drm/i915: Remove duplicated code in i915_gem_fault (3/3)
[dragonfly.git] / sys / dev / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  * Copyright (c) 2011 The FreeBSD Foundation
27  * All rights reserved.
28  *
29  * This software was developed by Konstantin Belousov under sponsorship from
30  * the FreeBSD Foundation.
31  *
32  * Redistribution and use in source and binary forms, with or without
33  * modification, are permitted provided that the following conditions
34  * are met:
35  * 1. Redistributions of source code must retain the above copyright
36  *    notice, this list of conditions and the following disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  */
54
55 #include <machine/md_var.h>
56
57 #include <drm/drmP.h>
58 #include <drm/drm_vma_manager.h>
59 #include <drm/i915_drm.h>
60 #include "i915_drv.h"
61 #include "i915_trace.h"
62 #include "intel_drv.h"
63 #include <linux/shmem_fs.h>
64 #include <linux/slab.h>
65 #include <linux/swap.h>
66 #include <linux/pci.h>
67
68 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
69 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
70                                                    bool force);
71 static __must_check int
72 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
73                                bool readonly);
74 static void
75 i915_gem_object_retire(struct drm_i915_gem_object *obj);
76
77 static void i915_gem_write_fence(struct drm_device *dev, int reg,
78                                  struct drm_i915_gem_object *obj);
79 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
80                                          struct drm_i915_fence_reg *fence,
81                                          bool enable);
82
83 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
84
85 static bool cpu_cache_is_coherent(struct drm_device *dev,
86                                   enum i915_cache_level level)
87 {
88         return HAS_LLC(dev) || level != I915_CACHE_NONE;
89 }
90
91 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
92 {
93         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
94                 return true;
95
96         return obj->pin_display;
97 }
98
99 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
100 {
101         if (obj->tiling_mode)
102                 i915_gem_release_mmap(obj);
103
104         /* As we do not have an associated fence register, we will force
105          * a tiling change if we ever need to acquire one.
106          */
107         obj->fence_dirty = false;
108         obj->fence_reg = I915_FENCE_REG_NONE;
109 }
110
111 /* some bookkeeping */
112 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
113                                   size_t size)
114 {
115         spin_lock(&dev_priv->mm.object_stat_lock);
116         dev_priv->mm.object_count++;
117         dev_priv->mm.object_memory += size;
118         spin_unlock(&dev_priv->mm.object_stat_lock);
119 }
120
121 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
122                                      size_t size)
123 {
124         spin_lock(&dev_priv->mm.object_stat_lock);
125         dev_priv->mm.object_count--;
126         dev_priv->mm.object_memory -= size;
127         spin_unlock(&dev_priv->mm.object_stat_lock);
128 }
129
130 static int
131 i915_gem_wait_for_error(struct i915_gpu_error *error)
132 {
133         int ret;
134
135 #define EXIT_COND (!i915_reset_in_progress(error) || \
136                    i915_terminally_wedged(error))
137         if (EXIT_COND)
138                 return 0;
139
140         /*
141          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
142          * userspace. If it takes that long something really bad is going on and
143          * we should simply try to bail out and fail as gracefully as possible.
144          */
145         ret = wait_event_interruptible_timeout(error->reset_queue,
146                                                EXIT_COND,
147                                                10*HZ);
148         if (ret == 0) {
149                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
150                 return -EIO;
151         } else if (ret < 0) {
152                 return ret;
153         }
154 #undef EXIT_COND
155
156         return 0;
157 }
158
159 int i915_mutex_lock_interruptible(struct drm_device *dev)
160 {
161         struct drm_i915_private *dev_priv = dev->dev_private;
162         int ret;
163
164         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
165         if (ret)
166                 return ret;
167
168         ret = mutex_lock_interruptible(&dev->struct_mutex);
169         if (ret)
170                 return ret;
171
172         WARN_ON(i915_verify_lists(dev));
173         return 0;
174 }
175
176 static inline bool
177 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
178 {
179         return i915_gem_obj_bound_any(obj) && !obj->active;
180 }
181
182 int
183 i915_gem_init_ioctl(struct drm_device *dev, void *data,
184                     struct drm_file *file)
185 {
186         struct drm_i915_private *dev_priv = dev->dev_private;
187         struct drm_i915_gem_init *args = data;
188
189         if (drm_core_check_feature(dev, DRIVER_MODESET))
190                 return -ENODEV;
191
192         if (args->gtt_start >= args->gtt_end ||
193             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
194                 return -EINVAL;
195
196         /* GEM with user mode setting was never supported on ilk and later. */
197         if (INTEL_INFO(dev)->gen >= 5)
198                 return -ENODEV;
199
200         mutex_lock(&dev->struct_mutex);
201         kprintf("INITGLOBALGTT GTT_START %016jx\n", (uintmax_t)args->gtt_start);
202         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
203                                   args->gtt_end);
204         dev_priv->gtt.mappable_end = args->gtt_end;
205         mutex_unlock(&dev->struct_mutex);
206
207         return 0;
208 }
209
210 int
211 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
212                             struct drm_file *file)
213 {
214         struct drm_i915_private *dev_priv = dev->dev_private;
215         struct drm_i915_gem_get_aperture *args = data;
216         struct drm_i915_gem_object *obj;
217         size_t pinned;
218
219         pinned = 0;
220         mutex_lock(&dev->struct_mutex);
221         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
222                 if (i915_gem_obj_is_pinned(obj))
223                         pinned += i915_gem_obj_ggtt_size(obj);
224         mutex_unlock(&dev->struct_mutex);
225
226         args->aper_size = dev_priv->gtt.base.total;
227         args->aper_available_size = args->aper_size - pinned;
228
229         return 0;
230 }
231
232 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
233 {
234         drm_dma_handle_t *phys = obj->phys_handle;
235
236         if (!phys)
237                 return;
238
239         if (obj->madv == I915_MADV_WILLNEED) {
240                 struct vm_object *mapping = obj->base.vm_obj;
241                 char *vaddr = phys->vaddr;
242                 int i;
243
244                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245                         struct vm_page *page = shmem_read_mapping_page(mapping, i);
246                         if (!IS_ERR(page)) {
247                                 char *dst = kmap_atomic(page);
248                                 memcpy(dst, vaddr, PAGE_SIZE);
249                                 drm_clflush_virt_range(dst, PAGE_SIZE);
250                                 kunmap_atomic(dst);
251
252                                 set_page_dirty(page);
253                                 mark_page_accessed(page);
254 #if 0
255                                 page_cache_release(page);
256 #endif
257                         }
258                         vaddr += PAGE_SIZE;
259                 }
260                 i915_gem_chipset_flush(obj->base.dev);
261         }
262
263 #ifdef CONFIG_X86
264         set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
265 #endif
266         drm_pci_free(obj->base.dev, phys);
267         obj->phys_handle = NULL;
268 }
269
270 int
271 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
272                             int align)
273 {
274         drm_dma_handle_t *phys;
275         struct vm_object *mapping;
276         char *vaddr;
277         int i;
278
279         if (obj->phys_handle) {
280                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
281                         return -EBUSY;
282
283                 return 0;
284         }
285
286         if (obj->madv != I915_MADV_WILLNEED)
287                 return -EFAULT;
288
289 #if 0
290         if (obj->base.filp == NULL)
291                 return -EINVAL;
292 #endif
293
294         /* create a new object */
295         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
296         if (!phys)
297                 return -ENOMEM;
298
299         vaddr = phys->vaddr;
300 #ifdef CONFIG_X86
301         set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
302 #endif
303         mapping = obj->base.vm_obj;
304         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
305                 struct vm_page *page;
306                 char *src;
307
308                 page = shmem_read_mapping_page(mapping, i);
309                 if (IS_ERR(page)) {
310 #ifdef CONFIG_X86
311                         set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
312 #endif
313                         drm_pci_free(obj->base.dev, phys);
314                         return PTR_ERR(page);
315                 }
316
317                 src = kmap_atomic(page);
318                 memcpy(vaddr, src, PAGE_SIZE);
319                 kunmap_atomic(src);
320
321                 mark_page_accessed(page);
322 #if 0
323                 page_cache_release(page);
324 #endif
325
326                 vaddr += PAGE_SIZE;
327         }
328
329         obj->phys_handle = phys;
330         return 0;
331 }
332
333 static int
334 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
335                      struct drm_i915_gem_pwrite *args,
336                      struct drm_file *file_priv)
337 {
338         struct drm_device *dev = obj->base.dev;
339         void *vaddr = (char *)obj->phys_handle->vaddr + args->offset;
340         char __user *user_data = to_user_ptr(args->data_ptr);
341
342         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
343                 unsigned long unwritten;
344
345                 /* The physical object once assigned is fixed for the lifetime
346                  * of the obj, so we can safely drop the lock and continue
347                  * to access vaddr.
348                  */
349                 mutex_unlock(&dev->struct_mutex);
350                 unwritten = copy_from_user(vaddr, user_data, args->size);
351                 mutex_lock(&dev->struct_mutex);
352                 if (unwritten)
353                         return -EFAULT;
354         }
355
356         i915_gem_chipset_flush(dev);
357         return 0;
358 }
359
360 void *i915_gem_object_alloc(struct drm_device *dev)
361 {
362         return kmalloc(sizeof(struct drm_i915_gem_object),
363             M_DRM, M_WAITOK | M_ZERO);
364 }
365
366 void i915_gem_object_free(struct drm_i915_gem_object *obj)
367 {
368         kfree(obj);
369 }
370
371 static int
372 i915_gem_create(struct drm_file *file,
373                 struct drm_device *dev,
374                 uint64_t size,
375                 uint32_t *handle_p)
376 {
377         struct drm_i915_gem_object *obj;
378         int ret;
379         u32 handle;
380
381         size = roundup(size, PAGE_SIZE);
382         if (size == 0)
383                 return -EINVAL;
384
385         /* Allocate the new object */
386         obj = i915_gem_alloc_object(dev, size);
387         if (obj == NULL)
388                 return -ENOMEM;
389
390         ret = drm_gem_handle_create(file, &obj->base, &handle);
391         /* drop reference from allocate - handle holds it now */
392         drm_gem_object_unreference_unlocked(&obj->base);
393         if (ret)
394                 return ret;
395
396         *handle_p = handle;
397         return 0;
398 }
399
400 int
401 i915_gem_dumb_create(struct drm_file *file,
402                      struct drm_device *dev,
403                      struct drm_mode_create_dumb *args)
404 {
405         /* have to work out size/pitch and return them */
406         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
407         args->size = args->pitch * args->height;
408         return i915_gem_create(file, dev,
409                                args->size, &args->handle);
410 }
411
412 /**
413  * Creates a new mm object and returns a handle to it.
414  */
415 int
416 i915_gem_create_ioctl(struct drm_device *dev, void *data,
417                       struct drm_file *file)
418 {
419         struct drm_i915_gem_create *args = data;
420
421         return i915_gem_create(file, dev,
422                                args->size, &args->handle);
423 }
424
425 static inline int
426 __copy_to_user_swizzled(char __user *cpu_vaddr,
427                         const char *gpu_vaddr, int gpu_offset,
428                         int length)
429 {
430         int ret, cpu_offset = 0;
431
432         while (length > 0) {
433                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
434                 int this_length = min(cacheline_end - gpu_offset, length);
435                 int swizzled_gpu_offset = gpu_offset ^ 64;
436
437                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
438                                      gpu_vaddr + swizzled_gpu_offset,
439                                      this_length);
440                 if (ret)
441                         return ret + length;
442
443                 cpu_offset += this_length;
444                 gpu_offset += this_length;
445                 length -= this_length;
446         }
447
448         return 0;
449 }
450
451 static inline int
452 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
453                           const char __user *cpu_vaddr,
454                           int length)
455 {
456         int ret, cpu_offset = 0;
457
458         while (length > 0) {
459                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
460                 int this_length = min(cacheline_end - gpu_offset, length);
461                 int swizzled_gpu_offset = gpu_offset ^ 64;
462
463                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
464                                        cpu_vaddr + cpu_offset,
465                                        this_length);
466                 if (ret)
467                         return ret + length;
468
469                 cpu_offset += this_length;
470                 gpu_offset += this_length;
471                 length -= this_length;
472         }
473
474         return 0;
475 }
476
477 /*
478  * Pins the specified object's pages and synchronizes the object with
479  * GPU accesses. Sets needs_clflush to non-zero if the caller should
480  * flush the object from the CPU cache.
481  */
482 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
483                                     int *needs_clflush)
484 {
485         int ret;
486
487         *needs_clflush = 0;
488
489 #if 0
490         if (!obj->base.filp)
491                 return -EINVAL;
492 #endif
493
494         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
495                 /* If we're not in the cpu read domain, set ourself into the gtt
496                  * read domain and manually flush cachelines (if required). This
497                  * optimizes for the case when the gpu will dirty the data
498                  * anyway again before the next pread happens. */
499                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
500                                                         obj->cache_level);
501                 ret = i915_gem_object_wait_rendering(obj, true);
502                 if (ret)
503                         return ret;
504
505                 i915_gem_object_retire(obj);
506         }
507
508         ret = i915_gem_object_get_pages(obj);
509         if (ret)
510                 return ret;
511
512         i915_gem_object_pin_pages(obj);
513
514         return ret;
515 }
516
517 /* Per-page copy function for the shmem pread fastpath.
518  * Flushes invalid cachelines before reading the target if
519  * needs_clflush is set. */
520 static int
521 shmem_pread_fast(struct vm_page *page, int shmem_page_offset, int page_length,
522                  char __user *user_data,
523                  bool page_do_bit17_swizzling, bool needs_clflush)
524 {
525         char *vaddr;
526         int ret;
527
528         if (unlikely(page_do_bit17_swizzling))
529                 return -EINVAL;
530
531         vaddr = kmap_atomic(page);
532         if (needs_clflush)
533                 drm_clflush_virt_range(vaddr + shmem_page_offset,
534                                        page_length);
535         ret = __copy_to_user_inatomic(user_data,
536                                       vaddr + shmem_page_offset,
537                                       page_length);
538         kunmap_atomic(vaddr);
539
540         return ret ? -EFAULT : 0;
541 }
542
543 static void
544 shmem_clflush_swizzled_range(char *addr, unsigned long length,
545                              bool swizzled)
546 {
547         if (unlikely(swizzled)) {
548                 unsigned long start = (unsigned long) addr;
549                 unsigned long end = (unsigned long) addr + length;
550
551                 /* For swizzling simply ensure that we always flush both
552                  * channels. Lame, but simple and it works. Swizzled
553                  * pwrite/pread is far from a hotpath - current userspace
554                  * doesn't use it at all. */
555                 start = round_down(start, 128);
556                 end = round_up(end, 128);
557
558                 drm_clflush_virt_range((void *)start, end - start);
559         } else {
560                 drm_clflush_virt_range(addr, length);
561         }
562
563 }
564
565 /* Only difference to the fast-path function is that this can handle bit17
566  * and uses non-atomic copy and kmap functions. */
567 static int
568 shmem_pread_slow(struct vm_page *page, int shmem_page_offset, int page_length,
569                  char __user *user_data,
570                  bool page_do_bit17_swizzling, bool needs_clflush)
571 {
572         char *vaddr;
573         int ret;
574
575         vaddr = kmap(page);
576         if (needs_clflush)
577                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
578                                              page_length,
579                                              page_do_bit17_swizzling);
580
581         if (page_do_bit17_swizzling)
582                 ret = __copy_to_user_swizzled(user_data,
583                                               vaddr, shmem_page_offset,
584                                               page_length);
585         else
586                 ret = __copy_to_user(user_data,
587                                      vaddr + shmem_page_offset,
588                                      page_length);
589         kunmap(page);
590
591         return ret ? - EFAULT : 0;
592 }
593
594 static int
595 i915_gem_shmem_pread(struct drm_device *dev,
596                      struct drm_i915_gem_object *obj,
597                      struct drm_i915_gem_pread *args,
598                      struct drm_file *file)
599 {
600         char __user *user_data;
601         ssize_t remain;
602         loff_t offset;
603         int shmem_page_offset, page_length, ret = 0;
604         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
605         int prefaulted = 0;
606         int needs_clflush = 0;
607         int i;
608
609         user_data = to_user_ptr(args->data_ptr);
610         remain = args->size;
611
612         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
613
614         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
615         if (ret)
616                 return ret;
617
618         offset = args->offset;
619
620         for (i = 0; i < (obj->base.size >> PAGE_SHIFT); i++) {
621                 struct vm_page *page = obj->pages[i];
622
623                 if (remain <= 0)
624                         break;
625
626                 /* Operation in this page
627                  *
628                  * shmem_page_offset = offset within page in shmem file
629                  * page_length = bytes to copy for this page
630                  */
631                 shmem_page_offset = offset_in_page(offset);
632                 page_length = remain;
633                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634                         page_length = PAGE_SIZE - shmem_page_offset;
635
636                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637                         (page_to_phys(page) & (1 << 17)) != 0;
638
639                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640                                        user_data, page_do_bit17_swizzling,
641                                        needs_clflush);
642                 if (ret == 0)
643                         goto next_page;
644
645                 mutex_unlock(&dev->struct_mutex);
646
647                 if (likely(!i915.prefault_disable) && !prefaulted) {
648                         ret = fault_in_multipages_writeable(user_data, remain);
649                         /* Userspace is tricking us, but we've already clobbered
650                          * its pages with the prefault and promised to write the
651                          * data up to the first fault. Hence ignore any errors
652                          * and just continue. */
653                         (void)ret;
654                         prefaulted = 1;
655                 }
656
657                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658                                        user_data, page_do_bit17_swizzling,
659                                        needs_clflush);
660
661                 mutex_lock(&dev->struct_mutex);
662
663                 if (ret)
664                         goto out;
665
666 next_page:
667                 remain -= page_length;
668                 user_data += page_length;
669                 offset += page_length;
670         }
671
672 out:
673         i915_gem_object_unpin_pages(obj);
674
675         return ret;
676 }
677
678 /**
679  * Reads data from the object referenced by handle.
680  *
681  * On error, the contents of *data are undefined.
682  */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685                      struct drm_file *file)
686 {
687         struct drm_i915_gem_pread *args = data;
688         struct drm_i915_gem_object *obj;
689         int ret = 0;
690
691         if (args->size == 0)
692                 return 0;
693
694         ret = i915_mutex_lock_interruptible(dev);
695         if (ret)
696                 return ret;
697
698         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
699         if (&obj->base == NULL) {
700                 ret = -ENOENT;
701                 goto unlock;
702         }
703
704         /* Bounds check source.  */
705         if (args->offset > obj->base.size ||
706             args->size > obj->base.size - args->offset) {
707                 ret = -EINVAL;
708                 goto out;
709         }
710
711         trace_i915_gem_object_pread(obj, args->offset, args->size);
712
713         ret = i915_gem_shmem_pread(dev, obj, args, file);
714
715 out:
716         drm_gem_object_unreference(&obj->base);
717 unlock:
718         mutex_unlock(&dev->struct_mutex);
719         return ret;
720 }
721
722 /* This is the fast write path which cannot handle
723  * page faults in the source data
724  */
725
726 static inline int
727 fast_user_write(struct io_mapping *mapping,
728                 loff_t page_base, int page_offset,
729                 char __user *user_data,
730                 int length)
731 {
732         void __iomem *vaddr_atomic;
733         void *vaddr;
734         unsigned long unwritten;
735
736         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
737         /* We can use the cpu mem copy function because this is X86. */
738         vaddr = (char __force*)vaddr_atomic + page_offset;
739         unwritten = __copy_from_user_inatomic_nocache(vaddr,
740                                                       user_data, length);
741         io_mapping_unmap_atomic(vaddr_atomic);
742         return unwritten;
743 }
744
745 /**
746  * This is the fast pwrite path, where we copy the data directly from the
747  * user into the GTT, uncached.
