gcc50: Disconnect from buildworld.
[dragonfly.git] / contrib / gcc-5.0 / gcc / reginfo.c
1 /* Compute different info about registers.
2    Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19
20
21 /* This file contains regscan pass of the compiler and passes for
22    dealing with info about modes of pseudo-registers inside
23    subregisters.  It also defines some tables of information about the
24    hardware registers, function init_reg_sets to initialize the
25    tables, and other auxiliary functions to deal with info about
26    registers and their classes.  */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "hard-reg-set.h"
33 #include "hash-set.h"
34 #include "machmode.h"
35 #include "vec.h"
36 #include "double-int.h"
37 #include "input.h"
38 #include "alias.h"
39 #include "symtab.h"
40 #include "wide-int.h"
41 #include "inchash.h"
42 #include "tree.h"
43 #include "rtl.h"
44 #include "hashtab.h"
45 #include "function.h"
46 #include "flags.h"
47 #include "statistics.h"
48 #include "real.h"
49 #include "fixed-value.h"
50 #include "insn-config.h"
51 #include "expmed.h"
52 #include "dojump.h"
53 #include "explow.h"
54 #include "calls.h"
55 #include "emit-rtl.h"
56 #include "varasm.h"
57 #include "stmt.h"
58 #include "expr.h"
59 #include "tm_p.h"
60 #include "predict.h"
61 #include "dominance.h"
62 #include "cfg.h"
63 #include "basic-block.h"
64 #include "regs.h"
65 #include "addresses.h"
66 #include "recog.h"
67 #include "reload.h"
68 #include "diagnostic-core.h"
69 #include "output.h"
70 #include "target.h"
71 #include "tree-pass.h"
72 #include "df.h"
73 #include "ira.h"
74
75 /* Maximum register number used in this function, plus one.  */
76
77 int max_regno;
78
79 /* Used to cache the results of simplifiable_subregs.  SHAPE is the input
80    parameter and SIMPLIFIABLE_REGS is the result.  */
81 struct simplifiable_subreg
82 {
83   simplifiable_subreg (const subreg_shape &);
84
85   subreg_shape shape;
86   HARD_REG_SET simplifiable_regs;
87 };
88
89 struct simplifiable_subregs_hasher : typed_noop_remove <simplifiable_subreg>
90 {
91   typedef simplifiable_subreg value_type;
92   typedef subreg_shape compare_type;
93
94   static inline hashval_t hash (const value_type *);
95   static inline bool equal (const value_type *, const compare_type *);
96 };
97 \f
98 struct target_hard_regs default_target_hard_regs;
99 struct target_regs default_target_regs;
100 #if SWITCHABLE_TARGET
101 struct target_hard_regs *this_target_hard_regs = &default_target_hard_regs;
102 struct target_regs *this_target_regs = &default_target_regs;
103 #endif
104
105 /* Data for initializing fixed_regs.  */
106 static const char initial_fixed_regs[] = FIXED_REGISTERS;
107
108 /* Data for initializing call_used_regs.  */
109 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
110
111 #ifdef CALL_REALLY_USED_REGISTERS
112 /* Data for initializing call_really_used_regs.  */
113 static const char initial_call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
114 #endif
115
116 #ifdef CALL_REALLY_USED_REGISTERS
117 #define CALL_REALLY_USED_REGNO_P(X)  call_really_used_regs[X]
118 #else
119 #define CALL_REALLY_USED_REGNO_P(X)  call_used_regs[X]
120 #endif
121
122 /* Indexed by hard register number, contains 1 for registers
123    that are being used for global register decls.
124    These must be exempt from ordinary flow analysis
125    and are also considered fixed.  */
126 char global_regs[FIRST_PSEUDO_REGISTER];
127
128 /* Declaration for the global register. */
129 tree global_regs_decl[FIRST_PSEUDO_REGISTER];
130
131 /* Same information as REGS_INVALIDATED_BY_CALL but in regset form to be used
132    in dataflow more conveniently.  */
133 regset regs_invalidated_by_call_regset;
134
135 /* Same information as FIXED_REG_SET but in regset form.  */
136 regset fixed_reg_set_regset;
137
138 /* The bitmap_obstack is used to hold some static variables that
139    should not be reset after each function is compiled.  */
140 static bitmap_obstack persistent_obstack;
141
142 /* Used to initialize reg_alloc_order.  */
143 #ifdef REG_ALLOC_ORDER
144 static int initial_reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
145 #endif
146
147 /* The same information, but as an array of unsigned ints.  We copy from
148    these unsigned ints to the table above.  We do this so the tm.h files
149    do not have to be aware of the wordsize for machines with <= 64 regs.
