emx: Add I217/I218
[dragonfly.git] / sys / dev / netif / em / if_em.c
1 /*
2  * Copyright (c) 2004 Joerg Sonnenberger <joerg@bec.de>.  All rights reserved.
3  *
4  * Copyright (c) 2001-2008, Intel Corporation
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *  1. Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  3. Neither the name of the Intel Corporation nor the names of its
18  *     contributors may be used to endorse or promote products derived from
19  *     this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  *
34  * Copyright (c) 2005 The DragonFly Project.  All rights reserved.
35  *
36  * This code is derived from software contributed to The DragonFly Project
37  * by Matthew Dillon <dillon@backplane.com>
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  * 3. Neither the name of The DragonFly Project nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific, prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
56  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
57  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
58  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
59  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
60  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
61  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
62  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
63  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  */
67 /*
68  * SERIALIZATION API RULES:
69  *
70  * - We must call lwkt_serialize_handler_enable() prior to enabling the
71  *   hardware interrupt and lwkt_serialize_handler_disable() after disabling
72  *   the hardware interrupt in order to avoid handler execution races from
73  *   scheduled interrupt threads.
74  */
75
76 #include "opt_ifpoll.h"
77
78 #include <sys/param.h>
79 #include <sys/bus.h>
80 #include <sys/endian.h>
81 #include <sys/interrupt.h>
82 #include <sys/kernel.h>
83 #include <sys/ktr.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/proc.h>
87 #include <sys/rman.h>
88 #include <sys/serialize.h>
89 #include <sys/socket.h>
90 #include <sys/sockio.h>
91 #include <sys/sysctl.h>
92 #include <sys/systm.h>
93
94 #include <net/bpf.h>
95 #include <net/ethernet.h>
96 #include <net/if.h>
97 #include <net/if_arp.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_poll.h>
101 #include <net/ifq_var.h>
102 #include <net/vlan/if_vlan_var.h>
103 #include <net/vlan/if_vlan_ether.h>
104
105 #include <netinet/ip.h>
106 #include <netinet/tcp.h>
107 #include <netinet/udp.h>
108
109 #include <bus/pci/pcivar.h>
110 #include <bus/pci/pcireg.h>
111
112 #include <dev/netif/ig_hal/e1000_api.h>
113 #include <dev/netif/ig_hal/e1000_82571.h>
114 #include <dev/netif/em/if_em.h>
115
116 #define DEBUG_HW 0
117
118 #define EM_NAME "Intel(R) PRO/1000 Network Connection "
119 #define EM_VER  " 7.3.8"
120
121 #define _EM_DEVICE(id, ret)     \
122         { EM_VENDOR_ID, E1000_DEV_ID_##id, ret, EM_NAME #id EM_VER }
123 #define EM_EMX_DEVICE(id)       _EM_DEVICE(id, -100)
124 #define EM_DEVICE(id)           _EM_DEVICE(id, 0)
125 #define EM_DEVICE_NULL  { 0, 0, 0, NULL }
126
127 static const struct em_vendor_info em_vendor_info_array[] = {
128         EM_DEVICE(82540EM),
129         EM_DEVICE(82540EM_LOM),
130         EM_DEVICE(82540EP),
131         EM_DEVICE(82540EP_LOM),
132         EM_DEVICE(82540EP_LP),
133
134         EM_DEVICE(82541EI),
135         EM_DEVICE(82541ER),
136         EM_DEVICE(82541ER_LOM),
137         EM_DEVICE(82541EI_MOBILE),
138         EM_DEVICE(82541GI),
139         EM_DEVICE(82541GI_LF),
140         EM_DEVICE(82541GI_MOBILE),
141
142         EM_DEVICE(82542),
143
144         EM_DEVICE(82543GC_FIBER),
145         EM_DEVICE(82543GC_COPPER),
146
147         EM_DEVICE(82544EI_COPPER),
148         EM_DEVICE(82544EI_FIBER),
149         EM_DEVICE(82544GC_COPPER),
150         EM_DEVICE(82544GC_LOM),
151
152         EM_DEVICE(82545EM_COPPER),
153         EM_DEVICE(82545EM_FIBER),
154         EM_DEVICE(82545GM_COPPER),
155         EM_DEVICE(82545GM_FIBER),
156         EM_DEVICE(82545GM_SERDES),
157
158         EM_DEVICE(82546EB_COPPER),
159         EM_DEVICE(82546EB_FIBER),
160         EM_DEVICE(82546EB_QUAD_COPPER),
161         EM_DEVICE(82546GB_COPPER),
162         EM_DEVICE(82546GB_FIBER),
163         EM_DEVICE(82546GB_SERDES),
164         EM_DEVICE(82546GB_PCIE),
165         EM_DEVICE(82546GB_QUAD_COPPER),
166         EM_DEVICE(82546GB_QUAD_COPPER_KSP3),
167
168         EM_DEVICE(82547EI),
169         EM_DEVICE(82547EI_MOBILE),
170         EM_DEVICE(82547GI),
171
172         EM_EMX_DEVICE(82571EB_COPPER),
173         EM_EMX_DEVICE(82571EB_FIBER),
174         EM_EMX_DEVICE(82571EB_SERDES),
175         EM_EMX_DEVICE(82571EB_SERDES_DUAL),
176         EM_EMX_DEVICE(82571EB_SERDES_QUAD),
177         EM_EMX_DEVICE(82571EB_QUAD_COPPER),
178         EM_EMX_DEVICE(82571EB_QUAD_COPPER_BP),
179         EM_EMX_DEVICE(82571EB_QUAD_COPPER_LP),
180         EM_EMX_DEVICE(82571EB_QUAD_FIBER),
181         EM_EMX_DEVICE(82571PT_QUAD_COPPER),
182
183         EM_EMX_DEVICE(82572EI_COPPER),
184         EM_EMX_DEVICE(82572EI_FIBER),
185         EM_EMX_DEVICE(82572EI_SERDES),
186         EM_EMX_DEVICE(82572EI),
187
188         EM_EMX_DEVICE(82573E),
189         EM_EMX_DEVICE(82573E_IAMT),
190         EM_EMX_DEVICE(82573L),
191
192         EM_DEVICE(82583V),
193
194         EM_EMX_DEVICE(80003ES2LAN_COPPER_SPT),
195         EM_EMX_DEVICE(80003ES2LAN_SERDES_SPT),
196         EM_EMX_DEVICE(80003ES2LAN_COPPER_DPT),
197         EM_EMX_DEVICE(80003ES2LAN_SERDES_DPT),
198
199         EM_DEVICE(ICH8_IGP_M_AMT),
200         EM_DEVICE(ICH8_IGP_AMT),
201         EM_DEVICE(ICH8_IGP_C),
202         EM_DEVICE(ICH8_IFE),
203         EM_DEVICE(ICH8_IFE_GT),
204         EM_DEVICE(ICH8_IFE_G),
205         EM_DEVICE(ICH8_IGP_M),
206         EM_DEVICE(ICH8_82567V_3),
207
208         EM_DEVICE(ICH9_IGP_M_AMT),
209         EM_DEVICE(ICH9_IGP_AMT),
210         EM_DEVICE(ICH9_IGP_C),
211         EM_DEVICE(ICH9_IGP_M),
212         EM_DEVICE(ICH9_IGP_M_V),
213         EM_DEVICE(ICH9_IFE),
214         EM_DEVICE(ICH9_IFE_GT),
215         EM_DEVICE(ICH9_IFE_G),
216         EM_DEVICE(ICH9_BM),
217
218         EM_EMX_DEVICE(82574L),
219         EM_EMX_DEVICE(82574LA),
220
221         EM_DEVICE(ICH10_R_BM_LM),
222         EM_DEVICE(ICH10_R_BM_LF),
223         EM_DEVICE(ICH10_R_BM_V),
224         EM_DEVICE(ICH10_D_BM_LM),
225         EM_DEVICE(ICH10_D_BM_LF),
226         EM_DEVICE(ICH10_D_BM_V),
227
228         EM_DEVICE(PCH_M_HV_LM),
229         EM_DEVICE(PCH_M_HV_LC),
230         EM_DEVICE(PCH_D_HV_DM),
231         EM_DEVICE(PCH_D_HV_DC),
232
233         EM_DEVICE(PCH2_LV_LM),
234         EM_DEVICE(PCH2_LV_V),
235
236         EM_EMX_DEVICE(PCH_LPT_I217_LM),
237         EM_EMX_DEVICE(PCH_LPT_I217_V),
238         EM_EMX_DEVICE(PCH_LPTLP_I218_LM),
239         EM_EMX_DEVICE(PCH_LPTLP_I218_V),
240
241         /* required last entry */
242         EM_DEVICE_NULL
243 };
244
245 static int      em_probe(device_t);
246 static int      em_attach(device_t);
247 static int      em_detach(device_t);
248 static int      em_shutdown(device_t);
249 static int      em_suspend(device_t);
250 static int      em_resume(device_t);
251
252 static void     em_init(void *);
253 static void     em_stop(struct adapter *);
254 static int      em_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
255 static void     em_start(struct ifnet *, struct ifaltq_subque *);
256 #ifdef IFPOLL_ENABLE
257 static void     em_npoll(struct ifnet *, struct ifpoll_info *);
258 static void     em_npoll_compat(struct ifnet *, void *, int);
259 #endif
260 static void     em_watchdog(struct ifnet *);
261 static void     em_media_status(struct ifnet *, struct ifmediareq *);
262 static int      em_media_change(struct ifnet *);
263 static void     em_timer(void *);
264
265 static void     em_intr(void *);
266 static void     em_intr_mask(void *);
267 static void     em_intr_body(struct adapter *, boolean_t);
268 static void     em_rxeof(struct adapter *, int);
269 static void     em_txeof(struct adapter *);
270 static void     em_tx_collect(struct adapter *);
271 static void     em_tx_purge(struct adapter *);
272 static void     em_enable_intr(struct adapter *);
273 static void     em_disable_intr(struct adapter *);
274
275 static int      em_dma_malloc(struct adapter *, bus_size_t,
276                     struct em_dma_alloc *);
277 static void     em_dma_free(struct adapter *, struct em_dma_alloc *);
278 static void     em_init_tx_ring(struct adapter *);
279 static int      em_init_rx_ring(struct adapter *);
280 static int      em_create_tx_ring(struct adapter *);
281 static int      em_create_rx_ring(struct adapter *);
282 static void     em_destroy_tx_ring(struct adapter *, int);
283 static void     em_destroy_rx_ring(struct adapter *, int);
284 static int      em_newbuf(struct adapter *, int, int);
285 static int      em_encap(struct adapter *, struct mbuf **, int *, int *);
286 static void     em_rxcsum(struct adapter *, struct e1000_rx_desc *,