748  */
749 static int
750 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
751                          struct drm_i915_gem_object *obj,
752                          struct drm_i915_gem_pwrite *args,
753                          struct drm_file *file)
754 {
755         struct drm_i915_private *dev_priv = dev->dev_private;
756         ssize_t remain;
757         loff_t offset, page_base;
758         char __user *user_data;
759         int page_offset, page_length, ret;
760
761         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
762         if (ret)
763                 goto out;
764
765         ret = i915_gem_object_set_to_gtt_domain(obj, true);
766         if (ret)
767                 goto out_unpin;
768
769         ret = i915_gem_object_put_fence(obj);
770         if (ret)
771                 goto out_unpin;
772
773         user_data = to_user_ptr(args->data_ptr);
774         remain = args->size;
775
776         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
777
778         while (remain > 0) {
779                 /* Operation in this page
780                  *
781                  * page_base = page offset within aperture
782                  * page_offset = offset within page
783                  * page_length = bytes to copy for this page
784                  */
785                 page_base = offset & ~PAGE_MASK;
786                 page_offset = offset_in_page(offset);
787                 page_length = remain;
788                 if ((page_offset + remain) > PAGE_SIZE)
789                         page_length = PAGE_SIZE - page_offset;
790
791                 /* If we get a fault while copying data, then (presumably) our
792                  * source page isn't available.  Return the error and we'll
793                  * retry in the slow path.
794                  */
795                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
796                                     page_offset, user_data, page_length)) {
797                         ret = -EFAULT;
798                         goto out_unpin;
799                 }
800
801                 remain -= page_length;
802                 user_data += page_length;
803                 offset += page_length;
804         }
805
806 out_unpin:
807         i915_gem_object_ggtt_unpin(obj);
808 out:
809         return ret;
810 }
811
812 /* Per-page copy function for the shmem pwrite fastpath.
813  * Flushes invalid cachelines before writing to the target if
814  * needs_clflush_before is set and flushes out any written cachelines after
815  * writing if needs_clflush is set. */
816 static int
817 shmem_pwrite_fast(struct vm_page *page, int shmem_page_offset, int page_length,
818                   char __user *user_data,
819                   bool page_do_bit17_swizzling,
820                   bool needs_clflush_before,
821                   bool needs_clflush_after)
822 {
823         char *vaddr;
824         int ret;
825
826         if (unlikely(page_do_bit17_swizzling))
827                 return -EINVAL;
828
829         vaddr = kmap_atomic(page);
830         if (needs_clflush_before)
831                 drm_clflush_virt_range(vaddr + shmem_page_offset,
832                                        page_length);
833         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
834                                         user_data, page_length);
835         if (needs_clflush_after)
836                 drm_clflush_virt_range(vaddr + shmem_page_offset,
837                                        page_length);
838         kunmap_atomic(vaddr);
839
840         return ret ? -EFAULT : 0;
841 }
842
843 /* Only difference to the fast-path function is that this can handle bit17
844  * and uses non-atomic copy and kmap functions. */
845 static int
846 shmem_pwrite_slow(struct vm_page *page, int shmem_page_offset, int page_length,
847                   char __user *user_data,
848                   bool page_do_bit17_swizzling,
849                   bool needs_clflush_before,
850                   bool needs_clflush_after)
851 {
852         char *vaddr;
853         int ret;
854
855         vaddr = kmap(page);
856         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
857                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
858                                              page_length,
859                                              page_do_bit17_swizzling);
860         if (page_do_bit17_swizzling)
861                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
862                                                 user_data,
863                                                 page_length);
864         else
865                 ret = __copy_from_user(vaddr + shmem_page_offset,
866                                        user_data,
867                                        page_length);
868         if (needs_clflush_after)
869                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
870                                              page_length,
871                                              page_do_bit17_swizzling);
872         kunmap(page);
873
874         return ret ? -EFAULT : 0;
875 }
876
877 static int
878 i915_gem_shmem_pwrite(struct drm_device *dev,
879                       struct drm_i915_gem_object *obj,
880                       struct drm_i915_gem_pwrite *args,
881                       struct drm_file *file)
882 {
883         ssize_t remain;
884         loff_t offset;
885         char __user *user_data;
886         int shmem_page_offset, page_length, ret = 0;
887         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
888         int hit_slowpath = 0;
889         int needs_clflush_after = 0;
890         int needs_clflush_before = 0;
891         int i;
892
893         user_data = to_user_ptr(args->data_ptr);
894         remain = args->size;
895
896         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
897
898         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
899                 /* If we're not in the cpu write domain, set ourself into the gtt
900                  * write domain and manually flush cachelines (if required). This
901                  * optimizes for the case when the gpu will use the data
902                  * right away and we therefore have to clflush anyway. */
903                 needs_clflush_after = cpu_write_needs_clflush(obj);
904                 ret = i915_gem_object_wait_rendering(obj, false);
905                 if (ret)
906                         return ret;
907
908                 i915_gem_object_retire(obj);
909         }
910         /* Same trick applies to invalidate partially written cachelines read
911          * before writing. */
912         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
913                 needs_clflush_before =
914                         !cpu_cache_is_coherent(dev, obj->cache_level);
915
916         ret = i915_gem_object_get_pages(obj);
917         if (ret)
918                 return ret;
919
920         i915_gem_object_pin_pages(obj);
921
922         offset = args->offset;
923         obj->dirty = 1;
924
925         VM_OBJECT_LOCK(obj->base.vm_obj);
926         vm_object_pip_add(obj->base.vm_obj, 1);
927         for (i = 0; i < (obj->base.size >> PAGE_SHIFT); i++) {
928                 struct vm_page *page = obj->pages[i];
929                 int partial_cacheline_write;
930
931                 if (i < offset >> PAGE_SHIFT)
932                         continue;
933
934                 if (remain <= 0)
935                         break;
936
937                 /* Operation in this page
938                  *
939                  * shmem_page_offset = offset within page in shmem file
940                  * page_length = bytes to copy for this page
941                  */
942                 shmem_page_offset = offset_in_page(offset);
943
944                 page_length = remain;
945                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
946                         page_length = PAGE_SIZE - shmem_page_offset;
947
948                 /* If we don't overwrite a cacheline completely we need to be
949                  * careful to have up-to-date data by first clflushing. Don't
950                  * overcomplicate things and flush the entire patch. */
951                 partial_cacheline_write = needs_clflush_before &&
952                         ((shmem_page_offset | page_length)
953                                 & (cpu_clflush_line_size - 1));
954
955                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
956                         (page_to_phys(page) & (1 << 17)) != 0;
957
958                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
959                                         user_data, page_do_bit17_swizzling,
960                                         partial_cacheline_write,
961                                         needs_clflush_after);
962                 if (ret == 0)
963                         goto next_page;
964
965                 hit_slowpath = 1;
966                 mutex_unlock(&dev->struct_mutex);
967                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
968                                         user_data, page_do_bit17_swizzling,
969                                         partial_cacheline_write,
970                                         needs_clflush_after);
971
972                 mutex_lock(&dev->struct_mutex);
973  
974                 if (ret)
975                         goto out;
976
977 next_page:
978                 remain -= page_length;
979                 user_data += page_length;
980                 offset += page_length;
981         }
982         vm_object_pip_wakeup(obj->base.vm_obj);
983         VM_OBJECT_UNLOCK(obj->base.vm_obj);
984
985 out:
986         i915_gem_object_unpin_pages(obj);
987
988         if (hit_slowpath) {
989                 /*
990                  * Fixup: Flush cpu caches in case we didn't flush the dirty
991                  * cachelines in-line while writing and the object moved
992                  * out of the cpu write domain while we've dropped the lock.
993                  */
994                 if (!needs_clflush_after &&
995                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
996                         if (i915_gem_clflush_object(obj, obj->pin_display))
997                                 i915_gem_chipset_flush(dev);
998                 }
999         }
1000
1001         if (needs_clflush_after)
1002                 i915_gem_chipset_flush(dev);
1003
1004         return ret;
1005 }
1006
1007 /**
1008  * Writes data to the object referenced by handle.
1009  *
1010  * On error, the contents of the buffer that were to be modified are undefined.
1011  */
1012 int
1013 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1014                       struct drm_file *file)
1015 {
1016         struct drm_i915_gem_pwrite *args = data;
1017         struct drm_i915_gem_object *obj;
1018         int ret;
1019
1020         if (args->size == 0)
1021                 return 0;
1022
1023         if (likely(!i915.prefault_disable)) {
1024                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1025                                                    args->size);
1026                 if (ret)
1027                         return -EFAULT;
1028         }
1029
1030         ret = i915_mutex_lock_interruptible(dev);
1031         if (ret)
1032                 return ret;
1033
1034         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1035         if (&obj->base == NULL) {
1036                 ret = -ENOENT;
1037                 goto unlock;
1038         }
1039
1040         /* Bounds check destination. */
1041         if (args->offset > obj->base.size ||
1042             args->size > obj->base.size - args->offset) {
1043                 ret = -EINVAL;
1044                 goto out;
1045         }
1046
1047         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1048
1049         ret = -EFAULT;
1050         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1051          * it would end up going through the fenced access, and we'll get
1052          * different detiling behavior between reading and writing.
1053          * pread/pwrite currently are reading and writing from the CPU
1054          * perspective, requiring manual detiling by the client.
1055          */
1056         if (obj->phys_handle) {
1057                 ret = i915_gem_phys_pwrite(obj, args, file);
1058                 goto out;
1059         }
1060
1061         if (obj->tiling_mode == I915_TILING_NONE &&
1062             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1063             cpu_write_needs_clflush(obj)) {
1064                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1065                 /* Note that the gtt paths might fail with non-page-backed user
1066                  * pointers (e.g. gtt mappings when moving data between
1067                  * textures). Fallback to the shmem path in that case. */
1068         }
1069
1070         if (ret == -EFAULT || ret == -ENOSPC)
1071                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1072
1073 out:
1074         drm_gem_object_unreference(&obj->base);
1075 unlock:
1076         mutex_unlock(&dev->struct_mutex);
1077         return ret;
1078 }
1079
1080 int
1081 i915_gem_check_wedge(struct i915_gpu_error *error,
1082                      bool interruptible)
1083 {
1084         if (i915_reset_in_progress(error)) {
1085                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1086                  * -EIO unconditionally for these. */
1087                 if (!interruptible)
1088                         return -EIO;
1089
1090                 /* Recovery complete, but the reset failed ... */
1091                 if (i915_terminally_wedged(error))
1092                         return -EIO;
1093
1094                 /*
1095                  * Check if GPU Reset is in progress - we need intel_ring_begin
1096                  * to work properly to reinit the hw state while the gpu is
1097                  * still marked as reset-in-progress. Handle this with a flag.
1098                  */
1099                 if (!error->reload_in_reset)
1100                         return -EAGAIN;
1101         }
1102
1103         return 0;
1104 }
1105
1106 /*
1107  * Compare seqno against outstanding lazy request. Emit a request if they are
1108  * equal.
1109  */
1110 int
1111 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1112 {
1113         int ret;
1114
1115         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1116
1117         ret = 0;
1118         if (seqno == ring->outstanding_lazy_seqno)
1119                 ret = i915_add_request(ring, NULL);
1120
1121         return ret;
1122 }
1123
1124 #if 0
1125 static void fake_irq(unsigned long data)
1126 {
1127         wake_up_process((struct task_struct *)data);
1128 }
1129
1130 static bool missed_irq(struct drm_i915_private *dev_priv,
1131                        struct intel_engine_cs *ring)
1132 {
1133         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1134 }
1135
1136 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1137 {
1138         if (file_priv == NULL)
1139                 return true;
1140
1141         return !atomic_xchg(&file_priv->rps_wait_boost, true);
1142 }
1143 #endif
1144
1145 /**
1146  * __wait_seqno - wait until execution of seqno has finished
1147  * @ring: the ring expected to report seqno
1148  * @seqno: duh!
1149  * @reset_counter: reset sequence associated with the given seqno
1150  * @interruptible: do an interruptible wait (normally yes)
1151  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1152  *
1153  * Note: It is of utmost importance that the passed in seqno and reset_counter
1154  * values have been read by the caller in an smp safe manner. Where read-side
1155  * locks are involved, it is sufficient to read the reset_counter before
1156  * unlocking the lock that protects the seqno. For lockless tricks, the
1157  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1158  * inserted.
1159  *
1160  * Returns 0 if the seqno was found within the alloted time. Else returns the
1161  * errno with remaining time filled in timeout argument.
1162  */
1163 static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1164                         unsigned reset_counter,
1165                         bool interruptible,
1166                         struct timespec *timeout,
1167                         struct drm_i915_file_private *file_priv)
1168 {
1169         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1170         struct timespec before, now, wait_time={1,0};
1171         unsigned long timeout_jiffies;
1172         long end;
1173         bool wait_forever = true;
1174         int ret;
1175
1176         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1177
1178         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1179                 return 0;
1180
1181         if (timeout != NULL) {
1182                 wait_time = *timeout;
1183                 wait_forever = false;
1184         }
1185
1186         timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1187
1188         if (WARN_ON(!ring->irq_get(ring)))
1189                 return -ENODEV;
1190
1191         /* Record current time in case interrupted by signal, or wedged */
1192         trace_i915_gem_request_wait_begin(ring, seqno);
1193         getrawmonotonic(&before);
1194
1195 #define EXIT_COND \
1196         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1197          i915_reset_in_progress(&dev_priv->gpu_error) || \
1198          reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1199         do {
1200                 if (interruptible)
1201                         end = wait_event_interruptible_timeout(ring->irq_queue,
1202                                                                EXIT_COND,
1203                                                                timeout_jiffies);
1204                 else
1205                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1206                                                  timeout_jiffies);
1207
1208                 /* We need to check whether any gpu reset happened in between
1209                  * the caller grabbing the seqno and now ... */
1210                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1211                         end = -EAGAIN;
1212
1213                 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1214                  * gone. */
1215                 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1216                 if (ret)
1217                         end = ret;
1218         } while (end == 0 && wait_forever);
1219
1220         getrawmonotonic(&now);
1221
1222         ring->irq_put(ring);
1223         trace_i915_gem_request_wait_end(ring, seqno);
1224 #undef EXIT_COND
1225
1226         if (timeout) {
1227                 struct timespec sleep_time = timespec_sub(now, before);
1228                 *timeout = timespec_sub(*timeout, sleep_time);
1229                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1230                         set_normalized_timespec(timeout, 0, 0);
1231         }
1232
1233         switch (end) {
1234         case -EIO:
1235         case -EAGAIN: /* Wedged */
1236         case -ERESTARTSYS: /* Signal */
1237                 return (int)end;
1238         case 0: /* Timeout */
1239                 return -ETIMEDOUT;      /* -ETIME on Linux */
1240         default: /* Completed */
1241                 WARN_ON(end < 0); /* We're not aware of other errors */
1242                 return 0;
1243         }
1244 }
1245
1246 /**
1247  * Waits for a sequence number to be signaled, and cleans up the
1248  * request and object lists appropriately for that event.
1249  */
1250 int
1251 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1252 {
1253         struct drm_device *dev = ring->dev;
1254         struct drm_i915_private *dev_priv = dev->dev_private;
1255         bool interruptible = dev_priv->mm.interruptible;
1256         int ret;
1257
1258         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1259         BUG_ON(seqno == 0);
1260
1261         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1262         if (ret)
1263                 return ret;
1264
1265         ret = i915_gem_check_olr(ring, seqno);
1266         if (ret)
1267                 return ret;
1268
1269         return __wait_seqno(ring, seqno,
1270                             atomic_read(&dev_priv->gpu_error.reset_counter),
1271                             interruptible, NULL, NULL);
1272 }
1273
1274 static int
1275 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1276                                      struct intel_engine_cs *ring)
1277 {
1278         if (!obj->active)
1279                 return 0;
1280
1281         /* Manually manage the write flush as we may have not yet
1282          * retired the buffer.
1283          *
1284          * Note that the last_write_seqno is always the earlier of
1285          * the two (read/write) seqno, so if we haved successfully waited,
1286          * we know we have passed the last write.
1287          */
1288         obj->last_write_seqno = 0;
1289
1290         return 0;
1291 }
1292
1293 /**
1294  * Ensures that all rendering to the object has completed and the object is
1295  * safe to unbind from the GTT or access from the CPU.
1296  */
1297 static __must_check int
1298 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1299                                bool readonly)
1300 {
1301         struct intel_engine_cs *ring = obj->ring;
1302         u32 seqno;
1303         int ret;
1304
1305         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1306         if (seqno == 0)
1307                 return 0;
1308
1309         ret = i915_wait_seqno(ring, seqno);
1310         if (ret)
1311                 return ret;
1312
1313         return i915_gem_object_wait_rendering__tail(obj, ring);
1314 }
1315
1316 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1317  * as the object state may change during this call.
1318  */
1319 static __must_check int
1320 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1321                                             struct drm_i915_file_private *file_priv,
1322                                             bool readonly)
1323 {
1324         struct drm_device *dev = obj->base.dev;
1325         struct drm_i915_private *dev_priv = dev->dev_private;
1326         struct intel_engine_cs *ring = obj->ring;
1327         unsigned reset_counter;
1328         u32 seqno;
1329         int ret;
1330
1331         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1332         BUG_ON(!dev_priv->mm.interruptible);
1333
1334         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1335         if (seqno == 0)
1336                 return 0;
1337
1338         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1339         if (ret)
1340                 return ret;
1341
1342         ret = i915_gem_check_olr(ring, seqno);
1343         if (ret)
1344                 return ret;
1345
1346         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1347         mutex_unlock(&dev->struct_mutex);
1348         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1349         mutex_lock(&dev->struct_mutex);
1350         if (ret)
1351                 return ret;
1352
1353         return i915_gem_object_wait_rendering__tail(obj, ring);
1354 }
1355
1356 /**
1357  * Called when user space prepares to use an object with the CPU, either
1358  * through the mmap ioctl's mapping or a GTT mapping.
1359  */
1360 int
1361 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1362                           struct drm_file *file)
1363 {
1364         struct drm_i915_gem_set_domain *args = data;
1365         struct drm_i915_gem_object *obj;
1366         uint32_t read_domains = args->read_domains;
1367         uint32_t write_domain = args->write_domain;
1368         int ret;
1369
1370         /* Only handle setting domains to types used by the CPU. */
1371         if (write_domain & I915_GEM_GPU_DOMAINS)
1372                 return -EINVAL;
1373
1374         if (read_domains & I915_GEM_GPU_DOMAINS)
1375                 return -EINVAL;
1376
1377         /* Having something in the write domain implies it's in the read
1378          * domain, and only that read domain.  Enforce that in the request.
1379          */
1380         if (write_domain != 0 && read_domains != write_domain)
1381                 return -EINVAL;
1382
1383         ret = i915_mutex_lock_interruptible(dev);
1384         if (ret)
1385                 return ret;
1386
1387         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1388         if (&obj->base == NULL) {
1389                 ret = -ENOENT;
1390                 goto unlock;
1391         }
1392
1393         /* Try to flush the object off the GPU without holding the lock.
1394          * We will repeat the flush holding the lock in the normal manner
1395          * to catch cases where we are gazumped.
1396          */
1397         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1398                                                           file->driver_priv,
1399                                                           !write_domain);
1400         if (ret)
1401                 goto unref;
1402
1403         if (read_domains & I915_GEM_DOMAIN_GTT) {
1404                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1405
1406                 /* Silently promote "you're not bound, there was nothing to do"
1407                  * to success, since the client was just asking us to
1408                  * make sure everything was done.
1409                  */
1410                 if (ret == -EINVAL)
1411                         ret = 0;
1412         } else {
1413                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1414         }
1415
1416 unref:
1417         drm_gem_object_unreference(&obj->base);
1418 unlock:
1419         mutex_unlock(&dev->struct_mutex);
1420         return ret;
1421 }
1422
1423 /**
1424  * Called when user space has done writes to this buffer
1425  */
1426 int
1427 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1428                          struct drm_file *file)
1429 {
1430         struct drm_i915_gem_sw_finish *args = data;
1431         struct drm_i915_gem_object *obj;
1432         int ret = 0;
1433
1434         ret = i915_mutex_lock_interruptible(dev);
1435         if (ret)
1436                 return ret;
1437
1438         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1439         if (&obj->base == NULL) {
1440                 ret = -ENOENT;
1441                 goto unlock;
1442         }
1443
1444         /* Pinned buffers may be scanout, so flush the cache */
1445         if (obj->pin_display)
1446                 i915_gem_object_flush_cpu_write_domain(obj, true);
1447
1448         drm_gem_object_unreference(&obj->base);
1449 unlock:
1450         mutex_unlock(&dev->struct_mutex);
1451         return ret;
1452 }
1453
1454 /**
1455  * Maps the contents of an object, returning the address it is mapped
1456  * into.
