev_priv->gtt.mappable_base + start, dev_priv->gtt.mappable_base + start + mappable);
2204         error = -vm_phys_fictitious_reg_range(dev_priv->gtt.mappable_base + start,
2205             dev_priv->gtt.mappable_base + start + mappable, VM_MEMATTR_WRITE_COMBINING);
2206 #endif
2207
2208         /* And finally clear the reserved guard page */
2209         ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2210
2211         if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2212                 struct i915_hw_ppgtt *ppgtt;
2213
2214                 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2215                 if (!ppgtt)
2216                         return -ENOMEM;
2217
2218                 ret = __hw_ppgtt_init(dev, ppgtt, true);
2219                 if (ret) {
2220                         ppgtt->base.cleanup(&ppgtt->base);
2221                         kfree(ppgtt);
2222                         return ret;
2223                 }
2224
2225                 if (ppgtt->base.allocate_va_range)
2226                         ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2227                                                             ppgtt->base.total);
2228                 if (ret) {
2229                         ppgtt->base.cleanup(&ppgtt->base);
2230                         kfree(ppgtt);
2231                         return ret;
2232                 }
2233
2234                 ppgtt->base.clear_range(&ppgtt->base,
2235                                         ppgtt->base.start,
2236                                         ppgtt->base.total,
2237                                         true);
2238
2239                 dev_priv->mm.aliasing_ppgtt = ppgtt;
2240         }
2241
2242         return 0;
2243 }
2244
2245 void i915_gem_init_global_gtt(struct drm_device *dev)
2246 {
2247         struct drm_i915_private *dev_priv = dev->dev_private;
2248         unsigned long gtt_size, mappable_size;
2249
2250         gtt_size = dev_priv->gtt.base.total;
2251         mappable_size = dev_priv->gtt.mappable_end;
2252
2253         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2254 }
2255
2256 void i915_global_gtt_cleanup(struct drm_device *dev)
2257 {
2258         struct drm_i915_private *dev_priv = dev->dev_private;
2259         struct i915_address_space *vm = &dev_priv->gtt.base;
2260
2261         if (dev_priv->mm.aliasing_ppgtt) {
2262                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2263
2264                 ppgtt->base.cleanup(&ppgtt->base);
2265         }
2266
2267         if (drm_mm_initialized(&vm->mm)) {
2268                 if (intel_vgpu_active(dev))
2269                         intel_vgt_deballoon();
2270
2271                 drm_mm_takedown(&vm->mm);
2272                 list_del(&vm->global_link);
2273         }
2274
2275         vm->cleanup(vm);
2276 }
2277
2278 static int setup_scratch_page(struct drm_device *dev)
2279 {
2280         struct drm_i915_private *dev_priv = dev->dev_private;
2281         struct vm_page *page;
2282         dma_addr_t dma_addr;
2283
2284         page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
2285         if (page == NULL)
2286                 return -ENOMEM;
2287         set_pages_uc(page, 1);
2288
2289 #ifdef CONFIG_INTEL_IOMMU
2290         dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
2291                                 PCI_DMA_BIDIRECTIONAL);
2292         if (pci_dma_mapping_error(dev->pdev, dma_addr))
2293                 return -EINVAL;
2294 #else
2295         dma_addr = page_to_phys(page);
2296 #endif
2297         dev_priv->gtt.base.scratch.page = page;
2298         dev_priv->gtt.base.scratch.addr = dma_addr;
2299
2300         return 0;
2301 }
2302
2303 static void teardown_scratch_page(struct drm_device *dev)
2304 {
2305         struct drm_i915_private *dev_priv = dev->dev_private;
2306         struct vm_page *page = dev_priv->gtt.base.scratch.page;
2307
2308         set_pages_wb(page, 1);
2309         pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
2310                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
2311         __free_page(page);
2312 }
2313
2314 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2315 {
2316         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2317         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2318         return snb_gmch_ctl << 20;
2319 }
2320
2321 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2322 {
2323         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2324         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2325         if (bdw_gmch_ctl)
2326                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2327
2328 #ifdef CONFIG_X86_32
2329         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2330         if (bdw_gmch_ctl > 4)
2331                 bdw_gmch_ctl = 4;
2332 #endif
2333
2334         return bdw_gmch_ctl << 20;
2335 }
2336
2337 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2338 {
2339         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2340         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2341