150    Note that we hard-code 32 here, not HOST_BITS_PER_INT.  */
151 #define N_REG_INTS  \
152   ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
153
154 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
155   = REG_CLASS_CONTENTS;
156
157 /* Array containing all of the register names.  */
158 static const char *const initial_reg_names[] = REGISTER_NAMES;
159
160 /* Array containing all of the register class names.  */
161 const char * reg_class_names[] = REG_CLASS_NAMES;
162
163 /* No more global register variables may be declared; true once
164    reginfo has been initialized.  */
165 static int no_global_reg_vars = 0;
166
167 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
168    correspond to the hard registers, if any, set in that map.  This
169    could be done far more efficiently by having all sorts of special-cases
170    with moving single words, but probably isn't worth the trouble.  */
171 void
172 reg_set_to_hard_reg_set (HARD_REG_SET *to, const_bitmap from)
173 {
174   unsigned i;
175   bitmap_iterator bi;
176
177   EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
178     {
179       if (i >= FIRST_PSEUDO_REGISTER)
180         return;
181       SET_HARD_REG_BIT (*to, i);
182     }
183 }
184
185 /* Function called only once per target_globals to initialize the
186    target_hard_regs structure.  Once this is done, various switches
187    may override.  */
188 void
189 init_reg_sets (void)
190 {
191   int i, j;
192
193   /* First copy the register information from the initial int form into
194      the regsets.  */
195
196   for (i = 0; i < N_REG_CLASSES; i++)
197     {
198       CLEAR_HARD_REG_SET (reg_class_contents[i]);
199
200       /* Note that we hard-code 32 here, not HOST_BITS_PER_INT.  */
201       for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
202         if (int_reg_class_contents[i][j / 32]
203             & ((unsigned) 1 << (j % 32)))
204           SET_HARD_REG_BIT (reg_class_contents[i], j);
205     }
206
207   /* Sanity check: make sure the target macros FIXED_REGISTERS and
208      CALL_USED_REGISTERS had the right number of initializers.  */
209   gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
210   gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
211 #ifdef CALL_REALLY_USED_REGISTERS
212   gcc_assert (sizeof call_really_used_regs
213               == sizeof initial_call_really_used_regs);
214 #endif
215 #ifdef REG_ALLOC_ORDER
216   gcc_assert (sizeof reg_alloc_order == sizeof initial_reg_alloc_order);
217 #endif
218   gcc_assert (sizeof reg_names == sizeof initial_reg_names);
219
220   memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
221   memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
222 #ifdef CALL_REALLY_USED_REGISTERS
223   memcpy (call_really_used_regs, initial_call_really_used_regs,
224           sizeof call_really_used_regs);
225 #endif
226 #ifdef REG_ALLOC_ORDER
227   memcpy (reg_alloc_order, initial_reg_alloc_order, sizeof reg_alloc_order);
228 #endif
229   memcpy (reg_names, initial_reg_names, sizeof reg_names);
230
231   SET_HARD_REG_SET (accessible_reg_set);
232   SET_HARD_REG_SET (operand_reg_set);
233 }
234
235 /* We need to save copies of some of the register information which
236    can be munged by command-line switches so we can restore it during
237    subsequent back-end reinitialization.  */
238 static char saved_fixed_regs[FIRST_PSEUDO_REGISTER];
239 static char saved_call_used_regs[FIRST_PSEUDO_REGISTER];
240 #ifdef CALL_REALLY_USED_REGISTERS
241 static char saved_call_really_used_regs[FIRST_PSEUDO_REGISTER];
242 #endif
243 static const char *saved_reg_names[FIRST_PSEUDO_REGISTER];
244 static HARD_REG_SET saved_accessible_reg_set;
245 static HARD_REG_SET saved_operand_reg_set;
246
247 /* Save the register information.  */
248 void
249 save_register_info (void)
250 {
251   /* Sanity check:  make sure the target macros FIXED_REGISTERS and
252      CALL_USED_REGISTERS had the right number of initializers.  */
253   gcc_assert (sizeof fixed_regs == sizeof saved_fixed_regs);
254   gcc_assert (sizeof call_used_regs == sizeof saved_call_used_regs);
255   memcpy (saved_fixed_regs, fixed_regs, sizeof fixed_regs);
256   memcpy (saved_call_used_regs, call_used_regs, sizeof call_used_regs);
257
258   /* Likewise for call_really_used_regs.  */
259 #ifdef CALL_REALLY_USED_REGISTERS
260   gcc_assert (sizeof call_really_used_regs
261               == sizeof saved_call_really_used_regs);
262   memcpy (saved_call_really_used_regs, call_really_used_regs,
263           sizeof call_really_used_regs);
264 #endif
265
266   /* And similarly for reg_names.  */
267   gcc_assert (sizeof reg_names == sizeof saved_reg_names);
268   memcpy (saved_reg_names, reg_names, sizeof reg_names);
269   COPY_HARD_REG_SET (saved_accessible_reg_set, accessible_reg_set);
270   COPY_HARD_REG_SET (saved_operand_reg_set, operand_reg_set);
271 }
272
273 /* Restore the register information.  */
274 static void
275 restore_register_info (void)
276 {
277   memcpy (fixed_regs, saved_fixed_regs, sizeof fixed_regs);
278   memcpy (call_used_regs, saved_call_used_regs, sizeof call_used_regs);
279
280 #ifdef CALL_REALLY_USED_REGISTERS
281   memcpy (call_really_used_regs, saved_call_really_used_regs,
282           sizeof call_really_used_regs);
283 #endif
284
285   memcpy (reg_names, saved_reg_names, sizeof reg_names);
286   COPY_HARD_REG_SET (accessible_reg_set, saved_accessible_reg_set);
287   COPY_HARD_REG_SET (operand_reg_set, saved_operand_reg_set);
288 }
289
290 /* After switches have been processed, which perhaps alter
291    `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs.  */
292 static void
293 init_reg_sets_1 (void)
294 {
295   unsigned int i, j;
296   unsigned int /* machine_mode */ m;
297
298   restore_register_info ();
299
300 #ifdef REG_ALLOC_ORDER
301   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
302     inv_reg_alloc_order[reg_alloc_order[i]] = i;
303 #endif
304
305   /* Let the target tweak things if necessary.  */
306
307   targetm.conditional_register_usage ();
308
309   /* Compute number of hard regs in each class.  */
310
311   memset (reg_class_size, 0, sizeof reg_class_size);
312   for (i = 0; i < N_REG_CLASSES; i++)
313     {
314       bool any_nonfixed = false;
315       for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)       
316         if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
317           {
318             reg_class_size[i]++;
319             if (!fixed_regs[j])
320               any_nonfixed = true;
321           }
322       class_only_fixed_regs[i] = !any_nonfixed;
323     }
324
325   /* Initialize the table of subunions.
326      reg_class_subunion[I][J] gets the largest-numbered reg-class
327      that is contained in the union of classes I and J.  */
328
329   memset (reg_class_subunion, 0, sizeof reg_class_subunion);
330   for (i = 0; i < N_REG_CLASSES; i++)
331     {
332       for (j = 0; j < N_REG_CLASSES; j++)
333         {
334           HARD_REG_SET c;
335           int k;
336
337           COPY_HARD_REG_SET (c, reg_class_contents[i]);
338           IOR_HARD_REG_SET (c, reg_class_contents[j]);
339           for (k = 0; k < N_REG_CLASSES; k++)
340             if (hard_reg_set_subset_p (reg_class_contents[k], c)
341                 && !hard_reg_set_subset_p (reg_class_contents[k],
342                                           reg_class_contents
343                                           [(int) reg_class_subunion[i][j]]))
344               reg_class_subunion[i][j] = (enum reg_class) k;
345         }
346     }
347
348   /* Initialize the table of superunions.