1457  *
1458  * While the mapping holds a reference on the contents of the object, it doesn't
1459  * imply a ref on the object itself.
1460  */
1461 int
1462 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1463                     struct drm_file *file)
1464 {
1465         struct drm_i915_gem_mmap *args = data;
1466         struct drm_gem_object *obj;
1467         unsigned long addr;
1468         struct proc *p = curproc;
1469         vm_map_t map = &p->p_vmspace->vm_map;
1470         vm_size_t size;
1471         int error = 0, rv;
1472
1473         obj = drm_gem_object_lookup(dev, file, args->handle);
1474         if (obj == NULL)
1475                 return -ENOENT;
1476
1477         if (args->size == 0)
1478                 goto out;
1479
1480         size = round_page(args->size);
1481         if (map->size + size > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
1482                 error = -ENOMEM;
1483                 goto out;
1484         }
1485
1486         /*
1487          * Call hint to ensure that NULL is not returned as a valid address
1488          * and to reduce vm_map traversals. XXX causes instability, use a
1489          * fixed low address as the start point instead to avoid the NULL
1490          * return issue.
1491          */
1492         addr = PAGE_SIZE;
1493
1494         /*
1495          * Use 256KB alignment.  It is unclear why this matters for a
1496          * virtual address but it appears to fix a number of application/X
1497          * crashes and kms console switching is much faster.
1498          */
1499         vm_object_hold(obj->vm_obj);
1500         vm_object_reference_locked(obj->vm_obj);
1501         vm_object_drop(obj->vm_obj);
1502
1503         rv = vm_map_find(map, obj->vm_obj, NULL,
1504                          args->offset, &addr, args->size,
1505                          256 * 1024, /* align */
1506                          TRUE, /* fitit */
1507                          VM_MAPTYPE_NORMAL, /* maptype */
1508                          VM_PROT_READ | VM_PROT_WRITE, /* prot */
1509                          VM_PROT_READ | VM_PROT_WRITE, /* max */
1510                          MAP_SHARED /* cow */);
1511         if (rv != KERN_SUCCESS) {
1512                 vm_object_deallocate(obj->vm_obj);
1513                 error = -vm_mmap_to_errno(rv);
1514         } else {
1515                 args->addr_ptr = (uint64_t)addr;
1516         }
1517 out:
1518         drm_gem_object_unreference(obj);
1519         return (error);
1520 }
1521
1522 /**
1523  * i915_gem_fault - fault a page into the GTT
1524  *
1525  * vm_obj is locked on entry and expected to be locked on return.
1526  *
1527  * The vm_pager has placemarked the object with an anonymous memory page
1528  * which we must replace atomically to avoid races against concurrent faults
1529  * on the same page.  XXX we currently are unable to do this atomically.
1530  *
1531  * If we are to return an error we should not touch the anonymous page,
1532  * the caller will deallocate it.
1533  *
1534  * XXX Most GEM calls appear to be interruptable, but we can't hard loop
1535  * in that case.  Release all resources and wait 1 tick before retrying.
1536  * This is a huge problem which needs to be fixed by getting rid of most
1537  * of the interruptability.  The linux code does not retry but does appear
1538  * to have some sort of mechanism (VM_FAULT_NOPAGE ?) for the higher level
1539  * to be able to retry.
1540  *
1541  * --
1542  *
1543  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1544  * from userspace.  The fault handler takes care of binding the object to
1545  * the GTT (if needed), allocating and programming a fence register (again,
1546  * only if needed based on whether the old reg is still valid or the object
1547  * is tiled) and inserting a new PTE into the faulting process.
1548  *
1549  * Note that the faulting process may involve evicting existing objects
1550  * from the GTT and/or fence registers to make room.  So performance may
1551  * suffer if the GTT working set is large or there are few fence registers
1552  * left.
1553  *
1554  * vm_obj is locked on entry and expected to be locked on return.  The VM
1555  * pager has placed an anonymous memory page at (obj,offset) which we have
1556  * to replace.
1557  */
1558 int i915_gem_fault(vm_object_t vm_obj, vm_ooffset_t offset, int prot, vm_page_t *mres)
1559 {
1560         struct drm_i915_gem_object *obj = to_intel_bo(vm_obj->handle);
1561         struct drm_device *dev = obj->base.dev;
1562         struct drm_i915_private *dev_priv = dev->dev_private;
1563         unsigned long page_offset;
1564         vm_page_t m, oldm = NULL;
1565         int ret = 0;
1566         int didpip = 0;
1567         bool write = !!(prot & VM_PROT_WRITE);
1568
1569         intel_runtime_pm_get(dev_priv);
1570
1571         /* We don't use vmf->pgoff since that has the fake offset */
1572         page_offset = (unsigned long)offset;
1573
1574 retry:
1575         ret = i915_mutex_lock_interruptible(dev);
1576         if (ret)
1577                 goto out;
1578
1579         trace_i915_gem_object_fault(obj, page_offset, true, write);
1580
1581         /* Try to flush the object off the GPU first without holding the lock.
1582          * Upon reacquiring the lock, we will perform our sanity checks and then
1583          * repeat the flush holding the lock in the normal manner to catch cases
1584          * where we are gazumped.
1585          */
1586         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1587         if (ret)
1588                 goto unlock;
1589
1590         /* Access to snoopable pages through the GTT is incoherent. */
1591         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1592                 ret = -EFAULT;
1593                 goto unlock;
1594         }
1595
1596         /* Now bind it into the GTT if needed */
1597         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1598         if (ret)
1599                 goto unlock;
1600
1601         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1602         if (ret)
1603                 goto unpin;
1604
1605         ret = i915_gem_object_get_fence(obj);
1606         if (ret)
1607                 goto unpin;
1608
1609         /*
1610          * START FREEBSD MAGIC
1611          *
1612          * Add a pip count to avoid destruction and certain other
1613          * complex operations (such as collapses?) while unlocked.
1614          */
1615         if (didpip == 0) {
1616                 vm_object_pip_add(vm_obj, 1);
1617                 didpip = 1;
1618         }
1619
1620         /*
1621          * XXX We must currently remove the placeholder page now to avoid
1622          * a deadlock against a concurrent i915_gem_release_mmap().
1623          * Otherwise concurrent operation will block on the busy page
1624          * while holding locks which we need to obtain.
1625          */
1626         if (*mres != NULL) {
1627                 oldm = *mres;
1628                 if ((oldm->flags & PG_BUSY) == 0)
1629                         kprintf("i915_gem_fault: Page was not busy\n");
1630                 else
1631                         vm_page_remove(oldm);
1632                 *mres = NULL;
1633         } else {
1634                 oldm = NULL;
1635         }
1636
1637         VM_OBJECT_UNLOCK(vm_obj);
1638         ret = 0;
1639         m = NULL;
1640
1641         /*
1642          * Since the object lock was dropped, another thread might have
1643          * faulted on the same GTT address and instantiated the mapping.
1644          * Recheck.
1645          */
1646         VM_OBJECT_LOCK(vm_obj);
1647         m = vm_page_lookup(vm_obj, OFF_TO_IDX(offset));
1648         if (m != NULL) {
1649                 /*
1650                  * Try to busy the page, retry on failure (non-zero ret).
1651                  */
1652                 if (vm_page_busy_try(m, false)) {
1653                         kprintf("i915_gem_fault: PG_BUSY\n");
1654                         ret = -EINTR;
1655                         goto unlock;
1656                 }
1657                 goto have_page;
1658         }
1659         /*
1660          * END FREEBSD MAGIC
1661          */
1662
1663         /*
1664          * Object must be unlocked here to avoid deadlock during
1665          * other GEM calls.  All goto targets expect the object to
1666          * be locked.
1667          */
1668         VM_OBJECT_UNLOCK(vm_obj);
1669
1670         obj->fault_mappable = true;
1671
1672         /*
1673          * Relock object for insertion, leave locked for return.
1674          */
1675         VM_OBJECT_LOCK(vm_obj);
1676         m = vm_phys_fictitious_to_vm_page(dev_priv->gtt.mappable_base +
1677                                           i915_gem_obj_ggtt_offset(obj) +
1678                                           offset);
1679         if (m == NULL) {
1680                 ret = -EFAULT;
1681                 goto unpin;
1682         }
1683         KASSERT((m->flags & PG_FICTITIOUS) != 0, ("not fictitious %p", m));
1684         KASSERT(m->wire_count == 1, ("wire_count not 1 %p", m));
1685
1686         /*
1687          * Try to busy the page.  Fails on non-zero return.
1688          */
1689         if (vm_page_busy_try(m, false)) {
1690                 kprintf("i915_gem_fault: PG_BUSY(2)\n");
1691                 ret = -EINTR;
1692                 goto unpin;
1693         }
1694         m->valid = VM_PAGE_BITS_ALL;
1695
1696         /*
1697          * Finally, remap it using the new GTT offset.
1698          *
1699          * (object expected to be in a locked state)
1700          */
1701         vm_page_insert(m, vm_obj, OFF_TO_IDX(offset));
1702 have_page:
1703         *mres = m;
1704
1705         i915_gem_object_ggtt_unpin(obj);
1706         mutex_unlock(&dev->struct_mutex);
1707         ret = VM_PAGER_OK;
1708         goto done;
1709
1710         /*
1711          * ALTERNATIVE ERROR RETURN.
1712          *
1713          * OBJECT EXPECTED TO BE LOCKED.
1714          */
1715 unpin:
1716         i915_gem_object_ggtt_unpin(obj);
1717 unlock:
1718         mutex_unlock(&dev->struct_mutex);
1719 out:
1720         switch (ret) {
1721         case -EIO:
1722                 /*
1723                  * We eat errors when the gpu is terminally wedged to avoid
1724                  * userspace unduly crashing (gl has no provisions for mmaps to
1725                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1726                  * and so needs to be reported.
1727                  */
1728                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1729 //                      ret = VM_FAULT_SIGBUS;
1730                         break;
1731                 }
1732                 /* fall through */
1733         case -EAGAIN:
1734                 /*
1735                  * EAGAIN means the gpu is hung and we'll wait for the error
1736                  * handler to reset everything when re-faulting in
1737                  * i915_mutex_lock_interruptible.
1738                  */
1739                 /* fall through */
1740         case -ERESTARTSYS:
1741         case -EINTR:
1742                 VM_OBJECT_UNLOCK(vm_obj);
1743                 int dummy;
1744                 tsleep(&dummy, 0, "delay", 1); /* XXX */
1745                 VM_OBJECT_LOCK(vm_obj);
1746                 goto retry;
1747         default:
1748                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1749                 ret = VM_PAGER_ERROR;
1750                 break;
1751         }
1752
1753 done:
1754         if (oldm != NULL)
1755                 vm_page_free(oldm);
1756         if (didpip)
1757                 vm_object_pip_wakeup(vm_obj);
1758
1759         intel_runtime_pm_put(dev_priv);
1760         return ret;
1761 }
1762
1763 /**
1764  * i915_gem_release_mmap - remove physical page mappings
1765  * @obj: obj in question
1766  *
1767  * Preserve the reservation of the mmapping with the DRM core code, but
1768  * relinquish ownership of the pages back to the system.
1769  *
1770  * It is vital that we remove the page mapping if we have mapped a tiled
1771  * object through the GTT and then lose the fence register due to
1772  * resource pressure. Similarly if the object has been moved out of the
1773  * aperture, than pages mapped into userspace must be revoked. Removing the
1774  * mapping will then trigger a page fault on the next user access, allowing
1775  * fixup by i915_gem_fault().
1776  */
1777 void
1778 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1779 {
1780         vm_object_t devobj;
1781         vm_page_t m;
1782         int i, page_count;
1783
1784         if (!obj->fault_mappable)
1785                 return;
1786
1787         devobj = cdev_pager_lookup(obj);
1788         if (devobj != NULL) {
1789                 page_count = OFF_TO_IDX(obj->base.size);
1790
1791                 VM_OBJECT_LOCK(devobj);
1792                 for (i = 0; i < page_count; i++) {
1793                         m = vm_page_lookup_busy_wait(devobj, i, TRUE, "915unm");
1794                         if (m == NULL)
1795                                 continue;
1796                         cdev_pager_free_page(devobj, m);
1797                 }
1798                 VM_OBJECT_UNLOCK(devobj);
1799                 vm_object_deallocate(devobj);
1800         }
1801
1802         obj->fault_mappable = false;
1803 }
1804
1805 void
1806 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1807 {
1808         struct drm_i915_gem_object *obj;
1809
1810         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1811                 i915_gem_release_mmap(obj);
1812 }
1813
1814 uint32_t
1815 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1816 {
1817         uint32_t gtt_size;
1818
1819         if (INTEL_INFO(dev)->gen >= 4 ||
1820             tiling_mode == I915_TILING_NONE)
1821                 return size;
1822
1823         /* Previous chips need a power-of-two fence region when tiling */
1824         if (INTEL_INFO(dev)->gen == 3)
1825                 gtt_size = 1024*1024;
1826         else
1827                 gtt_size = 512*1024;
1828
1829         while (gtt_size < size)
1830                 gtt_size <<= 1;
1831
1832         return gtt_size;
1833 }
1834
1835 /**
1836  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1837  * @obj: object to check
1838  *
1839  * Return the required GTT alignment for an object, taking into account
1840  * potential fence register mapping.
1841  */
1842 uint32_t
1843 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1844                            int tiling_mode, bool fenced)
1845 {
1846         /*
1847          * Minimum alignment is 4k (GTT page size), but might be greater
1848          * if a fence register is needed for the object.
1849          */
1850         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1851             tiling_mode == I915_TILING_NONE)
1852                 return 4096;
1853
1854         /*
1855          * Previous chips need to be aligned to the size of the smallest
1856          * fence register that can contain the object.
1857          */
1858         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1859 }
1860
1861 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1862 {
1863         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1864         int ret;
1865
1866 #if 0
1867         if (drm_vma_node_has_offset(&obj->base.vma_node))
1868                 return 0;
1869 #endif
1870
1871         dev_priv->mm.shrinker_no_lock_stealing = true;
1872
1873         ret = drm_gem_create_mmap_offset(&obj->base);
1874         if (ret != -ENOSPC)
1875                 goto out;
1876
1877         /* Badly fragmented mmap space? The only way we can recover
1878          * space is by destroying unwanted objects. We can't randomly release
1879          * mmap_offsets as userspace expects them to be persistent for the
1880          * lifetime of the objects. The closest we can is to release the
1881          * offsets on purgeable objects by truncating it and marking it purged,
1882          * which prevents userspace from ever using that object again.
1883          */
1884         i915_gem_shrink(dev_priv,
1885                         obj->base.size >> PAGE_SHIFT,
1886                         I915_SHRINK_BOUND |
1887                         I915_SHRINK_UNBOUND |
1888                         I915_SHRINK_PURGEABLE);
1889         ret = drm_gem_create_mmap_offset(&obj->base);
1890         if (ret != -ENOSPC)
1891                 goto out;
1892
1893         i915_gem_shrink_all(dev_priv);
1894         ret = drm_gem_create_mmap_offset(&obj->base);
1895 out:
1896         dev_priv->mm.shrinker_no_lock_stealing = false;
1897
1898         return ret;
1899 }
1900
1901 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1902 {
1903         drm_gem_free_mmap_offset(&obj->base);
1904 }
1905
1906 int
1907 i915_gem_mmap_gtt(struct drm_file *file,
1908                   struct drm_device *dev,
1909                   uint32_t handle,
1910                   uint64_t *offset)
1911 {
1912         struct drm_i915_private *dev_priv = dev->dev_private;
1913         struct drm_i915_gem_object *obj;
1914         int ret;
1915
1916         ret = i915_mutex_lock_interruptible(dev);
1917         if (ret)
1918                 return ret;
1919
1920         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1921         if (&obj->base == NULL) {
1922                 ret = -ENOENT;
1923                 goto unlock;
1924         }
1925
1926         if (obj->base.size > dev_priv->gtt.mappable_end) {
1927                 ret = -E2BIG;
1928                 goto out;
1929         }
1930
1931         if (obj->madv != I915_MADV_WILLNEED) {
1932                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1933                 ret = -EFAULT;
1934                 goto out;
1935         }
1936
1937         ret = i915_gem_object_create_mmap_offset(obj);
1938         if (ret)
1939                 goto out;
1940
1941         *offset = DRM_GEM_MAPPING_OFF(obj->base.map_list.key) |
1942             DRM_GEM_MAPPING_KEY;
1943
1944 out:
1945         drm_gem_object_unreference(&obj->base);
1946 unlock:
1947         mutex_unlock(&dev->struct_mutex);
1948         return ret;
1949 }
1950
1951 /**
1952  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1953  * @dev: DRM device
1954  * @data: GTT mapping ioctl data
1955  * @file: GEM object info
1956  *
1957  * Simply returns the fake offset to userspace so it can mmap it.
1958  * The mmap call will end up in drm_gem_mmap(), which will set things
1959  * up so we can get faults in the handler above.
1960  *
1961  * The fault handler will take care of binding the object into the GTT
1962  * (since it may have been evicted to make room for something), allocating
1963  * a fence register, and mapping the appropriate aperture address into
1964  * userspace.
1965  */
1966 int
1967 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1968                         struct drm_file *file)
1969 {
1970         struct drm_i915_gem_mmap_gtt *args = data;
1971
1972         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1973 }
1974
1975 static inline int
1976 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1977 {
1978         return obj->madv == I915_MADV_DONTNEED;
1979 }
1980
1981 /* Immediately discard the backing storage */
1982 static void
1983 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1984 {
1985         vm_object_t vm_obj;
1986
1987         vm_obj = obj->base.vm_obj;
1988         VM_OBJECT_LOCK(vm_obj);
1989         vm_object_page_remove(vm_obj, 0, 0, false);
1990         VM_OBJECT_UNLOCK(vm_obj);
1991
1992         obj->madv = __I915_MADV_PURGED;
1993 }
1994
1995 /* Try to discard unwanted pages */
1996 static void
1997 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1998 {
1999 #if 0
2000         struct address_space *mapping;
2001 #endif
2002
2003         switch (obj->madv) {
2004         case I915_MADV_DONTNEED:
2005                 i915_gem_object_truncate(obj);
2006         case __I915_MADV_PURGED:
2007                 return;
2008         }
2009
2010 #if 0
2011         if (obj->base.filp == NULL)
2012                 return;
2013
2014         mapping = file_inode(obj->base.filp)->i_mapping,
2015         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2016 #endif
2017 }
2018
2019 static void
2020 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2021 {
2022         int page_count = obj->base.size / PAGE_SIZE;
2023         int i, ret;
2024
2025         if (!obj->pages)
2026                 return;
2027
2028         BUG_ON(obj->madv == __I915_MADV_PURGED);
2029
2030         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2031         if (ret) {
2032                 /* In the event of a disaster, abandon all caches and
2033                  * hope for the best.