2342         if (gmch_ctrl)
2343                 return 1 << (20 + gmch_ctrl);
2344
2345         return 0;
2346 }
2347
2348 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2349 {
2350         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2351         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2352         return snb_gmch_ctl << 25; /* 32 MB units */
2353 }
2354
2355 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2356 {
2357         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2358         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2359         return bdw_gmch_ctl << 25; /* 32 MB units */
2360 }
2361
2362 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2363 {
2364         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2365         gmch_ctrl &= SNB_GMCH_GMS_MASK;
2366
2367         /*
2368          * 0x0  to 0x10: 32MB increments starting at 0MB
2369          * 0x11 to 0x16: 4MB increments starting at 8MB
2370          * 0x17 to 0x1d: 4MB increments start at 36MB
2371          */
2372         if (gmch_ctrl < 0x11)
2373                 return gmch_ctrl << 25;
2374         else if (gmch_ctrl < 0x17)
2375                 return (gmch_ctrl - 0x11 + 2) << 22;
2376         else
2377                 return (gmch_ctrl - 0x17 + 9) << 22;
2378 }
2379
2380 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2381 {
2382         gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2383         gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2384
2385         if (gen9_gmch_ctl < 0xf0)
2386                 return gen9_gmch_ctl << 25; /* 32 MB units */
2387         else
2388                 /* 4MB increments starting at 0xf0 for 4MB */
2389                 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2390 }
2391
2392 static int ggtt_probe_common(struct drm_device *dev,
2393                              size_t gtt_size)
2394 {
2395         struct drm_i915_private *dev_priv = dev->dev_private;
2396         phys_addr_t gtt_phys_addr;
2397         int ret;
2398
2399         /* For Modern GENs the PTEs and register space are split in the BAR */
2400         gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2401                 (pci_resource_len(dev->pdev, 0) / 2);
2402
2403         /*
2404          * On BXT writes larger than 64 bit to the GTT pagetable range will be
2405          * dropped. For WC mappings in general we have 64 byte burst writes
2406          * when the WC buffer is flushed, so we can't use it, but have to
2407          * resort to an uncached mapping. The WC issue is easily caught by the
2408          * readback check when writing GTT PTE entries.
2409          */
2410         if (IS_BROXTON(dev))
2411                 dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2412         else
2413                 dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2414         if (!dev_priv->gtt.gsm) {
2415                 DRM_ERROR("Failed to map the gtt page table\n");
2416                 return -ENOMEM;
2417         }
2418
2419         ret = setup_scratch_page(dev);
2420         if (ret) {
2421                 DRM_ERROR("Scratch setup failed\n");
2422                 /* iounmap will also get called at remove, but meh */
2423                 iounmap(dev_priv->gtt.gsm);
2424         }
2425
2426         return ret;
2427 }
2428
2429 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2430  * bits. When using advanced contexts each context stores its own PAT, but
2431  * writing this data shouldn't be harmful even in those cases. */
2432 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2433 {
2434         uint64_t pat;
2435
2436         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2437               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2438               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2439               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2440               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2441               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2442               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2443               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2444
2445         if (!USES_PPGTT(dev_priv->dev))
2446                 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2447                  * so RTL will always use the value corresponding to
2448                  * pat_sel = 000".
2449                  * So let's disable cache for GGTT to avoid screen corruptions.
2450                  * MOCS still can be used though.
2451                  * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2452                  * before this patch, i.e. the same uncached + snooping access
2453                  * like on gen6/7 seems to be in effect.
2454                  * - So this just fixes blitter/render access. Again it looks
2455                  * like it's not just uncached access, but uncached + snooping.
