PIPE - Fix bugs in pipe_shutdown(), and multiple readers.
[dragonfly.git] / sys / kern / sys_pipe.c
1 /*
2  * Copyright (c) 1996 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. Modifications may be freely made to this file if the above conditions
17  *    are met.
18  *
19  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.60.2.13 2002/08/05 15:05:15 des Exp $
20  * $DragonFly: src/sys/kern/sys_pipe.c,v 1.50 2008/09/09 04:06:13 dillon Exp $
21  */
22
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/proc.h>
33 #include <sys/fcntl.h>
34 #include <sys/file.h>
35 #include <sys/filedesc.h>
36 #include <sys/filio.h>
37 #include <sys/ttycom.h>
38 #include <sys/stat.h>
39 #include <sys/poll.h>
40 #include <sys/select.h>
41 #include <sys/signalvar.h>
42 #include <sys/sysproto.h>
43 #include <sys/pipe.h>
44 #include <sys/vnode.h>
45 #include <sys/uio.h>
46 #include <sys/event.h>
47 #include <sys/globaldata.h>
48 #include <sys/module.h>
49 #include <sys/malloc.h>
50 #include <sys/sysctl.h>
51 #include <sys/socket.h>
52
53 #include <vm/vm.h>
54 #include <vm/vm_param.h>
55 #include <sys/lock.h>
56 #include <vm/vm_object.h>
57 #include <vm/vm_kern.h>
58 #include <vm/vm_extern.h>
59 #include <vm/pmap.h>
60 #include <vm/vm_map.h>
61 #include <vm/vm_page.h>
62 #include <vm/vm_zone.h>
63
64 #include <sys/file2.h>
65
66 #include <machine/cpufunc.h>
67
68 /*
69  * interfaces to the outside world
70  */
71 static int pipe_read (struct file *fp, struct uio *uio, 
72                 struct ucred *cred, int flags);
73 static int pipe_write (struct file *fp, struct uio *uio, 
74                 struct ucred *cred, int flags);
75 static int pipe_close (struct file *fp);
76 static int pipe_shutdown (struct file *fp, int how);
77 static int pipe_poll (struct file *fp, int events, struct ucred *cred);
78 static int pipe_kqfilter (struct file *fp, struct knote *kn);
79 static int pipe_stat (struct file *fp, struct stat *sb, struct ucred *cred);
80 static int pipe_ioctl (struct file *fp, u_long cmd, caddr_t data, struct ucred *cred);
81
82 static struct fileops pipeops = {
83         .fo_read = pipe_read, 
84         .fo_write = pipe_write,
85         .fo_ioctl = pipe_ioctl,
86         .fo_poll = pipe_poll,
87         .fo_kqfilter = pipe_kqfilter,
88         .fo_stat = pipe_stat,
89         .fo_close = pipe_close,
90         .fo_shutdown = pipe_shutdown
91 };
92
93 static void     filt_pipedetach(struct knote *kn);
94 static int      filt_piperead(struct knote *kn, long hint);
95 static int      filt_pipewrite(struct knote *kn, long hint);
96
97 static struct filterops pipe_rfiltops =
98         { 1, NULL, filt_pipedetach, filt_piperead };
99 static struct filterops pipe_wfiltops =
100         { 1, NULL, filt_pipedetach, filt_pipewrite };
101
102 MALLOC_DEFINE(M_PIPE, "pipe", "pipe structures");
103
104 /*
105  * Default pipe buffer size(s), this can be kind-of large now because pipe
106  * space is pageable.  The pipe code will try to maintain locality of
107  * reference for performance reasons, so small amounts of outstanding I/O
108  * will not wipe the cache.
109  */
110 #define MINPIPESIZE (PIPE_SIZE/3)
111 #define MAXPIPESIZE (2*PIPE_SIZE/3)
112
113 /*
114  * Limit the number of "big" pipes
115  */
116 #define LIMITBIGPIPES   64
117 #define PIPEQ_MAX_CACHE 16      /* per-cpu pipe structure cache */
118
119 static int pipe_maxbig = LIMITBIGPIPES;
120 static int pipe_maxcache = PIPEQ_MAX_CACHE;
121 static int pipe_bigcount;
122 static int pipe_nbig;
123 static int pipe_bcache_alloc;
124 static int pipe_bkmem_alloc;
125 static int pipe_rblocked_count;
126 static int pipe_wblocked_count;
127
128 SYSCTL_NODE(_kern, OID_AUTO, pipe, CTLFLAG_RW, 0, "Pipe operation");
129 SYSCTL_INT(_kern_pipe, OID_AUTO, nbig,
130         CTLFLAG_RD, &pipe_nbig, 0, "numer of big pipes allocated");
131 SYSCTL_INT(_kern_pipe, OID_AUTO, bigcount,
132         CTLFLAG_RW, &pipe_bigcount, 0, "number of times pipe expanded");
133 SYSCTL_INT(_kern_pipe, OID_AUTO, rblocked,
134         CTLFLAG_RW, &pipe_rblocked_count, 0, "number of times pipe expanded");
135 SYSCTL_INT(_kern_pipe, OID_AUTO, wblocked,
136         CTLFLAG_RW, &pipe_wblocked_count, 0, "number of times pipe expanded");
137 SYSCTL_INT(_kern_pipe, OID_AUTO, maxcache,
138         CTLFLAG_RW, &pipe_maxcache, 0, "max pipes cached per-cpu");
139 SYSCTL_INT(_kern_pipe, OID_AUTO, maxbig,
140         CTLFLAG_RW, &pipe_maxbig, 0, "max number of big pipes");
141 #ifdef SMP
142 static int pipe_delay = 5000;   /* 5uS default */
143 SYSCTL_INT(_kern_pipe, OID_AUTO, delay,
144         CTLFLAG_RW, &pipe_delay, 0, "SMP delay optimization in ns");
145 static int pipe_mpsafe = 1;
146 SYSCTL_INT(_kern_pipe, OID_AUTO, mpsafe,
147         CTLFLAG_RW, &pipe_mpsafe, 0, "");
148 #endif
149 #if !defined(NO_PIPE_SYSCTL_STATS)
150 SYSCTL_INT(_kern_pipe, OID_AUTO, bcache_alloc,
151         CTLFLAG_RW, &pipe_bcache_alloc, 0, "pipe buffer from pcpu cache");
152 SYSCTL_INT(_kern_pipe, OID_AUTO, bkmem_alloc,
153         CTLFLAG_RW, &pipe_bkmem_alloc, 0, "pipe buffer from kmem");
154 #endif
155
156 static void pipeclose (struct pipe *cpipe);
157 static void pipe_free_kmem (struct pipe *cpipe);
158 static int pipe_create (struct pipe **cpipep);
159 static __inline void pipeselwakeup (struct pipe *cpipe);
160 static int pipespace (struct pipe *cpipe, int size);
161
162 static __inline void
163 pipeselwakeup(struct pipe *cpipe)
164 {
165         if (cpipe->pipe_state & PIPE_SEL) {
166                 get_mplock();
167                 cpipe->pipe_state &= ~PIPE_SEL;
168                 selwakeup(&cpipe->pipe_sel);
169                 rel_mplock();
170         }
171         if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) {
172                 get_mplock();
173                 pgsigio(cpipe->pipe_sigio, SIGIO, 0);
174                 rel_mplock();
175         }
176         if (SLIST_FIRST(&cpipe->pipe_sel.si_note)) {
177                 get_mplock();
178                 KNOTE(&cpipe->pipe_sel.si_note, 0);
179                 rel_mplock();
180         }
181 }
182
183 /*
184  * These routines are called before and after a UIO.  The UIO
185  * may block, causing our held tokens to be lost temporarily.