287                     struct mbuf *);
288 static int      em_txcsum(struct adapter *, struct mbuf *,
289                     uint32_t *, uint32_t *);
290 static int      em_tso_pullup(struct adapter *, struct mbuf **);
291 static int      em_tso_setup(struct adapter *, struct mbuf *,
292                     uint32_t *, uint32_t *);
293
294 static int      em_get_hw_info(struct adapter *);
295 static int      em_is_valid_eaddr(const uint8_t *);
296 static int      em_alloc_pci_res(struct adapter *);
297 static void     em_free_pci_res(struct adapter *);
298 static int      em_reset(struct adapter *);
299 static void     em_setup_ifp(struct adapter *);
300 static void     em_init_tx_unit(struct adapter *);
301 static void     em_init_rx_unit(struct adapter *);
302 static void     em_update_stats(struct adapter *);
303 static void     em_set_promisc(struct adapter *);
304 static void     em_disable_promisc(struct adapter *);
305 static void     em_set_multi(struct adapter *);
306 static void     em_update_link_status(struct adapter *);
307 static void     em_smartspeed(struct adapter *);
308 static void     em_set_itr(struct adapter *, uint32_t);
309 static void     em_disable_aspm(struct adapter *);
310
311 /* Hardware workarounds */
312 static int      em_82547_fifo_workaround(struct adapter *, int);
313 static void     em_82547_update_fifo_head(struct adapter *, int);
314 static int      em_82547_tx_fifo_reset(struct adapter *);
315 static void     em_82547_move_tail(void *);
316 static void     em_82547_move_tail_serialized(struct adapter *);
317 static uint32_t em_82544_fill_desc(bus_addr_t, uint32_t, PDESC_ARRAY);
318
319 static void     em_print_debug_info(struct adapter *);
320 static void     em_print_nvm_info(struct adapter *);
321 static void     em_print_hw_stats(struct adapter *);
322
323 static int      em_sysctl_stats(SYSCTL_HANDLER_ARGS);
324 static int      em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
325 static int      em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS);
326 static int      em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS);
327 static void     em_add_sysctl(struct adapter *adapter);
328
329 /* Management and WOL Support */
330 static void     em_get_mgmt(struct adapter *);
331 static void     em_rel_mgmt(struct adapter *);
332 static void     em_get_hw_control(struct adapter *);
333 static void     em_rel_hw_control(struct adapter *);
334 static void     em_enable_wol(device_t);
335
336 static device_method_t em_methods[] = {
337         /* Device interface */
338         DEVMETHOD(device_probe,         em_probe),
339         DEVMETHOD(device_attach,        em_attach),
340         DEVMETHOD(device_detach,        em_detach),
341         DEVMETHOD(device_shutdown,      em_shutdown),
342         DEVMETHOD(device_suspend,       em_suspend),
343         DEVMETHOD(device_resume,        em_resume),
344         DEVMETHOD_END
345 };
346
347 static driver_t em_driver = {
348         "em",
349         em_methods,
350         sizeof(struct adapter),
351 };
352
353 static devclass_t em_devclass;
354
355 DECLARE_DUMMY_MODULE(if_em);
356 MODULE_DEPEND(em, ig_hal, 1, 1, 1);
357 DRIVER_MODULE(if_em, pci, em_driver, em_devclass, NULL, NULL);
358
359 /*
360  * Tunables
361  */
362 static int      em_int_throttle_ceil = EM_DEFAULT_ITR;
363 static int      em_rxd = EM_DEFAULT_RXD;
364 static int      em_txd = EM_DEFAULT_TXD;
365 static int      em_smart_pwr_down = 0;
366
367 /* Controls whether promiscuous also shows bad packets */
368 static int      em_debug_sbp = FALSE;
369
370 static int      em_82573_workaround = 1;
371 static int      em_msi_enable = 1;
372
373 TUNABLE_INT("hw.em.int_throttle_ceil", &em_int_throttle_ceil);
374 TUNABLE_INT("hw.em.rxd", &em_rxd);
375 TUNABLE_INT("hw.em.txd", &em_txd);
376 TUNABLE_INT("hw.em.smart_pwr_down", &em_smart_pwr_down);
377 TUNABLE_INT("hw.em.sbp", &em_debug_sbp);
378 TUNABLE_INT("hw.em.82573_workaround", &em_82573_workaround);
379 TUNABLE_INT("hw.em.msi.enable", &em_msi_enable);
380
381 /* Global used in WOL setup with multiport cards */
382 static int      em_global_quad_port_a = 0;
383
384 /* Set this to one to display debug statistics */
385 static int      em_display_debug_stats = 0;
386
387 #if !defined(KTR_IF_EM)
388 #define KTR_IF_EM       KTR_ALL
389 #endif
390 KTR_INFO_MASTER(if_em);
391 KTR_INFO(KTR_IF_EM, if_em, intr_beg, 0, "intr begin");
392 KTR_INFO(KTR_IF_EM, if_em, intr_end, 1, "intr end");
393 KTR_INFO(KTR_IF_EM, if_em, pkt_receive, 4, "rx packet");
394 KTR_INFO(KTR_IF_EM, if_em, pkt_txqueue, 5, "tx packet");
395 KTR_INFO(KTR_IF_EM, if_em, pkt_txclean, 6, "tx clean");
396 #define logif(name)     KTR_LOG(if_em_ ## name)
397
398 static int
399 em_probe(device_t dev)
400 {
401         const struct em_vendor_info *ent;
402         uint16_t vid, did;
403
404         vid = pci_get_vendor(dev);
405         did = pci_get_device(dev);
406
407         for (ent = em_vendor_info_array; ent->desc != NULL; ++ent) {
408                 if (vid == ent->vendor_id && did == ent->device_id) {
409                         device_set_desc(dev, ent->desc);
410                         device_set_async_attach(dev, TRUE);
411                         return (ent->ret);
412                 }
413         }
414         return (ENXIO);
415 }
416
417 static int
418 em_attach(device_t dev)
419 {
420         struct adapter *adapter = device_get_softc(dev);
421         struct ifnet *ifp = &adapter->arpcom.ac_if;
422         int tsize, rsize;
423         int error = 0;
424         uint16_t eeprom_data, device_id, apme_mask;
425         driver_intr_t *intr_func;
426
427         adapter->dev = adapter->osdep.dev = dev;
428
429         callout_init_mp(&adapter->timer);
430         callout_init_mp(&adapter->tx_fifo_timer);
431
432         /* Determine hardware and mac info */
433         error = em_get_hw_info(adapter);
434         if (error) {
435                 device_printf(dev, "Identify hardware failed\n");
436                 goto fail;
437         }
438
439         /* Setup PCI resources */
440         error = em_alloc_pci_res(adapter);
441         if (error) {
442                 device_printf(dev, "Allocation of PCI resources failed\n");
443                 goto fail;
444         }
445
446         /*
447          * For ICH8 and family we need to map the flash memory,
448          * and this must happen after the MAC is identified.
449          */
450         if (adapter->hw.mac.type == e1000_ich8lan ||
451             adapter->hw.mac.type == e1000_ich9lan ||
452             adapter->hw.mac.type == e1000_ich10lan ||
453             adapter->hw.mac.type == e1000_pchlan ||
454             adapter->hw.mac.type == e1000_pch2lan ||
455             adapter->hw.mac.type == e1000_pch_lpt) {
456                 adapter->flash_rid = EM_BAR_FLASH;
457
458                 adapter->flash = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
459                                         &adapter->flash_rid, RF_ACTIVE);
460                 if (adapter->flash == NULL) {
461                         device_printf(dev, "Mapping of Flash failed\n");
462                         error = ENXIO;
463                         goto fail;
464                 }
465                 adapter->osdep.flash_bus_space_tag =
466                     rman_get_bustag(adapter->flash);
467                 adapter->osdep.flash_bus_space_handle =
468                     rman_get_bushandle(adapter->flash);
469
470                 /*
471                  * This is used in the shared code
472                  * XXX this goof is actually not used.
473                  */
474                 adapter->hw.flash_address = (uint8_t *)adapter->flash;
475         }
476
477         switch (adapter->hw.mac.type) {
478         case e1000_82571:
479         case e1000_82572:
480                 /*
481                  * Pullup extra 4bytes into the first data segment, see:
482                  * 82571/82572 specification update errata #7
483                  *
484                  * NOTE:
485                  * 4bytes instead of 2bytes, which are mentioned in the
486                  * errata, are pulled; mainly to keep rest of the data
487                  * properly aligned.
488                  */
489                 adapter->flags |= EM_FLAG_TSO_PULLEX;
490                 /* FALL THROUGH */
491
492         default:
493                 if (pci_is_pcie(dev))
494                         adapter->flags |= EM_FLAG_TSO;
495                 break;
496         }
497
498         /* Do Shared Code initialization */
499         if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
500                 device_printf(dev, "Setup of Shared code failed\n");
501                 error = ENXIO;
502                 goto fail;
503         }
504
505         e1000_get_bus_info(&adapter->hw);
506
507         /*
508          * Validate number of transmit and receive descriptors.  It
509          * must not exceed hardware maximum, and must be multiple
510          * of E1000_DBA_ALIGN.