2456                  * So we can still hold onto all our assumptions wrt cpu
2457                  * clflushing on LLC machines.
2458                  */
2459                 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2460
2461         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2462          * write would work. */
2463         I915_WRITE(GEN8_PRIVATE_PAT, pat);
2464         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2465 }
2466
2467 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2468 {
2469         uint64_t pat;
2470
2471         /*
2472          * Map WB on BDW to snooped on CHV.
2473          *
2474          * Only the snoop bit has meaning for CHV, the rest is
2475          * ignored.
2476          *
2477          * The hardware will never snoop for certain types of accesses:
2478          * - CPU GTT (GMADR->GGTT->no snoop->memory)
2479          * - PPGTT page tables
2480          * - some other special cycles
2481          *
2482          * As with BDW, we also need to consider the following for GT accesses:
2483          * "For GGTT, there is NO pat_sel[2:0] from the entry,
2484          * so RTL will always use the value corresponding to
2485          * pat_sel = 000".
2486          * Which means we must set the snoop bit in PAT entry 0
2487          * in order to keep the global status page working.
2488          */
2489         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2490               GEN8_PPAT(1, 0) |
2491               GEN8_PPAT(2, 0) |
2492               GEN8_PPAT(3, 0) |
2493               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2494               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2495               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2496               GEN8_PPAT(7, CHV_PPAT_SNOOP);
2497
2498         I915_WRITE(GEN8_PRIVATE_PAT, pat);
2499         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2500 }
2501
2502 static int gen8_gmch_probe(struct drm_device *dev,
2503                            size_t *gtt_total,
2504                            size_t *stolen,
2505                            phys_addr_t *mappable_base,
2506                            unsigned long *mappable_end)
2507 {
2508         struct drm_i915_private *dev_priv = dev->dev_private;
2509         unsigned int gtt_size;
2510         u16 snb_gmch_ctl;
2511         int ret;
2512
2513         /* TODO: We're not aware of mappable constraints on gen8 yet */
2514         *mappable_base = pci_resource_start(dev->pdev, 2);
2515         *mappable_end = pci_resource_len(dev->pdev, 2);
2516
2517 #if 0
2518         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2519                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2520 #endif
2521
2522         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2523
2524         if (INTEL_INFO(dev)->gen >= 9) {
2525                 *stolen = gen9_get_stolen_size(snb_gmch_ctl);
2526                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2527         } else if (IS_CHERRYVIEW(dev)) {
2528                 *stolen = chv_get_stolen_size(snb_gmch_ctl);
2529                 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2530         } else {
2531                 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
2532                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2533         }
2534
2535         *gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2536
2537         if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2538                 chv_setup_private_ppat(dev_priv);
2539         else
2540                 bdw_setup_private_ppat(dev_priv);
2541
2542         ret = ggtt_probe_common(dev, gtt_size);
2543
2544         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2545         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2546         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2547         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2548
2549         return ret;
2550 }
2551
2552 static int gen6_gmch_probe(struct drm_device *dev,
2553                            size_t *gtt_total,
2554                            size_t *stolen,
2555                            phys_addr_t *mappable_base,
2556                            unsigned long *mappable_end)
2557 {
2558         struct drm_i915_private *dev_priv = dev->dev_private;
2559         unsigned int gtt_size;
2560         u16 snb_gmch_ctl;
2561         int ret;
2562
2563         *mappable_base = pci_resource_start(dev->pdev, 2);
2564         *mappable_end = pci_resource_len(dev->pdev, 2);
2565
2566         /* 64/512MB is the current min/max we actually know of, but this is just
2567          * a coarse sanity check.
