Use pcidevs.h's definition of the BCM5714 id.
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.29 2003/12/01 21:06:59 ambrisko Exp $
34  * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.54 2006/08/12 05:17:03 swildner Exp $
35  *
36  */
37
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
40  * 
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Engineer, Wind River Systems
43  */
44
45 /*
46  * The Broadcom BCM5700 is based on technology originally developed by
47  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51  * frames, highly configurable RX filtering, and 16 RX and TX queues
52  * (which, along with RX filter rules, can be used for QOS applications).
53  * Other features, such as TCP segmentation, may be available as part
54  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55  * firmware images can be stored in hardware and need not be compiled
56  * into the driver.
57  *
58  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
60  * 
61  * The BCM5701 is a single-chip solution incorporating both the BCM5700
62  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63  * does not support external SSRAM.
64  *
65  * Broadcom also produces a variation of the BCM5700 under the "Altima"
66  * brand name, which is functionally similar but lacks PCI-X support.
67  *
68  * Without external SSRAM, you can only have at most 4 TX rings,
69  * and the use of the mini RX ring is disabled. This seems to imply
70  * that these features are simply not available on the BCM5701. As a
71  * result, this driver does not implement any support for the mini RX
72  * ring.
73  */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/sockio.h>
78 #include <sys/mbuf.h>
79 #include <sys/malloc.h>
80 #include <sys/kernel.h>
81 #include <sys/socket.h>
82 #include <sys/queue.h>
83 #include <sys/serialize.h>
84 #include <sys/thread2.h>
85
86 #include <net/if.h>
87 #include <net/ifq_var.h>
88 #include <net/if_arp.h>
89 #include <net/ethernet.h>
90 #include <net/if_dl.h>
91 #include <net/if_media.h>
92
93 #include <net/bpf.h>
94
95 #include <net/if_types.h>
96 #include <net/vlan/if_vlan_var.h>
97
98 #include <netinet/in_systm.h>
99 #include <netinet/in.h>
100 #include <netinet/ip.h>
101
102 #include <vm/vm.h>              /* for vtophys */
103 #include <vm/pmap.h>            /* for vtophys */
104 #include <machine/resource.h>
105 #include <sys/bus.h>
106 #include <sys/rman.h>
107
108 #include <dev/netif/mii_layer/mii.h>
109 #include <dev/netif/mii_layer/miivar.h>
110 #include <dev/netif/mii_layer/miidevs.h>
111 #include <dev/netif/mii_layer/brgphyreg.h>
112
113 #include <bus/pci/pcidevs.h>
114 #include <bus/pci/pcireg.h>
115 #include <bus/pci/pcivar.h>
116
117 #include "if_bgereg.h"
118
119 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
120
121 /* "controller miibus0" required.  See GENERIC if you get errors here. */
122 #include "miibus_if.h"
123
124 /*
125  * Various supported device vendors/types and their names. Note: the
126  * spec seems to indicate that the hardware still has Alteon's vendor
127  * ID burned into it, though it will always be overriden by the vendor
128  * ID in the EEPROM. Just to be safe, we cover all possibilities.
129  */
130 #define BGE_DEVDESC_MAX         64      /* Maximum device description length */
131
132 static struct bge_type bge_devs[] = {
133         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
134                 "Alteon BCM5700 Gigabit Ethernet" },
135         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
136                 "Alteon BCM5701 Gigabit Ethernet" },
137         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
138                 "Broadcom BCM5700 Gigabit Ethernet" },
139         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
140                 "Broadcom BCM5701 Gigabit Ethernet" },
141         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
142                 "Broadcom BCM5702X Gigabit Ethernet" },
143         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
144                 "Broadcom BCM5702 Gigabit Ethernet" },
145         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
146                 "Broadcom BCM5703X Gigabit Ethernet" },
147         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
148                 "Broadcom BCM5703 Gigabit Ethernet" },
149         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
150                 "Broadcom BCM5704C Dual Gigabit Ethernet" },
151         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
152                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
153         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
154                 "Broadcom BCM5705 Gigabit Ethernet" },
155         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
156                 "Broadcom BCM5705K Gigabit Ethernet" },
157         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
158                 "Broadcom BCM5705M Gigabit Ethernet" },
159         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
160                 "Broadcom BCM5705M Gigabit Ethernet" },
161         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
162                 "Broadcom BCM5714C Gigabit Ethernet" },
163         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
164                 "Broadcom BCM5721 Gigabit Ethernet" },
165         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
166                 "Broadcom BCM5750 Gigabit Ethernet" },
167         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
168                 "Broadcom BCM5750M Gigabit Ethernet" },
169         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
170                 "Broadcom BCM5751 Gigabit Ethernet" },
171         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
172                 "Broadcom BCM5751M Gigabit Ethernet" },
173         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
174                 "Broadcom BCM5782 Gigabit Ethernet" },
175         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
176                 "Broadcom BCM5788 Gigabit Ethernet" },
177         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
178                 "Broadcom BCM5789 Gigabit Ethernet" },
179         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
180                 "Broadcom BCM5901 Fast Ethernet" },
181         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
182                 "Broadcom BCM5901A2 Fast Ethernet" },
183         { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
184                 "SysKonnect Gigabit Ethernet" },
185         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
186                 "Altima AC1000 Gigabit Ethernet" },
187         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
188                 "Altima AC1002 Gigabit Ethernet" },
189         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
190                 "Altima AC9100 Gigabit Ethernet" },
191         { 0, 0, NULL }
192 };
193
194 static int      bge_probe(device_t);
195 static int      bge_attach(device_t);
196 static int      bge_detach(device_t);
197 static void     bge_release_resources(struct bge_softc *);
198 static void     bge_txeof(struct bge_softc *);
199 static void     bge_rxeof(struct bge_softc *);
200
201 static void     bge_tick(void *);
202 static void     bge_tick_serialized(void *);
203 static void     bge_stats_update(struct bge_softc *);
204 static void     bge_stats_update_regs(struct bge_softc *);
205 static int      bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
206
207 static void     bge_intr(void *);
208 static void     bge_start(struct ifnet *);
209 static int      bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
210 static void     bge_init(void *);
211 static void     bge_stop(struct bge_softc *);
212 static void     bge_watchdog(struct ifnet *);
213 static void     bge_shutdown(device_t);
214 static int      bge_ifmedia_upd(struct ifnet *);
215 static void     bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
216
217 static uint8_t  bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
218 static int      bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
219
220 static void     bge_setmulti(struct bge_softc *);
221
222 static void     bge_handle_events(struct bge_softc *);
223 static int      bge_alloc_jumbo_mem(struct bge_softc *);
224 static void     bge_free_jumbo_mem(struct bge_softc *);
225 static struct bge_jslot
226                 *bge_jalloc(struct bge_softc *);
227 static void     bge_jfree(void *);
228 static void     bge_jref(void *);
229 static int      bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
230 static int      bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
231 static int      bge_init_rx_ring_std(struct bge_softc *);
232 static void     bge_free_rx_ring_std(struct bge_softc *);
233 static int      bge_init_rx_ring_jumbo(struct bge_softc *);
234 static void     bge_free_rx_ring_jumbo(struct bge_softc *);
235 static void     bge_free_tx_ring(struct bge_softc *);
236 static int      bge_init_tx_ring(struct bge_softc *);
237
238 static int      bge_chipinit(struct bge_softc *);
239 static int      bge_blockinit(struct bge_softc *);
240
241 #ifdef notdef
242 static uint8_t  bge_vpd_readbyte(struct bge_softc *, uint32_t);
243 static void     bge_vpd_read_res(struct bge_softc *, struct vpd_res *, uint32_t);
244 static void     bge_vpd_read(struct bge_softc *);
245 #endif
246
247 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
248 static void     bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
249 #ifdef notdef
250 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
251 #endif
252 static void     bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
253
254 static int      bge_miibus_readreg(device_t, int, int);
255 static int      bge_miibus_writereg(device_t, int, int, int);
256 static void     bge_miibus_statchg(device_t);
257
258 static void     bge_reset(struct bge_softc *);
259
260 /*
261  * Set following tunable to 1 for some IBM blade servers with the DNLK
262  * switch module. Auto negotiation is broken for those configurations.
263  */
264 static int      bge_fake_autoneg = 0;
265 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
266
267 static device_method_t bge_methods[] = {
268         /* Device interface */
269         DEVMETHOD(device_probe,         bge_probe),
270         DEVMETHOD(device_attach,        bge_attach),
271         DEVMETHOD(device_detach,        bge_detach),
272         DEVMETHOD(device_shutdown,      bge_shutdown),
273
274         /* bus interface */
275         DEVMETHOD(bus_print_child,      bus_generic_print_child),
276         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
277
278         /* MII interface */
279         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
280         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
281         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
282
283         { 0, 0 }
284 };
285
286 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
287 static devclass_t bge_devclass;
288
289 DECLARE_DUMMY_MODULE(if_bge);
290 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
291 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
292
293 static uint32_t
294 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
295 {
296         device_t dev = sc->bge_dev;
297
298         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
299         return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
300 }
301
302 static void
303 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
304 {
305         device_t dev = sc->bge_dev;
306
307         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
308         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
309 }
310
311 #ifdef notdef
312 static uint32_t
313 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
314 {
315         device_t dev = sc->bge_dev;
316
317         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
318         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
319 }
320 #endif
321
322 static void
323 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
324 {
325         device_t dev = sc->bge_dev;
326
327         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
328         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
329 }
330
331 #ifdef notdef
332 static uint8_t
333 bge_vpd_readbyte(struct bge_softc *sc, uint32_t addr)
334 {
335         device_t dev = sc->bge_dev;
336         uint32_t val;
337         int i;
338
339         pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
340         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
341                 DELAY(10);
342                 if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
343                         break;
344         }
345
346         if (i == BGE_TIMEOUT) {
347                 device_printf(sc->bge_dev, "VPD read timed out\n");
348                 return(0);
349         }
350
351         val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
352
353         return((val >> ((addr % 4) * 8)) & 0xFF);
354 }
355
356 static void
357 bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, uint32_t addr)
358 {
359         size_t i;
360         uint8_t *ptr;
361
362         ptr = (uint8_t *)res;
363         for (i = 0; i < sizeof(struct vpd_res); i++)
364                 ptr[i] = bge_vpd_readbyte(sc, i + addr);
365
366         return;
367 }
368
369 static void
370 bge_vpd_read(struct bge_softc *sc)
371 {
372         int pos = 0, i;
373         struct vpd_res res;
374
375         if (sc->bge_vpd_prodname != NULL)
376                 free(sc->bge_vpd_prodname, M_DEVBUF);
377         if (sc->bge_vpd_readonly != NULL)
378                 free(sc->bge_vpd_readonly, M_DEVBUF);
379         sc->bge_vpd_prodname = NULL;
380         sc->bge_vpd_readonly = NULL;
381
382         bge_vpd_read_res(sc, &res, pos);
383
384         if (res.vr_id != VPD_RES_ID) {
385                 device_printf(sc->bge_dev,
386                               "bad VPD resource id: expected %x got %x\n",
387                               VPD_RES_ID, res.vr_id);
388                 return;
389         }
390
391         pos += sizeof(res);
392         sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_INTWAIT);
393         for (i = 0; i < res.vr_len; i++)
394                 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
395         sc->bge_vpd_prodname[i] = '\0';
396         pos += i;
397
398         bge_vpd_read_res(sc, &res, pos);
399
400         if (res.vr_id != VPD_RES_READ) {
401                 device_printf(sc->bge_dev,
402                               "bad VPD resource id: expected %x got %x\n",
403                               VPD_RES_READ, res.vr_id);
404                 return;
405         }
406
407         pos += sizeof(res);
408         sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_INTWAIT);
409         for (i = 0; i < res.vr_len + 1; i++)
410                 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
411 }
412 #endif
413
414 /*
415  * Read a byte of data stored in the EEPROM at address 'addr.' The
416  * BCM570x supports both the traditional bitbang interface and an
417  * auto access interface for reading the EEPROM. We use the auto
418  * access method.