186  *
187  * We use these routines to serialize reads against other reads
188  * and writes against other writes.
189  *
190  * The read token is held on entry so *ipp does not race.
191  */
192 static __inline int
193 pipe_start_uio(struct pipe *cpipe, int *ipp)
194 {
195         int error;
196
197         while (*ipp) {
198                 *ipp = -1;
199                 error = tsleep(ipp, PCATCH, "pipexx", 0);
200                 if (error)
201                         return (error);
202         }
203         *ipp = 1;
204         return (0);
205 }
206
207 static __inline void
208 pipe_end_uio(struct pipe *cpipe, int *ipp)
209 {
210         if (*ipp < 0) {
211                 *ipp = 0;
212                 wakeup(ipp);
213         } else {
214                 KKASSERT(*ipp > 0);
215                 *ipp = 0;
216         }
217 }
218
219 static __inline void
220 pipe_get_mplock(int *save)
221 {
222 #ifdef SMP
223         if (pipe_mpsafe == 0) {
224                 get_mplock();
225                 *save = 1;
226         } else
227 #endif
228         {
229                 *save = 0;
230         }
231 }
232
233 static __inline void
234 pipe_rel_mplock(int *save)
235 {
236 #ifdef SMP
237         if (*save)
238                 rel_mplock();
239 #endif
240 }
241
242
243 /*
244  * The pipe system call for the DTYPE_PIPE type of pipes
245  *
246  * pipe_ARgs(int dummy)
247  */
248
249 /* ARGSUSED */
250 int
251 sys_pipe(struct pipe_args *uap)
252 {
253         struct thread *td = curthread;
254         struct proc *p = td->td_proc;
255         struct file *rf, *wf;
256         struct pipe *rpipe, *wpipe;
257         int fd1, fd2, error;
258
259         KKASSERT(p);
260
261         rpipe = wpipe = NULL;
262         if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
263                 pipeclose(rpipe); 
264                 pipeclose(wpipe); 
265                 return (ENFILE);
266         }
267         
268         error = falloc(p, &rf, &fd1);
269         if (error) {
270                 pipeclose(rpipe);
271                 pipeclose(wpipe);
272                 return (error);
273         }
274         uap->sysmsg_fds[0] = fd1;
275
276         /*
277          * Warning: once we've gotten past allocation of the fd for the
278          * read-side, we can only drop the read side via fdrop() in order
279          * to avoid races against processes which manage to dup() the read
280          * side while we are blocked trying to allocate the write side.
281          */
282         rf->f_type = DTYPE_PIPE;
283         rf->f_flag = FREAD | FWRITE;
284         rf->f_ops = &pipeops;
285         rf->f_data = rpipe;
286         error = falloc(p, &wf, &fd2);
287         if (error) {
288                 fsetfd(p, NULL, fd1);
289                 fdrop(rf);
290                 /* rpipe has been closed by fdrop(). */
291                 pipeclose(wpipe);
292                 return (error);
293         }
294         wf->f_type = DTYPE_PIPE;
295         wf->f_flag = FREAD | FWRITE;
296         wf->f_ops = &pipeops;
297         wf->f_data = wpipe;
298         uap->sysmsg_fds[1] = fd2;
299
300         rpipe->pipe_slock = kmalloc(sizeof(struct lock),
301                                     M_PIPE, M_WAITOK|M_ZERO);
302         wpipe->pipe_slock = rpipe->pipe_slock;
303         rpipe->pipe_peer = wpipe;
304         wpipe->pipe_peer = rpipe;
305         lockinit(rpipe->pipe_slock, "pipecl", 0, 0);
306
307         /*
308          * Once activated the peer relationship remains valid until
309          * both sides are closed.
310          */
311         fsetfd(p, rf, fd1);
312         fsetfd(p, wf, fd2);
313         fdrop(rf);
314         fdrop(wf);
315
316         return (0);
317 }
318
319 /*
320  * Allocate kva for pipe circular buffer, the space is pageable
321  * This routine will 'realloc' the size of a pipe safely, if it fails
322  * it will retain the old buffer.
323  * If it fails it will return ENOMEM.
324  */
325 static int
326 pipespace(struct pipe *cpipe, int size)
327 {
328         struct vm_object *object;
329         caddr_t buffer;
330         int npages, error;
331
332         npages = round_page(size) / PAGE_SIZE;
333         object = cpipe->pipe_buffer.object;
334
335         /*
336          * [re]create the object if necessary and reserve space for it
337          * in the kernel_map.  The object and memory are pageable.  On
338          * success, free the old resources before assigning the new
339          * ones.
