if: Move IFF_OACTIVE bit into ifaltq; prepare multiple TX queues support
[dragonfly.git] / sys / dev / netif / em / if_em.c
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - If the driver uses the same serializer for the interrupt as for the
71  *   ifnet, most of the serialization will be done automatically for the
72  *   driver.
73  *
74  * - ifmedia entry points will be serialized by the ifmedia code using the
75  *   ifnet serializer.
76  *
77  * - if_* entry points except for if_input will be serialized by the IF
78  *   and protocol layers.
79  *
80  * - The device driver must be sure to serialize access from timeout code
81  *   installed by the device driver.
82  *
83  * - The device driver typically holds the serializer at the time it wishes
84  *   to call if_input.
85  *
86  * - We must call lwkt_serialize_handler_enable() prior to enabling the
87  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
88  *   the hardware interrupt in order to avoid handler execution races from
89  *   scheduled interrupt threads.
90  *
91  *   NOTE!  Since callers into the device driver hold the ifnet serializer,
92  *   the device driver may be holding a serializer at the time it calls
93  *   if_input even if it is not serializer-aware.
94  */
95
96 #include "opt_ifpoll.h"
97
98 #include <sys/param.h>
99 #include <sys/bus.h>
100 #include <sys/endian.h>
101 #include <sys/interrupt.h>
102 #include <sys/kernel.h>
103 #include <sys/ktr.h>
104 #include <sys/malloc.h>
105 #include <sys/mbuf.h>
106 #include <sys/proc.h>
107 #include <sys/rman.h>
108 #include <sys/serialize.h>
109 #include <sys/socket.h>
110 #include <sys/sockio.h>
111 #include <sys/sysctl.h>
112 #include <sys/systm.h>
113
114 #include <net/bpf.h>
115 #include <net/ethernet.h>
116 #include <net/if.h>
117 #include <net/if_arp.h>
118 #include <net/if_dl.h>
119 #include <net/if_media.h>
120 #include <net/if_poll.h>
121 #include <net/ifq_var.h>
122 #include <net/vlan/if_vlan_var.h>
123 #include <net/vlan/if_vlan_ether.h>
124
125 #include <netinet/ip.h>
126 #include <netinet/tcp.h>
127 #include <netinet/udp.h>
128
129 #include <bus/pci/pcivar.h>
130 #include <bus/pci/pcireg.h>
131
132 #include <dev/netif/ig_hal/e1000_api.h>
133 #include <dev/netif/ig_hal/e1000_82571.h>
134 #include <dev/netif/em/if_em.h>
135
136 #define EM_NAME "Intel(R) PRO/1000 Network Connection "
137 #define EM_VER  " 7.2.4"
138
139 #define _EM_DEVICE(id, ret)     \
140         { EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
141 #define EM_EMX_DEVICE(id)       _EM_DEVICE(id, -100)
142 #define EM_DEVICE(id)           _EM_DEVICE(id, 0)
143 #define EM_DEVICE_NULL  { 0, 0, 0, NULL }
144
145 static const struct em_vendor_info em_vendor_info_array[] = {
146         EM_DEVICE(82540EM),
147         EM_DEVICE(82540EM_LOM),
148         EM_DEVICE(82540EP),
149         EM_DEVICE(82540EP_LOM),
150         EM_DEVICE(82540EP_LP),
151
152         EM_DEVICE(82541EI),
153         EM_DEVICE(82541ER),
154         EM_DEVICE(82541ER_LOM),
155         EM_DEVICE(82541EI_MOBILE),
156         EM_DEVICE(82541GI),
157         EM_DEVICE(82541GI_LF),
158         EM_DEVICE(82541GI_MOBILE),
159
160         EM_DEVICE(82542),
161
162         EM_DEVICE(82543GC_FIBER),
163         EM_DEVICE(82543GC_COPPER),
164
165         EM_DEVICE(82544EI_COPPER),
166         EM_DEVICE(82544EI_FIBER),
167         EM_DEVICE(82544GC_COPPER),
168         EM_DEVICE(82544GC_LOM),
169
170         EM_DEVICE(82545EM_COPPER),
171         EM_DEVICE(82545EM_FIBER),
172         EM_DEVICE(82545GM_COPPER),
173         EM_DEVICE(82545GM_FIBER),
174         EM_DEVICE(82545GM_SERDES),
175
176         EM_DEVICE(82546EB_COPPER),
177         EM_DEVICE(82546EB_FIBER),
178         EM_DEVICE(82546EB_QUAD_COPPER),
179         EM_DEVICE(82546GB_COPPER),
180         EM_DEVICE(82546GB_FIBER),
181         EM_DEVICE(82546GB_SERDES),
182         EM_DEVICE(82546GB_PCIE),
183         EM_DEVICE(82546GB_QUAD_COPPER),
184         EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
185
186         EM_DEVICE(82547EI),
187         EM_DEVICE(82547EI_MOBILE),
188         EM_DEVICE(82547GI),
189
190         EM_EMX_DEVICE(82571EB_COPPER),
191         EM_EMX_DEVICE(82571EB_FIBER),
192         EM_EMX_DEVICE(82571EB_SERDES),
193         EM_EMX_DEVICE(82571EB_SERDES_DUAL),
194         EM_EMX_DEVICE(82571EB_SERDES_QUAD),
195         EM_EMX_DEVICE(82571EB_QUAD_COPPER),
196         EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
197         EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
198         EM_EMX_DEVICE(82571EB_QUAD_FIBER),
199         EM_EMX_DEVICE(82571PT_QUAD_COPPER),
200
201         EM_EMX_DEVICE(82572EI_COPPER),
202         EM_EMX_DEVICE(82572EI_FIBER),
203         EM_EMX_DEVICE(82572EI_SERDES),
204         EM_EMX_DEVICE(82572EI),
205
206         EM_EMX_DEVICE(82573E),
207         EM_EMX_DEVICE(82573E_IAMT),
208         EM_EMX_DEVICE(82573L),
209
210         EM_DEVICE(82583V),
211
212         EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
213         EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
214         EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
215         EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
216
217         EM_DEVICE(ICH8_IGP_M_AMT),
218         EM_DEVICE(ICH8_IGP_AMT),
219         EM_DEVICE(ICH8_IGP_C),
220         EM_DEVICE(ICH8_IFE),
221         EM_DEVICE(ICH8_IFE_GT),
222         EM_DEVICE(ICH8_IFE_G),
223         EM_DEVICE(ICH8_IGP_M),
224         EM_DEVICE(ICH8_82567V_3),
225
226         EM_DEVICE(ICH9_IGP_M_AMT),
227         EM_DEVICE(ICH9_IGP_AMT),
228         EM_DEVICE(ICH9_IGP_C),
229         EM_DEVICE(ICH9_IGP_M),
230         EM_DEVICE(ICH9_IGP_M_V),
231         EM_DEVICE(ICH9_IFE),
232         EM_DEVICE(ICH9_IFE_GT),
233         EM_DEVICE(ICH9_IFE_G),
234         EM_DEVICE(ICH9_BM),
235
236         EM_EMX_DEVICE(82574L),
237         EM_EMX_DEVICE(82574LA),
238
239         EM_DEVICE(ICH10_R_BM_LM),
240         EM_DEVICE(ICH10_R_BM_LF),
241         EM_DEVICE(ICH10_R_BM_V),
242         EM_DEVICE(ICH10_D_BM_LM),
243         EM_DEVICE(ICH10_D_BM_LF),
244         EM_DEVICE(ICH10_D_BM_V),
245
246         EM_DEVICE(PCH_M_HV_LM),
247         EM_DEVICE(PCH_M_HV_LC),
248         EM_DEVICE(PCH_D_HV_DM),
249         EM_DEVICE(PCH_D_HV_DC),
250
251         EM_DEVICE(PCH2_LV_LM),
252         EM_DEVICE(PCH2_LV_V),
253
254         /* required last entry */
255         EM_DEVICE_NULL
256 };
257
258 static int      em_probe(device_t);
259 static int      em_attach(device_t);
260 static int      em_detach(device_t);
261 static int      em_shutdown(device_t);
262 static int      em_suspend(device_t);
263 static int      em_resume(device_t);
264
265 static void     em_init(void *);
266 static void     em_stop(struct adapter *);
267 static int      em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
268 static void     em_start(struct ifnet *);
269 #ifdef IFPOLL_ENABLE
270 static void     em_npoll(struct ifnet *, struct ifpoll_info *);
271 static void     em_npoll_compat(struct ifnet *, void *, int);
272 #endif
273 static void     em_watchdog(struct ifnet *);
274 static void     em_media_status(struct ifnet *, struct ifmediareq *);
275 static int      em_media_change(struct ifnet *);
276 static void     em_timer(void *);
277
278 static void     em_intr(void *);
279 static void     em_intr_mask(void *);
280 static void     em_intr_body(struct adapter *, boolean_t);
281 static void     em_rxeof(struct adapter *, int);
282 static void     em_txeof(struct adapter *);
283 static void     em_tx_collect(struct adapter *);
284 static void     em_tx_purge(struct adapter *);
285 static void     em_enable_intr(struct adapter *);
286 static void     em_disable_intr(struct adapter *);
287
288 static int      em_dma_malloc(struct adapter *, bus_size_t,
289                     struct em_dma_alloc *);
290 static void     em_dma_free(struct adapter *, struct em_dma_alloc *);
291 static void     em_init_tx_ring(struct adapter *);
292 static int      em_init_rx_ring(struct adapter *);
293 static int      em_create_tx_ring(struct adapter *);
294 static int      em_create_rx_ring(struct adapter *);
295 static void     em_destroy_tx_ring(struct adapter *, int);
296 static void     em_destroy_rx_ring(struct adapter *, int);
297 static int      em_newbuf(struct adapter *, int, int);
298 static int      em_encap(struct adapter *, struct mbuf **, int *, int *);
299 static void     em_rxcsum(struct adapter *, struct e1000_rx_desc *,
300                     struct mbuf *);
301 static int      em_txcsum(struct adapter *, struct mbuf *,
302                     uint32_t *, uint32_t *);
303 static int      em_tso_pullup(struct adapter *, struct mbuf **);
304 static int      em_tso_setup(struct adapter *, struct mbuf *,
305                     uint32_t *, uint32_t *);
306
307 static int      em_get_hw_info(struct adapter *);
308 static int      em_is_valid_eaddr(const uint8_t *);
309 static int      em_alloc_pci_res(struct adapter *);
310 static void     em_free_pci_res(struct adapter *);
311 static int      em_reset(struct adapter *);
312 static void     em_setup_ifp(struct adapter *);
313 static void     em_init_tx_unit(struct adapter *);
314 static void     em_init_rx_unit(struct adapter *);
315 static void     em_update_stats(struct adapter *);
316 static void     em_set_promisc(struct adapter *);
317 static void     em_disable_promisc(struct adapter *);
318 static void     em_set_multi(struct adapter *);
319 static void     em_update_link_status(struct adapter *);
320 static void     em_smartspeed(struct adapter *);
321 static void     em_set_itr(struct adapter *, uint32_t);
322 static void     em_disable_aspm(struct adapter *);
323
324 /* Hardware workarounds */
325 static int      em_82547_fifo_workaround(struct adapter *, int);
326 static void     em_82547_update_fifo_head(struct adapter *, int);
327 static int      em_82547_tx_fifo_reset(struct adapter *);
328 static void     em_82547_move_tail(void *);
329 static void     em_82547_move_tail_serialized(struct adapter *);
330 static uint32_t em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
331
332 static void     em_print_debug_info(struct adapter *);
333 static void     em_print_nvm_info(struct adapter *);
334 static void     em_print_hw_stats(struct adapter *);
335
336 static int      em_sysctl_stats(SYSCTL_HANDLER_ARGS);
337 static int      em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
338 static int      em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
339 static int      em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
340 static void     em_add_sysctl(struct adapter *adapter);
341
342 /* Management and WOL Support */
343 static void     em_get_mgmt(struct adapter *);
344 static void     em_rel_mgmt(struct adapter *);
345 static void     em_get_hw_control(struct adapter *);
346 static void     em_rel_hw_control(struct adapter *);
347 static void     em_enable_wol(device_t);
348
349 static device_method_t em_methods[] = {
350         /* Device interface */
351         DEVMETHOD(device_probe,         em_probe),
352         DEVMETHOD(device_attach,        em_attach),
353         DEVMETHOD(device_detach,        em_detach),
354         DEVMETHOD(device_shutdown,      em_shutdown),
355         DEVMETHOD(device_suspend,       em_suspend),
356         DEVMETHOD(device_resume,        em_resume),
357         { 0, 0 }
358 };
359
360 static driver_t em_driver = {
361         "em",
362         em_methods,
363         sizeof(struct adapter),
364 };
365
366 static devclass_t em_devclass;
367
368 DECLARE_DUMMY_MODULE(if_em);
369 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
370 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
371
372 /*
373  * Tunables
374  */
375 static int      em_int_throttle_ceil = EM_DEFAULT_ITR;
376 static int      em_rxd = EM_DEFAULT_RXD;
377 static int      em_txd = EM_DEFAULT_TXD;
378 static int      em_smart_pwr_down = 0;
379
380 /* Controls whether promiscuous also shows bad packets */
381 static int      em_debug_sbp = FALSE;
382
383 static int      em_82573_workaround = 1;
384 static int      em_msi_enable = 1;
385
386 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
387 TUNABLE_INT("hw.em.rxd", &em_rxd);
388 TUNABLE_INT("hw.em.txd", &em_txd);
389 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
390 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
391 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
392 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
393
394 /* Global used in WOL setup with multiport cards */
395 static int      em_global_quad_port_a = 0;
396
397 /* Set this to one to display debug statistics */
398 static int      em_display_debug_stats = 0;
399
400 #if !defined(KTR_IF_EM)
401 #define KTR_IF_EM       KTR_ALL
402 #endif
403 KTR_INFO_MASTER(if_em);
404 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
405 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
406 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
407 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
408 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
409 #define logif(name)     KTR_LOG(if_em_ ## name)
410
411 static int
412 em_probe(device_t dev)
413 {
414         const struct em_vendor_info *ent;
415         uint16_t vid, did;
416
417         vid = pci_get_vendor(dev);
418         did = pci_get_device(dev);
419
420         for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
421                 if (vid == ent->vendor_id && did == ent->device_id) {
422                         device_set_desc(dev, ent->desc);
423                         device_set_async_attach(dev, TRUE);
424                         return (ent->ret);
425                 }
426         }
427         return (ENXIO);
428 }
429
430 static int
431 em_attach(device_t dev)
432 {
433         struct adapter *adapter = device_get_softc(dev);
434         struct ifnet *ifp = &adapter->arpcom.ac_if;
435         int tsize, rsize;
436         int error = 0;
437         uint16_t eeprom_data, device_id, apme_mask;
438         driver_intr_t *intr_func;
439
440         adapter->dev = adapter->osdep.dev = dev;
441
442         callout_init_mp(&adapter->timer);
443         callout_init_mp(&adapter->tx_fifo_timer);
444
445         /* Determine hardware and mac info */
446         error = em_get_hw_info(adapter);
447         if (error) {
448                 device_printf(dev, "Identify hardware failed\n");
449                 goto fail;
450         }
451
452         /* Setup PCI resources */
453         error = em_alloc_pci_res(adapter);
454         if (error) {
455                 device_printf(dev, "Allocation of PCI resources failed\n");
456                 goto fail;
457         }
458
459         /*
460          * For ICH8 and family we need to map the flash memory,
461          * and this must happen after the MAC is identified.
462          */
463         if (adapter->hw.mac.type == e1000_ich8lan ||
464             adapter->hw.mac.type == e1000_ich9lan ||
465             adapter->hw.mac.type == e1000_ich10lan ||
466             adapter->hw.mac.type == e1000_pchlan ||
467             adapter->hw.mac.type == e1000_pch2lan) {
468                 adapter->flash_rid = EM_BAR_FLASH;
469
470                 adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
471                                         &adapter->flash_rid, RF_ACTIVE);
472                 if (adapter->flash == NULL) {
473                         device_printf(dev, "Mapping of Flash failed\n");
474                         error = ENXIO;
475                         goto fail;
476                 }
477                 adapter->osdep.flash_bus_space_tag =
478                     rman_get_bustag(adapter->flash);
479                 adapter->osdep.flash_bus_space_handle =
480                     rman_get_bushandle(adapter->flash);
481
482                 /*
483                  * This is used in the shared code
484                  * XXX this goof is actually not used.
485                  */
486                 adapter->hw.flash_address = (uint8_t *)adapter->flash;
487         }
488
489         switch (adapter->hw.mac.type) {
490         case e1000_82571:
491         case e1000_82572:
492                 /*
493                  * Pullup extra 4bytes into the first data segment, see:
494                  * 82571/82572 specification update errata #7
495                  *
496                  * NOTE:
497                  * 4bytes instead of 2bytes, which are mentioned in the
498                  * errata, are pulled; mainly to keep rest of the data
499                  * properly aligned.
500                  */
501                 adapter->flags |= EM_FLAG_TSO_PULLEX;
502                 /* FALL THROUGH */
503
504         case e1000_82573:
505         case e1000_82574:
506         case e1000_80003es2lan:
507                 adapter->flags |= EM_FLAG_TSO;
508                 break;
509
510         default:
511                 break;
512         }
513
514         /* Do Shared Code initialization */
515         if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
516                 device_printf(dev, "Setup of Shared code failed\n");
517                 error = ENXIO;
518                 goto fail;
519         }
520
521         e1000_get_bus_info(&adapter->hw);
522
523         /*
524          * Validate number of transmit and receive descriptors.  It
525          * must not exceed hardware maximum, and must be multiple
526          * of E1000_DBA_ALIGN.