419  */
420 static uint8_t
421 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
422 {
423         int i;
424         uint32_t byte = 0;
425
426         /*
427          * Enable use of auto EEPROM access so we can avoid
428          * having to use the bitbang method.
429          */
430         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
431
432         /* Reset the EEPROM, load the clock period. */
433         CSR_WRITE_4(sc, BGE_EE_ADDR,
434             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
435         DELAY(20);
436
437         /* Issue the read EEPROM command. */
438         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
439
440         /* Wait for completion */
441         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
442                 DELAY(10);
443                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
444                         break;
445         }
446
447         if (i == BGE_TIMEOUT) {
448                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
449                 return(0);
450         }
451
452         /* Get result. */
453         byte = CSR_READ_4(sc, BGE_EE_DATA);
454
455         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
456
457         return(0);
458 }
459
460 /*
461  * Read a sequence of bytes from the EEPROM.
462  */
463 static int
464 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
465 {
466         size_t i;
467         int err;
468         uint8_t byte;
469
470         for (byte = 0, err = 0, i = 0; i < len; i++) {
471                 err = bge_eeprom_getbyte(sc, off + i, &byte);
472                 if (err)
473                         break;
474                 *(dest + i) = byte;
475         }
476
477         return(err ? 1 : 0);
478 }
479
480 static int
481 bge_miibus_readreg(device_t dev, int phy, int reg)
482 {
483         struct bge_softc *sc;
484         struct ifnet *ifp;
485         uint32_t val, autopoll;
486         int i;
487
488         sc = device_get_softc(dev);
489         ifp = &sc->arpcom.ac_if;
490
491         /*
492          * Broadcom's own driver always assumes the internal
493          * PHY is at GMII address 1. On some chips, the PHY responds
494          * to accesses at all addresses, which could cause us to
495          * bogusly attach the PHY 32 times at probe type. Always
496          * restricting the lookup to address 1 is simpler than
497          * trying to figure out which chips revisions should be
498          * special-cased.
499          */
500         if (phy != 1)
501                 return(0);
502
503         /* Reading with autopolling on may trigger PCI errors */
504         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
505         if (autopoll & BGE_MIMODE_AUTOPOLL) {
506                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
507                 DELAY(40);
508         }
509
510         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
511             BGE_MIPHY(phy)|BGE_MIREG(reg));
512
513         for (i = 0; i < BGE_TIMEOUT; i++) {
514                 val = CSR_READ_4(sc, BGE_MI_COMM);
515                 if (!(val & BGE_MICOMM_BUSY))
516                         break;
517         }
518
519         if (i == BGE_TIMEOUT) {
520                 if_printf(ifp, "PHY read timed out\n");
521                 val = 0;
522                 goto done;
523         }
524
525         val = CSR_READ_4(sc, BGE_MI_COMM);
526
527 done:
528         if (autopoll & BGE_MIMODE_AUTOPOLL) {
529                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
530                 DELAY(40);
531         }
532
533         if (val & BGE_MICOMM_READFAIL)
534                 return(0);
535
536         return(val & 0xFFFF);
537 }
538
539 static int
540 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
541 {
542         struct bge_softc *sc;
543         uint32_t autopoll;
544         int i;
545
546         sc = device_get_softc(dev);
547
548         /* Reading with autopolling on may trigger PCI errors */
549         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
550         if (autopoll & BGE_MIMODE_AUTOPOLL) {
551                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
552                 DELAY(40);
553         }
554
555         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
556             BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
557
558         for (i = 0; i < BGE_TIMEOUT; i++) {
559                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
560                         break;
561         }
562
563         if (autopoll & BGE_MIMODE_AUTOPOLL) {
564                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
565                 DELAY(40);
566         }
567
568         if (i == BGE_TIMEOUT) {
569                 if_printf(&sc->arpcom.ac_if, "PHY read timed out\n");
570                 return(0);
571         }
572
573         return(0);
574 }
575
576 static void
577 bge_miibus_statchg(device_t dev)
578 {
579         struct bge_softc *sc;
580         struct mii_data *mii;
581
582         sc = device_get_softc(dev);
583         mii = device_get_softc(sc->bge_miibus);
584
585         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
586         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
587                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
588         } else {
589                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
590         }
591
592         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
593                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
594         } else {
595                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
596         }
597 }
598
599 /*
600  * Handle events that have triggered interrupts.
601  */
602 static void
603 bge_handle_events(struct bge_softc *sc)
604 {
605 }
606
607 /*
608  * Memory management for jumbo frames.
609  */
610 static int
611 bge_alloc_jumbo_mem(struct bge_softc *sc)
612 {
613         struct bge_jslot *entry;
614         caddr_t ptr;
615         int i;
616
617         /* Grab a big chunk o' storage. */
618         sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF,
619                 M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
620
621         if (sc->bge_cdata.bge_jumbo_buf == NULL) {
622                 if_printf(&sc->arpcom.ac_if, "no memory for jumbo buffers!\n");
623                 return(ENOBUFS);
624         }
625
626         SLIST_INIT(&sc->bge_jfree_listhead);
627
628         /*
629          * Now divide it up into 9K pieces and save the addresses
630          * in an array. Note that we play an evil trick here by using
631          * the first few bytes in the buffer to hold the the address
632          * of the softc structure for this interface. This is because
633          * bge_jfree() needs it, but it is called by the mbuf management
634          * code which will not pass it to us explicitly.
635          */
636         ptr = sc->bge_cdata.bge_jumbo_buf;
637         for (i = 0; i < BGE_JSLOTS; i++) {
638                 entry = &sc->bge_cdata.bge_jslots[i];
639                 entry->bge_sc = sc;
640                 entry->bge_buf = ptr;
641                 entry->bge_inuse = 0;
642                 entry->bge_slot = i;
643                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
644                 ptr += BGE_JLEN;
645         }
646
647         return(0);
648 }
649
650 static void
651 bge_free_jumbo_mem(struct bge_softc *sc)
652 {
653         if (sc->bge_cdata.bge_jumbo_buf)
654                 contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF);
655 }
656
657 /*
658  * Allocate a jumbo buffer.
659  */
660 static struct bge_jslot *
661 bge_jalloc(struct bge_softc *sc)
662 {
663         struct bge_jslot *entry;
664
665         lwkt_serialize_enter(&sc->bge_jslot_serializer);
666         entry = SLIST_FIRST(&sc->bge_jfree_listhead);
667         if (entry) {
668                 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
669                 entry->bge_inuse = 1;
670         } else {
671                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
672         }
673         lwkt_serialize_exit(&sc->bge_jslot_serializer);
674         return(entry);
675 }
676
677 /*
678  * Adjust usage count on a jumbo buffer.
679  */
680 static void
681 bge_jref(void *arg)
682 {
683         struct bge_jslot *entry = (struct bge_jslot *)arg;
684         struct bge_softc *sc = entry->bge_sc;
685
686         if (sc == NULL)
687                 panic("bge_jref: can't find softc pointer!");
688
689         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
690                 panic("bge_jref: asked to reference buffer "
691                     "that we don't manage!");
692         } else if (entry->bge_inuse == 0) {
693                 panic("bge_jref: buffer already free!");
694         } else {
695                 atomic_add_int(&entry->bge_inuse, 1);
696         }
697 }
698
699 /*
700  * Release a jumbo buffer.
701  */
702 static void
703 bge_jfree(void *arg)
704 {
705         struct bge_jslot *entry = (struct bge_jslot *)arg;
706         struct bge_softc *sc = entry->bge_sc;
707
708         if (sc == NULL)
709                 panic("bge_jfree: can't find softc pointer!");
710
711         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
712                 panic("bge_jfree: asked to free buffer that we don't manage!");
713         } else if (entry->bge_inuse == 0) {
714                 panic("bge_jfree: buffer already free!");
715         } else {
716                 /*
717                  * Possible MP race to 0, use the serializer.  The atomic insn
718                  * is still needed for races against bge_jref().
719                  */
720                 lwkt_serialize_enter(&sc->bge_jslot_serializer);
721                 atomic_subtract_int(&entry->bge_inuse, 1);
722                 if (entry->bge_inuse == 0) {
723                         SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 
724                                           entry, jslot_link);
725                 }
726                 lwkt_serialize_exit(&sc->bge_jslot_serializer);
727         }
728 }
729
730
731 /*
732  * Intialize a standard receive ring descriptor.
733  */
734 static int
735 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
736 {
737         struct mbuf *m_new = NULL;
738         struct bge_rx_bd *r;
739
740         if (m == NULL) {
741                 m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
742                 if (m_new == NULL)
743                         return (ENOBUFS);
744                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
745         } else {
746                 m_new = m;
747                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
748                 m_new->m_data = m_new->m_ext.ext_buf;
749         }
750
751         if (!sc->bge_rx_alignment_bug)
752                 m_adj(m_new, ETHER_ALIGN);
753         sc->bge_cdata.bge_rx_std_chain[i] = m_new;
754         r = &sc->bge_rdata->bge_rx_std_ring[i];
755         BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
756         r->bge_flags = BGE_RXBDFLAG_END;
757         r->bge_len = m_new->m_len;
758         r->bge_idx = i;
759
760         return(0);
761 }
762
763 /*
764  * Initialize a jumbo receive ring descriptor. This allocates
765  * a jumbo buffer from the pool managed internally by the driver.