340          */
341         if (object == NULL || object->size != npages) {
342                 get_mplock();
343                 object = vm_object_allocate(OBJT_DEFAULT, npages);
344                 buffer = (caddr_t)vm_map_min(&kernel_map);
345
346                 error = vm_map_find(&kernel_map, object, 0,
347                                     (vm_offset_t *)&buffer, size,
348                                     1,
349                                     VM_MAPTYPE_NORMAL,
350                                     VM_PROT_ALL, VM_PROT_ALL,
351                                     0);
352
353                 if (error != KERN_SUCCESS) {
354                         vm_object_deallocate(object);
355                         rel_mplock();
356                         return (ENOMEM);
357                 }
358                 pipe_free_kmem(cpipe);
359                 rel_mplock();
360                 cpipe->pipe_buffer.object = object;
361                 cpipe->pipe_buffer.buffer = buffer;
362                 cpipe->pipe_buffer.size = size;
363                 ++pipe_bkmem_alloc;
364         } else {
365                 ++pipe_bcache_alloc;
366         }
367         cpipe->pipe_buffer.rindex = 0;
368         cpipe->pipe_buffer.windex = 0;
369         return (0);
370 }
371
372 /*
373  * Initialize and allocate VM and memory for pipe, pulling the pipe from
374  * our per-cpu cache if possible.  For now make sure it is sized for the
375  * smaller PIPE_SIZE default.
376  */
377 static int
378 pipe_create(struct pipe **cpipep)
379 {
380         globaldata_t gd = mycpu;
381         struct pipe *cpipe;
382         int error;
383
384         if ((cpipe = gd->gd_pipeq) != NULL) {
385                 gd->gd_pipeq = cpipe->pipe_peer;
386                 --gd->gd_pipeqcount;
387                 cpipe->pipe_peer = NULL;
388                 cpipe->pipe_wantwcnt = 0;
389         } else {
390                 cpipe = kmalloc(sizeof(struct pipe), M_PIPE, M_WAITOK|M_ZERO);
391         }
392         *cpipep = cpipe;
393         if ((error = pipespace(cpipe, PIPE_SIZE)) != 0)
394                 return (error);
395         vfs_timestamp(&cpipe->pipe_ctime);
396         cpipe->pipe_atime = cpipe->pipe_ctime;
397         cpipe->pipe_mtime = cpipe->pipe_ctime;
398         lwkt_token_init(&cpipe->pipe_rlock);
399         lwkt_token_init(&cpipe->pipe_wlock);
400         return (0);
401 }
402
403 /*
404  * MPALMOSTSAFE (acquires mplock)
405  */
406 static int
407 pipe_read(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
408 {
409         struct pipe *rpipe;
410         int error;
411         int orig_resid;
412         int nread = 0;
413         int nbio;
414         u_int size;     /* total bytes available */
415         u_int nsize;    /* total bytes to read */
416         u_int rindex;   /* contiguous bytes available */
417         int notify_writer;
418         lwkt_tokref rlock;
419         lwkt_tokref wlock;
420         int mpsave;
421
422         /*
423          * Degenerate case
424          */
425         orig_resid = uio->uio_resid;
426         if (orig_resid == 0)
427                 return(0);
428
429         /*
430          * Setup locks, calculate nbio
431          */
432         pipe_get_mplock(&mpsave);
433         rpipe = (struct pipe *)fp->f_data;
434         lwkt_gettoken(&rlock, &rpipe->pipe_rlock);
435
436         if (fflags & O_FBLOCKING)
437                 nbio = 0;
438         else if (fflags & O_FNONBLOCKING)
439                 nbio = 1;
440         else if (fp->f_flag & O_NONBLOCK)
441                 nbio = 1;
442         else
443                 nbio = 0;
444
445         /*
446          * Reads are serialized.  Note howeverthat pipe_buffer.buffer and
447          * pipe_buffer.size can change out from under us when the number
448          * of bytes in the buffer are zero due to the write-side doing a
449          * pipespace().
450          */
451         error = pipe_start_uio(rpipe, &rpipe->pipe_rip);
452         if (error) {
453                 pipe_rel_mplock(&mpsave);
454                 lwkt_reltoken(&rlock);
455                 return (error);
456         }
457         notify_writer = 0;
458         while (uio->uio_resid) {
459                 size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
460                 cpu_lfence();
461                 if (size) {
462                         rindex = rpipe->pipe_buffer.rindex &
463                                  (rpipe->pipe_buffer.size - 1);
464                         nsize = size;
465                         if (nsize > rpipe->pipe_buffer.size - rindex)
466                                 nsize = rpipe->pipe_buffer.size - rindex;
467                         if (nsize > (u_int)uio->uio_resid)
468                                 nsize = (u_int)uio->uio_resid;
469
470                         error = uiomove(&rpipe->pipe_buffer.buffer[rindex],
471                                         nsize, uio);
472                         if (error)
473                                 break;
474                         cpu_mfence();
475                         rpipe->pipe_buffer.rindex += nsize;
476                         nread += nsize;
477
478                         /*
479                          * If the FIFO is still over half full just continue
480                          * and do not try to notify the writer yet.
481                          */
482                         if (size - nsize >= (rpipe->pipe_buffer.size >> 1)) {
483                                 notify_writer = 0;
484                                 continue;
485                         }
486
487                         /*
488                          * When the FIFO is less then half full notify any
489                          * waiting writer.  WANTW can be checked while
490                          * holding just the rlock.
491                          */
492                         notify_writer = 1;
493                         if ((rpipe->pipe_state & PIPE_WANTW) == 0)
494                                 continue;
495                 }
496
497                 /*
498                  * If the "write-side" was blocked we wake it up.  This code
499                  * is reached either when the buffer is completely emptied
500                  * or if it becomes more then half-empty.
501                  *
502                  * Pipe_state can only be modified if both the rlock and
503                  * wlock are held.