349      reg_class_superunion[I][J] gets the smallest-numbered reg-class
350      containing the union of classes I and J.  */
351
352   memset (reg_class_superunion, 0, sizeof reg_class_superunion);
353   for (i = 0; i < N_REG_CLASSES; i++)
354     {
355       for (j = 0; j < N_REG_CLASSES; j++)
356         {
357           HARD_REG_SET c;
358           int k;
359
360           COPY_HARD_REG_SET (c, reg_class_contents[i]);
361           IOR_HARD_REG_SET (c, reg_class_contents[j]);
362           for (k = 0; k < N_REG_CLASSES; k++)
363             if (hard_reg_set_subset_p (c, reg_class_contents[k]))
364               break;
365
366           reg_class_superunion[i][j] = (enum reg_class) k;
367         }
368     }
369
370   /* Initialize the tables of subclasses and superclasses of each reg class.
371      First clear the whole table, then add the elements as they are found.  */
372
373   for (i = 0; i < N_REG_CLASSES; i++)
374     {
375       for (j = 0; j < N_REG_CLASSES; j++)
376         reg_class_subclasses[i][j] = LIM_REG_CLASSES;
377     }
378
379   for (i = 0; i < N_REG_CLASSES; i++)
380     {
381       if (i == (int) NO_REGS)
382         continue;
383
384       for (j = i + 1; j < N_REG_CLASSES; j++)
385         if (hard_reg_set_subset_p (reg_class_contents[i],
386                                   reg_class_contents[j]))
387           {
388             /* Reg class I is a subclass of J.
389                Add J to the table of superclasses of I.  */
390             enum reg_class *p;
391
392             /* Add I to the table of superclasses of J.  */
393             p = &reg_class_subclasses[j][0];
394             while (*p != LIM_REG_CLASSES) p++;
395             *p = (enum reg_class) i;
396           }
397     }
398
399   /* Initialize "constant" tables.  */
400
401   CLEAR_HARD_REG_SET (fixed_reg_set);
402   CLEAR_HARD_REG_SET (call_used_reg_set);
403   CLEAR_HARD_REG_SET (call_fixed_reg_set);
404   CLEAR_HARD_REG_SET (regs_invalidated_by_call);
405   if (!regs_invalidated_by_call_regset)
406     {
407       bitmap_obstack_initialize (&persistent_obstack);
408       regs_invalidated_by_call_regset = ALLOC_REG_SET (&persistent_obstack);
409     }
410   else
411     CLEAR_REG_SET (regs_invalidated_by_call_regset);
412   if (!fixed_reg_set_regset)
413     fixed_reg_set_regset = ALLOC_REG_SET (&persistent_obstack);
414   else
415     CLEAR_REG_SET (fixed_reg_set_regset);
416
417   AND_HARD_REG_SET (operand_reg_set, accessible_reg_set);
418   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
419     {
420       /* As a special exception, registers whose class is NO_REGS are
421          not accepted by `register_operand'.  The reason for this change
422          is to allow the representation of special architecture artifacts
423          (such as a condition code register) without extending the rtl
424          definitions.  Since registers of class NO_REGS cannot be used
425          as registers in any case where register classes are examined,
426          it is better to apply this exception in a target-independent way.  */
427       if (REGNO_REG_CLASS (i) == NO_REGS)
428         CLEAR_HARD_REG_BIT (operand_reg_set, i);
429
430       /* If a register is too limited to be treated as a register operand,
431          then it should never be allocated to a pseudo.  */
432       if (!TEST_HARD_REG_BIT (operand_reg_set, i))
433         {
434           fixed_regs[i] = 1;
435           call_used_regs[i] = 1;
436         }
437
438       /* call_used_regs must include fixed_regs.  */
439       gcc_assert (!fixed_regs[i] || call_used_regs[i]);
440 #ifdef CALL_REALLY_USED_REGISTERS
441       /* call_used_regs must include call_really_used_regs.  */
442       gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
443 #endif
444
445       if (fixed_regs[i])
446         {
447           SET_HARD_REG_BIT (fixed_reg_set, i);
448           SET_REGNO_REG_SET (fixed_reg_set_regset, i);
449         }
450
451       if (call_used_regs[i])
452         SET_HARD_REG_BIT (call_used_reg_set, i);
453
454       /* There are a couple of fixed registers that we know are safe to
455          exclude from being clobbered by calls:
456
457          The frame pointer is always preserved across calls.  The arg
458          pointer is if it is fixed.  The stack pointer usually is,
459          unless TARGET_RETURN_POPS_ARGS, in which case an explicit
460          CLOBBER will be present.  If we are generating PIC code, the
461          PIC offset table register is preserved across calls, though the
462          target can override that.  */
463
464       if (i == STACK_POINTER_REGNUM)
465         ;
466       else if (global_regs[i])
467         {
468           SET_HARD_REG_BIT (regs_invalidated_by_call, i);
469           SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
470         }
471       else if (i == FRAME_POINTER_REGNUM)
472         ;
473 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
474       else if (i == HARD_FRAME_POINTER_REGNUM)
475         ;
476 #endif
477 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
478       else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
479         ;
480 #endif
481       else if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
482                && i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
483         ;
484       else if (CALL_REALLY_USED_REGNO_P (i))
485         {
486           SET_HARD_REG_BIT (regs_invalidated_by_call, i);
487           SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
488         }
489     }
490
491   COPY_HARD_REG_SET (call_fixed_reg_set, fixed_reg_set);
492
493   /* Preserve global registers if called more than once.  */
494   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
495     {
496       if (global_regs[i])
497         {
498           fixed_regs[i] = call_used_regs[i] = 1;
499           SET_HARD_REG_BIT (fixed_reg_set, i);
500           SET_HARD_REG_BIT (call_used_reg_set, i);
501           SET_HARD_REG_BIT (call_fixed_reg_set, i);
502         }
503     }
504
505   memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
506   memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
507   for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
508     {
509       HARD_REG_SET ok_regs;
510       CLEAR_HARD_REG_SET (ok_regs);
511       for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
512         if (!fixed_regs [j] && HARD_REGNO_MODE_OK (j, (machine_mode) m))
513           SET_HARD_REG_BIT (ok_regs, j);
514
515       for (i = 0; i < N_REG_CLASSES; i++)
516         if ((targetm.class_max_nregs ((reg_class_t) i, (machine_mode) m)
517              <= reg_class_size[i])
518             && hard_reg_set_intersect_p (ok_regs, reg_class_contents[i]))
519           {
520              contains_reg_of_mode [i][m] = 1;
521              have_regs_of_mode [m] = 1;
522           }
523      }
524 }
525
526 /* Compute the table of register modes.
