Merge branch 'vendor/LIBRESSL'
[dragonfly.git] / sys / dev / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33
34 #include <asm/set_memory.h>
35
36 #include <drm/drmP.h>
37 #include <drm/i915_drm.h>
38
39 #include "i915_drv.h"
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
44
45 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
46
47 /**
48  * DOC: Global GTT views
49  *
50  * Background and previous state
51  *
52  * Historically objects could exists (be bound) in global GTT space only as
53  * singular instances with a view representing all of the object's backing pages
54  * in a linear fashion. This view will be called a normal view.
55  *
56  * To support multiple views of the same object, where the number of mapped
57  * pages is not equal to the backing store, or where the layout of the pages
58  * is not linear, concept of a GGTT view was added.
59  *
60  * One example of an alternative view is a stereo display driven by a single
61  * image. In this case we would have a framebuffer looking like this
62  * (2x2 pages):
63  *
64  *    12
65  *    34
66  *
67  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68  * rendering. In contrast, fed to the display engine would be an alternative
69  * view which could look something like this:
70  *
71  *   1212
72  *   3434
73  *
74  * In this example both the size and layout of pages in the alternative view is
75  * different from the normal view.
76  *
77  * Implementation and usage
78  *
79  * GGTT views are implemented using VMAs and are distinguished via enum
80  * i915_ggtt_view_type and struct i915_ggtt_view.
81  *
82  * A new flavour of core GEM functions which work with GGTT bound objects were
83  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84  * renaming  in large amounts of code. They take the struct i915_ggtt_view
85  * parameter encapsulating all metadata required to implement a view.
86  *
87  * As a helper for callers which are only interested in the normal view,
88  * globally const i915_ggtt_view_normal singleton instance exists. All old core
89  * GEM API functions, the ones not taking the view parameter, are operating on,
90  * or with the normal GGTT view.
91  *
92  * Code wanting to add or use a new GGTT view needs to:
93  *
94  * 1. Add a new enum with a suitable name.
95  * 2. Extend the metadata in the i915_ggtt_view structure if required.
96  * 3. Add support to i915_get_vma_pages().
97  *
98  * New views are required to build a scatter-gather table from within the
99  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100  * exists for the lifetime of an VMA.
101  *
102  * Core API is designed to have copy semantics which means that passed in
103  * struct i915_ggtt_view does not need to be persistent (left around after
104  * calling the core API functions).
105  *
106  */
107
108 static int
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
110
111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
112 {
113         /* Note that as an uncached mmio write, this should flush the
114          * WCB of the writes into the GGTT before it triggers the invalidate.
115          */
116         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
117 }
118
119 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
120 {
121         gen6_ggtt_invalidate(dev_priv);
122         I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
123 }
124
125 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
126 {
127         intel_gtt_chipset_flush();
128 }
129
130 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
131 {
132         i915->ggtt.invalidate(i915);
133 }
134
135 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
136                                 int enable_ppgtt)
137 {
138         bool has_full_ppgtt;
139         bool has_full_48bit_ppgtt;
140
141         if (!dev_priv->info.has_aliasing_ppgtt)
142                 return 0;
143
144         has_full_ppgtt = dev_priv->info.has_full_ppgtt;
145         has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
146
147         if (intel_vgpu_active(dev_priv)) {
148                 /* GVT-g has no support for 32bit ppgtt */
149                 has_full_ppgtt = false;
150                 has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
151         }
152
153         /*
154          * We don't allow disabling PPGTT for gen9+ as it's a requirement for
155          * execlists, the sole mechanism available to submit work.
156          */
157         if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
158                 return 0;
159
160         if (enable_ppgtt == 1)
161                 return 1;
162
163         if (enable_ppgtt == 2 && has_full_ppgtt)
164                 return 2;
165
166         if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
167                 return 3;
168
169         /* Disable ppgtt on SNB if VT-d is on. */
170         if (IS_GEN6(dev_priv) && intel_vtd_active()) {
171                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
172                 return 0;
173         }
174
175         /* Early VLV doesn't have this */
176         if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
177                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
178                 return 0;
179         }
180
181         if (INTEL_GEN(dev_priv) >= 8 && i915_modparams.enable_execlists) {
182                 if (has_full_48bit_ppgtt)
183                         return 3;
184
185                 if (has_full_ppgtt)
186                         return 2;
187         }
188
189         return 1;
190 }
191
192 static int ppgtt_bind_vma(struct i915_vma *vma,
193                           enum i915_cache_level cache_level,
194                           u32 unused)
195 {
196         u32 pte_flags;
197         int ret;
198
199         if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
200                 ret = vma->vm->allocate_va_range(vma->vm, vma->node.start,
201                                                  vma->size);
202                 if (ret)
203                         return ret;
204         }
205
206         /* Currently applicable only to VLV */
207         pte_flags = 0;
208         if (vma->obj->gt_ro)
209                 pte_flags |= PTE_READ_ONLY;
210
211         vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
212
213         return 0;
214 }
215
216 static void ppgtt_unbind_vma(struct i915_vma *vma)
217 {
218         vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
219 }
220
221 static int ppgtt_set_pages(struct i915_vma *vma)
222 {
223         GEM_BUG_ON(vma->pages);
224
225         vma->pages = vma->obj->mm.pages;
226
227         vma->page_sizes = vma->obj->mm.page_sizes;
228
229         return 0;
230 }
231
232 static void clear_pages(struct i915_vma *vma)
233 {
234         GEM_BUG_ON(!vma->pages);
235
236         if (vma->pages != vma->obj->mm.pages) {
237                 sg_free_table(vma->pages);
238                 kfree(vma->pages);
239         }
240         vma->pages = NULL;
241
242         memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
243 }
244
245 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
246                                   enum i915_cache_level level)
247 {
248         gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
249         pte |= addr;
250
251         switch (level) {
252         case I915_CACHE_NONE:
253                 pte |= PPAT_UNCACHED;
254                 break;
255         case I915_CACHE_WT:
256                 pte |= PPAT_DISPLAY_ELLC;
257                 break;
258         default:
259                 pte |= PPAT_CACHED;
260                 break;
261         }
262
263         return pte;
264 }
265
266 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
267                                   const enum i915_cache_level level)
268 {
269         gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
270         pde |= addr;
271         if (level != I915_CACHE_NONE)
272                 pde |= PPAT_CACHED_PDE;
273         else
274                 pde |= PPAT_UNCACHED;
275         return pde;
276 }
277
278 #define gen8_pdpe_encode gen8_pde_encode
279 #define gen8_pml4e_encode gen8_pde_encode
280
281 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
282                                  enum i915_cache_level level,
283                                  u32 unused)
284 {
285         gen6_pte_t pte = GEN6_PTE_VALID;
286         pte |= GEN6_PTE_ADDR_ENCODE(addr);
287
288         switch (level) {
289         case I915_CACHE_L3_LLC:
290         case I915_CACHE_LLC:
291                 pte |= GEN6_PTE_CACHE_LLC;
292                 break;
293         case I915_CACHE_NONE:
294                 pte |= GEN6_PTE_UNCACHED;
295                 break;
296         default:
297                 MISSING_CASE(level);
298         }
299
300         return pte;
301 }
302
303 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
304                                  enum i915_cache_level level,
305                                  u32 unused)
306 {
307         gen6_pte_t pte = GEN6_PTE_VALID;
308         pte |= GEN6_PTE_ADDR_ENCODE(addr);
309
310         switch (level) {
311         case I915_CACHE_L3_LLC:
312                 pte |= GEN7_PTE_CACHE_L3_LLC;
313                 break;
314         case I915_CACHE_LLC:
315                 pte |= GEN6_PTE_CACHE_LLC;
316                 break;
317         case I915_CACHE_NONE:
318                 pte |= GEN6_PTE_UNCACHED;
319                 break;
320         default:
321                 MISSING_CASE(level);
322         }
323
324         return pte;
325 }
326
327 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
328                                  enum i915_cache_level level,
329                                  u32 flags)
330 {
331         gen6_pte_t pte = GEN6_PTE_VALID;
332         pte |= GEN6_PTE_ADDR_ENCODE(addr);
333
334         if (!(flags & PTE_READ_ONLY))
335                 pte |= BYT_PTE_WRITEABLE;
336
337         if (level != I915_CACHE_NONE)
338                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
339
340         return pte;
341 }
342
343 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
344                                  enum i915_cache_level level,
345                                  u32 unused)
346 {
347         gen6_pte_t pte = GEN6_PTE_VALID;
348         pte |= HSW_PTE_ADDR_ENCODE(addr);
349
350         if (level != I915_CACHE_NONE)
351                 pte |= HSW_WB_LLC_AGE3;
352
353         return pte;
354 }
355
356 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
357                                   enum i915_cache_level level,
358                                   u32 unused)
359 {
360         gen6_pte_t pte = GEN6_PTE_VALID;
361         pte |= HSW_PTE_ADDR_ENCODE(addr);
362
363         switch (level) {
364         case I915_CACHE_NONE:
365                 break;
366         case I915_CACHE_WT:
367                 pte |= HSW_WT_ELLC_LLC_AGE3;
368                 break;
369         default:
370                 pte |= HSW_WB_ELLC_LLC_AGE3;
371                 break;
372         }
373
374         return pte;
375 }
376
377 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
378 {
379         struct pagevec *pvec = &vm->free_pages;
380
381         if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
382                 i915_gem_shrink_all(vm->i915);
383
384         if (likely(pvec->nr))
385                 return pvec->pages[--pvec->nr];
386
387         if (!vm->pt_kmap_wc)
388                 return alloc_page(gfp);
389
390         /* A placeholder for a specific mutex to guard the WC stash */
391         lockdep_assert_held(&vm->i915->drm.struct_mutex);
392
393         /* Look in our global stash of WC pages... */
394         pvec = &vm->i915->mm.wc_stash;
395         if (likely(pvec->nr))
396                 return pvec->pages[--pvec->nr];
397
398         /* Otherwise batch allocate pages to amoritize cost of set_pages_wc. */
399         do {
400                 struct page *page;
401
402                 page = alloc_page(gfp);
403                 if (unlikely(!page))
404                         break;
405
406                 pvec->pages[pvec->nr++] = page;
407         } while (pagevec_space(pvec));
408
409         if (unlikely(!pvec->nr))
410                 return NULL;
411
412         set_pages_array_wc(pvec->pages, pvec->nr);
413
414         return pvec->pages[--pvec->nr];
415 }
416
417 static void vm_free_pages_release(struct i915_address_space *vm,
418                                   bool immediate)
419 {
420         struct pagevec *pvec = &vm->free_pages;
421
422         GEM_BUG_ON(!pagevec_count(pvec));
423
424         if (vm->pt_kmap_wc) {
425                 struct pagevec *stash = &vm->i915->mm.wc_stash;
426
427                 /* When we use WC, first fill up the global stash and then
428                  * only if full immediately free the overflow.
429                  */
430
431                 lockdep_assert_held(&vm->i915->drm.struct_mutex);
432                 if (pagevec_space(stash)) {
433                         do {
434                                 stash->pages[stash->nr++] =
435                                         pvec->pages[--pvec->nr];
436                                 if (!pvec->nr)
437                                         return;
438                         } while (pagevec_space(stash));
439
440                         /* As we have made some room in the VM's free_pages,
441                          * we can wait for it to fill again. Unless we are
442                          * inside i915_address_space_fini() and must
443                          * immediately release the pages!
444                          */
445                         if (!immediate)
446                                 return;
447                 }
448
449                 set_pages_array_wb(pvec->pages, pvec->nr);
450         }
451
452         __pagevec_release(pvec);
453 }
454
455 static void vm_free_page(struct i915_address_space *vm, struct page *page)
456 {
457         if (!pagevec_add(&vm->free_pages, page))
458                 vm_free_pages_release(vm, false);
459 }
460
461 static int __setup_page_dma(struct i915_address_space *vm,
462                             struct i915_page_dma *p,
463                             gfp_t gfp)
464 {
465         p->page = vm_alloc_page(vm, gfp | __GFP_NOWARN | __GFP_NORETRY);
466         if (unlikely(!p->page))
467                 return -ENOMEM;
468
469         p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE,
470                                 PCI_DMA_BIDIRECTIONAL);
471         if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
472                 vm_free_page(vm, p->page);
473                 return -ENOMEM;
474         }
475
476         return 0;
477 }
478
479 static int setup_page_dma(struct i915_address_space *vm,
480                           struct i915_page_dma *p)
481 {
482         return __setup_page_dma(vm, p, I915_GFP_DMA);
483 }
484
485 static void cleanup_page_dma(struct i915_address_space *vm,
486                              struct i915_page_dma *p)
487 {
488         dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
489         vm_free_page(vm, p->page);
490 }
491
492 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
493
494 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
495 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
496 #define fill_px(ppgtt, px, v) fill_page_dma((vm), px_base(px), (v))
497 #define fill32_px(ppgtt, px, v) fill_page_dma_32((vm), px_base(px), (v))
498
499 static void fill_page_dma(struct i915_address_space *vm,
500                           struct i915_page_dma *p,
501                           const u64 val)
502 {
503         u64 * const vaddr = kmap_atomic(p->page);
504
505         memset64(vaddr, val, PAGE_SIZE / sizeof(val));
506
507         kunmap_atomic(vaddr);
508 }
509
510 static void fill_page_dma_32(struct i915_address_space *vm,
511                              struct i915_page_dma *p,
512                              const u32 v)
513 {
514         fill_page_dma(vm, p, (u64)v << 32 | v);
515 }
516
517 static int
518 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
519 {
520         struct page *page = NULL;
521         dma_addr_t addr;
522         int order;
523
524         /*
525          * In order to utilize 64K pages for an object with a size < 2M, we will
526          * need to support a 64K scratch page, given that every 16th entry for a
527          * page-table operating in 64K mode must point to a properly aligned 64K
528          * region, including any PTEs which happen to point to scratch.
529          *
530          * This is only relevant for the 48b PPGTT where we support
531          * huge-gtt-pages, see also i915_vma_insert().