2034                  */
2035                 WARN_ON(ret != -EIO);
2036                 i915_gem_clflush_object(obj, true);
2037                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2038         }
2039
2040         if (i915_gem_object_needs_bit17_swizzle(obj))
2041                 i915_gem_object_save_bit_17_swizzle(obj);
2042
2043         if (obj->madv == I915_MADV_DONTNEED)
2044                 obj->dirty = 0;
2045
2046         for (i = 0; i < page_count; i++) {
2047                 struct vm_page *page = obj->pages[i];
2048
2049                 if (obj->dirty)
2050                         set_page_dirty(page);
2051
2052                 if (obj->madv == I915_MADV_WILLNEED)
2053                         mark_page_accessed(page);
2054
2055                 vm_page_busy_wait(obj->pages[i], FALSE, "i915gem");
2056                 vm_page_unwire(obj->pages[i], 1);
2057                 vm_page_wakeup(obj->pages[i]);
2058         }
2059         obj->dirty = 0;
2060
2061         kfree(obj->pages);
2062         obj->pages = NULL;
2063 }
2064
2065 int
2066 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2067 {
2068         const struct drm_i915_gem_object_ops *ops = obj->ops;
2069
2070         if (obj->pages == NULL)
2071                 return 0;
2072
2073         if (obj->pages_pin_count)
2074                 return -EBUSY;
2075
2076         BUG_ON(i915_gem_obj_bound_any(obj));
2077
2078         /* ->put_pages might need to allocate memory for the bit17 swizzle
2079          * array, hence protect them from being reaped by removing them from gtt
2080          * lists early. */
2081         list_del(&obj->global_list);
2082
2083         ops->put_pages(obj);
2084         obj->pages = NULL;
2085
2086         i915_gem_object_invalidate(obj);
2087
2088         return 0;
2089 }
2090
2091 unsigned long
2092 i915_gem_shrink(struct drm_i915_private *dev_priv,
2093                 long target, unsigned flags)
2094 {
2095         const bool purgeable_only = flags & I915_SHRINK_PURGEABLE;
2096         unsigned long count = 0;
2097
2098         /*
2099          * As we may completely rewrite the (un)bound list whilst unbinding
2100          * (due to retiring requests) we have to strictly process only
2101          * one element of the list at the time, and recheck the list
2102          * on every iteration.
2103          *
2104          * In particular, we must hold a reference whilst removing the
2105          * object as we may end up waiting for and/or retiring the objects.
2106          * This might release the final reference (held by the active list)
2107          * and result in the object being freed from under us. This is
2108          * similar to the precautions the eviction code must take whilst
2109          * removing objects.
2110          *
2111          * Also note that although these lists do not hold a reference to
2112          * the object we can safely grab one here: The final object
2113          * unreferencing and the bound_list are both protected by the
2114          * dev->struct_mutex and so we won't ever be able to observe an
2115          * object on the bound_list with a reference count equals 0.
2116          */
2117         if (flags & I915_SHRINK_UNBOUND) {
2118                 struct list_head still_in_list;
2119
2120                 INIT_LIST_HEAD(&still_in_list);
2121                 while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
2122                         struct drm_i915_gem_object *obj;
2123
2124                         obj = list_first_entry(&dev_priv->mm.unbound_list,
2125                                                typeof(*obj), global_list);
2126                         list_move_tail(&obj->global_list, &still_in_list);
2127
2128                         if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
2129                                 continue;
2130
2131                         drm_gem_object_reference(&obj->base);
2132
2133                         if (i915_gem_object_put_pages(obj) == 0)
2134                                 count += obj->base.size >> PAGE_SHIFT;
2135
2136                         drm_gem_object_unreference(&obj->base);
2137                 }
2138                 list_splice(&still_in_list, &dev_priv->mm.unbound_list);
2139         }
2140
2141         if (flags & I915_SHRINK_BOUND) {
2142                 struct list_head still_in_list;
2143
2144                 INIT_LIST_HEAD(&still_in_list);
2145                 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
2146                         struct drm_i915_gem_object *obj;
2147                         struct i915_vma *vma, *v;
2148
2149                         obj = list_first_entry(&dev_priv->mm.bound_list,
2150                                                typeof(*obj), global_list);
2151                         list_move_tail(&obj->global_list, &still_in_list);
2152
2153                         if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
2154                                 continue;
2155
2156                         drm_gem_object_reference(&obj->base);
2157
2158                         list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
2159                                 if (i915_vma_unbind(vma))
2160                                         break;
2161
2162                         if (i915_gem_object_put_pages(obj) == 0)
2163                                 count += obj->base.size >> PAGE_SHIFT;
2164
2165                         drm_gem_object_unreference(&obj->base);
2166                 }
2167                 list_splice(&still_in_list, &dev_priv->mm.bound_list);
2168         }
2169
2170         return count;
2171 }
2172
2173 static unsigned long
2174 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2175 {
2176         i915_gem_evict_everything(dev_priv->dev);
2177         return i915_gem_shrink(dev_priv, LONG_MAX,
2178                                I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2179 }
2180
2181 static int
2182 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2183 {
2184         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2185         int page_count, i, j;
2186         vm_object_t vm_obj;
2187         struct vm_page *page;
2188
2189         /* Assert that the object is not currently in any GPU domain. As it
2190          * wasn't in the GTT, there shouldn't be any way it could have been in
2191          * a GPU cache
2192          */
2193         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2194         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2195
2196         page_count = obj->base.size / PAGE_SIZE;
2197         obj->pages = kmalloc(page_count * sizeof(vm_page_t), M_DRM,
2198             M_WAITOK);
2199
2200         /* Get the list of pages out of our struct file.  They'll be pinned
2201          * at this point until we release them.
2202          *
2203          * Fail silently without starting the shrinker
2204          */
2205         vm_obj = obj->base.vm_obj;
2206         VM_OBJECT_LOCK(vm_obj);
2207         for (i = 0; i < page_count; i++) {
2208                 page = shmem_read_mapping_page(vm_obj, i);
2209                 if (IS_ERR(page)) {
2210                         i915_gem_shrink(dev_priv,
2211                                         page_count,
2212                                         I915_SHRINK_BOUND |
2213                                         I915_SHRINK_UNBOUND |
2214                                         I915_SHRINK_PURGEABLE);
2215                         page = shmem_read_mapping_page(vm_obj, i);
2216                 }
2217                 if (IS_ERR(page)) {
2218                         /* We've tried hard to allocate the memory by reaping
2219                          * our own buffer, now let the real VM do its job and
2220                          * go down in flames if truly OOM.
2221                          */
2222
2223                         i915_gem_shrink_all(dev_priv);
2224                         page = shmem_read_mapping_page(vm_obj, i);
2225                         if (IS_ERR(page))
2226                                 goto err_pages;
2227                 }
2228 #ifdef CONFIG_SWIOTLB
2229                 if (swiotlb_nr_tbl()) {
2230                         st->nents++;
2231                         sg_set_page(sg, page, PAGE_SIZE, 0);
2232                         sg = sg_next(sg);
2233                         continue;
2234                 }
2235 #endif
2236                 obj->pages[i] = page;
2237         }
2238 #ifdef CONFIG_SWIOTLB
2239         if (!swiotlb_nr_tbl())
2240 #endif
2241         VM_OBJECT_UNLOCK(vm_obj);
2242
2243         if (i915_gem_object_needs_bit17_swizzle(obj))
2244                 i915_gem_object_do_bit_17_swizzle(obj);
2245
2246         return 0;
2247
2248 err_pages:
2249         for (j = 0; j < i; j++) {
2250                 page = obj->pages[j];
2251                 vm_page_busy_wait(page, FALSE, "i915gem");
2252                 vm_page_unwire(page, 0);
2253                 vm_page_wakeup(page);
2254         }
2255         VM_OBJECT_UNLOCK(vm_obj);
2256         kfree(obj->pages);
2257         obj->pages = NULL;
2258         return (-EIO);
2259 }
2260
2261 /* Ensure that the associated pages are gathered from the backing storage
2262  * and pinned into our object. i915_gem_object_get_pages() may be called
2263  * multiple times before they are released by a single call to
2264  * i915_gem_object_put_pages() - once the pages are no longer referenced
2265  * either as a result of memory pressure (reaping pages under the shrinker)
2266  * or as the object is itself released.
2267  */
2268 int
2269 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2270 {
2271         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2272         const struct drm_i915_gem_object_ops *ops = obj->ops;
2273         int ret;
2274
2275         if (obj->pages)
2276                 return 0;
2277
2278         if (obj->madv != I915_MADV_WILLNEED) {
2279                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2280                 return -EFAULT;
2281         }
2282
2283         BUG_ON(obj->pages_pin_count);
2284
2285         ret = ops->get_pages(obj);
2286         if (ret)
2287                 return ret;
2288
2289         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2290         return 0;
2291 }
2292
2293 static void
2294 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2295                                struct intel_engine_cs *ring)
2296 {
2297         u32 seqno = intel_ring_get_seqno(ring);
2298
2299         BUG_ON(ring == NULL);
2300         if (obj->ring != ring && obj->last_write_seqno) {
2301                 /* Keep the seqno relative to the current ring */
2302                 obj->last_write_seqno = seqno;
2303         }
2304         obj->ring = ring;
2305
2306         /* Add a reference if we're newly entering the active list. */
2307         if (!obj->active) {
2308                 drm_gem_object_reference(&obj->base);
2309                 obj->active = 1;
2310         }
2311
2312         list_move_tail(&obj->ring_list, &ring->active_list);
2313
2314         obj->last_read_seqno = seqno;
2315 }
2316
2317 void i915_vma_move_to_active(struct i915_vma *vma,
2318                              struct intel_engine_cs *ring)
2319 {
2320         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2321         return i915_gem_object_move_to_active(vma->obj, ring);
2322 }
2323
2324 static void
2325 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2326 {
2327         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2328         struct i915_address_space *vm;
2329         struct i915_vma *vma;
2330
2331         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2332         BUG_ON(!obj->active);
2333
2334         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2335                 vma = i915_gem_obj_to_vma(obj, vm);
2336                 if (vma && !list_empty(&vma->mm_list))
2337                         list_move_tail(&vma->mm_list, &vm->inactive_list);
2338         }
2339
2340         intel_fb_obj_flush(obj, true);
2341
2342         list_del_init(&obj->ring_list);
2343         obj->ring = NULL;
2344
2345         obj->last_read_seqno = 0;
2346         obj->last_write_seqno = 0;
2347         obj->base.write_domain = 0;
2348
2349         obj->last_fenced_seqno = 0;
2350
2351         obj->active = 0;
2352         drm_gem_object_unreference(&obj->base);
2353
2354         WARN_ON(i915_verify_lists(dev));
2355 }
2356
2357 static void
2358 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2359 {
2360         struct intel_engine_cs *ring = obj->ring;
2361
2362         if (ring == NULL)
2363                 return;
2364
2365         if (i915_seqno_passed(ring->get_seqno(ring, true),
2366                               obj->last_read_seqno))
2367                 i915_gem_object_move_to_inactive(obj);
2368 }
2369
2370 static int
2371 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2372 {
2373         struct drm_i915_private *dev_priv = dev->dev_private;
2374         struct intel_engine_cs *ring;
2375         int ret, i, j;
2376
2377         /* Carefully retire all requests without writing to the rings */
2378         for_each_ring(ring, dev_priv, i) {
2379                 ret = intel_ring_idle(ring);
2380                 if (ret)
2381                         return ret;
2382         }
2383         i915_gem_retire_requests(dev);
2384
2385         /* Finally reset hw state */
2386         for_each_ring(ring, dev_priv, i) {
2387                 intel_ring_init_seqno(ring, seqno);
2388
2389                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2390                         ring->semaphore.sync_seqno[j] = 0;
2391         }
2392
2393         return 0;
2394 }
2395
2396 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2397 {
2398         struct drm_i915_private *dev_priv = dev->dev_private;
2399         int ret;
2400
2401         if (seqno == 0)
2402                 return -EINVAL;
2403
2404         /* HWS page needs to be set less than what we
2405          * will inject to ring
2406          */
2407         ret = i915_gem_init_seqno(dev, seqno - 1);
2408         if (ret)
2409                 return ret;
2410
2411         /* Carefully set the last_seqno value so that wrap
2412          * detection still works
2413          */
2414         dev_priv->next_seqno = seqno;
2415         dev_priv->last_seqno = seqno - 1;
2416         if (dev_priv->last_seqno == 0)
2417                 dev_priv->last_seqno--;
2418
2419         return 0;
2420 }
2421
2422 int
2423 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2424 {
2425         struct drm_i915_private *dev_priv = dev->dev_private;
2426
2427         /* reserve 0 for non-seqno */
2428         if (dev_priv->next_seqno == 0) {
2429                 int ret = i915_gem_init_seqno(dev, 0);
2430                 if (ret)
2431                         return ret;
2432
2433                 dev_priv->next_seqno = 1;
2434         }
2435
2436         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2437         return 0;
2438 }
2439
2440 int __i915_add_request(struct intel_engine_cs *ring,
2441                        struct drm_file *file,
2442                        struct drm_i915_gem_object *obj,
2443                        u32 *out_seqno)
2444 {
2445         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2446         struct drm_i915_gem_request *request;
2447         struct intel_ringbuffer *ringbuf;
2448         u32 request_ring_position, request_start;
2449         int ret;
2450
2451         request = ring->preallocated_lazy_request;
2452         if (WARN_ON(request == NULL))
2453                 return -ENOMEM;
2454
2455         if (i915.enable_execlists) {
2456                 struct intel_context *ctx = request->ctx;
2457                 ringbuf = ctx->engine[ring->id].ringbuf;
2458         } else
2459                 ringbuf = ring->buffer;
2460
2461         request_start = intel_ring_get_tail(ringbuf);
2462         /*
2463          * Emit any outstanding flushes - execbuf can fail to emit the flush
2464          * after having emitted the batchbuffer command. Hence we need to fix
2465          * things up similar to emitting the lazy request. The difference here
2466          * is that the flush _must_ happen before the next request, no matter
2467          * what.
2468          */
2469         if (i915.enable_execlists) {
2470                 ret = logical_ring_flush_all_caches(ringbuf);
2471                 if (ret)
2472                         return ret;
2473         } else {
2474                 ret = intel_ring_flush_all_caches(ring);
2475                 if (ret)
2476                         return ret;
2477         }
2478
2479         /* Record the position of the start of the request so that
2480          * should we detect the updated seqno part-way through the
2481          * GPU processing the request, we never over-estimate the
2482          * position of the head.
2483          */
2484         request_ring_position = intel_ring_get_tail(ringbuf);
2485
2486         if (i915.enable_execlists) {
2487                 ret = ring->emit_request(ringbuf);
2488                 if (ret)
2489                         return ret;
2490         } else {
2491                 ret = ring->add_request(ring);
2492                 if (ret)
2493                         return ret;
2494         }
2495
2496         request->seqno = intel_ring_get_seqno(ring);
2497         request->ring = ring;
2498         request->head = request_start;
2499         request->tail = request_ring_position;
2500
2501         /* Whilst this request exists, batch_obj will be on the
2502          * active_list, and so will hold the active reference. Only when this
2503          * request is retired will the the batch_obj be moved onto the
2504          * inactive_list and lose its active reference. Hence we do not need
2505          * to explicitly hold another reference here.
2506          */
2507         request->batch_obj = obj;
2508
2509         if (!i915.enable_execlists) {
2510                 /* Hold a reference to the current context so that we can inspect
2511                  * it later in case a hangcheck error event fires.
2512                  */
2513                 request->ctx = ring->last_context;
2514                 if (request->ctx)
2515                         i915_gem_context_reference(request->ctx);
2516         }
2517
2518         request->emitted_jiffies = jiffies;
2519         list_add_tail(&request->list, &ring->request_list);
2520         request->file_priv = NULL;
2521
2522         if (file) {
2523                 struct drm_i915_file_private *file_priv = file->driver_priv;
2524
2525                 spin_lock(&file_priv->mm.lock);
2526                 request->file_priv = file_priv;
2527                 list_add_tail(&request->client_list,
2528                               &file_priv->mm.request_list);
2529                 spin_unlock(&file_priv->mm.lock);
2530         }
2531
2532         trace_i915_gem_request_add(ring, request->seqno);
2533         ring->outstanding_lazy_seqno = 0;
2534         ring->preallocated_lazy_request = NULL;
2535
2536         if (!dev_priv->ums.mm_suspended) {
2537                 i915_queue_hangcheck(ring->dev);
2538
2539                 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2540                 queue_delayed_work(dev_priv->wq,
2541                                    &dev_priv->mm.retire_work,
2542                                    round_jiffies_up_relative(HZ));
2543                 intel_mark_busy(dev_priv->dev);
2544         }
2545
2546         if (out_seqno)
2547                 *out_seqno = request->seqno;
2548         return 0;
2549 }
2550
2551 static inline void
2552 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2553 {
2554         struct drm_i915_file_private *file_priv = request->file_priv;
2555
2556         if (!file_priv)
2557                 return;
2558
2559         spin_lock(&file_priv->mm.lock);
2560         list_del(&request->client_list);
2561         request->file_priv = NULL;
2562         spin_unlock(&file_priv->mm.lock);
2563 }
2564
2565 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2566                                    const struct intel_context *ctx)
2567 {
2568         unsigned long elapsed;
2569
2570         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2571
2572         if (ctx->hang_stats.banned)
2573                 return true;
2574
2575         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2576                 if (!i915_gem_context_is_default(ctx)) {
2577                         DRM_DEBUG("context hanging too fast, banning!\n");
2578                         return true;
2579                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2580                         if (i915_stop_ring_allow_warn(dev_priv))
2581                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2582                         return true;
2583                 }
2584         }
2585
2586         return false;
2587 }
2588
2589 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2590                                   struct intel_context *ctx,
2591                                   const bool guilty)
2592 {
2593         struct i915_ctx_hang_stats *hs;
2594
2595         if (WARN_ON(!ctx))
2596                 return;
2597
2598         hs = &ctx->hang_stats;
2599
2600         if (guilty) {
2601                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2602                 hs->batch_active++;
2603                 hs->guilty_ts = get_seconds();
2604         } else {
2605                 hs->batch_pending++;
2606         }
2607 }
2608
2609 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2610 {
2611         list_del(&request->list);
2612         i915_gem_request_remove_from_client(request);
2613
2614         if (request->ctx)
2615                 i915_gem_context_unreference(request->ctx);
2616
2617         kfree(request);
2618 }
2619
2620 struct drm_i915_gem_request *
2621 i915_gem_find_active_request(struct intel_engine_cs *ring)
2622 {
2623         struct drm_i915_gem_request *request;
2624         u32 completed_seqno;
2625
2626         completed_seqno = ring->get_seqno(ring, false);
2627
2628         list_for_each_entry(request, &ring->request_list, list) {
2629                 if (i915_seqno_passed(completed_seqno, request->seqno))
2630                         continue;
2631
2632                 return request;
2633         }
2634
2635         return NULL;
2636 }
2637
2638 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2639                                        struct intel_engine_cs *ring)
2640 {
2641         struct drm_i915_gem_request *request;
2642         bool ring_hung;
2643
2644         request = i915_gem_find_active_request(ring);
2645
2646         if (request == NULL)
2647                 return;
2648
2649         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2650
2651         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2652
2653         list_for_each_entry_continue(request, &ring->request_list, list)
2654                 i915_set_reset_status(dev_priv, request->ctx, false);
2655 }
2656
2657 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2658                                         struct intel_engine_cs *ring)
2659 {
2660         while (!list_empty(&ring->active_list)) {
2661                 struct drm_i915_gem_object *obj;
2662
2663                 obj = list_first_entry(&ring->active_list,
2664                                        struct drm_i915_gem_object,
2665                                        ring_list);
2666
2667                 i915_gem_object_move_to_inactive(obj);
2668         }
2669
2670         /*
2671          * We must free the requests after all the corresponding objects have
2672          * been moved off active lists. Which is the same order as the normal
2673          * retire_requests function does. This is important if object hold
2674          * implicit references on things like e.g. ppgtt address spaces through
2675          * the request.
2676          */
2677         while (!list_empty(&ring->request_list)) {
2678                 struct drm_i915_gem_request *request;
2679
2680                 request = list_first_entry(&ring->request_list,
2681                                            struct drm_i915_gem_request,
2682                                            list);
2683
2684                 i915_gem_free_request(request);
2685         }
2686
2687         while (!list_empty(&ring->execlist_queue)) {
2688                 struct intel_ctx_submit_request *submit_req;
2689
2690                 submit_req = list_first_entry(&ring->execlist_queue,
2691                                 struct intel_ctx_submit_request,
2692                                 execlist_link);
2693                 list_del(&submit_req->execlist_link);
2694                 intel_runtime_pm_put(dev_priv);
2695                 i915_gem_context_unreference(submit_req->ctx);
2696                 kfree(submit_req);
2697         }
2698
2699         /* These may not have been flush before the reset, do so now */
2700         kfree(ring->preallocated_lazy_request);
2701         ring->preallocated_lazy_request = NULL;
2702         ring->outstanding_lazy_seqno = 0;
2703 }
2704
2705 void i915_gem_restore_fences(struct drm_device *dev)
2706 {
2707         struct drm_i915_private *dev_priv = dev->dev_private;
2708         int i;
2709
2710         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2711                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2712
2713                 /*
2714                  * Commit delayed tiling changes if we have an object still
2715                  * attached to the fence, otherwise just clear the fence.