766  */
767 static int
768 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
769 {
770         struct mbuf *m_new = NULL;
771         struct bge_rx_bd *r;
772
773         if (m == NULL) {
774                 struct bge_jslot *buf;
775
776                 /* Allocate the mbuf. */
777                 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
778                 if (m_new == NULL)
779                         return(ENOBUFS);
780
781                 /* Allocate the jumbo buffer */
782                 buf = bge_jalloc(sc);
783                 if (buf == NULL) {
784                         m_freem(m_new);
785                         if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
786                             "-- packet dropped!\n");
787                         return(ENOBUFS);
788                 }
789
790                 /* Attach the buffer to the mbuf. */
791                 m_new->m_ext.ext_arg = buf;
792                 m_new->m_ext.ext_buf = buf->bge_buf;
793                 m_new->m_ext.ext_free = bge_jfree;
794                 m_new->m_ext.ext_ref = bge_jref;
795                 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
796
797                 m_new->m_data = m_new->m_ext.ext_buf;
798                 m_new->m_flags |= M_EXT;
799                 m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
800         } else {
801                 m_new = m;
802                 m_new->m_data = m_new->m_ext.ext_buf;
803                 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
804         }
805
806         if (!sc->bge_rx_alignment_bug)
807                 m_adj(m_new, ETHER_ALIGN);
808         /* Set up the descriptor. */
809         r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
810         sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
811         BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
812         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
813         r->bge_len = m_new->m_len;
814         r->bge_idx = i;
815
816         return(0);
817 }
818
819 /*
820  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
821  * that's 1MB or memory, which is a lot. For now, we fill only the first
822  * 256 ring entries and hope that our CPU is fast enough to keep up with
823  * the NIC.
824  */
825 static int
826 bge_init_rx_ring_std(struct bge_softc *sc)
827 {
828         int i;
829
830         for (i = 0; i < BGE_SSLOTS; i++) {
831                 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
832                         return(ENOBUFS);
833         };
834
835         sc->bge_std = i - 1;
836         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
837
838         return(0);
839 }
840
841 static void
842 bge_free_rx_ring_std(struct bge_softc *sc)
843 {
844         int i;
845
846         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
847                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
848                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
849                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
850                 }
851                 bzero(&sc->bge_rdata->bge_rx_std_ring[i],
852                     sizeof(struct bge_rx_bd));
853         }
854 }
855
856 static int
857 bge_init_rx_ring_jumbo(struct bge_softc *sc)
858 {
859         int i;
860         struct bge_rcb *rcb;
861
862         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
863                 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
864                         return(ENOBUFS);
865         };
866
867         sc->bge_jumbo = i - 1;
868
869         rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
870         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
871         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
872
873         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
874
875         return(0);
876 }
877
878 static void
879 bge_free_rx_ring_jumbo(struct bge_softc *sc)
880 {
881         int i;
882
883         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
884                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
885                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
886                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
887                 }
888                 bzero(&sc->bge_rdata->bge_rx_jumbo_ring[i],
889                     sizeof(struct bge_rx_bd));
890         }
891 }
892
893 static void
894 bge_free_tx_ring(struct bge_softc *sc)
895 {
896         int i;
897
898         if (sc->bge_rdata->bge_tx_ring == NULL)
899                 return;
900
901         for (i = 0; i < BGE_TX_RING_CNT; i++) {
902                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
903                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
904                         sc->bge_cdata.bge_tx_chain[i] = NULL;
905                 }
906                 bzero(&sc->bge_rdata->bge_tx_ring[i],
907                     sizeof(struct bge_tx_bd));
908         }
909 }
910
911 static int
912 bge_init_tx_ring(struct bge_softc *sc)
913 {
914         sc->bge_txcnt = 0;
915         sc->bge_tx_saved_considx = 0;
916
917         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
918         /* 5700 b2 errata */
919         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
920                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
921
922         CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
923         /* 5700 b2 errata */
924         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
925                 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
926
927         return(0);
928 }
929
930 static void
931 bge_setmulti(struct bge_softc *sc)
932 {
933         struct ifnet *ifp;
934         struct ifmultiaddr *ifma;
935         uint32_t hashes[4] = { 0, 0, 0, 0 };
936         int h, i;
937
938         ifp = &sc->arpcom.ac_if;
939
940         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
941                 for (i = 0; i < 4; i++)
942                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
943                 return;
944         }
945
946         /* First, zot all the existing filters. */
947         for (i = 0; i < 4; i++)
948                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
949
950         /* Now program new ones. */
951         LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
952                 if (ifma->ifma_addr->sa_family != AF_LINK)
953                         continue;
954                 h = ether_crc32_le(
955                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
956                     ETHER_ADDR_LEN) & 0x7f;
957                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
958         }
959
960         for (i = 0; i < 4; i++)
961                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
962 }
963
964 /*
965  * Do endian, PCI and DMA initialization. Also check the on-board ROM
966  * self-test results.
967  */
968 static int
969 bge_chipinit(struct bge_softc *sc)
970 {
971         int i;
972         uint32_t dma_rw_ctl;
973
974         /* Set endianness before we access any non-PCI registers. */
975 #if BYTE_ORDER == BIG_ENDIAN
976         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
977             BGE_BIGENDIAN_INIT, 4);
978 #else
979         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
980             BGE_LITTLEENDIAN_INIT, 4);
981 #endif
982
983         /*
984          * Check the 'ROM failed' bit on the RX CPU to see if
985          * self-tests passed.
986          */
987         if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
988                 if_printf(&sc->arpcom.ac_if,
989                           "RX CPU self-diagnostics failed!\n");
990                 return(ENODEV);
991         }
992
993         /* Clear the MAC control register */
994         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
995
996         /*
997          * Clear the MAC statistics block in the NIC's
998          * internal memory.
999          */
1000         for (i = BGE_STATS_BLOCK;
1001             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1002                 BGE_MEMWIN_WRITE(sc, i, 0);
1003
1004         for (i = BGE_STATUS_BLOCK;
1005             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1006                 BGE_MEMWIN_WRITE(sc, i, 0);
1007
1008         /* Set up the PCI DMA control register. */
1009         if (sc->bge_pcie) {
1010                 /* PCI Express */
1011                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1012                     (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1013                     (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1014         } else if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
1015                    BGE_PCISTATE_PCI_BUSMODE) {
1016                 /* Conventional PCI bus */
1017                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1018                     (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1019                     (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1020                     (0x0F);
1021         } else {
1022                 /* PCI-X bus */
1023                 /*
1024                  * The 5704 uses a different encoding of read/write
1025                  * watermarks.
1026                  */
1027                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1028                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1029                             (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1030                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1031                 else
1032                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1033                             (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1034                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1035                             (0x0F);
1036
1037                 /*
1038                  * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1039                  * for hardware bugs.
1040                  */
1041                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1042                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1043                         uint32_t tmp;
1044
1045                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1046                         if (tmp == 0x6 || tmp == 0x7)
1047                                 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1048                 }
1049         }
1050
1051         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1052             sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1053             sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1054             sc->bge_asicrev == BGE_ASICREV_BCM5750)
1055                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1056         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1057
1058         /*
1059          * Set up general mode register.
1060          */
1061         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME|
1062             BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1063             BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1064             BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1065
1066         /*
1067          * Disable memory write invalidate.  Apparently it is not supported
1068          * properly by these devices.
1069          */
1070         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1071
1072         /* Set the timer prescaler (always 66Mhz) */
1073         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1074
1075         return(0);
1076 }
1077
1078 static int
1079 bge_blockinit(struct bge_softc *sc)
1080 {
1081         struct bge_rcb *rcb;
1082         volatile struct bge_rcb *vrcb;
1083         int i;
1084
1085         /*
1086          * Initialize the memory window pointer register so that
1087          * we can access the first 32K of internal NIC RAM. This will
1088          * allow us to set up the TX send ring RCBs and the RX return
1089          * ring RCBs, plus other things which live in NIC memory.
1090          */
1091         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1092
1093         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1094
1095         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1096             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1097                 /* Configure mbuf memory pool */
1098                 if (sc->bge_extram) {
1099                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1100                             BGE_EXT_SSRAM);
1101                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1102                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1103                         else
1104                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1105                 } else {
1106                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1107                             BGE_BUFFPOOL_1);
1108                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1109                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1110                         else
1111                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1112                 }
1113
1114                 /* Configure DMA resource pool */
1115                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1116                     BGE_DMA_DESCRIPTORS);
1117                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1118         }
1119
1120         /* Configure mbuf pool watermarks */
1121         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1122             sc->bge_asicrev == BGE_ASICREV_BCM5750) {
1123                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1124                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1125         } else {
1126                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1127                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1128         }
1129         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1130
1131         /* Configure DMA resource watermarks */
1132         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1133         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1134
1135         /* Enable buffer manager */
1136         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1137             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1138                 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1139                     BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1140
1141                 /* Poll for buffer manager start indication */
1142                 for (i = 0; i < BGE_TIMEOUT; i++) {
1143                         if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1144                                 break;
1145                         DELAY(10);
1146                 }
1147
1148                 if (i == BGE_TIMEOUT) {
1149                         if_printf(&sc->arpcom.ac_if,
1150                                   "buffer manager failed to start\n");
1151                         return(ENXIO);
1152                 }
1153         }
1154
1155         /* Enable flow-through queues */
1156         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1157         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1158
1159         /* Wait until queue initialization is complete */
1160         for (i = 0; i < BGE_TIMEOUT; i++) {
1161                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1162                         break;
1163                 DELAY(10);
1164         }
1165
1166         if (i == BGE_TIMEOUT) {
1167                 if_printf(&sc->arpcom.ac_if,
1168                           "flow-through queue init failed\n");
1169                 return(ENXIO);
1170         }
1171
1172         /* Initialize the standard RX ring control block */
1173         rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1174         BGE_HOSTADDR(rcb->bge_hostaddr,
1175             vtophys(&sc->bge_rdata->bge_rx_std_ring));
1176         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1177             sc->bge_asicrev == BGE_ASICREV_BCM5750)
1178                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1179         else
1180                 rcb->bge_maxlen_flags =
1181                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1182         if (sc->bge_extram)
1183                 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1184         else
1185                 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1186         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1187         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1188         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1189         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1190
1191         /*
1192          * Initialize the jumbo RX ring control block
1193          * We set the 'ring disabled' bit in the flags
1194          * field until we're actually ready to start
1195          * using this ring (i.e. once we set the MTU
1196          * high enough to require it).