504                  */
505                 if (rpipe->pipe_state & PIPE_WANTW) {
506                         lwkt_gettoken(&wlock, &rpipe->pipe_wlock);
507                         if (rpipe->pipe_state & PIPE_WANTW) {
508                                 notify_writer = 0;
509                                 rpipe->pipe_state &= ~PIPE_WANTW;
510                                 lwkt_reltoken(&wlock);
511                                 wakeup(rpipe);
512                         } else {
513                                 lwkt_reltoken(&wlock);
514                         }
515                 }
516
517                 /*
518                  * Pick up our copy loop again if the writer sent data to
519                  * us while we were messing around.
520                  *
521                  * On a SMP box poll up to pipe_delay nanoseconds for new
522                  * data.  Typically a value of 2000 to 4000 is sufficient
523                  * to eradicate most IPIs/tsleeps/wakeups when a pipe
524                  * is used for synchronous communications with small packets,
525                  * and 8000 or so (8uS) will pipeline large buffer xfers
526                  * between cpus over a pipe.
527                  *
528                  * For synchronous communications a hit means doing a
529                  * full Awrite-Bread-Bwrite-Aread cycle in less then 2uS,
530                  * where as miss requiring a tsleep/wakeup sequence
531                  * will take 7uS or more.
532                  */
533                 if (rpipe->pipe_buffer.windex != rpipe->pipe_buffer.rindex)
534                         continue;
535
536 #if defined(SMP) && defined(_RDTSC_SUPPORTED_)
537                 if (pipe_delay) {
538                         int64_t tsc_target;
539                         int good = 0;
540
541                         tsc_target = tsc_get_target(pipe_delay);
542                         while (tsc_test_target(tsc_target) == 0) {
543                                 if (rpipe->pipe_buffer.windex !=
544                                     rpipe->pipe_buffer.rindex) {
545                                         good = 1;
546                                         break;
547                                 }
548                         }
549                         if (good)
550                                 continue;
551                 }
552 #endif
553
554                 /*
555                  * Detect EOF condition, do not set error.
556                  */
557                 if (rpipe->pipe_state & PIPE_REOF)
558                         break;
559
560                 /*
561                  * Break if some data was read, or if this was a non-blocking
562                  * read.
563                  */
564                 if (nread > 0)
565                         break;
566
567                 if (nbio) {
568                         error = EAGAIN;
569                         break;
570                 }
571
572                 /*
573                  * Last chance, interlock with WANTR.
574                  */
575                 lwkt_gettoken(&wlock, &rpipe->pipe_wlock);
576                 size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
577                 if (size) {
578                         lwkt_reltoken(&wlock);
579                         continue;
580                 }
581
582                 /*
583                  * If there is no more to read in the pipe, reset its
584                  * pointers to the beginning.  This improves cache hit
585                  * stats.
586                  *
587                  * We need both locks to modify both pointers, and there
588                  * must also not be a write in progress or the uiomove()
589                  * in the write might block and temporarily release
590                  * its wlock, then reacquire and update windex.  We are
591                  * only serialized against reads, not writes.
592                  *
593                  * XXX should we even bother resetting the indices?  It
594                  *     might actually be more cache efficient not to.
595                  */
596                 if (rpipe->pipe_buffer.rindex == rpipe->pipe_buffer.windex &&
597                     rpipe->pipe_wip == 0) {
598                         rpipe->pipe_buffer.rindex = 0;
599                         rpipe->pipe_buffer.windex = 0;
600                 }
601
602                 /*
603                  * Wait for more data.
604                  *
605                  * Pipe_state can only be set if both the rlock and wlock
606                  * are held.
607                  */
608                 rpipe->pipe_state |= PIPE_WANTR;
609                 tsleep_interlock(rpipe, PCATCH);
610                 lwkt_reltoken(&wlock);
611                 error = tsleep(rpipe, PCATCH | PINTERLOCKED, "piperd", 0);
612                 ++pipe_rblocked_count;
613                 if (error)
614                         break;
615         }
616         pipe_end_uio(rpipe, &rpipe->pipe_rip);
617
618         /*
619          * Uptime last access time
620          */
621         if (error == 0 && nread)
622                 vfs_timestamp(&rpipe->pipe_atime);
623
624         /*
625          * If we drained the FIFO more then half way then handle
626          * write blocking hysteresis.
627          *
628          * Note that PIPE_WANTW cannot be set by the writer without
629          * it holding both rlock and wlock, so we can test it
630          * while holding just rlock.
631          */
632         if (notify_writer) {
633                 if (rpipe->pipe_state & PIPE_WANTW) {
634                         lwkt_gettoken(&wlock, &rpipe->pipe_wlock);
635                         if (rpipe->pipe_state & PIPE_WANTW) {
636                                 rpipe->pipe_state &= ~PIPE_WANTW;
637                                 lwkt_reltoken(&wlock);
638                                 wakeup(rpipe);
639                         } else {
640                                 lwkt_reltoken(&wlock);
641                         }
642                 }
643         }
644         size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
645         lwkt_reltoken(&rlock);
646
647         /*
648          * If enough space is available in buffer then wakeup sel writers?
649          */
650         if ((rpipe->pipe_buffer.size - size) >= PIPE_BUF)
651                 pipeselwakeup(rpipe);
652         pipe_rel_mplock(&mpsave);
653         return (error);
654 }
655
656 /*
657  * MPALMOSTSAFE - acquires mplock
658  */
659 static int
660 pipe_write(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
661 {
662         int error;
663         int orig_resid;
664         int nbio;
665         struct pipe *wpipe, *rpipe;
666         lwkt_tokref rlock;
667         lwkt_tokref wlock;
668         u_int windex;
669         u_int space;
670         u_int wcount;
671         int mpsave;
672
673         pipe_get_mplock(&mpsave);
674
675         /*
676          * Writes go to the peer.  The peer will always exist.