511          */
512         if ((em_txd * sizeof(struct e1000_tx_desc)) % EM_DBA_ALIGN != 0 ||
513             (adapter->hw.mac.type >= e1000_82544 && em_txd > EM_MAX_TXD) ||
514             (adapter->hw.mac.type < e1000_82544 && em_txd > EM_MAX_TXD_82543) ||
515             em_txd < EM_MIN_TXD) {
516                 if (adapter->hw.mac.type < e1000_82544)
517                         adapter->num_tx_desc = EM_MAX_TXD_82543;
518                 else
519                         adapter->num_tx_desc = EM_DEFAULT_TXD;
520                 device_printf(dev, "Using %d TX descriptors instead of %d!\n",
521                     adapter->num_tx_desc, em_txd);
522         } else {
523                 adapter->num_tx_desc = em_txd;
524         }
525         if ((em_rxd * sizeof(struct e1000_rx_desc)) % EM_DBA_ALIGN != 0 ||
526             (adapter->hw.mac.type >= e1000_82544 && em_rxd > EM_MAX_RXD) ||
527             (adapter->hw.mac.type < e1000_82544 && em_rxd > EM_MAX_RXD_82543) ||
528             em_rxd < EM_MIN_RXD) {
529                 if (adapter->hw.mac.type < e1000_82544)
530                         adapter->num_rx_desc = EM_MAX_RXD_82543;
531                 else
532                         adapter->num_rx_desc = EM_DEFAULT_RXD;
533                 device_printf(dev, "Using %d RX descriptors instead of %d!\n",
534                     adapter->num_rx_desc, em_rxd);
535         } else {
536                 adapter->num_rx_desc = em_rxd;
537         }
538
539         adapter->hw.mac.autoneg = DO_AUTO_NEG;
540         adapter->hw.phy.autoneg_wait_to_complete = FALSE;
541         adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
542         adapter->rx_buffer_len = MCLBYTES;
543
544         /*
545          * Interrupt throttle rate
546          */
547         if (em_int_throttle_ceil == 0) {
548                 adapter->int_throttle_ceil = 0;
549         } else {
550                 int throttle = em_int_throttle_ceil;
551
552                 if (throttle < 0)
553                         throttle = EM_DEFAULT_ITR;
554
555                 /* Recalculate the tunable value to get the exact frequency. */
556                 throttle = 1000000000 / 256 / throttle;
557
558                 /* Upper 16bits of ITR is reserved and should be zero */
559                 if (throttle & 0xffff0000)
560                         throttle = 1000000000 / 256 / EM_DEFAULT_ITR;
561
562                 adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
563         }
564
565         e1000_init_script_state_82541(&adapter->hw, TRUE);
566         e1000_set_tbi_compatibility_82543(&adapter->hw, TRUE);
567
568         /* Copper options */
569         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
570                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
571                 adapter->hw.phy.disable_polarity_correction = FALSE;
572                 adapter->hw.phy.ms_type = EM_MASTER_SLAVE;
573         }
574
575         /* Set the frame limits assuming standard ethernet sized frames. */
576         adapter->hw.mac.max_frame_size =
577             ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
578         adapter->min_frame_size = ETH_ZLEN + ETHER_CRC_LEN;
579
580         /* This controls when hardware reports transmit completion status. */
581         adapter->hw.mac.report_tx_early = 1;
582
583         /*
584          * Create top level busdma tag
585          */
586         error = bus_dma_tag_create(NULL, 1, 0,
587                         BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
588                         NULL, NULL,
589                         BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
590                         0, &adapter->parent_dtag);
591         if (error) {
592                 device_printf(dev, "could not create top level DMA tag\n");
593                 goto fail;
594         }
595
596         /*
597          * Allocate Transmit Descriptor ring
598          */
599         tsize = roundup2(adapter->num_tx_desc * sizeof(struct e1000_tx_desc),
600                          EM_DBA_ALIGN);
601         error = em_dma_malloc(adapter, tsize, &adapter->txdma);
602         if (error) {
603                 device_printf(dev, "Unable to allocate tx_desc memory\n");
604                 goto fail;
605         }
606         adapter->tx_desc_base = adapter->txdma.dma_vaddr;
607
608         /*
609          * Allocate Receive Descriptor ring
610          */
611         rsize = roundup2(adapter->num_rx_desc * sizeof(struct e1000_rx_desc),
612                          EM_DBA_ALIGN);
613         error = em_dma_malloc(adapter, rsize, &adapter->rxdma);
614         if (error) {
615                 device_printf(dev, "Unable to allocate rx_desc memory\n");
616                 goto fail;
617         }
618         adapter->rx_desc_base = adapter->rxdma.dma_vaddr;
619
620         /* Allocate multicast array memory. */
621         adapter->mta = kmalloc(ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
622             M_DEVBUF, M_WAITOK);
623
624         /* Indicate SOL/IDER usage */
625         if (e1000_check_reset_block(&adapter->hw)) {
626                 device_printf(dev,
627                     "PHY reset is blocked due to SOL/IDER session.\n");
628         }
629
630         /* Disable EEE */
631         adapter->hw.dev_spec.ich8lan.eee_disable = 1;
632
633         /*
634          * Start from a known state, this is important in reading the
635          * nvm and mac from that.
636          */
637         e1000_reset_hw(&adapter->hw);
638
639         /* Make sure we have a good EEPROM before we read from it */
640         if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
641                 /*
642                  * Some PCI-E parts fail the first check due to
643                  * the link being in sleep state, call it again,
644                  * if it fails a second time its a real issue.
645                  */
646                 if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
647                         device_printf(dev,
648                             "The EEPROM Checksum Is Not Valid\n");
649                         error = EIO;
650                         goto fail;
651                 }
652         }
653
654         /* Copy the permanent MAC address out of the EEPROM */
655         if (e1000_read_mac_addr(&adapter->hw) < 0) {
656                 device_printf(dev, "EEPROM read error while reading MAC"
657                     " address\n");
658                 error = EIO;
659                 goto fail;
660         }
661         if (!em_is_valid_eaddr(adapter->hw.mac.addr)) {
662                 device_printf(dev, "Invalid MAC address\n");
663                 error = EIO;
664                 goto fail;
665         }
666
667         /* Allocate transmit descriptors and buffers */
668         error = em_create_tx_ring(adapter);
669         if (error) {
670                 device_printf(dev, "Could not setup transmit structures\n");
671                 goto fail;
672         }
673
674         /* Allocate receive descriptors and buffers */
675         error = em_create_rx_ring(adapter);
676         if (error) {
677                 device_printf(dev, "Could not setup receive structures\n");
678                 goto fail;
679         }
680
681         /* Manually turn off all interrupts */
682         E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
683
684         /* Determine if we have to control management hardware */
685         if (e1000_enable_mng_pass_thru(&adapter->hw))
686                 adapter->flags |= EM_FLAG_HAS_MGMT;
687
688         /*
689          * Setup Wake-on-Lan
690          */
691         apme_mask = EM_EEPROM_APME;
692         eeprom_data = 0;
693         switch (adapter->hw.mac.type) {
694         case e1000_82542:
695         case e1000_82543:
696                 break;
697
698         case e1000_82573:
699         case e1000_82583:
700                 adapter->flags |= EM_FLAG_HAS_AMT;
701                 /* FALL THROUGH */
702
703         case e1000_82546:
704         case e1000_82546_rev_3:
705         case e1000_82571:
706         case e1000_82572:
707         case e1000_80003es2lan:
708                 if (adapter->hw.bus.func == 1) {
709                         e1000_read_nvm(&adapter->hw,
710                             NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
711                 } else {
712                         e1000_read_nvm(&adapter->hw,
713                             NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
714                 }
715                 break;
716
717         case e1000_ich8lan:
718         case e1000_ich9lan:
719         case e1000_ich10lan:
720         case e1000_pchlan:
721         case e1000_pch2lan:
722                 apme_mask = E1000_WUC_APME;
723                 adapter->flags |= EM_FLAG_HAS_AMT;
724                 eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC);
725                 break;
726
727         default:
728                 e1000_read_nvm(&adapter->hw,
729                     NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
730                 break;
731         }
732         if (eeprom_data & apme_mask)
733                 adapter->wol = E1000_WUFC_MAG | E1000_WUFC_MC;
734
735         /*
736          * We have the eeprom settings, now apply the special cases
737          * where the eeprom may be wrong or the board won't support
738          * wake on lan on a particular port
739          */
740         device_id = pci_get_device(dev);
741         switch (device_id) {
742         case E1000_DEV_ID_82546GB_PCIE:
743                 adapter->wol = 0;
744                 break;
745
746         case E1000_DEV_ID_82546EB_FIBER:
747         case E1000_DEV_ID_82546GB_FIBER:
748         case E1000_DEV_ID_82571EB_FIBER:
749                 /*
750                  * Wake events only supported on port A for dual fiber
751                  * regardless of eeprom setting
752                  */
753                 if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
754                     E1000_STATUS_FUNC_1)
755                         adapter->wol = 0;
756                 break;
757
758         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
759         case E1000_DEV_ID_82571EB_QUAD_COPPER:
760         case E1000_DEV_ID_82571EB_QUAD_FIBER:
761         case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
762                 /* if quad port adapter, disable WoL on all but port A */
763                 if (em_global_quad_port_a != 0)
764                         adapter->wol = 0;
765                 /* Reset for multiple quad port adapters */
766                 if (++em_global_quad_port_a == 4)
767                         em_global_quad_port_a = 0;
768                 break;
769         }
770
771         /* XXX disable wol */
772         adapter->wol = 0;
773
774         /* Setup OS specific network interface */
775         em_setup_ifp(adapter);
776
777         /* Add sysctl tree, must after em_setup_ifp() */
778         em_add_sysctl(adapter);
779
780 #ifdef IFPOLL_ENABLE
781         /* Polling setup */
782         ifpoll_compat_setup(&adapter->npoll,
783             &adapter->sysctl_ctx, adapter->sysctl_tree, device_get_unit(dev),
784             ifp->if_serializer);
785 #endif
786
787         /* Reset the hardware */
788         error = em_reset(adapter);
789         if (error) {
790                 device_printf(dev, "Unable to reset the hardware\n");
791                 goto fail;
792         }
793
794         /* Initialize statistics */
795         em_update_stats(adapter);
796
797         adapter->hw.mac.get_link_status = 1;
798         em_update_link_status(adapter);
799
800         /* Do we need workaround for 82544 PCI-X adapter? */
801         if (adapter->hw.bus.type == e1000_bus_type_pcix &&
802             adapter->hw.mac.type == e1000_82544)
803                 adapter->pcix_82544 = TRUE;
804         else
805                 adapter->pcix_82544 = FALSE;
806
807         if (adapter->pcix_82544) {
808                 /*
809                  * 82544 on PCI-X may split one TX segment
810                  * into two TX descs, so we double its number
811                  * of spare TX desc here.