532          *
533          * TODO: we should really consider write-protecting the scratch-page and
534          * sharing between ppgtt
535          */
536         if (i915_vm_is_48bit(vm) &&
537             HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
538                 order = get_order(I915_GTT_PAGE_SIZE_64K);
539                 page = alloc_pages(gfp | __GFP_ZERO | __GFP_NOWARN, order);
540                 if (page) {
541                         addr = dma_map_page(vm->dma, page, 0,
542                                             I915_GTT_PAGE_SIZE_64K,
543                                             PCI_DMA_BIDIRECTIONAL);
544                         if (unlikely(dma_mapping_error(vm->dma, addr))) {
545                                 __free_pages(page, order);
546                                 page = NULL;
547                         }
548
549                         if (!IS_ALIGNED(addr, I915_GTT_PAGE_SIZE_64K)) {
550                                 dma_unmap_page(vm->dma, addr,
551                                                I915_GTT_PAGE_SIZE_64K,
552                                                PCI_DMA_BIDIRECTIONAL);
553                                 __free_pages(page, order);
554                                 page = NULL;
555                         }
556                 }
557         }
558
559         if (!page) {
560                 order = 0;
561                 page = alloc_page(gfp | __GFP_ZERO);
562                 if (unlikely(!page))
563                         return -ENOMEM;
564
565                 addr = dma_map_page(vm->dma, page, 0, PAGE_SIZE,
566                                     PCI_DMA_BIDIRECTIONAL);
567                 if (unlikely(dma_mapping_error(vm->dma, addr))) {
568                         __free_page(page);
569                         return -ENOMEM;
570                 }
571         }
572
573         vm->scratch_page.page = page;
574         vm->scratch_page.daddr = addr;
575         vm->scratch_page.order = order;
576
577         return 0;
578 }
579
580 static void cleanup_scratch_page(struct i915_address_space *vm)
581 {
582         struct i915_page_dma *p = &vm->scratch_page;
583
584         dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
585                        PCI_DMA_BIDIRECTIONAL);
586         __free_pages(p->page, p->order);
587 }
588
589 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
590 {
591         struct i915_page_table *pt;
592
593         pt = kmalloc(sizeof(*pt), M_DRM, GFP_KERNEL | __GFP_NOWARN);
594         if (unlikely(!pt))
595                 return ERR_PTR(-ENOMEM);
596
597         if (unlikely(setup_px(vm, pt))) {
598                 kfree(pt);
599                 return ERR_PTR(-ENOMEM);
600         }
601
602         pt->used_ptes = 0;
603         return pt;
604 }
605
606 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
607 {
608         cleanup_px(vm, pt);
609         kfree(pt);
610 }
611
612 static void gen8_initialize_pt(struct i915_address_space *vm,
613                                struct i915_page_table *pt)
614 {
615         fill_px(vm, pt,
616                 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC));
617 }
618
619 static void gen6_initialize_pt(struct i915_address_space *vm,
620                                struct i915_page_table *pt)
621 {
622         fill32_px(vm, pt,
623                   vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
624 }
625
626 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
627 {
628         struct i915_page_directory *pd;
629
630         pd = kzalloc(sizeof(*pd), GFP_KERNEL | __GFP_NOWARN);
631         if (unlikely(!pd))
632                 return ERR_PTR(-ENOMEM);
633
634         if (unlikely(setup_px(vm, pd))) {
635                 kfree(pd);
636                 return ERR_PTR(-ENOMEM);
637         }
638
639         pd->used_pdes = 0;
640         return pd;
641 }
642
643 static void free_pd(struct i915_address_space *vm,
644                     struct i915_page_directory *pd)
645 {
646         cleanup_px(vm, pd);
647         kfree(pd);
648 }
649
650 static void gen8_initialize_pd(struct i915_address_space *vm,
651                                struct i915_page_directory *pd)
652 {
653         unsigned int i;
654
655         fill_px(vm, pd,
656                 gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
657         for (i = 0; i < I915_PDES; i++)
658                 pd->page_table[i] = vm->scratch_pt;
659 }
660
661 static int __pdp_init(struct i915_address_space *vm,
662                       struct i915_page_directory_pointer *pdp)
663 {
664         const unsigned int pdpes = i915_pdpes_per_pdp(vm);
665         unsigned int i;
666
667         pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
668                                             GFP_KERNEL | __GFP_NOWARN);
669         if (unlikely(!pdp->page_directory))
670                 return -ENOMEM;
671
672         for (i = 0; i < pdpes; i++)
673                 pdp->page_directory[i] = vm->scratch_pd;
674
675         return 0;
676 }
677
678 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
679 {
680         kfree(pdp->page_directory);
681         pdp->page_directory = NULL;
682 }
683
684 static inline bool use_4lvl(const struct i915_address_space *vm)
685 {
686         return i915_vm_is_48bit(vm);
687 }
688
689 static struct i915_page_directory_pointer *
690 alloc_pdp(struct i915_address_space *vm)
691 {
692         struct i915_page_directory_pointer *pdp;
693         int ret = -ENOMEM;
694
695         WARN_ON(!use_4lvl(vm));
696
697         pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
698         if (!pdp)
699                 return ERR_PTR(-ENOMEM);
700
701         ret = __pdp_init(vm, pdp);
702         if (ret)
703                 goto fail_bitmap;
704
705         ret = setup_px(vm, pdp);
706         if (ret)
707                 goto fail_page_m;
708
709         return pdp;
710
711 fail_page_m:
712         __pdp_fini(pdp);
713 fail_bitmap:
714         kfree(pdp);
715
716         return ERR_PTR(ret);
717 }
718
719 static void free_pdp(struct i915_address_space *vm,
720                      struct i915_page_directory_pointer *pdp)
721 {
722         __pdp_fini(pdp);
723
724         if (!use_4lvl(vm))
725                 return;
726
727         cleanup_px(vm, pdp);
728         kfree(pdp);
729 }
730
731 static void gen8_initialize_pdp(struct i915_address_space *vm,
732                                 struct i915_page_directory_pointer *pdp)
733 {
734         gen8_ppgtt_pdpe_t scratch_pdpe;
735
736         scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
737
738         fill_px(vm, pdp, scratch_pdpe);
739 }
740
741 static void gen8_initialize_pml4(struct i915_address_space *vm,
742                                  struct i915_pml4 *pml4)
743 {
744         unsigned int i;
745
746         fill_px(vm, pml4,
747                 gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
748         for (i = 0; i < GEN8_PML4ES_PER_PML4; i++)
749                 pml4->pdps[i] = vm->scratch_pdp;
750 }
751
752 /* Broadwell Page Directory Pointer Descriptors */
753 static int gen8_write_pdp(struct drm_i915_gem_request *req,
754                           unsigned entry,
755                           dma_addr_t addr)
756 {
757         struct intel_engine_cs *engine = req->engine;
758         u32 *cs;
759
760         BUG_ON(entry >= 4);
761
762         cs = intel_ring_begin(req, 6);
763         if (IS_ERR(cs))
764                 return PTR_ERR(cs);
765
766         *cs++ = MI_LOAD_REGISTER_IMM(1);
767         *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, entry));
768         *cs++ = upper_32_bits(addr);
769         *cs++ = MI_LOAD_REGISTER_IMM(1);
770         *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, entry));
771         *cs++ = lower_32_bits(addr);
772         intel_ring_advance(req, cs);
773
774         return 0;
775 }
776
777 static int gen8_mm_switch_3lvl(struct i915_hw_ppgtt *ppgtt,
778                                struct drm_i915_gem_request *req)
779 {
780         int i, ret;
781
782         for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
783                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
784
785                 ret = gen8_write_pdp(req, i, pd_daddr);
786                 if (ret)
787                         return ret;
788         }
789
790         return 0;
791 }
792
793 static int gen8_mm_switch_4lvl(struct i915_hw_ppgtt *ppgtt,
794                                struct drm_i915_gem_request *req)
795 {
796         return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
797 }
798
799 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
800  * the page table structures, we mark them dirty so that
801  * context switching/execlist queuing code takes extra steps
802  * to ensure that tlbs are flushed.
803  */
804 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
805 {
806         ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask;
807 }
808
809 /* Removes entries from a single page table, releasing it if it's empty.
810  * Caller can use the return value to update higher-level entries.
811  */
812 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
813                                 struct i915_page_table *pt,
814                                 u64 start, u64 length)
815 {
816         unsigned int num_entries = gen8_pte_count(start, length);
817         unsigned int pte = gen8_pte_index(start);
818         unsigned int pte_end = pte + num_entries;
819         const gen8_pte_t scratch_pte =
820                 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
821         gen8_pte_t *vaddr;
822
823         GEM_BUG_ON(num_entries > pt->used_ptes);
824
825         pt->used_ptes -= num_entries;
826         if (!pt->used_ptes)
827                 return true;
828
829         vaddr = kmap_atomic_px(pt);
830         while (pte < pte_end)
831                 vaddr[pte++] = scratch_pte;
832         kunmap_atomic(vaddr);
833
834         return false;
835 }
836
837 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
838                                struct i915_page_directory *pd,
839                                struct i915_page_table *pt,
840                                unsigned int pde)
841 {
842         gen8_pde_t *vaddr;
843
844         pd->page_table[pde] = pt;
845
846         vaddr = kmap_atomic_px(pd);
847         vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
848         kunmap_atomic(vaddr);
849 }
850
851 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
852                                 struct i915_page_directory *pd,
853                                 u64 start, u64 length)
854 {
855         struct i915_page_table *pt;
856         u32 pde;
857
858         gen8_for_each_pde(pt, pd, start, length, pde) {
859                 GEM_BUG_ON(pt == vm->scratch_pt);
860
861                 if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
862                         continue;
863
864                 gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
865                 GEM_BUG_ON(!pd->used_pdes);
866                 pd->used_pdes--;
867
868                 free_pt(vm, pt);
869         }
870
871         return !pd->used_pdes;
872 }
873
874 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
875                                 struct i915_page_directory_pointer *pdp,
876                                 struct i915_page_directory *pd,
877                                 unsigned int pdpe)
878 {
879         gen8_ppgtt_pdpe_t *vaddr;
880
881         pdp->page_directory[pdpe] = pd;
882         if (!use_4lvl(vm))
883                 return;
884
885         vaddr = kmap_atomic_px(pdp);
886         vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
887         kunmap_atomic(vaddr);
888 }
889
890 /* Removes entries from a single page dir pointer, releasing it if it's empty.
891  * Caller can use the return value to update higher-level entries
892  */
893 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
894                                  struct i915_page_directory_pointer *pdp,
895                                  u64 start, u64 length)
896 {
897         struct i915_page_directory *pd;
898         unsigned int pdpe;
899
900         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
901                 GEM_BUG_ON(pd == vm->scratch_pd);
902
903                 if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
904                         continue;
905
906                 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
907                 GEM_BUG_ON(!pdp->used_pdpes);
908                 pdp->used_pdpes--;
909
910                 free_pd(vm, pd);
911         }
912
913         return !pdp->used_pdpes;
914 }
915
916 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
917                                   u64 start, u64 length)
918 {
919         gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
920 }
921
922 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
923                                  struct i915_page_directory_pointer *pdp,
924                                  unsigned int pml4e)
925 {
926         gen8_ppgtt_pml4e_t *vaddr;
927
928         pml4->pdps[pml4e] = pdp;
929
930         vaddr = kmap_atomic_px(pml4);
931         vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
932         kunmap_atomic(vaddr);
933 }
934
935 /* Removes entries from a single pml4.
936  * This is the top-level structure in 4-level page tables used on gen8+.
937  * Empty entries are always scratch pml4e.
938  */
939 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
940                                   u64 start, u64 length)
941 {
942         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
943         struct i915_pml4 *pml4 = &ppgtt->pml4;
944         struct i915_page_directory_pointer *pdp;
945         unsigned int pml4e;
946
947         GEM_BUG_ON(!use_4lvl(vm));
948
949         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
950                 GEM_BUG_ON(pdp == vm->scratch_pdp);
951
952                 if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
953                         continue;
954
955                 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
956
957                 free_pdp(vm, pdp);
958         }
959 }
960
961 static inline struct sgt_dma {
962         struct scatterlist *sg;
963         dma_addr_t dma, max;
964 } sgt_dma(struct i915_vma *vma) {
965         struct scatterlist *sg = vma->pages->sgl;
966         dma_addr_t addr = sg_dma_address(sg);
967         return (struct sgt_dma) { sg, addr, addr + sg->length };
968 }
969
970 struct gen8_insert_pte {
971         u16 pml4e;
972         u16 pdpe;
973         u16 pde;
974         u16 pte;
975 };
976
977 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
978 {
979         return (struct gen8_insert_pte) {
980                  gen8_pml4e_index(start),
981                  gen8_pdpe_index(start),
982                  gen8_pde_index(start),
983                  gen8_pte_index(start),
984         };
985 }
986
987 static __always_inline bool
988 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
989                               struct i915_page_directory_pointer *pdp,
990                               struct sgt_dma *iter,
991                               struct gen8_insert_pte *idx,
992                               enum i915_cache_level cache_level)
993 {
994         struct i915_page_directory *pd;
995         const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
996         gen8_pte_t *vaddr;
997         bool ret;
998
999         GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
1000         pd = pdp->page_directory[idx->pdpe];
1001         vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1002         do {
1003                 vaddr[idx->pte] = pte_encode | iter->dma;
1004
1005                 iter->dma += PAGE_SIZE;
1006                 if (iter->dma >= iter->max) {
1007                         iter->sg = __sg_next(iter->sg);
1008                         if (!iter->sg) {
1009                                 ret = false;
1010                                 break;
1011                         }
1012
1013                         iter->dma = sg_dma_address(iter->sg);
1014                         iter->max = iter->dma + iter->sg->length;
1015                 }
1016
1017                 if (++idx->pte == GEN8_PTES) {
1018                         idx->pte = 0;
1019
1020                         if (++idx->pde == I915_PDES) {
1021                                 idx->pde = 0;
1022
1023                                 /* Limited by sg length for 3lvl */
1024                                 if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
1025                                         idx->pdpe = 0;
1026                                         ret = true;
1027                                         break;
1028                                 }
1029
1030                                 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
1031                                 pd = pdp->page_directory[idx->pdpe];
1032                         }
1033
1034                         kunmap_atomic(vaddr);
1035                         vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1036                 }
1037         } while (1);
1038         kunmap_atomic(vaddr);
1039
1040         return ret;
1041 }
1042
1043 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1044                                    struct i915_vma *vma,
1045                                    enum i915_cache_level cache_level,
1046                                    u32 unused)
1047 {
1048         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1049         struct sgt_dma iter = sgt_dma(vma);
1050         struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1051
1052         gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1053                                       cache_level);
1054
1055         vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1056 }
1057
1058 static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
1059                                            struct i915_page_directory_pointer **pdps,
1060                                            struct sgt_dma *iter,
1061                                            enum i915_cache_level cache_level)
1062 {
1063         const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
1064         u64 start = vma->node.start;
1065         dma_addr_t rem = iter->sg->length;
1066
1067         do {
1068                 struct gen8_insert_pte idx = gen8_insert_pte(start);
1069                 struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
1070                 struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
1071                 unsigned int page_size;
1072                 bool maybe_64K = false;
1073                 gen8_pte_t encode = pte_encode;
1074                 gen8_pte_t *vaddr;
1075                 u16 index, max;
1076
1077                 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1078                     IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1079                     rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
1080                         index = idx.pde;
1081                         max = I915_PDES;
1082                         page_size = I915_GTT_PAGE_SIZE_2M;
1083
1084                         encode |= GEN8_PDE_PS_2M;
1085
1086                         vaddr = kmap_atomic_px(pd);
1087                 } else {
1088                         struct i915_page_table *pt = pd->page_table[idx.pde];
1089
1090                         index = idx.pte;
1091                         max = GEN8_PTES;
1092                         page_size = I915_GTT_PAGE_SIZE;
1093
1094                         if (!index &&
1095                             vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1096                             IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1097                             (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1098                              rem >= (max - index) << PAGE_SHIFT))
1099                                 maybe_64K = true;
1100
1101                         vaddr = kmap_atomic_px(pt);
1102                 }
1103
1104                 do {
1105                         GEM_BUG_ON(iter->sg->length < page_size);
1106                         vaddr[index++] = encode | iter->dma;
1107
1108                         start += page_size;
1109                         iter->dma += page_size;
1110                         rem -= page_size;
1111                         if (iter->dma >= iter->max) {
1112                                 iter->sg = __sg_next(iter->sg);
1113                                 if (!iter->sg)
1114                                         break;
1115
1116                                 rem = iter->sg->length;
1117                                 iter->dma = sg_dma_address(iter->sg);
1118                                 iter->max = iter->dma + rem;
1119
1120                                 if (maybe_64K && index < max &&
1121                                     !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1122                                       (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1123                                        rem >= (max - index) << PAGE_SHIFT)))
1124                                         maybe_64K = false;
1125
1126                                 if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1127                                         break;
1128                         }
1129                 } while (rem >= page_size && index < max);
1130
1131                 kunmap_atomic(vaddr);
1132
1133                 /*
1134                  * Is it safe to mark the 2M block as 64K? -- Either we have
1135                  * filled whole page-table with 64K entries, or filled part of
1136                  * it and have reached the end of the sg table and we have
1137                  * enough padding.