527    These values are used to record death information for individual registers
528    (as opposed to a multi-register mode).
529    This function might be invoked more than once, if the target has support
530    for changing register usage conventions on a per-function basis.
531 */
532 void
533 init_reg_modes_target (void)
534 {
535   int i, j;
536
537   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
538     for (j = 0; j < MAX_MACHINE_MODE; j++)
539       hard_regno_nregs[i][j] = HARD_REGNO_NREGS (i, (machine_mode)j);
540
541   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
542     {
543       reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
544
545       /* If we couldn't find a valid mode, just use the previous mode
546          if it is suitable, otherwise fall back on word_mode.  */
547       if (reg_raw_mode[i] == VOIDmode)
548         {
549           if (i > 0 && hard_regno_nregs[i][reg_raw_mode[i - 1]] == 1)
550             reg_raw_mode[i] = reg_raw_mode[i - 1];
551           else
552             reg_raw_mode[i] = word_mode;
553         }
554     }
555 }
556
557 /* Finish initializing the register sets and initialize the register modes.
558    This function might be invoked more than once, if the target has support
559    for changing register usage conventions on a per-function basis.
560 */
561 void
562 init_regs (void)
563 {
564   /* This finishes what was started by init_reg_sets, but couldn't be done
565      until after register usage was specified.  */
566   init_reg_sets_1 ();
567 }
568
569 /* The same as previous function plus initializing IRA.  */
570 void
571 reinit_regs (void)
572 {
573   init_regs ();
574   /* caller_save needs to be re-initialized.  */
575   caller_save_initialized_p = false;
576   if (this_target_rtl->target_specific_initialized)
577     {
578       ira_init ();
579       recog_init ();
580     }
581 }
582
583 /* Initialize some fake stack-frame MEM references for use in
584    memory_move_secondary_cost.  */
585 void
586 init_fake_stack_mems (void)
587 {
588   int i;
589
590   for (i = 0; i < MAX_MACHINE_MODE; i++)
591     top_of_stack[i] = gen_rtx_MEM ((machine_mode) i, stack_pointer_rtx);
592 }
593
594
595 /* Compute cost of moving data from a register of class FROM to one of
596    TO, using MODE.  */
597
598 int
599 register_move_cost (machine_mode mode, reg_class_t from, reg_class_t to)
600 {
601   return targetm.register_move_cost (mode, from, to);
602 }
603
604 /* Compute cost of moving registers to/from memory.  */
605
606 int
607 memory_move_cost (machine_mode mode, reg_class_t rclass, bool in)
608 {
609   return targetm.memory_move_cost (mode, rclass, in);
610 }
611
612 /* Compute extra cost of moving registers to/from memory due to reloads.
613    Only needed if secondary reloads are required for memory moves.  */
614 int
615 memory_move_secondary_cost (machine_mode mode, reg_class_t rclass,
616                             bool in)
617 {
618   reg_class_t altclass;
619   int partial_cost = 0;
620   /* We need a memory reference to feed to SECONDARY... macros.  */
621   /* mem may be unused even if the SECONDARY_ macros are defined.  */
622   rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
623
624   altclass = secondary_reload_class (in ? 1 : 0, rclass, mode, mem);
625
626   if (altclass == NO_REGS)
627     return 0;
628
629   if (in)
630     partial_cost = register_move_cost (mode, altclass, rclass);
631   else
632     partial_cost = register_move_cost (mode, rclass, altclass);
633
634   if (rclass == altclass)
635     /* This isn't simply a copy-to-temporary situation.  Can't guess
636        what it is, so TARGET_MEMORY_MOVE_COST really ought not to be
637        calling here in that case.
638
639        I'm tempted to put in an assert here, but returning this will
640        probably only give poor estimates, which is what we would've
641        had before this code anyways.  */
642     return partial_cost;
643
644   /* Check if the secondary reload register will also need a
645      secondary reload.  */
646   return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
647 }
648
649 /* Return a machine mode that is legitimate for hard reg REGNO and large
650    enough to save nregs.  If we can't find one, return VOIDmode.
651    If CALL_SAVED is true, only consider modes that are call saved.  */
652 machine_mode
653 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
654                       unsigned int nregs, bool call_saved)
655 {
656   unsigned int /* machine_mode */ m;
657   machine_mode found_mode = VOIDmode, mode;
658
659   /* We first look for the largest integer mode that can be validly
660      held in REGNO.  If none, we look for the largest floating-point mode.