812                  */
813                 adapter->spare_tx_desc = 2 * EM_TX_SPARE;
814         } else {
815                 adapter->spare_tx_desc = EM_TX_SPARE;
816         }
817         if (adapter->flags & EM_FLAG_TSO)
818                 adapter->spare_tx_desc = EM_TX_SPARE_TSO;
819         adapter->tx_wreg_nsegs = EM_DEFAULT_TXWREG;
820
821         /*
822          * Keep following relationship between spare_tx_desc, oact_tx_desc
823          * and tx_int_nsegs:
824          * (spare_tx_desc + EM_TX_RESERVED) <=
825          * oact_tx_desc <= EM_TX_OACTIVE_MAX <= tx_int_nsegs
826          */
827         adapter->oact_tx_desc = adapter->num_tx_desc / 8;
828         if (adapter->oact_tx_desc > EM_TX_OACTIVE_MAX)
829                 adapter->oact_tx_desc = EM_TX_OACTIVE_MAX;
830         if (adapter->oact_tx_desc < adapter->spare_tx_desc + EM_TX_RESERVED)
831                 adapter->oact_tx_desc = adapter->spare_tx_desc + EM_TX_RESERVED;
832
833         adapter->tx_int_nsegs = adapter->num_tx_desc / 16;
834         if (adapter->tx_int_nsegs < adapter->oact_tx_desc)
835                 adapter->tx_int_nsegs = adapter->oact_tx_desc;
836
837         /* Non-AMT based hardware can now take control from firmware */
838         if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
839             EM_FLAG_HAS_MGMT && adapter->hw.mac.type >= e1000_82571)
840                 em_get_hw_control(adapter);
841
842         ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
843
844         /*
845          * Missing Interrupt Following ICR read:
846          *
847          * 82571/82572 specification update errata #76
848          * 82573 specification update errata #31
849          * 82574 specification update errata #12
850          * 82583 specification update errata #4
851          */
852         intr_func = em_intr;
853         if ((adapter->flags & EM_FLAG_SHARED_INTR) &&
854             (adapter->hw.mac.type == e1000_82571 ||
855              adapter->hw.mac.type == e1000_82572 ||
856              adapter->hw.mac.type == e1000_82573 ||
857              adapter->hw.mac.type == e1000_82574 ||
858              adapter->hw.mac.type == e1000_82583))
859                 intr_func = em_intr_mask;
860
861         error = bus_setup_intr(dev, adapter->intr_res, INTR_MPSAFE,
862                                intr_func, adapter, &adapter->intr_tag,
863                                ifp->if_serializer);
864         if (error) {
865                 device_printf(dev, "Failed to register interrupt handler");
866                 ether_ifdetach(&adapter->arpcom.ac_if);
867                 goto fail;
868         }
869         return (0);
870 fail:
871         em_detach(dev);
872         return (error);
873 }
874
875 static int
876 em_detach(device_t dev)
877 {
878         struct adapter *adapter = device_get_softc(dev);
879
880         if (device_is_attached(dev)) {
881                 struct ifnet *ifp = &adapter->arpcom.ac_if;
882
883                 lwkt_serialize_enter(ifp->if_serializer);
884
885                 em_stop(adapter);
886
887                 e1000_phy_hw_reset(&adapter->hw);
888
889                 em_rel_mgmt(adapter);
890                 em_rel_hw_control(adapter);
891
892                 if (adapter->wol) {
893                         E1000_WRITE_REG(&adapter->hw, E1000_WUC,
894                                         E1000_WUC_PME_EN);
895                         E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
896                         em_enable_wol(dev);
897                 }
898
899                 bus_teardown_intr(dev, adapter->intr_res, adapter->intr_tag);
900
901                 lwkt_serialize_exit(ifp->if_serializer);
902
903                 ether_ifdetach(ifp);
904         } else if (adapter->memory != NULL) {
905                 em_rel_hw_control(adapter);
906         }
907         bus_generic_detach(dev);
908
909         em_free_pci_res(adapter);
910
911         em_destroy_tx_ring(adapter, adapter->num_tx_desc);
912         em_destroy_rx_ring(adapter, adapter->num_rx_desc);
913
914         /* Free Transmit Descriptor ring */
915         if (adapter->tx_desc_base)
916                 em_dma_free(adapter, &adapter->txdma);
917
918         /* Free Receive Descriptor ring */
919         if (adapter->rx_desc_base)
920                 em_dma_free(adapter, &adapter->rxdma);
921
922         /* Free top level busdma tag */
923         if (adapter->parent_dtag != NULL)
924                 bus_dma_tag_destroy(adapter->parent_dtag);
925
926         /* Free sysctl tree */
927         if (adapter->sysctl_tree != NULL)
928                 sysctl_ctx_free(&adapter->sysctl_ctx);
929
930         if (adapter->mta != NULL)
931                 kfree(adapter->mta, M_DEVBUF);
932
933         return (0);
934 }
935
936 static int
937 em_shutdown(device_t dev)
938 {
939         return em_suspend(dev);
940 }
941
942 static int
943 em_suspend(device_t dev)
944 {
945         struct adapter *adapter = device_get_softc(dev);
946         struct ifnet *ifp = &adapter->arpcom.ac_if;
947
948         lwkt_serialize_enter(ifp->if_serializer);
949
950         em_stop(adapter);
951
952         em_rel_mgmt(adapter);
953         em_rel_hw_control(adapter);
954
955         if (adapter->wol) {
956                 E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
957                 E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
958                 em_enable_wol(dev);
959         }
960
961         lwkt_serialize_exit(ifp->if_serializer);
962
963         return bus_generic_suspend(dev);
964 }
965
966 static int
967 em_resume(device_t dev)
968 {
969         struct adapter *adapter = device_get_softc(dev);
970         struct ifnet *ifp = &adapter->arpcom.ac_if;
971
972         lwkt_serialize_enter(ifp->if_serializer);
973
974         if (adapter->hw.mac.type == e1000_pch2lan)
975                 e1000_resume_workarounds_pchlan(&adapter->hw);
976
977         em_init(adapter);
978         em_get_mgmt(adapter);
979         if_devstart(ifp);
980
981         lwkt_serialize_exit(ifp->if_serializer);
982
983         return bus_generic_resume(dev);
984 }
985
986 static void
987 em_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
988 {
989         struct adapter *adapter = ifp->if_softc;
990         struct mbuf *m_head;
991         int idx = -1, nsegs = 0;
992
993         ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
994         ASSERT_SERIALIZED(ifp->if_serializer);
995
996         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
997                 return;
998
999         if (!adapter->link_active) {
1000                 ifq_purge(&ifp->if_snd);
1001                 return;
1002         }
1003
1004         while (!ifq_is_empty(&ifp->if_snd)) {
1005                 /* Now do we at least have a minimal? */
1006                 if (EM_IS_OACTIVE(adapter)) {
1007                         em_tx_collect(adapter);
1008                         if (EM_IS_OACTIVE(adapter)) {
1009                                 ifq_set_oactive(&ifp->if_snd);
1010                                 adapter->no_tx_desc_avail1++;
1011                                 break;
1012                         }
1013                 }
1014
1015                 logif(pkt_txqueue);
1016                 m_head = ifq_dequeue(&ifp->if_snd);
1017                 if (m_head == NULL)
1018                         break;
1019
1020                 if (em_encap(adapter, &m_head, &nsegs, &idx)) {
1021                         IFNET_STAT_INC(ifp, oerrors, 1);
1022                         em_tx_collect(adapter);
1023                         continue;
1024                 }
1025
1026                 if (nsegs >= adapter->tx_wreg_nsegs && idx >= 0) {
1027                         E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1028                         nsegs = 0;
1029                         idx = -1;
1030                 }
1031
1032                 /* Send a copy of the frame to the BPF listener */
1033                 ETHER_BPF_MTAP(ifp, m_head);
1034
1035                 /* Set timeout in case hardware has problems transmitting. */
1036                 ifp->if_timer = EM_TX_TIMEOUT;
1037         }
1038         if (idx >= 0)
1039                 E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), idx);
1040 }
1041
1042 static int
1043 em_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1044 {
1045         struct adapter *adapter = ifp->if_softc;
1046         struct ifreq *ifr = (struct ifreq *)data;
1047         uint16_t eeprom_data = 0;
1048         int max_frame_size, mask, reinit;
1049         int error = 0;
1050
1051         ASSERT_SERIALIZED(ifp->if_serializer);
1052
1053         switch (command) {
1054         case SIOCSIFMTU:
1055                 switch (adapter->hw.mac.type) {
1056                 case e1000_82573:
1057                         /*
1058                          * 82573 only supports jumbo frames
1059                          * if ASPM is disabled.