527          */
528         if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
529             (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
530             (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
531             em_txd < EM_MIN_TXD) {
532                 device_printf(dev, "Using %d TX descriptors instead of %d!\n",
533                     EM_DEFAULT_TXD, em_txd);
534                 adapter->num_tx_desc = EM_DEFAULT_TXD;
535         } else {
536                 adapter->num_tx_desc = em_txd;
537         }
538         if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
539             (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
540             (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
541             em_rxd < EM_MIN_RXD) {
542                 device_printf(dev, "Using %d RX descriptors instead of %d!\n",
543                     EM_DEFAULT_RXD, em_rxd);
544                 adapter->num_rx_desc = EM_DEFAULT_RXD;
545         } else {
546                 adapter->num_rx_desc = em_rxd;
547         }
548
549         adapter->hw.mac.autoneg = DO_AUTO_NEG;
550         adapter->hw.phy.autoneg_wait_to_complete = FALSE;
551         adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
552         adapter->rx_buffer_len = MCLBYTES;
553
554         /*
555          * Interrupt throttle rate
556          */
557         if (em_int_throttle_ceil == 0) {
558                 adapter->int_throttle_ceil = 0;
559         } else {
560                 int throttle = em_int_throttle_ceil;
561
562                 if (throttle < 0)
563                         throttle = EM_DEFAULT_ITR;
564
565                 /* Recalculate the tunable value to get the exact frequency. */
566                 throttle = 1000000000 / 256 / throttle;
567
568                 /* Upper 16bits of ITR is reserved and should be zero */
569                 if (throttle & 0xffff0000)
570                         throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
571
572                 adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
573         }
574
575         e1000_init_script_state_82541(&adapter->hw, TRUE);
576         e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
577
578         /* Copper options */
579         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
580                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
581                 adapter->hw.phy.disable_polarity_correction = FALSE;
582                 adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
583         }
584
585         /* Set the frame limits assuming standard ethernet sized frames. */
586         adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
587         adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
588
589         /* This controls when hardware reports transmit completion status. */
590         adapter->hw.mac.report_tx_early = 1;
591
592         /*
593          * Create top level busdma tag
594          */
595         error = bus_dma_tag_create(NULL, 1, 0,
596                         BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
597                         NULL, NULL,
598                         BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
599                         0, &adapter->parent_dtag);
600         if (error) {
601                 device_printf(dev, "could not create top level DMA tag\n");
602                 goto fail;
603         }
604
605         /*
606          * Allocate Transmit Descriptor ring
607          */
608         tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
609                          EM_DBA_ALIGN);
610         error = em_dma_malloc(adapter, tsize, &adapter->txdma);
611         if (error) {
612                 device_printf(dev, "Unable to allocate tx_desc memory\n");
613                 goto fail;
614         }
615         adapter->tx_desc_base = adapter->txdma.dma_vaddr;
616
617         /*
618          * Allocate Receive Descriptor ring
619          */
620         rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
621                          EM_DBA_ALIGN);
622         error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
623         if (error) {
624                 device_printf(dev, "Unable to allocate rx_desc memory\n");
625                 goto fail;
626         }
627         adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
628
629         /* Allocate multicast array memory. */
630         adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
631             M_DEVBUF, M_WAITOK);
632
633         /* Indicate SOL/IDER usage */
634         if (e1000_check_reset_block(&adapter->hw)) {
635                 device_printf(dev,
636                     "PHY reset is blocked due to SOL/IDER session.\n");
637         }
638
639         /*
640          * Start from a known state, this is important in reading the
641          * nvm and mac from that.
642          */
643         e1000_reset_hw(&adapter->hw);
644
645         /* Make sure we have a good EEPROM before we read from it */
646         if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
647                 /*
648                  * Some PCI-E parts fail the first check due to
649                  * the link being in sleep state, call it again,
650                  * if it fails a second time its a real issue.
651                  */
652                 if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
653                         device_printf(dev,
654                             "The EEPROM Checksum Is Not Valid\n");
655                         error = EIO;
656                         goto fail;
657                 }
658         }
659
660         /* Copy the permanent MAC address out of the EEPROM */
661         if (e1000_read_mac_addr(&adapter->hw) < 0) {
662                 device_printf(dev, "EEPROM read error while reading MAC"
663                     " address\n");
664                 error = EIO;
665                 goto fail;
666         }
667         if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
668                 device_printf(dev, "Invalid MAC address\n");
669                 error = EIO;
670                 goto fail;
671         }
672
673         /* Allocate transmit descriptors and buffers */
674         error = em_create_tx_ring(adapter);
675         if (error) {
676                 device_printf(dev, "Could not setup transmit structures\n");
677                 goto fail;
678         }
679
680         /* Allocate receive descriptors and buffers */
681         error = em_create_rx_ring(adapter);
682         if (error) {
683                 device_printf(dev, "Could not setup receive structures\n");
684                 goto fail;
685         }
686
687         /* Manually turn off all interrupts */
688         E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
689
690         /* Determine if we have to control management hardware */
691         if (e1000_enable_mng_pass_thru(&adapter->hw))
692                 adapter->flags |= EM_FLAG_HAS_MGMT;
693
694         /*
695          * Setup Wake-on-Lan
696          */
697         apme_mask = EM_EEPROM_APME;
698         eeprom_data = 0;
699         switch (adapter->hw.mac.type) {
700         case e1000_82542:
701         case e1000_82543:
702                 break;
703
704         case e1000_82573:
705         case e1000_82583:
706                 adapter->flags |= EM_FLAG_HAS_AMT;
707                 /* FALL THROUGH */
708
709         case e1000_82546:
710         case e1000_82546_rev_3:
711         case e1000_82571:
712         case e1000_82572:
713         case e1000_80003es2lan:
714                 if (adapter->hw.bus.func == 1) {
715                         e1000_read_nvm(&adapter->hw,
716                             NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
717                 } else {
718                         e1000_read_nvm(&adapter->hw,
719                             NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
720                 }
721                 break;
722
723         case e1000_ich8lan:
724         case e1000_ich9lan:
725         case e1000_ich10lan:
726         case e1000_pchlan:
727         case e1000_pch2lan:
728                 apme_mask = E1000_WUC_APME;
729                 adapter->flags |= EM_FLAG_HAS_AMT;
730                 eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
731                 break;
732
733         default:
734                 e1000_read_nvm(&adapter->hw,
735                     NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
736                 break;
737         }
738         if (eeprom_data & apme_mask)
739                 adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
740
741         /*
742          * We have the eeprom settings, now apply the special cases
743          * where the eeprom may be wrong or the board won't support
744          * wake on lan on a particular port
745          */
746         device_id = pci_get_device(dev);
747         switch (device_id) {
748         case E1000_DEV_ID_82546GB_PCIE:
749                 adapter->wol = 0;
750                 break;
751
752         case E1000_DEV_ID_82546EB_FIBER:
753         case E1000_DEV_ID_82546GB_FIBER:
754         case E1000_DEV_ID_82571EB_FIBER:
755                 /*
756                  * Wake events only supported on port A for dual fiber
757                  * regardless of eeprom setting
758                  */
759                 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
760                     E1000_STATUS_FUNC_1)
761                         adapter->wol = 0;
762                 break;
763
764         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
765         case E1000_DEV_ID_82571EB_QUAD_COPPER:
766         case E1000_DEV_ID_82571EB_QUAD_FIBER:
767         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
768                 /* if quad port adapter, disable WoL on all but port A */
769                 if (em_global_quad_port_a != 0)
770                         adapter->wol = 0;
771                 /* Reset for multiple quad port adapters */
772                 if (++em_global_quad_port_a == 4)
773                         em_global_quad_port_a = 0;
774                 break;
775         }
776
777         /* XXX disable wol */
778         adapter->wol = 0;
779
780         /* Setup OS specific network interface */
781         em_setup_ifp(adapter);
782
783         /* Add sysctl tree, must after em_setup_ifp() */
784         em_add_sysctl(adapter);
785
786 #ifdef IFPOLL_ENABLE
787         /* Polling setup */
788         ifpoll_compat_setup(&adapter->npoll,
789             &adapter->sysctl_ctx, adapter->sysctl_tree, device_get_unit(dev),
790             ifp->if_serializer);
791 #endif
792
793         /* Reset the hardware */
794         error = em_reset(adapter);
795         if (error) {
796                 device_printf(dev, "Unable to reset the hardware\n");
797                 goto fail;
798         }
799
800         /* Initialize statistics */
801         em_update_stats(adapter);
802
803         adapter->hw.mac.get_link_status = 1;
804         em_update_link_status(adapter);
805
806         /* Do we need workaround for 82544 PCI-X adapter? */
807         if (adapter->hw.bus.type == e1000_bus_type_pcix &&
808             adapter->hw.mac.type == e1000_82544)
809                 adapter->pcix_82544 = TRUE;
810         else
811                 adapter->pcix_82544 = FALSE;
812
813         if (adapter->pcix_82544) {
814                 /*
815                  * 82544 on PCI-X may split one TX segment
816                  * into two TX descs, so we double its number
817                  * of spare TX desc here.
818                  */
819                 adapter->spare_tx_desc = 2 * EM_TX_SPARE;
820         } else {
821                 adapter->spare_tx_desc = EM_TX_SPARE;
822         }
823         if (adapter->flags & EM_FLAG_TSO)
824                 adapter->spare_tx_desc = EM_TX_SPARE_TSO;
825         adapter->tx_wreg_nsegs = 8;
826
827         /*
828          * Keep following relationship between spare_tx_desc, oact_tx_desc
829          * and tx_int_nsegs:
830          * (spare_tx_desc + EM_TX_RESERVED) <=
831          * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
832          */
833         adapter->oact_tx_desc = adapter->num_tx_desc / 8;
834         if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
835                 adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
836         if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
837                 adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
838
839         adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
840         if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
841                 adapter->tx_int_nsegs = adapter->oact_tx_desc;
842
843         /* Non-AMT based hardware can now take control from firmware */
844         if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
845             EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
846                 em_get_hw_control(adapter);
847
848         /*
849          * Missing Interrupt Following ICR read:
850          *
851          * 82571/82572 specification update errata #76
852          * 82573 specification update errata #31
853          * 82574 specification update errata #12
854          * 82583 specification update errata #4
855          */
856         intr_func = em_intr;
857         if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
858             (adapter->hw.mac.type == e1000_82571 ||
859              adapter->hw.mac.type == e1000_82572 ||
860              adapter->hw.mac.type == e1000_82573 ||
861              adapter->hw.mac.type == e1000_82574 ||
862              adapter->hw.mac.type == e1000_82583))
863                 intr_func = em_intr_mask;
864
865         error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
866                                intr_func, adapter, &adapter->intr_tag,
867                                ifp->if_serializer);
868         if (error) {
869                 device_printf(dev, "Failed to register interrupt handler");
870                 ether_ifdetach(&adapter->arpcom.ac_if);
871                 goto fail;
872         }
873
874         ifp->if_cpuid = rman_get_cpuid(adapter->intr_res);
875         KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
876         return (0);
877 fail:
878         em_detach(dev);
879         return (error);
880 }
881
882 static int
883 em_detach(device_t dev)
884 {
885         struct adapter *adapter = device_get_softc(dev);
886
887         if (device_is_attached(dev)) {
888                 struct ifnet *ifp = &adapter->arpcom.ac_if;
889
890                 lwkt_serialize_enter(ifp->if_serializer);
891
892                 em_stop(adapter);
893
894                 e1000_phy_hw_reset(&adapter->hw);
895
896                 em_rel_mgmt(adapter);
897                 em_rel_hw_control(adapter);
898
899                 if (adapter->wol) {
900                         E1000_WRITE_REG(&adapter->hw, E1000_WUC,
901                                         E1000_WUC_PME_EN);
902                         E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
903                         em_enable_wol(dev);
904                 }
905
906                 bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
907
908                 lwkt_serialize_exit(ifp->if_serializer);
909
910                 ether_ifdetach(ifp);
911         } else if (adapter->memory != NULL) {
912                 em_rel_hw_control(adapter);
913         }
914         bus_generic_detach(dev);
915
916         em_free_pci_res(adapter);
917
918         em_destroy_tx_ring(adapter, adapter->num_tx_desc);
919         em_destroy_rx_ring(adapter, adapter->num_rx_desc);
920
921         /* Free Transmit Descriptor ring */
922         if (adapter->tx_desc_base)
923                 em_dma_free(adapter, &adapter->txdma);
924
925         /* Free Receive Descriptor ring */
926         if (adapter->rx_desc_base)
927                 em_dma_free(adapter, &adapter->rxdma);
928
929         /* Free top level busdma tag */
930         if (adapter->parent_dtag != NULL)
931                 bus_dma_tag_destroy(adapter->parent_dtag);
932
933         /* Free sysctl tree */
934         if (adapter->sysctl_tree != NULL)
935                 sysctl_ctx_free(&adapter->sysctl_ctx);
936
937         if (adapter->mta != NULL)
938                 kfree(adapter->mta, M_DEVBUF);
939
940         return (0);
941 }
942
943 static int
944 em_shutdown(device_t dev)
945 {
946         return em_suspend(dev);
947 }
948
949 static int
950 em_suspend(device_t dev)
951 {
952         struct adapter *adapter = device_get_softc(dev);
953         struct ifnet *ifp = &adapter->arpcom.ac_if;
954
955         lwkt_serialize_enter(ifp->if_serializer);
956
957         em_stop(adapter);
958
959         em_rel_mgmt(adapter);
960         em_rel_hw_control(adapter);
961
962         if (adapter->wol) {
963                 E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
964                 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
965                 em_enable_wol(dev);
966         }
967
968         lwkt_serialize_exit(ifp->if_serializer);
969
970         return bus_generic_suspend(dev);
971 }
972
973 static int
974 em_resume(device_t dev)
975 {
976         struct adapter *adapter = device_get_softc(dev);
977         struct ifnet *ifp = &adapter->arpcom.ac_if;
978
979         lwkt_serialize_enter(ifp->if_serializer);
980
981         em_init(adapter);
982         em_get_mgmt(adapter);
983         if_devstart(ifp);
984
985         lwkt_serialize_exit(ifp->if_serializer);
986
987         return bus_generic_resume(dev);
988 }
989
990 static void
991 em_start(struct ifnet *ifp)
992 {
993         struct adapter *adapter = ifp->if_softc;
994         struct mbuf *m_head;
995         int idx = -1, nsegs = 0;
996
997         ASSERT_SERIALIZED(ifp->if_serializer);
998
999         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
1000                 return;
1001
1002         if (!adapter->link_active) {
1003                 ifq_purge(&ifp->if_snd);
1004                 return;
1005         }
1006
1007         while (!ifq_is_empty(&ifp->if_snd)) {
1008                 /* Now do we at least have a minimal? */
1009                 if (EM_IS_OACTIVE(adapter)) {
1010                         em_tx_collect(adapter);
1011                         if (EM_IS_OACTIVE(adapter)) {
1012                                 ifq_set_oactive(&ifp->if_snd);
1013                                 adapter->no_tx_desc_avail1++;
1014                                 break;
1015                         }
1016                 }
1017
1018                 logif(pkt_txqueue);
1019                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
1020                 if (m_head == NULL)
1021                         break;
1022
1023                 if (em_encap(adapter, &m_head, &nsegs, &idx)) {
1024                         ifp->if_oerrors++;
1025                         em_tx_collect(adapter);
1026                         continue;
1027                 }
1028
1029                 if (nsegs >= adapter->tx_wreg_nsegs && idx >= 0) {
1030                         E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1031                         nsegs = 0;
1032                         idx = -1;
1033                 }
1034
1035                 /* Send a copy of the frame to the BPF listener */
1036                 ETHER_BPF_MTAP(ifp, m_head);
1037
1038                 /* Set timeout in case hardware has problems transmitting. */
1039                 ifp->if_timer = EM_TX_TIMEOUT;
1040         }
1041         if (idx >= 0)
1042                 E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1043 }
1044
1045 static int
1046 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1047 {
1048         struct adapter *adapter = ifp->if_softc;
1049         struct ifreq *ifr = (struct ifreq *)data;
1050         uint16_t eeprom_data = 0;
1051         int max_frame_size, mask, reinit;
1052         int error = 0;
1053
1054         ASSERT_SERIALIZED(ifp->if_serializer);
1055
1056         switch (command) {
1057         case SIOCSIFMTU:
1058                 switch (adapter->hw.mac.type) {
1059                 case e1000_82573:
1060                         /*
1061                          * 82573 only supports jumbo frames
1062                          * if ASPM is disabled.