2716                  */
2717                 if (reg->obj) {
2718                         i915_gem_object_update_fence(reg->obj, reg,
2719                                                      reg->obj->tiling_mode);
2720                 } else {
2721                         i915_gem_write_fence(dev, i, NULL);
2722                 }
2723         }
2724 }
2725
2726 void i915_gem_reset(struct drm_device *dev)
2727 {
2728         struct drm_i915_private *dev_priv = dev->dev_private;
2729         struct intel_engine_cs *ring;
2730         int i;
2731
2732         /*
2733          * Before we free the objects from the requests, we need to inspect
2734          * them for finding the guilty party. As the requests only borrow
2735          * their reference to the objects, the inspection must be done first.
2736          */
2737         for_each_ring(ring, dev_priv, i)
2738                 i915_gem_reset_ring_status(dev_priv, ring);
2739
2740         for_each_ring(ring, dev_priv, i)
2741                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2742
2743         i915_gem_context_reset(dev);
2744
2745         i915_gem_restore_fences(dev);
2746 }
2747
2748 /**
2749  * This function clears the request list as sequence numbers are passed.
2750  */
2751 void
2752 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2753 {
2754         uint32_t seqno;
2755
2756         if (list_empty(&ring->request_list))
2757                 return;
2758
2759         WARN_ON(i915_verify_lists(ring->dev));
2760
2761         seqno = ring->get_seqno(ring, true);
2762
2763         /* Move any buffers on the active list that are no longer referenced
2764          * by the ringbuffer to the flushing/inactive lists as appropriate,
2765          * before we free the context associated with the requests.
2766          */
2767         while (!list_empty(&ring->active_list)) {
2768                 struct drm_i915_gem_object *obj;
2769
2770                 obj = list_first_entry(&ring->active_list,
2771                                       struct drm_i915_gem_object,
2772                                       ring_list);
2773
2774                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2775                         break;
2776
2777                 i915_gem_object_move_to_inactive(obj);
2778         }
2779
2780
2781         while (!list_empty(&ring->request_list)) {
2782                 struct drm_i915_gem_request *request;
2783                 struct intel_ringbuffer *ringbuf;
2784
2785                 request = list_first_entry(&ring->request_list,
2786                                            struct drm_i915_gem_request,
2787                                            list);
2788
2789                 if (!i915_seqno_passed(seqno, request->seqno))
2790                         break;
2791
2792                 trace_i915_gem_request_retire(ring, request->seqno);
2793
2794                 /* This is one of the few common intersection points
2795                  * between legacy ringbuffer submission and execlists:
2796                  * we need to tell them apart in order to find the correct
2797                  * ringbuffer to which the request belongs to.
2798                  */
2799                 if (i915.enable_execlists) {
2800                         struct intel_context *ctx = request->ctx;
2801                         ringbuf = ctx->engine[ring->id].ringbuf;
2802                 } else
2803                         ringbuf = ring->buffer;
2804
2805                 /* We know the GPU must have read the request to have
2806                  * sent us the seqno + interrupt, so use the position
2807                  * of tail of the request to update the last known position
2808                  * of the GPU head.
2809                  */
2810                 ringbuf->last_retired_head = request->tail;
2811
2812                 i915_gem_free_request(request);
2813         }
2814
2815         if (unlikely(ring->trace_irq_seqno &&
2816                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2817                 ring->irq_put(ring);
2818                 ring->trace_irq_seqno = 0;
2819         }
2820
2821         WARN_ON(i915_verify_lists(ring->dev));
2822 }
2823
2824 bool
2825 i915_gem_retire_requests(struct drm_device *dev)
2826 {
2827         struct drm_i915_private *dev_priv = dev->dev_private;
2828         struct intel_engine_cs *ring;
2829         bool idle = true;
2830         int i;
2831
2832         for_each_ring(ring, dev_priv, i) {
2833                 i915_gem_retire_requests_ring(ring);
2834                 idle &= list_empty(&ring->request_list);
2835         }
2836
2837         if (idle)
2838                 mod_delayed_work(dev_priv->wq,
2839                                    &dev_priv->mm.idle_work,
2840                                    msecs_to_jiffies(100));
2841
2842         return idle;
2843 }
2844
2845 static void
2846 i915_gem_retire_work_handler(struct work_struct *work)
2847 {
2848         struct drm_i915_private *dev_priv =
2849                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2850         struct drm_device *dev = dev_priv->dev;
2851         bool idle;
2852
2853         /* Come back later if the device is busy... */
2854         idle = false;
2855         if (mutex_trylock(&dev->struct_mutex)) {
2856                 idle = i915_gem_retire_requests(dev);
2857                 mutex_unlock(&dev->struct_mutex);
2858         }
2859         if (!idle)
2860                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2861                                    round_jiffies_up_relative(HZ));
2862 }
2863
2864 static void
2865 i915_gem_idle_work_handler(struct work_struct *work)
2866 {
2867         struct drm_i915_private *dev_priv =
2868                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2869
2870         intel_mark_idle(dev_priv->dev);
2871 }
2872
2873 /**
2874  * Ensures that an object will eventually get non-busy by flushing any required
2875  * write domains, emitting any outstanding lazy request and retiring and
2876  * completed requests.
2877  */
2878 static int
2879 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2880 {
2881         int ret;
2882
2883         if (obj->active) {
2884                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2885                 if (ret)
2886                         return ret;
2887
2888                 i915_gem_retire_requests_ring(obj->ring);
2889         }
2890
2891         return 0;
2892 }
2893
2894 /**
2895  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2896  * @DRM_IOCTL_ARGS: standard ioctl arguments
2897  *
2898  * Returns 0 if successful, else an error is returned with the remaining time in
2899  * the timeout parameter.
2900  *  -ETIME: object is still busy after timeout
2901  *  -ERESTARTSYS: signal interrupted the wait
2902  *  -ENONENT: object doesn't exist
2903  * Also possible, but rare:
2904  *  -EAGAIN: GPU wedged
2905  *  -ENOMEM: damn
2906  *  -ENODEV: Internal IRQ fail
2907  *  -E?: The add request failed
2908  *
2909  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2910  * non-zero timeout parameter the wait ioctl will wait for the given number of
2911  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2912  * without holding struct_mutex the object may become re-busied before this
2913  * function completes. A similar but shorter * race condition exists in the busy
2914  * ioctl
2915  */
2916 int
2917 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2918 {
2919         struct drm_i915_private *dev_priv = dev->dev_private;
2920         struct drm_i915_gem_wait *args = data;
2921         struct drm_i915_gem_object *obj;
2922         struct intel_engine_cs *ring = NULL;
2923         struct timespec timeout_stack, *timeout = NULL;
2924         unsigned reset_counter;
2925         u32 seqno = 0;
2926         int ret = 0;
2927
2928         if (args->timeout_ns >= 0) {
2929                 timeout_stack = ns_to_timespec(args->timeout_ns);
2930                 timeout = &timeout_stack;
2931         }
2932
2933         ret = i915_mutex_lock_interruptible(dev);
2934         if (ret)
2935                 return ret;
2936
2937         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2938         if (&obj->base == NULL) {
2939                 mutex_unlock(&dev->struct_mutex);
2940                 return -ENOENT;
2941         }
2942
2943         /* Need to make sure the object gets inactive eventually. */
2944         ret = i915_gem_object_flush_active(obj);
2945         if (ret)
2946                 goto out;
2947
2948         if (obj->active) {
2949                 seqno = obj->last_read_seqno;
2950                 ring = obj->ring;
2951         }
2952
2953         if (seqno == 0)
2954                  goto out;
2955
2956         /* Do this after OLR check to make sure we make forward progress polling
2957          * on this IOCTL with a 0 timeout (like busy ioctl)
2958          */
2959         if (!args->timeout_ns) {
2960                 ret = -ETIMEDOUT;
2961                 goto out;
2962         }
2963
2964         drm_gem_object_unreference(&obj->base);
2965         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2966         mutex_unlock(&dev->struct_mutex);
2967
2968         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2969         if (timeout)
2970                 args->timeout_ns = timespec_to_ns(timeout);
2971         return ret;
2972
2973 out:
2974         drm_gem_object_unreference(&obj->base);
2975         mutex_unlock(&dev->struct_mutex);
2976         return ret;
2977 }
2978
2979 /**
2980  * i915_gem_object_sync - sync an object to a ring.
2981  *
2982  * @obj: object which may be in use on another ring.
2983  * @to: ring we wish to use the object on. May be NULL.
2984  *
2985  * This code is meant to abstract object synchronization with the GPU.
2986  * Calling with NULL implies synchronizing the object with the CPU
2987  * rather than a particular GPU ring.
2988  *
2989  * Returns 0 if successful, else propagates up the lower layer error.
2990  */
2991 int
2992 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2993                      struct intel_engine_cs *to)
2994 {
2995         struct intel_engine_cs *from = obj->ring;
2996         u32 seqno;
2997         int ret, idx;
2998
2999         if (from == NULL || to == from)
3000                 return 0;
3001
3002         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
3003                 return i915_gem_object_wait_rendering(obj, false);
3004
3005         idx = intel_ring_sync_index(from, to);
3006
3007         seqno = obj->last_read_seqno;
3008         /* Optimization: Avoid semaphore sync when we are sure we already
3009          * waited for an object with higher seqno */
3010         if (seqno <= from->semaphore.sync_seqno[idx])
3011                 return 0;
3012
3013         ret = i915_gem_check_olr(obj->ring, seqno);
3014         if (ret)
3015                 return ret;
3016
3017         trace_i915_gem_ring_sync_to(from, to, seqno);
3018         ret = to->semaphore.sync_to(to, from, seqno);
3019         if (!ret)
3020                 /* We use last_read_seqno because sync_to()
3021                  * might have just caused seqno wrap under
3022                  * the radar.
3023                  */
3024                 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
3025
3026         return ret;
3027 }
3028
3029 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3030 {
3031         u32 old_write_domain, old_read_domains;
3032
3033         /* Force a pagefault for domain tracking on next user access */
3034         i915_gem_release_mmap(obj);
3035
3036         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3037                 return;
3038
3039         /* Wait for any direct GTT access to complete */
3040         mb();
3041
3042         old_read_domains = obj->base.read_domains;
3043         old_write_domain = obj->base.write_domain;
3044
3045         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3046         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3047
3048         trace_i915_gem_object_change_domain(obj,
3049                                             old_read_domains,
3050                                             old_write_domain);
3051 }
3052
3053 int i915_vma_unbind(struct i915_vma *vma)
3054 {
3055         struct drm_i915_gem_object *obj = vma->obj;
3056         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3057         int ret;
3058
3059         if (list_empty(&vma->vma_link))
3060                 return 0;
3061
3062         if (!drm_mm_node_allocated(&vma->node)) {
3063                 i915_gem_vma_destroy(vma);
3064                 return 0;
3065         }
3066
3067         if (vma->pin_count)
3068                 return -EBUSY;
3069
3070         BUG_ON(obj->pages == NULL);
3071
3072         ret = i915_gem_object_finish_gpu(obj);
3073         if (ret)
3074                 return ret;
3075         /* Continue on if we fail due to EIO, the GPU is hung so we
3076          * should be safe and we need to cleanup or else we might
3077          * cause memory corruption through use-after-free.
3078          */
3079
3080         /* Throw away the active reference before moving to the unbound list */
3081         i915_gem_object_retire(obj);
3082
3083         if (i915_is_ggtt(vma->vm)) {
3084                 i915_gem_object_finish_gtt(obj);
3085
3086                 /* release the fence reg _after_ flushing */
3087                 ret = i915_gem_object_put_fence(obj);
3088                 if (ret)
3089                         return ret;
3090         }
3091
3092         trace_i915_vma_unbind(vma);
3093
3094         vma->unbind_vma(vma);
3095
3096         list_del_init(&vma->mm_list);
3097         if (i915_is_ggtt(vma->vm))
3098                 obj->map_and_fenceable = false;
3099
3100         drm_mm_remove_node(&vma->node);
3101         i915_gem_vma_destroy(vma);
3102
3103         /* Since the unbound list is global, only move to that list if
3104          * no more VMAs exist. */
3105         if (list_empty(&obj->vma_list)) {
3106                 i915_gem_gtt_finish_object(obj);
3107                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3108         }
3109
3110         /* And finally now the object is completely decoupled from this vma,
3111          * we can drop its hold on the backing storage and allow it to be
3112          * reaped by the shrinker.
3113          */
3114         i915_gem_object_unpin_pages(obj);
3115
3116         return 0;
3117 }
3118
3119 int i915_gpu_idle(struct drm_device *dev)
3120 {
3121         struct drm_i915_private *dev_priv = dev->dev_private;
3122         struct intel_engine_cs *ring;
3123         int ret, i;
3124
3125         /* Flush everything onto the inactive list. */
3126         for_each_ring(ring, dev_priv, i) {
3127                 if (!i915.enable_execlists) {
3128                         ret = i915_switch_context(ring, ring->default_context);
3129                         if (ret)
3130                                 return ret;
3131                 }
3132
3133                 ret = intel_ring_idle(ring);
3134                 if (ret)
3135                         return ret;
3136         }
3137
3138         return 0;
3139 }
3140
3141 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3142                                  struct drm_i915_gem_object *obj)
3143 {
3144         struct drm_i915_private *dev_priv = dev->dev_private;
3145         int fence_reg;
3146         int fence_pitch_shift;
3147
3148         if (INTEL_INFO(dev)->gen >= 6) {
3149                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3150                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3151         } else {
3152                 fence_reg = FENCE_REG_965_0;
3153                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3154         }
3155
3156         fence_reg += reg * 8;
3157
3158         /* To w/a incoherency with non-atomic 64-bit register updates,
3159          * we split the 64-bit update into two 32-bit writes. In order
3160          * for a partial fence not to be evaluated between writes, we
3161          * precede the update with write to turn off the fence register,
3162          * and only enable the fence as the last step.
3163          *
3164          * For extra levels of paranoia, we make sure each step lands
3165          * before applying the next step.
3166          */
3167         I915_WRITE(fence_reg, 0);
3168         POSTING_READ(fence_reg);
3169
3170         if (obj) {
3171                 u32 size = i915_gem_obj_ggtt_size(obj);
3172                 uint64_t val;
3173
3174                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3175                                  0xfffff000) << 32;
3176                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3177                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3178                 if (obj->tiling_mode == I915_TILING_Y)
3179                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3180                 val |= I965_FENCE_REG_VALID;
3181
3182                 I915_WRITE(fence_reg + 4, val >> 32);
3183                 POSTING_READ(fence_reg + 4);
3184
3185                 I915_WRITE(fence_reg + 0, val);
3186                 POSTING_READ(fence_reg);
3187         } else {
3188                 I915_WRITE(fence_reg + 4, 0);
3189                 POSTING_READ(fence_reg + 4);
3190         }
3191 }
3192
3193 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3194                                  struct drm_i915_gem_object *obj)
3195 {
3196         struct drm_i915_private *dev_priv = dev->dev_private;
3197         u32 val;
3198
3199         if (obj) {
3200                 u32 size = i915_gem_obj_ggtt_size(obj);
3201                 int pitch_val;
3202                 int tile_width;
3203
3204                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3205                      (size & -size) != size ||
3206                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3207                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3208                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3209
3210                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3211                         tile_width = 128;
3212                 else
3213                         tile_width = 512;
3214
3215                 /* Note: pitch better be a power of two tile widths */
3216                 pitch_val = obj->stride / tile_width;
3217                 pitch_val = ffs(pitch_val) - 1;
3218
3219                 val = i915_gem_obj_ggtt_offset(obj);
3220                 if (obj->tiling_mode == I915_TILING_Y)
3221                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3222                 val |= I915_FENCE_SIZE_BITS(size);
3223                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3224                 val |= I830_FENCE_REG_VALID;
3225         } else
3226                 val = 0;
3227
3228         if (reg < 8)
3229                 reg = FENCE_REG_830_0 + reg * 4;
3230         else
3231                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3232
3233         I915_WRITE(reg, val);
3234         POSTING_READ(reg);
3235 }
3236
3237 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3238                                 struct drm_i915_gem_object *obj)
3239 {
3240         struct drm_i915_private *dev_priv = dev->dev_private;
3241         uint32_t val;
3242
3243         if (obj) {
3244                 u32 size = i915_gem_obj_ggtt_size(obj);
3245                 uint32_t pitch_val;
3246
3247                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3248                      (size & -size) != size ||
3249                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3250                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3251                      i915_gem_obj_ggtt_offset(obj), size);
3252
3253                 pitch_val = obj->stride / 128;
3254                 pitch_val = ffs(pitch_val) - 1;
3255
3256                 val = i915_gem_obj_ggtt_offset(obj);
3257                 if (obj->tiling_mode == I915_TILING_Y)
3258                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3259                 val |= I830_FENCE_SIZE_BITS(size);
3260                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3261                 val |= I830_FENCE_REG_VALID;
3262         } else
3263                 val = 0;
3264
3265         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3266         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3267 }
3268
3269 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3270 {
3271         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3272 }
3273
3274 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3275                                  struct drm_i915_gem_object *obj)
3276 {
3277         struct drm_i915_private *dev_priv = dev->dev_private;
3278
3279         /* Ensure that all CPU reads are completed before installing a fence
3280          * and all writes before removing the fence.
3281          */
3282         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3283                 mb();
3284
3285         WARN(obj && (!obj->stride || !obj->tiling_mode),
3286              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3287              obj->stride, obj->tiling_mode);
3288
3289         switch (INTEL_INFO(dev)->gen) {
3290         case 8:
3291         case 7:
3292         case 6:
3293         case 5:
3294         case 4: i965_write_fence_reg(dev, reg, obj); break;
3295         case 3: i915_write_fence_reg(dev, reg, obj); break;
3296         case 2: i830_write_fence_reg(dev, reg, obj); break;
3297         default: BUG();
3298         }
3299
3300         /* And similarly be paranoid that no direct access to this region
3301          * is reordered to before the fence is installed.
3302          */
3303         if (i915_gem_object_needs_mb(obj))
3304                 mb();
3305 }
3306
3307 static inline int fence_number(struct drm_i915_private *dev_priv,
3308                                struct drm_i915_fence_reg *fence)
3309 {
3310         return fence - dev_priv->fence_regs;
3311 }
3312
3313 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3314                                          struct drm_i915_fence_reg *fence,
3315                                          bool enable)
3316 {
3317         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3318         int reg = fence_number(dev_priv, fence);
3319
3320         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3321
3322         if (enable) {
3323                 obj->fence_reg = reg;
3324                 fence->obj = obj;
3325                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3326         } else {
3327                 obj->fence_reg = I915_FENCE_REG_NONE;
3328                 fence->obj = NULL;
3329                 list_del_init(&fence->lru_list);
3330         }
3331         obj->fence_dirty = false;
3332 }
3333
3334 static int
3335 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3336 {
3337         if (obj->last_fenced_seqno) {
3338                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3339                 if (ret)
3340                         return ret;
3341
3342                 obj->last_fenced_seqno = 0;
3343         }
3344
3345         return 0;
3346 }
3347
3348 int
3349 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3350 {
3351         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3352         struct drm_i915_fence_reg *fence;
3353         int ret;
3354
3355         ret = i915_gem_object_wait_fence(obj);
3356         if (ret)
3357                 return ret;
3358
3359         if (obj->fence_reg == I915_FENCE_REG_NONE)
3360                 return 0;
3361
3362         fence = &dev_priv->fence_regs[obj->fence_reg];
3363
3364         if (WARN_ON(fence->pin_count))
3365                 return -EBUSY;
3366
3367         i915_gem_object_fence_lost(obj);
3368         i915_gem_object_update_fence(obj, fence, false);
3369
3370         return 0;
3371 }
3372
3373 static struct drm_i915_fence_reg *
3374 i915_find_fence_reg(struct drm_device *dev)
3375 {
3376         struct drm_i915_private *dev_priv = dev->dev_private;
3377         struct drm_i915_fence_reg *reg, *avail;
3378         int i;
3379
3380         /* First try to find a free reg */
3381         avail = NULL;
3382         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3383                 reg = &dev_priv->fence_regs[i];
3384                 if (!reg->obj)
3385                         return reg;
3386
3387                 if (!reg->pin_count)
3388                         avail = reg;
3389         }
3390
3391         if (avail == NULL)
3392                 goto deadlock;
3393
3394         /* None available, try to steal one or wait for a user to finish */
3395         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3396                 if (reg->pin_count)
3397                         continue;
3398
3399                 return reg;
3400         }
3401
3402 deadlock:
3403         /* Wait for completion of pending flips which consume fences */
3404         if (intel_has_pending_fb_unpin(dev))
3405                 return ERR_PTR(-EAGAIN);
3406
3407         return ERR_PTR(-EDEADLK);
3408 }
3409
3410 /**
3411  * i915_gem_object_get_fence - set up fencing for an object
3412  * @obj: object to map through a fence reg
3413  *
3414  * When mapping objects through the GTT, userspace wants to be able to write
3415  * to them without having to worry about swizzling if the object is tiled.