1060                          */
1061                         e1000_read_nvm(&adapter->hw,
1062                             NVM_INIT_3GIO_3, 1, &eeprom_data);
1063                         if (eeprom_data & NVM_WORD1A_ASPM_MASK) {
1064                                 max_frame_size = ETHER_MAX_LEN;
1065                                 break;
1066                         }
1067                         /* FALL THROUGH */
1068
1069                 /* Limit Jumbo Frame size */
1070                 case e1000_82571:
1071                 case e1000_82572:
1072                 case e1000_ich9lan:
1073                 case e1000_ich10lan:
1074                 case e1000_pch2lan:
1075                 case e1000_pch_lpt:
1076                 case e1000_82574:
1077                 case e1000_82583:
1078                 case e1000_80003es2lan:
1079                         max_frame_size = 9234;
1080                         break;
1081
1082                 case e1000_pchlan:
1083                         max_frame_size = 4096;
1084                         break;
1085
1086                 /* Adapters that do not support jumbo frames */
1087                 case e1000_82542:
1088                 case e1000_ich8lan:
1089                         max_frame_size = ETHER_MAX_LEN;
1090                         break;
1091
1092                 default:
1093                         max_frame_size = MAX_JUMBO_FRAME_SIZE;
1094                         break;
1095                 }
1096                 if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
1097                     ETHER_CRC_LEN) {
1098                         error = EINVAL;
1099                         break;
1100                 }
1101
1102                 ifp->if_mtu = ifr->ifr_mtu;
1103                 adapter->hw.mac.max_frame_size =
1104                     ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1105
1106                 if (ifp->if_flags & IFF_RUNNING)
1107                         em_init(adapter);
1108                 break;
1109
1110         case SIOCSIFFLAGS:
1111                 if (ifp->if_flags & IFF_UP) {
1112                         if ((ifp->if_flags & IFF_RUNNING)) {
1113                                 if ((ifp->if_flags ^ adapter->if_flags) &
1114                                     (IFF_PROMISC | IFF_ALLMULTI)) {
1115                                         em_disable_promisc(adapter);
1116                                         em_set_promisc(adapter);
1117                                 }
1118                         } else {
1119                                 em_init(adapter);
1120                         }
1121                 } else if (ifp->if_flags & IFF_RUNNING) {
1122                         em_stop(adapter);
1123                 }
1124                 adapter->if_flags = ifp->if_flags;
1125                 break;
1126
1127         case SIOCADDMULTI:
1128         case SIOCDELMULTI:
1129                 if (ifp->if_flags & IFF_RUNNING) {
1130                         em_disable_intr(adapter);
1131                         em_set_multi(adapter);
1132                         if (adapter->hw.mac.type == e1000_82542 &&
1133                             adapter->hw.revision_id == E1000_REVISION_2)
1134                                 em_init_rx_unit(adapter);
1135 #ifdef IFPOLL_ENABLE
1136                         if (!(ifp->if_flags & IFF_NPOLLING))
1137 #endif
1138                                 em_enable_intr(adapter);
1139                 }
1140                 break;
1141
1142         case SIOCSIFMEDIA:
1143                 /* Check SOL/IDER usage */
1144                 if (e1000_check_reset_block(&adapter->hw)) {
1145                         device_printf(adapter->dev, "Media change is"
1146                             " blocked due to SOL/IDER session.\n");
1147                         break;
1148                 }
1149                 /* FALL THROUGH */
1150
1151         case SIOCGIFMEDIA:
1152                 error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
1153                 break;
1154
1155         case SIOCSIFCAP:
1156                 reinit = 0;
1157                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1158                 if (mask & IFCAP_RXCSUM) {
1159                         ifp->if_capenable ^= IFCAP_RXCSUM;
1160                         reinit = 1;
1161                 }
1162                 if (mask & IFCAP_TXCSUM) {
1163                         ifp->if_capenable ^= IFCAP_TXCSUM;
1164                         if (ifp->if_capenable & IFCAP_TXCSUM)
1165                                 ifp->if_hwassist |= EM_CSUM_FEATURES;
1166                         else
1167                                 ifp->if_hwassist &= ~EM_CSUM_FEATURES;
1168                 }
1169                 if (mask & IFCAP_TSO) {
1170                         ifp->if_capenable ^= IFCAP_TSO;
1171                         if (ifp->if_capenable & IFCAP_TSO)
1172                                 ifp->if_hwassist |= CSUM_TSO;
1173                         else
1174                                 ifp->if_hwassist &= ~CSUM_TSO;
1175                 }
1176                 if (mask & IFCAP_VLAN_HWTAGGING) {
1177                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1178                         reinit = 1;
1179                 }
1180                 if (reinit && (ifp->if_flags & IFF_RUNNING))
1181                         em_init(adapter);
1182                 break;
1183
1184         default:
1185                 error = ether_ioctl(ifp, command, data);
1186                 break;
1187         }
1188         return (error);
1189 }
1190
1191 static void
1192 em_watchdog(struct ifnet *ifp)
1193 {
1194         struct adapter *adapter = ifp->if_softc;
1195
1196         ASSERT_SERIALIZED(ifp->if_serializer);
1197
1198         /*
1199          * The timer is set to 5 every time start queues a packet.
1200          * Then txeof keeps resetting it as long as it cleans at
1201          * least one descriptor.
1202          * Finally, anytime all descriptors are clean the timer is
1203          * set to 0.
1204          */
1205
1206         if (E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1207             E1000_READ_REG(&adapter->hw, E1000_TDH(0))) {
1208                 /*
1209                  * If we reach here, all TX jobs are completed and
1210                  * the TX engine should have been idled for some time.
1211                  * We don't need to call if_devstart() here.
1212                  */
1213                 ifq_clr_oactive(&ifp->if_snd);
1214                 ifp->if_timer = 0;
1215                 return;
1216         }
1217
1218         /*
1219          * If we are in this routine because of pause frames, then
1220          * don't reset the hardware.
1221          */
1222         if (E1000_READ_REG(&adapter->hw, E1000_STATUS) &
1223             E1000_STATUS_TXOFF) {
1224                 ifp->if_timer = EM_TX_TIMEOUT;
1225                 return;
1226         }
1227
1228         if (e1000_check_for_link(&adapter->hw) == 0)
1229                 if_printf(ifp, "watchdog timeout -- resetting\n");
1230
1231         IFNET_STAT_INC(ifp, oerrors, 1);
1232         adapter->watchdog_events++;
1233
1234         em_init(adapter);
1235
1236         if (!ifq_is_empty(&ifp->if_snd))
1237                 if_devstart(ifp);
1238 }
1239
1240 static void
1241 em_init(void *xsc)
1242 {
1243         struct adapter *adapter = xsc;
1244         struct ifnet *ifp = &adapter->arpcom.ac_if;
1245         device_t dev = adapter->dev;
1246
1247         ASSERT_SERIALIZED(ifp->if_serializer);
1248
1249         em_stop(adapter);
1250
1251         /* Get the latest mac address, User can use a LAA */
1252         bcopy(IF_LLADDR(ifp), adapter->hw.mac.addr, ETHER_ADDR_LEN);
1253
1254         /* Put the address into the Receive Address Array */
1255         e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1256
1257         /*
1258          * With the 82571 adapter, RAR[0] may be overwritten
1259          * when the other port is reset, we make a duplicate
1260          * in RAR[14] for that eventuality, this assures
1261          * the interface continues to function.
1262          */
1263         if (adapter->hw.mac.type == e1000_82571) {
1264                 e1000_set_laa_state_82571(&adapter->hw, TRUE);
1265                 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr,
1266                     E1000_RAR_ENTRIES - 1);
1267         }
1268
1269         /* Reset the hardware */
1270         if (em_reset(adapter)) {
1271                 device_printf(dev, "Unable to reset the hardware\n");
1272                 /* XXX em_stop()? */
1273                 return;
1274         }
1275         em_update_link_status(adapter);
1276
1277         /* Setup VLAN support, basic and offload if available */
1278         E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
1279
1280         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) {
1281                 uint32_t ctrl;
1282
1283                 ctrl = E1000_READ_REG(&adapter->hw, E1000_CTRL);
1284                 ctrl |= E1000_CTRL_VME;
1285                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL, ctrl);
1286         }
1287
1288         /* Configure for OS presence */
1289         em_get_mgmt(adapter);
1290
1291         /* Prepare transmit descriptors and buffers */
1292         em_init_tx_ring(adapter);
1293         em_init_tx_unit(adapter);
1294
1295         /* Setup Multicast table */
1296         em_set_multi(adapter);
1297
1298         /* Prepare receive descriptors and buffers */
1299         if (em_init_rx_ring(adapter)) {
1300                 device_printf(dev, "Could not setup receive structures\n");
1301                 em_stop(adapter);
1302                 return;
1303         }
1304         em_init_rx_unit(adapter);
1305
1306         /* Don't lose promiscuous settings */
1307         em_set_promisc(adapter);
1308
1309         ifp->if_flags |= IFF_RUNNING;
1310         ifq_clr_oactive(&ifp->if_snd);
1311
1312         callout_reset(&adapter->timer, hz, em_timer, adapter);
1313         e1000_clear_hw_cntrs_base_generic(&adapter->hw);
1314
1315         /* MSI/X configuration for 82574 */
1316         if (adapter->hw.mac.type == e1000_82574) {
1317                 int tmp;
1318
1319                 tmp = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
1320                 tmp |= E1000_CTRL_EXT_PBA_CLR;
1321                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT, tmp);
1322                 /*
1323                  * XXX MSIX
1324                  * Set the IVAR - interrupt vector routing.
1325                  * Each nibble represents a vector, high bit
1326                  * is enable, other 3 bits are the MSIX table
1327                  * entry, we map RXQ0 to 0, TXQ0 to 1, and
1328                  * Link (other) to 2, hence the magic number.
1329                  */
1330                 E1000_WRITE_REG(&adapter->hw, E1000_IVAR, 0x800A0908);
1331         }
1332
1333 #ifdef IFPOLL_ENABLE
1334         /*
1335          * Only enable interrupts if we are not polling, make sure
1336          * they are off otherwise.