1138                  */
1139                 if (maybe_64K &&
1140                     (index == max ||
1141                      (i915_vm_has_scratch_64K(vma->vm) &&
1142                       !iter->sg && IS_ALIGNED(vma->node.start +
1143                                               vma->node.size,
1144                                               I915_GTT_PAGE_SIZE_2M)))) {
1145                         vaddr = kmap_atomic_px(pd);
1146                         vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
1147                         kunmap_atomic(vaddr);
1148                         page_size = I915_GTT_PAGE_SIZE_64K;
1149                 }
1150
1151                 vma->page_sizes.gtt |= page_size;
1152         } while (iter->sg);
1153 }
1154
1155 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1156                                    struct i915_vma *vma,
1157                                    enum i915_cache_level cache_level,
1158                                    u32 unused)
1159 {
1160         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1161         struct sgt_dma iter = sgt_dma(vma);
1162         struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1163
1164         if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1165                 gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level);
1166         } else {
1167                 struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1168
1169                 while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1170                                                      &iter, &idx, cache_level))
1171                         GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1172
1173                 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1174         }
1175 }
1176
1177 static void gen8_free_page_tables(struct i915_address_space *vm,
1178                                   struct i915_page_directory *pd)
1179 {
1180         int i;
1181
1182         if (!px_page(pd))
1183                 return;
1184
1185         for (i = 0; i < I915_PDES; i++) {
1186                 if (pd->page_table[i] != vm->scratch_pt)
1187                         free_pt(vm, pd->page_table[i]);
1188         }
1189 }
1190
1191 static int gen8_init_scratch(struct i915_address_space *vm)
1192 {
1193         int ret;
1194
1195         ret = setup_scratch_page(vm, I915_GFP_DMA);
1196         if (ret)
1197                 return ret;
1198
1199         vm->scratch_pt = alloc_pt(vm);
1200         if (IS_ERR(vm->scratch_pt)) {
1201                 ret = PTR_ERR(vm->scratch_pt);
1202                 goto free_scratch_page;
1203         }
1204
1205         vm->scratch_pd = alloc_pd(vm);
1206         if (IS_ERR(vm->scratch_pd)) {
1207                 ret = PTR_ERR(vm->scratch_pd);
1208                 goto free_pt;
1209         }
1210
1211         if (use_4lvl(vm)) {
1212                 vm->scratch_pdp = alloc_pdp(vm);
1213                 if (IS_ERR(vm->scratch_pdp)) {
1214                         ret = PTR_ERR(vm->scratch_pdp);
1215                         goto free_pd;
1216                 }
1217         }
1218
1219         gen8_initialize_pt(vm, vm->scratch_pt);
1220         gen8_initialize_pd(vm, vm->scratch_pd);
1221         if (use_4lvl(vm))
1222                 gen8_initialize_pdp(vm, vm->scratch_pdp);
1223
1224         return 0;
1225
1226 free_pd:
1227         free_pd(vm, vm->scratch_pd);
1228 free_pt:
1229         free_pt(vm, vm->scratch_pt);
1230 free_scratch_page:
1231         cleanup_scratch_page(vm);
1232
1233         return ret;
1234 }
1235
1236 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1237 {
1238         struct i915_address_space *vm = &ppgtt->base;
1239         struct drm_i915_private *dev_priv = vm->i915;
1240         enum vgt_g2v_type msg;
1241         int i;
1242
1243         if (use_4lvl(vm)) {
1244                 const u64 daddr = px_dma(&ppgtt->pml4);
1245
1246                 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1247                 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1248
1249                 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1250                                 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1251         } else {
1252                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1253                         const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1254
1255                         I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1256                         I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1257                 }
1258
1259                 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1260                                 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1261         }
1262
1263         I915_WRITE(vgtif_reg(g2v_notify), msg);
1264
1265         return 0;
1266 }
1267
1268 static void gen8_free_scratch(struct i915_address_space *vm)
1269 {
1270         if (use_4lvl(vm))
1271                 free_pdp(vm, vm->scratch_pdp);
1272         free_pd(vm, vm->scratch_pd);
1273         free_pt(vm, vm->scratch_pt);
1274         cleanup_scratch_page(vm);
1275 }
1276
1277 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1278                                     struct i915_page_directory_pointer *pdp)
1279 {
1280         const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1281         int i;
1282
1283         for (i = 0; i < pdpes; i++) {
1284                 if (pdp->page_directory[i] == vm->scratch_pd)
1285                         continue;
1286
1287                 gen8_free_page_tables(vm, pdp->page_directory[i]);
1288                 free_pd(vm, pdp->page_directory[i]);
1289         }
1290
1291         free_pdp(vm, pdp);
1292 }
1293
1294 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1295 {
1296         int i;
1297
1298         for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1299                 if (ppgtt->pml4.pdps[i] == ppgtt->base.scratch_pdp)
1300                         continue;
1301
1302                 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, ppgtt->pml4.pdps[i]);
1303         }
1304
1305         cleanup_px(&ppgtt->base, &ppgtt->pml4);
1306 }
1307
1308 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1309 {
1310         struct drm_i915_private *dev_priv = vm->i915;
1311         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1312
1313         if (intel_vgpu_active(dev_priv))
1314                 gen8_ppgtt_notify_vgt(ppgtt, false);
1315
1316         if (use_4lvl(vm))
1317                 gen8_ppgtt_cleanup_4lvl(ppgtt);
1318         else
1319                 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, &ppgtt->pdp);
1320
1321         gen8_free_scratch(vm);
1322 }
1323
1324 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1325                                struct i915_page_directory *pd,
1326                                u64 start, u64 length)
1327 {
1328         struct i915_page_table *pt;
1329         u64 from = start;
1330         unsigned int pde;
1331
1332         gen8_for_each_pde(pt, pd, start, length, pde) {
1333                 int count = gen8_pte_count(start, length);
1334
1335                 if (pt == vm->scratch_pt) {
1336                         pt = alloc_pt(vm);
1337                         if (IS_ERR(pt))
1338                                 goto unwind;
1339
1340                         if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1341                                 gen8_initialize_pt(vm, pt);
1342
1343                         gen8_ppgtt_set_pde(vm, pd, pt, pde);
1344                         pd->used_pdes++;
1345                         GEM_BUG_ON(pd->used_pdes > I915_PDES);
1346                 }
1347
1348                 pt->used_ptes += count;
1349         }
1350         return 0;
1351
1352 unwind:
1353         gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1354         return -ENOMEM;
1355 }
1356
1357 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1358                                 struct i915_page_directory_pointer *pdp,
1359                                 u64 start, u64 length)
1360 {
1361         struct i915_page_directory *pd;
1362         u64 from = start;
1363         unsigned int pdpe;
1364         int ret;
1365
1366         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1367                 if (pd == vm->scratch_pd) {
1368                         pd = alloc_pd(vm);
1369                         if (IS_ERR(pd))
1370                                 goto unwind;
1371
1372                         gen8_initialize_pd(vm, pd);
1373                         gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1374                         pdp->used_pdpes++;
1375                         GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1376
1377                         mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1378                 }
1379
1380                 ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1381                 if (unlikely(ret))
1382                         goto unwind_pd;
1383         }
1384
1385         return 0;
1386
1387 unwind_pd:
1388         if (!pd->used_pdes) {
1389                 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1390                 GEM_BUG_ON(!pdp->used_pdpes);
1391                 pdp->used_pdpes--;
1392                 free_pd(vm, pd);
1393         }
1394 unwind:
1395         gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1396         return -ENOMEM;
1397 }
1398
1399 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1400                                  u64 start, u64 length)
1401 {
1402         return gen8_ppgtt_alloc_pdp(vm,
1403                                     &i915_vm_to_ppgtt(vm)->pdp, start, length);
1404 }
1405
1406 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1407                                  u64 start, u64 length)
1408 {
1409         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1410         struct i915_pml4 *pml4 = &ppgtt->pml4;
1411         struct i915_page_directory_pointer *pdp;
1412         u64 from = start;
1413         u32 pml4e;
1414         int ret;
1415
1416         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1417                 if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1418                         pdp = alloc_pdp(vm);
1419                         if (IS_ERR(pdp))
1420                                 goto unwind;
1421
1422                         gen8_initialize_pdp(vm, pdp);
1423                         gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1424                 }
1425
1426                 ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1427                 if (unlikely(ret))
1428                         goto unwind_pdp;
1429         }
1430
1431         return 0;
1432
1433 unwind_pdp:
1434         if (!pdp->used_pdpes) {
1435                 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1436                 free_pdp(vm, pdp);
1437         }
1438 unwind:
1439         gen8_ppgtt_clear_4lvl(vm, from, start - from);
1440         return -ENOMEM;
1441 }
1442
1443 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1444                           struct i915_page_directory_pointer *pdp,
1445                           u64 start, u64 length,
1446                           gen8_pte_t scratch_pte,
1447                           struct seq_file *m)
1448 {
1449         struct i915_address_space *vm = &ppgtt->base;
1450         struct i915_page_directory *pd;
1451         u32 pdpe;
1452
1453         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1454                 struct i915_page_table *pt;
1455                 u64 pd_len = length;
1456                 u64 pd_start = start;
1457                 u32 pde;
1458
1459                 if (pdp->page_directory[pdpe] == ppgtt->base.scratch_pd)
1460                         continue;
1461
1462                 seq_printf(m, "\tPDPE #%d\n", pdpe);
1463                 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1464                         u32 pte;
1465                         gen8_pte_t *pt_vaddr;
1466
1467                         if (pd->page_table[pde] == ppgtt->base.scratch_pt)
1468                                 continue;
1469
1470                         pt_vaddr = kmap_atomic_px(pt);
1471                         for (pte = 0; pte < GEN8_PTES; pte += 4) {
1472                                 u64 va = (pdpe << GEN8_PDPE_SHIFT |
1473                                           pde << GEN8_PDE_SHIFT |
1474                                           pte << GEN8_PTE_SHIFT);
1475                                 int i;
1476                                 bool found = false;
1477
1478                                 for (i = 0; i < 4; i++)
1479                                         if (pt_vaddr[pte + i] != scratch_pte)
1480                                                 found = true;
1481                                 if (!found)
1482                                         continue;
1483
1484                                 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1485                                 for (i = 0; i < 4; i++) {
1486                                         if (pt_vaddr[pte + i] != scratch_pte)
1487                                                 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1488                                         else
1489                                                 seq_puts(m, "  SCRATCH ");
1490                                 }
1491                                 seq_puts(m, "\n");
1492                         }
1493                         kunmap_atomic(pt_vaddr);
1494                 }
1495         }
1496 }
1497
1498 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1499 {
1500         struct i915_address_space *vm = &ppgtt->base;
1501         const gen8_pte_t scratch_pte =
1502                 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
1503         u64 start = 0, length = ppgtt->base.total;
1504
1505         if (use_4lvl(vm)) {
1506                 u64 pml4e;
1507                 struct i915_pml4 *pml4 = &ppgtt->pml4;
1508                 struct i915_page_directory_pointer *pdp;
1509
1510                 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1511                         if (pml4->pdps[pml4e] == ppgtt->base.scratch_pdp)
1512                                 continue;
1513
1514                         seq_printf(m, "    PML4E #%llu\n", pml4e);
1515                         gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1516                 }
1517         } else {
1518                 gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1519         }
1520 }
1521
1522 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1523 {
1524         struct i915_address_space *vm = &ppgtt->base;
1525         struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1526         struct i915_page_directory *pd;
1527         u64 start = 0, length = ppgtt->base.total;
1528         u64 from = start;
1529         unsigned int pdpe;
1530
1531         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1532                 pd = alloc_pd(vm);
1533                 if (IS_ERR(pd))
1534                         goto unwind;
1535
1536                 gen8_initialize_pd(vm, pd);
1537                 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1538                 pdp->used_pdpes++;
1539         }
1540
1541         pdp->used_pdpes++; /* never remove */
1542         return 0;
1543
1544 unwind:
1545         start -= from;
1546         gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1547                 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1548                 free_pd(vm, pd);
1549         }
1550         pdp->used_pdpes = 0;
1551         return -ENOMEM;
1552 }
1553
1554 /*
1555  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1556  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1557  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1558  * space.
1559  *
1560  */
1561 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1562 {
1563         struct i915_address_space *vm = &ppgtt->base;
1564         struct drm_i915_private *dev_priv = vm->i915;
1565         int ret;
1566
1567         ppgtt->base.total = USES_FULL_48BIT_PPGTT(dev_priv) ?
1568                 1ULL << 48 :
1569                 1ULL << 32;
1570
1571         /* There are only few exceptions for gen >=6. chv and bxt.
1572          * And we are not sure about the latter so play safe for now.