3416  * This function walks the fence regs looking for a free one for @obj,
3417  * stealing one if it can't find any.
3418  *
3419  * It then sets up the reg based on the object's properties: address, pitch
3420  * and tiling format.
3421  *
3422  * For an untiled surface, this removes any existing fence.
3423  */
3424 int
3425 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3426 {
3427         struct drm_device *dev = obj->base.dev;
3428         struct drm_i915_private *dev_priv = dev->dev_private;
3429         bool enable = obj->tiling_mode != I915_TILING_NONE;
3430         struct drm_i915_fence_reg *reg;
3431         int ret;
3432
3433         /* Have we updated the tiling parameters upon the object and so
3434          * will need to serialise the write to the associated fence register?
3435          */
3436         if (obj->fence_dirty) {
3437                 ret = i915_gem_object_wait_fence(obj);
3438                 if (ret)
3439                         return ret;
3440         }
3441
3442         /* Just update our place in the LRU if our fence is getting reused. */
3443         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3444                 reg = &dev_priv->fence_regs[obj->fence_reg];
3445                 if (!obj->fence_dirty) {
3446                         list_move_tail(&reg->lru_list,
3447                                        &dev_priv->mm.fence_list);
3448                         return 0;
3449                 }
3450         } else if (enable) {
3451                 if (WARN_ON(!obj->map_and_fenceable))
3452                         return -EINVAL;
3453
3454                 reg = i915_find_fence_reg(dev);
3455                 if (IS_ERR(reg))
3456                         return PTR_ERR(reg);
3457
3458                 if (reg->obj) {
3459                         struct drm_i915_gem_object *old = reg->obj;
3460
3461                         ret = i915_gem_object_wait_fence(old);
3462                         if (ret)
3463                                 return ret;
3464
3465                         i915_gem_object_fence_lost(old);
3466                 }
3467         } else
3468                 return 0;
3469
3470         i915_gem_object_update_fence(obj, reg, enable);
3471
3472         return 0;
3473 }
3474
3475 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3476                                      unsigned long cache_level)
3477 {
3478         struct drm_mm_node *gtt_space = &vma->node;
3479         struct drm_mm_node *other;
3480
3481         /*
3482          * On some machines we have to be careful when putting differing types
3483          * of snoopable memory together to avoid the prefetcher crossing memory
3484          * domains and dying. During vm initialisation, we decide whether or not
3485          * these constraints apply and set the drm_mm.color_adjust
3486          * appropriately.
3487          */
3488         if (vma->vm->mm.color_adjust == NULL)
3489                 return true;
3490
3491         if (!drm_mm_node_allocated(gtt_space))
3492                 return true;
3493
3494         if (list_empty(&gtt_space->node_list))
3495                 return true;
3496
3497         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3498         if (other->allocated && !other->hole_follows && other->color != cache_level)
3499                 return false;
3500
3501         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3502         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3503                 return false;
3504
3505         return true;
3506 }
3507
3508 static void i915_gem_verify_gtt(struct drm_device *dev)
3509 {
3510 #if WATCH_GTT
3511         struct drm_i915_private *dev_priv = dev->dev_private;
3512         struct drm_i915_gem_object *obj;
3513         int err = 0;
3514
3515         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3516                 if (obj->gtt_space == NULL) {
3517                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3518                         err++;
3519                         continue;
3520                 }
3521
3522                 if (obj->cache_level != obj->gtt_space->color) {
3523                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3524                                i915_gem_obj_ggtt_offset(obj),
3525                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3526                                obj->cache_level,
3527                                obj->gtt_space->color);
3528                         err++;
3529                         continue;
3530                 }
3531
3532                 if (!i915_gem_valid_gtt_space(dev,
3533                                               obj->gtt_space,
3534                                               obj->cache_level)) {
3535                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3536                                i915_gem_obj_ggtt_offset(obj),
3537                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3538                                obj->cache_level);
3539                         err++;
3540                         continue;
3541                 }
3542         }
3543
3544         WARN_ON(err);
3545 #endif
3546 }
3547
3548 /**
3549  * Finds free space in the GTT aperture and binds the object there.
3550  */
3551 static struct i915_vma *
3552 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3553                            struct i915_address_space *vm,
3554                            unsigned alignment,
3555                            uint64_t flags)
3556 {
3557         struct drm_device *dev = obj->base.dev;
3558         struct drm_i915_private *dev_priv = dev->dev_private;
3559         u32 size, fence_size, fence_alignment, unfenced_alignment;
3560         unsigned long start =
3561                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3562         unsigned long end =
3563                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3564         struct i915_vma *vma;
3565         int ret;
3566
3567         fence_size = i915_gem_get_gtt_size(dev,
3568                                            obj->base.size,
3569                                            obj->tiling_mode);
3570         fence_alignment = i915_gem_get_gtt_alignment(dev,
3571                                                      obj->base.size,
3572                                                      obj->tiling_mode, true);
3573         unfenced_alignment =
3574                 i915_gem_get_gtt_alignment(dev,
3575                                            obj->base.size,
3576                                            obj->tiling_mode, false);
3577
3578         if (alignment == 0)
3579                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3580                                                 unfenced_alignment;
3581         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3582                 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3583                 return ERR_PTR(-EINVAL);
3584         }
3585
3586         size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3587
3588         /* If the object is bigger than the entire aperture, reject it early
3589          * before evicting everything in a vain attempt to find space.
3590          */
3591         if (obj->base.size > end) {
3592                 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3593                           obj->base.size,
3594                           flags & PIN_MAPPABLE ? "mappable" : "total",
3595                           end);
3596                 return ERR_PTR(-E2BIG);
3597         }
3598
3599         ret = i915_gem_object_get_pages(obj);
3600         if (ret)
3601                 return ERR_PTR(ret);
3602
3603         i915_gem_object_pin_pages(obj);
3604
3605         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3606         if (IS_ERR(vma))
3607                 goto err_unpin;
3608
3609 search_free:
3610         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3611                                                   size, alignment,
3612                                                   obj->cache_level,
3613                                                   start, end,
3614                                                   DRM_MM_SEARCH_DEFAULT,
3615                                                   DRM_MM_CREATE_DEFAULT);
3616         if (ret) {
3617                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3618                                                obj->cache_level,
3619                                                start, end,
3620                                                flags);
3621                 if (ret == 0)
3622                         goto search_free;
3623
3624                 goto err_free_vma;
3625         }
3626         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3627                 ret = -EINVAL;
3628                 goto err_remove_node;
3629         }
3630
3631         ret = i915_gem_gtt_prepare_object(obj);
3632         if (ret)
3633                 goto err_remove_node;
3634
3635         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3636         list_add_tail(&vma->mm_list, &vm->inactive_list);
3637
3638         if (i915_is_ggtt(vm)) {
3639                 bool mappable, fenceable;
3640
3641                 fenceable = (vma->node.size == fence_size &&
3642                              (vma->node.start & (fence_alignment - 1)) == 0);
3643
3644                 mappable = (vma->node.start + obj->base.size <=
3645                             dev_priv->gtt.mappable_end);
3646
3647                 obj->map_and_fenceable = mappable && fenceable;
3648         }
3649
3650         WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3651
3652         trace_i915_vma_bind(vma, flags);
3653         vma->bind_vma(vma, obj->cache_level,
3654                       flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3655
3656         i915_gem_verify_gtt(dev);
3657         return vma;
3658
3659 err_remove_node:
3660         drm_mm_remove_node(&vma->node);
3661 err_free_vma:
3662         i915_gem_vma_destroy(vma);
3663         vma = ERR_PTR(ret);
3664 err_unpin:
3665         i915_gem_object_unpin_pages(obj);
3666         return vma;
3667 }
3668
3669 bool
3670 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3671                         bool force)
3672 {
3673         /* If we don't have a page list set up, then we're not pinned
3674          * to GPU, and we can ignore the cache flush because it'll happen
3675          * again at bind time.
3676          */
3677         if (obj->pages == NULL)
3678                 return false;
3679
3680         /*
3681          * Stolen memory is always coherent with the GPU as it is explicitly
3682          * marked as wc by the system, or the system is cache-coherent.
3683          */
3684         if (obj->stolen)
3685                 return false;
3686
3687         /* If the GPU is snooping the contents of the CPU cache,
3688          * we do not need to manually clear the CPU cache lines.  However,
3689          * the caches are only snooped when the render cache is
3690          * flushed/invalidated.  As we always have to emit invalidations
3691          * and flushes when moving into and out of the RENDER domain, correct
3692          * snooping behaviour occurs naturally as the result of our domain
3693          * tracking.
3694          */
3695         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3696                 return false;
3697
3698         trace_i915_gem_object_clflush(obj);
3699         drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
3700
3701         return true;
3702 }
3703
3704 /** Flushes the GTT write domain for the object if it's dirty. */
3705 static void
3706 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3707 {
3708         uint32_t old_write_domain;
3709
3710         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3711                 return;
3712
3713         /* No actual flushing is required for the GTT write domain.  Writes
3714          * to it immediately go to main memory as far as we know, so there's
3715          * no chipset flush.  It also doesn't land in render cache.
3716          *
3717          * However, we do have to enforce the order so that all writes through
3718          * the GTT land before any writes to the device, such as updates to
3719          * the GATT itself.
3720          */
3721         wmb();
3722
3723         old_write_domain = obj->base.write_domain;
3724         obj->base.write_domain = 0;
3725
3726         intel_fb_obj_flush(obj, false);
3727
3728         intel_fb_obj_flush(obj, false);
3729
3730         trace_i915_gem_object_change_domain(obj,
3731                                             obj->base.read_domains,
3732                                             old_write_domain);
3733 }
3734
3735 /** Flushes the CPU write domain for the object if it's dirty. */
3736 static void
3737 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3738                                        bool force)
3739 {
3740         uint32_t old_write_domain;
3741
3742         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3743                 return;
3744
3745         if (i915_gem_clflush_object(obj, force))
3746                 i915_gem_chipset_flush(obj->base.dev);
3747
3748         old_write_domain = obj->base.write_domain;
3749         obj->base.write_domain = 0;
3750
3751         trace_i915_gem_object_change_domain(obj,
3752                                             obj->base.read_domains,
3753                                             old_write_domain);
3754 }
3755
3756 /**
3757  * Moves a single object to the GTT read, and possibly write domain.
3758  *
3759  * This function returns when the move is complete, including waiting on
3760  * flushes to occur.
3761  */
3762 int
3763 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3764 {
3765         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3766         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3767         uint32_t old_write_domain, old_read_domains;
3768         int ret;
3769
3770         /* Not valid to be called on unbound objects. */
3771         if (vma == NULL)
3772                 return -EINVAL;
3773
3774         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3775                 return 0;
3776
3777         ret = i915_gem_object_wait_rendering(obj, !write);
3778         if (ret)
3779                 return ret;
3780
3781         i915_gem_object_retire(obj);
3782         i915_gem_object_flush_cpu_write_domain(obj, false);
3783
3784         /* Serialise direct access to this object with the barriers for
3785          * coherent writes from the GPU, by effectively invalidating the
3786          * GTT domain upon first access.
3787          */
3788         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3789                 mb();
3790
3791         old_write_domain = obj->base.write_domain;
3792         old_read_domains = obj->base.read_domains;
3793
3794         /* It should now be out of any other write domains, and we can update
3795          * the domain values for our changes.
3796          */
3797         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3798         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3799         if (write) {
3800                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3801                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3802                 obj->dirty = 1;
3803         }
3804
3805         if (write)
3806                 intel_fb_obj_invalidate(obj, NULL);
3807
3808         trace_i915_gem_object_change_domain(obj,
3809                                             old_read_domains,
3810                                             old_write_domain);
3811
3812         /* And bump the LRU for this access */
3813         if (i915_gem_object_is_inactive(obj))
3814                 list_move_tail(&vma->mm_list,
3815                                &dev_priv->gtt.base.inactive_list);
3816
3817         return 0;
3818 }
3819
3820 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3821                                     enum i915_cache_level cache_level)
3822 {
3823         struct drm_device *dev = obj->base.dev;
3824         struct i915_vma *vma, *next;
3825         int ret;
3826
3827         if (obj->cache_level == cache_level)
3828                 return 0;
3829
3830         if (i915_gem_obj_is_pinned(obj)) {
3831                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3832                 return -EBUSY;
3833         }
3834
3835         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3836                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3837                         ret = i915_vma_unbind(vma);
3838                         if (ret)
3839                                 return ret;
3840                 }
3841         }
3842
3843         if (i915_gem_obj_bound_any(obj)) {
3844                 ret = i915_gem_object_finish_gpu(obj);
3845                 if (ret)
3846                         return ret;
3847
3848                 i915_gem_object_finish_gtt(obj);
3849
3850                 /* Before SandyBridge, you could not use tiling or fence
3851                  * registers with snooped memory, so relinquish any fences
3852                  * currently pointing to our region in the aperture.
3853                  */
3854                 if (INTEL_INFO(dev)->gen < 6) {
3855                         ret = i915_gem_object_put_fence(obj);
3856                         if (ret)
3857                                 return ret;
3858                 }
3859
3860                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3861                         if (drm_mm_node_allocated(&vma->node))
3862                                 vma->bind_vma(vma, cache_level,
3863                                               obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3864         }
3865
3866         list_for_each_entry(vma, &obj->vma_list, vma_link)
3867                 vma->node.color = cache_level;
3868         obj->cache_level = cache_level;
3869
3870         if (cpu_write_needs_clflush(obj)) {
3871                 u32 old_read_domains, old_write_domain;
3872
3873                 /* If we're coming from LLC cached, then we haven't
3874                  * actually been tracking whether the data is in the
3875                  * CPU cache or not, since we only allow one bit set
3876                  * in obj->write_domain and have been skipping the clflushes.
3877                  * Just set it to the CPU cache for now.
3878                  */
3879                 i915_gem_object_retire(obj);
3880                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3881
3882                 old_read_domains = obj->base.read_domains;
3883                 old_write_domain = obj->base.write_domain;
3884
3885                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3886                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3887
3888                 trace_i915_gem_object_change_domain(obj,
3889                                                     old_read_domains,
3890                                                     old_write_domain);
3891         }
3892
3893         i915_gem_verify_gtt(dev);
3894         return 0;
3895 }
3896
3897 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3898                                struct drm_file *file)
3899 {
3900         struct drm_i915_gem_caching *args = data;
3901         struct drm_i915_gem_object *obj;
3902         int ret;
3903
3904         ret = i915_mutex_lock_interruptible(dev);
3905         if (ret)
3906                 return ret;
3907
3908         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3909         if (&obj->base == NULL) {
3910                 ret = -ENOENT;
3911                 goto unlock;
3912         }
3913
3914         switch (obj->cache_level) {
3915         case I915_CACHE_LLC:
3916         case I915_CACHE_L3_LLC:
3917                 args->caching = I915_CACHING_CACHED;
3918                 break;
3919
3920         case I915_CACHE_WT:
3921                 args->caching = I915_CACHING_DISPLAY;
3922                 break;
3923
3924         default:
3925                 args->caching = I915_CACHING_NONE;
3926                 break;
3927         }
3928
3929         drm_gem_object_unreference(&obj->base);
3930 unlock:
3931         mutex_unlock(&dev->struct_mutex);
3932         return ret;
3933 }
3934
3935 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3936                                struct drm_file *file)
3937 {
3938         struct drm_i915_gem_caching *args = data;
3939         struct drm_i915_gem_object *obj;
3940         enum i915_cache_level level;
3941         int ret;
3942
3943         switch (args->caching) {
3944         case I915_CACHING_NONE:
3945                 level = I915_CACHE_NONE;
3946                 break;
3947         case I915_CACHING_CACHED:
3948                 level = I915_CACHE_LLC;
3949                 break;
3950         case I915_CACHING_DISPLAY:
3951                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3952                 break;
3953         default:
3954                 return -EINVAL;
3955         }
3956
3957         ret = i915_mutex_lock_interruptible(dev);
3958         if (ret)
3959                 return ret;
3960
3961         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3962         if (&obj->base == NULL) {
3963                 ret = -ENOENT;
3964                 goto unlock;
3965         }
3966
3967         ret = i915_gem_object_set_cache_level(obj, level);
3968
3969         drm_gem_object_unreference(&obj->base);
3970 unlock:
3971         mutex_unlock(&dev->struct_mutex);
3972         return ret;
3973 }
3974
3975 static bool is_pin_display(struct drm_i915_gem_object *obj)
3976 {
3977         struct i915_vma *vma;
3978
3979         vma = i915_gem_obj_to_ggtt(obj);
3980         if (!vma)
3981                 return false;
3982
3983         /* There are 3 sources that pin objects:
3984          *   1. The display engine (scanouts, sprites, cursors);
3985          *   2. Reservations for execbuffer;
3986          *   3. The user.
3987          *
3988          * We can ignore reservations as we hold the struct_mutex and
3989          * are only called outside of the reservation path.  The user
3990          * can only increment pin_count once, and so if after
3991          * subtracting the potential reference by the user, any pin_count
3992          * remains, it must be due to another use by the display engine.
3993          */
3994         return vma->pin_count - !!obj->user_pin_count;
3995 }
3996
3997 /*
3998  * Prepare buffer for display plane (scanout, cursors, etc).
3999  * Can be called from an uninterruptible phase (modesetting) and allows
4000  * any flushes to be pipelined (for pageflips).
4001  */
4002 int
4003 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4004                                      u32 alignment,
4005                                      struct intel_engine_cs *pipelined)
4006 {
4007         u32 old_read_domains, old_write_domain;
4008         bool was_pin_display;
4009         int ret;
4010
4011         if (pipelined != obj->ring) {
4012                 ret = i915_gem_object_sync(obj, pipelined);
4013                 if (ret)
4014                         return ret;
4015         }
4016
4017         /* Mark the pin_display early so that we account for the
4018          * display coherency whilst setting up the cache domains.
4019          */
4020         was_pin_display = obj->pin_display;
4021         obj->pin_display = true;
4022
4023         /* The display engine is not coherent with the LLC cache on gen6.  As
4024          * a result, we make sure that the pinning that is about to occur is
4025          * done with uncached PTEs. This is lowest common denominator for all
4026          * chipsets.
4027          *
4028          * However for gen6+, we could do better by using the GFDT bit instead
4029          * of uncaching, which would allow us to flush all the LLC-cached data
4030          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4031          */
4032         ret = i915_gem_object_set_cache_level(obj,
4033                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4034         if (ret)
4035                 goto err_unpin_display;
4036
4037         /* As the user may map the buffer once pinned in the display plane
4038          * (e.g. libkms for the bootup splash), we have to ensure that we
4039          * always use map_and_fenceable for all scanout buffers.