677          */
678         rpipe = (struct pipe *) fp->f_data;
679         wpipe = rpipe->pipe_peer;
680         lwkt_gettoken(&wlock, &wpipe->pipe_wlock);
681         if (wpipe->pipe_state & PIPE_WEOF) {
682                 pipe_rel_mplock(&mpsave);
683                 lwkt_reltoken(&wlock);
684                 return (EPIPE);
685         }
686
687         /*
688          * Degenerate case (EPIPE takes prec)
689          */
690         if (uio->uio_resid == 0) {
691                 pipe_rel_mplock(&mpsave);
692                 lwkt_reltoken(&wlock);
693                 return(0);
694         }
695
696         /*
697          * Writes are serialized (start_uio must be called with wlock)
698          */
699         error = pipe_start_uio(wpipe, &wpipe->pipe_wip);
700         if (error) {
701                 pipe_rel_mplock(&mpsave);
702                 lwkt_reltoken(&wlock);
703                 return (error);
704         }
705
706         if (fflags & O_FBLOCKING)
707                 nbio = 0;
708         else if (fflags & O_FNONBLOCKING)
709                 nbio = 1;
710         else if (fp->f_flag & O_NONBLOCK)
711                 nbio = 1;
712         else
713                 nbio = 0;
714
715         /*
716          * If it is advantageous to resize the pipe buffer, do
717          * so.  We are write-serialized so we can block safely.
718          */
719         if ((wpipe->pipe_buffer.size <= PIPE_SIZE) &&
720             (pipe_nbig < pipe_maxbig) &&
721             wpipe->pipe_wantwcnt > 4 &&
722             (wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex)) {
723                 /* 
724                  * Recheck after lock.
725                  */
726                 lwkt_gettoken(&rlock, &wpipe->pipe_rlock);
727                 if ((wpipe->pipe_buffer.size <= PIPE_SIZE) &&
728                     (pipe_nbig < pipe_maxbig) &&
729                     (wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex)) {
730                         atomic_add_int(&pipe_nbig, 1);
731                         if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
732                                 ++pipe_bigcount;
733                         else
734                                 atomic_subtract_int(&pipe_nbig, 1);
735                 }
736                 lwkt_reltoken(&rlock);
737         }
738
739         orig_resid = uio->uio_resid;
740         wcount = 0;
741
742         while (uio->uio_resid) {
743                 if (wpipe->pipe_state & PIPE_WEOF) {
744                         error = EPIPE;
745                         break;
746                 }
747
748                 windex = wpipe->pipe_buffer.windex &
749                          (wpipe->pipe_buffer.size - 1);
750                 space = wpipe->pipe_buffer.size -
751                         (wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex);
752                 cpu_lfence();
753
754                 /* Writes of size <= PIPE_BUF must be atomic. */
755                 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
756                         space = 0;
757
758                 /* 
759                  * Write to fill, read size handles write hysteresis.  Also
760                  * additional restrictions can cause select-based non-blocking
761                  * writes to spin.
762                  */
763                 if (space > 0) {
764                         u_int segsize;
765
766                         /*
767                          * Transfer size is minimum of uio transfer
768                          * and free space in pipe buffer.
769                          *
770                          * Limit each uiocopy to no more then PIPE_SIZE
771                          * so we can keep the gravy train going on a
772                          * SMP box.  This doubles the performance for
773                          * write sizes > 16K.  Otherwise large writes
774                          * wind up doing an inefficient synchronous
775                          * ping-pong.
776                          */
777                         if (space > (u_int)uio->uio_resid)
778                                 space = (u_int)uio->uio_resid;
779                         if (space > PIPE_SIZE)
780                                 space = PIPE_SIZE;
781
782                         /*
783                          * First segment to transfer is minimum of
784                          * transfer size and contiguous space in
785                          * pipe buffer.  If first segment to transfer
786                          * is less than the transfer size, we've got
787                          * a wraparound in the buffer.
788                          */
789                         segsize = wpipe->pipe_buffer.size - windex;
790                         if (segsize > space)
791                                 segsize = space;
792
793 #ifdef SMP
794                         /*
795                          * If this is the first loop and the reader is
796                          * blocked, do a preemptive wakeup of the reader.
797                          *
798                          * On SMP the IPI latency plus the wlock interlock
799                          * on the reader side is the fastest way to get the
800                          * reader going.  (The scheduler will hard loop on
801                          * lock tokens).
802                          *
803                          * NOTE: We can't clear WANTR here without acquiring
804                          * the rlock, which we don't want to do here!
805                          */
806                         if ((wpipe->pipe_state & PIPE_WANTR) && pipe_mpsafe > 1)
807                                 wakeup(wpipe);
808 #endif
809
810                         /*
811                          * Transfer segment, which may include a wrap-around.
812                          * Update windex to account for both all in one go
813                          * so the reader can read() the data atomically.
814                          */
815                         error = uiomove(&wpipe->pipe_buffer.buffer[windex],
816                                         segsize, uio);
817                         if (error == 0 && segsize < space) {
818                                 segsize = space - segsize;
819                                 error = uiomove(&wpipe->pipe_buffer.buffer[0],
820                                                 segsize, uio);
821                         }
822                         if (error)
823                                 break;
824                         cpu_mfence();
825                         wpipe->pipe_buffer.windex += space;
826                         wcount += space;
827                         continue;
828                 }
829
830                 /*
831                  * We need both the rlock and the wlock to interlock against
832                  * the EOF, WANTW, and size checks, and to modify pipe_state.
833                  *
834                  * These are token locks so we do not have to worry about
835                  * deadlocks.
836                  */
837                 lwkt_gettoken(&rlock, &wpipe->pipe_rlock);
838
839                 /*
840                  * If the "read-side" has been blocked, wake it up now
841                  * and yield to let it drain synchronously rather
842                  * then block.
843                  */
844                 if (wpipe->pipe_state & PIPE_WANTR) {
845                         wpipe->pipe_state &= ~PIPE_WANTR;
846                         wakeup(wpipe);
847                 }
848
849                 /*
850                  * don't block on non-blocking I/O
851                  */
852                 if (nbio) {
853                         lwkt_reltoken(&rlock);
854                         error = EAGAIN;
855                         break;
856                 }
857
858                 /*
859                  * re-test whether we have to block in the writer after
860                  * acquiring both locks, in case the reader opened up
861                  * some space.
862                  */
863                 space = wpipe->pipe_buffer.size -
864                         (wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex);
865                 cpu_lfence();
866                 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
867                         space = 0;
868
869                 /*
870                  * We have no more space and have something to offer,
871                  * wake up select/poll.