1573          */
1574         if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
1575                 ppgtt->base.pt_kmap_wc = true;
1576
1577         ret = gen8_init_scratch(&ppgtt->base);
1578         if (ret) {
1579                 ppgtt->base.total = 0;
1580                 return ret;
1581         }
1582
1583         if (use_4lvl(vm)) {
1584                 ret = setup_px(&ppgtt->base, &ppgtt->pml4);
1585                 if (ret)
1586                         goto free_scratch;
1587
1588                 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1589
1590                 ppgtt->switch_mm = gen8_mm_switch_4lvl;
1591                 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1592                 ppgtt->base.insert_entries = gen8_ppgtt_insert_4lvl;
1593                 ppgtt->base.clear_range = gen8_ppgtt_clear_4lvl;
1594         } else {
1595                 ret = __pdp_init(&ppgtt->base, &ppgtt->pdp);
1596                 if (ret)
1597                         goto free_scratch;
1598
1599                 if (intel_vgpu_active(dev_priv)) {
1600                         ret = gen8_preallocate_top_level_pdp(ppgtt);
1601                         if (ret) {
1602                                 __pdp_fini(&ppgtt->pdp);
1603                                 goto free_scratch;
1604                         }
1605                 }
1606
1607                 ppgtt->switch_mm = gen8_mm_switch_3lvl;
1608                 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1609                 ppgtt->base.insert_entries = gen8_ppgtt_insert_3lvl;
1610                 ppgtt->base.clear_range = gen8_ppgtt_clear_3lvl;
1611         }
1612
1613         if (intel_vgpu_active(dev_priv))
1614                 gen8_ppgtt_notify_vgt(ppgtt, true);
1615
1616         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1617         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1618         ppgtt->base.bind_vma = ppgtt_bind_vma;
1619         ppgtt->base.set_pages = ppgtt_set_pages;
1620         ppgtt->base.clear_pages = clear_pages;
1621         ppgtt->debug_dump = gen8_dump_ppgtt;
1622
1623         return 0;
1624
1625 free_scratch:
1626         gen8_free_scratch(&ppgtt->base);
1627         return ret;
1628 }
1629
1630 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1631 {
1632         struct i915_address_space *vm = &ppgtt->base;
1633         struct i915_page_table *unused;
1634         gen6_pte_t scratch_pte;
1635         u32 pd_entry, pte, pde;
1636         u32 start = 0, length = ppgtt->base.total;
1637
1638         scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1639                                      I915_CACHE_LLC, 0);
1640
1641         gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1642                 u32 expected;
1643                 gen6_pte_t *pt_vaddr;
1644                 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1645                 pd_entry = readl(ppgtt->pd_addr + pde);
1646                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1647
1648                 if (pd_entry != expected)
1649                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1650                                    pde,
1651                                    pd_entry,
1652                                    expected);
1653                 seq_printf(m, "\tPDE: %x\n", pd_entry);
1654
1655                 pt_vaddr = kmap_atomic_px(ppgtt->pd.page_table[pde]);
1656
1657                 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1658                         unsigned long va =
1659                                 (pde * PAGE_SIZE * GEN6_PTES) +
1660                                 (pte * PAGE_SIZE);
1661                         int i;
1662                         bool found = false;
1663                         for (i = 0; i < 4; i++)
1664                                 if (pt_vaddr[pte + i] != scratch_pte)
1665                                         found = true;
1666                         if (!found)
1667                                 continue;
1668
1669                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1670                         for (i = 0; i < 4; i++) {
1671                                 if (pt_vaddr[pte + i] != scratch_pte)
1672                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
1673                                 else
1674                                         seq_puts(m, "  SCRATCH ");
1675                         }
1676                         seq_puts(m, "\n");
1677                 }
1678                 kunmap_atomic(pt_vaddr);
1679         }
1680 }
1681
1682 /* Write pde (index) from the page directory @pd to the page table @pt */
1683 static inline void gen6_write_pde(const struct i915_hw_ppgtt *ppgtt,
1684                                   const unsigned int pde,
1685                                   const struct i915_page_table *pt)
1686 {
1687         /* Caller needs to make sure the write completes if necessary */
1688         writel_relaxed(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1689                        ppgtt->pd_addr + pde);
1690 }
1691
1692 /* Write all the page tables found in the ppgtt structure to incrementing page
1693  * directories. */
1694 static void gen6_write_page_range(struct i915_hw_ppgtt *ppgtt,
1695                                   u32 start, u32 length)
1696 {
1697         struct i915_page_table *pt;
1698         unsigned int pde;
1699
1700         gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde)
1701                 gen6_write_pde(ppgtt, pde, pt);
1702
1703         mark_tlbs_dirty(ppgtt);
1704         wmb();
1705 }
1706
1707 static inline u32 get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1708 {
1709         GEM_BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1710         return ppgtt->pd.base.ggtt_offset << 10;
1711 }
1712
1713 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1714                          struct drm_i915_gem_request *req)
1715 {
1716         struct intel_engine_cs *engine = req->engine;
1717         u32 *cs;
1718
1719         /* NB: TLBs must be flushed and invalidated before a switch */
1720         cs = intel_ring_begin(req, 6);
1721         if (IS_ERR(cs))
1722                 return PTR_ERR(cs);
1723
1724         *cs++ = MI_LOAD_REGISTER_IMM(2);
1725         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1726         *cs++ = PP_DIR_DCLV_2G;
1727         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1728         *cs++ = get_pd_offset(ppgtt);
1729         *cs++ = MI_NOOP;
1730         intel_ring_advance(req, cs);
1731
1732         return 0;
1733 }
1734
1735 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1736                           struct drm_i915_gem_request *req)
1737 {
1738         struct intel_engine_cs *engine = req->engine;
1739         u32 *cs;
1740
1741         /* NB: TLBs must be flushed and invalidated before a switch */
1742         cs = intel_ring_begin(req, 6);
1743         if (IS_ERR(cs))
1744                 return PTR_ERR(cs);
1745
1746         *cs++ = MI_LOAD_REGISTER_IMM(2);
1747         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1748         *cs++ = PP_DIR_DCLV_2G;
1749         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1750         *cs++ = get_pd_offset(ppgtt);
1751         *cs++ = MI_NOOP;
1752         intel_ring_advance(req, cs);
1753
1754         return 0;
1755 }
1756
1757 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1758                           struct drm_i915_gem_request *req)
1759 {
1760         struct intel_engine_cs *engine = req->engine;
1761         struct drm_i915_private *dev_priv = req->i915;
1762
1763         I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1764         I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1765         return 0;
1766 }
1767
1768 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1769 {
1770         struct intel_engine_cs *engine;
1771         enum intel_engine_id id;
1772
1773         for_each_engine(engine, dev_priv, id) {
1774                 u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1775                                  GEN8_GFX_PPGTT_48B : 0;
1776                 I915_WRITE(RING_MODE_GEN7(engine),
1777                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1778         }
1779 }
1780
1781 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1782 {
1783         struct intel_engine_cs *engine;
1784         u32 ecochk, ecobits;
1785         enum intel_engine_id id;
1786
1787         ecobits = I915_READ(GAC_ECO_BITS);
1788         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1789
1790         ecochk = I915_READ(GAM_ECOCHK);
1791         if (IS_HASWELL(dev_priv)) {
1792                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1793         } else {
1794                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1795                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1796         }
1797         I915_WRITE(GAM_ECOCHK, ecochk);
1798
1799         for_each_engine(engine, dev_priv, id) {
1800                 /* GFX_MODE is per-ring on gen7+ */
1801                 I915_WRITE(RING_MODE_GEN7(engine),
1802                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1803         }
1804 }
1805
1806 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1807 {
1808         u32 ecochk, gab_ctl, ecobits;
1809
1810         ecobits = I915_READ(GAC_ECO_BITS);
1811         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1812                    ECOBITS_PPGTT_CACHE64B);
1813
1814         gab_ctl = I915_READ(GAB_CTL);
1815         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1816
1817         ecochk = I915_READ(GAM_ECOCHK);
1818         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1819
1820         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1821 }
1822
1823 /* PPGTT support for Sandybdrige/Gen6 and later */
1824 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1825                                    u64 start, u64 length)
1826 {
1827         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1828         unsigned int first_entry = start >> PAGE_SHIFT;
1829         unsigned int pde = first_entry / GEN6_PTES;
1830         unsigned int pte = first_entry % GEN6_PTES;
1831         unsigned int num_entries = length >> PAGE_SHIFT;
1832         gen6_pte_t scratch_pte =
1833                 vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1834
1835         while (num_entries) {
1836                 struct i915_page_table *pt = ppgtt->pd.page_table[pde++];
1837                 unsigned int end = min(pte + num_entries, GEN6_PTES);
1838                 gen6_pte_t *vaddr;
1839
1840                 num_entries -= end - pte;
1841
1842                 /* Note that the hw doesn't support removing PDE on the fly
1843                  * (they are cached inside the context with no means to
1844                  * invalidate the cache), so we can only reset the PTE
1845                  * entries back to scratch.
1846                  */
1847
1848                 vaddr = kmap_atomic_px(pt);
1849                 do {
1850                         vaddr[pte++] = scratch_pte;
1851                 } while (pte < end);
1852                 kunmap_atomic(vaddr);
1853
1854                 pte = 0;
1855         }
1856 }
1857
1858 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1859                                       struct i915_vma *vma,
1860                                       enum i915_cache_level cache_level,
1861                                       u32 flags)
1862 {
1863         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1864         unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1865         unsigned act_pt = first_entry / GEN6_PTES;
1866         unsigned act_pte = first_entry % GEN6_PTES;
1867         const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1868         struct sgt_dma iter = sgt_dma(vma);
1869         gen6_pte_t *vaddr;
1870
1871         vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1872         do {
1873                 vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1874
1875                 iter.dma += PAGE_SIZE;
1876                 if (iter.dma == iter.max) {
1877                         iter.sg = __sg_next(iter.sg);
1878                         if (!iter.sg)
1879                                 break;
1880
1881                         iter.dma = sg_dma_address(iter.sg);
1882                         iter.max = iter.dma + iter.sg->length;
1883                 }
1884
1885                 if (++act_pte == GEN6_PTES) {
1886                         kunmap_atomic(vaddr);
1887                         vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1888                         act_pte = 0;
1889                 }
1890         } while (1);
1891         kunmap_atomic(vaddr);
1892
1893         vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1894 }
1895
1896 static int gen6_alloc_va_range(struct i915_address_space *vm,
1897                                u64 start, u64 length)
1898 {
1899         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1900         struct i915_page_table *pt;
1901         u64 from = start;
1902         unsigned int pde;
1903         bool flush = false;
1904
1905         gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1906                 if (pt == vm->scratch_pt) {
1907                         pt = alloc_pt(vm);
1908                         if (IS_ERR(pt))
1909                                 goto unwind_out;
1910
1911                         gen6_initialize_pt(vm, pt);
1912                         ppgtt->pd.page_table[pde] = pt;
1913                         gen6_write_pde(ppgtt, pde, pt);
1914                         flush = true;
1915                 }
1916         }
1917
1918         if (flush) {
1919                 mark_tlbs_dirty(ppgtt);
1920                 wmb();
1921         }
1922
1923         return 0;
1924
1925 unwind_out:
1926         gen6_ppgtt_clear_range(vm, from, start);
1927         return -ENOMEM;
1928 }
1929
1930 static int gen6_init_scratch(struct i915_address_space *vm)
1931 {
1932         int ret;
1933
1934         ret = setup_scratch_page(vm, I915_GFP_DMA);
1935         if (ret)
1936                 return ret;
1937
1938         vm->scratch_pt = alloc_pt(vm);
1939         if (IS_ERR(vm->scratch_pt)) {
1940                 cleanup_scratch_page(vm);
1941                 return PTR_ERR(vm->scratch_pt);
1942         }
1943
1944         gen6_initialize_pt(vm, vm->scratch_pt);
1945
1946         return 0;
1947 }
1948
1949 static void gen6_free_scratch(struct i915_address_space *vm)
1950 {
1951         free_pt(vm, vm->scratch_pt);
1952         cleanup_scratch_page(vm);
1953 }
1954
1955 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1956 {
1957         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1958         struct i915_page_directory *pd = &ppgtt->pd;
1959         struct i915_page_table *pt;
1960         u32 pde;
1961
1962         drm_mm_remove_node(&ppgtt->node);
1963
1964         gen6_for_all_pdes(pt, pd, pde)
1965                 if (pt != vm->scratch_pt)
1966                         free_pt(vm, pt);
1967
1968         gen6_free_scratch(vm);
1969 }
1970
1971 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1972 {
1973         struct i915_address_space *vm = &ppgtt->base;
1974         struct drm_i915_private *dev_priv = ppgtt->base.i915;
1975         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1976         int ret;
1977
1978         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1979          * allocator works in address space sizes, so it's multiplied by page
1980          * size. We allocate at the top of the GTT to avoid fragmentation.
1981          */
1982         BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
1983
1984         ret = gen6_init_scratch(vm);
1985         if (ret)
1986                 return ret;
1987
1988         ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node,
1989                                   GEN6_PD_SIZE, GEN6_PD_ALIGN,
1990                                   I915_COLOR_UNEVICTABLE,
1991                                   0, ggtt->base.total,
1992                                   PIN_HIGH);
1993         if (ret)
1994                 goto err_out;
1995
1996         if (ppgtt->node.start < ggtt->mappable_end)
1997                 DRM_DEBUG("Forced to use aperture for PDEs\n");
1998
1999         ppgtt->pd.base.ggtt_offset =
2000                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2001
2002         ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2003                 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2004
2005         return 0;
2006
2007 err_out:
2008         gen6_free_scratch(vm);
2009         return ret;
2010 }
2011
2012 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2013 {
2014         return gen6_ppgtt_allocate_page_directories(ppgtt);
2015 }
2016
2017 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2018                                   u64 start, u64 length)
2019 {
2020         struct i915_page_table *unused;
2021         u32 pde;
2022
2023         gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2024                 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2025 }
2026
2027 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2028 {
2029         struct drm_i915_private *dev_priv = ppgtt->base.i915;
2030         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2031         int ret;
2032
2033         ppgtt->base.pte_encode = ggtt->base.pte_encode;
2034         if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
2035                 ppgtt->switch_mm = gen6_mm_switch;
2036         else if (IS_HASWELL(dev_priv))
2037                 ppgtt->switch_mm = hsw_mm_switch;
2038         else if (IS_GEN7(dev_priv))
2039                 ppgtt->switch_mm = gen7_mm_switch;
2040         else
2041                 BUG();
2042
2043         ret = gen6_ppgtt_alloc(ppgtt);
2044         if (ret)
2045                 return ret;
2046
2047         ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2048
2049         gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2050         gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
2051
2052         ret = gen6_alloc_va_range(&ppgtt->base, 0, ppgtt->base.total);
2053         if (ret) {
2054                 gen6_ppgtt_cleanup(&ppgtt->base);
2055                 return ret;
2056         }
2057
2058         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2059         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2060         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2061         ppgtt->base.bind_vma = ppgtt_bind_vma;
2062         ppgtt->base.set_pages = ppgtt_set_pages;
2063         ppgtt->base.clear_pages = clear_pages;
2064         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2065         ppgtt->debug_dump = gen6_dump_ppgtt;
2066
2067         DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2068                          ppgtt->node.size >> 20,
2069                          ppgtt->node.start / PAGE_SIZE);
2070
2071         DRM_DEBUG_DRIVER("Adding PPGTT at offset %x\n",
2072                          ppgtt->pd.base.ggtt_offset << 10);
2073
2074         return 0;
2075 }
2076
2077 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2078                            struct drm_i915_private *dev_priv)
2079 {
2080         ppgtt->base.i915 = dev_priv;
2081         ppgtt->base.dma = &dev_priv->drm.pdev->dev;
2082
2083         if (INTEL_INFO(dev_priv)->gen < 8)
2084                 return gen6_ppgtt_init(ppgtt);
2085         else
2086                 return gen8_ppgtt_init(ppgtt);
2087 }
2088
2089 static void i915_address_space_init(struct i915_address_space *vm,
2090                                     struct drm_i915_private *dev_priv,
2091                                     const char *name)
2092 {
2093         i915_gem_timeline_init(dev_priv, &vm->timeline, name);
2094
2095         drm_mm_init(&vm->mm, 0, vm->total);
2096         vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
2097
2098         INIT_LIST_HEAD(&vm->active_list);
2099         INIT_LIST_HEAD(&vm->inactive_list);
2100         INIT_LIST_HEAD(&vm->unbound_list);
2101
2102         list_add_tail(&vm->global_link, &dev_priv->vm_list);
2103         pagevec_init(&vm->free_pages);
2104 }
2105
2106 static void i915_address_space_fini(struct i915_address_space *vm)
2107 {
2108         if (pagevec_count(&vm->free_pages))
2109                 vm_free_pages_release(vm, true);
2110
2111         i915_gem_timeline_fini(&vm->timeline);
2112         drm_mm_takedown(&vm->mm);
2113         list_del(&vm->global_link);
2114 }
2115
2116 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2117 {
2118         /* This function is for gtt related workarounds. This function is
2119          * called on driver load and after a GPU reset, so you can place
2120          * workarounds here even if they get overwritten by GPU reset.