1063                          */
1064                         e1000_read_nvm(&adapter->hw,
1065                             NVM_INIT_3GIO_3, 1, &eeprom_data);
1066                         if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1067                                 max_frame_size = ETHER_MAX_LEN;
1068                                 break;
1069                         }
1070                         /* FALL THROUGH */
1071
1072                 /* Limit Jumbo Frame size */
1073                 case e1000_82571:
1074                 case e1000_82572:
1075                 case e1000_ich9lan:
1076                 case e1000_ich10lan:
1077                 case e1000_pch2lan:
1078                 case e1000_82574:
1079                 case e1000_82583:
1080                 case e1000_80003es2lan:
1081                         max_frame_size = 9234;
1082                         break;
1083
1084                 case e1000_pchlan:
1085                         max_frame_size = 4096;
1086                         break;
1087
1088                 /* Adapters that do not support jumbo frames */
1089                 case e1000_82542:
1090                 case e1000_ich8lan:
1091                         max_frame_size = ETHER_MAX_LEN;
1092                         break;
1093
1094                 default:
1095                         max_frame_size = MAX_JUMBO_FRAME_SIZE;
1096                         break;
1097                 }
1098                 if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1099                     ETHER_CRC_LEN) {
1100                         error = EINVAL;
1101                         break;
1102                 }
1103
1104                 ifp->if_mtu = ifr->ifr_mtu;
1105                 adapter->max_frame_size =
1106                     ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1107
1108                 if (ifp->if_flags & IFF_RUNNING)
1109                         em_init(adapter);
1110                 break;
1111
1112         case SIOCSIFFLAGS:
1113                 if (ifp->if_flags & IFF_UP) {
1114                         if ((ifp->if_flags & IFF_RUNNING)) {
1115                                 if ((ifp->if_flags ^ adapter->if_flags) &
1116                                     (IFF_PROMISC | IFF_ALLMULTI)) {
1117                                         em_disable_promisc(adapter);
1118                                         em_set_promisc(adapter);
1119                                 }
1120                         } else {
1121                                 em_init(adapter);
1122                         }
1123                 } else if (ifp->if_flags & IFF_RUNNING) {
1124                         em_stop(adapter);
1125                 }
1126                 adapter->if_flags = ifp->if_flags;
1127                 break;
1128
1129         case SIOCADDMULTI:
1130         case SIOCDELMULTI:
1131                 if (ifp->if_flags & IFF_RUNNING) {
1132                         em_disable_intr(adapter);
1133                         em_set_multi(adapter);
1134                         if (adapter->hw.mac.type == e1000_82542 &&
1135                             adapter->hw.revision_id == E1000_REVISION_2)
1136                                 em_init_rx_unit(adapter);
1137 #ifdef IFPOLL_ENABLE
1138                         if (!(ifp->if_flags & IFF_NPOLLING))
1139 #endif
1140                                 em_enable_intr(adapter);
1141                 }
1142                 break;
1143
1144         case SIOCSIFMEDIA:
1145                 /* Check SOL/IDER usage */
1146                 if (e1000_check_reset_block(&adapter->hw)) {
1147                         device_printf(adapter->dev, "Media change is"
1148                             " blocked due to SOL/IDER session.\n");
1149                         break;
1150                 }
1151                 /* FALL THROUGH */
1152
1153         case SIOCGIFMEDIA:
1154                 error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1155                 break;
1156
1157         case SIOCSIFCAP:
1158                 reinit = 0;
1159                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1160                 if (mask & IFCAP_RXCSUM) {
1161                         ifp->if_capenable ^= IFCAP_RXCSUM;
1162                         reinit = 1;
1163                 }
1164                 if (mask & IFCAP_TXCSUM) {
1165                         ifp->if_capenable ^= IFCAP_TXCSUM;
1166                         if (ifp->if_capenable & IFCAP_TXCSUM)
1167                                 ifp->if_hwassist |= EM_CSUM_FEATURES;
1168                         else
1169                                 ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1170                 }
1171                 if (mask & IFCAP_TSO) {
1172                         ifp->if_capenable ^= IFCAP_TSO;
1173                         if (ifp->if_capenable & IFCAP_TSO)
1174                                 ifp->if_hwassist |= CSUM_TSO;
1175                         else
1176                                 ifp->if_hwassist &= ~CSUM_TSO;
1177                 }
1178                 if (mask & IFCAP_VLAN_HWTAGGING) {
1179                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1180                         reinit = 1;
1181                 }
1182                 if (reinit && (ifp->if_flags & IFF_RUNNING))
1183                         em_init(adapter);
1184                 break;
1185
1186         default:
1187                 error = ether_ioctl(ifp, command, data);
1188                 break;
1189         }
1190         return (error);
1191 }
1192
1193 static void
1194 em_watchdog(struct ifnet *ifp)
1195 {
1196         struct adapter *adapter = ifp->if_softc;
1197
1198         ASSERT_SERIALIZED(ifp->if_serializer);
1199
1200         /*
1201          * The timer is set to 5 every time start queues a packet.
1202          * Then txeof keeps resetting it as long as it cleans at
1203          * least one descriptor.
1204          * Finally, anytime all descriptors are clean the timer is
1205          * set to 0.
1206          */
1207
1208         if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1209             E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1210                 /*
1211                  * If we reach here, all TX jobs are completed and
1212                  * the TX engine should have been idled for some time.
1213                  * We don't need to call if_devstart() here.
1214                  */
1215                 ifq_clr_oactive(&ifp->if_snd);
1216                 ifp->if_timer = 0;
1217                 return;
1218         }
1219
1220         /*
1221          * If we are in this routine because of pause frames, then
1222          * don't reset the hardware.
1223          */
1224         if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1225             E1000_STATUS_TXOFF) {
1226                 ifp->if_timer = EM_TX_TIMEOUT;
1227                 return;
1228         }
1229
1230         if (e1000_check_for_link(&adapter->hw) == 0)
1231                 if_printf(ifp, "watchdog timeout -- resetting\n");
1232
1233         ifp->if_oerrors++;
1234         adapter->watchdog_events++;
1235
1236         em_init(adapter);
1237
1238         if (!ifq_is_empty(&ifp->if_snd))
1239                 if_devstart(ifp);
1240 }
1241
1242 static void
1243 em_init(void *xsc)
1244 {
1245         struct adapter *adapter = xsc;
1246         struct ifnet *ifp = &adapter->arpcom.ac_if;
1247         device_t dev = adapter->dev;
1248         uint32_t pba;
1249
1250         ASSERT_SERIALIZED(ifp->if_serializer);
1251
1252         em_stop(adapter);
1253
1254         /*
1255          * Packet Buffer Allocation (PBA)
1256          * Writing PBA sets the receive portion of the buffer
1257          * the remainder is used for the transmit buffer.
1258          *
1259          * Devices before the 82547 had a Packet Buffer of 64K.
1260          *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
1261          * After the 82547 the buffer was reduced to 40K.
1262          *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
1263          *   Note: default does not leave enough room for Jumbo Frame >10k.
1264          */
1265         switch (adapter->hw.mac.type) {
1266         case e1000_82547:
1267         case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
1268                 if (adapter->max_frame_size > 8192)
1269                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
1270                 else
1271                         pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
1272                 adapter->tx_fifo_head = 0;
1273                 adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
1274                 adapter->tx_fifo_size =
1275                     (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
1276                 break;
1277
1278         /* Total Packet Buffer on these is 48K */
1279         case e1000_82571:
1280         case e1000_82572:
1281         case e1000_80003es2lan:
1282                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1283                 break;
1284
1285         case e1000_82573: /* 82573: Total Packet Buffer is 32K */
1286                 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
1287                 break;
1288
1289         case e1000_82574:
1290         case e1000_82583:
1291                 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
1292                 break;
1293
1294         case e1000_ich8lan:
1295                 pba = E1000_PBA_8K;
1296                 break;
1297
1298         case e1000_ich9lan:
1299         case e1000_ich10lan:
1300 #define E1000_PBA_10K   0x000A
1301                 pba = E1000_PBA_10K;
1302                 break;
1303
1304         case e1000_pchlan:
1305         case e1000_pch2lan:
1306                 pba = E1000_PBA_26K;
1307                 break;
1308
1309         default:
1310                 /* Devices before 82547 had a Packet Buffer of 64K.   */
1311                 if (adapter->max_frame_size > 8192)
1312                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1313                 else
1314                         pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1315         }
1316         E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
1317
1318         /* Get the latest mac address, User can use a LAA */
1319         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1320
1321         /* Put the address into the Receive Address Array */
1322         e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1323
1324         /*
1325          * With the 82571 adapter, RAR[0] may be overwritten
1326          * when the other port is reset, we make a duplicate
1327          * in RAR[14] for that eventuality, this assures
1328          * the interface continues to function.
1329          */
1330         if (adapter->hw.mac.type == e1000_82571) {
1331                 e1000_set_laa_state_82571(&adapter->hw, TRUE);
1332                 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1333                     E1000_RAR_ENTRIES - 1);
1334         }
1335
1336         /* Reset the hardware */
1337         if (em_reset(adapter)) {
1338                 device_printf(dev, "Unable to reset the hardware\n");
1339                 /* XXX em_stop()? */
1340                 return;
1341         }
1342         em_update_link_status(adapter);
1343
1344         /* Setup VLAN support, basic and offload if available */
1345         E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1346
1347         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1348                 uint32_t ctrl;
1349
1350                 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1351                 ctrl |= E1000_CTRL_VME;
1352                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1353         }
1354
1355         /* Configure for OS presence */
1356         em_get_mgmt(adapter);
1357
1358         /* Prepare transmit descriptors and buffers */
1359         em_init_tx_ring(adapter);
1360         em_init_tx_unit(adapter);
1361
1362         /* Setup Multicast table */
1363         em_set_multi(adapter);
1364
1365         /* Prepare receive descriptors and buffers */
1366         if (em_init_rx_ring(adapter)) {
1367                 device_printf(dev, "Could not setup receive structures\n");
1368                 em_stop(adapter);
1369                 return;
1370         }
1371         em_init_rx_unit(adapter);
1372
1373         /* Don't lose promiscuous settings */
1374         em_set_promisc(adapter);
1375
1376         ifp->if_flags |= IFF_RUNNING;
1377         ifq_clr_oactive(&ifp->if_snd);
1378
1379         callout_reset(&adapter->timer, hz, em_timer, adapter);
1380         e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1381
1382         /* MSI/X configuration for 82574 */
1383         if (adapter->hw.mac.type == e1000_82574) {
1384                 int tmp;
1385
1386                 tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1387                 tmp |= E1000_CTRL_EXT_PBA_CLR;
1388                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1389                 /*
1390                  * XXX MSIX
1391                  * Set the IVAR - interrupt vector routing.
1392                  * Each nibble represents a vector, high bit
1393                  * is enable, other 3 bits are the MSIX table
1394                  * entry, we map RXQ0 to 0, TXQ0 to 1, and
1395                  * Link (other) to 2, hence the magic number.
1396                  */
1397                 E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1398         }
1399
1400 #ifdef IFPOLL_ENABLE
1401         /*
1402          * Only enable interrupts if we are not polling, make sure
1403          * they are off otherwise.
1404          */
1405         if (ifp->if_flags & IFF_NPOLLING)
1406                 em_disable_intr(adapter);
1407         else
1408 #endif /* IFPOLL_ENABLE */
1409                 em_enable_intr(adapter);
1410
1411         /* AMT based hardware can now take control from firmware */
1412         if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1413             (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1414             adapter->hw.mac.type >= e1000_82571)
1415                 em_get_hw_control(adapter);
1416
1417         /* Don't reset the phy next time init gets called */
1418         adapter->hw.phy.reset_disable = TRUE;
1419 }
1420
1421 #ifdef IFPOLL_ENABLE
1422
1423 static void
1424 em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1425 {
1426         struct adapter *adapter = ifp->if_softc;
1427
1428         ASSERT_SERIALIZED(ifp->if_serializer);
1429
1430         if (adapter->npoll.ifpc_stcount-- == 0) {
1431                 uint32_t reg_icr;
1432
1433                 adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1434
1435                 reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1436                 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1437                         callout_stop(&adapter->timer);
1438                         adapter->hw.mac.get_link_status = 1;
1439                         em_update_link_status(adapter);
1440                         callout_reset(&adapter->timer, hz, em_timer, adapter);
1441                 }
1442         }
1443
1444         em_rxeof(adapter, count);
1445         em_txeof(adapter);
1446
1447         if (!ifq_is_empty(&ifp->if_snd))
1448                 if_devstart(ifp);
1449 }
1450
1451 static void
1452 em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1453 {
1454         struct adapter *adapter = ifp->if_softc;
1455
1456         ASSERT_SERIALIZED(ifp->if_serializer);
1457
1458         if (info != NULL) {
1459                 int cpuid = adapter->npoll.ifpc_cpuid;
1460
1461                 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1462                 info->ifpi_rx[cpuid].arg = NULL;
1463                 info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1464
1465                 if (ifp->if_flags & IFF_RUNNING)
1466                         em_disable_intr(adapter);
1467                 ifp->if_npoll_cpuid = cpuid;
1468         } else {
1469                 if (ifp->if_flags & IFF_RUNNING)
1470                         em_enable_intr(adapter);
1471                 ifp->if_npoll_cpuid = -1;
1472         }
1473 }
1474
1475 #endif /* IFPOLL_ENABLE */
1476
1477 static void
1478 em_intr(void *xsc)
1479 {
1480         em_intr_body(xsc, TRUE);
1481 }
1482
1483 static void
1484 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1485 {
1486         struct ifnet *ifp = &adapter->arpcom.ac_if;
1487         uint32_t reg_icr;
1488
1489         logif(intr_beg);
1490         ASSERT_SERIALIZED(ifp->if_serializer);
1491
1492         reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1493
1494         if (chk_asserted &&
1495             ((adapter->hw.mac.type >= e1000_82571 &&
1496               (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1497              reg_icr == 0)) {
1498                 logif(intr_end);
1499                 return;
1500         }
1501
1502         /*
1503          * XXX: some laptops trigger several spurious interrupts
1504          * on em(4) when in the resume cycle. The ICR register
1505          * reports all-ones value in this case. Processing such
1506          * interrupts would lead to a freeze. I don't know why.
1507          */
1508         if (reg_icr == 0xffffffff) {
1509                 logif(intr_end);
1510                 return;
1511         }
1512
1513         if (ifp->if_flags & IFF_RUNNING) {
1514                 if (reg_icr &
1515                     (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1516                         em_rxeof(adapter, -1);
1517                 if (reg_icr & E1000_ICR_TXDW) {
1518                         em_txeof(adapter);
1519                         if (!ifq_is_empty(&ifp->if_snd))
1520                                 if_devstart(ifp);
1521                 }
1522         }
1523
1524         /* Link status change */
1525         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1526                 callout_stop(&adapter->timer);
1527                 adapter->hw.mac.get_link_status = 1;
1528                 em_update_link_status(adapter);
1529
1530                 /* Deal with TX cruft when link lost */
1531                 em_tx_purge(adapter);
1532
1533                 callout_reset(&adapter->timer, hz, em_timer, adapter);
1534         }
1535
1536         if (reg_icr & E1000_ICR_RXO)
1537                 adapter->rx_overruns++;
1538
1539         logif(intr_end);
1540 }
1541
1542 static void
1543 em_intr_mask(void *xsc)
1544 {
1545         struct adapter *adapter = xsc;
1546
1547         E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1548         /*
1549          * NOTE:
1550          * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1551          * so don't check it.
1552          */
1553         em_intr_body(adapter, FALSE);
1554         E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1555 }
1556
1557 static void
1558 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1559 {
1560         struct adapter *adapter = ifp->if_softc;
1561         u_char fiber_type = IFM_1000_SX;
1562
1563         ASSERT_SERIALIZED(ifp->if_serializer);
1564
1565         em_update_link_status(adapter);
1566
1567         ifmr->ifm_status = IFM_AVALID;
1568         ifmr->ifm_active = IFM_ETHER;
1569
1570         if (!adapter->link_active)
1571                 return;
1572
1573         ifmr->ifm_status |= IFM_ACTIVE;
1574
1575         if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1576             adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1577                 if (adapter->hw.mac.type == e1000_82545)
1578                         fiber_type = IFM_1000_LX;
1579                 ifmr->ifm_active |= fiber_type | IFM_FDX;
1580         } else {
1581                 switch (adapter->link_speed) {
1582                 case 10:
1583                         ifmr->ifm_active |= IFM_10_T;
1584                         break;
1585                 case 100:
1586                         ifmr->ifm_active |= IFM_100_TX;
1587                         break;
1588
1589                 case 1000:
1590                         ifmr->ifm_active |= IFM_1000_T;
1591                         break;
1592                 }
1593                 if (adapter->link_duplex == FULL_DUPLEX)
1594                         ifmr->ifm_active |= IFM_FDX;
1595                 else
1596                         ifmr->ifm_active |= IFM_HDX;
1597         }
1598 }
1599
1600 static int
1601 em_media_change(struct ifnet *ifp)
1602 {
1603         struct adapter *adapter = ifp->if_softc;
1604         struct ifmedia *ifm = &adapter->media;
1605
1606         ASSERT_SERIALIZED(ifp->if_serializer);
1607
1608         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1609                 return (EINVAL);
1610
1611         switch (IFM_SUBTYPE(ifm->ifm_media)) {
1612         case IFM_AUTO:
1613                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1614                 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1615                 break;
1616
1617         case IFM_1000_LX:
1618         case IFM_1000_SX:
1619         case IFM_1000_T:
1620                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1621                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1622                 break;
1623
1624         case IFM_100_TX:
1625                 adapter->hw.mac.autoneg = FALSE;
1626                 adapter->hw.phy.autoneg_advertised = 0;
1627                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1628                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1629                 else
1630                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1631                 break;
1632
1633         case IFM_10_T:
1634                 adapter->hw.mac.autoneg = FALSE;
1635                 adapter->hw.phy.autoneg_advertised = 0;
1636                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1637                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1638                 else
1639                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1640                 break;
1641
1642         default:
1643                 if_printf(ifp, "Unsupported media type\n");
1644                 break;
1645         }
1646
1647         /*
1648          * As the speed/duplex settings my have changed we need to
1649          * reset the PHY.
1650          */
1651         adapter->hw.phy.reset_disable = FALSE;
1652
1653         em_init(adapter);
1654
1655         return (0);
1656 }
1657
1658 static int
1659 em_encap(struct adapter *adapter, struct mbuf **m_headp,
1660     int *segs_used, int *idx)
1661 {
1662         bus_dma_segment_t segs[EM_MAX_SCATTER];
1663         bus_dmamap_t map;
1664         struct em_buffer *tx_buffer, *tx_buffer_mapped;
1665         struct e1000_tx_desc *ctxd = NULL;
1666         struct mbuf *m_head = *m_headp;
1667         uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1668         int maxsegs, nsegs, i, j, first, last = 0, error;
1669
1670         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1671                 error = em_tso_pullup(adapter, m_headp);
1672                 if (error)
1673                         return error;
1674                 m_head = *m_headp;
1675         }
1676
1677         txd_upper = txd_lower = 0;
1678         txd_used = 0;
1679
1680         /*
1681          * Capture the first descriptor index, this descriptor
1682          * will have the index of the EOP which is the only one
1683          * that now gets a DONE bit writeback.