872                  */
873                 if (space == 0) {
874                         pipeselwakeup(wpipe);
875                         ++wpipe->pipe_wantwcnt;
876                         wpipe->pipe_state |= PIPE_WANTW;
877                         error = tsleep(wpipe, PCATCH, "pipewr", 0);
878                         ++pipe_wblocked_count;
879                 }
880                 lwkt_reltoken(&rlock);
881
882                 /*
883                  * Break out if we errored or the read side wants us to go
884                  * away.
885                  */
886                 if (error)
887                         break;
888                 if (wpipe->pipe_state & PIPE_WEOF) {
889                         error = EPIPE;
890                         break;
891                 }
892         }
893         pipe_end_uio(wpipe, &wpipe->pipe_wip);
894
895         /*
896          * If we have put any characters in the buffer, we wake up
897          * the reader.
898          *
899          * Both rlock and wlock are required to be able to modify pipe_state.
900          */
901         if (wpipe->pipe_buffer.windex != wpipe->pipe_buffer.rindex) {
902                 if (wpipe->pipe_state & PIPE_WANTR) {
903                         lwkt_gettoken(&rlock, &wpipe->pipe_rlock);
904                         if (wpipe->pipe_state & PIPE_WANTR) {
905                                 wpipe->pipe_state &= ~PIPE_WANTR;
906                                 lwkt_reltoken(&rlock);
907                                 wakeup(wpipe);
908                         } else {
909                                 lwkt_reltoken(&rlock);
910                         }
911                 }
912         }
913
914         /*
915          * Don't return EPIPE if I/O was successful
916          */
917         if ((wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex) &&
918             (uio->uio_resid == 0) &&
919             (error == EPIPE)) {
920                 error = 0;
921         }
922
923         if (error == 0)
924                 vfs_timestamp(&wpipe->pipe_mtime);
925
926         /*
927          * We have something to offer,
928          * wake up select/poll.
929          */
930         space = wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex;
931         lwkt_reltoken(&wlock);
932         if (space)
933                 pipeselwakeup(wpipe);
934         pipe_rel_mplock(&mpsave);
935         return (error);
936 }
937
938 /*
939  * MPALMOSTSAFE - acquires mplock
940  *
941  * we implement a very minimal set of ioctls for compatibility with sockets.
942  */
943 int
944 pipe_ioctl(struct file *fp, u_long cmd, caddr_t data, struct ucred *cred)
945 {
946         struct pipe *mpipe;
947         lwkt_tokref rlock;
948         lwkt_tokref wlock;
949         int error;
950         int mpsave;
951
952         pipe_get_mplock(&mpsave);
953         mpipe = (struct pipe *)fp->f_data;
954
955         lwkt_gettoken(&rlock, &mpipe->pipe_rlock);
956         lwkt_gettoken(&wlock, &mpipe->pipe_wlock);
957
958         switch (cmd) {
959         case FIOASYNC:
960                 if (*(int *)data) {
961                         mpipe->pipe_state |= PIPE_ASYNC;
962                 } else {
963                         mpipe->pipe_state &= ~PIPE_ASYNC;
964                 }
965                 error = 0;
966                 break;
967         case FIONREAD:
968                 *(int *)data = mpipe->pipe_buffer.windex -
969                                 mpipe->pipe_buffer.rindex;
970                 error = 0;
971                 break;
972         case FIOSETOWN:
973                 get_mplock();
974                 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
975                 rel_mplock();
976                 break;
977         case FIOGETOWN:
978                 *(int *)data = fgetown(mpipe->pipe_sigio);
979                 error = 0;
980                 break;
981         case TIOCSPGRP:
982                 /* This is deprecated, FIOSETOWN should be used instead. */
983                 get_mplock();
984                 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
985                 rel_mplock();
986                 break;
987
988         case TIOCGPGRP:
989                 /* This is deprecated, FIOGETOWN should be used instead. */
990                 *(int *)data = -fgetown(mpipe->pipe_sigio);
991                 error = 0;
992                 break;
993         default:
994                 error = ENOTTY;
995                 break;
996         }
997         lwkt_reltoken(&rlock);
998         lwkt_reltoken(&wlock);
999         pipe_rel_mplock(&mpsave);
1000
1001         return (error);
1002 }
1003
1004 /*
1005  * MPALMOSTSAFE - acquires mplock
1006  */
1007 int
1008 pipe_poll(struct file *fp, int events, struct ucred *cred)
1009 {
1010         struct pipe *rpipe;
1011         struct pipe *wpipe;
1012         int revents = 0;
1013         u_int space;
1014         int mpsave;
1015
1016         pipe_get_mplock(&mpsave);
1017         rpipe = (struct pipe *)fp->f_data;
1018         wpipe = rpipe->pipe_peer;
1019         if (events & (POLLIN | POLLRDNORM)) {
1020                 if ((rpipe->pipe_buffer.windex != rpipe->pipe_buffer.rindex) ||
1021                     (rpipe->pipe_state & PIPE_REOF)) {
1022                         revents |= events & (POLLIN | POLLRDNORM);
1023                 }
1024         }
1025
1026         if (events & (POLLOUT | POLLWRNORM)) {
1027                 if (wpipe == NULL || (wpipe->pipe_state & PIPE_WEOF)) {
1028                         revents |= events & (POLLOUT | POLLWRNORM);
1029                 } else {
1030                         space = wpipe->pipe_buffer.windex -
1031                                 wpipe->pipe_buffer.rindex;
1032                         space = wpipe->pipe_buffer.size - space;
1033                         if (space >= PIPE_BUF)
1034                                 revents |= events & (POLLOUT | POLLWRNORM);
1035                 }
1036         }
1037
1038         if ((rpipe->pipe_state & PIPE_REOF) ||
1039             (wpipe == NULL) ||
1040             (wpipe->pipe_state & PIPE_WEOF))
1041                 revents |= POLLHUP;
1042
1043         if (revents == 0) {
1044                 if (events & (POLLIN | POLLRDNORM)) {
1045                         selrecord(curthread, &rpipe->pipe_sel);
1046                         rpipe->pipe_state |= PIPE_SEL;
1047                 }
1048
1049                 if (events & (POLLOUT | POLLWRNORM)) {
1050                         selrecord(curthread, &wpipe->pipe_sel);
1051                         wpipe->pipe_state |= PIPE_SEL;
1052                 }
1053         }
1054         pipe_rel_mplock(&mpsave);
1055         return (revents);
1056 }
1057
1058 /*
1059  * MPSAFE
1060  */
1061 static int
1062 pipe_stat(struct file *fp, struct stat *ub, struct ucred *cred)
1063 {
1064         struct pipe *pipe;
1065         int mpsave;
1066
1067         pipe_get_mplock(&mpsave);
1068         pipe = (struct pipe *)fp->f_data;
1069
1070         bzero((caddr_t)ub, sizeof(*ub));
1071         ub->st_mode = S_IFIFO;
1072         ub->st_blksize = pipe->pipe_buffer.size;
1073         ub->st_size = pipe->pipe_buffer.windex - pipe->pipe_buffer.rindex;
1074         ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1075         ub->st_atimespec = pipe->pipe_atime;
1076         ub->st_mtimespec = pipe->pipe_mtime;
1077         ub->st_ctimespec = pipe->pipe_ctime;
1078         /*
1079          * Left as 0: st_dev, st_ino, st_nlink, st_uid, st_gid, st_rdev,
1080          * st_flags, st_gen.