1197          */
1198         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1199             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1200                 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1201                 BGE_HOSTADDR(rcb->bge_hostaddr,
1202                     vtophys(&sc->bge_rdata->bge_rx_jumbo_ring));
1203                 rcb->bge_maxlen_flags =
1204                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1205                     BGE_RCB_FLAG_RING_DISABLED);
1206                 if (sc->bge_extram)
1207                         rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1208                 else
1209                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1210                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1211                     rcb->bge_hostaddr.bge_addr_hi);
1212                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1213                     rcb->bge_hostaddr.bge_addr_lo);
1214                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1215                     rcb->bge_maxlen_flags);
1216                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1217
1218                 /* Set up dummy disabled mini ring RCB */
1219                 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1220                 rcb->bge_maxlen_flags =
1221                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1222                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1223                     rcb->bge_maxlen_flags);
1224         }
1225
1226         /*
1227          * Set the BD ring replentish thresholds. The recommended
1228          * values are 1/8th the number of descriptors allocated to
1229          * each ring.
1230          */
1231         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1232         CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1233
1234         /*
1235          * Disable all unused send rings by setting the 'ring disabled'
1236          * bit in the flags field of all the TX send ring control blocks.
1237          * These are located in NIC memory.
1238          */
1239         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1240             BGE_SEND_RING_RCB);
1241         for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1242                 vrcb->bge_maxlen_flags =
1243                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1244                 vrcb->bge_nicaddr = 0;
1245                 vrcb++;
1246         }
1247
1248         /* Configure TX RCB 0 (we use only the first ring) */
1249         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1250             BGE_SEND_RING_RCB);
1251         vrcb->bge_hostaddr.bge_addr_hi = 0;
1252         BGE_HOSTADDR(vrcb->bge_hostaddr, vtophys(&sc->bge_rdata->bge_tx_ring));
1253         vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT);
1254         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1255             sc->bge_asicrev != BGE_ASICREV_BCM5750)
1256                 vrcb->bge_maxlen_flags =
1257                     BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0);
1258
1259         /* Disable all unused RX return rings */
1260         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1261             BGE_RX_RETURN_RING_RCB);
1262         for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1263                 vrcb->bge_hostaddr.bge_addr_hi = 0;
1264                 vrcb->bge_hostaddr.bge_addr_lo = 0;
1265                 vrcb->bge_maxlen_flags =
1266                     BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1267                     BGE_RCB_FLAG_RING_DISABLED);
1268                 vrcb->bge_nicaddr = 0;
1269                 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1270                     (i * (sizeof(uint64_t))), 0);
1271                 vrcb++;
1272         }
1273
1274         /* Initialize RX ring indexes */
1275         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1276         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1277         CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1278
1279         /*
1280          * Set up RX return ring 0
1281          * Note that the NIC address for RX return rings is 0x00000000.
1282          * The return rings live entirely within the host, so the
1283          * nicaddr field in the RCB isn't used.
1284          */
1285         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1286             BGE_RX_RETURN_RING_RCB);
1287         vrcb->bge_hostaddr.bge_addr_hi = 0;
1288         BGE_HOSTADDR(vrcb->bge_hostaddr,
1289             vtophys(&sc->bge_rdata->bge_rx_return_ring));
1290         vrcb->bge_nicaddr = 0x00000000;
1291         vrcb->bge_maxlen_flags =
1292             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0);
1293
1294         /* Set random backoff seed for TX */
1295         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1296             sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1297             sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1298             sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1299             BGE_TX_BACKOFF_SEED_MASK);
1300
1301         /* Set inter-packet gap */
1302         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1303
1304         /*
1305          * Specify which ring to use for packets that don't match
1306          * any RX rules.
1307          */
1308         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1309
1310         /*
1311          * Configure number of RX lists. One interrupt distribution
1312          * list, sixteen active lists, one bad frames class.
1313          */
1314         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1315
1316         /* Inialize RX list placement stats mask. */
1317         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1318         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1319
1320         /* Disable host coalescing until we get it set up */
1321         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1322
1323         /* Poll to make sure it's shut down. */
1324         for (i = 0; i < BGE_TIMEOUT; i++) {
1325                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1326                         break;
1327                 DELAY(10);
1328         }
1329
1330         if (i == BGE_TIMEOUT) {
1331                 if_printf(&sc->arpcom.ac_if,
1332                           "host coalescing engine failed to idle\n");
1333                 return(ENXIO);
1334         }
1335
1336         /* Set up host coalescing defaults */
1337         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1338         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1339         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1340         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1341         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1342             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1343                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1344                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1345         }
1346         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1347         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1348
1349         /* Set up address of statistics block */
1350         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1351             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1352                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0);
1353                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1354                     vtophys(&sc->bge_rdata->bge_info.bge_stats));
1355
1356                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1357                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1358                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1359         }
1360
1361         /* Set up address of status block */
1362         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0);
1363         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1364             vtophys(&sc->bge_rdata->bge_status_block));
1365
1366         sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1367         sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1368
1369         /* Turn on host coalescing state machine */
1370         CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1371
1372         /* Turn on RX BD completion state machine and enable attentions */
1373         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1374             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1375
1376         /* Turn on RX list placement state machine */
1377         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1378
1379         /* Turn on RX list selector state machine. */
1380         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1381             sc->bge_asicrev != BGE_ASICREV_BCM5750)
1382                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1383
1384         /* Turn on DMA, clear stats */
1385         CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1386             BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1387             BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1388             BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1389             (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1390
1391         /* Set misc. local control, enable interrupts on attentions */
1392         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1393
1394 #ifdef notdef
1395         /* Assert GPIO pins for PHY reset */
1396         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1397             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1398         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1399             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1400 #endif
1401
1402         /* Turn on DMA completion state machine */
1403         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1404             sc->bge_asicrev != BGE_ASICREV_BCM5750)
1405                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1406
1407         /* Turn on write DMA state machine */
1408         CSR_WRITE_4(sc, BGE_WDMA_MODE,
1409             BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1410         
1411         /* Turn on read DMA state machine */
1412         CSR_WRITE_4(sc, BGE_RDMA_MODE,
1413             BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1414
1415         /* Turn on RX data completion state machine */
1416         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1417
1418         /* Turn on RX BD initiator state machine */
1419         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1420
1421         /* Turn on RX data and RX BD initiator state machine */
1422         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1423
1424         /* Turn on Mbuf cluster free state machine */
1425         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1426             sc->bge_asicrev != BGE_ASICREV_BCM5750)
1427                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1428
1429         /* Turn on send BD completion state machine */
1430         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1431
1432         /* Turn on send data completion state machine */
1433         CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1434
1435         /* Turn on send data initiator state machine */
1436         CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1437
1438         /* Turn on send BD initiator state machine */
1439         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1440
1441         /* Turn on send BD selector state machine */
1442         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1443
1444         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1445         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1446             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1447
1448         /* ack/clear link change events */
1449         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1450             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1451             BGE_MACSTAT_LINK_CHANGED);
1452
1453         /* Enable PHY auto polling (for MII/GMII only) */
1454         if (sc->bge_tbi) {
1455                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1456         } else {
1457                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1458                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
1459                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1460                             BGE_EVTENB_MI_INTERRUPT);
1461         }
1462
1463         /* Enable link state change attentions. */
1464         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1465
1466         return(0);
1467 }
1468
1469 /*
1470  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1471  * against our list and return its name if we find a match. Note
1472  * that since the Broadcom controller contains VPD support, we
1473  * can get the device name string from the controller itself instead
1474  * of the compiled-in string. This is a little slow, but it guarantees
1475  * we'll always announce the right product name.
1476  */
1477 static int
1478 bge_probe(device_t dev)
1479 {
1480         struct bge_softc *sc;
1481         struct bge_type *t;
1482         char *descbuf;
1483         uint16_t product, vendor;
1484
1485         product = pci_get_device(dev);
1486         vendor = pci_get_vendor(dev);
1487
1488         for (t = bge_devs; t->bge_name != NULL; t++) {
1489                 if (vendor == t->bge_vid && product == t->bge_did)
1490                         break;
1491         }
1492
1493         if (t->bge_name == NULL)
1494                 return(ENXIO);
1495
1496         sc = device_get_softc(dev);
1497 #ifdef notdef
1498         sc->bge_dev = dev;
1499
1500         bge_vpd_read(sc);
1501         device_set_desc(dev, sc->bge_vpd_prodname);
1502 #endif
1503         descbuf = malloc(BGE_DEVDESC_MAX, M_TEMP, M_WAITOK);
1504         snprintf(descbuf, BGE_DEVDESC_MAX, "%s, ASIC rev. %#04x", t->bge_name,
1505             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1506         device_set_desc_copy(dev, descbuf);
1507         if (pci_get_subvendor(dev) == PCI_VENDOR_DELL)
1508                 sc->bge_no_3_led = 1;
1509         free(descbuf, M_TEMP);
1510         return(0);
1511 }
1512
1513 static int
1514 bge_attach(device_t dev)
1515 {
1516         struct ifnet *ifp;
1517         struct bge_softc *sc;
1518         uint32_t hwcfg = 0;
1519         uint32_t mac_addr = 0;
1520         int error = 0, rid;
1521         uint8_t ether_addr[ETHER_ADDR_LEN];
1522
1523         sc = device_get_softc(dev);
1524         sc->bge_dev = dev;
1525         callout_init(&sc->bge_stat_timer);
1526         lwkt_serialize_init(&sc->bge_jslot_serializer);
1527
1528         /*
1529          * Map control/status registers.
1530          */
1531         pci_enable_busmaster(dev);
1532
1533         rid = BGE_PCI_BAR0;
1534         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1535             RF_ACTIVE);
1536
1537         if (sc->bge_res == NULL) {
1538                 device_printf(dev, "couldn't map memory\n");
1539                 error = ENXIO;
1540                 return(error);
1541         }
1542
1543         sc->bge_btag = rman_get_bustag(sc->bge_res);
1544         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1545         sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res);
1546
1547         /* Allocate interrupt */
1548         rid = 0;
1549
1550         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1551             RF_SHAREABLE | RF_ACTIVE);
1552
1553         if (sc->bge_irq == NULL) {
1554                 device_printf(dev, "couldn't map interrupt\n");
1555                 error = ENXIO;
1556                 goto fail;
1557         }
1558
1559         /* Save ASIC rev. */
1560         sc->bge_chipid =
1561             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1562             BGE_PCIMISCCTL_ASICREV;
1563         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1564         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1565
1566         /*
1567          * Treat the 5714 like the 5750 until we have more info
1568          * on this chip.