2121          */
2122         /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl */
2123         if (IS_BROADWELL(dev_priv))
2124                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2125         else if (IS_CHERRYVIEW(dev_priv))
2126                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2127         else if (IS_GEN9_BC(dev_priv) || IS_GEN10(dev_priv))
2128                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2129         else if (IS_GEN9_LP(dev_priv))
2130                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2131
2132         /*
2133          * To support 64K PTEs we need to first enable the use of the
2134          * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2135          * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2136          * shouldn't be needed after GEN10.
2137          *
2138          * 64K pages were first introduced from BDW+, although technically they
2139          * only *work* from gen9+. For pre-BDW we instead have the option for
2140          * 32K pages, but we don't currently have any support for it in our
2141          * driver.
2142          */
2143         if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
2144             INTEL_GEN(dev_priv) <= 10)
2145                 I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
2146                            I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
2147                            GAMW_ECO_ENABLE_64K_IPS_FIELD);
2148 }
2149
2150 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2151 {
2152         gtt_write_workarounds(dev_priv);
2153
2154         /* In the case of execlists, PPGTT is enabled by the context descriptor
2155          * and the PDPs are contained within the context itself.  We don't
2156          * need to do anything here. */
2157         if (i915_modparams.enable_execlists)
2158                 return 0;
2159
2160         if (!USES_PPGTT(dev_priv))
2161                 return 0;
2162
2163         if (IS_GEN6(dev_priv))
2164                 gen6_ppgtt_enable(dev_priv);
2165         else if (IS_GEN7(dev_priv))
2166                 gen7_ppgtt_enable(dev_priv);
2167         else if (INTEL_GEN(dev_priv) >= 8)
2168                 gen8_ppgtt_enable(dev_priv);
2169         else
2170                 MISSING_CASE(INTEL_GEN(dev_priv));
2171
2172         return 0;
2173 }
2174
2175 struct i915_hw_ppgtt *
2176 i915_ppgtt_create(struct drm_i915_private *dev_priv,
2177                   struct drm_i915_file_private *fpriv,
2178                   const char *name)
2179 {
2180         struct i915_hw_ppgtt *ppgtt;
2181         int ret;
2182
2183         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2184         if (!ppgtt)
2185                 return ERR_PTR(-ENOMEM);
2186
2187         ret = __hw_ppgtt_init(ppgtt, dev_priv);
2188         if (ret) {
2189                 kfree(ppgtt);
2190                 return ERR_PTR(ret);
2191         }
2192
2193         kref_init(&ppgtt->ref);
2194         i915_address_space_init(&ppgtt->base, dev_priv, name);
2195         ppgtt->base.file = fpriv;
2196
2197         trace_i915_ppgtt_create(&ppgtt->base);
2198
2199         return ppgtt;
2200 }
2201
2202 void i915_ppgtt_close(struct i915_address_space *vm)
2203 {
2204         struct list_head *phases[] = {
2205                 &vm->active_list,
2206                 &vm->inactive_list,
2207                 &vm->unbound_list,
2208                 NULL,
2209         }, **phase;
2210
2211         GEM_BUG_ON(vm->closed);
2212         vm->closed = true;
2213
2214         for (phase = phases; *phase; phase++) {
2215                 struct i915_vma *vma, *vn;
2216
2217                 list_for_each_entry_safe(vma, vn, *phase, vm_link)
2218                         if (!i915_vma_is_closed(vma))
2219                                 i915_vma_close(vma);
2220         }
2221 }
2222
2223 void i915_ppgtt_release(struct kref *kref)
2224 {
2225         struct i915_hw_ppgtt *ppgtt =
2226                 container_of(kref, struct i915_hw_ppgtt, ref);
2227
2228         trace_i915_ppgtt_release(&ppgtt->base);
2229
2230         /* vmas should already be unbound and destroyed */
2231         WARN_ON(!list_empty(&ppgtt->base.active_list));
2232         WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2233         WARN_ON(!list_empty(&ppgtt->base.unbound_list));
2234
2235         ppgtt->base.cleanup(&ppgtt->base);
2236         i915_address_space_fini(&ppgtt->base);
2237         kfree(ppgtt);
2238 }
2239
2240 /* Certain Gen5 chipsets require require idling the GPU before
2241  * unmapping anything from the GTT when VT-d is enabled.
2242  */
2243 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2244 {
2245         /* Query intel_iommu to see if we need the workaround. Presumably that
2246          * was loaded first.
2247          */
2248         return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2249 }
2250
2251 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2252 {
2253         struct intel_engine_cs *engine;
2254         enum intel_engine_id id;
2255
2256         if (INTEL_INFO(dev_priv)->gen < 6)
2257                 return;
2258
2259         for_each_engine(engine, dev_priv, id) {
2260                 u32 fault_reg;
2261                 fault_reg = I915_READ(RING_FAULT_REG(engine));
2262                 if (fault_reg & RING_FAULT_VALID) {
2263                         DRM_DEBUG_DRIVER("Unexpected fault\n"
2264                                          "\tAddr: 0x%08ux\n"
2265                                          "\tAddress space: %s\n"
2266                                          "\tSource ID: %d\n"
2267                                          "\tType: %d\n",
2268                                          fault_reg & LINUX_PAGE_MASK,
2269                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2270                                          RING_FAULT_SRCID(fault_reg),
2271                                          RING_FAULT_FAULT_TYPE(fault_reg));
2272                         I915_WRITE(RING_FAULT_REG(engine),
2273                                    fault_reg & ~RING_FAULT_VALID);
2274                 }
2275         }
2276
2277         /* Engine specific init may not have been done till this point. */
2278         if (dev_priv->engine[RCS])
2279                 POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2280 }
2281
2282 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2283 {
2284         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2285
2286         /* Don't bother messing with faults pre GEN6 as we have little
2287          * documentation supporting that it's a good idea.
2288          */
2289         if (INTEL_GEN(dev_priv) < 6)
2290                 return;
2291
2292         i915_check_and_clear_faults(dev_priv);
2293
2294         ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
2295
2296         i915_ggtt_invalidate(dev_priv);
2297 }
2298
2299 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2300                                struct sg_table *pages)
2301 {
2302         do {
2303                 if (dma_map_sg(&obj->base.dev->pdev->dev,
2304                                pages->sgl, pages->nents,
2305                                PCI_DMA_BIDIRECTIONAL))
2306                         return 0;
2307
2308                 /* If the DMA remap fails, one cause can be that we have
2309                  * too many objects pinned in a small remapping table,
2310                  * such as swiotlb. Incrementally purge all other objects and
2311                  * try again - if there are no more pages to remove from
2312                  * the DMA remapper, i915_gem_shrink will return 0.
2313                  */
2314                 GEM_BUG_ON(obj->mm.pages == pages);
2315         } while (i915_gem_shrink(to_i915(obj->base.dev),
2316                                  obj->base.size >> PAGE_SHIFT, NULL,
2317                                  I915_SHRINK_BOUND |
2318                                  I915_SHRINK_UNBOUND |
2319                                  I915_SHRINK_ACTIVE));
2320
2321         return -ENOSPC;
2322 }
2323
2324 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2325 {
2326         writeq(pte, addr);
2327 }
2328
2329 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2330                                   dma_addr_t addr,
2331                                   u64 offset,
2332                                   enum i915_cache_level level,
2333                                   u32 unused)
2334 {
2335         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2336         gen8_pte_t __iomem *pte =
2337                 (gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2338
2339         gen8_set_pte(pte, gen8_pte_encode(addr, level));
2340
2341         ggtt->invalidate(vm->i915);
2342 }
2343
2344 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2345                                      struct i915_vma *vma,
2346                                      enum i915_cache_level level,
2347                                      u32 unused)
2348 {
2349         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2350         struct sgt_iter sgt_iter;
2351         gen8_pte_t __iomem *gtt_entries;
2352         const gen8_pte_t pte_encode = gen8_pte_encode(0, level);
2353         dma_addr_t addr;
2354
2355         gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2356         gtt_entries += vma->node.start >> PAGE_SHIFT;
2357         for_each_sgt_dma(addr, sgt_iter, vma->pages)
2358                 gen8_set_pte(gtt_entries++, pte_encode | addr);
2359
2360         wmb();
2361
2362         /* This next bit makes the above posting read even more important. We
2363          * want to flush the TLBs only after we're certain all the PTE updates
2364          * have finished.
2365          */
2366         ggtt->invalidate(vm->i915);
2367 }
2368
2369 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2370                                   dma_addr_t addr,
2371                                   u64 offset,
2372                                   enum i915_cache_level level,
2373                                   u32 flags)
2374 {
2375         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2376         gen6_pte_t __iomem *pte =
2377                 (gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2378
2379         iowrite32(vm->pte_encode(addr, level, flags), pte);
2380
2381         ggtt->invalidate(vm->i915);
2382 }
2383
2384 /*
2385  * Binds an object into the global gtt with the specified cache level. The object
2386  * will be accessible to the GPU via commands whose operands reference offsets
2387  * within the global GTT as well as accessible by the GPU through the GMADR
2388  * mapped BAR (dev_priv->mm.gtt->gtt).
2389  */
2390 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2391                                      struct i915_vma *vma,
2392                                      enum i915_cache_level level,
2393                                      u32 flags)
2394 {
2395         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2396         gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2397         unsigned int i = vma->node.start >> PAGE_SHIFT;
2398         struct sgt_iter iter;
2399         dma_addr_t addr;
2400         for_each_sgt_dma(addr, iter, vma->pages)
2401                 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2402         wmb();
2403
2404         /* This next bit makes the above posting read even more important. We
2405          * want to flush the TLBs only after we're certain all the PTE updates
2406          * have finished.
2407          */
2408         ggtt->invalidate(vm->i915);
2409 }
2410
2411 static void nop_clear_range(struct i915_address_space *vm,
2412                             u64 start, u64 length)
2413 {
2414 }
2415
2416 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2417                                   u64 start, u64 length)
2418 {
2419         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2420         unsigned first_entry = start >> PAGE_SHIFT;
2421         unsigned num_entries = length >> PAGE_SHIFT;
2422         const gen8_pte_t scratch_pte =
2423                 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
2424         gen8_pte_t __iomem *gtt_base =
2425                 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2426         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2427         int i;
2428
2429         if (WARN(num_entries > max_entries,
2430                  "First entry = %d; Num entries = %d (max=%d)\n",
2431                  first_entry, num_entries, max_entries))
2432                 num_entries = max_entries;
2433
2434         for (i = 0; i < num_entries; i++)
2435                 gen8_set_pte(&gtt_base[i], scratch_pte);
2436 }
2437
2438 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2439 {
2440         struct drm_i915_private *dev_priv = vm->i915;
2441
2442         /*
2443          * Make sure the internal GAM fifo has been cleared of all GTT
2444          * writes before exiting stop_machine(). This guarantees that
2445          * any aperture accesses waiting to start in another process
2446          * cannot back up behind the GTT writes causing a hang.
2447          * The register can be any arbitrary GAM register.
2448          */
2449         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2450 }
2451
2452 struct insert_page {
2453         struct i915_address_space *vm;
2454         dma_addr_t addr;
2455         u64 offset;
2456         enum i915_cache_level level;
2457 };
2458
2459 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2460 {
2461         struct insert_page *arg = _arg;
2462
2463         gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2464         bxt_vtd_ggtt_wa(arg->vm);
2465
2466         return 0;
2467 }
2468
2469 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2470                                           dma_addr_t addr,
2471                                           u64 offset,
2472                                           enum i915_cache_level level,
2473                                           u32 unused)
2474 {
2475         struct insert_page arg = { vm, addr, offset, level };
2476
2477         stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2478 }
2479
2480 struct insert_entries {
2481         struct i915_address_space *vm;
2482         struct i915_vma *vma;
2483         enum i915_cache_level level;
2484 };
2485
2486 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2487 {
2488         struct insert_entries *arg = _arg;
2489
2490         gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, 0);
2491         bxt_vtd_ggtt_wa(arg->vm);
2492
2493         return 0;
2494 }
2495
2496 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2497                                              struct i915_vma *vma,
2498                                              enum i915_cache_level level,
2499                                              u32 unused)
2500 {
2501         struct insert_entries arg = { vm, vma, level };
2502
2503         stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2504 }
2505
2506 struct clear_range {
2507         struct i915_address_space *vm;
2508         u64 start;
2509         u64 length;
2510 };
2511
2512 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2513 {
2514         struct clear_range *arg = _arg;
2515
2516         gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2517         bxt_vtd_ggtt_wa(arg->vm);
2518
2519         return 0;
2520 }
2521
2522 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2523                                           u64 start,
2524                                           u64 length)
2525 {
2526         struct clear_range arg = { vm, start, length };
2527
2528         stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2529 }
2530
2531 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2532                                   u64 start, u64 length)
2533 {
2534         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2535         unsigned first_entry = start >> PAGE_SHIFT;
2536         unsigned num_entries = length >> PAGE_SHIFT;
2537         gen6_pte_t scratch_pte, __iomem *gtt_base =
2538                 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2539         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2540         int i;
2541
2542         if (WARN(num_entries > max_entries,
2543                  "First entry = %d; Num entries = %d (max=%d)\n",
2544                  first_entry, num_entries, max_entries))
2545                 num_entries = max_entries;
2546
2547         scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2548                                      I915_CACHE_LLC, 0);
2549
2550         for (i = 0; i < num_entries; i++)
2551                 iowrite32(scratch_pte, &gtt_base[i]);
2552 }
2553
2554 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2555                                   dma_addr_t addr,
2556                                   u64 offset,
2557                                   enum i915_cache_level cache_level,
2558                                   u32 unused)
2559 {
2560         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2561                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2562
2563         intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2564 }
2565
2566 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2567                                      struct i915_vma *vma,
2568                                      enum i915_cache_level cache_level,
2569                                      u32 unused)
2570 {
2571         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2572                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2573
2574         intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2575                                     flags);
2576 }
2577
2578 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2579                                   u64 start, u64 length)
2580 {
2581         intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2582 }
2583
2584 static int ggtt_bind_vma(struct i915_vma *vma,
2585                          enum i915_cache_level cache_level,
2586                          u32 flags)
2587 {
2588         struct drm_i915_private *i915 = vma->vm->i915;
2589         struct drm_i915_gem_object *obj = vma->obj;
2590         u32 pte_flags;
2591
2592         /* Currently applicable only to VLV */
2593         pte_flags = 0;
2594         if (obj->gt_ro)
2595                 pte_flags |= PTE_READ_ONLY;
2596
2597         intel_runtime_pm_get(i915);
2598         vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2599         intel_runtime_pm_put(i915);
2600
2601         vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2602
2603         /*
2604          * Without aliasing PPGTT there's no difference between
2605          * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2606          * upgrade to both bound if we bind either to avoid double-binding.