1081          * XXX (st_dev, st_ino) should be unique.
1082          */
1083         pipe_rel_mplock(&mpsave);
1084         return (0);
1085 }
1086
1087 /*
1088  * MPALMOSTSAFE - acquires mplock
1089  */
1090 static int
1091 pipe_close(struct file *fp)
1092 {
1093         struct pipe *cpipe;
1094
1095         get_mplock();
1096         cpipe = (struct pipe *)fp->f_data;
1097         fp->f_ops = &badfileops;
1098         fp->f_data = NULL;
1099         funsetown(cpipe->pipe_sigio);
1100         pipeclose(cpipe);
1101         rel_mplock();
1102         return (0);
1103 }
1104
1105 /*
1106  * Shutdown one or both directions of a full-duplex pipe.
1107  *
1108  * MPALMOSTSAFE - acquires mplock
1109  */
1110 static int
1111 pipe_shutdown(struct file *fp, int how)
1112 {
1113         struct pipe *rpipe;
1114         struct pipe *wpipe;
1115         int error = EPIPE;
1116         lwkt_tokref rpipe_rlock;
1117         lwkt_tokref rpipe_wlock;
1118         lwkt_tokref wpipe_rlock;
1119         lwkt_tokref wpipe_wlock;
1120         int mpsave;
1121
1122         pipe_get_mplock(&mpsave);
1123         rpipe = (struct pipe *)fp->f_data;
1124         wpipe = rpipe->pipe_peer;
1125
1126         /*
1127          * We modify pipe_state on both pipes, which means we need
1128          * all four tokens!
1129          */
1130         lwkt_gettoken(&rpipe_rlock, &rpipe->pipe_rlock);
1131         lwkt_gettoken(&rpipe_wlock, &rpipe->pipe_wlock);
1132         lwkt_gettoken(&wpipe_rlock, &wpipe->pipe_rlock);
1133         lwkt_gettoken(&wpipe_wlock, &wpipe->pipe_wlock);
1134
1135         switch(how) {
1136         case SHUT_RDWR:
1137         case SHUT_RD:
1138                 rpipe->pipe_state |= PIPE_REOF;         /* my reads */
1139                 rpipe->pipe_state |= PIPE_WEOF;         /* peer writes */
1140                 if (rpipe->pipe_state & PIPE_WANTR) {
1141                         rpipe->pipe_state &= ~PIPE_WANTR;
1142                         wakeup(rpipe);
1143                 }
1144                 if (rpipe->pipe_state & PIPE_WANTW) {
1145                         rpipe->pipe_state &= ~PIPE_WANTW;
1146                         wakeup(rpipe);
1147                 }
1148                 error = 0;
1149                 if (how == SHUT_RD)
1150                         break;
1151                 /* fall through */
1152         case SHUT_WR:
1153                 wpipe->pipe_state |= PIPE_REOF;         /* peer reads */
1154                 wpipe->pipe_state |= PIPE_WEOF;         /* my writes */
1155                 if (wpipe->pipe_state & PIPE_WANTR) {
1156                         wpipe->pipe_state &= ~PIPE_WANTR;
1157                         wakeup(wpipe);
1158                 }
1159                 if (wpipe->pipe_state & PIPE_WANTW) {
1160                         wpipe->pipe_state &= ~PIPE_WANTW;
1161                         wakeup(wpipe);
1162                 }
1163                 error = 0;
1164                 break;
1165         }
1166         pipeselwakeup(rpipe);
1167         pipeselwakeup(wpipe);
1168
1169         lwkt_reltoken(&rpipe_rlock);
1170         lwkt_reltoken(&rpipe_wlock);
1171         lwkt_reltoken(&wpipe_rlock);
1172         lwkt_reltoken(&wpipe_wlock);
1173
1174         pipe_rel_mplock(&mpsave);
1175         return (error);
1176 }
1177
1178 static void
1179 pipe_free_kmem(struct pipe *cpipe)
1180 {
1181         if (cpipe->pipe_buffer.buffer != NULL) {
1182                 if (cpipe->pipe_buffer.size > PIPE_SIZE)
1183                         atomic_subtract_int(&pipe_nbig, 1);
1184                 kmem_free(&kernel_map,
1185                         (vm_offset_t)cpipe->pipe_buffer.buffer,
1186                         cpipe->pipe_buffer.size);
1187                 cpipe->pipe_buffer.buffer = NULL;
1188                 cpipe->pipe_buffer.object = NULL;
1189         }
1190 }
1191
1192 /*
1193  * Close the pipe.  The slock must be held to interlock against simultanious
1194  * closes.  The rlock and wlock must be held to adjust the pipe_state.
1195  */
1196 static void
1197 pipeclose(struct pipe *cpipe)
1198 {
1199         globaldata_t gd;
1200         struct pipe *ppipe;
1201         lwkt_tokref cpipe_rlock;
1202         lwkt_tokref cpipe_wlock;
1203         lwkt_tokref ppipe_rlock;
1204         lwkt_tokref ppipe_wlock;
1205
1206         if (cpipe == NULL)
1207                 return;
1208
1209         /*
1210          * The slock may not have been allocated yet (close during
1211          * initialization)
1212          *
1213          * We need both the read and write tokens to modify pipe_state.