1569          */
1570         if (sc->bge_asicrev == BGE_ASICREV_BCM5714)
1571                 sc->bge_asicrev = BGE_ASICREV_BCM5750;
1572
1573         /*
1574          * XXX: Broadcom Linux driver.  Not in specs or eratta.
1575          * PCI-Express?
1576          */
1577         if (sc->bge_asicrev == BGE_ASICREV_BCM5750) {
1578                 uint32_t v;
1579
1580                 v = pci_read_config(dev, BGE_PCI_MSI_CAPID, 4);
1581                 if (((v >> 8) & 0xff) == BGE_PCIE_MSI_CAPID) {
1582                         v = pci_read_config(dev, BGE_PCIE_MSI_CAPID, 4);
1583                         if ((v & 0xff) == BGE_PCIE_MSI_CAPID_VAL)
1584                                 sc->bge_pcie = 1;
1585                 }
1586         }
1587
1588         ifp = &sc->arpcom.ac_if;
1589         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1590
1591         /* Try to reset the chip. */
1592         bge_reset(sc);
1593
1594         if (bge_chipinit(sc)) {
1595                 device_printf(dev, "chip initialization failed\n");
1596                 error = ENXIO;
1597                 goto fail;
1598         }
1599
1600         /*
1601          * Get station address from the EEPROM.
1602          */
1603         mac_addr = bge_readmem_ind(sc, 0x0c14);
1604         if ((mac_addr >> 16) == 0x484b) {
1605                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
1606                 ether_addr[1] = (uint8_t)mac_addr;
1607                 mac_addr = bge_readmem_ind(sc, 0x0c18);
1608                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
1609                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
1610                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
1611                 ether_addr[5] = (uint8_t)mac_addr;
1612         } else if (bge_read_eeprom(sc, ether_addr,
1613             BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1614                 device_printf(dev, "failed to read station address\n");
1615                 error = ENXIO;
1616                 goto fail;
1617         }
1618
1619         /* Allocate the general information block and ring buffers. */
1620         sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF,
1621             M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1622
1623         if (sc->bge_rdata == NULL) {
1624                 error = ENXIO;
1625                 device_printf(dev, "no memory for list buffers!\n");
1626                 goto fail;
1627         }
1628
1629         bzero(sc->bge_rdata, sizeof(struct bge_ring_data));
1630
1631         /*
1632          * Try to allocate memory for jumbo buffers.
1633          * The 5705/5750 does not appear to support jumbo frames.
1634          */
1635         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1636             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1637                 if (bge_alloc_jumbo_mem(sc)) {
1638                         device_printf(dev, "jumbo buffer allocation failed\n");
1639                         error = ENXIO;
1640                         goto fail;
1641                 }
1642         }
1643
1644         /* Set default tuneable values. */
1645         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1646         sc->bge_rx_coal_ticks = 150;
1647         sc->bge_tx_coal_ticks = 150;
1648         sc->bge_rx_max_coal_bds = 64;
1649         sc->bge_tx_max_coal_bds = 128;
1650
1651         /* 5705/5750 limits RX return ring to 512 entries. */
1652         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1653             sc->bge_asicrev == BGE_ASICREV_BCM5750)
1654                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1655         else
1656                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1657
1658         /* Set up ifnet structure */
1659         ifp->if_softc = sc;
1660         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1661         ifp->if_ioctl = bge_ioctl;
1662         ifp->if_start = bge_start;
1663         ifp->if_watchdog = bge_watchdog;
1664         ifp->if_init = bge_init;
1665         ifp->if_mtu = ETHERMTU;
1666         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1667         ifq_set_ready(&ifp->if_snd);
1668         ifp->if_hwassist = BGE_CSUM_FEATURES;
1669         ifp->if_capabilities = IFCAP_HWCSUM;
1670         ifp->if_capenable = ifp->if_capabilities;
1671
1672         /*
1673          * Figure out what sort of media we have by checking the
1674          * hardware config word in the first 32k of NIC internal memory,
1675          * or fall back to examining the EEPROM if necessary.
1676          * Note: on some BCM5700 cards, this value appears to be unset.
1677          * If that's the case, we have to rely on identifying the NIC
1678          * by its PCI subsystem ID, as we do below for the SysKonnect
1679          * SK-9D41.
1680          */
1681         if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1682                 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1683         else {
1684                 bge_read_eeprom(sc, (caddr_t)&hwcfg,
1685                                 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
1686                 hwcfg = ntohl(hwcfg);
1687         }
1688
1689         if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1690                 sc->bge_tbi = 1;
1691
1692         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
1693         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
1694                 sc->bge_tbi = 1;
1695
1696         if (sc->bge_tbi) {
1697                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1698                     bge_ifmedia_upd, bge_ifmedia_sts);
1699                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1700                 ifmedia_add(&sc->bge_ifmedia,
1701                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1702                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1703                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1704                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
1705         } else {
1706                 /*
1707                  * Do transceiver setup.
1708                  */
1709                 if (mii_phy_probe(dev, &sc->bge_miibus,
1710                     bge_ifmedia_upd, bge_ifmedia_sts)) {
1711                         device_printf(dev, "MII without any PHY!\n");
1712                         error = ENXIO;
1713                         goto fail;
1714                 }
1715         }
1716
1717         /*
1718          * When using the BCM5701 in PCI-X mode, data corruption has
1719          * been observed in the first few bytes of some received packets.
1720          * Aligning the packet buffer in memory eliminates the corruption.
1721          * Unfortunately, this misaligns the packet payloads.  On platforms
1722          * which do not support unaligned accesses, we will realign the
1723          * payloads by copying the received packets.
1724          */
1725         switch (sc->bge_chipid) {
1726         case BGE_CHIPID_BCM5701_A0:
1727         case BGE_CHIPID_BCM5701_B0:
1728         case BGE_CHIPID_BCM5701_B2:
1729         case BGE_CHIPID_BCM5701_B5:
1730                 /* If in PCI-X mode, work around the alignment bug. */
1731                 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
1732                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
1733                     BGE_PCISTATE_PCI_BUSSPEED)
1734                         sc->bge_rx_alignment_bug = 1;
1735                 break;
1736         }
1737
1738         /*
1739          * Call MI attach routine.
1740          */
1741         ether_ifattach(ifp, ether_addr, NULL);
1742
1743         error = bus_setup_intr(dev, sc->bge_irq, INTR_NETSAFE,
1744                                bge_intr, sc, &sc->bge_intrhand, 
1745                                ifp->if_serializer);
1746         if (error) {
1747                 ether_ifdetach(ifp);
1748                 device_printf(dev, "couldn't set up irq\n");
1749                 goto fail;
1750         }
1751
1752         return(0);
1753
1754 fail:
1755         bge_detach(dev);
1756
1757         return(error);
1758 }
1759
1760 static int
1761 bge_detach(device_t dev)
1762 {
1763         struct bge_softc *sc = device_get_softc(dev);
1764         struct ifnet *ifp = &sc->arpcom.ac_if;
1765
1766         if (device_is_attached(dev)) {
1767                 lwkt_serialize_enter(ifp->if_serializer);
1768                 bge_stop(sc);
1769                 bge_reset(sc);
1770                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1771                 lwkt_serialize_exit(ifp->if_serializer);
1772
1773                 ether_ifdetach(ifp);
1774         }
1775         if (sc->bge_tbi)
1776                 ifmedia_removeall(&sc->bge_ifmedia);
1777         if (sc->bge_miibus);
1778                 device_delete_child(dev, sc->bge_miibus);
1779         bus_generic_detach(dev);
1780
1781         bge_release_resources(sc);
1782
1783         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1784             sc->bge_asicrev != BGE_ASICREV_BCM5750)
1785                 bge_free_jumbo_mem(sc);
1786
1787         return(0);
1788 }
1789
1790 static void
1791 bge_release_resources(struct bge_softc *sc)
1792 {
1793         device_t dev;
1794
1795         dev = sc->bge_dev;
1796
1797         if (sc->bge_vpd_prodname != NULL)
1798                 free(sc->bge_vpd_prodname, M_DEVBUF);
1799
1800         if (sc->bge_vpd_readonly != NULL)
1801                 free(sc->bge_vpd_readonly, M_DEVBUF);
1802
1803         if (sc->bge_irq != NULL)
1804                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1805
1806         if (sc->bge_res != NULL)
1807                 bus_release_resource(dev, SYS_RES_MEMORY,
1808                     BGE_PCI_BAR0, sc->bge_res);
1809
1810         if (sc->bge_rdata != NULL)
1811                 contigfree(sc->bge_rdata, sizeof(struct bge_ring_data),
1812                            M_DEVBUF);
1813
1814         return;
1815 }
1816
1817 static void
1818 bge_reset(struct bge_softc *sc)
1819 {
1820         device_t dev;
1821         uint32_t cachesize, command, pcistate, reset;
1822         int i, val = 0;
1823
1824         dev = sc->bge_dev;
1825
1826         /* Save some important PCI state. */
1827         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
1828         command = pci_read_config(dev, BGE_PCI_CMD, 4);
1829         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
1830
1831         pci_write_config(dev, BGE_PCI_MISC_CTL,
1832             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1833             BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1834
1835         reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
1836
1837         /* XXX: Broadcom Linux driver. */
1838         if (sc->bge_pcie) {
1839                 if (CSR_READ_4(sc, 0x7e2c) == 0x60)     /* PCIE 1.0 */
1840                         CSR_WRITE_4(sc, 0x7e2c, 0x20);
1841                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
1842                         /* Prevent PCIE link training during global reset */
1843                         CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
1844                         reset |= (1<<29);
1845                 }
1846         }
1847
1848         /* Issue global reset */
1849         bge_writereg_ind(sc, BGE_MISC_CFG, reset);
1850
1851         DELAY(1000);
1852
1853         /* XXX: Broadcom Linux driver. */
1854         if (sc->bge_pcie) {
1855                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
1856                         uint32_t v;
1857
1858                         DELAY(500000); /* wait for link training to complete */
1859                         v = pci_read_config(dev, 0xc4, 4);
1860                         pci_write_config(dev, 0xc4, v | (1<<15), 4);
1861                 }
1862                 /* Set PCIE max payload size and clear error status. */
1863                 pci_write_config(dev, 0xd8, 0xf5000, 4);
1864         }
1865
1866         /* Reset some of the PCI state that got zapped by reset */
1867         pci_write_config(dev, BGE_PCI_MISC_CTL,
1868             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1869             BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1870         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
1871         pci_write_config(dev, BGE_PCI_CMD, command, 4);
1872         bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1873
1874         /* Enable memory arbiter. */
1875         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1876                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1877
1878         /*
1879          * Prevent PXE restart: write a magic number to the
1880          * general communications memory at 0xB50.