2568          */
2569         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
2570                 DRM_ERROR("Unknown GMADR size (%lx)\n",
2571                           dev_priv->gtt.mappable_end);
2572                 return -ENXIO;
2573         }
2574
2575 #if 0
2576         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
2577                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
2578 #endif
2579         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2580
2581         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
2582
2583         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
2584         *gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2585
2586         ret = ggtt_probe_common(dev, gtt_size);
2587
2588         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2589         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2590         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2591         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2592
2593         return ret;
2594 }
2595
2596 static void gen6_gmch_remove(struct i915_address_space *vm)
2597 {
2598         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2599
2600         iounmap(gtt->gsm);
2601         teardown_scratch_page(vm->dev);
2602 }
2603
2604 static int i915_gmch_probe(struct drm_device *dev,
2605                            size_t *gtt_total,
2606                            size_t *stolen,
2607                            phys_addr_t *mappable_base,
2608                            unsigned long *mappable_end)
2609 {
2610         struct drm_i915_private *dev_priv = dev->dev_private;
2611 #if 0
2612         int ret;
2613
2614         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2615         if (!ret) {
2616                 DRM_ERROR("failed to set up gmch\n");
2617                 return -EIO;
2618         }
2619 #endif
2620
2621         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2622
2623         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2624         dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
2625         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2626         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2627         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2628
2629         if (unlikely(dev_priv->gtt.do_idle_maps))
2630                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2631
2632         return 0;
2633 }
2634
2635 static void i915_gmch_remove(struct i915_address_space *vm)
2636 {
2637         intel_gmch_remove();
2638 }
2639
2640 int i915_gem_gtt_init(struct drm_device *dev)
2641 {
2642         struct drm_i915_private *dev_priv = dev->dev_private;
2643         struct i915_gtt *gtt = &dev_priv->gtt;
2644         int ret;
2645
2646         if (INTEL_INFO(dev)->gen <= 5) {
2647                 gtt->gtt_probe = i915_gmch_probe;
2648                 gtt->base.cleanup = i915_gmch_remove;
2649         } else if (INTEL_INFO(dev)->gen < 8) {
2650                 gtt->gtt_probe = gen6_gmch_probe;
2651                 gtt->base.cleanup = gen6_gmch_remove;
2652                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2653                         gtt->base.pte_encode = iris_pte_encode;
2654                 else if (IS_HASWELL(dev))
2655                         gtt->base.pte_encode = hsw_pte_encode;
2656                 else if (IS_VALLEYVIEW(dev))
2657                         gtt->base.pte_encode = byt_pte_encode;
2658                 else if (INTEL_INFO(dev)->gen >= 7)
2659                         gtt->base.pte_encode = ivb_pte_encode;
2660                 else
2661                         gtt->base.pte_encode = snb_pte_encode;
2662         } else {
2663                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2664                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2665         }
2666
2667         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2668                              &gtt->mappable_base, &gtt->mappable_end);
2669         if (ret)
2670                 return ret;
2671
2672         gtt->base.dev = dev;
2673
2674         /* GMADR is the PCI mmio aperture into the global GTT. */
2675         DRM_INFO("Memory usable by graphics device = %zdM\n",
2676                  gtt->base.total >> 20);
2677         DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2678         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2679 #ifdef CONFIG_INTEL_IOMMU
2680         if (intel_iommu_gfx_mapped)
2681                 DRM_INFO("VT-d active for gfx access\n");
2682 #endif
2683         /*
2684          * i915.enable_ppgtt is read-only, so do an early pass to validate the
2685          * user's requested state against the hardware/driver capabilities.  We
2686          * do this now so that we can print out any log messages once rather
2687          * than every time we check intel_enable_ppgtt().