2607          */
2608         vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2609
2610         return 0;
2611 }
2612
2613 static void ggtt_unbind_vma(struct i915_vma *vma)
2614 {
2615         struct drm_i915_private *i915 = vma->vm->i915;
2616
2617         intel_runtime_pm_get(i915);
2618         vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2619         intel_runtime_pm_put(i915);
2620 }
2621
2622 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2623                                  enum i915_cache_level cache_level,
2624                                  u32 flags)
2625 {
2626         struct drm_i915_private *i915 = vma->vm->i915;
2627         u32 pte_flags;
2628         int ret;
2629
2630         /* Currently applicable only to VLV */
2631         pte_flags = 0;
2632         if (vma->obj->gt_ro)
2633                 pte_flags |= PTE_READ_ONLY;
2634
2635         if (flags & I915_VMA_LOCAL_BIND) {
2636                 struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2637
2638                 if (!(vma->flags & I915_VMA_LOCAL_BIND) &&
2639                     appgtt->base.allocate_va_range) {
2640                         ret = appgtt->base.allocate_va_range(&appgtt->base,
2641                                                              vma->node.start,
2642                                                              vma->size);
2643                         if (ret)
2644                                 return ret;
2645                 }
2646
2647                 appgtt->base.insert_entries(&appgtt->base, vma, cache_level,
2648                                             pte_flags);
2649         }
2650
2651         if (flags & I915_VMA_GLOBAL_BIND) {
2652                 intel_runtime_pm_get(i915);
2653                 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2654                 intel_runtime_pm_put(i915);
2655         }
2656
2657         return 0;
2658 }
2659
2660 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2661 {
2662         struct drm_i915_private *i915 = vma->vm->i915;
2663
2664         if (vma->flags & I915_VMA_GLOBAL_BIND) {
2665                 intel_runtime_pm_get(i915);
2666                 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2667                 intel_runtime_pm_put(i915);
2668         }
2669
2670         if (vma->flags & I915_VMA_LOCAL_BIND) {
2671                 struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->base;
2672
2673                 vm->clear_range(vm, vma->node.start, vma->size);
2674         }
2675 }
2676
2677 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2678                                struct sg_table *pages)
2679 {
2680         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2681         struct device *kdev = &dev_priv->drm.pdev->dev;
2682         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2683
2684         if (unlikely(ggtt->do_idle_maps)) {
2685                 if (i915_gem_wait_for_idle(dev_priv, 0)) {
2686                         DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2687                         /* Wait a bit, in hopes it avoids the hang */
2688                         udelay(10);
2689                 }
2690         }
2691
2692         dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2693 }
2694
2695 static int ggtt_set_pages(struct i915_vma *vma)
2696 {
2697         int ret;
2698
2699         GEM_BUG_ON(vma->pages);
2700
2701         ret = i915_get_ggtt_vma_pages(vma);
2702         if (ret)
2703                 return ret;
2704
2705         vma->page_sizes = vma->obj->mm.page_sizes;
2706
2707         return 0;
2708 }
2709
2710 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2711                                   unsigned long color,
2712                                   u64 *start,
2713                                   u64 *end)
2714 {
2715         if (node->allocated && node->color != color)
2716                 *start += I915_GTT_PAGE_SIZE;
2717
2718         /* Also leave a space between the unallocated reserved node after the
2719          * GTT and any objects within the GTT, i.e. we use the color adjustment
2720          * to insert a guard page to prevent prefetches crossing over the
2721          * GTT boundary.
2722          */
2723         node = list_next_entry(node, node_list);
2724         if (node->color != color)
2725                 *end -= I915_GTT_PAGE_SIZE;
2726 }
2727
2728 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2729 {
2730         struct i915_ggtt *ggtt = &i915->ggtt;
2731         struct i915_hw_ppgtt *ppgtt;
2732         int err;
2733
2734         ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]");
2735         if (IS_ERR(ppgtt))
2736                 return PTR_ERR(ppgtt);
2737
2738         if (WARN_ON(ppgtt->base.total < ggtt->base.total)) {
2739                 err = -ENODEV;
2740                 goto err_ppgtt;
2741         }
2742
2743         if (ppgtt->base.allocate_va_range) {
2744                 /* Note we only pre-allocate as far as the end of the global
2745                  * GTT. On 48b / 4-level page-tables, the difference is very,
2746                  * very significant! We have to preallocate as GVT/vgpu does
2747                  * not like the page directory disappearing.
2748                  */
2749                 err = ppgtt->base.allocate_va_range(&ppgtt->base,
2750                                                     0, ggtt->base.total);
2751                 if (err)
2752                         goto err_ppgtt;
2753         }
2754
2755         i915->mm.aliasing_ppgtt = ppgtt;
2756
2757         WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2758         ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2759
2760         WARN_ON(ggtt->base.unbind_vma != ggtt_unbind_vma);
2761         ggtt->base.unbind_vma = aliasing_gtt_unbind_vma;
2762
2763         return 0;
2764
2765 err_ppgtt:
2766         i915_ppgtt_put(ppgtt);
2767         return err;
2768 }
2769
2770 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2771 {
2772         struct i915_ggtt *ggtt = &i915->ggtt;
2773         struct i915_hw_ppgtt *ppgtt;
2774
2775         ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2776         if (!ppgtt)
2777                 return;
2778
2779         i915_ppgtt_put(ppgtt);
2780
2781         ggtt->base.bind_vma = ggtt_bind_vma;
2782         ggtt->base.unbind_vma = ggtt_unbind_vma;
2783 }
2784
2785 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2786 {
2787         /* Let GEM Manage all of the aperture.
2788          *
2789          * However, leave one page at the end still bound to the scratch page.
2790          * There are a number of places where the hardware apparently prefetches
2791          * past the end of the object, and we've seen multiple hangs with the
2792          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2793          * aperture.  One page should be enough to keep any prefetching inside
2794          * of the aperture.
2795          */
2796         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2797         unsigned long hole_start, hole_end;
2798         struct drm_mm_node *entry;
2799         int ret;
2800         unsigned long mappable = min(ggtt->base.total, ggtt->mappable_end);
2801
2802         ret = intel_vgt_balloon(dev_priv);
2803         if (ret)
2804                 return ret;
2805
2806         /* Reserve a mappable slot for our lockless error capture */
2807         ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture,
2808                                           PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2809                                           0, ggtt->mappable_end,
2810                                           DRM_MM_INSERT_LOW);
2811         if (ret)
2812                 return ret;
2813
2814         /* Clear any non-preallocated blocks */
2815         drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2816                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2817                               hole_start, hole_end);
2818                 ggtt->base.clear_range(&ggtt->base, hole_start,
2819                                        hole_end - hole_start);
2820         }
2821
2822 #ifdef __DragonFly__
2823         DRM_INFO("taking over the fictitious range 0x%llx-0x%llx\n",
2824             dev_priv->ggtt.mappable_base, dev_priv->ggtt.mappable_end);
2825         vm_phys_fictitious_reg_range(dev_priv->ggtt.mappable_base,
2826              dev_priv->ggtt.mappable_base + mappable, VM_MEMATTR_WRITE_COMBINING);
2827 #endif
2828
2829         /* And finally clear the reserved guard page */
2830         ggtt->base.clear_range(&ggtt->base,
2831                                ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2832
2833         if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2834                 ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2835                 if (ret)
2836                         goto err;
2837         }
2838
2839         return 0;
2840
2841 err:
2842         drm_mm_remove_node(&ggtt->error_capture);
2843         return ret;
2844 }
2845
2846 /**
2847  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2848  * @dev_priv: i915 device
2849  */
2850 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2851 {
2852         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2853         struct i915_vma *vma, *vn;
2854         struct pagevec *pvec;
2855
2856         ggtt->base.closed = true;
2857
2858         mutex_lock(&dev_priv->drm.struct_mutex);
2859         WARN_ON(!list_empty(&ggtt->base.active_list));
2860         list_for_each_entry_safe(vma, vn, &ggtt->base.inactive_list, vm_link)
2861                 WARN_ON(i915_vma_unbind(vma));
2862         mutex_unlock(&dev_priv->drm.struct_mutex);
2863
2864         i915_gem_cleanup_stolen(&dev_priv->drm);
2865
2866         mutex_lock(&dev_priv->drm.struct_mutex);
2867         i915_gem_fini_aliasing_ppgtt(dev_priv);
2868
2869         if (drm_mm_node_allocated(&ggtt->error_capture))
2870                 drm_mm_remove_node(&ggtt->error_capture);
2871
2872         if (drm_mm_initialized(&ggtt->base.mm)) {
2873                 intel_vgt_deballoon(dev_priv);
2874                 i915_address_space_fini(&ggtt->base);
2875         }
2876
2877         ggtt->base.cleanup(&ggtt->base);
2878
2879         pvec = &dev_priv->mm.wc_stash;
2880         if (pvec->nr) {
2881                 set_pages_array_wb(pvec->pages, pvec->nr);
2882                 __pagevec_release(pvec);
2883         }
2884
2885         mutex_unlock(&dev_priv->drm.struct_mutex);
2886
2887         arch_phys_wc_del(ggtt->mtrr);
2888         io_mapping_fini(&ggtt->mappable);
2889 }
2890
2891 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2892 {
2893         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2894         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2895         return snb_gmch_ctl << 20;
2896 }
2897
2898 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2899 {
2900         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2901         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2902         if (bdw_gmch_ctl)
2903                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2904
2905 #ifdef CONFIG_X86_32
2906         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2907         if (bdw_gmch_ctl > 4)
2908                 bdw_gmch_ctl = 4;
2909 #endif
2910
2911         return bdw_gmch_ctl << 20;
2912 }
2913
2914 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2915 {
2916         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2917         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2918
2919         if (gmch_ctrl)
2920                 return 1 << (20 + gmch_ctrl);
2921
2922         return 0;
2923 }
2924
2925 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2926 {
2927         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2928         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2929         return (size_t)snb_gmch_ctl << 25; /* 32 MB units */
2930 }
2931
2932 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2933 {
2934         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2935         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2936         return (size_t)bdw_gmch_ctl << 25; /* 32 MB units */
2937 }
2938
2939 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2940 {
2941         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2942         gmch_ctrl &= SNB_GMCH_GMS_MASK;
2943
2944         /*
2945          * 0x0  to 0x10: 32MB increments starting at 0MB
2946          * 0x11 to 0x16: 4MB increments starting at 8MB
2947          * 0x17 to 0x1d: 4MB increments start at 36MB
2948          */
2949         if (gmch_ctrl < 0x11)
2950                 return (size_t)gmch_ctrl << 25;
2951         else if (gmch_ctrl < 0x17)
2952                 return (size_t)(gmch_ctrl - 0x11 + 2) << 22;
2953         else
2954                 return (size_t)(gmch_ctrl - 0x17 + 9) << 22;
2955 }
2956
2957 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2958 {
2959         gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2960         gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2961
2962         if (gen9_gmch_ctl < 0xf0)
2963                 return (size_t)gen9_gmch_ctl << 25; /* 32 MB units */
2964         else
2965                 /* 4MB increments starting at 0xf0 for 4MB */
2966                 return (size_t)(gen9_gmch_ctl - 0xf0 + 1) << 22;
2967 }
2968
2969 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2970 {
2971         struct drm_i915_private *dev_priv = ggtt->base.i915;
2972         struct pci_dev *pdev = dev_priv->drm.pdev;
2973         phys_addr_t phys_addr;
2974         int ret;
2975
2976         /* For Modern GENs the PTEs and register space are split in the BAR */
2977         phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2978
2979         /*
2980          * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
2981          * will be dropped. For WC mappings in general we have 64 byte burst
2982          * writes when the WC buffer is flushed, so we can't use it, but have to
2983          * resort to an uncached mapping. The WC issue is easily caught by the
2984          * readback check when writing GTT PTE entries.
2985          */
2986         if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2987                 ggtt->gsm = ioremap_nocache(phys_addr, size);
2988         else
2989                 ggtt->gsm = ioremap_wc(phys_addr, size);
2990         if (!ggtt->gsm) {
2991                 DRM_ERROR("Failed to map the ggtt page table\n");
2992                 return -ENOMEM;
2993         }
2994
2995         ret = setup_scratch_page(&ggtt->base, GFP_DMA32);
2996         if (ret) {
2997                 DRM_ERROR("Scratch setup failed\n");
2998                 /* iounmap will also get called at remove, but meh */
2999                 iounmap(ggtt->gsm);
3000                 return ret;
3001         }
3002
3003         return 0;
3004 }
3005
3006 static struct intel_ppat_entry *
3007 __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
3008 {
3009         struct intel_ppat_entry *entry = &ppat->entries[index];
3010
3011         GEM_BUG_ON(index >= ppat->max_entries);
3012         GEM_BUG_ON(test_bit(index, ppat->used));
3013
3014         entry->ppat = ppat;
3015         entry->value = value;
3016         kref_init(&entry->ref);
3017         set_bit(index, ppat->used);
3018         set_bit(index, ppat->dirty);
3019
3020         return entry;
3021 }
3022
3023 static void __free_ppat_entry(struct intel_ppat_entry *entry)
3024 {
3025         struct intel_ppat *ppat = entry->ppat;
3026         unsigned int index = entry - ppat->entries;
3027
3028         GEM_BUG_ON(index >= ppat->max_entries);
3029         GEM_BUG_ON(!test_bit(index, ppat->used));
3030
3031         entry->value = ppat->clear_value;
3032         clear_bit(index, ppat->used);
3033         set_bit(index, ppat->dirty);
3034 }
3035
3036 /**
3037  * intel_ppat_get - get a usable PPAT entry
3038  * @i915: i915 device instance
3039  * @value: the PPAT value required by the caller
3040  *
3041  * The function tries to search if there is an existing PPAT entry which
3042  * matches with the required value. If perfectly matched, the existing PPAT
3043  * entry will be used. If only partially matched, it will try to check if
3044  * there is any available PPAT index. If yes, it will allocate a new PPAT
3045  * index for the required entry and update the HW. If not, the partially
3046  * matched entry will be used.
3047  */
3048 const struct intel_ppat_entry *
3049 intel_ppat_get(struct drm_i915_private *i915, u8 value)
3050 {
3051         struct intel_ppat *ppat = &i915->ppat;
3052         struct intel_ppat_entry *entry;
3053         unsigned int scanned, best_score;
3054         int i;
3055
3056         GEM_BUG_ON(!ppat->max_entries);
3057
3058         scanned = best_score = 0;
3059         for_each_set_bit(i, ppat->used, ppat->max_entries) {
3060                 unsigned int score;
3061
3062                 score = ppat->match(ppat->entries[i].value, value);
3063                 if (score > best_score) {
3064                         entry = &ppat->entries[i];
3065                         if (score == INTEL_PPAT_PERFECT_MATCH) {
3066                                 kref_get(&entry->ref);
3067                                 return entry;
3068                         }
3069                         best_score = score;
3070                 }
3071                 scanned++;
3072         }
3073
3074         if (scanned == ppat->max_entries) {
3075                 if (!best_score)
3076                         return ERR_PTR(-ENOSPC);
3077
3078                 kref_get(&entry->ref);
3079                 return entry;
3080         }
3081
3082         i = find_first_zero_bit(ppat->used, ppat->max_entries);
3083         entry = __alloc_ppat_entry(ppat, i, value);
3084         ppat->update_hw(i915);
3085         return entry;
3086 }
3087
3088 static void release_ppat(struct kref *kref)
3089 {
3090         struct intel_ppat_entry *entry =
3091                 container_of(kref, struct intel_ppat_entry, ref);
3092         struct drm_i915_private *i915 = entry->ppat->i915;
3093
3094         __free_ppat_entry(entry);
3095         entry->ppat->update_hw(i915);
3096 }
3097
3098 /**
3099  * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
3100  * @entry: an intel PPAT entry
3101  *
3102  * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
3103  * entry is dynamically allocated, its reference count will be decreased. Once
3104  * the reference count becomes into zero, the PPAT index becomes free again.