1881          */
1882         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1883         /*
1884          * Poll the value location we just wrote until
1885          * we see the 1's complement of the magic number.
1886          * This indicates that the firmware initialization
1887          * is complete.
1888          */
1889         for (i = 0; i < BGE_TIMEOUT; i++) {
1890                 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1891                 if (val == ~BGE_MAGIC_NUMBER)
1892                         break;
1893                 DELAY(10);
1894         }
1895         
1896         if (i == BGE_TIMEOUT) {
1897                 if_printf(&sc->arpcom.ac_if, "firmware handshake timed out\n");
1898                 return;
1899         }
1900
1901         /*
1902          * XXX Wait for the value of the PCISTATE register to
1903          * return to its original pre-reset state. This is a
1904          * fairly good indicator of reset completion. If we don't
1905          * wait for the reset to fully complete, trying to read
1906          * from the device's non-PCI registers may yield garbage
1907          * results.
1908          */
1909         for (i = 0; i < BGE_TIMEOUT; i++) {
1910                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
1911                         break;
1912                 DELAY(10);
1913         }
1914
1915         /* Fix up byte swapping */
1916         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME|
1917             BGE_MODECTL_BYTESWAP_DATA);
1918
1919         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1920
1921         /*
1922          * The 5704 in TBI mode apparently needs some special
1923          * adjustment to insure the SERDES drive level is set
1924          * to 1.2V.
1925          */
1926         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 && sc->bge_tbi) {
1927                 uint32_t serdescfg;
1928
1929                 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
1930                 serdescfg = (serdescfg & ~0xFFF) | 0x880;
1931                 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
1932         }
1933
1934         /* XXX: Broadcom Linux driver. */
1935         if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
1936                 uint32_t v;
1937
1938                 v = CSR_READ_4(sc, 0x7c00);
1939                 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
1940         }
1941
1942         DELAY(10000);
1943 }
1944
1945 /*
1946  * Frame reception handling. This is called if there's a frame
1947  * on the receive return list.
1948  *
1949  * Note: we have to be able to handle two possibilities here:
1950  * 1) the frame is from the jumbo recieve ring
1951  * 2) the frame is from the standard receive ring
1952  */
1953
1954 static void
1955 bge_rxeof(struct bge_softc *sc)
1956 {
1957         struct ifnet *ifp;
1958         int stdcnt = 0, jumbocnt = 0;
1959
1960         ifp = &sc->arpcom.ac_if;
1961
1962         while(sc->bge_rx_saved_considx !=
1963             sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
1964                 struct bge_rx_bd        *cur_rx;
1965                 uint32_t                rxidx;
1966                 struct mbuf             *m = NULL;
1967                 uint16_t                vlan_tag = 0;
1968                 int                     have_tag = 0;
1969
1970                 cur_rx =
1971             &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx];
1972
1973                 rxidx = cur_rx->bge_idx;
1974                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
1975
1976                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
1977                         have_tag = 1;
1978                         vlan_tag = cur_rx->bge_vlan_tag;
1979                 }
1980
1981                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
1982                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1983                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
1984                         sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
1985                         jumbocnt++;
1986                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1987                                 ifp->if_ierrors++;
1988                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1989                                 continue;
1990                         }
1991                         if (bge_newbuf_jumbo(sc,
1992                             sc->bge_jumbo, NULL) == ENOBUFS) {
1993                                 ifp->if_ierrors++;
1994                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
1995                                 continue;
1996                         }
1997                 } else {
1998                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1999                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2000                         sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2001                         stdcnt++;
2002                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2003                                 ifp->if_ierrors++;
2004                                 bge_newbuf_std(sc, sc->bge_std, m);
2005                                 continue;
2006                         }
2007                         if (bge_newbuf_std(sc, sc->bge_std,
2008                             NULL) == ENOBUFS) {
2009                                 ifp->if_ierrors++;
2010                                 bge_newbuf_std(sc, sc->bge_std, m);
2011                                 continue;
2012                         }
2013                 }
2014
2015                 ifp->if_ipackets++;
2016 #ifndef __i386__
2017                 /*
2018                  * The i386 allows unaligned accesses, but for other
2019                  * platforms we must make sure the payload is aligned.
2020                  */
2021                 if (sc->bge_rx_alignment_bug) {
2022                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2023                             cur_rx->bge_len);
2024                         m->m_data += ETHER_ALIGN;
2025                 }
2026 #endif
2027                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2028                 m->m_pkthdr.rcvif = ifp;
2029
2030 #if 0 /* currently broken for some packets, possibly related to TCP options */
2031                 if (ifp->if_hwassist) {
2032                         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2033                         if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2034                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2035                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2036                                 m->m_pkthdr.csum_data =
2037                                     cur_rx->bge_tcp_udp_csum;
2038                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2039                         }
2040                 }
2041 #endif
2042
2043                 /*
2044                  * If we received a packet with a vlan tag, pass it
2045                  * to vlan_input() instead of ether_input().
2046                  */
2047                 if (have_tag) {
2048                         VLAN_INPUT_TAG(m, vlan_tag);
2049                         have_tag = vlan_tag = 0;
2050                 } else {
2051                         ifp->if_input(ifp, m);
2052                 }
2053         }
2054
2055         CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2056         if (stdcnt)
2057                 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2058         if (jumbocnt)
2059                 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2060 }
2061
2062 static void
2063 bge_txeof(struct bge_softc *sc)
2064 {
2065         struct bge_tx_bd *cur_tx = NULL;
2066         struct ifnet *ifp;
2067
2068         ifp = &sc->arpcom.ac_if;
2069
2070         /*
2071          * Go through our tx ring and free mbufs for those
2072          * frames that have been sent.
2073          */
2074         while (sc->bge_tx_saved_considx !=
2075             sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2076                 uint32_t                idx = 0;
2077
2078                 idx = sc->bge_tx_saved_considx;
2079                 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2080                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2081                         ifp->if_opackets++;
2082                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2083                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2084                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
2085                 }
2086                 sc->bge_txcnt--;
2087                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2088                 ifp->if_timer = 0;
2089         }
2090
2091         if (cur_tx != NULL)
2092                 ifp->if_flags &= ~IFF_OACTIVE;
2093 }
2094
2095 static void
2096 bge_intr(void *xsc)
2097 {
2098         struct bge_softc *sc = xsc;
2099         struct ifnet *ifp = &sc->arpcom.ac_if;
2100         uint32_t status, statusword, mimode;
2101
2102         /* XXX */
2103         statusword = loadandclear(&sc->bge_rdata->bge_status_block.bge_status);
2104
2105 #ifdef notdef
2106         /* Avoid this for now -- checking this register is expensive. */
2107         /* Make sure this is really our interrupt. */
2108         if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2109                 return;
2110 #endif
2111         /* Ack interrupt and stop others from occuring. */
2112         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2113
2114         /*
2115          * Process link state changes.
2116          * Grrr. The link status word in the status block does
2117          * not work correctly on the BCM5700 rev AX and BX chips,
2118          * according to all available information. Hence, we have
2119          * to enable MII interrupts in order to properly obtain
2120          * async link changes. Unfortunately, this also means that
2121          * we have to read the MAC status register to detect link
2122          * changes, thereby adding an additional register access to
2123          * the interrupt handler.
2124          */
2125
2126         if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
2127                 status = CSR_READ_4(sc, BGE_MAC_STS);
2128                 if (status & BGE_MACSTAT_MI_INTERRUPT) {
2129                         sc->bge_link = 0;
2130                         callout_stop(&sc->bge_stat_timer);
2131                         bge_tick_serialized(sc);
2132                         /* Clear the interrupt */
2133                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2134                             BGE_EVTENB_MI_INTERRUPT);
2135                         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
2136                         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
2137                             BRGPHY_INTRS);
2138                 }
2139         } else {
2140                 if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED) {
2141                         /*
2142                          * Sometimes PCS encoding errors are detected in
2143                          * TBI mode (on fiber NICs), and for some reason
2144                          * the chip will signal them as link changes.
2145                          * If we get a link change event, but the 'PCS
2146                          * encoding error' bit in the MAC status register
2147                          * is set, don't bother doing a link check.
2148                          * This avoids spurious "gigabit link up" messages
2149                          * that sometimes appear on fiber NICs during
2150                          * periods of heavy traffic. (There should be no
2151                          * effect on copper NICs.)
2152                          *
2153                          * If we do have a copper NIC (bge_tbi == 0) then
2154                          * check that the AUTOPOLL bit is set before
2155                          * processing the event as a real link change.
2156                          * Turning AUTOPOLL on and off in the MII read/write
2157                          * functions will often trigger a link status
2158                          * interrupt for no reason.
