Merge branch 'master' into selwakeup
[dragonfly.git] / sys / kern / sys_pipe.c
1 /*
2  * Copyright (c) 1996 John S. Dyson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice immediately at the beginning of the file, without modification,
10  *    this list of conditions, and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Absolutely no warranty of function or purpose is made by the author
15  *    John S. Dyson.
16  * 4. Modifications may be freely made to this file if the above conditions
17  *    are met.
18  *
19  * $FreeBSD: src/sys/kern/sys_pipe.c,v 1.60.2.13 2002/08/05 15:05:15 des Exp $
20  * $DragonFly: src/sys/kern/sys_pipe.c,v 1.50 2008/09/09 04:06:13 dillon Exp $
21  */
22
23 /*
24  * This file contains a high-performance replacement for the socket-based
25  * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
26  * all features of sockets, but does do everything that pipes normally
27  * do.
28  */
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/proc.h>
33 #include <sys/fcntl.h>
34 #include <sys/file.h>
35 #include <sys/filedesc.h>
36 #include <sys/filio.h>
37 #include <sys/ttycom.h>
38 #include <sys/stat.h>
39 #include <sys/select.h>
40 #include <sys/signalvar.h>
41 #include <sys/sysproto.h>
42 #include <sys/pipe.h>
43 #include <sys/vnode.h>
44 #include <sys/uio.h>
45 #include <sys/event.h>
46 #include <sys/globaldata.h>
47 #include <sys/module.h>
48 #include <sys/malloc.h>
49 #include <sys/sysctl.h>
50 #include <sys/socket.h>
51
52 #include <vm/vm.h>
53 #include <vm/vm_param.h>
54 #include <sys/lock.h>
55 #include <vm/vm_object.h>
56 #include <vm/vm_kern.h>
57 #include <vm/vm_extern.h>
58 #include <vm/pmap.h>
59 #include <vm/vm_map.h>
60 #include <vm/vm_page.h>
61 #include <vm/vm_zone.h>
62
63 #include <sys/file2.h>
64 #include <sys/signal2.h>
65 #include <sys/mplock2.h>
66
67 #include <machine/cpufunc.h>
68
69 /*
70  * interfaces to the outside world
71  */
72 static int pipe_read (struct file *fp, struct uio *uio, 
73                 struct ucred *cred, int flags);
74 static int pipe_write (struct file *fp, struct uio *uio, 
75                 struct ucred *cred, int flags);
76 static int pipe_close (struct file *fp);
77 static int pipe_shutdown (struct file *fp, int how);
78 static int pipe_kqfilter (struct file *fp, struct knote *kn);
79 static int pipe_stat (struct file *fp, struct stat *sb, struct ucred *cred);
80 static int pipe_ioctl (struct file *fp, u_long cmd, caddr_t data,
81                 struct ucred *cred, struct sysmsg *msg);
82
83 static struct fileops pipeops = {
84         .fo_read = pipe_read, 
85         .fo_write = pipe_write,
86         .fo_ioctl = pipe_ioctl,
87         .fo_kqfilter = pipe_kqfilter,
88         .fo_stat = pipe_stat,
89         .fo_close = pipe_close,
90         .fo_shutdown = pipe_shutdown
91 };
92
93 static void     filt_pipedetach(struct knote *kn);
94 static int      filt_piperead(struct knote *kn, long hint);
95 static int      filt_pipewrite(struct knote *kn, long hint);
96
97 static struct filterops pipe_rfiltops =
98         { 1, NULL, filt_pipedetach, filt_piperead };
99 static struct filterops pipe_wfiltops =
100         { 1, NULL, filt_pipedetach, filt_pipewrite };
101
102 MALLOC_DEFINE(M_PIPE, "pipe", "pipe structures");
103
104 /*
105  * Default pipe buffer size(s), this can be kind-of large now because pipe
106  * space is pageable.  The pipe code will try to maintain locality of
107  * reference for performance reasons, so small amounts of outstanding I/O
108  * will not wipe the cache.
109  */
110 #define MINPIPESIZE (PIPE_SIZE/3)
111 #define MAXPIPESIZE (2*PIPE_SIZE/3)
112
113 /*
114  * Limit the number of "big" pipes
115  */
116 #define LIMITBIGPIPES   64
117 #define PIPEQ_MAX_CACHE 16      /* per-cpu pipe structure cache */
118
119 static int pipe_maxbig = LIMITBIGPIPES;
120 static int pipe_maxcache = PIPEQ_MAX_CACHE;
121 static int pipe_bigcount;
122 static int pipe_nbig;
123 static int pipe_bcache_alloc;
124 static int pipe_bkmem_alloc;
125 static int pipe_rblocked_count;
126 static int pipe_wblocked_count;
127
128 SYSCTL_NODE(_kern, OID_AUTO, pipe, CTLFLAG_RW, 0, "Pipe operation");
129 SYSCTL_INT(_kern_pipe, OID_AUTO, nbig,
130         CTLFLAG_RD, &pipe_nbig, 0, "numer of big pipes allocated");
131 SYSCTL_INT(_kern_pipe, OID_AUTO, bigcount,
132         CTLFLAG_RW, &pipe_bigcount, 0, "number of times pipe expanded");
133 SYSCTL_INT(_kern_pipe, OID_AUTO, rblocked,
134         CTLFLAG_RW, &pipe_rblocked_count, 0, "number of times pipe expanded");
135 SYSCTL_INT(_kern_pipe, OID_AUTO, wblocked,
136         CTLFLAG_RW, &pipe_wblocked_count, 0, "number of times pipe expanded");
137 SYSCTL_INT(_kern_pipe, OID_AUTO, maxcache,
138         CTLFLAG_RW, &pipe_maxcache, 0, "max pipes cached per-cpu");
139 SYSCTL_INT(_kern_pipe, OID_AUTO, maxbig,
140         CTLFLAG_RW, &pipe_maxbig, 0, "max number of big pipes");
141 #ifdef SMP
142 static int pipe_delay = 5000;   /* 5uS default */
143 SYSCTL_INT(_kern_pipe, OID_AUTO, delay,
144         CTLFLAG_RW, &pipe_delay, 0, "SMP delay optimization in ns");
145 static int pipe_mpsafe = 1;
146 SYSCTL_INT(_kern_pipe, OID_AUTO, mpsafe,
147         CTLFLAG_RW, &pipe_mpsafe, 0, "");
148 #endif
149 #if !defined(NO_PIPE_SYSCTL_STATS)
150 SYSCTL_INT(_kern_pipe, OID_AUTO, bcache_alloc,
151         CTLFLAG_RW, &pipe_bcache_alloc, 0, "pipe buffer from pcpu cache");
152 SYSCTL_INT(_kern_pipe, OID_AUTO, bkmem_alloc,