3105  */
3106 void intel_ppat_put(const struct intel_ppat_entry *entry)
3107 {
3108         struct intel_ppat *ppat = entry->ppat;
3109         unsigned int index = entry - ppat->entries;
3110
3111         GEM_BUG_ON(!ppat->max_entries);
3112
3113         kref_put(&ppat->entries[index].ref, release_ppat);
3114 }
3115
3116 static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
3117 {
3118         struct intel_ppat *ppat = &dev_priv->ppat;
3119         int i;
3120
3121         for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
3122                 I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
3123                 clear_bit(i, ppat->dirty);
3124         }
3125 }
3126
3127 static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
3128 {
3129         struct intel_ppat *ppat = &dev_priv->ppat;
3130         u64 pat = 0;
3131         int i;
3132
3133         for (i = 0; i < ppat->max_entries; i++)
3134                 pat |= GEN8_PPAT(i, ppat->entries[i].value);
3135
3136         bitmap_clear(ppat->dirty, 0, ppat->max_entries);
3137
3138         I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
3139         I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
3140 }
3141
3142 static unsigned int bdw_private_pat_match(u8 src, u8 dst)
3143 {
3144         unsigned int score = 0;
3145         enum {
3146                 AGE_MATCH = BIT(0),
3147                 TC_MATCH = BIT(1),
3148                 CA_MATCH = BIT(2),
3149         };
3150
3151         /* Cache attribute has to be matched. */
3152         if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3153                 return 0;
3154
3155         score |= CA_MATCH;
3156
3157         if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
3158                 score |= TC_MATCH;
3159
3160         if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
3161                 score |= AGE_MATCH;
3162
3163         if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
3164                 return INTEL_PPAT_PERFECT_MATCH;
3165
3166         return score;
3167 }
3168
3169 static unsigned int chv_private_pat_match(u8 src, u8 dst)
3170 {
3171         return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
3172                 INTEL_PPAT_PERFECT_MATCH : 0;
3173 }
3174
3175 static void cnl_setup_private_ppat(struct intel_ppat *ppat)
3176 {
3177         ppat->max_entries = 8;
3178         ppat->update_hw = cnl_private_pat_update_hw;
3179         ppat->match = bdw_private_pat_match;
3180         ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3181
3182         /* XXX: spec is unclear if this is still needed for CNL+ */
3183         if (!USES_PPGTT(ppat->i915)) {
3184                 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
3185                 return;
3186         }
3187
3188         __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
3189         __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
3190         __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
3191         __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
3192         __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3193         __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3194         __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3195         __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3196 }
3197
3198 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3199  * bits. When using advanced contexts each context stores its own PAT, but
3200  * writing this data shouldn't be harmful even in those cases. */
3201 static void bdw_setup_private_ppat(struct intel_ppat *ppat)
3202 {
3203         ppat->max_entries = 8;
3204         ppat->update_hw = bdw_private_pat_update_hw;
3205         ppat->match = bdw_private_pat_match;
3206         ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3207
3208         if (!USES_PPGTT(ppat->i915)) {
3209                 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3210                  * so RTL will always use the value corresponding to
3211                  * pat_sel = 000".
3212                  * So let's disable cache for GGTT to avoid screen corruptions.
3213                  * MOCS still can be used though.
3214                  * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3215                  * before this patch, i.e. the same uncached + snooping access
3216                  * like on gen6/7 seems to be in effect.
3217                  * - So this just fixes blitter/render access. Again it looks
3218                  * like it's not just uncached access, but uncached + snooping.
3219                  * So we can still hold onto all our assumptions wrt cpu
3220                  * clflushing on LLC machines.
3221                  */
3222                 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
3223                 return;
3224         }
3225
3226         __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
3227         __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
3228         __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
3229         __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
3230         __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3231         __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3232         __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3233         __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3234 }
3235
3236 static void chv_setup_private_ppat(struct intel_ppat *ppat)
3237 {
3238         ppat->max_entries = 8;
3239         ppat->update_hw = bdw_private_pat_update_hw;
3240         ppat->match = chv_private_pat_match;
3241         ppat->clear_value = CHV_PPAT_SNOOP;
3242
3243         /*
3244          * Map WB on BDW to snooped on CHV.
3245          *
3246          * Only the snoop bit has meaning for CHV, the rest is
3247          * ignored.
3248          *
3249          * The hardware will never snoop for certain types of accesses:
3250          * - CPU GTT (GMADR->GGTT->no snoop->memory)
3251          * - PPGTT page tables
3252          * - some other special cycles
3253          *
3254          * As with BDW, we also need to consider the following for GT accesses:
3255          * "For GGTT, there is NO pat_sel[2:0] from the entry,
3256          * so RTL will always use the value corresponding to
3257          * pat_sel = 000".
3258          * Which means we must set the snoop bit in PAT entry 0
3259          * in order to keep the global status page working.
3260          */
3261
3262         __alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
3263         __alloc_ppat_entry(ppat, 1, 0);
3264         __alloc_ppat_entry(ppat, 2, 0);
3265         __alloc_ppat_entry(ppat, 3, 0);
3266         __alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
3267         __alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
3268         __alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
3269         __alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3270 }
3271
3272 static void gen6_gmch_remove(struct i915_address_space *vm)
3273 {
3274         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3275
3276         iounmap(ggtt->gsm);
3277         cleanup_scratch_page(vm);
3278 }
3279
3280 static void setup_private_pat(struct drm_i915_private *dev_priv)
3281 {
3282         struct intel_ppat *ppat = &dev_priv->ppat;
3283         int i;
3284
3285         ppat->i915 = dev_priv;
3286
3287         if (INTEL_GEN(dev_priv) >= 10)
3288                 cnl_setup_private_ppat(ppat);
3289         else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3290                 chv_setup_private_ppat(ppat);
3291         else
3292                 bdw_setup_private_ppat(ppat);
3293
3294         GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);
3295
3296         for_each_clear_bit(i, ppat->used, ppat->max_entries) {
3297                 ppat->entries[i].value = ppat->clear_value;
3298                 ppat->entries[i].ppat = ppat;
3299                 set_bit(i, ppat->dirty);
3300         }
3301
3302         ppat->update_hw(dev_priv);
3303 }
3304
3305 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3306 {
3307         struct drm_i915_private *dev_priv = ggtt->base.i915;
3308         struct pci_dev *pdev = dev_priv->drm.pdev;
3309         unsigned int size;
3310         u16 snb_gmch_ctl;
3311         int err;
3312
3313         /* TODO: We're not aware of mappable constraints on gen8 yet */
3314         ggtt->mappable_base = pci_resource_start(pdev, 2);
3315         ggtt->mappable_end = pci_resource_len(pdev, 2);
3316
3317         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
3318         if (!err)
3319                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3320         if (err)
3321                 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3322
3323         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3324
3325         if (INTEL_GEN(dev_priv) >= 9) {
3326                 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3327                 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3328         } else if (IS_CHERRYVIEW(dev_priv)) {
3329                 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3330                 size = chv_get_total_gtt_size(snb_gmch_ctl);
3331         } else {
3332                 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3333                 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3334         }
3335
3336         ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3337         ggtt->base.cleanup = gen6_gmch_remove;
3338         ggtt->base.bind_vma = ggtt_bind_vma;
3339         ggtt->base.unbind_vma = ggtt_unbind_vma;
3340         ggtt->base.set_pages = ggtt_set_pages;
3341         ggtt->base.clear_pages = clear_pages;
3342         ggtt->base.insert_page = gen8_ggtt_insert_page;
3343         ggtt->base.clear_range = nop_clear_range;
3344         if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3345                 ggtt->base.clear_range = gen8_ggtt_clear_range;
3346
3347         ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3348
3349         /* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3350         if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3351                 ggtt->base.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3352                 ggtt->base.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
3353                 if (ggtt->base.clear_range != nop_clear_range)
3354                         ggtt->base.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3355         }
3356
3357         /* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3358         if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3359                 ggtt->base.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3360                 ggtt->base.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
3361                 if (ggtt->base.clear_range != nop_clear_range)
3362                         ggtt->base.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3363         }
3364
3365         ggtt->invalidate = gen6_ggtt_invalidate;
3366
3367         setup_private_pat(dev_priv);
3368
3369         return ggtt_probe_common(ggtt, size);
3370 }
3371
3372 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3373 {
3374         struct drm_i915_private *dev_priv = ggtt->base.i915;
3375         struct pci_dev *pdev = dev_priv->drm.pdev;
3376         unsigned int size;
3377         u16 snb_gmch_ctl;
3378         int err;
3379
3380         ggtt->mappable_base = pci_resource_start(pdev, 2);
3381         ggtt->mappable_end = pci_resource_len(pdev, 2);
3382
3383         /* 64/512MB is the current min/max we actually know of, but this is just
3384          * a coarse sanity check.
3385          */
3386         if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3387                 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3388                 return -ENXIO;
3389         }
3390
3391         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3392         if (!err)
3393                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3394         if (err)
3395                 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3396         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3397
3398         ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3399
3400         size = gen6_get_total_gtt_size(snb_gmch_ctl);
3401         ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3402
3403         ggtt->base.clear_range = gen6_ggtt_clear_range;
3404         ggtt->base.insert_page = gen6_ggtt_insert_page;
3405         ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3406         ggtt->base.bind_vma = ggtt_bind_vma;
3407         ggtt->base.unbind_vma = ggtt_unbind_vma;
3408         ggtt->base.set_pages = ggtt_set_pages;
3409         ggtt->base.clear_pages = clear_pages;
3410         ggtt->base.cleanup = gen6_gmch_remove;
3411
3412         ggtt->invalidate = gen6_ggtt_invalidate;
3413
3414         if (HAS_EDRAM(dev_priv))
3415                 ggtt->base.pte_encode = iris_pte_encode;
3416         else if (IS_HASWELL(dev_priv))
3417                 ggtt->base.pte_encode = hsw_pte_encode;
3418         else if (IS_VALLEYVIEW(dev_priv))
3419                 ggtt->base.pte_encode = byt_pte_encode;
3420         else if (INTEL_GEN(dev_priv) >= 7)
3421                 ggtt->base.pte_encode = ivb_pte_encode;
3422         else
3423                 ggtt->base.pte_encode = snb_pte_encode;
3424
3425         return ggtt_probe_common(ggtt, size);
3426 }
3427
3428 static void i915_gmch_remove(struct i915_address_space *vm)
3429 {
3430         intel_gmch_remove();
3431 }
3432
3433 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3434 {
3435         struct drm_i915_private *dev_priv = ggtt->base.i915;
3436 #if 0
3437         int ret;
3438
3439         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3440         if (!ret) {
3441                 DRM_ERROR("failed to set up gmch\n");
3442                 return -EIO;
3443         }
3444 #endif
3445
3446         intel_gtt_get(&ggtt->base.total,
3447                       &ggtt->stolen_size,
3448                       &ggtt->mappable_base,
3449                       &ggtt->mappable_end);
3450
3451         ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3452         ggtt->base.insert_page = i915_ggtt_insert_page;
3453         ggtt->base.insert_entries = i915_ggtt_insert_entries;
3454         ggtt->base.clear_range = i915_ggtt_clear_range;
3455         ggtt->base.bind_vma = ggtt_bind_vma;
3456         ggtt->base.unbind_vma = ggtt_unbind_vma;
3457         ggtt->base.set_pages = ggtt_set_pages;
3458         ggtt->base.clear_pages = clear_pages;
3459         ggtt->base.cleanup = i915_gmch_remove;
3460
3461         ggtt->invalidate = gmch_ggtt_invalidate;
3462
3463         if (unlikely(ggtt->do_idle_maps))
3464                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3465
3466         return 0;
3467 }
3468
3469 /**
3470  * i915_ggtt_probe_hw - Probe GGTT hardware location
3471  * @dev_priv: i915 device
3472  */
3473 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3474 {
3475         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3476         int ret;
3477
3478         ggtt->base.i915 = dev_priv;
3479         ggtt->base.dma = &dev_priv->drm.pdev->dev;
3480
3481         if (INTEL_GEN(dev_priv) <= 5)
3482                 ret = i915_gmch_probe(ggtt);
3483         else if (INTEL_GEN(dev_priv) < 8)
3484                 ret = gen6_gmch_probe(ggtt);
3485         else
3486                 ret = gen8_gmch_probe(ggtt);
3487         if (ret)
3488                 return ret;
3489
3490         /* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3491          * This is easier than doing range restriction on the fly, as we
3492          * currently don't have any bits spare to pass in this upper
3493          * restriction!
3494          */
3495         if (HAS_GUC(dev_priv) && i915_modparams.enable_guc_loading) {
3496                 ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP);
3497                 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3498         }
3499
3500         if ((ggtt->base.total - 1) >> 32) {
3501                 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3502                           " of address space! Found %lldM!\n",
3503                           ggtt->base.total >> 20);
3504                 ggtt->base.total = 1ULL << 32;
3505                 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3506         }
3507
3508         if (ggtt->mappable_end > ggtt->base.total) {
3509                 DRM_ERROR("mappable aperture extends past end of GGTT,"
3510                           " aperture=%llx, total=%llx\n",
3511                           ggtt->mappable_end, ggtt->base.total);
3512                 ggtt->mappable_end = ggtt->base.total;
3513         }
3514
3515         /* GMADR is the PCI mmio aperture into the global GTT. */
3516         DRM_INFO("Memory usable by graphics device = %lluM\n",
3517                  ggtt->base.total >> 20);
3518         DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3519         DRM_DEBUG_DRIVER("GTT stolen size = %uM\n", ggtt->stolen_size >> 20);
3520         if (intel_vtd_active())
3521                 DRM_INFO("VT-d active for gfx access\n");
3522
3523         return 0;
3524 }
3525
3526 /**
3527  * i915_ggtt_init_hw - Initialize GGTT hardware
3528  * @dev_priv: i915 device
3529  */
3530 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3531 {
3532         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3533         int ret;
3534
3535         INIT_LIST_HEAD(&dev_priv->vm_list);
3536
3537         /* Note that we use page colouring to enforce a guard page at the
3538          * end of the address space. This is required as the CS may prefetch
3539          * beyond the end of the batch buffer, across the page boundary,
3540          * and beyond the end of the GTT if we do not provide a guard.
3541          */
3542         mutex_lock(&dev_priv->drm.struct_mutex);
3543         i915_address_space_init(&ggtt->base, dev_priv, "[global]");
3544         if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3545                 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3546         mutex_unlock(&dev_priv->drm.struct_mutex);
3547
3548         if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
3549                                 dev_priv->ggtt.mappable_base,
3550                                 dev_priv->ggtt.mappable_end)) {
3551                 ret = -EIO;
3552                 goto out_gtt_cleanup;
3553         }
3554
3555         ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
3556
3557         /*
3558          * Initialise stolen early so that we may reserve preallocated
3559          * objects for the BIOS to KMS transition.