1684          */
1685         first = adapter->next_avail_tx_desc;
1686         tx_buffer = &adapter->tx_buffer_area[first];
1687         tx_buffer_mapped = tx_buffer;
1688         map = tx_buffer->map;
1689
1690         maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1691         KASSERT(maxsegs >= adapter->spare_tx_desc,
1692                 ("not enough spare TX desc"));
1693         if (adapter->pcix_82544) {
1694                 /* Half it; see the comment in em_attach() */
1695                 maxsegs >>= 1;
1696         }
1697         if (maxsegs > EM_MAX_SCATTER)
1698                 maxsegs = EM_MAX_SCATTER;
1699
1700         error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1701                         segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1702         if (error) {
1703                 if (error == ENOBUFS)
1704                         adapter->mbuf_alloc_failed++;
1705                 else
1706                         adapter->no_tx_dma_setup++;
1707
1708                 m_freem(*m_headp);
1709                 *m_headp = NULL;
1710                 return error;
1711         }
1712         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1713
1714         m_head = *m_headp;
1715         adapter->tx_nsegs += nsegs;
1716         *segs_used += nsegs;
1717
1718         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1719                 /* TSO will consume one TX desc */
1720                 i = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
1721                 adapter->tx_nsegs += i;
1722                 *segs_used += i;
1723         } else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1724                 /* TX csum offloading will consume one TX desc */
1725                 i = em_txcsum(adapter, m_head, &txd_upper, &txd_lower);
1726                 adapter->tx_nsegs += i;
1727                 *segs_used += i;
1728         }
1729         i = adapter->next_avail_tx_desc;
1730
1731         /* Set up our transmit descriptors */
1732         for (j = 0; j < nsegs; j++) {
1733                 /* If adapter is 82544 and on PCIX bus */
1734                 if(adapter->pcix_82544) {
1735                         DESC_ARRAY desc_array;
1736                         uint32_t array_elements, counter;
1737
1738                         /*
1739                          * Check the Address and Length combination and
1740                          * split the data accordingly
1741                          */
1742                         array_elements = em_82544_fill_desc(segs[j].ds_addr,
1743                                                 segs[j].ds_len, &desc_array);
1744                         for (counter = 0; counter < array_elements; counter++) {
1745                                 KKASSERT(txd_used < adapter->num_tx_desc_avail);
1746
1747                                 tx_buffer = &adapter->tx_buffer_area[i];
1748                                 ctxd = &adapter->tx_desc_base[i];
1749
1750                                 ctxd->buffer_addr = htole64(
1751                                     desc_array.descriptor[counter].address);
1752                                 ctxd->lower.data = htole32(
1753                                     E1000_TXD_CMD_IFCS | txd_lower |
1754                                     desc_array.descriptor[counter].length);
1755                                 ctxd->upper.data = htole32(txd_upper);
1756
1757                                 last = i;
1758                                 if (++i == adapter->num_tx_desc)
1759                                         i = 0;
1760
1761                                 txd_used++;
1762                         }
1763                 } else {
1764                         tx_buffer = &adapter->tx_buffer_area[i];
1765                         ctxd = &adapter->tx_desc_base[i];
1766
1767                         ctxd->buffer_addr = htole64(segs[j].ds_addr);
1768                         ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1769                                                    txd_lower | segs[j].ds_len);
1770                         ctxd->upper.data = htole32(txd_upper);
1771
1772                         last = i;
1773                         if (++i == adapter->num_tx_desc)
1774                                 i = 0;
1775                 }
1776         }
1777
1778         adapter->next_avail_tx_desc = i;
1779         if (adapter->pcix_82544) {
1780                 KKASSERT(adapter->num_tx_desc_avail > txd_used);
1781                 adapter->num_tx_desc_avail -= txd_used;
1782         } else {
1783                 KKASSERT(adapter->num_tx_desc_avail > nsegs);
1784                 adapter->num_tx_desc_avail -= nsegs;
1785         }
1786
1787         /* Handle VLAN tag */
1788         if (m_head->m_flags & M_VLANTAG) {
1789                 /* Set the vlan id. */
1790                 ctxd->upper.fields.special =
1791                     htole16(m_head->m_pkthdr.ether_vlantag);
1792
1793                 /* Tell hardware to add tag */
1794                 ctxd->lower.data |= htole32(E1000_TXD_CMD_VLE);
1795         }
1796
1797         tx_buffer->m_head = m_head;
1798         tx_buffer_mapped->map = tx_buffer->map;
1799         tx_buffer->map = map;
1800
1801         if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1802                 adapter->tx_nsegs = 0;
1803
1804                 /*
1805                  * Report Status (RS) is turned on
1806                  * every tx_int_nsegs descriptors.
1807                  */
1808                 cmd = E1000_TXD_CMD_RS;
1809
1810                 /*
1811                  * Keep track of the descriptor, which will
1812                  * be written back by hardware.
1813                  */
1814                 adapter->tx_dd[adapter->tx_dd_tail] = last;
1815                 EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1816                 KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1817         }
1818
1819         /*
1820          * Last Descriptor of Packet needs End Of Packet (EOP)
1821          */
1822         ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1823
1824         if (adapter->hw.mac.type == e1000_82547) {
1825                 /*
1826                  * Advance the Transmit Descriptor Tail (TDT), this tells the
1827                  * E1000 that this frame is available to transmit.
1828                  */
1829                 if (adapter->link_duplex == HALF_DUPLEX) {
1830                         em_82547_move_tail_serialized(adapter);
1831                 } else {
1832                         E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1833                         em_82547_update_fifo_head(adapter,
1834                             m_head->m_pkthdr.len);
1835                 }
1836         } else {
1837                 /*
1838                  * Defer TDT updating, until enough descriptors are setup
1839                  */
1840                 *idx = i;
1841         }
1842         return (0);
1843 }
1844
1845 /*
1846  * 82547 workaround to avoid controller hang in half-duplex environment.
1847  * The workaround is to avoid queuing a large packet that would span
1848  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1849  * in this case.  We do that only when FIFO is quiescent.
1850  */
1851 static void
1852 em_82547_move_tail_serialized(struct adapter *adapter)
1853 {
1854         struct e1000_tx_desc *tx_desc;
1855         uint16_t hw_tdt, sw_tdt, length = 0;
1856         bool eop = 0;
1857
1858         ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1859
1860         hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1861         sw_tdt = adapter->next_avail_tx_desc;
1862
1863         while (hw_tdt != sw_tdt) {
1864                 tx_desc = &adapter->tx_desc_base[hw_tdt];
1865                 length += tx_desc->lower.flags.length;
1866                 eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1867                 if (++hw_tdt == adapter->num_tx_desc)
1868                         hw_tdt = 0;
1869
1870                 if (eop) {
1871                         if (em_82547_fifo_workaround(adapter, length)) {
1872                                 adapter->tx_fifo_wrk_cnt++;
1873                                 callout_reset(&adapter->tx_fifo_timer, 1,
1874                                         em_82547_move_tail, adapter);
1875                                 break;
1876                         }
1877                         E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1878                         em_82547_update_fifo_head(adapter, length);
1879                         length = 0;
1880                 }
1881         }
1882 }
1883
1884 static void
1885 em_82547_move_tail(void *xsc)
1886 {
1887         struct adapter *adapter = xsc;
1888         struct ifnet *ifp = &adapter->arpcom.ac_if;
1889
1890         lwkt_serialize_enter(ifp->if_serializer);
1891         em_82547_move_tail_serialized(adapter);
1892         lwkt_serialize_exit(ifp->if_serializer);
1893 }
1894
1895 static int
1896 em_82547_fifo_workaround(struct adapter *adapter, int len)
1897 {       
1898         int fifo_space, fifo_pkt_len;
1899
1900         fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1901
1902         if (adapter->link_duplex == HALF_DUPLEX) {
1903                 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1904
1905                 if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1906                         if (em_82547_tx_fifo_reset(adapter))
1907                                 return (0);
1908                         else
1909                                 return (1);
1910                 }
1911         }
1912         return (0);
1913 }
1914
1915 static void
1916 em_82547_update_fifo_head(struct adapter *adapter, int len)
1917 {
1918         int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1919
1920         /* tx_fifo_head is always 16 byte aligned */
1921         adapter->tx_fifo_head += fifo_pkt_len;
1922         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1923                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
1924 }
1925
1926 static int
1927 em_82547_tx_fifo_reset(struct adapter *adapter)
1928 {
1929         uint32_t tctl;
1930
1931         if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1932              E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1933             (E1000_READ_REG(&adapter->hw, E1000_TDFT) == 
1934              E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1935             (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1936              E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1937             (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1938                 /* Disable TX unit */
1939                 tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1940                 E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1941                     tctl & ~E1000_TCTL_EN);
1942
1943                 /* Reset FIFO pointers */
1944                 E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1945                     adapter->tx_head_addr);
1946                 E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1947                     adapter->tx_head_addr);
1948                 E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1949                     adapter->tx_head_addr);
1950                 E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1951                     adapter->tx_head_addr);
1952
1953                 /* Re-enable TX unit */
1954                 E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1955                 E1000_WRITE_FLUSH(&adapter->hw);
1956
1957                 adapter->tx_fifo_head = 0;
1958                 adapter->tx_fifo_reset_cnt++;
1959
1960                 return (TRUE);
1961         } else {
1962                 return (FALSE);
1963         }
1964 }
1965
1966 static void
1967 em_set_promisc(struct adapter *adapter)
1968 {
1969         struct ifnet *ifp = &adapter->arpcom.ac_if;
1970         uint32_t reg_rctl;
1971
1972         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1973
1974         if (ifp->if_flags & IFF_PROMISC) {
1975                 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1976                 /* Turn this on if you want to see bad packets */
1977                 if (em_debug_sbp)
1978                         reg_rctl |= E1000_RCTL_SBP;
1979                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1980         } else if (ifp->if_flags & IFF_ALLMULTI) {
1981                 reg_rctl |= E1000_RCTL_MPE;
1982                 reg_rctl &= ~E1000_RCTL_UPE;
1983                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1984         }
1985 }
1986
1987 static void
1988 em_disable_promisc(struct adapter *adapter)
1989 {
1990         uint32_t reg_rctl;
1991
1992         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1993
1994         reg_rctl &= ~E1000_RCTL_UPE;
1995         reg_rctl &= ~E1000_RCTL_MPE;
1996         reg_rctl &= ~E1000_RCTL_SBP;
1997         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1998 }
1999
2000 static void
2001 em_set_multi(struct adapter *adapter)
2002 {
2003         struct ifnet *ifp = &adapter->arpcom.ac_if;
2004         struct ifmultiaddr *ifma;
2005         uint32_t reg_rctl = 0;
2006         uint8_t *mta;
2007         int mcnt = 0;
2008
2009         mta = adapter->mta;
2010         bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
2011
2012         if (adapter->hw.mac.type == e1000_82542 && 
2013             adapter->hw.revision_id == E1000_REVISION_2) {
2014                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2015                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2016                         e1000_pci_clear_mwi(&adapter->hw);
2017                 reg_rctl |= E1000_RCTL_RST;
2018                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2019                 msec_delay(5);
2020         }
2021
2022         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2023                 if (ifma->ifma_addr->sa_family != AF_LINK)
2024                         continue;
2025
2026                 if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
2027                         break;
2028
2029                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
2030                     &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
2031                 mcnt++;
2032         }
2033
2034         if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
2035                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2036                 reg_rctl |= E1000_RCTL_MPE;
2037                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2038         } else {
2039                 e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
2040         }
2041
2042         if (adapter->hw.mac.type == e1000_82542 && 
2043             adapter->hw.revision_id == E1000_REVISION_2) {
2044                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
2045                 reg_rctl &= ~E1000_RCTL_RST;
2046                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
2047                 msec_delay(5);
2048                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2049                         e1000_pci_set_mwi(&adapter->hw);
2050         }
2051 }
2052
2053 /*
2054  * This routine checks for link status and updates statistics.
2055  */
2056 static void
2057 em_timer(void *xsc)
2058 {
2059         struct adapter *adapter = xsc;
2060         struct ifnet *ifp = &adapter->arpcom.ac_if;
2061
2062         lwkt_serialize_enter(ifp->if_serializer);
2063
2064         em_update_link_status(adapter);
2065         em_update_stats(adapter);
2066
2067         /* Reset LAA into RAR[0] on 82571 */
2068         if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
2069                 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2070
2071         if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
2072                 em_print_hw_stats(adapter);
2073
2074         em_smartspeed(adapter);
2075
2076         callout_reset(&adapter->timer, hz, em_timer, adapter);
2077
2078         lwkt_serialize_exit(ifp->if_serializer);
2079 }
2080
2081 static void
2082 em_update_link_status(struct adapter *adapter)
2083 {
2084         struct e1000_hw *hw = &adapter->hw;
2085         struct ifnet *ifp = &adapter->arpcom.ac_if;
2086         device_t dev = adapter->dev;
2087         uint32_t link_check = 0;
2088
2089         /* Get the cached link value or read phy for real */
2090         switch (hw->phy.media_type) {
2091         case e1000_media_type_copper:
2092                 if (hw->mac.get_link_status) {
2093                         /* Do the work to read phy */
2094                         e1000_check_for_link(hw);
2095                         link_check = !hw->mac.get_link_status;
2096                         if (link_check) /* ESB2 fix */
2097                                 e1000_cfg_on_link_up(hw);
2098                 } else {
2099                         link_check = TRUE;
2100                 }
2101                 break;
2102
2103         case e1000_media_type_fiber:
2104                 e1000_check_for_link(hw);
2105                 link_check =
2106                         E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2107                 break;
2108
2109         case e1000_media_type_internal_serdes:
2110                 e1000_check_for_link(hw);
2111                 link_check = adapter->hw.mac.serdes_has_link;
2112                 break;
2113
2114         case e1000_media_type_unknown:
2115         default:
2116                 break;
2117         }
2118
2119         /* Now check for a transition */
2120         if (link_check && adapter->link_active == 0) {
2121                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2122                     &adapter->link_duplex);
2123
2124                 /*
2125                  * Check if we should enable/disable SPEED_MODE bit on
2126                  * 82571/82572
2127                  */
2128                 if (adapter->link_speed != SPEED_1000 &&
2129                     (hw->mac.type == e1000_82571 ||
2130                      hw->mac.type == e1000_82572)) {
2131                         int tarc0;
2132
2133                         tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2134                         tarc0 &= ~SPEED_MODE_BIT;
2135                         E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2136                 }
2137                 if (bootverbose) {
2138                         device_printf(dev, "Link is up %d Mbps %s\n",
2139                             adapter->link_speed,
2140                             ((adapter->link_duplex == FULL_DUPLEX) ?