153         CTLFLAG_RW, &pipe_bkmem_alloc, 0, "pipe buffer from kmem");
154 #endif
155
156 static void pipeclose (struct pipe *cpipe);
157 static void pipe_free_kmem (struct pipe *cpipe);
158 static int pipe_create (struct pipe **cpipep);
159 static __inline void pipeselwakeup (struct pipe *cpipe);
160 static int pipespace (struct pipe *cpipe, int size);
161
162 static __inline int
163 pipeseltest(struct pipe *cpipe)
164 {
165         return ((cpipe->pipe_state & PIPE_SEL) ||
166                 ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) ||
167                 SLIST_FIRST(&cpipe->pipe_sel.si_note));
168 }
169
170 static __inline void
171 pipeselwakeup(struct pipe *cpipe)
172 {
173         if (cpipe->pipe_state & PIPE_SEL) {
174                 get_mplock();
175                 cpipe->pipe_state &= ~PIPE_SEL;
176                 selwakeup(&cpipe->pipe_sel);
177                 rel_mplock();
178         }
179         if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio) {
180                 get_mplock();
181                 pgsigio(cpipe->pipe_sigio, SIGIO, 0);
182                 rel_mplock();
183         }
184         if (SLIST_FIRST(&cpipe->pipe_sel.si_note)) {
185                 get_mplock();
186                 KNOTE(&cpipe->pipe_sel.si_note, 0);
187                 rel_mplock();
188         }
189 }
190
191 /*
192  * These routines are called before and after a UIO.  The UIO
193  * may block, causing our held tokens to be lost temporarily.
194  *
195  * We use these routines to serialize reads against other reads
196  * and writes against other writes.
197  *
198  * The read token is held on entry so *ipp does not race.
199  */
200 static __inline int
201 pipe_start_uio(struct pipe *cpipe, int *ipp)
202 {
203         int error;
204
205         while (*ipp) {
206                 *ipp = -1;
207                 error = tsleep(ipp, PCATCH, "pipexx", 0);
208                 if (error)
209                         return (error);
210         }
211         *ipp = 1;
212         return (0);
213 }
214
215 static __inline void
216 pipe_end_uio(struct pipe *cpipe, int *ipp)
217 {
218         if (*ipp < 0) {
219                 *ipp = 0;
220                 wakeup(ipp);
221         } else {
222                 KKASSERT(*ipp > 0);
223                 *ipp = 0;
224         }
225 }
226
227 static __inline void
228 pipe_get_mplock(int *save)
229 {
230 #ifdef SMP
231         if (pipe_mpsafe == 0) {
232                 get_mplock();
233                 *save = 1;
234         } else
235 #endif
236         {
237                 *save = 0;
238         }
239 }
240
241 static __inline void
242 pipe_rel_mplock(int *save)
243 {
244 #ifdef SMP
245         if (*save)
246                 rel_mplock();
247 #endif
248 }
249
250
251 /*
252  * The pipe system call for the DTYPE_PIPE type of pipes
253  *
254  * pipe_args(int dummy)
255  *
256  * MPSAFE
257  */
258 int
259 sys_pipe(struct pipe_args *uap)
260 {
261         struct thread *td = curthread;
262         struct filedesc *fdp = td->td_proc->p_fd;
263         struct file *rf, *wf;
264         struct pipe *rpipe, *wpipe;
265         int fd1, fd2, error;
266
267         rpipe = wpipe = NULL;
268         if (pipe_create(&rpipe) || pipe_create(&wpipe)) {
269                 pipeclose(rpipe); 
270                 pipeclose(wpipe); 
271                 return (ENFILE);
272         }
273         
274         error = falloc(td->td_lwp, &rf, &fd1);
275         if (error) {
276                 pipeclose(rpipe);
277                 pipeclose(wpipe);
278                 return (error);
279         }
280         uap->sysmsg_fds[0] = fd1;
281
282         /*
283          * Warning: once we've gotten past allocation of the fd for the
284          * read-side, we can only drop the read side via fdrop() in order
285          * to avoid races against processes which manage to dup() the read
286          * side while we are blocked trying to allocate the write side.
287          */
288         rf->f_type = DTYPE_PIPE;
289         rf->f_flag = FREAD | FWRITE;
290         rf->f_ops = &pipeops;
291         rf->f_data = rpipe;
292         error = falloc(td->td_lwp, &wf, &fd2);
293         if (error) {
294                 fsetfd(fdp, NULL, fd1);
295                 fdrop(rf);
296                 /* rpipe has been closed by fdrop(). */
297                 pipeclose(wpipe);
298                 return (error);
299         }
300         wf->f_type = DTYPE_PIPE;
301         wf->f_flag = FREAD | FWRITE;
302         wf->f_ops = &pipeops;
303         wf->f_data = wpipe;
304         uap->sysmsg_fds[1] = fd2;
305
306         rpipe->pipe_slock = kmalloc(sizeof(struct lock),
307                                     M_PIPE, M_WAITOK|M_ZERO);
308         wpipe->pipe_slock = rpipe->pipe_slock;
309         rpipe->pipe_peer = wpipe;
310         wpipe->pipe_peer = rpipe;
311         lockinit(rpipe->pipe_slock, "pipecl", 0, 0);
312
313         /*
314          * Once activated the peer relationship remains valid until
315          * both sides are closed.
316          */
317         fsetfd(fdp, rf, fd1);
318         fsetfd(fdp, wf, fd2);
319         fdrop(rf);
320         fdrop(wf);
321
322         return (0);
323 }
324
325 /*
326  * Allocate kva for pipe circular buffer, the space is pageable
327  * This routine will 'realloc' the size of a pipe safely, if it fails
328  * it will retain the old buffer.