3560          */
3561         ret = i915_gem_init_stolen(dev_priv);
3562         if (ret)
3563                 goto out_gtt_cleanup;
3564
3565         return 0;
3566
3567 out_gtt_cleanup:
3568         ggtt->base.cleanup(&ggtt->base);
3569         return ret;
3570 }
3571
3572 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3573 {
3574         if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3575                 return -EIO;
3576
3577         return 0;
3578 }
3579
3580 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3581 {
3582         GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3583
3584         i915->ggtt.invalidate = guc_ggtt_invalidate;
3585 }
3586
3587 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3588 {
3589         /* We should only be called after i915_ggtt_enable_guc() */
3590         GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3591
3592         i915->ggtt.invalidate = gen6_ggtt_invalidate;
3593 }
3594
3595 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3596 {
3597         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3598         struct drm_i915_gem_object *obj, *on;
3599
3600         i915_check_and_clear_faults(dev_priv);
3601
3602         /* First fill our portion of the GTT with scratch pages */
3603         ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
3604
3605         ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3606
3607         /* clflush objects bound into the GGTT and rebind them. */
3608         list_for_each_entry_safe(obj, on, &dev_priv->mm.bound_list, mm.link) {
3609                 bool ggtt_bound = false;
3610                 struct i915_vma *vma;
3611
3612                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3613                         if (vma->vm != &ggtt->base)
3614                                 continue;
3615
3616                         if (!i915_vma_unbind(vma))
3617                                 continue;
3618
3619                         WARN_ON(i915_vma_bind(vma, obj->cache_level,
3620                                               PIN_UPDATE));
3621                         ggtt_bound = true;
3622                 }
3623
3624                 if (ggtt_bound)
3625                         WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3626         }
3627
3628         ggtt->base.closed = false;
3629
3630         if (INTEL_GEN(dev_priv) >= 8) {
3631                 struct intel_ppat *ppat = &dev_priv->ppat;
3632
3633                 bitmap_set(ppat->dirty, 0, ppat->max_entries);
3634                 dev_priv->ppat.update_hw(dev_priv);
3635                 return;
3636         }
3637
3638         if (USES_PPGTT(dev_priv)) {
3639                 struct i915_address_space *vm;
3640
3641                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3642                         struct i915_hw_ppgtt *ppgtt;
3643
3644                         if (i915_is_ggtt(vm))
3645                                 ppgtt = dev_priv->mm.aliasing_ppgtt;
3646                         else
3647                                 ppgtt = i915_vm_to_ppgtt(vm);
3648
3649                         gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
3650                 }
3651         }
3652
3653         i915_ggtt_invalidate(dev_priv);
3654 }
3655
3656 static struct scatterlist *
3657 rotate_pages(const dma_addr_t *in, unsigned int offset,
3658              unsigned int width, unsigned int height,
3659              unsigned int stride,
3660              struct sg_table *st, struct scatterlist *sg)
3661 {
3662         unsigned int column, row;
3663         unsigned int src_idx;
3664
3665         for (column = 0; column < width; column++) {
3666                 src_idx = stride * (height - 1) + column;
3667                 for (row = 0; row < height; row++) {
3668                         st->nents++;
3669                         /* We don't need the pages, but need to initialize
3670                          * the entries so the sg list can be happily traversed.
3671                          * The only thing we need are DMA addresses.
3672                          */
3673                         sg_set_page(sg, NULL, PAGE_SIZE, 0);
3674                         sg_dma_address(sg) = in[offset + src_idx];
3675                         sg_dma_len(sg) = PAGE_SIZE;
3676                         sg = sg_next(sg);
3677                         src_idx -= stride;
3678                 }
3679         }
3680
3681         return sg;
3682 }
3683
3684 static noinline struct sg_table *
3685 intel_rotate_pages(struct intel_rotation_info *rot_info,
3686                    struct drm_i915_gem_object *obj)
3687 {
3688         const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3689         unsigned int size = intel_rotation_info_size(rot_info);
3690         struct sgt_iter sgt_iter;
3691         dma_addr_t dma_addr;
3692         unsigned long i;
3693         dma_addr_t *page_addr_list;
3694         struct sg_table *st;
3695         struct scatterlist *sg;
3696         int ret = -ENOMEM;
3697
3698         /* Allocate a temporary list of source pages for random access. */
3699         page_addr_list = kvmalloc_array(n_pages,
3700                                         sizeof(dma_addr_t),
3701                                         GFP_KERNEL);
3702         if (!page_addr_list)
3703                 return ERR_PTR(ret);
3704
3705         /* Allocate target SG list. */
3706         st = kmalloc(sizeof(*st), M_DRM, GFP_KERNEL);
3707         if (!st)
3708                 goto err_st_alloc;
3709
3710         ret = sg_alloc_table(st, size, GFP_KERNEL);
3711         if (ret)
3712                 goto err_sg_alloc;
3713
3714         /* Populate source page list from the object. */
3715         i = 0;
3716         for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3717                 page_addr_list[i++] = dma_addr;
3718
3719         GEM_BUG_ON(i != n_pages);
3720         st->nents = 0;
3721         sg = st->sgl;
3722
3723         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3724                 sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3725                                   rot_info->plane[i].width, rot_info->plane[i].height,
3726                                   rot_info->plane[i].stride, st, sg);
3727         }
3728
3729         DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
3730                       obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3731
3732         kvfree(page_addr_list);
3733
3734         return st;
3735
3736 err_sg_alloc:
3737         kfree(st);
3738 err_st_alloc:
3739         kvfree(page_addr_list);
3740
3741         DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3742                       obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3743
3744         return ERR_PTR(ret);
3745 }
3746
3747 static noinline struct sg_table *
3748 intel_partial_pages(const struct i915_ggtt_view *view,
3749                     struct drm_i915_gem_object *obj)
3750 {
3751         struct sg_table *st;
3752         struct scatterlist *sg, *iter;
3753         unsigned int count = view->partial.size;
3754         unsigned int offset;
3755         int ret = -ENOMEM;
3756
3757         st = kmalloc(sizeof(*st), M_DRM, GFP_KERNEL);
3758         if (!st)
3759                 goto err_st_alloc;
3760
3761         ret = sg_alloc_table(st, count, GFP_KERNEL);
3762         if (ret)
3763                 goto err_sg_alloc;
3764
3765         iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3766         GEM_BUG_ON(!iter);
3767
3768         sg = st->sgl;
3769         st->nents = 0;
3770         do {
3771                 unsigned int len;
3772
3773                 len = min(iter->length - (offset << PAGE_SHIFT),
3774                           count << PAGE_SHIFT);
3775                 sg_set_page(sg, NULL, len, 0);
3776                 sg_dma_address(sg) =
3777                         sg_dma_address(iter) + (offset << PAGE_SHIFT);
3778                 sg_dma_len(sg) = len;
3779
3780                 st->nents++;
3781                 count -= len >> PAGE_SHIFT;
3782                 if (count == 0) {
3783                         sg_mark_end(sg);
3784                         return st;
3785                 }
3786
3787                 sg = __sg_next(sg);
3788                 iter = __sg_next(iter);
3789                 offset = 0;
3790         } while (1);
3791
3792 err_sg_alloc:
3793         kfree(st);
3794 err_st_alloc:
3795         return ERR_PTR(ret);
3796 }
3797
3798 static int
3799 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3800 {
3801         int ret;
3802
3803         /* The vma->pages are only valid within the lifespan of the borrowed
3804          * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3805          * must be the vma->pages. A simple rule is that vma->pages must only
3806          * be accessed when the obj->mm.pages are pinned.
3807          */
3808         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3809
3810         switch (vma->ggtt_view.type) {
3811         case I915_GGTT_VIEW_NORMAL:
3812                 vma->pages = vma->obj->mm.pages;
3813                 return 0;
3814
3815         case I915_GGTT_VIEW_ROTATED:
3816                 vma->pages =
3817                         intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3818                 break;
3819
3820         case I915_GGTT_VIEW_PARTIAL:
3821                 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3822                 break;
3823
3824         default:
3825                 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3826                           vma->ggtt_view.type);
3827                 return -EINVAL;
3828         }
3829
3830         ret = 0;
3831         if (unlikely(IS_ERR(vma->pages))) {
3832                 ret = PTR_ERR(vma->pages);
3833                 vma->pages = NULL;
3834                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3835                           vma->ggtt_view.type, ret);
3836         }
3837         return ret;
3838 }
3839
3840 /**
3841  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3842  * @vm: the &struct i915_address_space
3843  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3844  * @size: how much space to allocate inside the GTT,
3845  *        must be #I915_GTT_PAGE_SIZE aligned
3846  * @offset: where to insert inside the GTT,
3847  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3848  *          (@offset + @size) must fit within the address space
3849  * @color: color to apply to node, if this node is not from a VMA,
3850  *         color must be #I915_COLOR_UNEVICTABLE
3851  * @flags: control search and eviction behaviour
3852  *
3853  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3854  * the address space (using @size and @color). If the @node does not fit, it
3855  * tries to evict any overlapping nodes from the GTT, including any
3856  * neighbouring nodes if the colors do not match (to ensure guard pages between
3857  * differing domains). See i915_gem_evict_for_node() for the gory details
3858  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3859  * evicting active overlapping objects, and any overlapping node that is pinned
3860  * or marked as unevictable will also result in failure.
3861  *
3862  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3863  * asked to wait for eviction and interrupted.
3864  */
3865 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3866                          struct drm_mm_node *node,
3867                          u64 size, u64 offset, unsigned long color,
3868                          unsigned int flags)
3869 {
3870         int err;
3871
3872         GEM_BUG_ON(!size);
3873         GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3874         GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3875         GEM_BUG_ON(range_overflows(offset, size, vm->total));
3876         GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3877         GEM_BUG_ON(drm_mm_node_allocated(node));
3878
3879         node->size = size;
3880         node->start = offset;
3881         node->color = color;
3882
3883         err = drm_mm_reserve_node(&vm->mm, node);
3884         if (err != -ENOSPC)
3885                 return err;
3886
3887         if (flags & PIN_NOEVICT)
3888                 return -ENOSPC;
3889
3890         err = i915_gem_evict_for_node(vm, node, flags);
3891         if (err == 0)
3892                 err = drm_mm_reserve_node(&vm->mm, node);
3893
3894         return err;
3895 }
3896
3897 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3898 {
3899         u64 range, addr;
3900
3901         GEM_BUG_ON(range_overflows(start, len, end));
3902         GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3903
3904         range = round_down(end - len, align) - round_up(start, align);
3905         if (range) {
3906                 if (sizeof(unsigned long) == sizeof(u64)) {
3907                         addr = get_random_long();
3908                 } else {
3909                         addr = get_random_int();
3910                         if (range > U32_MAX) {
3911                                 addr <<= 32;
3912                                 addr |= get_random_int();
3913                         }
3914                 }
3915                 div64_u64_rem(addr, range, &addr);
3916                 start += addr;
3917         }
3918
3919         return round_up(start, align);
3920 }
3921
3922 /**
3923  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3924  * @vm: the &struct i915_address_space
3925  * @node: the &struct drm_mm_node (typically i915_vma.node)
3926  * @size: how much space to allocate inside the GTT,
3927  *        must be #I915_GTT_PAGE_SIZE aligned
3928  * @alignment: required alignment of starting offset, may be 0 but
3929  *             if specified, this must be a power-of-two and at least
3930  *             #I915_GTT_MIN_ALIGNMENT
3931  * @color: color to apply to node
3932  * @start: start of any range restriction inside GTT (0 for all),
3933  *         must be #I915_GTT_PAGE_SIZE aligned
3934  * @end: end of any range restriction inside GTT (U64_MAX for all),
3935  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3936  * @flags: control search and eviction behaviour
3937  *
3938  * i915_gem_gtt_insert() first searches for an available hole into which
3939  * is can insert the node. The hole address is aligned to @alignment and
3940  * its @size must then fit entirely within the [@start, @end] bounds. The
3941  * nodes on either side of the hole must match @color, or else a guard page
3942  * will be inserted between the two nodes (or the node evicted). If no
3943  * suitable hole is found, first a victim is randomly selected and tested
3944  * for eviction, otherwise then the LRU list of objects within the GTT
3945  * is scanned to find the first set of replacement nodes to create the hole.
3946  * Those old overlapping nodes are evicted from the GTT (and so must be
3947  * rebound before any future use). Any node that is currently pinned cannot
3948  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3949  * active and #PIN_NONBLOCK is specified, that node is also skipped when
3950  * searching for an eviction candidate. See i915_gem_evict_something() for
3951  * the gory details on the eviction algorithm.
3952  *
3953  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3954  * asked to wait for eviction and interrupted.
3955  */
3956 int i915_gem_gtt_insert(struct i915_address_space *vm,
3957                         struct drm_mm_node *node,
3958                         u64 size, u64 alignment, unsigned long color,
3959                         u64 start, u64 end, unsigned int flags)
3960 {
3961         enum drm_mm_insert_mode mode;
3962         u64 offset;
3963         int err;
3964
3965         lockdep_assert_held(&vm->i915->drm.struct_mutex);
3966         GEM_BUG_ON(!size);
3967         GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3968         GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3969         GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3970         GEM_BUG_ON(start >= end);
3971         GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3972         GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3973         GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3974         GEM_BUG_ON(drm_mm_node_allocated(node));
3975
3976         if (unlikely(range_overflows(start, size, end)))
3977                 return -ENOSPC;
3978
3979         if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3980                 return -ENOSPC;
3981
3982         mode = DRM_MM_INSERT_BEST;
3983         if (flags & PIN_HIGH)
3984                 mode = DRM_MM_INSERT_HIGH;
3985         if (flags & PIN_MAPPABLE)
3986                 mode = DRM_MM_INSERT_LOW;
3987
3988         /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3989          * so we know that we always have a minimum alignment of 4096.
3990          * The drm_mm range manager is optimised to return results
3991          * with zero alignment, so where possible use the optimal
3992          * path.
3993          */
3994         BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3995         if (alignment <= I915_GTT_MIN_ALIGNMENT)
3996                 alignment = 0;
3997
3998         err = drm_mm_insert_node_in_range(&vm->mm, node,
3999                                           size, alignment, color,
4000                                           start, end, mode);
4001         if (err != -ENOSPC)
4002                 return err;
4003
4004         if (flags & PIN_NOEVICT)
4005                 return -ENOSPC;
4006
4007         /* No free space, pick a slot at random.
4008          *
4009          * There is a pathological case here using a GTT shared between
4010          * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
4011          *
4012          *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
4013          *         (64k objects)             (448k objects)
4014          *
4015          * Now imagine that the eviction LRU is ordered top-down (just because
4016          * pathology meets real life), and that we need to evict an object to
4017          * make room inside the aperture. The eviction scan then has to walk
4018          * the 448k list before it finds one within range. And now imagine that
4019          * it has to search for a new hole between every byte inside the memcpy,
4020          * for several simultaneous clients.
4021          *
4022          * On a full-ppgtt system, if we have run out of available space, there
4023          * will be lots and lots of objects in the eviction list! Again,
4024          * searching that LRU list may be slow if we are also applying any
4025          * range restrictions (e.g. restriction to low 4GiB) and so, for
4026          * simplicity and similarilty between different GTT, try the single
4027          * random replacement first.
4028          */
4029         offset = random_offset(start, end,
4030                                size, alignment ?: I915_GTT_MIN_ALIGNMENT);
4031         err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
4032         if (err != -ENOSPC)
4033                 return err;
4034
4035         /* Randomly selected placement is pinned, do a search */
4036         err = i915_gem_evict_something(vm, size, alignment, color,
4037                                        start, end, flags);
4038         if (err)
4039                 return err;
4040
4041         return drm_mm_insert_node_in_range(&vm->mm, node,
4042                                            size, alignment, color,
4043                                            start, end, DRM_MM_INSERT_EVICT);
4044 }
4045
4046 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4047 #include "selftests/mock_gtt.c"
4048 #include "selftests/i915_gem_gtt.c"
4049 #endif