2688          */
2689         i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2690         DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2691
2692         return 0;
2693 }
2694
2695 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
2696 {
2697         struct drm_i915_private *dev_priv = dev->dev_private;
2698         struct drm_i915_gem_object *obj;
2699         struct i915_address_space *vm;
2700         struct i915_vma *vma;
2701         bool flush;
2702
2703         i915_check_and_clear_faults(dev);
2704
2705         /* First fill our portion of the GTT with scratch pages */
2706         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2707                                        dev_priv->gtt.base.start,
2708                                        dev_priv->gtt.base.total,
2709                                        true);
2710
2711         /* Cache flush objects bound into GGTT and rebind them. */
2712         vm = &dev_priv->gtt.base;
2713         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2714                 flush = false;
2715                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2716                         if (vma->vm != vm)
2717                                 continue;
2718
2719                         WARN_ON(i915_vma_bind(vma, obj->cache_level,
2720                                               PIN_UPDATE));
2721
2722                         flush = true;
2723                 }
2724
2725                 if (flush)
2726                         i915_gem_clflush_object(obj, obj->pin_display);
2727         }
2728
2729         if (INTEL_INFO(dev)->gen >= 8) {
2730                 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2731                         chv_setup_private_ppat(dev_priv);
2732                 else
2733                         bdw_setup_private_ppat(dev_priv);
2734
2735                 return;
2736         }
2737
2738         if (USES_PPGTT(dev)) {
2739                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2740                         /* TODO: Perhaps it shouldn't be gen6 specific */
2741
2742                         struct i915_hw_ppgtt *ppgtt =
2743                                         container_of(vm, struct i915_hw_ppgtt,
2744                                                      base);
2745
2746                         if (i915_is_ggtt(vm))
2747                                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2748
2749                         gen6_write_page_range(dev_priv, &ppgtt->pd,
2750                                               0, ppgtt->base.total);
2751                 }
2752         }
2753
2754         i915_ggtt_flush(dev_priv);
2755 }
2756
2757 static struct i915_vma *
2758 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
2759                       struct i915_address_space *vm,
2760                       const struct i915_ggtt_view *ggtt_view)
2761 {
2762         struct i915_vma *vma;
2763
2764         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
2765                 return ERR_PTR(-EINVAL);
2766
2767         vma = kzalloc(sizeof(*vma), GFP_KERNEL);
2768         if (vma == NULL)
2769                 return ERR_PTR(-ENOMEM);
2770
2771         INIT_LIST_HEAD(&vma->vma_link);
2772         INIT_LIST_HEAD(&vma->mm_list);
2773         INIT_LIST_HEAD(&vma->exec_list);
2774         vma->vm = vm;
2775         vma->obj = obj;
2776
2777         if (i915_is_ggtt(vm))
2778                 vma->ggtt_view = *ggtt_view;
2779
2780         list_add_tail(&vma->vma_link, &obj->vma_list);
2781         if (!i915_is_ggtt(vm))
2782                 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
2783
2784         return vma;
2785 }
2786
2787 struct i915_vma *
2788 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2789                                   struct i915_address_space *vm)
2790 {
2791         struct i915_vma *vma;
2792
2793         vma = i915_gem_obj_to_vma(obj, vm);
2794         if (!vma)
2795                 vma = __i915_gem_vma_create(obj, vm,
2796                                             i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
2797
2798         return vma;
2799 }
2800
2801 struct i915_vma *
2802 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
2803                                        const struct i915_ggtt_view *view)
2804 {
2805         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
2806         struct i915_vma *vma;
2807
2808         if (WARN_ON(!view))
2809                 return ERR_PTR(-EINVAL);
2810
2811         vma = i915_gem_obj_to_ggtt_view(obj, view);
2812
2813         if (IS_ERR(vma))
2814                 return vma;
2815
2816         if (!vma)
2817                 vma = __i915_gem_vma_create(obj, ggtt, view);
2818
2819         return vma;
2820
2821 }
2822
2823 static void
2824 rotate_pages(dma_addr_t *in, unsigned int width, unsigned int height,
2825              struct sg_table *st)
2826 {
2827         unsigned int column, row;
2828         unsigned int src_idx;
2829         struct scatterlist *sg = st->sgl;
2830
2831         st->nents = 0;
2832
2833         for (column = 0; column < width; column++) {
2834                 src_idx = width * (height - 1) + column;
2835                 for (row = 0; row < height; row++) {
2836                         st->nents++;
2837                         /* We don't need the pages, but need to initialize
2838                          * the entries so the sg list can be happily traversed.