1337          */
1338         if (ifp->if_flags & IFF_NPOLLING)
1339                 em_disable_intr(adapter);
1340         else
1341 #endif /* IFPOLL_ENABLE */
1342                 em_enable_intr(adapter);
1343
1344         /* AMT based hardware can now take control from firmware */
1345         if ((adapter->flags & (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT)) ==
1346             (EM_FLAG_HAS_MGMT | EM_FLAG_HAS_AMT) &&
1347             adapter->hw.mac.type >= e1000_82571)
1348                 em_get_hw_control(adapter);
1349 }
1350
1351 #ifdef IFPOLL_ENABLE
1352
1353 static void
1354 em_npoll_compat(struct ifnet *ifp, void *arg __unused, int count)
1355 {
1356         struct adapter *adapter = ifp->if_softc;
1357
1358         ASSERT_SERIALIZED(ifp->if_serializer);
1359
1360         if (adapter->npoll.ifpc_stcount-- == 0) {
1361                 uint32_t reg_icr;
1362
1363                 adapter->npoll.ifpc_stcount = adapter->npoll.ifpc_stfrac;
1364
1365                 reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1366                 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1367                         callout_stop(&adapter->timer);
1368                         adapter->hw.mac.get_link_status = 1;
1369                         em_update_link_status(adapter);
1370                         callout_reset(&adapter->timer, hz, em_timer, adapter);
1371                 }
1372         }
1373
1374         em_rxeof(adapter, count);
1375         em_txeof(adapter);
1376
1377         if (!ifq_is_empty(&ifp->if_snd))
1378                 if_devstart(ifp);
1379 }
1380
1381 static void
1382 em_npoll(struct ifnet *ifp, struct ifpoll_info *info)
1383 {
1384         struct adapter *adapter = ifp->if_softc;
1385
1386         ASSERT_SERIALIZED(ifp->if_serializer);
1387
1388         if (info != NULL) {
1389                 int cpuid = adapter->npoll.ifpc_cpuid;
1390
1391                 info->ifpi_rx[cpuid].poll_func = em_npoll_compat;
1392                 info->ifpi_rx[cpuid].arg = NULL;
1393                 info->ifpi_rx[cpuid].serializer = ifp->if_serializer;
1394
1395                 if (ifp->if_flags & IFF_RUNNING)
1396                         em_disable_intr(adapter);
1397                 ifq_set_cpuid(&ifp->if_snd, cpuid);
1398         } else {
1399                 if (ifp->if_flags & IFF_RUNNING)
1400                         em_enable_intr(adapter);
1401                 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(adapter->intr_res));
1402         }
1403 }
1404
1405 #endif /* IFPOLL_ENABLE */
1406
1407 static void
1408 em_intr(void *xsc)
1409 {
1410         em_intr_body(xsc, TRUE);
1411 }
1412
1413 static void
1414 em_intr_body(struct adapter *adapter, boolean_t chk_asserted)
1415 {
1416         struct ifnet *ifp = &adapter->arpcom.ac_if;
1417         uint32_t reg_icr;
1418
1419         logif(intr_beg);
1420         ASSERT_SERIALIZED(ifp->if_serializer);
1421
1422         reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
1423
1424         if (chk_asserted &&
1425             ((adapter->hw.mac.type >= e1000_82571 &&
1426               (reg_icr & E1000_ICR_INT_ASSERTED) == 0) ||
1427              reg_icr == 0)) {
1428                 logif(intr_end);
1429                 return;
1430         }
1431
1432         /*
1433          * XXX: some laptops trigger several spurious interrupts
1434          * on em(4) when in the resume cycle. The ICR register
1435          * reports all-ones value in this case. Processing such
1436          * interrupts would lead to a freeze. I don't know why.
1437          */
1438         if (reg_icr == 0xffffffff) {
1439                 logif(intr_end);
1440                 return;
1441         }
1442
1443         if (ifp->if_flags & IFF_RUNNING) {
1444                 if (reg_icr &
1445                     (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO))
1446                         em_rxeof(adapter, -1);
1447                 if (reg_icr & E1000_ICR_TXDW) {
1448                         em_txeof(adapter);
1449                         if (!ifq_is_empty(&ifp->if_snd))
1450                                 if_devstart(ifp);
1451                 }
1452         }
1453
1454         /* Link status change */
1455         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1456                 callout_stop(&adapter->timer);
1457                 adapter->hw.mac.get_link_status = 1;
1458                 em_update_link_status(adapter);
1459
1460                 /* Deal with TX cruft when link lost */
1461                 em_tx_purge(adapter);
1462
1463                 callout_reset(&adapter->timer, hz, em_timer, adapter);
1464         }
1465
1466         if (reg_icr & E1000_ICR_RXO)
1467                 adapter->rx_overruns++;
1468
1469         logif(intr_end);
1470 }
1471
1472 static void
1473 em_intr_mask(void *xsc)
1474 {
1475         struct adapter *adapter = xsc;
1476
1477         E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
1478         /*
1479          * NOTE:
1480          * ICR.INT_ASSERTED bit will never be set if IMS is 0,
1481          * so don't check it.
1482          */
1483         em_intr_body(adapter, FALSE);
1484         E1000_WRITE_REG(&adapter->hw, E1000_IMS, IMS_ENABLE_MASK);
1485 }
1486
1487 static void
1488 em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1489 {
1490         struct adapter *adapter = ifp->if_softc;
1491         u_char fiber_type = IFM_1000_SX;
1492
1493         ASSERT_SERIALIZED(ifp->if_serializer);
1494
1495         em_update_link_status(adapter);
1496
1497         ifmr->ifm_status = IFM_AVALID;
1498         ifmr->ifm_active = IFM_ETHER;
1499
1500         if (!adapter->link_active)
1501                 return;
1502
1503         ifmr->ifm_status |= IFM_ACTIVE;
1504
1505         if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
1506             adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
1507                 if (adapter->hw.mac.type == e1000_82545)
1508                         fiber_type = IFM_1000_LX;
1509                 ifmr->ifm_active |= fiber_type | IFM_FDX;
1510         } else {
1511                 switch (adapter->link_speed) {
1512                 case 10:
1513                         ifmr->ifm_active |= IFM_10_T;
1514                         break;
1515                 case 100:
1516                         ifmr->ifm_active |= IFM_100_TX;
1517                         break;
1518
1519                 case 1000:
1520                         ifmr->ifm_active |= IFM_1000_T;
1521                         break;
1522                 }
1523                 if (adapter->link_duplex == FULL_DUPLEX)
1524                         ifmr->ifm_active |= IFM_FDX;
1525                 else
1526                         ifmr->ifm_active |= IFM_HDX;
1527         }
1528 }
1529
1530 static int
1531 em_media_change(struct ifnet *ifp)
1532 {
1533         struct adapter *adapter = ifp->if_softc;
1534         struct ifmedia *ifm = &adapter->media;
1535
1536         ASSERT_SERIALIZED(ifp->if_serializer);
1537
1538         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1539                 return (EINVAL);
1540
1541         switch (IFM_SUBTYPE(ifm->ifm_media)) {
1542         case IFM_AUTO:
1543                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1544                 adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1545                 break;
1546
1547         case IFM_1000_LX:
1548         case IFM_1000_SX:
1549         case IFM_1000_T:
1550                 adapter->hw.mac.autoneg = DO_AUTO_NEG;
1551                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1552                 break;
1553
1554         case IFM_100_TX:
1555                 adapter->hw.mac.autoneg = FALSE;
1556                 adapter->hw.phy.autoneg_advertised = 0;
1557                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1558                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1559                 else
1560                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1561                 break;
1562
1563         case IFM_10_T:
1564                 adapter->hw.mac.autoneg = FALSE;
1565                 adapter->hw.phy.autoneg_advertised = 0;
1566                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1567                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1568                 else
1569                         adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1570                 break;
1571
1572         default:
1573                 if_printf(ifp, "Unsupported media type\n");
1574                 break;
1575         }
1576
1577         em_init(adapter);
1578
1579         return (0);
1580 }
1581
1582 static int
1583 em_encap(struct adapter *adapter, struct mbuf **m_headp,
1584     int *segs_used, int *idx)
1585 {
1586         bus_dma_segment_t segs[EM_MAX_SCATTER];
1587         bus_dmamap_t map;
1588         struct em_buffer *tx_buffer, *tx_buffer_mapped;
1589         struct e1000_tx_desc *ctxd = NULL;
1590         struct mbuf *m_head = *m_headp;
1591         uint32_t txd_upper, txd_lower, txd_used, cmd = 0;
1592         int maxsegs, nsegs, i, j, first, last = 0, error;
1593
1594         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1595                 error = em_tso_pullup(adapter, m_headp);
1596                 if (error)
1597                         return error;
1598                 m_head = *m_headp;
1599         }
1600
1601         txd_upper = txd_lower = 0;
1602         txd_used = 0;
1603
1604         /*
1605          * Capture the first descriptor index, this descriptor
1606          * will have the index of the EOP which is the only one
1607          * that now gets a DONE bit writeback.
1608          */
1609         first = adapter->next_avail_tx_desc;
1610         tx_buffer = &adapter->tx_buffer_area[first];
1611         tx_buffer_mapped = tx_buffer;
1612         map = tx_buffer->map;
1613
1614         maxsegs = adapter->num_tx_desc_avail - EM_TX_RESERVED;
1615         KASSERT(maxsegs >= adapter->spare_tx_desc,
1616                 ("not enough spare TX desc"));
1617         if (adapter->pcix_82544) {
1618                 /* Half it; see the comment in em_attach() */
1619                 maxsegs >>= 1;
1620         }
1621         if (maxsegs > EM_MAX_SCATTER)
1622                 maxsegs = EM_MAX_SCATTER;
1623
1624         error = bus_dmamap_load_mbuf_defrag(adapter->txtag, map, m_headp,
1625                         segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
1626         if (error) {
1627                 if (error == ENOBUFS)
1628                         adapter->mbuf_alloc_failed++;
1629                 else
1630                         adapter->no_tx_dma_setup++;
1631
1632                 m_freem(*m_headp);
1633                 *m_headp = NULL;
1634                 return error;
1635         }
1636         bus_dmamap_sync(adapter->txtag, map, BUS_DMASYNC_PREWRITE);
1637
1638         m_head = *m_headp;
1639         adapter->tx_nsegs += nsegs;
1640         *segs_used += nsegs;
1641
1642         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
1643                 /* TSO will consume one TX desc */
1644                 i = em_tso_setup(adapter, m_head, &txd_upper, &txd_lower);
1645                 adapter->tx_nsegs += i;
1646                 *segs_used += i;
1647         } else if (m_head->m_pkthdr.csum_flags & EM_CSUM_FEATURES) {
1648                 /* TX csum offloading will consume one TX desc */
1649                 i = em_txcsum(adapter, m_head, &txd_upper, &txd_lower);
1650                 adapter->tx_nsegs += i;
1651                 *segs_used += i;
1652         }
1653
1654         /* Handle VLAN tag */
1655         if (m_head->m_flags & M_VLANTAG) {
1656                 /* Set the vlan id. */
1657                 txd_upper |= (htole16(m_head->m_pkthdr.ether_vlantag) << 16);
1658                 /* Tell hardware to add tag */
1659                 txd_lower |= htole32(E1000_TXD_CMD_VLE);
1660         }
1661
1662         i = adapter->next_avail_tx_desc;
1663
1664         /* Set up our transmit descriptors */
1665         for (j = 0; j < nsegs; j++) {
1666                 /* If adapter is 82544 and on PCIX bus */
1667                 if(adapter->pcix_82544) {
1668                         DESC_ARRAY desc_array;
1669                         uint32_t array_elements, counter;
1670
1671                         /*
1672                          * Check the Address and Length combination and
1673                          * split the data accordingly
1674                          */
1675                         array_elements = em_82544_fill_desc(segs[j].ds_addr,
1676                                                 segs[j].ds_len, &desc_array);
1677                         for (counter = 0; counter < array_elements; counter++) {
1678                                 KKASSERT(txd_used < adapter->num_tx_desc_avail);
1679
1680                                 tx_buffer = &adapter->tx_buffer_area[i];
1681                                 ctxd = &adapter->tx_desc_base[i];
1682
1683                                 ctxd->buffer_addr = htole64(
1684                                     desc_array.descriptor[counter].address);
1685                                 ctxd->lower.data = htole32(
1686                                     E1000_TXD_CMD_IFCS | txd_lower |
1687                                     desc_array.descriptor[counter].length);
1688                                 ctxd->upper.data = htole32(txd_upper);
1689
1690                                 last = i;
1691                                 if (++i == adapter->num_tx_desc)
1692                                         i = 0;
1693
1694                                 txd_used++;
1695                         }
1696                 } else {
1697                         tx_buffer = &adapter->tx_buffer_area[i];
1698                         ctxd = &adapter->tx_desc_base[i];
1699
1700                         ctxd->buffer_addr = htole64(segs[j].ds_addr);
1701                         ctxd->lower.data = htole32(E1000_TXD_CMD_IFCS |
1702                                                    txd_lower | segs[j].ds_len);
1703                         ctxd->upper.data = htole32(txd_upper);
1704
1705                         last = i;
1706                         if (++i == adapter->num_tx_desc)
1707                                 i = 0;
1708                 }
1709         }
1710
1711         adapter->next_avail_tx_desc = i;
1712         if (adapter->pcix_82544) {
1713                 KKASSERT(adapter->num_tx_desc_avail > txd_used);
1714                 adapter->num_tx_desc_avail -= txd_used;
1715         } else {
1716                 KKASSERT(adapter->num_tx_desc_avail > nsegs);
1717                 adapter->num_tx_desc_avail -= nsegs;
1718         }
1719
1720         tx_buffer->m_head = m_head;
1721         tx_buffer_mapped->map = tx_buffer->map;
1722         tx_buffer->map = map;
1723
1724         if (adapter->tx_nsegs >= adapter->tx_int_nsegs) {
1725                 adapter->tx_nsegs = 0;
1726
1727                 /*
1728                  * Report Status (RS) is turned on
1729                  * every tx_int_nsegs descriptors.