2159                          */
2160                         status = CSR_READ_4(sc, BGE_MAC_STS);
2161                         mimode = CSR_READ_4(sc, BGE_MI_MODE);
2162                         if (!(status & (BGE_MACSTAT_PORT_DECODE_ERROR |
2163                                         BGE_MACSTAT_MI_COMPLETE)) &&
2164                             (!sc->bge_tbi && (mimode & BGE_MIMODE_AUTOPOLL))) {
2165                                 sc->bge_link = 0;
2166                                 callout_stop(&sc->bge_stat_timer);
2167                                 bge_tick_serialized(sc);
2168                         }
2169                         sc->bge_link = 0;
2170                         callout_stop(&sc->bge_stat_timer);
2171                         bge_tick_serialized(sc);
2172                         /* Clear the interrupt */
2173                         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2174                             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2175                             BGE_MACSTAT_LINK_CHANGED);
2176
2177                         /* Force flush the status block cached by PCI bridge */
2178                         CSR_READ_4(sc, BGE_MBX_IRQ0_LO);
2179                 }
2180         }
2181
2182         if (ifp->if_flags & IFF_RUNNING) {
2183                 /* Check RX return ring producer/consumer */
2184                 bge_rxeof(sc);
2185
2186                 /* Check TX ring producer/consumer */
2187                 bge_txeof(sc);
2188         }
2189
2190         bge_handle_events(sc);
2191
2192         /* Re-enable interrupts. */
2193         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2194
2195         if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
2196                 (*ifp->if_start)(ifp);
2197 }
2198
2199 static void
2200 bge_tick(void *xsc)
2201 {
2202         struct bge_softc *sc = xsc;
2203         struct ifnet *ifp = &sc->arpcom.ac_if;
2204
2205         lwkt_serialize_enter(ifp->if_serializer);
2206         bge_tick_serialized(xsc);
2207         lwkt_serialize_exit(ifp->if_serializer);
2208 }
2209
2210 static void
2211 bge_tick_serialized(void *xsc)
2212 {
2213         struct bge_softc *sc = xsc;
2214         struct ifnet *ifp = &sc->arpcom.ac_if;
2215         struct mii_data *mii = NULL;
2216         struct ifmedia *ifm = NULL;
2217
2218         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
2219             sc->bge_asicrev == BGE_ASICREV_BCM5750)
2220                 bge_stats_update_regs(sc);
2221         else
2222                 bge_stats_update(sc);
2223
2224         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2225
2226         if (sc->bge_link) {
2227                 return;
2228         }
2229
2230         if (sc->bge_tbi) {
2231                 ifm = &sc->bge_ifmedia;
2232                 if (CSR_READ_4(sc, BGE_MAC_STS) &
2233                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
2234                         sc->bge_link++;
2235                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2236                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
2237                                            BGE_MACMODE_TBI_SEND_CFGS);
2238                         }
2239                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2240                         if_printf(ifp, "gigabit link up\n");
2241                         if (!ifq_is_empty(&ifp->if_snd))
2242                                 (*ifp->if_start)(ifp);
2243                 }
2244                 return;
2245         }
2246
2247         mii = device_get_softc(sc->bge_miibus);
2248         mii_tick(mii);
2249  
2250         if (!sc->bge_link) {
2251                 mii_pollstat(mii);
2252                 if (mii->mii_media_status & IFM_ACTIVE &&
2253                     IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2254                         sc->bge_link++;
2255                         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2256                             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2257                                 if_printf(ifp, "gigabit link up\n");
2258                         if (!ifq_is_empty(&ifp->if_snd))
2259                                 (*ifp->if_start)(ifp);
2260                 }
2261         }
2262 }
2263
2264 static void
2265 bge_stats_update_regs(struct bge_softc *sc)
2266 {
2267         struct ifnet *ifp = &sc->arpcom.ac_if;
2268         struct bge_mac_stats_regs stats;
2269         uint32_t *s;
2270         int i;
2271
2272         s = (uint32_t *)&stats;
2273         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2274                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
2275                 s++;
2276         }
2277
2278         ifp->if_collisions +=
2279            (stats.dot3StatsSingleCollisionFrames +
2280            stats.dot3StatsMultipleCollisionFrames +
2281            stats.dot3StatsExcessiveCollisions +
2282            stats.dot3StatsLateCollisions) -
2283            ifp->if_collisions;
2284 }
2285
2286 static void
2287 bge_stats_update(struct bge_softc *sc)
2288 {
2289         struct ifnet *ifp = &sc->arpcom.ac_if;
2290         struct bge_stats *stats;
2291
2292         stats = (struct bge_stats *)(sc->bge_vhandle +
2293             BGE_MEMWIN_START + BGE_STATS_BLOCK);
2294
2295         ifp->if_collisions +=
2296            (stats->txstats.dot3StatsSingleCollisionFrames.bge_addr_lo +
2297            stats->txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo +
2298            stats->txstats.dot3StatsExcessiveCollisions.bge_addr_lo +
2299            stats->txstats.dot3StatsLateCollisions.bge_addr_lo) -
2300            ifp->if_collisions;
2301
2302 #ifdef notdef
2303         ifp->if_collisions +=
2304            (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2305            sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2306            sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2307            sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2308            ifp->if_collisions;
2309 #endif
2310 }
2311
2312 /*
2313  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2314  * pointers to descriptors.
2315  */
2316 static int
2317 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2318 {
2319         struct bge_tx_bd *f = NULL;
2320         struct mbuf *m;
2321         uint32_t frag, cur, cnt = 0;
2322         uint16_t csum_flags = 0;
2323         struct ifvlan *ifv = NULL;
2324
2325         if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2326             m_head->m_pkthdr.rcvif != NULL &&
2327             m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2328                 ifv = m_head->m_pkthdr.rcvif->if_softc;
2329
2330         m = m_head;
2331         cur = frag = *txidx;
2332
2333         if (m_head->m_pkthdr.csum_flags) {
2334                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2335                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2336                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2337                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2338                 if (m_head->m_flags & M_LASTFRAG)
2339                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2340                 else if (m_head->m_flags & M_FRAG)
2341                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2342         }
2343         /*
2344          * Start packing the mbufs in this chain into
2345          * the fragment pointers. Stop when we run out
2346          * of fragments or hit the end of the mbuf chain.
2347          */
2348         for (m = m_head; m != NULL; m = m->m_next) {
2349                 if (m->m_len != 0) {
2350                         f = &sc->bge_rdata->bge_tx_ring[frag];
2351                         if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2352                                 break;
2353                         BGE_HOSTADDR(f->bge_addr,
2354                             vtophys(mtod(m, vm_offset_t)));
2355                         f->bge_len = m->m_len;
2356                         f->bge_flags = csum_flags;
2357                         if (ifv != NULL) {
2358                                 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2359                                 f->bge_vlan_tag = ifv->ifv_tag;
2360                         } else {
2361                                 f->bge_vlan_tag = 0;
2362                         }
2363                         /*
2364                          * Sanity check: avoid coming within 16 descriptors
2365                          * of the end of the ring.
2366                          */
2367                         if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2368                                 return(ENOBUFS);
2369                         cur = frag;
2370                         BGE_INC(frag, BGE_TX_RING_CNT);
2371                         cnt++;
2372                 }
2373         }
2374
2375         if (m != NULL)
2376                 return(ENOBUFS);
2377
2378         if (frag == sc->bge_tx_saved_considx)
2379                 return(ENOBUFS);
2380
2381         sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2382         sc->bge_cdata.bge_tx_chain[cur] = m_head;
2383         sc->bge_txcnt += cnt;
2384
2385         *txidx = frag;
2386
2387         return(0);
2388 }
2389
2390 /*
2391  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2392  * to the mbuf data regions directly in the transmit descriptors.
2393  */
2394 static void
2395 bge_start(struct ifnet *ifp)
2396 {
2397         struct bge_softc *sc;
2398         struct mbuf *m_head = NULL;
2399         uint32_t prodidx = 0;
2400         int need_trans;
2401
2402         sc = ifp->if_softc;
2403
2404         if (!sc->bge_link)
2405                 return;
2406
2407         prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2408
2409         need_trans = 0;
2410         while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2411                 m_head = ifq_poll(&ifp->if_snd);
2412                 if (m_head == NULL)
2413                         break;
2414
2415                 /*
2416                  * XXX
2417                  * safety overkill.  If this is a fragmented packet chain
2418                  * with delayed TCP/UDP checksums, then only encapsulate
2419                  * it if we have enough descriptors to handle the entire
2420                  * chain at once.
2421                  * (paranoia -- may not actually be needed)
2422                  */
2423                 if (m_head->m_flags & M_FIRSTFRAG &&
2424                     m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2425                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2426                             m_head->m_pkthdr.csum_data + 16) {
2427                                 ifp->if_flags |= IFF_OACTIVE;
2428                                 break;
2429                         }
2430                 }
2431
2432                 /*
2433                  * Pack the data into the transmit ring. If we
2434                  * don't have room, set the OACTIVE flag and wait
2435                  * for the NIC to drain the ring.
2436                  */
2437                 if (bge_encap(sc, m_head, &prodidx)) {
2438                         ifp->if_flags |= IFF_OACTIVE;
2439                         break;
2440                 }
2441                 ifq_dequeue(&ifp->if_snd, m_head);
2442                 need_trans = 1;
2443
2444                 BPF_MTAP(ifp, m_head);
2445         }
2446
2447         if (!need_trans)
2448                 return;
2449
2450         /* Transmit */
2451         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2452         /* 5700 b2 errata */
2453         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2454                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2455
2456         /*
2457          * Set a timeout in case the chip goes out to lunch.
2458          */
2459         ifp->if_timer = 5;
2460 }
2461
2462 static void
2463 bge_init(void *xsc)
2464 {
2465         struct bge_softc *sc = xsc;
2466         struct ifnet *ifp = &sc->arpcom.ac_if;
2467         uint16_t *m;
2468
2469         if (ifp->if_flags & IFF_RUNNING) {
2470                 return;
2471         }
2472
2473         /* Cancel pending I/O and flush buffers. */
2474         bge_stop(sc);
2475         bge_reset(sc);
2476         bge_chipinit(sc);
2477
2478         /*
2479          * Init the various state machines, ring
2480          * control blocks and firmware.
2481          */
2482         if (bge_blockinit(sc)) {
2483                 if_printf(ifp, "initialization failure\n");
2484                 return;
2485         }
2486
2487         /* Specify MTU. */
2488         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2489             ETHER_HDR_LEN + ETHER_CRC_LEN);
2490
2491         /* Load our MAC address. */
2492         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2493         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2494         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2495
2496         /* Enable or disable promiscuous mode as needed. */
2497         if (ifp->if_flags & IFF_PROMISC) {
2498                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2499         } else {
2500                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2501         }
2502
2503         /* Program multicast filter. */
2504         bge_setmulti(sc);
2505
2506         /* Init RX ring. */
2507         bge_init_rx_ring_std(sc);
2508
2509         /*
2510          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2511          * memory to insure that the chip has in fact read the first
2512          * entry of the ring.
2513          */
2514         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2515                 uint32_t                v, i;
2516                 for (i = 0; i < 10; i++) {
2517                         DELAY(20);
2518                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2519                         if (v == (MCLBYTES - ETHER_ALIGN))
2520                                 break;
2521                 }
2522                 if (i == 10)
2523                         if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
2524         }
2525
2526         /* Init jumbo RX ring. */
2527         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2528                 bge_init_rx_ring_jumbo(sc);
2529
2530         /* Init our RX return ring index */
2531         sc->bge_rx_saved_considx = 0;
2532
2533         /* Init TX ring. */
2534         bge_init_tx_ring(sc);
2535
2536         /* Turn on transmitter */
2537         BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2538
2539         /* Turn on receiver */
2540         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2541
2542         /* Tell firmware we're alive. */
2543         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2544
2545         /* Enable host interrupts. */
2546         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2547         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2548         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2549
2550         bge_ifmedia_upd(ifp);
2551
2552         ifp->if_flags |= IFF_RUNNING;
2553         ifp->if_flags &= ~IFF_OACTIVE;
2554
2555         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2556 }
2557
2558 /*
2559  * Set media options.