329  * If it fails it will return ENOMEM.
330  */
331 static int
332 pipespace(struct pipe *cpipe, int size)
333 {
334         struct vm_object *object;
335         caddr_t buffer;
336         int npages, error;
337
338         npages = round_page(size) / PAGE_SIZE;
339         object = cpipe->pipe_buffer.object;
340
341         /*
342          * [re]create the object if necessary and reserve space for it
343          * in the kernel_map.  The object and memory are pageable.  On
344          * success, free the old resources before assigning the new
345          * ones.
346          */
347         if (object == NULL || object->size != npages) {
348                 get_mplock();
349                 object = vm_object_allocate(OBJT_DEFAULT, npages);
350                 buffer = (caddr_t)vm_map_min(&kernel_map);
351
352                 error = vm_map_find(&kernel_map, object, 0,
353                                     (vm_offset_t *)&buffer,
354                                     size, PAGE_SIZE,
355                                     1, VM_MAPTYPE_NORMAL,
356                                     VM_PROT_ALL, VM_PROT_ALL,
357                                     0);
358
359                 if (error != KERN_SUCCESS) {
360                         vm_object_deallocate(object);
361                         rel_mplock();
362                         return (ENOMEM);
363                 }
364                 pipe_free_kmem(cpipe);
365                 rel_mplock();
366                 cpipe->pipe_buffer.object = object;
367                 cpipe->pipe_buffer.buffer = buffer;
368                 cpipe->pipe_buffer.size = size;
369                 ++pipe_bkmem_alloc;
370         } else {
371                 ++pipe_bcache_alloc;
372         }
373         cpipe->pipe_buffer.rindex = 0;
374         cpipe->pipe_buffer.windex = 0;
375         return (0);
376 }
377
378 /*
379  * Initialize and allocate VM and memory for pipe, pulling the pipe from
380  * our per-cpu cache if possible.  For now make sure it is sized for the
381  * smaller PIPE_SIZE default.
382  */
383 static int
384 pipe_create(struct pipe **cpipep)
385 {
386         globaldata_t gd = mycpu;
387         struct pipe *cpipe;
388         int error;
389
390         if ((cpipe = gd->gd_pipeq) != NULL) {
391                 gd->gd_pipeq = cpipe->pipe_peer;
392                 --gd->gd_pipeqcount;
393                 cpipe->pipe_peer = NULL;
394                 cpipe->pipe_wantwcnt = 0;
395         } else {
396                 cpipe = kmalloc(sizeof(struct pipe), M_PIPE, M_WAITOK|M_ZERO);
397         }
398         *cpipep = cpipe;
399         if ((error = pipespace(cpipe, PIPE_SIZE)) != 0)
400                 return (error);
401         vfs_timestamp(&cpipe->pipe_ctime);
402         cpipe->pipe_atime = cpipe->pipe_ctime;
403         cpipe->pipe_mtime = cpipe->pipe_ctime;
404         lwkt_token_init(&cpipe->pipe_rlock, 1);
405         lwkt_token_init(&cpipe->pipe_wlock, 1);
406         return (0);
407 }
408
409 /*
410  * MPALMOSTSAFE (acquires mplock)
411  */
412 static int
413 pipe_read(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
414 {
415         struct pipe *rpipe;
416         int error;
417         size_t nread = 0;
418         int nbio;
419         u_int size;     /* total bytes available */
420         u_int nsize;    /* total bytes to read */
421         u_int rindex;   /* contiguous bytes available */
422         int notify_writer;
423         int mpsave;
424         int bigread;
425         int bigcount;
426
427         if (uio->uio_resid == 0)
428                 return(0);
429
430         /*
431          * Setup locks, calculate nbio
432          */
433         pipe_get_mplock(&mpsave);
434         rpipe = (struct pipe *)fp->f_data;
435         lwkt_gettoken(&rpipe->pipe_rlock);
436
437         if (fflags & O_FBLOCKING)
438                 nbio = 0;
439         else if (fflags & O_FNONBLOCKING)
440                 nbio = 1;
441         else if (fp->f_flag & O_NONBLOCK)
442                 nbio = 1;
443         else
444                 nbio = 0;
445
446         /*
447          * Reads are serialized.  Note howeverthat pipe_buffer.buffer and
448          * pipe_buffer.size can change out from under us when the number
449          * of bytes in the buffer are zero due to the write-side doing a
450          * pipespace().
451          */
452         error = pipe_start_uio(rpipe, &rpipe->pipe_rip);
453         if (error) {
454                 pipe_rel_mplock(&mpsave);
455                 lwkt_reltoken(&rpipe->pipe_rlock);
456                 return (error);
457         }
458         notify_writer = 0;
459
460         bigread = (uio->uio_resid > 10 * 1024 * 1024);
461         bigcount = 10;
462
463         while (uio->uio_resid) {
464                 /*
465                  * Don't hog the cpu.
466                  */
467                 if (bigread && --bigcount == 0) {
468                         lwkt_user_yield();
469                         bigcount = 10;
470                         if (CURSIG(curthread->td_lwp)) {
471                                 error = EINTR;
472                                 break;
473                         }
474                 }
475
476                 size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
477                 cpu_lfence();
478                 if (size) {
479                         rindex = rpipe->pipe_buffer.rindex &
480                                  (rpipe->pipe_buffer.size - 1);
481                         nsize = size;
482                         if (nsize > rpipe->pipe_buffer.size - rindex)
483                                 nsize = rpipe->pipe_buffer.size - rindex;
484                         nsize = szmin(nsize, uio->uio_resid);
485
486                         error = uiomove(&rpipe->pipe_buffer.buffer[rindex],
487                                         nsize, uio);
488                         if (error)
489                                 break;
490                         cpu_mfence();
491                         rpipe->pipe_buffer.rindex += nsize;
492                         nread += nsize;
493
494                         /*
495                          * If the FIFO is still over half full just continue
496                          * and do not try to notify the writer yet.
497                          */
498                         if (size - nsize >= (rpipe->pipe_buffer.size >> 1)) {
499                                 notify_writer = 0;
500                                 continue;
501                         }
502
503                         /*
504                          * When the FIFO is less then half full notify any
505                          * waiting writer.  WANTW can be checked while
506                          * holding just the rlock.