2141                             "Full Duplex" : "Half Duplex"));
2142                 }
2143                 adapter->link_active = 1;
2144                 adapter->smartspeed = 0;
2145                 ifp->if_baudrate = adapter->link_speed * 1000000;
2146                 ifp->if_link_state = LINK_STATE_UP;
2147                 if_link_state_change(ifp);
2148         } else if (!link_check && adapter->link_active == 1) {
2149                 ifp->if_baudrate = adapter->link_speed = 0;
2150                 adapter->link_duplex = 0;
2151                 if (bootverbose)
2152                         device_printf(dev, "Link is Down\n");
2153                 adapter->link_active = 0;
2154 #if 0
2155                 /* Link down, disable watchdog */
2156                 if->if_timer = 0;
2157 #endif
2158                 ifp->if_link_state = LINK_STATE_DOWN;
2159                 if_link_state_change(ifp);
2160         }
2161 }
2162
2163 static void
2164 em_stop(struct adapter *adapter)
2165 {
2166         struct ifnet *ifp = &adapter->arpcom.ac_if;
2167         int i;
2168
2169         ASSERT_SERIALIZED(ifp->if_serializer);
2170
2171         em_disable_intr(adapter);
2172
2173         callout_stop(&adapter->timer);
2174         callout_stop(&adapter->tx_fifo_timer);
2175
2176         ifp->if_flags &= ~IFF_RUNNING;
2177         ifq_clr_oactive(&ifp->if_snd);
2178         ifp->if_timer = 0;
2179
2180         e1000_reset_hw(&adapter->hw);
2181         if (adapter->hw.mac.type >= e1000_82544)
2182                 E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2183
2184         for (i = 0; i < adapter->num_tx_desc; i++) {
2185                 struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2186
2187                 if (tx_buffer->m_head != NULL) {
2188                         bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2189                         m_freem(tx_buffer->m_head);
2190                         tx_buffer->m_head = NULL;
2191                 }
2192         }
2193
2194         for (i = 0; i < adapter->num_rx_desc; i++) {
2195                 struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2196
2197                 if (rx_buffer->m_head != NULL) {
2198                         bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2199                         m_freem(rx_buffer->m_head);
2200                         rx_buffer->m_head = NULL;
2201                 }
2202         }
2203
2204         if (adapter->fmp != NULL)
2205                 m_freem(adapter->fmp);
2206         adapter->fmp = NULL;
2207         adapter->lmp = NULL;
2208
2209         adapter->csum_flags = 0;
2210         adapter->csum_lhlen = 0;
2211         adapter->csum_iphlen = 0;
2212         adapter->csum_thlen = 0;
2213         adapter->csum_mss = 0;
2214         adapter->csum_pktlen = 0;
2215
2216         adapter->tx_dd_head = 0;
2217         adapter->tx_dd_tail = 0;
2218         adapter->tx_nsegs = 0;
2219 }
2220
2221 static int
2222 em_get_hw_info(struct adapter *adapter)
2223 {
2224         device_t dev = adapter->dev;
2225
2226         /* Save off the information about this board */
2227         adapter->hw.vendor_id = pci_get_vendor(dev);
2228         adapter->hw.device_id = pci_get_device(dev);
2229         adapter->hw.revision_id = pci_get_revid(dev);
2230         adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2231         adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2232
2233         /* Do Shared Code Init and Setup */
2234         if (e1000_set_mac_type(&adapter->hw))
2235                 return ENXIO;
2236         return 0;
2237 }
2238
2239 static int
2240 em_alloc_pci_res(struct adapter *adapter)
2241 {
2242         device_t dev = adapter->dev;
2243         u_int intr_flags;
2244         int val, rid, msi_enable;
2245
2246         /* Enable bus mastering */
2247         pci_enable_busmaster(dev);
2248
2249         adapter->memory_rid = EM_BAR_MEM;
2250         adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2251                                 &adapter->memory_rid, RF_ACTIVE);
2252         if (adapter->memory == NULL) {
2253                 device_printf(dev, "Unable to allocate bus resource: memory\n");
2254                 return (ENXIO);
2255         }
2256         adapter->osdep.mem_bus_space_tag =
2257             rman_get_bustag(adapter->memory);
2258         adapter->osdep.mem_bus_space_handle =
2259             rman_get_bushandle(adapter->memory);
2260
2261         /* XXX This is quite goofy, it is not actually used */
2262         adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2263
2264         /* Only older adapters use IO mapping */
2265         if (adapter->hw.mac.type > e1000_82543 &&
2266             adapter->hw.mac.type < e1000_82571) {
2267                 /* Figure our where our IO BAR is ? */
2268                 for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2269                         val = pci_read_config(dev, rid, 4);
2270                         if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2271                                 adapter->io_rid = rid;
2272                                 break;
2273                         }
2274                         rid += 4;
2275                         /* check for 64bit BAR */
2276                         if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2277                                 rid += 4;
2278                 }
2279                 if (rid >= PCIR_CARDBUSCIS) {
2280                         device_printf(dev, "Unable to locate IO BAR\n");
2281                         return (ENXIO);
2282                 }
2283                 adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2284                                         &adapter->io_rid, RF_ACTIVE);
2285                 if (adapter->ioport == NULL) {
2286                         device_printf(dev, "Unable to allocate bus resource: "
2287                             "ioport\n");
2288                         return (ENXIO);
2289                 }
2290                 adapter->hw.io_base = 0;
2291                 adapter->osdep.io_bus_space_tag =
2292                     rman_get_bustag(adapter->ioport);
2293                 adapter->osdep.io_bus_space_handle =
2294                     rman_get_bushandle(adapter->ioport);
2295         }
2296
2297         /*
2298          * Don't enable MSI-X on 82574, see:
2299          * 82574 specification update errata #15
2300          *
2301          * Don't enable MSI on PCI/PCI-X chips, see:
2302          * 82540 specification update errata #6
2303          * 82545 specification update errata #4
2304          *
2305          * Don't enable MSI on 82571/82572, see:
2306          * 82571/82572 specification update errata #63
2307          */
2308         msi_enable = em_msi_enable;
2309         if (msi_enable &&
2310             (!pci_is_pcie(dev) ||
2311              adapter->hw.mac.type == e1000_82571 ||
2312              adapter->hw.mac.type == e1000_82572))
2313                 msi_enable = 0;
2314
2315         adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2316             &adapter->intr_rid, &intr_flags);
2317
2318         if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2319                 int unshared;
2320
2321                 unshared = device_getenv_int(dev, "irq.unshared", 0);
2322                 if (!unshared) {
2323                         adapter->flags |= EM_FLAG_SHARED_INTR;
2324                         if (bootverbose)
2325                                 device_printf(dev, "IRQ shared\n");
2326                 } else {
2327                         intr_flags &= ~RF_SHAREABLE;
2328                         if (bootverbose)
2329                                 device_printf(dev, "IRQ unshared\n");
2330                 }
2331         }
2332
2333         adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2334             &adapter->intr_rid, intr_flags);
2335         if (adapter->intr_res == NULL) {
2336                 device_printf(dev, "Unable to allocate bus resource: "
2337                     "interrupt\n");
2338                 return (ENXIO);
2339         }
2340
2341         adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2342         adapter->hw.back = &adapter->osdep;
2343         return (0);
2344 }
2345
2346 static void
2347 em_free_pci_res(struct adapter *adapter)
2348 {
2349         device_t dev = adapter->dev;
2350
2351         if (adapter->intr_res != NULL) {
2352                 bus_release_resource(dev, SYS_RES_IRQ,
2353                     adapter->intr_rid, adapter->intr_res);
2354         }
2355
2356         if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2357                 pci_release_msi(dev);
2358
2359         if (adapter->memory != NULL) {
2360                 bus_release_resource(dev, SYS_RES_MEMORY,
2361                     adapter->memory_rid, adapter->memory);
2362         }
2363
2364         if (adapter->flash != NULL) {
2365                 bus_release_resource(dev, SYS_RES_MEMORY,
2366                     adapter->flash_rid, adapter->flash);
2367         }
2368
2369         if (adapter->ioport != NULL) {
2370                 bus_release_resource(dev, SYS_RES_IOPORT,
2371                     adapter->io_rid, adapter->ioport);
2372         }
2373 }
2374
2375 static int
2376 em_reset(struct adapter *adapter)
2377 {
2378         device_t dev = adapter->dev;
2379         uint16_t rx_buffer_size;
2380
2381         /* When hardware is reset, fifo_head is also reset */
2382         adapter->tx_fifo_head = 0;
2383
2384         /* Set up smart power down as default off on newer adapters. */
2385         if (!em_smart_pwr_down &&
2386             (adapter->hw.mac.type == e1000_82571 ||
2387              adapter->hw.mac.type == e1000_82572)) {
2388                 uint16_t phy_tmp = 0;
2389
2390                 /* Speed up time to link by disabling smart power down. */
2391                 e1000_read_phy_reg(&adapter->hw,
2392                     IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2393                 phy_tmp &= ~IGP02E1000_PM_SPD;
2394                 e1000_write_phy_reg(&adapter->hw,
2395                     IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2396         }
2397
2398         /*
2399          * These parameters control the automatic generation (Tx) and
2400          * response (Rx) to Ethernet PAUSE frames.
2401          * - High water mark should allow for at least two frames to be
2402          *   received after sending an XOFF.
2403          * - Low water mark works best when it is very near the high water mark.
2404          *   This allows the receiver to restart by sending XON when it has
2405          *   drained a bit. Here we use an arbitary value of 1500 which will
2406          *   restart after one full frame is pulled from the buffer. There
2407          *   could be several smaller frames in the buffer and if so they will
2408          *   not trigger the XON until their total number reduces the buffer
2409          *   by 1500.
2410          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2411          */
2412         rx_buffer_size =
2413                 (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2414
2415         adapter->hw.fc.high_water = rx_buffer_size -
2416                                     roundup2(adapter->max_frame_size, 1024);
2417         adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2418
2419         if (adapter->hw.mac.type == e1000_80003es2lan)
2420                 adapter->hw.fc.pause_time = 0xFFFF;
2421         else
2422                 adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2423
2424         adapter->hw.fc.send_xon = TRUE;
2425
2426         adapter->hw.fc.requested_mode = e1000_fc_full;
2427
2428         /* Workaround: no TX flow ctrl for PCH */
2429         if (adapter->hw.mac.type == e1000_pchlan)
2430                 adapter->hw.fc.requested_mode = e1000_fc_rx_pause;
2431
2432         /* Override - settings for PCH2LAN, ya its magic :) */
2433         if (adapter->hw.mac.type == e1000_pch2lan) {
2434                 adapter->hw.fc.high_water = 0x5C20;
2435                 adapter->hw.fc.low_water = 0x5048;
2436                 adapter->hw.fc.pause_time = 0x0650;
2437                 adapter->hw.fc.refresh_time = 0x0400;
2438
2439                 /* Jumbos need adjusted PBA */
2440                 if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2441                         E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2442                 else
2443                         E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2444         }
2445
2446         /* Issue a global reset */
2447         e1000_reset_hw(&adapter->hw);
2448         if (adapter->hw.mac.type >= e1000_82544)
2449                 E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2450         em_disable_aspm(adapter);
2451
2452         if (e1000_init_hw(&adapter->hw) < 0) {
2453                 device_printf(dev, "Hardware Initialization Failed\n");
2454                 return (EIO);
2455         }
2456
2457         E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2458         e1000_get_phy_info(&adapter->hw);
2459         e1000_check_for_link(&adapter->hw);
2460
2461         return (0);
2462 }
2463
2464 static void
2465 em_setup_ifp(struct adapter *adapter)
2466 {
2467         struct ifnet *ifp = &adapter->arpcom.ac_if;
2468
2469         if_initname(ifp, device_get_name(adapter->dev),
2470                     device_get_unit(adapter->dev));
2471         ifp->if_softc = adapter;
2472         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2473         ifp->if_init =  em_init;
2474         ifp->if_ioctl = em_ioctl;
2475         ifp->if_start = em_start;
2476 #ifdef IFPOLL_ENABLE
2477         ifp->if_npoll = em_npoll;
2478 #endif
2479         ifp->if_watchdog = em_watchdog;
2480         ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2481         ifq_set_ready(&ifp->if_snd);
2482
2483         ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2484
2485         ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2486         if (adapter->hw.mac.type >= e1000_82543)
2487                 ifp->if_capabilities |= IFCAP_HWCSUM;
2488         if (adapter->flags & EM_FLAG_TSO)
2489                 ifp->if_capabilities |= IFCAP_TSO;
2490         ifp->if_capenable = ifp->if_capabilities;
2491
2492         if (ifp->if_capenable & IFCAP_TXCSUM)
2493                 ifp->if_hwassist |= EM_CSUM_FEATURES;
2494         if (ifp->if_capenable & IFCAP_TSO)
2495                 ifp->if_hwassist |= CSUM_TSO;
2496
2497         /*
2498          * Tell the upper layer(s) we support long frames.
2499          */
2500         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2501
2502         /*
2503          * Specify the media types supported by this adapter and register
2504          * callbacks to update media and link information
2505          */
2506         ifmedia_init(&adapter->media, IFM_IMASK,
2507                      em_media_change, em_media_status);
2508         if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2509             adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2510                 u_char fiber_type = IFM_1000_SX; /* default type */
2511
2512                 if (adapter->hw.mac.type == e1000_82545)
2513                         fiber_type = IFM_1000_LX;
2514                 ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 
2515                             0, NULL);
2516                 ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2517         } else {
2518                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2519                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2520                             0, NULL);
2521                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2522                             0, NULL);
2523                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2524                             0, NULL);
2525                 if (adapter->hw.phy.type != e1000_phy_ife) {
2526                         ifmedia_add(&adapter->media,
2527                                 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2528                         ifmedia_add(&adapter->media,
2529                                 IFM_ETHER | IFM_1000_T, 0, NULL);
2530                 }
2531         }
2532         ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2533         ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2534 }
2535
2536
2537 /*
2538  * Workaround for SmartSpeed on 82541 and 82547 controllers
2539  */
2540 static void
2541 em_smartspeed(struct adapter *adapter)
2542 {
2543         uint16_t phy_tmp;
2544
2545         if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2546             adapter->hw.mac.autoneg == 0 ||
2547             (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2548                 return;
2549
2550         if (adapter->smartspeed == 0) {
2551                 /*
2552                  * If Master/Slave config fault is asserted twice,
2553                  * we assume back-to-back
2554                  */
2555                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2556                 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2557                         return;
2558                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2559                 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2560                         e1000_read_phy_reg(&adapter->hw,
2561                             PHY_1000T_CTRL, &phy_tmp);
2562                         if (phy_tmp & CR_1000T_MS_ENABLE) {
2563                                 phy_tmp &= ~CR_1000T_MS_ENABLE;
2564                                 e1000_write_phy_reg(&adapter->hw,
2565                                     PHY_1000T_CTRL, phy_tmp);
2566                                 adapter->smartspeed++;
2567                                 if (adapter->hw.mac.autoneg &&
2568                                     !e1000_phy_setup_autoneg(&adapter->hw) &&
2569                                     !e1000_read_phy_reg(&adapter->hw,
2570                                      PHY_CONTROL, &phy_tmp)) {
2571                                         phy_tmp |= MII_CR_AUTO_NEG_EN |
2572                                                    MII_CR_RESTART_AUTO_NEG;
2573                                         e1000_write_phy_reg(&adapter->hw,
2574                                             PHY_CONTROL, phy_tmp);
2575                                 }
2576                         }
2577                 }
2578                 return;
2579         } else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2580                 /* If still no link, perhaps using 2/3 pair cable */
2581                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2582                 phy_tmp |= CR_1000T_MS_ENABLE;
2583                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2584                 if (adapter->hw.mac.autoneg &&
2585                     !e1000_phy_setup_autoneg(&adapter->hw) &&
2586                     !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2587                         phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2588                         e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2589                 }
2590         }
2591
2592         /* Restart process after EM_SMARTSPEED_MAX iterations */
2593         if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2594                 adapter->smartspeed = 0;
2595 }
2596
2597 static int
2598 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2599               struct em_dma_alloc *dma)
2600 {
2601         dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2602                                 EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2603                                 &dma->dma_tag, &dma->dma_map,
2604                                 &dma->dma_paddr);
2605         if (dma->dma_vaddr == NULL)
2606                 return ENOMEM;
2607         else
2608                 return 0;
2609 }
2610
2611 static void
2612 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2613 {
2614         if (dma->dma_tag == NULL)
2615                 return;
2616         bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2617         bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2618         bus_dma_tag_destroy(dma->dma_tag);
2619 }
2620
2621 static int
2622 em_create_tx_ring(struct adapter *adapter)
2623 {
2624         device_t dev = adapter->dev;
2625         struct em_buffer *tx_buffer;
2626         int error, i;
2627
2628         adapter->tx_buffer_area =
2629                 kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2630                         M_DEVBUF, M_WAITOK | M_ZERO);
2631
2632         /*
2633          * Create DMA tags for tx buffers
2634          */
2635         error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2636                         1, 0,                   /* alignment, bounds */
2637                         BUS_SPACE_MAXADDR,      /* lowaddr */
2638                         BUS_SPACE_MAXADDR,      /* highaddr */
2639                         NULL, NULL,             /* filter, filterarg */
2640                         EM_TSO_SIZE,            /* maxsize */
2641                         EM_MAX_SCATTER,         /* nsegments */
2642                         PAGE_SIZE,              /* maxsegsize */
2643                         BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2644                         BUS_DMA_ONEBPAGE,       /* flags */
2645                         &adapter->txtag);
2646         if (error) {
2647                 device_printf(dev, "Unable to allocate TX DMA tag\n");
2648                 kfree(adapter->tx_buffer_area, M_DEVBUF);
2649                 adapter->tx_buffer_area = NULL;
2650                 return error;
2651         }
2652
2653         /*
2654          * Create DMA maps for tx buffers
2655          */
2656         for (i = 0; i < adapter->num_tx_desc; i++) {
2657                 tx_buffer = &adapter->tx_buffer_area[i];
2658
2659                 error = bus_dmamap_create(adapter->txtag,
2660                                           BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2661                                           &tx_buffer->map);
2662                 if (error) {
2663                         device_printf(dev, "Unable to create TX DMA map\n");
2664                         em_destroy_tx_ring(adapter, i);
2665                         return error;
2666                 }
2667         }
2668         return (0);
2669 }
2670
2671 static void
2672 em_init_tx_ring(struct adapter *adapter)
2673 {
2674         /* Clear the old ring contents */
2675         bzero(adapter->tx_desc_base,
2676             (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2677
2678         /* Reset state */
2679         adapter->next_avail_tx_desc = 0;
2680         adapter->next_tx_to_clean = 0;
2681         adapter->num_tx_desc_avail = adapter->num_tx_desc;
2682 }
2683
2684 static void
2685 em_init_tx_unit(struct adapter *adapter)
2686 {
2687         uint32_t tctl, tarc, tipg = 0;
2688         uint64_t bus_addr;
2689
2690         /* Setup the Base and Length of the Tx Descriptor Ring */
2691         bus_addr = adapter->txdma.dma_paddr;
2692         E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2693             adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2694         E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2695             (uint32_t)(bus_addr >> 32));
2696         E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2697             (uint32_t)bus_addr);
2698         /* Setup the HW Tx Head and Tail descriptor pointers */
2699         E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2700         E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2701
2702         /* Set the default values for the Tx Inter Packet Gap timer */
2703         switch (adapter->hw.mac.type) {
2704         case e1000_82542:
2705                 tipg = DEFAULT_82542_TIPG_IPGT;
2706                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2707                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2708                 break;
2709
2710         case e1000_80003es2lan:
2711                 tipg = DEFAULT_82543_TIPG_IPGR1;
2712                 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2713                     E1000_TIPG_IPGR2_SHIFT;
2714                 break;
2715
2716         default:
2717                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2718                     adapter->hw.phy.media_type ==
2719                     e1000_media_type_internal_serdes)
2720                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2721                 else
2722                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2723                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2724                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2725                 break;
2726         }
2727
2728         E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2729
2730         /* NOTE: 0 is not allowed for TIDV */
2731         E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2732         if(adapter->hw.mac.type >= e1000_82540)
2733                 E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2734
2735         if (adapter->hw.mac.type == e1000_82571 ||
2736             adapter->hw.mac.type == e1000_82572) {
2737                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2738                 tarc |= SPEED_MODE_BIT;
2739                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2740         } else if (adapter->hw.mac.type == e1000_80003es2lan) {
2741                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2742                 tarc |= 1;
2743                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2744                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2745                 tarc |= 1;
2746                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2747         }
2748
2749         /* Program the Transmit Control Register */
2750         tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2751         tctl &= ~E1000_TCTL_CT;
2752         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2753                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2754
2755         if (adapter->hw.mac.type >= e1000_82571)
2756                 tctl |= E1000_TCTL_MULR;
2757
2758         /* This write will effectively turn on the transmit unit. */
2759         E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2760 }
2761
2762 static void
2763 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2764 {
2765         struct em_buffer *tx_buffer;
2766         int i;
2767
2768         if (adapter->tx_buffer_area == NULL)
2769                 return;
2770
2771         for (i = 0; i < ndesc; i++) {
2772                 tx_buffer = &adapter->tx_buffer_area[i];
2773
2774                 KKASSERT(tx_buffer->m_head == NULL);
2775                 bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2776         }
2777         bus_dma_tag_destroy(adapter->txtag);
2778
2779         kfree(adapter->tx_buffer_area, M_DEVBUF);
2780         adapter->tx_buffer_area = NULL;
2781 }
2782
2783 /*
2784  * The offload context needs to be set when we transfer the first
2785  * packet of a particular protocol (TCP/UDP).  This routine has been
2786  * enhanced to deal with inserted VLAN headers.