2560  */
2561 static int
2562 bge_ifmedia_upd(struct ifnet *ifp)
2563 {
2564         struct bge_softc *sc = ifp->if_softc;
2565         struct ifmedia *ifm = &sc->bge_ifmedia;
2566         struct mii_data *mii;
2567
2568         /* If this is a 1000baseX NIC, enable the TBI port. */
2569         if (sc->bge_tbi) {
2570                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2571                         return(EINVAL);
2572                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2573                 case IFM_AUTO:
2574                         /*
2575                          * The BCM5704 ASIC appears to have a special
2576                          * mechanism for programming the autoneg
2577                          * advertisement registers in TBI mode.
2578                          */
2579                         if (!bge_fake_autoneg &&
2580                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2581                                 uint32_t sgdig;
2582
2583                                 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
2584                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
2585                                 sgdig |= BGE_SGDIGCFG_AUTO |
2586                                          BGE_SGDIGCFG_PAUSE_CAP |
2587                                          BGE_SGDIGCFG_ASYM_PAUSE;
2588                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
2589                                             sgdig | BGE_SGDIGCFG_SEND);
2590                                 DELAY(5);
2591                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
2592                         }
2593                         break;
2594                 case IFM_1000_SX:
2595                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2596                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
2597                                     BGE_MACMODE_HALF_DUPLEX);
2598                         } else {
2599                                 BGE_SETBIT(sc, BGE_MAC_MODE,
2600                                     BGE_MACMODE_HALF_DUPLEX);
2601                         }
2602                         break;
2603                 default:
2604                         return(EINVAL);
2605                 }
2606                 return(0);
2607         }
2608
2609         mii = device_get_softc(sc->bge_miibus);
2610         sc->bge_link = 0;
2611         if (mii->mii_instance) {
2612                 struct mii_softc *miisc;
2613                 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2614                     miisc = LIST_NEXT(miisc, mii_list))
2615                         mii_phy_reset(miisc);
2616         }
2617         mii_mediachg(mii);
2618
2619         return(0);
2620 }
2621
2622 /*
2623  * Report current media status.
2624  */
2625 static void
2626 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2627 {
2628         struct bge_softc *sc = ifp->if_softc;
2629         struct mii_data *mii;
2630
2631         if (sc->bge_tbi) {
2632                 ifmr->ifm_status = IFM_AVALID;
2633                 ifmr->ifm_active = IFM_ETHER;
2634                 if (CSR_READ_4(sc, BGE_MAC_STS) &
2635                     BGE_MACSTAT_TBI_PCS_SYNCHED)
2636                         ifmr->ifm_status |= IFM_ACTIVE;
2637                 ifmr->ifm_active |= IFM_1000_SX;
2638                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2639                         ifmr->ifm_active |= IFM_HDX;    
2640                 else
2641                         ifmr->ifm_active |= IFM_FDX;
2642                 return;
2643         }
2644
2645         mii = device_get_softc(sc->bge_miibus);
2646         mii_pollstat(mii);
2647         ifmr->ifm_active = mii->mii_media_active;
2648         ifmr->ifm_status = mii->mii_media_status;
2649 }
2650
2651 static int
2652 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2653 {
2654         struct bge_softc *sc = ifp->if_softc;
2655         struct ifreq *ifr = (struct ifreq *) data;
2656         int mask, error = 0;
2657         struct mii_data *mii;
2658
2659         switch(command) {
2660         case SIOCSIFMTU:
2661                 /* Disallow jumbo frames on 5705/5750. */
2662                 if (((sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
2663                       sc->bge_asicrev == BGE_ASICREV_BCM5750) &&
2664                      ifr->ifr_mtu > ETHERMTU) || ifr->ifr_mtu > BGE_JUMBO_MTU)
2665                         error = EINVAL;
2666                 else {
2667                         ifp->if_mtu = ifr->ifr_mtu;
2668                         ifp->if_flags &= ~IFF_RUNNING;
2669                         bge_init(sc);
2670                 }
2671                 break;
2672         case SIOCSIFFLAGS:
2673                 if (ifp->if_flags & IFF_UP) {
2674                         /*
2675                          * If only the state of the PROMISC flag changed,
2676                          * then just use the 'set promisc mode' command
2677                          * instead of reinitializing the entire NIC. Doing
2678                          * a full re-init means reloading the firmware and
2679                          * waiting for it to start up, which may take a
2680                          * second or two.
2681                          */
2682                         if (ifp->if_flags & IFF_RUNNING &&
2683                             ifp->if_flags & IFF_PROMISC &&
2684                             !(sc->bge_if_flags & IFF_PROMISC)) {
2685                                 BGE_SETBIT(sc, BGE_RX_MODE,
2686                                     BGE_RXMODE_RX_PROMISC);
2687                         } else if (ifp->if_flags & IFF_RUNNING &&
2688                             !(ifp->if_flags & IFF_PROMISC) &&
2689                             sc->bge_if_flags & IFF_PROMISC) {
2690                                 BGE_CLRBIT(sc, BGE_RX_MODE,
2691                                     BGE_RXMODE_RX_PROMISC);
2692                         } else
2693                                 bge_init(sc);
2694                 } else {
2695                         if (ifp->if_flags & IFF_RUNNING) {
2696                                 bge_stop(sc);
2697                         }
2698                 }
2699                 sc->bge_if_flags = ifp->if_flags;
2700                 error = 0;
2701                 break;
2702         case SIOCADDMULTI:
2703         case SIOCDELMULTI:
2704                 if (ifp->if_flags & IFF_RUNNING) {
2705                         bge_setmulti(sc);
2706                         error = 0;
2707                 }
2708                 break;
2709         case SIOCSIFMEDIA:
2710         case SIOCGIFMEDIA:
2711                 if (sc->bge_tbi) {
2712                         error = ifmedia_ioctl(ifp, ifr,
2713                             &sc->bge_ifmedia, command);
2714                 } else {
2715                         mii = device_get_softc(sc->bge_miibus);
2716                         error = ifmedia_ioctl(ifp, ifr,
2717                             &mii->mii_media, command);
2718                 }
2719                 break;
2720         case SIOCSIFCAP:
2721                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2722                 if (mask & IFCAP_HWCSUM) {
2723                         if (IFCAP_HWCSUM & ifp->if_capenable)
2724                                 ifp->if_capenable &= ~IFCAP_HWCSUM;
2725                         else
2726                                 ifp->if_capenable |= IFCAP_HWCSUM;
2727                 }
2728                 error = 0;
2729                 break;
2730         default:
2731                 error = ether_ioctl(ifp, command, data);
2732                 break;
2733         }
2734         return(error);
2735 }
2736
2737 static void
2738 bge_watchdog(struct ifnet *ifp)
2739 {
2740         struct bge_softc *sc = ifp->if_softc;
2741
2742         if_printf(ifp, "watchdog timeout -- resetting\n");
2743
2744         ifp->if_flags &= ~IFF_RUNNING;
2745         bge_init(sc);
2746
2747         ifp->if_oerrors++;
2748
2749         if (!ifq_is_empty(&ifp->if_snd))
2750                 ifp->if_start(ifp);
2751 }
2752
2753 /*
2754  * Stop the adapter and free any mbufs allocated to the
2755  * RX and TX lists.
2756  */
2757 static void
2758 bge_stop(struct bge_softc *sc)
2759 {
2760         struct ifnet *ifp = &sc->arpcom.ac_if;
2761         struct ifmedia_entry *ifm;
2762         struct mii_data *mii = NULL;
2763         int mtmp, itmp;
2764
2765         if (!sc->bge_tbi)
2766                 mii = device_get_softc(sc->bge_miibus);
2767
2768         callout_stop(&sc->bge_stat_timer);
2769
2770         /*
2771          * Disable all of the receiver blocks
2772          */
2773         BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2774         BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2775         BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2776         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2777             sc->bge_asicrev != BGE_ASICREV_BCM5750)
2778                 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2779         BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2780         BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2781         BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2782
2783         /*
2784          * Disable all of the transmit blocks
2785          */
2786         BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2787         BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2788         BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2789         BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2790         BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2791         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2792             sc->bge_asicrev != BGE_ASICREV_BCM5750)
2793                 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2794         BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2795
2796         /*
2797          * Shut down all of the memory managers and related
2798          * state machines.
2799          */
2800         BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2801         BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2802         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2803             sc->bge_asicrev != BGE_ASICREV_BCM5750)
2804                 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2805         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2806         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2807         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2808             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
2809                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2810                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2811         }
2812
2813         /* Disable host interrupts. */
2814         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2815         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2816
2817         /*
2818          * Tell firmware we're shutting down.
2819          */
2820         BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2821
2822         /* Free the RX lists. */
2823         bge_free_rx_ring_std(sc);
2824
2825         /* Free jumbo RX list. */
2826         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2827             sc->bge_asicrev != BGE_ASICREV_BCM5750)
2828                 bge_free_rx_ring_jumbo(sc);
2829
2830         /* Free TX buffers. */
2831         bge_free_tx_ring(sc);
2832
2833         /*
2834          * Isolate/power down the PHY, but leave the media selection
2835          * unchanged so that things will be put back to normal when
2836          * we bring the interface back up.
2837          */
2838         if (!sc->bge_tbi) {
2839                 itmp = ifp->if_flags;
2840                 ifp->if_flags |= IFF_UP;
2841                 ifm = mii->mii_media.ifm_cur;
2842                 mtmp = ifm->ifm_media;
2843                 ifm->ifm_media = IFM_ETHER|IFM_NONE;
2844                 mii_mediachg(mii);
2845                 ifm->ifm_media = mtmp;
2846                 ifp->if_flags = itmp;
2847         }
2848
2849         sc->bge_link = 0;
2850
2851         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2852
2853         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2854 }
2855
2856 /*
2857  * Stop all chip I/O so that the kernel's probe routines don't
2858  * get confused by errant DMAs when rebooting.
2859  */
2860 static void
2861 bge_shutdown(device_t dev)
2862 {
2863         struct bge_softc *sc = device_get_softc(dev);
2864
2865         bge_stop(sc); 
2866         bge_reset(sc);
2867 }