507                          */
508                         notify_writer = 1;
509                         if ((rpipe->pipe_state & PIPE_WANTW) == 0)
510                                 continue;
511                 }
512
513                 /*
514                  * If the "write-side" was blocked we wake it up.  This code
515                  * is reached either when the buffer is completely emptied
516                  * or if it becomes more then half-empty.
517                  *
518                  * Pipe_state can only be modified if both the rlock and
519                  * wlock are held.
520                  */
521                 if (rpipe->pipe_state & PIPE_WANTW) {
522                         lwkt_gettoken(&rpipe->pipe_wlock);
523                         if (rpipe->pipe_state & PIPE_WANTW) {
524                                 notify_writer = 0;
525                                 rpipe->pipe_state &= ~PIPE_WANTW;
526                                 lwkt_reltoken(&rpipe->pipe_wlock);
527                                 wakeup(rpipe);
528                         } else {
529                                 lwkt_reltoken(&rpipe->pipe_wlock);
530                         }
531                 }
532
533                 /*
534                  * Pick up our copy loop again if the writer sent data to
535                  * us while we were messing around.
536                  *
537                  * On a SMP box poll up to pipe_delay nanoseconds for new
538                  * data.  Typically a value of 2000 to 4000 is sufficient
539                  * to eradicate most IPIs/tsleeps/wakeups when a pipe
540                  * is used for synchronous communications with small packets,
541                  * and 8000 or so (8uS) will pipeline large buffer xfers
542                  * between cpus over a pipe.
543                  *
544                  * For synchronous communications a hit means doing a
545                  * full Awrite-Bread-Bwrite-Aread cycle in less then 2uS,
546                  * where as miss requiring a tsleep/wakeup sequence
547                  * will take 7uS or more.
548                  */
549                 if (rpipe->pipe_buffer.windex != rpipe->pipe_buffer.rindex)
550                         continue;
551
552 #if defined(SMP) && defined(_RDTSC_SUPPORTED_)
553                 if (pipe_delay) {
554                         int64_t tsc_target;
555                         int good = 0;
556
557                         tsc_target = tsc_get_target(pipe_delay);
558                         while (tsc_test_target(tsc_target) == 0) {
559                                 if (rpipe->pipe_buffer.windex !=
560                                     rpipe->pipe_buffer.rindex) {
561                                         good = 1;
562                                         break;
563                                 }
564                         }
565                         if (good)
566                                 continue;
567                 }
568 #endif
569
570                 /*
571                  * Detect EOF condition, do not set error.
572                  */
573                 if (rpipe->pipe_state & PIPE_REOF)
574                         break;
575
576                 /*
577                  * Break if some data was read, or if this was a non-blocking
578                  * read.
579                  */
580                 if (nread > 0)
581                         break;
582
583                 if (nbio) {
584                         error = EAGAIN;
585                         break;
586                 }
587
588                 /*
589                  * Last chance, interlock with WANTR.
590                  */
591                 lwkt_gettoken(&rpipe->pipe_wlock);
592                 size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
593                 if (size) {
594                         lwkt_reltoken(&rpipe->pipe_wlock);
595                         continue;
596                 }
597
598                 /*
599                  * Retest EOF - acquiring a new token can temporarily release
600                  * tokens already held.
601                  */
602                 if (rpipe->pipe_state & PIPE_REOF) {
603                         lwkt_reltoken(&rpipe->pipe_wlock);
604                         break;
605                 }
606
607                 /*
608                  * If there is no more to read in the pipe, reset its
609                  * pointers to the beginning.  This improves cache hit
610                  * stats.
611                  *
612                  * We need both locks to modify both pointers, and there
613                  * must also not be a write in progress or the uiomove()
614                  * in the write might block and temporarily release
615                  * its wlock, then reacquire and update windex.  We are
616                  * only serialized against reads, not writes.
617                  *
618                  * XXX should we even bother resetting the indices?  It
619                  *     might actually be more cache efficient not to.
620                  */
621                 if (rpipe->pipe_buffer.rindex == rpipe->pipe_buffer.windex &&
622                     rpipe->pipe_wip == 0) {
623                         rpipe->pipe_buffer.rindex = 0;
624                         rpipe->pipe_buffer.windex = 0;
625                 }
626
627                 /*
628                  * Wait for more data.
629                  *
630                  * Pipe_state can only be set if both the rlock and wlock
631                  * are held.
632                  */
633                 rpipe->pipe_state |= PIPE_WANTR;
634                 tsleep_interlock(rpipe, PCATCH);
635                 lwkt_reltoken(&rpipe->pipe_wlock);
636                 error = tsleep(rpipe, PCATCH | PINTERLOCKED, "piperd", 0);
637                 ++pipe_rblocked_count;
638                 if (error)
639                         break;
640         }
641         pipe_end_uio(rpipe, &rpipe->pipe_rip);
642
643         /*
644          * Uptime last access time
645          */
646         if (error == 0 && nread)
647                 vfs_timestamp(&rpipe->pipe_atime);
648
649         /*
650          * If we drained the FIFO more then half way then handle
651          * write blocking hysteresis.
652          *
653          * Note that PIPE_WANTW cannot be set by the writer without
654          * it holding both rlock and wlock, so we can test it
655          * while holding just rlock.
656          */
657         if (notify_writer) {
658                 if (rpipe->pipe_state & PIPE_WANTW) {
659                         lwkt_gettoken(&rpipe->pipe_wlock);
660                         if (rpipe->pipe_state & PIPE_WANTW) {
661                                 rpipe->pipe_state &= ~PIPE_WANTW;
662                                 lwkt_reltoken(&rpipe->pipe_wlock);
663                                 wakeup(rpipe);
664                         } else {
665                                 lwkt_reltoken(&rpipe->pipe_wlock);
666                         }
667                 }
668                 if (pipeseltest(rpipe)) {
669                         lwkt_gettoken(&rpipe->pipe_wlock);
670                         pipeselwakeup(rpipe);
671                         lwkt_reltoken(&rpipe->pipe_wlock);
672                 }
673         }
674         /*size = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;*/
675         lwkt_reltoken(&rpipe->pipe_rlock);
676
677         pipe_rel_mplock(&mpsave);
678         return (error);
679 }
680
681 /*
682  * MPALMOSTSAFE - acquires mplock
683  */
684 static int
685 pipe_write(struct file *fp, struct uio *uio, struct ucred *cred, int fflags)
686 {
687         int error;
688         int orig_resid;
689         int nbio;
690         struct pipe *wpipe, *rpipe;
691         u_int windex;
692         u_int space;
693         u_int wcount;
694         int mpsave;
695         int bigwrite;
696         int bigcount;
697
698         pipe_get_mplock(&mpsave);
699
700         /*
701          * Writes go to the peer.  The peer will always exist.