2787  *
2788  * If the new packet's ether header length, ip header length and
2789  * csum offloading type are same as the previous packet, we should
2790  * avoid allocating a new csum context descriptor; mainly to take
2791  * advantage of the pipeline effect of the TX data read request.
2792  *
2793  * This function returns number of TX descrptors allocated for
2794  * csum context.
2795  */
2796 static int
2797 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2798           uint32_t *txd_upper, uint32_t *txd_lower)
2799 {
2800         struct e1000_context_desc *TXD;
2801         int curr_txd, ehdrlen, csum_flags;
2802         uint32_t cmd, hdr_len, ip_hlen;
2803
2804         csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2805         ip_hlen = mp->m_pkthdr.csum_iphlen;
2806         ehdrlen = mp->m_pkthdr.csum_lhlen;
2807
2808         if (adapter->csum_lhlen == ehdrlen &&
2809             adapter->csum_iphlen == ip_hlen &&
2810             adapter->csum_flags == csum_flags) {
2811                 /*
2812                  * Same csum offload context as the previous packets;
2813                  * just return.
2814                  */
2815                 *txd_upper = adapter->csum_txd_upper;
2816                 *txd_lower = adapter->csum_txd_lower;
2817                 return 0;
2818         }
2819
2820         /*
2821          * Setup a new csum offload context.
2822          */
2823
2824         curr_txd = adapter->next_avail_tx_desc;
2825         TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2826
2827         cmd = 0;
2828
2829         /* Setup of IP header checksum. */
2830         if (csum_flags & CSUM_IP) {
2831                 /*
2832                  * Start offset for header checksum calculation.
2833                  * End offset for header checksum calculation.
2834                  * Offset of place to put the checksum.
2835                  */
2836                 TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2837                 TXD->lower_setup.ip_fields.ipcse =
2838                     htole16(ehdrlen + ip_hlen - 1);
2839                 TXD->lower_setup.ip_fields.ipcso =
2840                     ehdrlen + offsetof(struct ip, ip_sum);
2841                 cmd |= E1000_TXD_CMD_IP;
2842                 *txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2843         }
2844         hdr_len = ehdrlen + ip_hlen;
2845
2846         if (csum_flags & CSUM_TCP) {
2847                 /*
2848                  * Start offset for payload checksum calculation.
2849                  * End offset for payload checksum calculation.
2850                  * Offset of place to put the checksum.
2851                  */
2852                 TXD->upper_setup.tcp_fields.tucss = hdr_len;
2853                 TXD->upper_setup.tcp_fields.tucse = htole16(0);
2854                 TXD->upper_setup.tcp_fields.tucso =
2855                     hdr_len + offsetof(struct tcphdr, th_sum);
2856                 cmd |= E1000_TXD_CMD_TCP;
2857                 *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2858         } else if (csum_flags & CSUM_UDP) {
2859                 /*
2860                  * Start offset for header checksum calculation.
2861                  * End offset for header checksum calculation.
2862                  * Offset of place to put the checksum.
2863                  */
2864                 TXD->upper_setup.tcp_fields.tucss = hdr_len;
2865                 TXD->upper_setup.tcp_fields.tucse = htole16(0);
2866                 TXD->upper_setup.tcp_fields.tucso =
2867                     hdr_len + offsetof(struct udphdr, uh_sum);
2868                 *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2869         }
2870
2871         *txd_lower = E1000_TXD_CMD_DEXT |       /* Extended descr type */
2872                      E1000_TXD_DTYP_D;          /* Data descr */
2873
2874         /* Save the information for this csum offloading context */
2875         adapter->csum_lhlen = ehdrlen;
2876         adapter->csum_iphlen = ip_hlen;
2877         adapter->csum_flags = csum_flags;
2878         adapter->csum_txd_upper = *txd_upper;
2879         adapter->csum_txd_lower = *txd_lower;
2880
2881         TXD->tcp_seg_setup.data = htole32(0);
2882         TXD->cmd_and_length =
2883             htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2884
2885         if (++curr_txd == adapter->num_tx_desc)
2886                 curr_txd = 0;
2887
2888         KKASSERT(adapter->num_tx_desc_avail > 0);
2889         adapter->num_tx_desc_avail--;
2890
2891         adapter->next_avail_tx_desc = curr_txd;
2892         return 1;
2893 }
2894
2895 static void
2896 em_txeof(struct adapter *adapter)
2897 {
2898         struct ifnet *ifp = &adapter->arpcom.ac_if;
2899         struct em_buffer *tx_buffer;
2900         int first, num_avail;
2901
2902         if (adapter->tx_dd_head == adapter->tx_dd_tail)
2903                 return;
2904
2905         if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2906                 return;
2907
2908         num_avail = adapter->num_tx_desc_avail;
2909         first = adapter->next_tx_to_clean;
2910
2911         while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2912                 struct e1000_tx_desc *tx_desc;
2913                 int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2914
2915                 tx_desc = &adapter->tx_desc_base[dd_idx];
2916                 if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2917                         EM_INC_TXDD_IDX(adapter->tx_dd_head);
2918
2919                         if (++dd_idx == adapter->num_tx_desc)
2920                                 dd_idx = 0;
2921
2922                         while (first != dd_idx) {
2923                                 logif(pkt_txclean);
2924
2925                                 num_avail++;
2926
2927                                 tx_buffer = &adapter->tx_buffer_area[first];
2928                                 if (tx_buffer->m_head) {
2929                                         ifp->if_opackets++;
2930                                         bus_dmamap_unload(adapter->txtag,
2931                                                           tx_buffer->map);
2932                                         m_freem(tx_buffer->m_head);
2933                                         tx_buffer->m_head = NULL;
2934                                 }
2935
2936                                 if (++first == adapter->num_tx_desc)
2937                                         first = 0;
2938                         }
2939                 } else {
2940                         break;
2941                 }
2942         }
2943         adapter->next_tx_to_clean = first;
2944         adapter->num_tx_desc_avail = num_avail;
2945
2946         if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2947                 adapter->tx_dd_head = 0;
2948                 adapter->tx_dd_tail = 0;
2949         }
2950
2951         if (!EM_IS_OACTIVE(adapter)) {
2952                 ifq_clr_oactive(&ifp->if_snd);
2953
2954                 /* All clean, turn off the timer */
2955                 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2956                         ifp->if_timer = 0;
2957         }
2958 }
2959
2960 static void
2961 em_tx_collect(struct adapter *adapter)
2962 {
2963         struct ifnet *ifp = &adapter->arpcom.ac_if;
2964         struct em_buffer *tx_buffer;
2965         int tdh, first, num_avail, dd_idx = -1;
2966
2967         if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2968                 return;
2969
2970         tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
2971         if (tdh == adapter->next_tx_to_clean)
2972                 return;
2973
2974         if (adapter->tx_dd_head != adapter->tx_dd_tail)
2975                 dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2976
2977         num_avail = adapter->num_tx_desc_avail;
2978         first = adapter->next_tx_to_clean;
2979
2980         while (first != tdh) {
2981                 logif(pkt_txclean);
2982
2983                 num_avail++;
2984
2985                 tx_buffer = &adapter->tx_buffer_area[first];
2986                 if (tx_buffer->m_head) {
2987                         ifp->if_opackets++;
2988                         bus_dmamap_unload(adapter->txtag,
2989                                           tx_buffer->map);
2990                         m_freem(tx_buffer->m_head);
2991                         tx_buffer->m_head = NULL;
2992                 }
2993
2994                 if (first == dd_idx) {
2995                         EM_INC_TXDD_IDX(adapter->tx_dd_head);
2996                         if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2997                                 adapter->tx_dd_head = 0;
2998                                 adapter->tx_dd_tail = 0;
2999                                 dd_idx = -1;
3000                         } else {
3001                                 dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3002                         }
3003                 }
3004
3005                 if (++first == adapter->num_tx_desc)
3006                         first = 0;
3007         }
3008         adapter->next_tx_to_clean = first;
3009         adapter->num_tx_desc_avail = num_avail;
3010
3011         if (!EM_IS_OACTIVE(adapter)) {
3012                 ifq_clr_oactive(&ifp->if_snd);
3013
3014                 /* All clean, turn off the timer */
3015                 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3016                         ifp->if_timer = 0;
3017         }
3018 }
3019
3020 /*
3021  * When Link is lost sometimes there is work still in the TX ring
3022  * which will result in a watchdog, rather than allow that do an
3023  * attempted cleanup and then reinit here.  Note that this has been
3024  * seens mostly with fiber adapters.
3025  */
3026 static void
3027 em_tx_purge(struct adapter *adapter)
3028 {
3029         struct ifnet *ifp = &adapter->arpcom.ac_if;
3030
3031         if (!adapter->link_active && ifp->if_timer) {
3032                 em_tx_collect(adapter);
3033                 if (ifp->if_timer) {
3034                         if_printf(ifp, "Link lost, TX pending, reinit\n");
3035                         ifp->if_timer = 0;
3036                         em_init(adapter);
3037                 }
3038         }
3039 }
3040
3041 static int
3042 em_newbuf(struct adapter *adapter, int i, int init)
3043 {
3044         struct mbuf *m;
3045         bus_dma_segment_t seg;
3046         bus_dmamap_t map;
3047         struct em_buffer *rx_buffer;
3048         int error, nseg;
3049
3050         m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
3051         if (m == NULL) {
3052                 adapter->mbuf_cluster_failed++;
3053                 if (init) {
3054                         if_printf(&adapter->arpcom.ac_if,
3055                                   "Unable to allocate RX mbuf\n");
3056                 }
3057                 return (ENOBUFS);
3058         }
3059         m->m_len = m->m_pkthdr.len = MCLBYTES;
3060
3061         if (adapter->max_frame_size <= MCLBYTES - ETHER_ALIGN)
3062                 m_adj(m, ETHER_ALIGN);
3063
3064         error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3065                         adapter->rx_sparemap, m,
3066                         &seg, 1, &nseg, BUS_DMA_NOWAIT);
3067         if (error) {
3068                 m_freem(m);
3069                 if (init) {
3070                         if_printf(&adapter->arpcom.ac_if,
3071                                   "Unable to load RX mbuf\n");
3072                 }
3073                 return (error);
3074         }
3075
3076         rx_buffer = &adapter->rx_buffer_area[i];
3077         if (rx_buffer->m_head != NULL)
3078                 bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3079
3080         map = rx_buffer->map;
3081         rx_buffer->map = adapter->rx_sparemap;
3082         adapter->rx_sparemap = map;
3083
3084         rx_buffer->m_head = m;
3085
3086         adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3087         return (0);
3088 }
3089
3090 static int
3091 em_create_rx_ring(struct adapter *adapter)
3092 {
3093         device_t dev = adapter->dev;
3094         struct em_buffer *rx_buffer;
3095         int i, error;
3096
3097         adapter->rx_buffer_area =
3098                 kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3099                         M_DEVBUF, M_WAITOK | M_ZERO);
3100
3101         /*
3102          * Create DMA tag for rx buffers
3103          */
3104         error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3105                         1, 0,                   /* alignment, bounds */
3106                         BUS_SPACE_MAXADDR,      /* lowaddr */
3107                         BUS_SPACE_MAXADDR,      /* highaddr */
3108                         NULL, NULL,             /* filter, filterarg */
3109                         MCLBYTES,               /* maxsize */
3110                         1,                      /* nsegments */
3111                         MCLBYTES,               /* maxsegsize */
3112                         BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3113                         &adapter->rxtag);
3114         if (error) {
3115                 device_printf(dev, "Unable to allocate RX DMA tag\n");
3116                 kfree(adapter->rx_buffer_area, M_DEVBUF);
3117                 adapter->rx_buffer_area = NULL;
3118                 return error;
3119         }
3120
3121         /*
3122          * Create spare DMA map for rx buffers
3123          */
3124         error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3125                                   &adapter->rx_sparemap);
3126         if (error) {
3127                 device_printf(dev, "Unable to create spare RX DMA map\n");
3128                 bus_dma_tag_destroy(adapter->rxtag);
3129                 kfree(adapter->rx_buffer_area, M_DEVBUF);
3130                 adapter->rx_buffer_area = NULL;
3131                 return error;
3132         }
3133
3134         /*
3135          * Create DMA maps for rx buffers
3136          */
3137         for (i = 0; i < adapter->num_rx_desc; i++) {
3138                 rx_buffer = &adapter->rx_buffer_area[i];
3139
3140                 error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3141                                           &rx_buffer->map);
3142                 if (error) {
3143                         device_printf(dev, "Unable to create RX DMA map\n");
3144                         em_destroy_rx_ring(adapter, i);
3145                         return error;
3146                 }
3147         }
3148         return (0);
3149 }
3150
3151 static int
3152 em_init_rx_ring(struct adapter *adapter)
3153 {
3154         int i, error;
3155
3156         /* Reset descriptor ring */
3157         bzero(adapter->rx_desc_base,
3158             (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3159
3160         /* Allocate new ones. */
3161         for (i = 0; i < adapter->num_rx_desc; i++) {
3162                 error = em_newbuf(adapter, i, 1);
3163                 if (error)
3164                         return (error);
3165         }
3166
3167         /* Setup our descriptor pointers */
3168         adapter->next_rx_desc_to_check = 0;
3169
3170         return (0);
3171 }
3172
3173 static void
3174 em_init_rx_unit(struct adapter *adapter)
3175 {
3176         struct ifnet *ifp = &adapter->arpcom.ac_if;
3177         uint64_t bus_addr;
3178         uint32_t rctl;
3179
3180         /*
3181          * Make sure receives are disabled while setting
3182          * up the descriptor ring
3183          */
3184         rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3185         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3186
3187         if (adapter->hw.mac.type >= e1000_82540) {
3188                 uint32_t itr;
3189
3190                 /*
3191                  * Set the interrupt throttling rate. Value is calculated
3192                  * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3193                  */
3194                 if (adapter->int_throttle_ceil)
3195                         itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3196                 else
3197                         itr = 0;
3198                 em_set_itr(adapter, itr);
3199         }
3200
3201         /* Disable accelerated ackknowledge */
3202         if (adapter->hw.mac.type == e1000_82574) {
3203                 E1000_WRITE_REG(&adapter->hw,
3204                     E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3205         }
3206
3207         /* Receive Checksum Offload for TCP and UDP */
3208         if (ifp->if_capenable & IFCAP_RXCSUM) {
3209                 uint32_t rxcsum;
3210
3211                 rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3212                 rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3213                 E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3214         }
3215
3216         /*
3217          * XXX TEMPORARY WORKAROUND: on some systems with 82573
3218          * long latencies are observed, like Lenovo X60. This
3219          * change eliminates the problem, but since having positive
3220          * values in RDTR is a known source of problems on other
3221          * platforms another solution is being sought.