4040          */
4041         ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
4042         if (ret)
4043                 goto err_unpin_display;
4044
4045         i915_gem_object_flush_cpu_write_domain(obj, true);
4046
4047         old_write_domain = obj->base.write_domain;
4048         old_read_domains = obj->base.read_domains;
4049
4050         /* It should now be out of any other write domains, and we can update
4051          * the domain values for our changes.
4052          */
4053         obj->base.write_domain = 0;
4054         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4055
4056         trace_i915_gem_object_change_domain(obj,
4057                                             old_read_domains,
4058                                             old_write_domain);
4059
4060         return 0;
4061
4062 err_unpin_display:
4063         WARN_ON(was_pin_display != is_pin_display(obj));
4064         obj->pin_display = was_pin_display;
4065         return ret;
4066 }
4067
4068 void
4069 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4070 {
4071         i915_gem_object_ggtt_unpin(obj);
4072         obj->pin_display = is_pin_display(obj);
4073 }
4074
4075 int
4076 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4077 {
4078         int ret;
4079
4080         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4081                 return 0;
4082
4083         ret = i915_gem_object_wait_rendering(obj, false);
4084         if (ret)
4085                 return ret;
4086
4087         /* Ensure that we invalidate the GPU's caches and TLBs. */
4088         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4089         return 0;
4090 }
4091
4092 /**
4093  * Moves a single object to the CPU read, and possibly write domain.
4094  *
4095  * This function returns when the move is complete, including waiting on
4096  * flushes to occur.
4097  */
4098 int
4099 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4100 {
4101         uint32_t old_write_domain, old_read_domains;
4102         int ret;
4103
4104         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4105                 return 0;
4106
4107         ret = i915_gem_object_wait_rendering(obj, !write);
4108         if (ret)
4109                 return ret;
4110
4111         i915_gem_object_retire(obj);
4112         i915_gem_object_flush_gtt_write_domain(obj);
4113
4114         old_write_domain = obj->base.write_domain;
4115         old_read_domains = obj->base.read_domains;
4116
4117         /* Flush the CPU cache if it's still invalid. */
4118         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4119                 i915_gem_clflush_object(obj, false);
4120
4121                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4122         }
4123
4124         /* It should now be out of any other write domains, and we can update
4125          * the domain values for our changes.
4126          */
4127         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4128
4129         /* If we're writing through the CPU, then the GPU read domains will
4130          * need to be invalidated at next use.
4131          */
4132         if (write) {
4133                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4134                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4135         }
4136
4137         if (write)
4138                 intel_fb_obj_invalidate(obj, NULL);
4139
4140         trace_i915_gem_object_change_domain(obj,
4141                                             old_read_domains,
4142                                             old_write_domain);
4143
4144         return 0;
4145 }
4146
4147 /* Throttle our rendering by waiting until the ring has completed our requests
4148  * emitted over 20 msec ago.
4149  *
4150  * Note that if we were to use the current jiffies each time around the loop,
4151  * we wouldn't escape the function with any frames outstanding if the time to
4152  * render a frame was over 20ms.
4153  *
4154  * This should get us reasonable parallelism between CPU and GPU but also
4155  * relatively low latency when blocking on a particular request to finish.
4156  */
4157 static int
4158 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4159 {
4160         struct drm_i915_private *dev_priv = dev->dev_private;
4161         struct drm_i915_file_private *file_priv = file->driver_priv;
4162         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4163         struct drm_i915_gem_request *request;
4164         struct intel_engine_cs *ring = NULL;
4165         unsigned reset_counter;
4166         u32 seqno = 0;
4167         int ret;
4168
4169         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4170         if (ret)
4171                 return ret;
4172
4173         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4174         if (ret)
4175                 return ret;
4176
4177         spin_lock(&file_priv->mm.lock);
4178         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4179                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4180                         break;
4181
4182                 ring = request->ring;
4183                 seqno = request->seqno;
4184         }
4185         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4186         spin_unlock(&file_priv->mm.lock);
4187
4188         if (seqno == 0)
4189                 return 0;
4190
4191         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4192         if (ret == 0)
4193                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4194
4195         return ret;
4196 }
4197
4198 static bool
4199 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4200 {
4201         struct drm_i915_gem_object *obj = vma->obj;
4202
4203         if (alignment &&
4204             vma->node.start & (alignment - 1))
4205                 return true;
4206
4207         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4208                 return true;
4209
4210         if (flags & PIN_OFFSET_BIAS &&
4211             vma->node.start < (flags & PIN_OFFSET_MASK))
4212                 return true;
4213
4214         return false;
4215 }
4216
4217 int
4218 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4219                     struct i915_address_space *vm,
4220                     uint32_t alignment,
4221                     uint64_t flags)
4222 {
4223         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4224         struct i915_vma *vma;
4225         int ret;
4226
4227         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4228                 return -ENODEV;
4229
4230         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4231                 return -EINVAL;
4232
4233         vma = i915_gem_obj_to_vma(obj, vm);
4234         if (vma) {
4235                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4236                         return -EBUSY;
4237
4238                 if (i915_vma_misplaced(vma, alignment, flags)) {
4239                         WARN(vma->pin_count,
4240                              "bo is already pinned with incorrect alignment:"
4241                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4242                              " obj->map_and_fenceable=%d\n",
4243                              i915_gem_obj_offset(obj, vm), alignment,
4244                              !!(flags & PIN_MAPPABLE),
4245                              obj->map_and_fenceable);
4246                         ret = i915_vma_unbind(vma);
4247                         if (ret)
4248                                 return ret;
4249
4250                         vma = NULL;
4251                 }
4252         }
4253
4254         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4255                 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4256                 if (IS_ERR(vma))
4257                         return PTR_ERR(vma);
4258         }
4259
4260         if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4261                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4262
4263         vma->pin_count++;
4264         if (flags & PIN_MAPPABLE)
4265                 obj->pin_mappable |= true;
4266
4267         return 0;
4268 }
4269
4270 void
4271 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4272 {
4273         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4274
4275         BUG_ON(!vma);
4276         BUG_ON(vma->pin_count == 0);
4277         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4278
4279         if (--vma->pin_count == 0)
4280                 obj->pin_mappable = false;
4281 }
4282
4283 bool
4284 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4285 {
4286         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4287                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4288                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4289
4290                 WARN_ON(!ggtt_vma ||
4291                         dev_priv->fence_regs[obj->fence_reg].pin_count >
4292                         ggtt_vma->pin_count);
4293                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4294                 return true;
4295         } else
4296                 return false;
4297 }
4298
4299 void
4300 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4301 {
4302         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4303                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4304                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4305                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4306         }
4307 }
4308
4309 int
4310 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4311                    struct drm_file *file)
4312 {
4313         struct drm_i915_gem_pin *args = data;
4314         struct drm_i915_gem_object *obj;
4315         int ret;
4316
4317         if (INTEL_INFO(dev)->gen >= 6)
4318                 return -ENODEV;
4319
4320         ret = i915_mutex_lock_interruptible(dev);
4321         if (ret)
4322                 return ret;
4323
4324         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4325         if (&obj->base == NULL) {
4326                 ret = -ENOENT;
4327                 goto unlock;
4328         }
4329
4330         if (obj->madv != I915_MADV_WILLNEED) {
4331                 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4332                 ret = -EFAULT;
4333                 goto out;
4334         }
4335
4336         if (obj->pin_filp != NULL && obj->pin_filp != file) {
4337                 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4338                           args->handle);
4339                 ret = -EINVAL;
4340                 goto out;
4341         }
4342
4343         if (obj->user_pin_count == ULONG_MAX) {
4344                 ret = -EBUSY;
4345                 goto out;
4346         }
4347
4348         if (obj->user_pin_count == 0) {
4349                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4350                 if (ret)
4351                         goto out;
4352         }
4353
4354         obj->user_pin_count++;
4355         obj->pin_filp = file;
4356
4357         args->offset = i915_gem_obj_ggtt_offset(obj);
4358 out:
4359         drm_gem_object_unreference(&obj->base);
4360 unlock:
4361         mutex_unlock(&dev->struct_mutex);
4362         return ret;
4363 }
4364
4365 int
4366 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4367                      struct drm_file *file)
4368 {
4369         struct drm_i915_gem_pin *args = data;
4370         struct drm_i915_gem_object *obj;
4371         int ret;
4372
4373         ret = i915_mutex_lock_interruptible(dev);
4374         if (ret)
4375                 return ret;
4376
4377         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4378         if (&obj->base == NULL) {
4379                 ret = -ENOENT;
4380                 goto unlock;
4381         }
4382
4383         if (obj->pin_filp != file) {
4384                 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4385                           args->handle);
4386                 ret = -EINVAL;
4387                 goto out;
4388         }
4389         obj->user_pin_count--;
4390         if (obj->user_pin_count == 0) {
4391                 obj->pin_filp = NULL;
4392                 i915_gem_object_ggtt_unpin(obj);
4393         }
4394
4395 out:
4396         drm_gem_object_unreference(&obj->base);
4397 unlock:
4398         mutex_unlock(&dev->struct_mutex);
4399         return ret;
4400 }
4401
4402 int
4403 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4404                     struct drm_file *file)
4405 {
4406         struct drm_i915_gem_busy *args = data;
4407         struct drm_i915_gem_object *obj;
4408         int ret;
4409
4410         ret = i915_mutex_lock_interruptible(dev);
4411         if (ret)
4412                 return ret;
4413
4414         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4415         if (&obj->base == NULL) {
4416                 ret = -ENOENT;
4417                 goto unlock;
4418         }
4419
4420         /* Count all active objects as busy, even if they are currently not used
4421          * by the gpu. Users of this interface expect objects to eventually
4422          * become non-busy without any further actions, therefore emit any
4423          * necessary flushes here.
4424          */
4425         ret = i915_gem_object_flush_active(obj);
4426
4427         args->busy = obj->active;
4428         if (obj->ring) {
4429                 args->busy |= intel_ring_flag(obj->ring) << 16;
4430         }
4431
4432         drm_gem_object_unreference(&obj->base);
4433 unlock:
4434         mutex_unlock(&dev->struct_mutex);
4435         return ret;
4436 }
4437
4438 int
4439 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4440                         struct drm_file *file_priv)
4441 {
4442         return i915_gem_ring_throttle(dev, file_priv);
4443 }
4444
4445 int
4446 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4447                        struct drm_file *file_priv)
4448 {
4449         struct drm_i915_gem_madvise *args = data;
4450         struct drm_i915_gem_object *obj;
4451         int ret;
4452
4453         switch (args->madv) {
4454         case I915_MADV_DONTNEED:
4455         case I915_MADV_WILLNEED:
4456             break;
4457         default:
4458             return -EINVAL;
4459         }
4460
4461         ret = i915_mutex_lock_interruptible(dev);
4462         if (ret)
4463                 return ret;
4464
4465         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4466         if (&obj->base == NULL) {
4467                 ret = -ENOENT;
4468                 goto unlock;
4469         }
4470
4471         if (i915_gem_obj_is_pinned(obj)) {
4472                 ret = -EINVAL;
4473                 goto out;
4474         }
4475
4476         if (obj->madv != __I915_MADV_PURGED)
4477                 obj->madv = args->madv;
4478
4479         /* if the object is no longer attached, discard its backing storage */
4480         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4481                 i915_gem_object_truncate(obj);
4482
4483         args->retained = obj->madv != __I915_MADV_PURGED;
4484
4485 out:
4486         drm_gem_object_unreference(&obj->base);
4487 unlock:
4488         mutex_unlock(&dev->struct_mutex);
4489         return ret;
4490 }
4491
4492 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4493                           const struct drm_i915_gem_object_ops *ops)
4494 {
4495         INIT_LIST_HEAD(&obj->global_list);
4496         INIT_LIST_HEAD(&obj->ring_list);
4497         INIT_LIST_HEAD(&obj->obj_exec_link);
4498         INIT_LIST_HEAD(&obj->vma_list);
4499
4500         obj->ops = ops;
4501
4502         obj->fence_reg = I915_FENCE_REG_NONE;
4503         obj->madv = I915_MADV_WILLNEED;
4504
4505         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4506 }
4507
4508 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4509         .get_pages = i915_gem_object_get_pages_gtt,
4510         .put_pages = i915_gem_object_put_pages_gtt,
4511 };
4512
4513 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4514                                                   size_t size)
4515 {
4516         struct drm_i915_gem_object *obj;
4517 #if 0
4518         struct address_space *mapping;
4519         gfp_t mask;
4520 #endif
4521
4522         obj = i915_gem_object_alloc(dev);
4523         if (obj == NULL)
4524                 return NULL;
4525
4526         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4527                 i915_gem_object_free(obj);
4528                 return NULL;
4529         }
4530
4531 #if 0
4532         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4533         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4534                 /* 965gm cannot relocate objects above 4GiB. */
4535                 mask &= ~__GFP_HIGHMEM;
4536                 mask |= __GFP_DMA32;
4537         }
4538
4539         mapping = file_inode(obj->base.filp)->i_mapping;
4540         mapping_set_gfp_mask(mapping, mask);
4541 #endif
4542
4543         i915_gem_object_init(obj, &i915_gem_object_ops);
4544
4545         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4546         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4547
4548         if (HAS_LLC(dev)) {
4549                 /* On some devices, we can have the GPU use the LLC (the CPU
4550                  * cache) for about a 10% performance improvement
4551                  * compared to uncached.  Graphics requests other than
4552                  * display scanout are coherent with the CPU in
4553                  * accessing this cache.  This means in this mode we
4554                  * don't need to clflush on the CPU side, and on the
4555                  * GPU side we only need to flush internal caches to
4556                  * get data visible to the CPU.
4557                  *
4558                  * However, we maintain the display planes as UC, and so
4559                  * need to rebind when first used as such.
4560                  */
4561                 obj->cache_level = I915_CACHE_LLC;
4562         } else
4563                 obj->cache_level = I915_CACHE_NONE;
4564
4565         trace_i915_gem_object_create(obj);
4566
4567         return obj;
4568 }
4569
4570 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4571 {
4572         /* If we are the last user of the backing storage (be it shmemfs
4573          * pages or stolen etc), we know that the pages are going to be
4574          * immediately released. In this case, we can then skip copying
4575          * back the contents from the GPU.
4576          */
4577
4578         if (obj->madv != I915_MADV_WILLNEED)
4579                 return false;
4580
4581         if (obj->base.vm_obj == NULL)
4582                 return true;
4583
4584         /* At first glance, this looks racy, but then again so would be
4585          * userspace racing mmap against close. However, the first external
4586          * reference to the filp can only be obtained through the
4587          * i915_gem_mmap_ioctl() which safeguards us against the user
4588          * acquiring such a reference whilst we are in the middle of
4589          * freeing the object.
4590          */
4591 #if 0
4592         return atomic_long_read(&obj->base.filp->f_count) == 1;
4593 #else
4594         return false;
4595 #endif
4596 }
4597
4598 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4599 {
4600         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4601         struct drm_device *dev = obj->base.dev;
4602         struct drm_i915_private *dev_priv = dev->dev_private;
4603         struct i915_vma *vma, *next;
4604
4605         intel_runtime_pm_get(dev_priv);
4606
4607         trace_i915_gem_object_destroy(obj);
4608
4609         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4610                 int ret;
4611
4612                 vma->pin_count = 0;
4613                 ret = i915_vma_unbind(vma);
4614                 if (WARN_ON(ret == -ERESTARTSYS)) {
4615                         bool was_interruptible;
4616
4617                         was_interruptible = dev_priv->mm.interruptible;
4618                         dev_priv->mm.interruptible = false;
4619
4620                         WARN_ON(i915_vma_unbind(vma));
4621
4622                         dev_priv->mm.interruptible = was_interruptible;
4623                 }
4624         }
4625
4626         i915_gem_object_detach_phys(obj);
4627
4628         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4629          * before progressing. */
4630         if (obj->stolen)
4631                 i915_gem_object_unpin_pages(obj);
4632
4633         WARN_ON(obj->frontbuffer_bits);
4634
4635         if (WARN_ON(obj->pages_pin_count))
4636                 obj->pages_pin_count = 0;
4637         if (discard_backing_storage(obj))
4638                 obj->madv = I915_MADV_DONTNEED;
4639         i915_gem_object_put_pages(obj);
4640         i915_gem_object_free_mmap_offset(obj);
4641
4642         BUG_ON(obj->pages);
4643
4644 #if 0
4645         if (obj->base.import_attach)
4646                 drm_prime_gem_destroy(&obj->base, NULL);
4647 #endif
4648
4649         if (obj->ops->release)
4650                 obj->ops->release(obj);
4651
4652         drm_gem_object_release(&obj->base);
4653         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4654
4655         kfree(obj->bit_17);
4656         i915_gem_object_free(obj);
4657
4658         intel_runtime_pm_put(dev_priv);
4659 }
4660
4661 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4662                                      struct i915_address_space *vm)
4663 {
4664         struct i915_vma *vma;
4665         list_for_each_entry(vma, &obj->vma_list, vma_link)
4666                 if (vma->vm == vm)
4667                         return vma;
4668
4669         return NULL;
4670 }
4671
4672 void i915_gem_vma_destroy(struct i915_vma *vma)
4673 {
4674         struct i915_address_space *vm = NULL;
4675         WARN_ON(vma->node.allocated);
4676
4677         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4678         if (!list_empty(&vma->exec_list))
4679                 return;
4680
4681         vm = vma->vm;
4682
4683         if (!i915_is_ggtt(vm))
4684                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4685
4686         list_del(&vma->vma_link);
4687
4688         kfree(vma);
4689 }
4690
4691 static void
4692 i915_gem_stop_ringbuffers(struct drm_device *dev)
4693 {
4694         struct drm_i915_private *dev_priv = dev->dev_private;
4695         struct intel_engine_cs *ring;
4696         int i;
4697
4698         for_each_ring(ring, dev_priv, i)
4699                 dev_priv->gt.stop_ring(ring);
4700 }
4701
4702 int
4703 i915_gem_suspend(struct drm_device *dev)
4704 {
4705         struct drm_i915_private *dev_priv = dev->dev_private;
4706         int ret = 0;
4707
4708         mutex_lock(&dev->struct_mutex);
4709         if (dev_priv->ums.mm_suspended)
4710                 goto err;
4711
4712         ret = i915_gpu_idle(dev);
4713         if (ret)
4714                 goto err;
4715
4716         i915_gem_retire_requests(dev);
4717
4718         /* Under UMS, be paranoid and evict. */
4719         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4720                 i915_gem_evict_everything(dev);
4721
4722         i915_kernel_lost_context(dev);
4723         i915_gem_stop_ringbuffers(dev);
4724
4725         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4726          * We need to replace this with a semaphore, or something.
4727          * And not confound ums.mm_suspended!
4728          */
4729         dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4730                                                              DRIVER_MODESET);
4731         mutex_unlock(&dev->struct_mutex);
4732
4733         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4734         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4735 #if 0
4736         flush_delayed_work(&dev_priv->mm.idle_work);
4737 #endif
4738
4739         return 0;
4740
4741 err:
4742         mutex_unlock(&dev->struct_mutex);
4743         return ret;
4744 }
4745
4746 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4747 {
4748         struct drm_device *dev = ring->dev;
4749         struct drm_i915_private *dev_priv = dev->dev_private;
4750         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4751         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4752         int i, ret;
4753
4754         if (!HAS_L3_DPF(dev) || !remap_info)
4755                 return 0;
4756
4757         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4758         if (ret)
4759                 return ret;
4760
4761         /*
4762          * Note: We do not worry about the concurrent register cacheline hang
4763          * here because no other code should access these registers other than
4764          * at initialization time.