702          */
703         rpipe = (struct pipe *) fp->f_data;
704         wpipe = rpipe->pipe_peer;
705         lwkt_gettoken(&wpipe->pipe_wlock);
706         if (wpipe->pipe_state & PIPE_WEOF) {
707                 pipe_rel_mplock(&mpsave);
708                 lwkt_reltoken(&wpipe->pipe_wlock);
709                 return (EPIPE);
710         }
711
712         /*
713          * Degenerate case (EPIPE takes prec)
714          */
715         if (uio->uio_resid == 0) {
716                 pipe_rel_mplock(&mpsave);
717                 lwkt_reltoken(&wpipe->pipe_wlock);
718                 return(0);
719         }
720
721         /*
722          * Writes are serialized (start_uio must be called with wlock)
723          */
724         error = pipe_start_uio(wpipe, &wpipe->pipe_wip);
725         if (error) {
726                 pipe_rel_mplock(&mpsave);
727                 lwkt_reltoken(&wpipe->pipe_wlock);
728                 return (error);
729         }
730
731         if (fflags & O_FBLOCKING)
732                 nbio = 0;
733         else if (fflags & O_FNONBLOCKING)
734                 nbio = 1;
735         else if (fp->f_flag & O_NONBLOCK)
736                 nbio = 1;
737         else
738                 nbio = 0;
739
740         /*
741          * If it is advantageous to resize the pipe buffer, do
742          * so.  We are write-serialized so we can block safely.
743          */
744         if ((wpipe->pipe_buffer.size <= PIPE_SIZE) &&
745             (pipe_nbig < pipe_maxbig) &&
746             wpipe->pipe_wantwcnt > 4 &&
747             (wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex)) {
748                 /* 
749                  * Recheck after lock.
750                  */
751                 lwkt_gettoken(&wpipe->pipe_rlock);
752                 if ((wpipe->pipe_buffer.size <= PIPE_SIZE) &&
753                     (pipe_nbig < pipe_maxbig) &&
754                     (wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex)) {
755                         atomic_add_int(&pipe_nbig, 1);
756                         if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
757                                 ++pipe_bigcount;
758                         else
759                                 atomic_subtract_int(&pipe_nbig, 1);
760                 }
761                 lwkt_reltoken(&wpipe->pipe_rlock);
762         }
763
764         orig_resid = uio->uio_resid;
765         wcount = 0;
766
767         bigwrite = (uio->uio_resid > 10 * 1024 * 1024);
768         bigcount = 10;
769
770         while (uio->uio_resid) {
771                 if (wpipe->pipe_state & PIPE_WEOF) {
772                         error = EPIPE;
773                         break;
774                 }
775
776                 /*
777                  * Don't hog the cpu.
778                  */
779                 if (bigwrite && --bigcount == 0) {
780                         lwkt_user_yield();
781                         bigcount = 10;
782                         if (CURSIG(curthread->td_lwp)) {
783                                 error = EINTR;
784                                 break;
785                         }
786                 }
787
788                 windex = wpipe->pipe_buffer.windex &
789                          (wpipe->pipe_buffer.size - 1);
790                 space = wpipe->pipe_buffer.size -
791                         (wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex);
792                 cpu_lfence();
793
794                 /* Writes of size <= PIPE_BUF must be atomic. */
795                 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
796                         space = 0;
797
798                 /* 
799                  * Write to fill, read size handles write hysteresis.  Also
800                  * additional restrictions can cause select-based non-blocking
801                  * writes to spin.
802                  */
803                 if (space > 0) {
804                         u_int segsize;
805
806                         /*
807                          * Transfer size is minimum of uio transfer
808                          * and free space in pipe buffer.
809                          *
810                          * Limit each uiocopy to no more then PIPE_SIZE
811                          * so we can keep the gravy train going on a
812                          * SMP box.  This doubles the performance for
813                          * write sizes > 16K.  Otherwise large writes
814                          * wind up doing an inefficient synchronous
815                          * ping-pong.
816                          */
817                         space = szmin(space, uio->uio_resid);
818                         if (space > PIPE_SIZE)
819                                 space = PIPE_SIZE;
820
821                         /*
822                          * First segment to transfer is minimum of
823                          * transfer size and contiguous space in
824                          * pipe buffer.  If first segment to transfer
825                          * is less than the transfer size, we've got
826                          * a wraparound in the buffer.
827                          */
828                         segsize = wpipe->pipe_buffer.size - windex;
829                         if (segsize > space)
830                                 segsize = space;
831
832 #ifdef SMP
833                         /*
834                          * If this is the first loop and the reader is
835                          * blocked, do a preemptive wakeup of the reader.
836                          *
837                          * On SMP the IPI latency plus the wlock interlock
838                          * on the reader side is the fastest way to get the
839                          * reader going.  (The scheduler will hard loop on
840                          * lock tokens).
841                          *
842                          * NOTE: We can't clear WANTR here without acquiring
843                          * the rlock, which we don't want to do here!
844                          */
845                         if ((wpipe->pipe_state & PIPE_WANTR) && pipe_mpsafe > 1)
846                                 wakeup(wpipe);
847 #endif
848
849                         /*
850                          * Transfer segment, which may include a wrap-around.
851                          * Update windex to account for both all in one go
852                          * so the reader can read() the data atomically.