3222          */
3223         if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3224                 E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3225                 E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3226         }
3227
3228         /*
3229          * Setup the Base and Length of the Rx Descriptor Ring
3230          */
3231         bus_addr = adapter->rxdma.dma_paddr;
3232         E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3233             adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3234         E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3235             (uint32_t)(bus_addr >> 32));
3236         E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3237             (uint32_t)bus_addr);
3238
3239         /*
3240          * Setup the HW Rx Head and Tail Descriptor Pointers
3241          */
3242         E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3243         E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3244
3245         /* Set early receive threshold on appropriate hw */
3246         if (((adapter->hw.mac.type == e1000_ich9lan) ||
3247             (adapter->hw.mac.type == e1000_pch2lan) ||
3248             (adapter->hw.mac.type == e1000_ich10lan)) &&
3249             (ifp->if_mtu > ETHERMTU)) {
3250                 uint32_t rxdctl;
3251
3252                 rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3253                 E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3254                 E1000_WRITE_REG(&adapter->hw, E1000_ERT, 0x100 | (1 << 13));
3255         }
3256
3257         if (adapter->hw.mac.type == e1000_pch2lan) {
3258                 if (ifp->if_mtu > ETHERMTU)
3259                         e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3260                 else
3261                         e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3262         }
3263
3264         /* Setup the Receive Control Register */
3265         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3266         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3267                 E1000_RCTL_RDMTS_HALF |
3268                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3269
3270         /* Make sure VLAN Filters are off */
3271         rctl &= ~E1000_RCTL_VFE;
3272
3273         if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3274                 rctl |= E1000_RCTL_SBP;
3275         else
3276                 rctl &= ~E1000_RCTL_SBP;
3277
3278         switch (adapter->rx_buffer_len) {
3279         default:
3280         case 2048:
3281                 rctl |= E1000_RCTL_SZ_2048;
3282                 break;
3283
3284         case 4096:
3285                 rctl |= E1000_RCTL_SZ_4096 |
3286                     E1000_RCTL_BSEX | E1000_RCTL_LPE;
3287                 break;
3288
3289         case 8192:
3290                 rctl |= E1000_RCTL_SZ_8192 |
3291                     E1000_RCTL_BSEX | E1000_RCTL_LPE;
3292                 break;
3293
3294         case 16384:
3295                 rctl |= E1000_RCTL_SZ_16384 |
3296                     E1000_RCTL_BSEX | E1000_RCTL_LPE;
3297                 break;
3298         }
3299
3300         if (ifp->if_mtu > ETHERMTU)
3301                 rctl |= E1000_RCTL_LPE;
3302         else
3303                 rctl &= ~E1000_RCTL_LPE;
3304
3305         /* Enable Receives */
3306         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3307 }
3308
3309 static void
3310 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3311 {
3312         struct em_buffer *rx_buffer;
3313         int i;
3314
3315         if (adapter->rx_buffer_area == NULL)
3316                 return;
3317
3318         for (i = 0; i < ndesc; i++) {
3319                 rx_buffer = &adapter->rx_buffer_area[i];
3320
3321                 KKASSERT(rx_buffer->m_head == NULL);
3322                 bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3323         }
3324         bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3325         bus_dma_tag_destroy(adapter->rxtag);
3326
3327         kfree(adapter->rx_buffer_area, M_DEVBUF);
3328         adapter->rx_buffer_area = NULL;
3329 }
3330
3331 static void
3332 em_rxeof(struct adapter *adapter, int count)
3333 {
3334         struct ifnet *ifp = &adapter->arpcom.ac_if;
3335         uint8_t status, accept_frame = 0, eop = 0;
3336         uint16_t len, desc_len, prev_len_adj;
3337         struct e1000_rx_desc *current_desc;
3338         struct mbuf *mp;
3339         int i;
3340
3341         i = adapter->next_rx_desc_to_check;
3342         current_desc = &adapter->rx_desc_base[i];
3343
3344         if (!(current_desc->status & E1000_RXD_STAT_DD))
3345                 return;
3346
3347         while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3348                 struct mbuf *m = NULL;
3349
3350                 logif(pkt_receive);
3351
3352                 mp = adapter->rx_buffer_area[i].m_head;
3353
3354                 /*
3355                  * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3356                  * needs to access the last received byte in the mbuf.
3357                  */
3358                 bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3359                                 BUS_DMASYNC_POSTREAD);
3360
3361                 accept_frame = 1;
3362                 prev_len_adj = 0;
3363                 desc_len = le16toh(current_desc->length);
3364                 status = current_desc->status;
3365                 if (status & E1000_RXD_STAT_EOP) {
3366                         count--;
3367                         eop = 1;
3368                         if (desc_len < ETHER_CRC_LEN) {
3369                                 len = 0;
3370                                 prev_len_adj = ETHER_CRC_LEN - desc_len;
3371                         } else {
3372                                 len = desc_len - ETHER_CRC_LEN;
3373                         }
3374                 } else {
3375                         eop = 0;
3376                         len = desc_len;
3377                 }
3378
3379                 if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3380                         uint8_t last_byte;
3381                         uint32_t pkt_len = desc_len;
3382
3383                         if (adapter->fmp != NULL)
3384                                 pkt_len += adapter->fmp->m_pkthdr.len;
3385
3386                         last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3387                         if (TBI_ACCEPT(&adapter->hw, status,
3388                             current_desc->errors, pkt_len, last_byte,
3389                             adapter->min_frame_size, adapter->max_frame_size)) {
3390                                 e1000_tbi_adjust_stats_82543(&adapter->hw,
3391                                     &adapter->stats, pkt_len,
3392                                     adapter->hw.mac.addr,
3393                                     adapter->max_frame_size);
3394                                 if (len > 0)
3395                                         len--;
3396                         } else {
3397                                 accept_frame = 0;
3398                         }
3399                 }
3400
3401                 if (accept_frame) {
3402                         if (em_newbuf(adapter, i, 0) != 0) {
3403                                 ifp->if_iqdrops++;
3404                                 goto discard;
3405                         }
3406
3407                         /* Assign correct length to the current fragment */
3408                         mp->m_len = len;
3409
3410                         if (adapter->fmp == NULL) {
3411                                 mp->m_pkthdr.len = len;
3412                                 adapter->fmp = mp; /* Store the first mbuf */
3413                                 adapter->lmp = mp;
3414                         } else {
3415                                 /*
3416                                  * Chain mbuf's together
3417                                  */
3418
3419                                 /*
3420                                  * Adjust length of previous mbuf in chain if
3421                                  * we received less than 4 bytes in the last
3422                                  * descriptor.
3423                                  */
3424                                 if (prev_len_adj > 0) {
3425                                         adapter->lmp->m_len -= prev_len_adj;
3426                                         adapter->fmp->m_pkthdr.len -=
3427                                             prev_len_adj;
3428                                 }
3429                                 adapter->lmp->m_next = mp;
3430                                 adapter->lmp = adapter->lmp->m_next;
3431                                 adapter->fmp->m_pkthdr.len += len;
3432                         }
3433
3434                         if (eop) {
3435                                 adapter->fmp->m_pkthdr.rcvif = ifp;
3436                                 ifp->if_ipackets++;
3437
3438                                 if (ifp->if_capenable & IFCAP_RXCSUM) {
3439                                         em_rxcsum(adapter, current_desc,
3440                                                   adapter->fmp);
3441                                 }
3442
3443                                 if (status & E1000_RXD_STAT_VP) {
3444                                         adapter->fmp->m_pkthdr.ether_vlantag =
3445                                             (le16toh(current_desc->special) &
3446                                             E1000_RXD_SPC_VLAN_MASK);
3447                                         adapter->fmp->m_flags |= M_VLANTAG;
3448                                 }
3449                                 m = adapter->fmp;
3450                                 adapter->fmp = NULL;
3451                                 adapter->lmp = NULL;
3452                         }
3453                 } else {
3454                         ifp->if_ierrors++;
3455 discard:
3456 #ifdef foo
3457                         /* Reuse loaded DMA map and just update mbuf chain */
3458                         mp = adapter->rx_buffer_area[i].m_head;
3459                         mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3460                         mp->m_data = mp->m_ext.ext_buf;
3461                         mp->m_next = NULL;
3462                         if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
3463                                 m_adj(mp, ETHER_ALIGN);
3464 #endif
3465                         if (adapter->fmp != NULL) {
3466                                 m_freem(adapter->fmp);
3467                                 adapter->fmp = NULL;
3468                                 adapter->lmp = NULL;
3469                         }
3470                         m = NULL;
3471                 }
3472
3473                 /* Zero out the receive descriptors status. */
3474                 current_desc->status = 0;
3475
3476                 if (m != NULL)
3477                         ifp->if_input(ifp, m);
3478
3479                 /* Advance our pointers to the next descriptor. */
3480                 if (++i == adapter->num_rx_desc)
3481                         i = 0;
3482                 current_desc = &adapter->rx_desc_base[i];
3483         }
3484         adapter->next_rx_desc_to_check = i;
3485
3486         /* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3487         if (--i < 0)
3488                 i = adapter->num_rx_desc - 1;
3489         E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3490 }
3491
3492 static void
3493 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3494           struct mbuf *mp)
3495 {
3496         /* 82543 or newer only */
3497         if (adapter->hw.mac.type < e1000_82543 ||
3498             /* Ignore Checksum bit is set */
3499             (rx_desc->status & E1000_RXD_STAT_IXSM))
3500                 return;
3501
3502         if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3503             !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3504                 /* IP Checksum Good */
3505                 mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3506         }
3507
3508         if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3509             !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3510                 mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3511                                            CSUM_PSEUDO_HDR |
3512                                            CSUM_FRAG_NOT_CHECKED;
3513                 mp->m_pkthdr.csum_data = htons(0xffff);
3514         }
3515 }
3516
3517 static void
3518 em_enable_intr(struct adapter *adapter)
3519 {
3520         uint32_t ims_mask = IMS_ENABLE_MASK;
3521
3522         lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3523
3524 #if 0
3525         /* XXX MSIX */
3526         if (adapter->hw.mac.type == e1000_82574) {
3527                 E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3528                 ims_mask |= EM_MSIX_MASK;
3529         }
3530 #endif
3531         E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3532 }
3533
3534 static void
3535 em_disable_intr(struct adapter *adapter)
3536 {
3537         uint32_t clear = 0xffffffff;
3538
3539         /*
3540          * The first version of 82542 had an errata where when link was forced
3541          * it would stay up even up even if the cable was disconnected.
3542          * Sequence errors were used to detect the disconnect and then the
3543          * driver would unforce the link.  This code in the in the ISR.  For
3544          * this to work correctly the Sequence error interrupt had to be
3545          * enabled all the time.
3546          */
3547         if (adapter->hw.mac.type == e1000_82542 &&
3548             adapter->hw.revision_id == E1000_REVISION_2)
3549                 clear &= ~E1000_ICR_RXSEQ;
3550         else if (adapter->hw.mac.type == e1000_82574)
3551                 E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3552
3553         E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3554
3555         adapter->npoll.ifpc_stcount = 0;
3556
3557         lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3558 }
3559
3560 /*
3561  * Bit of a misnomer, what this really means is
3562  * to enable OS management of the system... aka
3563  * to disable special hardware management features 
3564  */
3565 static void
3566 em_get_mgmt(struct adapter *adapter)
3567 {
3568         /* A shared code workaround */
3569 #define E1000_82542_MANC2H E1000_MANC2H
3570         if (adapter->flags & EM_FLAG_HAS_MGMT) {
3571                 int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3572                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3573
3574                 /* disable hardware interception of ARP */
3575                 manc &= ~(E1000_MANC_ARP_EN);
3576
3577                 /* enable receiving management packets to the host */
3578                 if (adapter->hw.mac.type >= e1000_82571) {
3579                         manc |= E1000_MANC_EN_MNG2HOST;
3580 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3581 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3582                         manc2h |= E1000_MNG2HOST_PORT_623;
3583                         manc2h |= E1000_MNG2HOST_PORT_664;
3584                         E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3585                 }
3586
3587                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3588         }
3589 }
3590
3591 /*
3592  * Give control back to hardware management
3593  * controller if there is one.
3594  */
3595 static void
3596 em_rel_mgmt(struct adapter *adapter)
3597 {
3598         if (adapter->flags & EM_FLAG_HAS_MGMT) {
3599                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3600
3601                 /* re-enable hardware interception of ARP */
3602                 manc |= E1000_MANC_ARP_EN;
3603
3604                 if (adapter->hw.mac.type >= e1000_82571)
3605                         manc &= ~E1000_MANC_EN_MNG2HOST;
3606
3607                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3608         }
3609 }
3610
3611 /*
3612  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3613  * For ASF and Pass Through versions of f/w this means that
3614  * the driver is loaded.  For AMT version (only with 82573)
3615  * of the f/w this means that the network i/f is open.
3616  */
3617 static void
3618 em_get_hw_control(struct adapter *adapter)
3619 {
3620         /* Let firmware know the driver has taken over */
3621         if (adapter->hw.mac.type == e1000_82573) {
3622                 uint32_t swsm;
3623
3624                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3625                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3626                     swsm | E1000_SWSM_DRV_LOAD);
3627         } else {
3628                 uint32_t ctrl_ext;
3629
3630                 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3631                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3632                     ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3633         }
3634         adapter->flags |= EM_FLAG_HW_CTRL;
3635 }
3636
3637 /*
3638  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3639  * For ASF and Pass Through versions of f/w this means that the
3640  * driver is no longer loaded.  For AMT version (only with 82573)
3641  * of the f/w this means that the network i/f is closed.
3642  */
3643 static void
3644 em_rel_hw_control(struct adapter *adapter)
3645 {
3646         if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3647                 return;
3648         adapter->flags &= ~EM_FLAG_HW_CTRL;
3649
3650         /* Let firmware taken over control of h/w */
3651         if (adapter->hw.mac.type == e1000_82573) {
3652                 uint32_t swsm;
3653
3654                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3655                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3656                     swsm & ~E1000_SWSM_DRV_LOAD);
3657         } else {
3658                 uint32_t ctrl_ext;
3659
3660                 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3661                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3662                     ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3663         }
3664 }
3665
3666 static int
3667 em_is_valid_eaddr(const uint8_t *addr)
3668 {
3669         char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3670
3671         if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3672                 return (FALSE);
3673
3674         return (TRUE);
3675 }
3676
3677 /*
3678  * Enable PCI Wake On Lan capability
3679  */
3680 void
3681 em_enable_wol(device_t dev)
3682 {
3683         uint16_t cap, status;
3684         uint8_t id;
3685
3686         /* First find the capabilities pointer*/
3687         cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3688
3689         /* Read the PM Capabilities */
3690         id = pci_read_config(dev, cap, 1);
3691         if (id != PCIY_PMG)     /* Something wrong */
3692                 return;
3693
3694         /*
3695          * OK, we have the power capabilities,
3696          * so now get the status register
3697          */
3698         cap += PCIR_POWER_STATUS;
3699         status = pci_read_config(dev, cap, 2);
3700         status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3701         pci_write_config(dev, cap, status, 2);
3702 }
3703
3704
3705 /*
3706  * 82544 Coexistence issue workaround.
3707  *    There are 2 issues.
3708  *       1. Transmit Hang issue.
3709  *    To detect this issue, following equation can be used...
3710  *        SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3711  *        If SUM[3:0] is in between 1 to 4, we will have this issue.
3712  *
3713  *       2. DAC issue.
3714  *    To detect this issue, following equation can be used...
3715  *        SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3716  *        If SUM[3:0] is in between 9 to c, we will have this issue.
3717  *
3718  *    WORKAROUND:
3719  *        Make sure we do not have ending address
3720  *        as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3721  */
3722 static uint32_t
3723 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3724 {
3725         uint32_t safe_terminator;
3726
3727         /*
3728          * Since issue is sensitive to length and address.
3729          * Let us first check the address...