2839                          * The only thing we need are DMA addresses.
2840                          */
2841                         sg_set_page(sg, NULL, PAGE_SIZE, 0);
2842                         sg_dma_address(sg) = in[src_idx];
2843                         sg_dma_len(sg) = PAGE_SIZE;
2844                         sg = sg_next(sg);
2845                         src_idx -= width;
2846                 }
2847         }
2848 }
2849
2850 static struct sg_table *
2851 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
2852                           struct drm_i915_gem_object *obj)
2853 {
2854         struct drm_device *dev = obj->base.dev;
2855         struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
2856         unsigned long size, pages, rot_pages;
2857         struct sg_page_iter sg_iter;
2858         unsigned long i;
2859         dma_addr_t *page_addr_list;
2860         struct sg_table *st;
2861         unsigned int tile_pitch, tile_height;
2862         unsigned int width_pages, height_pages;
2863         int ret = -ENOMEM;
2864
2865         pages = obj->base.size / PAGE_SIZE;
2866
2867         /* Calculate tiling geometry. */
2868         tile_height = intel_tile_height(dev, rot_info->pixel_format,
2869                                         rot_info->fb_modifier);
2870         tile_pitch = PAGE_SIZE / tile_height;
2871         width_pages = DIV_ROUND_UP(rot_info->pitch, tile_pitch);
2872         height_pages = DIV_ROUND_UP(rot_info->height, tile_height);
2873         rot_pages = width_pages * height_pages;
2874         size = rot_pages * PAGE_SIZE;
2875
2876         /* Allocate a temporary list of source pages for random access. */
2877         page_addr_list = drm_malloc_ab(pages, sizeof(dma_addr_t));
2878         if (!page_addr_list)
2879                 return ERR_PTR(ret);
2880
2881         /* Allocate target SG list. */
2882         st = kmalloc(sizeof(*st), M_DRM, M_WAITOK);
2883         if (!st)
2884                 goto err_st_alloc;
2885
2886         ret = sg_alloc_table(st, rot_pages, GFP_KERNEL);
2887         if (ret)
2888                 goto err_sg_alloc;
2889
2890         /* Populate source page list from the object. */
2891         i = 0;
2892         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2893                 page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
2894                 i++;
2895         }
2896
2897         /* Rotate the pages. */
2898         rotate_pages(page_addr_list, width_pages, height_pages, st);
2899
2900         DRM_DEBUG_KMS(
2901                       "Created rotated page mapping for object size %lu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages).\n",
2902                       size, rot_info->pitch, rot_info->height,
2903                       rot_info->pixel_format, width_pages, height_pages,
2904                       rot_pages);
2905
2906         drm_free_large(page_addr_list);
2907
2908         return st;
2909
2910 err_sg_alloc:
2911         kfree(st);
2912 err_st_alloc:
2913         drm_free_large(page_addr_list);
2914
2915         DRM_DEBUG_KMS(
2916                       "Failed to create rotated mapping for object size %lu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages)\n",
2917                       size, ret, rot_info->pitch, rot_info->height,
2918                       rot_info->pixel_format, width_pages, height_pages,
2919                       rot_pages);
2920         return ERR_PTR(ret);
2921 }
2922
2923 static struct sg_table *
2924 intel_partial_pages(const struct i915_ggtt_view *view,
2925                     struct drm_i915_gem_object *obj)
2926 {
2927         struct sg_table *st;
2928         struct scatterlist *sg;
2929         struct sg_page_iter obj_sg_iter;
2930         int ret = -ENOMEM;
2931
2932         st = kmalloc(sizeof(*st), M_DRM, M_WAITOK);
2933         if (!st)
2934                 goto err_st_alloc;
2935
2936         ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
2937         if (ret)
2938                 goto err_sg_alloc;
2939
2940         sg = st->sgl;
2941         st->nents = 0;
2942         for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
2943                 view->params.partial.offset)
2944         {
2945                 if (st->nents >= view->params.partial.size)
2946                         break;
2947
2948                 sg_set_page(sg, NULL, PAGE_SIZE, 0);
2949                 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