4765          */
4766         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4767                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4768                 intel_ring_emit(ring, reg_base + i);
4769                 intel_ring_emit(ring, remap_info[i/4]);
4770         }
4771
4772         intel_ring_advance(ring);
4773
4774         return ret;
4775 }
4776
4777 void i915_gem_init_swizzling(struct drm_device *dev)
4778 {
4779         struct drm_i915_private *dev_priv = dev->dev_private;
4780
4781         if (INTEL_INFO(dev)->gen < 5 ||
4782             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4783                 return;
4784
4785         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4786                                  DISP_TILE_SURFACE_SWIZZLING);
4787
4788         if (IS_GEN5(dev))
4789                 return;
4790
4791         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4792         if (IS_GEN6(dev))
4793                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4794         else if (IS_GEN7(dev))
4795                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4796         else if (IS_GEN8(dev))
4797                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4798         else
4799                 BUG();
4800 }
4801
4802 static bool
4803 intel_enable_blt(struct drm_device *dev)
4804 {
4805         int revision;
4806
4807         if (!HAS_BLT(dev))
4808                 return false;
4809
4810         /* The blitter was dysfunctional on early prototypes */
4811         revision = pci_read_config(dev->dev, PCIR_REVID, 1);
4812         if (IS_GEN6(dev) && revision < 8) {
4813                 DRM_INFO("BLT not supported on this pre-production hardware;"
4814                          " graphics performance will be degraded.\n");
4815                 return false;
4816         }
4817
4818         return true;
4819 }
4820
4821 static void init_unused_ring(struct drm_device *dev, u32 base)
4822 {
4823         struct drm_i915_private *dev_priv = dev->dev_private;
4824
4825         I915_WRITE(RING_CTL(base), 0);
4826         I915_WRITE(RING_HEAD(base), 0);
4827         I915_WRITE(RING_TAIL(base), 0);
4828         I915_WRITE(RING_START(base), 0);
4829 }
4830
4831 static void init_unused_rings(struct drm_device *dev)
4832 {
4833         if (IS_I830(dev)) {
4834                 init_unused_ring(dev, PRB1_BASE);
4835                 init_unused_ring(dev, SRB0_BASE);
4836                 init_unused_ring(dev, SRB1_BASE);
4837                 init_unused_ring(dev, SRB2_BASE);
4838                 init_unused_ring(dev, SRB3_BASE);
4839         } else if (IS_GEN2(dev)) {
4840                 init_unused_ring(dev, SRB0_BASE);
4841                 init_unused_ring(dev, SRB1_BASE);
4842         } else if (IS_GEN3(dev)) {
4843                 init_unused_ring(dev, PRB1_BASE);
4844                 init_unused_ring(dev, PRB2_BASE);
4845         }
4846 }
4847
4848 int i915_gem_init_rings(struct drm_device *dev)
4849 {
4850         struct drm_i915_private *dev_priv = dev->dev_private;
4851         int ret;
4852
4853         /*
4854          * At least 830 can leave some of the unused rings
4855          * "active" (ie. head != tail) after resume which
4856          * will prevent c3 entry. Makes sure all unused rings
4857          * are totally idle.
4858          */
4859         init_unused_rings(dev);
4860
4861         ret = intel_init_render_ring_buffer(dev);
4862         if (ret)
4863                 return ret;
4864
4865         if (HAS_BSD(dev)) {
4866                 ret = intel_init_bsd_ring_buffer(dev);
4867                 if (ret)
4868                         goto cleanup_render_ring;
4869         }
4870
4871         if (intel_enable_blt(dev)) {
4872                 ret = intel_init_blt_ring_buffer(dev);
4873                 if (ret)
4874                         goto cleanup_bsd_ring;
4875         }
4876
4877         if (HAS_VEBOX(dev)) {
4878                 ret = intel_init_vebox_ring_buffer(dev);
4879                 if (ret)
4880                         goto cleanup_blt_ring;
4881         }
4882
4883         if (HAS_BSD2(dev)) {
4884                 ret = intel_init_bsd2_ring_buffer(dev);
4885                 if (ret)
4886                         goto cleanup_vebox_ring;
4887         }
4888
4889         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4890         if (ret)
4891                 goto cleanup_bsd2_ring;
4892
4893         return 0;
4894
4895 cleanup_bsd2_ring:
4896         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4897 cleanup_vebox_ring:
4898         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4899 cleanup_blt_ring:
4900         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4901 cleanup_bsd_ring:
4902         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4903 cleanup_render_ring:
4904         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4905
4906         return ret;
4907 }
4908
4909 int
4910 i915_gem_init_hw(struct drm_device *dev)
4911 {
4912         struct drm_i915_private *dev_priv = dev->dev_private;
4913         int ret, i;
4914
4915 #if 0
4916         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4917                 return -EIO;
4918 #endif
4919
4920         if (dev_priv->ellc_size)
4921                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4922
4923         if (IS_HASWELL(dev))
4924                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4925                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4926
4927         if (HAS_PCH_NOP(dev)) {
4928                 if (IS_IVYBRIDGE(dev)) {
4929                         u32 temp = I915_READ(GEN7_MSG_CTL);
4930                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4931                         I915_WRITE(GEN7_MSG_CTL, temp);
4932                 } else if (INTEL_INFO(dev)->gen >= 7) {
4933                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4934                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4935                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4936                 }
4937         }
4938
4939         i915_gem_init_swizzling(dev);
4940
4941         ret = dev_priv->gt.init_rings(dev);
4942         if (ret)
4943                 return ret;
4944
4945         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4946                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4947
4948         /*
4949          * XXX: Contexts should only be initialized once. Doing a switch to the
4950          * default context switch however is something we'd like to do after
4951          * reset or thaw (the latter may not actually be necessary for HW, but
4952          * goes with our code better). Context switching requires rings (for
4953          * the do_switch), but before enabling PPGTT. So don't move this.
4954          */
4955         ret = i915_gem_context_enable(dev_priv);
4956         if (ret && ret != -EIO) {
4957                 DRM_ERROR("Context enable failed %d\n", ret);
4958                 i915_gem_cleanup_ringbuffer(dev);
4959
4960                 return ret;
4961         }
4962
4963         ret = i915_ppgtt_init_hw(dev);
4964         if (ret && ret != -EIO) {
4965                 DRM_ERROR("PPGTT enable failed %d\n", ret);
4966                 i915_gem_cleanup_ringbuffer(dev);
4967         }
4968
4969         return ret;
4970 }
4971
4972 int i915_gem_init(struct drm_device *dev)
4973 {
4974         struct drm_i915_private *dev_priv = dev->dev_private;
4975         int ret;
4976
4977         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4978                         i915.enable_execlists);
4979
4980         mutex_lock(&dev->struct_mutex);
4981
4982         if (IS_VALLEYVIEW(dev)) {
4983                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4984                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4985                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4986                               VLV_GTLC_ALLOWWAKEACK), 10))
4987                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4988         }
4989
4990         if (!i915.enable_execlists) {
4991                 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4992                 dev_priv->gt.init_rings = i915_gem_init_rings;
4993                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4994                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4995         } else {
4996                 dev_priv->gt.do_execbuf = intel_execlists_submission;
4997                 dev_priv->gt.init_rings = intel_logical_rings_init;
4998                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4999                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
5000         }
5001
5002         ret = i915_gem_init_userptr(dev);
5003         if (ret) {
5004                 mutex_unlock(&dev->struct_mutex);
5005                 return ret;
5006         }
5007
5008         i915_gem_init_global_gtt(dev);
5009
5010         ret = i915_gem_context_init(dev);
5011         if (ret) {
5012                 mutex_unlock(&dev->struct_mutex);
5013                 return ret;
5014         }
5015
5016         ret = i915_gem_init_hw(dev);
5017         if (ret == -EIO) {
5018                 /* Allow ring initialisation to fail by marking the GPU as
5019                  * wedged. But we only want to do this where the GPU is angry,
5020                  * for all other failure, such as an allocation failure, bail.
5021                  */
5022                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5023                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5024                 ret = 0;
5025         }
5026         mutex_unlock(&dev->struct_mutex);
5027
5028         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
5029         if (!drm_core_check_feature(dev, DRIVER_MODESET))
5030                 dev_priv->dri1.allow_batchbuffer = 1;
5031         return ret;
5032 }
5033
5034 void
5035 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5036 {
5037         struct drm_i915_private *dev_priv = dev->dev_private;
5038         struct intel_engine_cs *ring;
5039         int i;
5040
5041         for_each_ring(ring, dev_priv, i)
5042                 dev_priv->gt.cleanup_ring(ring);
5043 }
5044
5045 int
5046 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
5047                        struct drm_file *file_priv)
5048 {
5049         struct drm_i915_private *dev_priv = dev->dev_private;
5050         int ret;
5051
5052         if (drm_core_check_feature(dev, DRIVER_MODESET))
5053                 return 0;
5054
5055         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
5056                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
5057                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
5058         }
5059
5060         mutex_lock(&dev->struct_mutex);
5061         dev_priv->ums.mm_suspended = 0;
5062
5063         ret = i915_gem_init_hw(dev);
5064         if (ret != 0) {
5065                 mutex_unlock(&dev->struct_mutex);
5066                 return ret;
5067         }
5068
5069         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
5070
5071         ret = drm_irq_install(dev, dev->irq);
5072         if (ret)
5073                 goto cleanup_ringbuffer;
5074         mutex_unlock(&dev->struct_mutex);
5075
5076         return 0;
5077
5078 cleanup_ringbuffer:
5079         i915_gem_cleanup_ringbuffer(dev);
5080         dev_priv->ums.mm_suspended = 1;
5081         mutex_unlock(&dev->struct_mutex);
5082
5083         return ret;
5084 }
5085
5086 int
5087 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
5088                        struct drm_file *file_priv)
5089 {
5090         if (drm_core_check_feature(dev, DRIVER_MODESET))
5091                 return 0;
5092
5093         mutex_lock(&dev->struct_mutex);
5094         drm_irq_uninstall(dev);
5095         mutex_unlock(&dev->struct_mutex);
5096
5097         return i915_gem_suspend(dev);
5098 }
5099
5100 void
5101 i915_gem_lastclose(struct drm_device *dev)
5102 {
5103         int ret;
5104
5105         if (drm_core_check_feature(dev, DRIVER_MODESET))
5106                 return;
5107
5108         ret = i915_gem_suspend(dev);
5109         if (ret)
5110                 DRM_ERROR("failed to idle hardware: %d\n", ret);
5111 }
5112
5113 static void
5114 init_ring_lists(struct intel_engine_cs *ring)
5115 {
5116         INIT_LIST_HEAD(&ring->active_list);
5117         INIT_LIST_HEAD(&ring->request_list);
5118 }
5119
5120 void i915_init_vm(struct drm_i915_private *dev_priv,
5121                   struct i915_address_space *vm)
5122 {
5123         if (!i915_is_ggtt(vm))
5124                 drm_mm_init(&vm->mm, vm->start, vm->total);
5125         vm->dev = dev_priv->dev;
5126         INIT_LIST_HEAD(&vm->active_list);
5127         INIT_LIST_HEAD(&vm->inactive_list);
5128         INIT_LIST_HEAD(&vm->global_link);
5129         list_add_tail(&vm->global_link, &dev_priv->vm_list);
5130 }
5131
5132 void
5133 i915_gem_load(struct drm_device *dev)
5134 {
5135         struct drm_i915_private *dev_priv = dev->dev_private;
5136         int i;
5137
5138         INIT_LIST_HEAD(&dev_priv->vm_list);
5139         i915_init_vm(dev_priv, &dev_priv->gtt.base);
5140
5141         INIT_LIST_HEAD(&dev_priv->context_list);
5142         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5143         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5144         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5145         for (i = 0; i < I915_NUM_RINGS; i++)
5146                 init_ring_lists(&dev_priv->ring[i]);
5147         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5148                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5149         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5150                           i915_gem_retire_work_handler);
5151         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5152                           i915_gem_idle_work_handler);
5153         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5154
5155         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5156         if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
5157                 I915_WRITE(MI_ARB_STATE,
5158                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5159         }
5160
5161         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5162
5163         /* Old X drivers will take 0-2 for front, back, depth buffers */
5164         if (!drm_core_check_feature(dev, DRIVER_MODESET))
5165                 dev_priv->fence_reg_start = 3;
5166
5167         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5168                 dev_priv->num_fence_regs = 32;
5169         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5170                 dev_priv->num_fence_regs = 16;
5171         else
5172                 dev_priv->num_fence_regs = 8;
5173
5174         /* Initialize fence registers to zero */
5175         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5176         i915_gem_restore_fences(dev);
5177
5178         i915_gem_detect_bit_6_swizzle(dev);
5179         init_waitqueue_head(&dev_priv->pending_flip_queue);
5180
5181         dev_priv->mm.interruptible = true;
5182
5183 #if 0
5184         dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5185         dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5186         dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5187         register_shrinker(&dev_priv->mm.shrinker);
5188
5189         dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5190         register_oom_notifier(&dev_priv->mm.oom_notifier);
5191 #endif
5192
5193         lockinit(&dev_priv->fb_tracking.lock, "drmftl", 0, LK_CANRECURSE);
5194 }
5195
5196 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5197 {
5198         struct drm_i915_file_private *file_priv = file->driver_priv;
5199
5200         cancel_delayed_work_sync(&file_priv->mm.idle_work);
5201
5202         /* Clean up our request list when the client is going away, so that
5203          * later retire_requests won't dereference our soon-to-be-gone
5204          * file_priv.
5205          */
5206         spin_lock(&file_priv->mm.lock);
5207         while (!list_empty(&file_priv->mm.request_list)) {
5208                 struct drm_i915_gem_request *request;
5209
5210                 request = list_first_entry(&file_priv->mm.request_list,
5211                                            struct drm_i915_gem_request,
5212                                            client_list);
5213                 list_del(&request->client_list);
5214                 request->file_priv = NULL;
5215         }
5216         spin_unlock(&file_priv->mm.lock);
5217 }
5218
5219 int
5220 i915_gem_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot,
5221     vm_ooffset_t foff, struct ucred *cred, u_short *color)
5222 {
5223         *color = 0; /* XXXKIB */
5224         return (0);
5225 }
5226
5227 void
5228 i915_gem_pager_dtor(void *handle)
5229 {
5230         struct drm_gem_object *obj;
5231         struct drm_device *dev;
5232
5233         obj = handle;
5234         dev = obj->dev;
5235
5236         mutex_lock(&dev->struct_mutex);
5237         drm_gem_free_mmap_offset(obj);
5238         i915_gem_release_mmap(to_intel_bo(obj));
5239         drm_gem_object_unreference(obj);
5240         mutex_unlock(&dev->struct_mutex);
5241 }
5242
5243 static void
5244 i915_gem_file_idle_work_handler(struct work_struct *work)
5245 {
5246         struct drm_i915_file_private *file_priv =
5247                 container_of(work, typeof(*file_priv), mm.idle_work.work);
5248
5249         atomic_set(&file_priv->rps_wait_boost, false);
5250 }
5251
5252 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5253 {
5254         struct drm_i915_file_private *file_priv;
5255         int ret;
5256
5257         DRM_DEBUG_DRIVER("\n");
5258
5259         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5260         if (!file_priv)
5261                 return -ENOMEM;
5262
5263         file->driver_priv = file_priv;
5264         file_priv->dev_priv = dev->dev_private;
5265         file_priv->file = file;
5266
5267         spin_init(&file_priv->mm.lock, "i915_priv");
5268         INIT_LIST_HEAD(&file_priv->mm.request_list);
5269         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5270                           i915_gem_file_idle_work_handler);
5271
5272         ret = i915_gem_context_open(dev, file);
5273         if (ret)
5274                 kfree(file_priv);
5275
5276         return ret;
5277 }
5278
5279 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5280                        struct drm_i915_gem_object *new,
5281                        unsigned frontbuffer_bits)
5282 {
5283         if (old) {
5284                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5285                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5286                 old->frontbuffer_bits &= ~frontbuffer_bits;
5287         }
5288
5289         if (new) {
5290                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5291                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5292                 new->frontbuffer_bits |= frontbuffer_bits;
5293         }
5294 }
5295
5296 #if 0
5297 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5298 {
5299         if (!mutex_is_locked(mutex))
5300                 return false;
5301
5302 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5303         return mutex->owner == task;
5304 #else
5305         /* Since UP may be pre-empted, we cannot assume that we own the lock */
5306         return false;
5307 #endif
5308 }
5309 #endif
5310
5311 #if 0
5312 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5313 {
5314         if (!mutex_trylock(&dev->struct_mutex)) {
5315                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5316                         return false;
5317
5318                 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5319                         return false;
5320
5321                 *unlock = false;
5322         } else
5323                 *unlock = true;
5324
5325         return true;
5326 }
5327
5328 static int num_vma_bound(struct drm_i915_gem_object *obj)
5329 {
5330         struct i915_vma *vma;
5331         int count = 0;
5332
5333         list_for_each_entry(vma, &obj->vma_list, vma_link)
5334                 if (drm_mm_node_allocated(&vma->node))
5335                         count++;
5336
5337         return count;
5338 }
5339
5340 static unsigned long
5341 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
5342 {
5343         struct drm_i915_private *dev_priv =
5344                 container_of(shrinker,
5345                              struct drm_i915_private,
5346                              mm.inactive_shrinker);
5347         struct drm_device *dev = dev_priv->dev;
5348         struct drm_i915_gem_object *obj;
5349         unsigned long count;
5350         bool unlock;
5351
5352         if (!i915_gem_shrinker_lock(dev, &unlock))
5353                 return 0;
5354
5355         count = 0;
5356         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5357                 if (obj->pages_pin_count == 0)
5358                         count += obj->base.size >> PAGE_SHIFT;
5359
5360         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5361                 if (!i915_gem_obj_is_pinned(obj) &&
5362                     obj->pages_pin_count == num_vma_bound(obj))
5363                         count += obj->base.size >> PAGE_SHIFT;
5364         }
5365
5366         if (unlock)
5367                 mutex_unlock(&dev->struct_mutex);
5368
5369         return count;
5370 }
5371 #endif
5372
5373 /* All the new VM stuff */
5374 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5375                                   struct i915_address_space *vm)
5376 {
5377         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5378         struct i915_vma *vma;
5379
5380         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5381
5382         list_for_each_entry(vma, &o->vma_list, vma_link) {
5383                 if (vma->vm == vm)
5384                         return vma->node.start;
5385
5386         }
5387         WARN(1, "%s vma for this object not found.\n",
5388              i915_is_ggtt(vm) ? "global" : "ppgtt");
5389         return -1;
5390 }
5391
5392 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5393                         struct i915_address_space *vm)
5394 {
5395         struct i915_vma *vma;
5396
5397         list_for_each_entry(vma, &o->vma_list, vma_link)
5398                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5399                         return true;
5400
5401         return false;
5402 }
5403
5404 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5405 {
5406         struct i915_vma *vma;
5407
5408         list_for_each_entry(vma, &o->vma_list, vma_link)
5409                 if (drm_mm_node_allocated(&vma->node))
5410                         return true;
5411
5412         return false;
5413 }
5414
5415 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5416                                 struct i915_address_space *vm)
5417 {
5418         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5419         struct i915_vma *vma;
5420
5421         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5422
5423         BUG_ON(list_empty(&o->vma_list));
5424
5425         list_for_each_entry(vma, &o->vma_list, vma_link)
5426                 if (vma->vm == vm)
5427                         return vma->node.size;
5428
5429         return 0;
5430 }
5431
5432 #if 0
5433 static unsigned long
5434 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5435 {
5436         struct drm_i915_private *dev_priv =
5437                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5438         struct drm_device *dev = dev_priv->dev;
5439         unsigned long freed;
5440         bool unlock;
5441
5442         if (!i915_gem_shrinker_lock(dev, &unlock))
5443                 return SHRINK_STOP;
5444
5445         freed = i915_gem_shrink(dev_priv,
5446                                 sc->nr_to_scan,
5447                                 I915_SHRINK_BOUND |
5448                                 I915_SHRINK_UNBOUND |
5449                                 I915_SHRINK_PURGEABLE);
5450         if (freed < sc->nr_to_scan)
5451                 freed += i915_gem_shrink(dev_priv,
5452                                          sc->nr_to_scan - freed,
5453                                          I915_SHRINK_BOUND |
5454                                          I915_SHRINK_UNBOUND);
5455         if (unlock)
5456                 mutex_unlock(&dev->struct_mutex);
5457
5458         return freed;
5459 }
5460 #endif
5461
5462 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5463 {
5464         struct i915_vma *vma;
5465
5466         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5467         if (vma->vm != i915_obj_to_ggtt(obj))
5468                 return NULL;
5469
5470         return vma;
5471 }