3730          */
3731         if (length <= 4) {
3732                 desc_array->descriptor[0].address = address;
3733                 desc_array->descriptor[0].length = length;
3734                 desc_array->elements = 1;
3735                 return (desc_array->elements);
3736         }
3737
3738         safe_terminator =
3739         (uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3740
3741         /* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3742         if (safe_terminator == 0 ||
3743             (safe_terminator > 4 && safe_terminator < 9) ||
3744             (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3745                 desc_array->descriptor[0].address = address;
3746                 desc_array->descriptor[0].length = length;
3747                 desc_array->elements = 1;
3748                 return (desc_array->elements);
3749         }
3750
3751         desc_array->descriptor[0].address = address;
3752         desc_array->descriptor[0].length = length - 4;
3753         desc_array->descriptor[1].address = address + (length - 4);
3754         desc_array->descriptor[1].length = 4;
3755         desc_array->elements = 2;
3756         return (desc_array->elements);
3757 }
3758
3759 static void
3760 em_update_stats(struct adapter *adapter)
3761 {
3762         struct ifnet *ifp = &adapter->arpcom.ac_if;
3763
3764         if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3765             (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3766                 adapter->stats.symerrs +=
3767                         E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3768                 adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3769         }
3770         adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3771         adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3772         adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3773         adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3774
3775         adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3776         adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3777         adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3778         adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3779         adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3780         adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3781         adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3782         adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3783         adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3784         adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3785         adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3786         adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3787         adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3788         adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3789         adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3790         adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3791         adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3792         adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3793         adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3794         adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3795
3796         /* For the 64-bit byte counters the low dword must be read first. */
3797         /* Both registers clear on the read of the high dword */
3798
3799         adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3800         adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3801
3802         adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3803         adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3804         adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3805         adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3806         adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3807
3808         adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3809         adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3810
3811         adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3812         adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3813         adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3814         adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3815         adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3816         adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3817         adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3818         adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3819         adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3820         adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3821
3822         if (adapter->hw.mac.type >= e1000_82543) {
3823                 adapter->stats.algnerrc += 
3824                 E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3825                 adapter->stats.rxerrc += 
3826                 E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3827                 adapter->stats.tncrs += 
3828                 E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3829                 adapter->stats.cexterr += 
3830                 E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3831                 adapter->stats.tsctc += 
3832                 E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3833                 adapter->stats.tsctfc += 
3834                 E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3835         }
3836
3837         ifp->if_collisions = adapter->stats.colc;
3838
3839         /* Rx Errors */
3840         ifp->if_ierrors =
3841             adapter->dropped_pkts + adapter->stats.rxerrc +
3842             adapter->stats.crcerrs + adapter->stats.algnerrc +
3843             adapter->stats.ruc + adapter->stats.roc +
3844             adapter->stats.mpc + adapter->stats.cexterr;
3845
3846         /* Tx Errors */
3847         ifp->if_oerrors =
3848             adapter->stats.ecol + adapter->stats.latecol +
3849             adapter->watchdog_events;
3850 }
3851
3852 static void
3853 em_print_debug_info(struct adapter *adapter)
3854 {
3855         device_t dev = adapter->dev;
3856         uint8_t *hw_addr = adapter->hw.hw_addr;
3857
3858         device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3859         device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3860             E1000_READ_REG(&adapter->hw, E1000_CTRL),
3861             E1000_READ_REG(&adapter->hw, E1000_RCTL));
3862         device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3863             ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3864             (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3865         device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3866             adapter->hw.fc.high_water,
3867             adapter->hw.fc.low_water);
3868         device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3869             E1000_READ_REG(&adapter->hw, E1000_TIDV),
3870             E1000_READ_REG(&adapter->hw, E1000_TADV));
3871         device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3872             E1000_READ_REG(&adapter->hw, E1000_RDTR),
3873             E1000_READ_REG(&adapter->hw, E1000_RADV));
3874         device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3875             (long long)adapter->tx_fifo_wrk_cnt,
3876             (long long)adapter->tx_fifo_reset_cnt);
3877         device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3878             E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3879             E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3880         device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3881             E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3882             E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3883         device_printf(dev, "Num Tx descriptors avail = %d\n",
3884             adapter->num_tx_desc_avail);
3885         device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3886             adapter->no_tx_desc_avail1);
3887         device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3888             adapter->no_tx_desc_avail2);
3889         device_printf(dev, "Std mbuf failed = %ld\n",
3890             adapter->mbuf_alloc_failed);
3891         device_printf(dev, "Std mbuf cluster failed = %ld\n",
3892             adapter->mbuf_cluster_failed);
3893         device_printf(dev, "Driver dropped packets = %ld\n",
3894             adapter->dropped_pkts);
3895         device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3896             adapter->no_tx_dma_setup);
3897 }
3898
3899 static void
3900 em_print_hw_stats(struct adapter *adapter)
3901 {
3902         device_t dev = adapter->dev;
3903
3904         device_printf(dev, "Excessive collisions = %lld\n",
3905             (long long)adapter->stats.ecol);
3906 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3907         device_printf(dev, "Symbol errors = %lld\n",
3908             (long long)adapter->stats.symerrs);
3909 #endif
3910         device_printf(dev, "Sequence errors = %lld\n",
3911             (long long)adapter->stats.sec);
3912         device_printf(dev, "Defer count = %lld\n",
3913             (long long)adapter->stats.dc);
3914         device_printf(dev, "Missed Packets = %lld\n",
3915             (long long)adapter->stats.mpc);
3916         device_printf(dev, "Receive No Buffers = %lld\n",
3917             (long long)adapter->stats.rnbc);
3918         /* RLEC is inaccurate on some hardware, calculate our own. */
3919         device_printf(dev, "Receive Length Errors = %lld\n",
3920             ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3921         device_printf(dev, "Receive errors = %lld\n",
3922             (long long)adapter->stats.rxerrc);
3923         device_printf(dev, "Crc errors = %lld\n",
3924             (long long)adapter->stats.crcerrs);
3925         device_printf(dev, "Alignment errors = %lld\n",
3926             (long long)adapter->stats.algnerrc);
3927         device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3928             (long long)adapter->stats.cexterr);
3929         device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3930         device_printf(dev, "watchdog timeouts = %ld\n",
3931             adapter->watchdog_events);
3932         device_printf(dev, "XON Rcvd = %lld\n",
3933             (long long)adapter->stats.xonrxc);
3934         device_printf(dev, "XON Xmtd = %lld\n",
3935             (long long)adapter->stats.xontxc);
3936         device_printf(dev, "XOFF Rcvd = %lld\n",
3937             (long long)adapter->stats.xoffrxc);
3938         device_printf(dev, "XOFF Xmtd = %lld\n",
3939             (long long)adapter->stats.xofftxc);
3940         device_printf(dev, "Good Packets Rcvd = %lld\n",
3941             (long long)adapter->stats.gprc);
3942         device_printf(dev, "Good Packets Xmtd = %lld\n",
3943             (long long)adapter->stats.gptc);
3944 }
3945
3946 static void
3947 em_print_nvm_info(struct adapter *adapter)
3948 {
3949         uint16_t eeprom_data;
3950         int i, j, row = 0;
3951
3952         /* Its a bit crude, but it gets the job done */
3953         kprintf("\nInterface EEPROM Dump:\n");
3954         kprintf("Offset\n0x0000  ");
3955         for (i = 0, j = 0; i < 32; i++, j++) {
3956                 if (j == 8) { /* Make the offset block */
3957                         j = 0; ++row;
3958                         kprintf("\n0x00%x0  ",row);
3959                 }
3960                 e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
3961                 kprintf("%04x ", eeprom_data);
3962         }
3963         kprintf("\n");
3964 }
3965
3966 static int
3967 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3968 {
3969         struct adapter *adapter;
3970         struct ifnet *ifp;
3971         int error, result;
3972
3973         result = -1;
3974         error = sysctl_handle_int(oidp, &result, 0, req);
3975         if (error || !req->newptr)
3976                 return (error);
3977
3978         adapter = (struct adapter *)arg1;
3979         ifp = &adapter->arpcom.ac_if;
3980
3981         lwkt_serialize_enter(ifp->if_serializer);
3982
3983         if (result == 1)
3984                 em_print_debug_info(adapter);
3985
3986         /*
3987          * This value will cause a hex dump of the
3988          * first 32 16-bit words of the EEPROM to
3989          * the screen.
3990          */
3991         if (result == 2)
3992                 em_print_nvm_info(adapter);
3993
3994         lwkt_serialize_exit(ifp->if_serializer);
3995
3996         return (error);
3997 }
3998
3999 static int
4000 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4001 {
4002         int error, result;
4003
4004         result = -1;
4005         error = sysctl_handle_int(oidp, &result, 0, req);
4006         if (error || !req->newptr)
4007                 return (error);
4008
4009         if (result == 1) {
4010                 struct adapter *adapter = (struct adapter *)arg1;
4011                 struct ifnet *ifp = &adapter->arpcom.ac_if;
4012
4013                 lwkt_serialize_enter(ifp->if_serializer);
4014                 em_print_hw_stats(adapter);
4015                 lwkt_serialize_exit(ifp->if_serializer);
4016         }
4017         return (error);
4018 }
4019
4020 static void
4021 em_add_sysctl(struct adapter *adapter)
4022 {
4023         sysctl_ctx_init(&adapter->sysctl_ctx);
4024         adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
4025                                         SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
4026                                         device_get_nameunit(adapter->dev),
4027                                         CTLFLAG_RD, 0, "");
4028         if (adapter->sysctl_tree == NULL) {
4029                 device_printf(adapter->dev, "can't add sysctl node\n");
4030         } else {
4031                 SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4032                     SYSCTL_CHILDREN(adapter->sysctl_tree),
4033                     OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4034                     em_sysctl_debug_info, "I", "Debug Information");
4035
4036                 SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4037                     SYSCTL_CHILDREN(adapter->sysctl_tree),
4038                     OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4039                     em_sysctl_stats, "I", "Statistics");
4040
4041                 SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4042                     SYSCTL_CHILDREN(adapter->sysctl_tree),
4043                     OID_AUTO, "rxd", CTLFLAG_RD,
4044                     &adapter->num_rx_desc, 0, NULL);
4045                 SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4046                     SYSCTL_CHILDREN(adapter->sysctl_tree),
4047                     OID_AUTO, "txd", CTLFLAG_RD,
4048                     &adapter->num_tx_desc, 0, NULL);
4049
4050                 if (adapter->hw.mac.type >= e1000_82540) {
4051                         SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4052                             SYSCTL_CHILDREN(adapter->sysctl_tree),
4053                             OID_AUTO, "int_throttle_ceil",
4054                             CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4055                             em_sysctl_int_throttle, "I",
4056                             "interrupt throttling rate");
4057                 }
4058                 SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4059                     SYSCTL_CHILDREN(adapter->sysctl_tree),
4060                     OID_AUTO, "int_tx_nsegs",
4061                     CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4062                     em_sysctl_int_tx_nsegs, "I",
4063                     "# segments per TX interrupt");
4064                 SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4065                     SYSCTL_CHILDREN(adapter->sysctl_tree),
4066                     OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
4067                     &adapter->tx_wreg_nsegs, 0,
4068                     "# segments before write to hardware register");
4069         }
4070 }
4071
4072 static int
4073 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4074 {
4075         struct adapter *adapter = (void *)arg1;
4076         struct ifnet *ifp = &adapter->arpcom.ac_if;
4077         int error, throttle;
4078
4079         throttle = adapter->int_throttle_ceil;
4080         error = sysctl_handle_int(oidp, &throttle, 0, req);
4081         if (error || req->newptr == NULL)
4082                 return error;
4083         if (throttle < 0 || throttle > 1000000000 / 256)
4084                 return EINVAL;
4085
4086         if (throttle) {
4087                 /*
4088                  * Set the interrupt throttling rate in 256ns increments,
4089                  * recalculate sysctl value assignment to get exact frequency.
4090                  */
4091                 throttle = 1000000000 / 256 / throttle;
4092
4093                 /* Upper 16bits of ITR is reserved and should be zero */
4094                 if (throttle & 0xffff0000)
4095                         return EINVAL;
4096         }
4097
4098         lwkt_serialize_enter(ifp->if_serializer);
4099
4100         if (throttle)
4101                 adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4102         else
4103                 adapter->int_throttle_ceil = 0;
4104
4105         if (ifp->if_flags & IFF_RUNNING)
4106                 em_set_itr(adapter, throttle);
4107
4108         lwkt_serialize_exit(ifp->if_serializer);
4109
4110         if (bootverbose) {
4111                 if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4112                           adapter->int_throttle_ceil);
4113         }
4114         return 0;
4115 }
4116
4117 static int
4118 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4119 {
4120         struct adapter *adapter = (void *)arg1;
4121         struct ifnet *ifp = &adapter->arpcom.ac_if;
4122         int error, segs;
4123
4124         segs = adapter->tx_int_nsegs;
4125         error = sysctl_handle_int(oidp, &segs, 0, req);
4126         if (error || req->newptr == NULL)
4127                 return error;
4128         if (segs <= 0)
4129                 return EINVAL;
4130
4131         lwkt_serialize_enter(ifp->if_serializer);
4132
4133         /*
4134          * Don't allow int_tx_nsegs to become:
4135          * o  Less the oact_tx_desc
4136          * o  Too large that no TX desc will cause TX interrupt to
4137          *    be generated (OACTIVE will never recover)
4138          * o  Too small that will cause tx_dd[] overflow
4139          */
4140         if (segs < adapter->oact_tx_desc ||
4141             segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4142             segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4143                 error = EINVAL;
4144         } else {
4145                 error = 0;
4146                 adapter->tx_int_nsegs = segs;
4147         }
4148
4149         lwkt_serialize_exit(ifp->if_serializer);
4150
4151         return error;
4152 }
4153
4154 static void
4155 em_set_itr(struct adapter *adapter, uint32_t itr)
4156 {
4157         E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4158         if (adapter->hw.mac.type == e1000_82574) {
4159                 int i;
4160
4161                 /*
4162                  * When using MSIX interrupts we need to
4163                  * throttle using the EITR register
4164                  */
4165                 for (i = 0; i < 4; ++i) {
4166                         E1000_WRITE_REG(&adapter->hw,
4167                             E1000_EITR_82574(i), itr);
4168                 }
4169         }
4170 }
4171
4172 static void
4173 em_disable_aspm(struct adapter *adapter)
4174 {
4175         uint16_t link_cap, link_ctrl, disable;
4176         uint8_t pcie_ptr, reg;
4177         device_t dev = adapter->dev;
4178
4179         switch (adapter->hw.mac.type) {
4180         case e1000_82571:
4181         case e1000_82572:
4182         case e1000_82573:
4183                 /*
4184                  * 82573 specification update
4185                  * errata #8 disable L0s
4186                  * errata #41 disable L1
4187                  *
4188                  * 82571/82572 specification update
4189                  # errata #13 disable L1
4190                  * errata #68 disable L0s
4191                  */
4192                 disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4193                 break;
4194
4195         case e1000_82574:
4196         case e1000_82583:
4197                 /*
4198                  * 82574 specification update errata #20
4199                  * 82583 specification update errata #9
4200                  *
4201                  * There is no need to disable L1
4202                  */
4203                 disable = PCIEM_LNKCTL_ASPM_L0S;
4204                 break;
4205
4206         default:
4207                 return;
4208         }
4209
4210         pcie_ptr = pci_get_pciecap_ptr(dev);
4211         if (pcie_ptr == 0)
4212                 return;
4213
4214         link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4215         if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4216                 return;
4217
4218         if (bootverbose) {
4219                 if_printf(&adapter->arpcom.ac_if,
4220                     "disable ASPM %#02x\n", disable);
4221         }
4222
4223         reg = pcie_ptr + PCIER_LINKCTRL;
4224         link_ctrl = pci_read_config(dev, reg, 2);
4225         link_ctrl &= ~disable;
4226         pci_write_config(dev, reg, link_ctrl, 2);
4227 }
4228
4229 static int
4230 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4231 {
4232         int iphlen, hoff, thoff, ex = 0;
4233         struct mbuf *m;
4234         struct ip *ip;
4235
4236         m = *mp;
4237         KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4238
4239         iphlen = m->m_pkthdr.csum_iphlen;
4240         thoff = m->m_pkthdr.csum_thlen;
4241         hoff = m->m_pkthdr.csum_lhlen;
4242
4243         KASSERT(iphlen > 0, ("invalid ip hlen"));
4244         KASSERT(thoff > 0, ("invalid tcp hlen"));
4245         KASSERT(hoff > 0, ("invalid ether hlen"));
4246
4247         if (adapter->flags & EM_FLAG_TSO_PULLEX)
4248                 ex = 4;
4249
4250         if (m->m_len < hoff + iphlen + thoff + ex) {
4251                 m = m_pullup(m, hoff + iphlen + thoff + ex);
4252                 if (m == NULL) {
4253                         *mp = NULL;
4254                         return ENOBUFS;
4255                 }
4256                 *mp = m;
4257         }
4258         ip = mtodoff(m, struct ip *, hoff);
4259         ip->ip_len = 0;
4260
4261         return 0;
4262 }
4263
4264 static int
4265 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4266     uint32_t *txd_upper, uint32_t *txd_lower)
4267 {
4268         struct e1000_context_desc *TXD;
4269         int hoff, iphlen, thoff, hlen;
4270         int mss, pktlen, curr_txd;
4271
4272         iphlen = mp->m_pkthdr.csum_iphlen;
4273         thoff = mp->m_pkthdr.csum_thlen;
4274         hoff = mp->m_pkthdr.csum_lhlen;
4275         mss = mp->m_pkthdr.tso_segsz;
4276         pktlen = mp->m_pkthdr.len;
4277
4278         if (adapter->csum_flags == CSUM_TSO &&
4279             adapter->csum_iphlen == iphlen &&
4280             adapter->csum_lhlen == hoff &&
4281             adapter->csum_thlen == thoff &&
4282             adapter->csum_mss == mss &&
4283             adapter->csum_pktlen == pktlen) {
4284                 *txd_upper = adapter->csum_txd_upper;
4285                 *txd_lower = adapter->csum_txd_lower;
4286                 return 0;
4287         }
4288         hlen = hoff + iphlen + thoff;
4289
4290         /*
4291          * Setup a new TSO context.
4292          */
4293
4294         curr_txd = adapter->next_avail_tx_desc;
4295         TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4296
4297         *txd_lower = E1000_TXD_CMD_DEXT |       /* Extended descr type */
4298                      E1000_TXD_DTYP_D |         /* Data descr type */
4299                      E1000_TXD_CMD_TSE;         /* Do TSE on this packet */
4300
4301         /* IP and/or TCP header checksum calculation and insertion. */
4302         *txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4303
4304         /*
4305          * Start offset for header checksum calculation.
4306          * End offset for header checksum calculation.
4307          * Offset of place put the checksum.
4308          */
4309         TXD->lower_setup.ip_fields.ipcss = hoff;
4310         TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4311         TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4312
4313         /*
4314          * Start offset for payload checksum calculation.
4315          * End offset for payload checksum calculation.
4316          * Offset of place to put the checksum.
4317          */
4318         TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4319         TXD->upper_setup.tcp_fields.tucse = 0;
4320         TXD->upper_setup.tcp_fields.tucso =
4321             hoff + iphlen + offsetof(struct tcphdr, th_sum);
4322
4323         /*
4324          * Payload size per packet w/o any headers.
4325          * Length of all headers up to payload.
4326          */
4327         TXD->tcp_seg_setup.fields.mss = htole16(mss);
4328         TXD->tcp_seg_setup.fields.hdr_len = hlen;
4329         TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4330                                 E1000_TXD_CMD_DEXT |    /* Extended descr */
4331                                 E1000_TXD_CMD_TSE |     /* TSE context */
4332                                 E1000_TXD_CMD_IP |      /* Do IP csum */
4333                                 E1000_TXD_CMD_TCP |     /* Do TCP checksum */
4334                                 (pktlen - hlen));       /* Total len */
4335
4336         /* Save the information for this TSO context */
4337         adapter->csum_flags = CSUM_TSO;
4338         adapter->csum_lhlen = hoff;
4339         adapter->csum_iphlen = iphlen;
4340         adapter->csum_thlen = thoff;
4341         adapter->csum_mss = mss;
4342         adapter->csum_pktlen = pktlen;
4343         adapter->csum_txd_upper = *txd_upper;
4344         adapter->csum_txd_lower = *txd_lower;
4345
4346         if (++curr_txd == adapter->num_tx_desc)
4347                 curr_txd = 0;
4348
4349         KKASSERT(adapter->num_tx_desc_avail > 0);
4350         adapter->num_tx_desc_avail--;
4351
4352         adapter->next_avail_tx_desc = curr_txd;
4353         return 1;
4354 }