661      If we still didn't find a valid mode, try CCmode.  */
662
663   for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
664        mode != VOIDmode;
665        mode = GET_MODE_WIDER_MODE (mode))
666     if ((unsigned) hard_regno_nregs[regno][mode] == nregs
667         && HARD_REGNO_MODE_OK (regno, mode)
668         && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
669         && GET_MODE_SIZE (mode) > GET_MODE_SIZE (found_mode))
670       found_mode = mode;
671
672   for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
673        mode != VOIDmode;
674        mode = GET_MODE_WIDER_MODE (mode))
675     if ((unsigned) hard_regno_nregs[regno][mode] == nregs
676         && HARD_REGNO_MODE_OK (regno, mode)
677         && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
678         && GET_MODE_SIZE (mode) > GET_MODE_SIZE (found_mode))
679       found_mode = mode;
680
681   for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
682        mode != VOIDmode;
683        mode = GET_MODE_WIDER_MODE (mode))
684     if ((unsigned) hard_regno_nregs[regno][mode] == nregs
685         && HARD_REGNO_MODE_OK (regno, mode)
686         && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
687         && GET_MODE_SIZE (mode) > GET_MODE_SIZE (found_mode))
688       found_mode = mode;
689
690   for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
691        mode != VOIDmode;
692        mode = GET_MODE_WIDER_MODE (mode))
693     if ((unsigned) hard_regno_nregs[regno][mode] == nregs
694         && HARD_REGNO_MODE_OK (regno, mode)
695         && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
696         && GET_MODE_SIZE (mode) > GET_MODE_SIZE (found_mode))
697       found_mode = mode;
698
699   if (found_mode != VOIDmode)
700     return found_mode;
701
702   /* Iterate over all of the CCmodes.  */
703   for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
704     {
705       mode = (machine_mode) m;
706       if ((unsigned) hard_regno_nregs[regno][mode] == nregs
707           && HARD_REGNO_MODE_OK (regno, mode)
708           && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
709         return mode;
710     }
711
712   /* We can't find a mode valid for this register.  */
713   return VOIDmode;
714 }
715
716 /* Specify the usage characteristics of the register named NAME.
717    It should be a fixed register if FIXED and a
718    call-used register if CALL_USED.  */
719 void
720 fix_register (const char *name, int fixed, int call_used)
721 {
722   int i;
723   int reg, nregs;
724
725   /* Decode the name and update the primary form of
726      the register info.  */
727
728   if ((reg = decode_reg_name_and_count (name, &nregs)) >= 0)
729     {
730       gcc_assert (nregs >= 1);
731       for (i = reg; i < reg + nregs; i++)
732         {
733           if ((i == STACK_POINTER_REGNUM
734 #ifdef HARD_FRAME_POINTER_REGNUM
735                || i == HARD_FRAME_POINTER_REGNUM
736 #else
737                || i == FRAME_POINTER_REGNUM
738 #endif
739                )
740               && (fixed == 0 || call_used == 0))
741             {
742               switch (fixed)
743                 {
744                 case 0:
745                   switch (call_used)
746                     {
747                     case 0:
748                       error ("can%'t use %qs as a call-saved register", name);
749                       break;
750
751                     case 1:
752                       error ("can%'t use %qs as a call-used register", name);
753                       break;
754
755                     default:
756                       gcc_unreachable ();
757                     }
758                   break;
759
760                 case 1:
761                   switch (call_used)
762                     {
763                     case 1:
764                       error ("can%'t use %qs as a fixed register", name);
765                       break;
766
767                     case 0:
768                     default:
769                       gcc_unreachable ();
770                     }
771                   break;
772
773                 default:
774                   gcc_unreachable ();
775                 }
776             }
777           else
778             {
779               fixed_regs[i] = fixed;
780               call_used_regs[i] = call_used;
781 #ifdef CALL_REALLY_USED_REGISTERS
782               if (fixed == 0)
783                 call_really_used_regs[i] = call_used;
784 #endif
785             }
786         }
787     }
788   else
789     {
790       warning (0, "unknown register name: %s", name);
791     }
792 }
793
794 /* Mark register number I as global.  */
795 void
796 globalize_reg (tree decl, int i)
797 {
798   location_t loc = DECL_SOURCE_LOCATION (decl);
799
800 #ifdef STACK_REGS
801   if (IN_RANGE (i, FIRST_STACK_REG, LAST_STACK_REG))
802     {
803       error ("stack register used for global register variable");
804       return;
805     }
806 #endif
807
808   if (fixed_regs[i] == 0 && no_global_reg_vars)
809     error_at (loc, "global register variable follows a function definition");
810
811   if (global_regs[i])
812     {
813       warning_at (loc, 0, 
814                   "register of %qD used for multiple global register variables",
815                   decl);
816       inform (DECL_SOURCE_LOCATION (global_regs_decl[i]),
817               "conflicts with %qD", global_regs_decl[i]); 
818       return;
819     }
820
821   if (call_used_regs[i] && ! fixed_regs[i])
822     warning_at (loc, 0, "call-clobbered register used for global register variable");
823
824   global_regs[i] = 1;
825   global_regs_decl[i] = decl;
826
827   /* If we're globalizing the frame pointer, we need to set the
828      appropriate regs_invalidated_by_call bit, even if it's already
829      set in fixed_regs.  */
830   if (i != STACK_POINTER_REGNUM)
831     {
832       SET_HARD_REG_BIT (regs_invalidated_by_call, i);
833       SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
834     }
835
836   /* If already fixed, nothing else to do.  */
837   if (fixed_regs[i])
838     return;
839
840   fixed_regs[i] = call_used_regs[i] = 1;
841 #ifdef CALL_REALLY_USED_REGISTERS
842   call_really_used_regs[i] = 1;
843 #endif
844
845   SET_HARD_REG_BIT (fixed_reg_set, i);
846   SET_HARD_REG_BIT (call_used_reg_set, i);
847   SET_HARD_REG_BIT (call_fixed_reg_set, i);
848
849   reinit_regs ();
850 }
851 \f
852
853 /* Structure used to record preferences of given pseudo.  */
854 struct reg_pref
855 {
856   /* (enum reg_class) prefclass is the preferred class.  May be
857      NO_REGS if no class is better than memory.  */
858   char prefclass;
859
860   /* altclass is a register class that we should use for allocating
861      pseudo if no register in the preferred class is available.