2950                 sg_dma_len(sg) = PAGE_SIZE;
2951
2952                 sg = sg_next(sg);
2953                 st->nents++;
2954         }
2955
2956         return st;
2957
2958 err_sg_alloc:
2959         kfree(st);
2960 err_st_alloc:
2961         return ERR_PTR(ret);
2962 }
2963
2964 static int
2965 i915_get_ggtt_vma_pages(struct i915_vma *vma)
2966 {
2967         int ret = 0;
2968
2969         if (vma->ggtt_view.pages)
2970                 return 0;
2971
2972         if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
2973                 vma->ggtt_view.pages = vma->obj->pages;
2974         else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
2975                 vma->ggtt_view.pages =
2976                         intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
2977         else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
2978                 vma->ggtt_view.pages =
2979                         intel_partial_pages(&vma->ggtt_view, vma->obj);
2980         else
2981                 WARN_ONCE(1, "GGTT view %u not implemented!\n",
2982                           vma->ggtt_view.type);
2983
2984         if (!vma->ggtt_view.pages) {
2985                 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
2986                           vma->ggtt_view.type);
2987                 ret = -EINVAL;
2988         } else if (IS_ERR(vma->ggtt_view.pages)) {
2989                 ret = PTR_ERR(vma->ggtt_view.pages);
2990                 vma->ggtt_view.pages = NULL;
2991                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
2992                           vma->ggtt_view.type, ret);
2993         }
2994
2995         return ret;
2996 }
2997
2998 /**
2999  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3000  * @vma: VMA to map
3001  * @cache_level: mapping cache level
3002  * @flags: flags like global or local mapping
3003  *
3004  * DMA addresses are taken from the scatter-gather table of this object (or of
3005  * this VMA in case of non-default GGTT views) and PTE entries set up.
3006  * Note that DMA addresses are also the only part of the SG table we care about.
3007  */
3008 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3009                   u32 flags)
3010 {
3011         int ret;
3012         u32 bind_flags;
3013
3014         if (WARN_ON(flags == 0))
3015                 return -EINVAL;
3016
3017         bind_flags = 0;
3018         if (flags & PIN_GLOBAL)
3019                 bind_flags |= GLOBAL_BIND;
3020         if (flags & PIN_USER)
3021                 bind_flags |= LOCAL_BIND;
3022
3023         if (flags & PIN_UPDATE)
3024                 bind_flags |= vma->bound;
3025         else
3026                 bind_flags &= ~vma->bound;
3027
3028         if (bind_flags == 0)
3029                 return 0;
3030
3031         if (vma->bound == 0 && vma->vm->allocate_va_range) {
3032                 trace_i915_va_alloc(vma->vm,
3033                                     vma->node.start,
3034                                     vma->node.size,
3035                                     VM_TO_TRACE_NAME(vma->vm));
3036
3037                 ret = vma->vm->allocate_va_range(vma->vm,
3038                                                  vma->node.start,
3039                                                  vma->node.size);
3040                 if (ret)
3041                         return ret;
3042         }
3043
3044         ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3045         if (ret)
3046                 return ret;
3047
3048         vma->bound |= bind_flags;
3049
3050         return 0;
3051 }
3052
3053 /**
3054  * i915_ggtt_view_size - Get the size of a GGTT view.
3055  * @obj: Object the view is of.
3056  * @view: The view in question.
3057  *
3058  * @return The size of the GGTT view in bytes.
3059  */
3060 size_t
3061 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3062                     const struct i915_ggtt_view *view)
3063 {
3064         if (view->type == I915_GGTT_VIEW_NORMAL ||
3065             view->type == I915_GGTT_VIEW_ROTATED) {
3066                 return obj->base.size;
3067         } else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3068                 return view->params.partial.size << PAGE_SHIFT;
3069         } else {
3070                 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3071                 return obj->base.size;
3072         }
3073 }