1730                  */
1731                 cmd = E1000_TXD_CMD_RS;
1732
1733                 /*
1734                  * Keep track of the descriptor, which will
1735                  * be written back by hardware.
1736                  */
1737                 adapter->tx_dd[adapter->tx_dd_tail] = last;
1738                 EM_INC_TXDD_IDX(adapter->tx_dd_tail);
1739                 KKASSERT(adapter->tx_dd_tail != adapter->tx_dd_head);
1740         }
1741
1742         /*
1743          * Last Descriptor of Packet needs End Of Packet (EOP)
1744          */
1745         ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | cmd);
1746
1747         if (adapter->hw.mac.type == e1000_82547) {
1748                 /*
1749                  * Advance the Transmit Descriptor Tail (TDT), this tells the
1750                  * E1000 that this frame is available to transmit.
1751                  */
1752                 if (adapter->link_duplex == HALF_DUPLEX) {
1753                         em_82547_move_tail_serialized(adapter);
1754                 } else {
1755                         E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), i);
1756                         em_82547_update_fifo_head(adapter,
1757                             m_head->m_pkthdr.len);
1758                 }
1759         } else {
1760                 /*
1761                  * Defer TDT updating, until enough descriptors are setup
1762                  */
1763                 *idx = i;
1764         }
1765         return (0);
1766 }
1767
1768 /*
1769  * 82547 workaround to avoid controller hang in half-duplex environment.
1770  * The workaround is to avoid queuing a large packet that would span
1771  * the internal Tx FIFO ring boundary.  We need to reset the FIFO pointers
1772  * in this case.  We do that only when FIFO is quiescent.
1773  */
1774 static void
1775 em_82547_move_tail_serialized(struct adapter *adapter)
1776 {
1777         struct e1000_tx_desc *tx_desc;
1778         uint16_t hw_tdt, sw_tdt, length = 0;
1779         bool eop = 0;
1780
1781         ASSERT_SERIALIZED(adapter->arpcom.ac_if.if_serializer);
1782
1783         hw_tdt = E1000_READ_REG(&adapter->hw, E1000_TDT(0));
1784         sw_tdt = adapter->next_avail_tx_desc;
1785
1786         while (hw_tdt != sw_tdt) {
1787                 tx_desc = &adapter->tx_desc_base[hw_tdt];
1788                 length += tx_desc->lower.flags.length;
1789                 eop = tx_desc->lower.data & E1000_TXD_CMD_EOP;
1790                 if (++hw_tdt == adapter->num_tx_desc)
1791                         hw_tdt = 0;
1792
1793                 if (eop) {
1794                         if (em_82547_fifo_workaround(adapter, length)) {
1795                                 adapter->tx_fifo_wrk_cnt++;
1796                                 callout_reset(&adapter->tx_fifo_timer, 1,
1797                                         em_82547_move_tail, adapter);
1798                                 break;
1799                         }
1800                         E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), hw_tdt);
1801                         em_82547_update_fifo_head(adapter, length);
1802                         length = 0;
1803                 }
1804         }
1805 }
1806
1807 static void
1808 em_82547_move_tail(void *xsc)
1809 {
1810         struct adapter *adapter = xsc;
1811         struct ifnet *ifp = &adapter->arpcom.ac_if;
1812
1813         lwkt_serialize_enter(ifp->if_serializer);
1814         em_82547_move_tail_serialized(adapter);
1815         lwkt_serialize_exit(ifp->if_serializer);
1816 }
1817
1818 static int
1819 em_82547_fifo_workaround(struct adapter *adapter, int len)
1820 {       
1821         int fifo_space, fifo_pkt_len;
1822
1823         fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1824
1825         if (adapter->link_duplex == HALF_DUPLEX) {
1826                 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
1827
1828                 if (fifo_pkt_len >= (EM_82547_PKT_THRESH + fifo_space)) {
1829                         if (em_82547_tx_fifo_reset(adapter))
1830                                 return (0);
1831                         else
1832                                 return (1);
1833                 }
1834         }
1835         return (0);
1836 }
1837
1838 static void
1839 em_82547_update_fifo_head(struct adapter *adapter, int len)
1840 {
1841         int fifo_pkt_len = roundup2(len + EM_FIFO_HDR, EM_FIFO_HDR);
1842
1843         /* tx_fifo_head is always 16 byte aligned */
1844         adapter->tx_fifo_head += fifo_pkt_len;
1845         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1846                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
1847 }
1848
1849 static int
1850 em_82547_tx_fifo_reset(struct adapter *adapter)
1851 {
1852         uint32_t tctl;
1853
1854         if ((E1000_READ_REG(&adapter->hw, E1000_TDT(0)) ==
1855              E1000_READ_REG(&adapter->hw, E1000_TDH(0))) &&
1856             (E1000_READ_REG(&adapter->hw, E1000_TDFT) == 
1857              E1000_READ_REG(&adapter->hw, E1000_TDFH)) &&
1858             (E1000_READ_REG(&adapter->hw, E1000_TDFTS) ==
1859              E1000_READ_REG(&adapter->hw, E1000_TDFHS)) &&
1860             (E1000_READ_REG(&adapter->hw, E1000_TDFPC) == 0)) {
1861                 /* Disable TX unit */
1862                 tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
1863                 E1000_WRITE_REG(&adapter->hw, E1000_TCTL,
1864                     tctl & ~E1000_TCTL_EN);
1865
1866                 /* Reset FIFO pointers */
1867                 E1000_WRITE_REG(&adapter->hw, E1000_TDFT,
1868                     adapter->tx_head_addr);
1869                 E1000_WRITE_REG(&adapter->hw, E1000_TDFH,
1870                     adapter->tx_head_addr);
1871                 E1000_WRITE_REG(&adapter->hw, E1000_TDFTS,
1872                     adapter->tx_head_addr);
1873                 E1000_WRITE_REG(&adapter->hw, E1000_TDFHS,
1874                     adapter->tx_head_addr);
1875
1876                 /* Re-enable TX unit */
1877                 E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
1878                 E1000_WRITE_FLUSH(&adapter->hw);
1879
1880                 adapter->tx_fifo_head = 0;
1881                 adapter->tx_fifo_reset_cnt++;
1882
1883                 return (TRUE);
1884         } else {
1885                 return (FALSE);
1886         }
1887 }
1888
1889 static void
1890 em_set_promisc(struct adapter *adapter)
1891 {
1892         struct ifnet *ifp = &adapter->arpcom.ac_if;
1893         uint32_t reg_rctl;
1894
1895         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1896
1897         if (ifp->if_flags & IFF_PROMISC) {
1898                 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1899                 /* Turn this on if you want to see bad packets */
1900                 if (em_debug_sbp)
1901                         reg_rctl |= E1000_RCTL_SBP;
1902                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1903         } else if (ifp->if_flags & IFF_ALLMULTI) {
1904                 reg_rctl |= E1000_RCTL_MPE;
1905                 reg_rctl &= ~E1000_RCTL_UPE;
1906                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1907         }
1908 }
1909
1910 static void
1911 em_disable_promisc(struct adapter *adapter)
1912 {
1913         uint32_t reg_rctl;
1914
1915         reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1916
1917         reg_rctl &= ~E1000_RCTL_UPE;
1918         reg_rctl &= ~E1000_RCTL_MPE;
1919         reg_rctl &= ~E1000_RCTL_SBP;
1920         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1921 }
1922
1923 static void
1924 em_set_multi(struct adapter *adapter)
1925 {
1926         struct ifnet *ifp = &adapter->arpcom.ac_if;
1927         struct ifmultiaddr *ifma;
1928         uint32_t reg_rctl = 0;
1929         uint8_t *mta;
1930         int mcnt = 0;
1931
1932         mta = adapter->mta;
1933         bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1934
1935         if (adapter->hw.mac.type == e1000_82542 && 
1936             adapter->hw.revision_id == E1000_REVISION_2) {
1937                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1938                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1939                         e1000_pci_clear_mwi(&adapter->hw);
1940                 reg_rctl |= E1000_RCTL_RST;
1941                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1942                 msec_delay(5);
1943         }
1944
1945         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1946                 if (ifma->ifma_addr->sa_family != AF_LINK)
1947                         continue;
1948
1949                 if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1950                         break;
1951
1952                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1953                     &mta[mcnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
1954                 mcnt++;
1955         }
1956
1957         if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1958                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1959                 reg_rctl |= E1000_RCTL_MPE;
1960                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1961         } else {
1962                 e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
1963         }
1964
1965         if (adapter->hw.mac.type == e1000_82542 && 
1966             adapter->hw.revision_id == E1000_REVISION_2) {
1967                 reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
1968                 reg_rctl &= ~E1000_RCTL_RST;
1969                 E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
1970                 msec_delay(5);
1971                 if (adapter->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
1972                         e1000_pci_set_mwi(&adapter->hw);
1973         }
1974 }
1975
1976 /*
1977  * This routine checks for link status and updates statistics.