862      If no register in this class is available, memory is preferred.
863
864      It might appear to be more general to have a bitmask of classes here,
865      but since it is recommended that there be a class corresponding to the
866      union of most major pair of classes, that generality is not required.  */
867   char altclass;
868
869   /* allocnoclass is a register class that IRA uses for allocating
870      the pseudo.  */
871   char allocnoclass;
872 };
873
874 /* Record preferences of each pseudo.  This is available after RA is
875    run.  */
876 static struct reg_pref *reg_pref;
877
878 /* Current size of reg_info.  */
879 static int reg_info_size;
880 /* Max_reg_num still last resize_reg_info call.  */
881 static int max_regno_since_last_resize;
882
883 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
884    This function is sometimes called before the info has been computed.
885    When that happens, just return GENERAL_REGS, which is innocuous.  */
886 enum reg_class
887 reg_preferred_class (int regno)
888 {
889   if (reg_pref == 0)
890     return GENERAL_REGS;
891
892   gcc_assert (regno < reg_info_size);
893   return (enum reg_class) reg_pref[regno].prefclass;
894 }
895
896 enum reg_class
897 reg_alternate_class (int regno)
898 {
899   if (reg_pref == 0)
900     return ALL_REGS;
901
902   gcc_assert (regno < reg_info_size);
903   return (enum reg_class) reg_pref[regno].altclass;
904 }
905
906 /* Return the reg_class which is used by IRA for its allocation.  */
907 enum reg_class
908 reg_allocno_class (int regno)
909 {
910   if (reg_pref == 0)
911     return NO_REGS;
912
913   gcc_assert (regno < reg_info_size);
914   return (enum reg_class) reg_pref[regno].allocnoclass;
915 }
916
917 \f
918
919 /* Allocate space for reg info and initilize it.  */
920 static void
921 allocate_reg_info (void)
922 {
923   int i;
924
925   max_regno_since_last_resize = max_reg_num ();
926   reg_info_size = max_regno_since_last_resize * 3 / 2 + 1;
927   gcc_assert (! reg_pref && ! reg_renumber);
928   reg_renumber = XNEWVEC (short, reg_info_size);
929   reg_pref = XCNEWVEC (struct reg_pref, reg_info_size);
930   memset (reg_renumber, -1, reg_info_size * sizeof (short));
931   for (i = 0; i < reg_info_size; i++)
932     {
933       reg_pref[i].prefclass = GENERAL_REGS;
934       reg_pref[i].altclass = ALL_REGS;
935       reg_pref[i].allocnoclass = GENERAL_REGS;
936     }
937 }
938
939
940 /* Resize reg info. The new elements will be initialized.  Return TRUE
941    if new pseudos were added since the last call.  */
942 bool
943 resize_reg_info (void)
944 {
945   int old, i;
946   bool change_p;
947
948   if (reg_pref == NULL)
949     {
950       allocate_reg_info ();
951       return true;
952     }
953   change_p = max_regno_since_last_resize != max_reg_num ();
954   max_regno_since_last_resize = max_reg_num ();
955   if (reg_info_size >= max_reg_num ())
956     return change_p;
957   old = reg_info_size;
958   reg_info_size = max_reg_num () * 3 / 2 + 1;
959   gcc_assert (reg_pref && reg_renumber);
960   reg_renumber = XRESIZEVEC (short, reg_renumber, reg_info_size);
961   reg_pref = XRESIZEVEC (struct reg_pref, reg_pref, reg_info_size);
962   memset (reg_pref + old, -1,
963           (reg_info_size - old) * sizeof (struct reg_pref));
964   memset (reg_renumber + old, -1, (reg_info_size - old) * sizeof (short));
965   for (i = old; i < reg_info_size; i++)
966     {
967       reg_pref[i].prefclass = GENERAL_REGS;
968       reg_pref[i].altclass = ALL_REGS;
969       reg_pref[i].allocnoclass = GENERAL_REGS;
970     }
971   return true;
972 }
973
974
975 /* Free up the space allocated by allocate_reg_info.  */
976 void
977 free_reg_info (void)
978 {
979   if (reg_pref)
980     {
981       free (reg_pref);
982       reg_pref = NULL;
983     }
984
985   if (reg_renumber)
986     {
987       free (reg_renumber);
988       reg_renumber = NULL;
989     }
990 }
991
992 /* Initialize some global data for this pass.  */
993 static unsigned int
994 reginfo_init (void)
995 {
996   if (df)
997     df_compute_regs_ever_live (true);
998
999   /* This prevents dump_reg_info from losing if called
1000      before reginfo is run.  */
1001   reg_pref = NULL;
1002   reg_info_size = max_regno_since_last_resize = 0;
1003   /* No more global register variables may be declared.  */
1004   no_global_reg_vars = 1;
1005   return 1;
1006 }
1007
1008 namespace {
1009
1010 const pass_data pass_data_reginfo_init =
1011 {
1012   RTL_PASS, /* type */
1013   "reginfo", /* name */
1014   OPTGROUP_NONE, /* optinfo_flags */
1015   TV_NONE, /* tv_id */
1016   0, /* properties_required */
1017   0, /* properties_provided */
1018   0, /* properties_destroyed */
1019   0, /* todo_flags_start */
1020   0, /* todo_flags_finish */
1021 };
1022
1023 class pass_reginfo_init : public rtl_opt_pass
1024 {
1025 public:
1026   pass_reginfo_init (gcc::context *ctxt)
1027     : rtl_opt_pass (pass_data_reginfo_init, ctxt)
1028   {}
1029
1030   /* opt_pass methods: */
1031   virtual unsigned int execute (function *) { return reginfo_init (); }
1032
1033 }; // class pass_reginfo_init
1034
1035 } // anon namespace
1036
1037 rtl_opt_pass *
1038 make_pass_reginfo_init (gcc::context *ctxt)
1039 {
1040   return new pass_reginfo_init (ctxt);
1041 }
1042
1043 \f
1044
1045 /* Set up preferred, alternate, and allocno classes for REGNO as
1046    PREFCLASS, ALTCLASS, and ALLOCNOCLASS.  */
1047 void
1048 setup_reg_classes (int regno,
1049                    enum reg_class prefclass, enum reg_class altclass,
1050                    enum reg_class allocnoclass)
1051 {
1052   if (reg_pref == NULL)
1053     return;
1054   gcc_assert (reg_info_size >= max_reg_num ());
1055   reg_pref[regno].prefclass = prefclass;
1056   reg_pref[regno].altclass = altclass;
1057   reg_pref[regno].allocnoclass = allocnoclass;
1058 }
1059
1060 \f
1061 /* This is the `regscan' pass of the compiler, run just before cse and
1062    again just before loop.  It finds the first and last use of each
1063    pseudo-register.  */
1064
1065 static void reg_scan_mark_refs (rtx, rtx_insn *);
1066
1067 void
1068 reg_scan (rtx_insn *f, unsigned int nregs ATTRIBUTE_UNUSED)
1069 {
1070   rtx_insn *insn;
1071
1072   timevar_push (TV_REG_SCAN);
1073
1074   for (insn = f; insn; insn = NEXT_INSN (insn))
1075     if (INSN_P (insn))
1076       {
1077         reg_scan_mark_refs (PATTERN (insn), insn);
1078         if (REG_NOTES (insn))
1079           reg_scan_mark_refs (REG_NOTES (insn), insn);
1080       }
1081
1082   timevar_pop (TV_REG_SCAN);
1083 }
1084
1085
1086 /* X is the expression to scan.  INSN is the insn it appears in.