853                          */
854                         error = uiomove(&wpipe->pipe_buffer.buffer[windex],
855                                         segsize, uio);
856                         if (error == 0 && segsize < space) {
857                                 segsize = space - segsize;
858                                 error = uiomove(&wpipe->pipe_buffer.buffer[0],
859                                                 segsize, uio);
860                         }
861                         if (error)
862                                 break;
863                         cpu_mfence();
864                         wpipe->pipe_buffer.windex += space;
865                         wcount += space;
866                         continue;
867                 }
868
869                 /*
870                  * We need both the rlock and the wlock to interlock against
871                  * the EOF, WANTW, and size checks, and to modify pipe_state.
872                  *
873                  * These are token locks so we do not have to worry about
874                  * deadlocks.
875                  */
876                 lwkt_gettoken(&wpipe->pipe_rlock);
877
878                 /*
879                  * If the "read-side" has been blocked, wake it up now
880                  * and yield to let it drain synchronously rather
881                  * then block.
882                  */
883                 if (wpipe->pipe_state & PIPE_WANTR) {
884                         wpipe->pipe_state &= ~PIPE_WANTR;
885                         wakeup(wpipe);
886                 }
887
888                 /*
889                  * don't block on non-blocking I/O
890                  */
891                 if (nbio) {
892                         lwkt_reltoken(&wpipe->pipe_rlock);
893                         error = EAGAIN;
894                         break;
895                 }
896
897                 /*
898                  * re-test whether we have to block in the writer after
899                  * acquiring both locks, in case the reader opened up
900                  * some space.
901                  */
902                 space = wpipe->pipe_buffer.size -
903                         (wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex);
904                 cpu_lfence();
905                 if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
906                         space = 0;
907
908                 /*
909                  * Retest EOF - acquiring a new token can temporarily release
910                  * tokens already held.
911                  */
912                 if (wpipe->pipe_state & PIPE_WEOF) {
913                         lwkt_reltoken(&wpipe->pipe_rlock);
914                         error = EPIPE;
915                         break;
916                 }
917
918                 /*
919                  * We have no more space and have something to offer,
920                  * wake up select/poll.
921                  */
922                 if (space == 0) {
923                         wpipe->pipe_state |= PIPE_WANTW;
924                         ++wpipe->pipe_wantwcnt;
925                         pipeselwakeup(wpipe);
926                         if (wpipe->pipe_state & PIPE_WANTW)
927                                 error = tsleep(wpipe, PCATCH, "pipewr", 0);
928                         ++pipe_wblocked_count;
929                 }
930                 lwkt_reltoken(&wpipe->pipe_rlock);
931
932                 /*
933                  * Break out if we errored or the read side wants us to go
934                  * away.
935                  */
936                 if (error)
937                         break;
938                 if (wpipe->pipe_state & PIPE_WEOF) {
939                         error = EPIPE;
940                         break;
941                 }
942         }
943         pipe_end_uio(wpipe, &wpipe->pipe_wip);
944
945         /*
946          * If we have put any characters in the buffer, we wake up
947          * the reader.
948          *
949          * Both rlock and wlock are required to be able to modify pipe_state.
950          */
951         if (wpipe->pipe_buffer.windex != wpipe->pipe_buffer.rindex) {
952                 if (wpipe->pipe_state & PIPE_WANTR) {
953                         lwkt_gettoken(&wpipe->pipe_rlock);
954                         if (wpipe->pipe_state & PIPE_WANTR) {
955                                 wpipe->pipe_state &= ~PIPE_WANTR;
956                                 lwkt_reltoken(&wpipe->pipe_rlock);
957                                 wakeup(wpipe);
958                         } else {
959                                 lwkt_reltoken(&wpipe->pipe_rlock);
960                         }
961                 }
962                 if (pipeseltest(wpipe)) {
963                         lwkt_gettoken(&wpipe->pipe_rlock);
964                         pipeselwakeup(wpipe);
965                         lwkt_reltoken(&wpipe->pipe_rlock);
966                 }
967         }
968
969         /*
970          * Don't return EPIPE if I/O was successful
971          */
972         if ((wpipe->pipe_buffer.rindex == wpipe->pipe_buffer.windex) &&
973             (uio->uio_resid == 0) &&
974             (error == EPIPE)) {
975                 error = 0;
976         }
977
978         if (error == 0)
979                 vfs_timestamp(&wpipe->pipe_mtime);
980
981         /*
982          * We have something to offer,
983          * wake up select/poll.
984          */
985         /*space = wpipe->pipe_buffer.windex - wpipe->pipe_buffer.rindex;*/
986         lwkt_reltoken(&wpipe->pipe_wlock);
987         pipe_rel_mplock(&mpsave);
988         return (error);
989 }
990
991 /*
992  * MPALMOSTSAFE - acquires mplock
993  *
994  * we implement a very minimal set of ioctls for compatibility with sockets.
995  */
996 int
997 pipe_ioctl(struct file *fp, u_long cmd, caddr_t data,
998            struct ucred *cred, struct sysmsg *msg)
999 {
1000         struct pipe *mpipe;
1001         int error;
1002         int mpsave;
1003
1004         pipe_get_mplock(&mpsave);
1005         mpipe = (struct pipe *)fp->f_data;
1006
1007         lwkt_gettoken(&mpipe->pipe_rlock);
1008         lwkt_gettoken(&mpipe->pipe_wlock);
1009
1010         switch (cmd) {
1011         case FIOASYNC:
1012                 if (*(int *)data) {
1013                         mpipe->pipe_state |= PIPE_ASYNC;
1014                 } else {
1015                         mpipe->pipe_state &= ~PIPE_ASYNC;
1016                 }
1017                 error = 0;
1018                 break;
1019         case FIONREAD:
1020                 *(int *)data = mpipe->pipe_buffer.windex -
1021                                 mpipe->pipe_buffer.rindex;
1022                 error = 0;
1023                 break;
1024         case FIOSETOWN:
1025                 get_mplock();
1026                 error = fsetown(*(int *)data, &mpipe->pipe_sigio);
1027                 rel_mplock();
1028                 break;
1029         case FIOGETOWN:
1030                 *(int *)data = fgetown(mpipe->pipe_sigio);
1031                 error = 0;
1032                 break;
1033         case TIOCSPGRP:
1034                 /* This is deprecated, FIOSETOWN should be used instead. */
1035                 get_mplock();
1036                 error = fsetown(-(*(int *)data), &mpipe->pipe_sigio);
1037                 rel_mplock();
1038                 break;
1039
1040         case TIOCGPGRP:
1041                 /* This is deprecated, FIOGETOWN should be used instead. */
1042                 *(int *)data = -fgetown(mpipe->pipe_sigio);
1043                 error = 0;
1044                 break;
1045         default:
1046                 error = ENOTTY;
1047                 break;
1048         }
1049         lwkt_reltoken(&mpipe->pipe_wlock);
1050         lwkt_reltoken(&mpipe->pipe_rlock);
1051         pipe_rel_mplock(&mpsave);
1052
1053         return (error);
1054 }
1055
1056 /*
1057  * MPSAFE
1058  */
1059 static int
1060 pipe_stat(struct file *fp, struct stat *ub, struct ucred *cred)
1061 {
1062         struct pipe *pipe;
1063         int mpsave;
1064
1065         pipe_get_mplock(&mpsave);
1066         pipe = (struct pipe *)fp->f_data;
1067
1068         bzero((caddr_t)ub, sizeof(*ub));
1069         ub->st_mode = S_IFIFO;
1070         ub->st_blksize = pipe->pipe_buffer.size;
1071         ub->st_size = pipe->pipe_buffer.windex - pipe->pipe_buffer.rindex;
1072         ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1073         ub->st_atimespec = pipe->pipe_atime;
1074         ub->st_mtimespec = pipe->pipe_mtime;
1075         ub->st_ctimespec = pipe->pipe_ctime;
1076         /*
1077          * Left as 0: st_dev, st_ino, st_nlink, st_uid, st_gid, st_rdev,
1078          * st_flags, st_gen.