1214          */
1215         if (cpipe->pipe_slock)
1216                 lockmgr(cpipe->pipe_slock, LK_EXCLUSIVE);
1217         lwkt_gettoken(&cpipe_rlock, &cpipe->pipe_rlock);
1218         lwkt_gettoken(&cpipe_wlock, &cpipe->pipe_wlock);
1219
1220         /*
1221          * Set our state, wakeup anyone waiting in select, and
1222          * wakeup anyone blocked on our pipe.
1223          */
1224         cpipe->pipe_state |= PIPE_CLOSED | PIPE_REOF | PIPE_WEOF;
1225         pipeselwakeup(cpipe);
1226         if (cpipe->pipe_state & (PIPE_WANTR | PIPE_WANTW)) {
1227                 cpipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
1228                 wakeup(cpipe);
1229         }
1230
1231         /*
1232          * Disconnect from peer.
1233          */
1234         if ((ppipe = cpipe->pipe_peer) != NULL) {
1235                 lwkt_gettoken(&ppipe_rlock, &ppipe->pipe_rlock);
1236                 lwkt_gettoken(&ppipe_wlock, &ppipe->pipe_wlock);
1237                 ppipe->pipe_state |= PIPE_REOF | PIPE_WEOF;
1238                 pipeselwakeup(ppipe);
1239                 if (ppipe->pipe_state & (PIPE_WANTR | PIPE_WANTW)) {
1240                         ppipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
1241                         wakeup(ppipe);
1242                 }
1243                 if (SLIST_FIRST(&ppipe->pipe_sel.si_note)) {
1244                         get_mplock();
1245                         KNOTE(&ppipe->pipe_sel.si_note, 0);
1246                         rel_mplock();
1247                 }
1248                 lwkt_reltoken(&ppipe_rlock);
1249                 lwkt_reltoken(&ppipe_wlock);
1250         }
1251
1252         /*
1253          * If the peer is also closed we can free resources for both
1254          * sides, otherwise we leave our side intact to deal with any
1255          * races (since we only have the slock).
1256          */
1257         if (ppipe && (ppipe->pipe_state & PIPE_CLOSED)) {
1258                 cpipe->pipe_peer = NULL;
1259                 ppipe->pipe_peer = NULL;
1260                 ppipe->pipe_slock = NULL;       /* we will free the slock */
1261                 pipeclose(ppipe);
1262                 ppipe = NULL;
1263         }
1264
1265         lwkt_reltoken(&cpipe_rlock);
1266         lwkt_reltoken(&cpipe_wlock);
1267         if (cpipe->pipe_slock)
1268                 lockmgr(cpipe->pipe_slock, LK_RELEASE);
1269
1270         /*
1271          * If we disassociated from our peer we can free resources
1272          */
1273         if (ppipe == NULL) {
1274                 gd = mycpu;
1275                 if (cpipe->pipe_slock) {
1276                         kfree(cpipe->pipe_slock, M_PIPE);
1277                         cpipe->pipe_slock = NULL;
1278                 }
1279                 if (gd->gd_pipeqcount >= pipe_maxcache ||
1280                     cpipe->pipe_buffer.size != PIPE_SIZE
1281                 ) {
1282                         pipe_free_kmem(cpipe);
1283                         kfree(cpipe, M_PIPE);
1284                 } else {
1285                         cpipe->pipe_state = 0;
1286                         cpipe->pipe_peer = gd->gd_pipeq;
1287                         gd->gd_pipeq = cpipe;
1288                         ++gd->gd_pipeqcount;
1289                 }
1290         }
1291 }
1292
1293 /*
1294  * MPALMOSTSAFE - acquires mplock
1295  */
1296 static int
1297 pipe_kqfilter(struct file *fp, struct knote *kn)
1298 {
1299         struct pipe *cpipe;
1300
1301         get_mplock();
1302         cpipe = (struct pipe *)kn->kn_fp->f_data;
1303
1304         switch (kn->kn_filter) {
1305         case EVFILT_READ:
1306                 kn->kn_fop = &pipe_rfiltops;
1307                 break;
1308         case EVFILT_WRITE:
1309                 kn->kn_fop = &pipe_wfiltops;
1310                 cpipe = cpipe->pipe_peer;
1311                 if (cpipe == NULL) {
1312                         /* other end of pipe has been closed */
1313                         rel_mplock();
1314                         return (EPIPE);
1315                 }
1316                 break;
1317         default:
1318                 return (1);
1319         }
1320         kn->kn_hook = (caddr_t)cpipe;
1321
1322         SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1323         rel_mplock();
1324         return (0);
1325 }
1326
1327 static void
1328 filt_pipedetach(struct knote *kn)
1329 {
1330         struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1331
1332         SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1333 }
1334
1335 /*ARGSUSED*/
1336 static int
1337 filt_piperead(struct knote *kn, long hint)
1338 {
1339         struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1340
1341         kn->kn_data = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
1342
1343         /* XXX RACE */
1344         if (rpipe->pipe_state & PIPE_REOF) {
1345                 kn->kn_flags |= EV_EOF; 
1346                 return (1);
1347         }
1348         return (kn->kn_data > 0);
1349 }
1350
1351 /*ARGSUSED*/
1352 static int
1353 filt_pipewrite(struct knote *kn, long hint)
1354 {
1355         struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1356         struct pipe *wpipe = rpipe->pipe_peer;
1357         u_int32_t space;
1358
1359         /* XXX RACE */
1360         if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_WEOF)) {
1361                 kn->kn_data = 0;
1362                 kn->kn_flags |= EV_EOF; 
1363                 return (1);
1364         }
1365         space = wpipe->pipe_buffer.windex -
1366                 wpipe->pipe_buffer.rindex;
1367         space = wpipe->pipe_buffer.size - space;
1368         kn->kn_data = space;
1369         return (kn->kn_data >= PIPE_BUF);
1370 }