1087    NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
1088    We should only record information for REGs with numbers
1089    greater than or equal to MIN_REGNO.  */
1090 static void
1091 reg_scan_mark_refs (rtx x, rtx_insn *insn)
1092 {
1093   enum rtx_code code;
1094   rtx dest;
1095   rtx note;
1096
1097   if (!x)
1098     return;
1099   code = GET_CODE (x);
1100   switch (code)
1101     {
1102     case CONST:
1103     CASE_CONST_ANY:
1104     case CC0:
1105     case PC:
1106     case SYMBOL_REF:
1107     case LABEL_REF:
1108     case ADDR_VEC:
1109     case ADDR_DIFF_VEC:
1110     case REG:
1111       return;
1112
1113     case EXPR_LIST:
1114       if (XEXP (x, 0))
1115         reg_scan_mark_refs (XEXP (x, 0), insn);
1116       if (XEXP (x, 1))
1117         reg_scan_mark_refs (XEXP (x, 1), insn);
1118       break;
1119
1120     case INSN_LIST:
1121     case INT_LIST:
1122       if (XEXP (x, 1))
1123         reg_scan_mark_refs (XEXP (x, 1), insn);
1124       break;
1125
1126     case CLOBBER:
1127       if (MEM_P (XEXP (x, 0)))
1128         reg_scan_mark_refs (XEXP (XEXP (x, 0), 0), insn);
1129       break;
1130
1131     case SET:
1132       /* Count a set of the destination if it is a register.  */
1133       for (dest = SET_DEST (x);
1134            GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
1135            || GET_CODE (dest) == ZERO_EXTRACT;
1136            dest = XEXP (dest, 0))
1137         ;
1138
1139       /* If this is setting a pseudo from another pseudo or the sum of a
1140          pseudo and a constant integer and the other pseudo is known to be
1141          a pointer, set the destination to be a pointer as well.
1142
1143          Likewise if it is setting the destination from an address or from a
1144          value equivalent to an address or to the sum of an address and
1145          something else.
1146
1147          But don't do any of this if the pseudo corresponds to a user
1148          variable since it should have already been set as a pointer based
1149          on the type.  */
1150
1151       if (REG_P (SET_DEST (x))
1152           && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
1153           /* If the destination pseudo is set more than once, then other
1154              sets might not be to a pointer value (consider access to a
1155              union in two threads of control in the presence of global
1156              optimizations).  So only set REG_POINTER on the destination
1157              pseudo if this is the only set of that pseudo.  */
1158           && DF_REG_DEF_COUNT (REGNO (SET_DEST (x))) == 1
1159           && ! REG_USERVAR_P (SET_DEST (x))
1160           && ! REG_POINTER (SET_DEST (x))
1161           && ((REG_P (SET_SRC (x))
1162                && REG_POINTER (SET_SRC (x)))
1163               || ((GET_CODE (SET_SRC (x)) == PLUS
1164                    || GET_CODE (SET_SRC (x)) == LO_SUM)
1165                   && CONST_INT_P (XEXP (SET_SRC (x), 1))
1166                   && REG_P (XEXP (SET_SRC (x), 0))
1167                   && REG_POINTER (XEXP (SET_SRC (x), 0)))
1168               || GET_CODE (SET_SRC (x)) == CONST
1169               || GET_CODE (SET_SRC (x)) == SYMBOL_REF
1170               || GET_CODE (SET_SRC (x)) == LABEL_REF
1171               || (GET_CODE (SET_SRC (x)) == HIGH
1172                   && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
1173                       || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
1174                       || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
1175               || ((GET_CODE (SET_SRC (x)) == PLUS
1176                    || GET_CODE (SET_SRC (x)) == LO_SUM)
1177                   && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
1178                       || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
1179                       || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
1180               || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
1181                   && (GET_CODE (XEXP (note, 0)) == CONST
1182                       || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
1183                       || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
1184         REG_POINTER (SET_DEST (x)) = 1;
1185
1186       /* If this is setting a register from a register or from a simple
1187          conversion of a register, propagate REG_EXPR.  */
1188       if (REG_P (dest) && !REG_ATTRS (dest))
1189         set_reg_attrs_from_value (dest, SET_SRC (x));
1190
1191       /* ... fall through ...  */
1192
1193     default:
1194       {
1195         const char *fmt = GET_RTX_FORMAT (code);
1196         int i;
1197         for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1198           {
1199             if (fmt[i] == 'e')
1200               reg_scan_mark_refs (XEXP (x, i), insn);
1201             else if (fmt[i] == 'E' && XVEC (x, i) != 0)
1202               {
1203                 int j;
1204                 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1205                   reg_scan_mark_refs (XVECEXP (x, i, j), insn);