1079          * XXX (st_dev, st_ino) should be unique.
1080          */
1081         pipe_rel_mplock(&mpsave);
1082         return (0);
1083 }
1084
1085 /*
1086  * MPALMOSTSAFE - acquires mplock
1087  */
1088 static int
1089 pipe_close(struct file *fp)
1090 {
1091         struct pipe *cpipe;
1092
1093         get_mplock();
1094         cpipe = (struct pipe *)fp->f_data;
1095         fp->f_ops = &badfileops;
1096         fp->f_data = NULL;
1097         funsetown(cpipe->pipe_sigio);
1098         pipeclose(cpipe);
1099         rel_mplock();
1100         return (0);
1101 }
1102
1103 /*
1104  * Shutdown one or both directions of a full-duplex pipe.
1105  *
1106  * MPALMOSTSAFE - acquires mplock
1107  */
1108 static int
1109 pipe_shutdown(struct file *fp, int how)
1110 {
1111         struct pipe *rpipe;
1112         struct pipe *wpipe;
1113         int error = EPIPE;
1114         int mpsave;
1115
1116         pipe_get_mplock(&mpsave);
1117         rpipe = (struct pipe *)fp->f_data;
1118         wpipe = rpipe->pipe_peer;
1119
1120         /*
1121          * We modify pipe_state on both pipes, which means we need
1122          * all four tokens!
1123          */
1124         lwkt_gettoken(&rpipe->pipe_rlock);
1125         lwkt_gettoken(&rpipe->pipe_wlock);
1126         lwkt_gettoken(&wpipe->pipe_rlock);
1127         lwkt_gettoken(&wpipe->pipe_wlock);
1128
1129         switch(how) {
1130         case SHUT_RDWR:
1131         case SHUT_RD:
1132                 rpipe->pipe_state |= PIPE_REOF;         /* my reads */
1133                 rpipe->pipe_state |= PIPE_WEOF;         /* peer writes */
1134                 if (rpipe->pipe_state & PIPE_WANTR) {
1135                         rpipe->pipe_state &= ~PIPE_WANTR;
1136                         wakeup(rpipe);
1137                 }
1138                 if (rpipe->pipe_state & PIPE_WANTW) {
1139                         rpipe->pipe_state &= ~PIPE_WANTW;
1140                         wakeup(rpipe);
1141                 }
1142                 error = 0;
1143                 if (how == SHUT_RD)
1144                         break;
1145                 /* fall through */
1146         case SHUT_WR:
1147                 wpipe->pipe_state |= PIPE_REOF;         /* peer reads */
1148                 wpipe->pipe_state |= PIPE_WEOF;         /* my writes */
1149                 if (wpipe->pipe_state & PIPE_WANTR) {
1150                         wpipe->pipe_state &= ~PIPE_WANTR;
1151                         wakeup(wpipe);
1152                 }
1153                 if (wpipe->pipe_state & PIPE_WANTW) {
1154                         wpipe->pipe_state &= ~PIPE_WANTW;
1155                         wakeup(wpipe);
1156                 }
1157                 error = 0;
1158                 break;
1159         }
1160         pipeselwakeup(rpipe);
1161         pipeselwakeup(wpipe);
1162
1163         lwkt_reltoken(&wpipe->pipe_wlock);
1164         lwkt_reltoken(&wpipe->pipe_rlock);
1165         lwkt_reltoken(&rpipe->pipe_wlock);
1166         lwkt_reltoken(&rpipe->pipe_rlock);
1167
1168         pipe_rel_mplock(&mpsave);
1169         return (error);
1170 }
1171
1172 static void
1173 pipe_free_kmem(struct pipe *cpipe)
1174 {
1175         if (cpipe->pipe_buffer.buffer != NULL) {
1176                 if (cpipe->pipe_buffer.size > PIPE_SIZE)
1177                         atomic_subtract_int(&pipe_nbig, 1);
1178                 kmem_free(&kernel_map,
1179                         (vm_offset_t)cpipe->pipe_buffer.buffer,
1180                         cpipe->pipe_buffer.size);
1181                 cpipe->pipe_buffer.buffer = NULL;
1182                 cpipe->pipe_buffer.object = NULL;
1183         }
1184 }
1185
1186 /*
1187  * Close the pipe.  The slock must be held to interlock against simultanious
1188  * closes.  The rlock and wlock must be held to adjust the pipe_state.
1189  */
1190 static void
1191 pipeclose(struct pipe *cpipe)
1192 {
1193         globaldata_t gd;
1194         struct pipe *ppipe;
1195
1196         if (cpipe == NULL)
1197                 return;
1198
1199         /*
1200          * The slock may not have been allocated yet (close during
1201          * initialization)
1202          *
1203          * We need both the read and write tokens to modify pipe_state.