1206               }
1207           }
1208       }
1209     }
1210 }
1211 \f
1212
1213 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
1214    is also in C2.  */
1215 int
1216 reg_class_subset_p (reg_class_t c1, reg_class_t c2)
1217 {
1218   return (c1 == c2
1219           || c2 == ALL_REGS
1220           || hard_reg_set_subset_p (reg_class_contents[(int) c1],
1221                                    reg_class_contents[(int) c2]));
1222 }
1223
1224 /* Return nonzero if there is a register that is in both C1 and C2.  */
1225 int
1226 reg_classes_intersect_p (reg_class_t c1, reg_class_t c2)
1227 {
1228   return (c1 == c2
1229           || c1 == ALL_REGS
1230           || c2 == ALL_REGS
1231           || hard_reg_set_intersect_p (reg_class_contents[(int) c1],
1232                                       reg_class_contents[(int) c2]));
1233 }
1234
1235 \f
1236 inline hashval_t
1237 simplifiable_subregs_hasher::hash (const value_type *value)
1238 {
1239   return value->shape.unique_id ();
1240 }
1241
1242 inline bool
1243 simplifiable_subregs_hasher::equal (const value_type *value,
1244                                     const compare_type *compare)
1245 {
1246   return value->shape == *compare;
1247 }
1248
1249 inline simplifiable_subreg::simplifiable_subreg (const subreg_shape &shape_in)
1250   : shape (shape_in)
1251 {
1252   CLEAR_HARD_REG_SET (simplifiable_regs);
1253 }
1254
1255 /* Return the set of hard registers that are able to form the subreg
1256    described by SHAPE.  */
1257
1258 const HARD_REG_SET &
1259 simplifiable_subregs (const subreg_shape &shape)
1260 {
1261   if (!this_target_hard_regs->x_simplifiable_subregs)
1262     this_target_hard_regs->x_simplifiable_subregs
1263       = new hash_table <simplifiable_subregs_hasher> (30);
1264   simplifiable_subreg **slot
1265     = (this_target_hard_regs->x_simplifiable_subregs
1266        ->find_slot_with_hash (&shape, shape.unique_id (), INSERT));
1267
1268   if (!*slot)
1269     {
1270       simplifiable_subreg *info = new simplifiable_subreg (shape);
1271       for (unsigned int i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1272         if (HARD_REGNO_MODE_OK (i, shape.inner_mode)
1273             && simplify_subreg_regno (i, shape.inner_mode, shape.offset,
1274                                       shape.outer_mode) >= 0)
1275           SET_HARD_REG_BIT (info->simplifiable_regs, i);
1276       *slot = info;
1277     }
1278   return (*slot)->simplifiable_regs;
1279 }
1280
1281 /* Passes for keeping and updating info about modes of registers
1282    inside subregisters.  */
1283
1284 static HARD_REG_SET **valid_mode_changes;
1285 static obstack valid_mode_changes_obstack;
1286
1287 static void
1288 record_subregs_of_mode (rtx subreg)
1289 {
1290   unsigned int regno;
1291
1292   if (!REG_P (SUBREG_REG (subreg)))
1293     return;
1294
1295   regno = REGNO (SUBREG_REG (subreg));
1296   if (regno < FIRST_PSEUDO_REGISTER)
1297     return;
1298
1299   if (valid_mode_changes[regno])
1300     AND_HARD_REG_SET (*valid_mode_changes[regno],
1301                       simplifiable_subregs (shape_of_subreg (subreg)));
1302   else
1303     {
1304       valid_mode_changes[regno]
1305         = XOBNEW (&valid_mode_changes_obstack, HARD_REG_SET);
1306       COPY_HARD_REG_SET (*valid_mode_changes[regno],
1307                          simplifiable_subregs (shape_of_subreg (subreg)));
1308     }
1309 }
1310
1311 /* Call record_subregs_of_mode for all the subregs in X.  */
1312 static void
1313 find_subregs_of_mode (rtx x)
1314 {
1315   enum rtx_code code = GET_CODE (x);
1316   const char * const fmt = GET_RTX_FORMAT (code);
1317   int i;
1318
1319   if (code == SUBREG)
1320     record_subregs_of_mode (x);
1321
1322   /* Time for some deep diving.  */
1323   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1324     {
1325       if (fmt[i] == 'e')
1326         find_subregs_of_mode (XEXP (x, i));
1327       else if (fmt[i] == 'E')
1328         {
1329           int j;
1330           for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1331             find_subregs_of_mode (XVECEXP (x, i, j));
1332         }
1333     }
1334 }
1335
1336 void
1337 init_subregs_of_mode (void)
1338 {
1339   basic_block bb;
1340   rtx_insn *insn;
1341
1342   gcc_obstack_init (&valid_mode_changes_obstack);
1343   valid_mode_changes = XCNEWVEC (HARD_REG_SET *, max_reg_num ());
1344
1345   FOR_EACH_BB_FN (bb, cfun)
1346     FOR_BB_INSNS (bb, insn)
1347       if (NONDEBUG_INSN_P (insn))
1348         find_subregs_of_mode (PATTERN (insn));
1349 }
1350
1351 const HARD_REG_SET *
1352 valid_mode_changes_for_regno (unsigned int regno)
1353 {
1354   return valid_mode_changes[regno];
1355 }
1356
1357 void
1358 finish_subregs_of_mode (void)
1359 {
1360   XDELETEVEC (valid_mode_changes);
1361   obstack_free (&valid_mode_changes_obstack, NULL);
1362 }
1363
1364 /* Free all data attached to the structure.  This isn't a destructor because
1365    we don't want to run on exit.  */
1366
1367 void
1368 target_hard_regs::finalize ()
1369 {
1370   delete x_simplifiable_subregs;
1371 }