1204          */
1205         if (cpipe->pipe_slock)
1206                 lockmgr(cpipe->pipe_slock, LK_EXCLUSIVE);
1207         lwkt_gettoken(&cpipe->pipe_rlock);
1208         lwkt_gettoken(&cpipe->pipe_wlock);
1209
1210         /*
1211          * Set our state, wakeup anyone waiting in select, and
1212          * wakeup anyone blocked on our pipe.
1213          */
1214         cpipe->pipe_state |= PIPE_CLOSED | PIPE_REOF | PIPE_WEOF;
1215         pipeselwakeup(cpipe);
1216         if (cpipe->pipe_state & (PIPE_WANTR | PIPE_WANTW)) {
1217                 cpipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
1218                 wakeup(cpipe);
1219         }
1220
1221         /*
1222          * Disconnect from peer.
1223          */
1224         if ((ppipe = cpipe->pipe_peer) != NULL) {
1225                 lwkt_gettoken(&ppipe->pipe_rlock);
1226                 lwkt_gettoken(&ppipe->pipe_wlock);
1227                 ppipe->pipe_state |= PIPE_REOF | PIPE_WEOF;
1228                 pipeselwakeup(ppipe);
1229                 if (ppipe->pipe_state & (PIPE_WANTR | PIPE_WANTW)) {
1230                         ppipe->pipe_state &= ~(PIPE_WANTR | PIPE_WANTW);
1231                         wakeup(ppipe);
1232                 }
1233                 if (SLIST_FIRST(&ppipe->pipe_sel.si_note)) {
1234                         get_mplock();
1235                         KNOTE(&ppipe->pipe_sel.si_note, 0);
1236                         rel_mplock();
1237                 }
1238                 lwkt_reltoken(&ppipe->pipe_wlock);
1239                 lwkt_reltoken(&ppipe->pipe_rlock);
1240         }
1241
1242         /*
1243          * If the peer is also closed we can free resources for both
1244          * sides, otherwise we leave our side intact to deal with any
1245          * races (since we only have the slock).
1246          */
1247         if (ppipe && (ppipe->pipe_state & PIPE_CLOSED)) {
1248                 cpipe->pipe_peer = NULL;
1249                 ppipe->pipe_peer = NULL;
1250                 ppipe->pipe_slock = NULL;       /* we will free the slock */
1251                 pipeclose(ppipe);
1252                 ppipe = NULL;
1253         }
1254
1255         lwkt_reltoken(&cpipe->pipe_wlock);
1256         lwkt_reltoken(&cpipe->pipe_rlock);
1257         if (cpipe->pipe_slock)
1258                 lockmgr(cpipe->pipe_slock, LK_RELEASE);
1259
1260         /*
1261          * If we disassociated from our peer we can free resources
1262          */
1263         if (ppipe == NULL) {
1264                 gd = mycpu;
1265                 if (cpipe->pipe_slock) {
1266                         kfree(cpipe->pipe_slock, M_PIPE);
1267                         cpipe->pipe_slock = NULL;
1268                 }
1269                 if (gd->gd_pipeqcount >= pipe_maxcache ||
1270                     cpipe->pipe_buffer.size != PIPE_SIZE
1271                 ) {
1272                         pipe_free_kmem(cpipe);
1273                         kfree(cpipe, M_PIPE);
1274                 } else {
1275                         cpipe->pipe_state = 0;
1276                         cpipe->pipe_peer = gd->gd_pipeq;
1277                         gd->gd_pipeq = cpipe;
1278                         ++gd->gd_pipeqcount;
1279                 }
1280         }
1281 }
1282
1283 /*
1284  * MPALMOSTSAFE - acquires mplock
1285  */
1286 static int
1287 pipe_kqfilter(struct file *fp, struct knote *kn)
1288 {
1289         struct pipe *cpipe;
1290
1291         get_mplock();
1292         cpipe = (struct pipe *)kn->kn_fp->f_data;
1293
1294         switch (kn->kn_filter) {
1295         case EVFILT_READ:
1296                 kn->kn_fop = &pipe_rfiltops;
1297                 break;
1298         case EVFILT_WRITE:
1299                 kn->kn_fop = &pipe_wfiltops;
1300                 cpipe = cpipe->pipe_peer;
1301                 if (cpipe == NULL) {
1302                         /* other end of pipe has been closed */
1303                         rel_mplock();
1304                         return (EPIPE);
1305                 }
1306                 break;
1307         default:
1308                 rel_mplock();
1309                 return (EOPNOTSUPP);
1310         }
1311         kn->kn_hook = (caddr_t)cpipe;
1312
1313         SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1314         rel_mplock();
1315         return (0);
1316 }
1317
1318 static void
1319 filt_pipedetach(struct knote *kn)
1320 {
1321         struct pipe *cpipe = (struct pipe *)kn->kn_hook;
1322
1323         SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1324 }
1325
1326 /*ARGSUSED*/
1327 static int
1328 filt_piperead(struct knote *kn, long hint)
1329 {
1330         struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1331
1332         kn->kn_data = rpipe->pipe_buffer.windex - rpipe->pipe_buffer.rindex;
1333
1334         /* XXX RACE */
1335         if (rpipe->pipe_state & PIPE_REOF) {
1336                 kn->kn_flags |= EV_EOF; 
1337                 return (1);
1338         }
1339         return (kn->kn_data > 0);
1340 }
1341
1342 /*ARGSUSED*/
1343 static int
1344 filt_pipewrite(struct knote *kn, long hint)
1345 {
1346         struct pipe *rpipe = (struct pipe *)kn->kn_fp->f_data;
1347         struct pipe *wpipe = rpipe->pipe_peer;
1348         u_int32_t space;
1349
1350         /* XXX RACE */
1351         if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_WEOF)) {
1352                 kn->kn_data = 0;
1353                 kn->kn_flags |= EV_EOF; 
1354                 return (1);
1355         }
1356         space = wpipe->pipe_buffer.windex -
1357                 wpipe->pipe_buffer.rindex;
1358         space = wpipe->pipe_buffer.size - space;
1359         kn->kn_data = space;
1360         return (kn->kn_data >= PIPE_BUF);
1361 }