1978  */
1979 static void
1980 em_timer(void *xsc)
1981 {
1982         struct adapter *adapter = xsc;
1983         struct ifnet *ifp = &adapter->arpcom.ac_if;
1984
1985         lwkt_serialize_enter(ifp->if_serializer);
1986
1987         em_update_link_status(adapter);
1988         em_update_stats(adapter);
1989
1990         /* Reset LAA into RAR[0] on 82571 */
1991         if (e1000_get_laa_state_82571(&adapter->hw) == TRUE)
1992                 e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
1993
1994         if (em_display_debug_stats && (ifp->if_flags & IFF_RUNNING))
1995                 em_print_hw_stats(adapter);
1996
1997         em_smartspeed(adapter);
1998
1999         callout_reset(&adapter->timer, hz, em_timer, adapter);
2000
2001         lwkt_serialize_exit(ifp->if_serializer);
2002 }
2003
2004 static void
2005 em_update_link_status(struct adapter *adapter)
2006 {
2007         struct e1000_hw *hw = &adapter->hw;
2008         struct ifnet *ifp = &adapter->arpcom.ac_if;
2009         device_t dev = adapter->dev;
2010         uint32_t link_check = 0;
2011
2012         /* Get the cached link value or read phy for real */
2013         switch (hw->phy.media_type) {
2014         case e1000_media_type_copper:
2015                 if (hw->mac.get_link_status) {
2016                         /* Do the work to read phy */
2017                         e1000_check_for_link(hw);
2018                         link_check = !hw->mac.get_link_status;
2019                         if (link_check) /* ESB2 fix */
2020                                 e1000_cfg_on_link_up(hw);
2021                 } else {
2022                         link_check = TRUE;
2023                 }
2024                 break;
2025
2026         case e1000_media_type_fiber:
2027                 e1000_check_for_link(hw);
2028                 link_check =
2029                         E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
2030                 break;
2031
2032         case e1000_media_type_internal_serdes:
2033                 e1000_check_for_link(hw);
2034                 link_check = adapter->hw.mac.serdes_has_link;
2035                 break;
2036
2037         case e1000_media_type_unknown:
2038         default:
2039                 break;
2040         }
2041
2042         /* Now check for a transition */
2043         if (link_check && adapter->link_active == 0) {
2044                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
2045                     &adapter->link_duplex);
2046
2047                 /*
2048                  * Check if we should enable/disable SPEED_MODE bit on
2049                  * 82571/82572
2050                  */
2051                 if (adapter->link_speed != SPEED_1000 &&
2052                     (hw->mac.type == e1000_82571 ||
2053                      hw->mac.type == e1000_82572)) {
2054                         int tarc0;
2055
2056                         tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2057                         tarc0 &= ~SPEED_MODE_BIT;
2058                         E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2059                 }
2060                 if (bootverbose) {
2061                         device_printf(dev, "Link is up %d Mbps %s\n",
2062                             adapter->link_speed,
2063                             ((adapter->link_duplex == FULL_DUPLEX) ?
2064                             "Full Duplex" : "Half Duplex"));
2065                 }
2066                 adapter->link_active = 1;
2067                 adapter->smartspeed = 0;
2068                 ifp->if_baudrate = adapter->link_speed * 1000000;
2069                 ifp->if_link_state = LINK_STATE_UP;
2070                 if_link_state_change(ifp);
2071         } else if (!link_check && adapter->link_active == 1) {
2072                 ifp->if_baudrate = adapter->link_speed = 0;
2073                 adapter->link_duplex = 0;
2074                 if (bootverbose)
2075                         device_printf(dev, "Link is Down\n");
2076                 adapter->link_active = 0;
2077 #if 0
2078                 /* Link down, disable watchdog */
2079                 if->if_timer = 0;
2080 #endif
2081                 ifp->if_link_state = LINK_STATE_DOWN;
2082                 if_link_state_change(ifp);
2083         }
2084 }
2085
2086 static void
2087 em_stop(struct adapter *adapter)
2088 {
2089         struct ifnet *ifp = &adapter->arpcom.ac_if;
2090         int i;
2091
2092         ASSERT_SERIALIZED(ifp->if_serializer);
2093
2094         em_disable_intr(adapter);
2095
2096         callout_stop(&adapter->timer);
2097         callout_stop(&adapter->tx_fifo_timer);
2098
2099         ifp->if_flags &= ~IFF_RUNNING;
2100         ifq_clr_oactive(&ifp->if_snd);
2101         ifp->if_timer = 0;
2102
2103         e1000_reset_hw(&adapter->hw);
2104         if (adapter->hw.mac.type >= e1000_82544)
2105                 E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2106
2107         for (i = 0; i < adapter->num_tx_desc; i++) {
2108                 struct em_buffer *tx_buffer = &adapter->tx_buffer_area[i];
2109
2110                 if (tx_buffer->m_head != NULL) {
2111                         bus_dmamap_unload(adapter->txtag, tx_buffer->map);
2112                         m_freem(tx_buffer->m_head);
2113                         tx_buffer->m_head = NULL;
2114                 }
2115         }
2116
2117         for (i = 0; i < adapter->num_rx_desc; i++) {
2118                 struct em_buffer *rx_buffer = &adapter->rx_buffer_area[i];
2119
2120                 if (rx_buffer->m_head != NULL) {
2121                         bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
2122                         m_freem(rx_buffer->m_head);
2123                         rx_buffer->m_head = NULL;
2124                 }
2125         }
2126
2127         if (adapter->fmp != NULL)
2128                 m_freem(adapter->fmp);
2129         adapter->fmp = NULL;
2130         adapter->lmp = NULL;
2131
2132         adapter->csum_flags = 0;
2133         adapter->csum_lhlen = 0;
2134         adapter->csum_iphlen = 0;
2135         adapter->csum_thlen = 0;
2136         adapter->csum_mss = 0;
2137         adapter->csum_pktlen = 0;
2138
2139         adapter->tx_dd_head = 0;
2140         adapter->tx_dd_tail = 0;
2141         adapter->tx_nsegs = 0;
2142 }
2143
2144 static int
2145 em_get_hw_info(struct adapter *adapter)
2146 {
2147         device_t dev = adapter->dev;
2148
2149         /* Save off the information about this board */
2150         adapter->hw.vendor_id = pci_get_vendor(dev);
2151         adapter->hw.device_id = pci_get_device(dev);
2152         adapter->hw.revision_id = pci_get_revid(dev);
2153         adapter->hw.subsystem_vendor_id = pci_get_subvendor(dev);
2154         adapter->hw.subsystem_device_id = pci_get_subdevice(dev);
2155
2156         /* Do Shared Code Init and Setup */
2157         if (e1000_set_mac_type(&adapter->hw))
2158                 return ENXIO;
2159         return 0;
2160 }
2161
2162 static int
2163 em_alloc_pci_res(struct adapter *adapter)
2164 {
2165         device_t dev = adapter->dev;
2166         u_int intr_flags;
2167         int val, rid, msi_enable;
2168
2169         /* Enable bus mastering */
2170         pci_enable_busmaster(dev);
2171
2172         adapter->memory_rid = EM_BAR_MEM;
2173         adapter->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
2174                                 &adapter->memory_rid, RF_ACTIVE);
2175         if (adapter->memory == NULL) {
2176                 device_printf(dev, "Unable to allocate bus resource: memory\n");
2177                 return (ENXIO);
2178         }
2179         adapter->osdep.mem_bus_space_tag =
2180             rman_get_bustag(adapter->memory);
2181         adapter->osdep.mem_bus_space_handle =
2182             rman_get_bushandle(adapter->memory);
2183
2184         /* XXX This is quite goofy, it is not actually used */
2185         adapter->hw.hw_addr = (uint8_t *)&adapter->osdep.mem_bus_space_handle;
2186
2187         /* Only older adapters use IO mapping */
2188         if (adapter->hw.mac.type > e1000_82543 &&
2189             adapter->hw.mac.type < e1000_82571) {
2190                 /* Figure our where our IO BAR is ? */
2191                 for (rid = PCIR_BAR(0); rid < PCIR_CARDBUSCIS;) {
2192                         val = pci_read_config(dev, rid, 4);
2193                         if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2194                                 adapter->io_rid = rid;
2195                                 break;
2196                         }
2197                         rid += 4;
2198                         /* check for 64bit BAR */
2199                         if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2200                                 rid += 4;
2201                 }
2202                 if (rid >= PCIR_CARDBUSCIS) {
2203                         device_printf(dev, "Unable to locate IO BAR\n");
2204                         return (ENXIO);
2205                 }
2206                 adapter->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2207                                         &adapter->io_rid, RF_ACTIVE);
2208                 if (adapter->ioport == NULL) {
2209                         device_printf(dev, "Unable to allocate bus resource: "
2210                             "ioport\n");
2211                         return (ENXIO);
2212                 }
2213                 adapter->hw.io_base = 0;
2214                 adapter->osdep.io_bus_space_tag =
2215                     rman_get_bustag(adapter->ioport);
2216                 adapter->osdep.io_bus_space_handle =
2217                     rman_get_bushandle(adapter->ioport);
2218         }
2219
2220         /*
2221          * Don't enable MSI-X on 82574, see:
2222          * 82574 specification update errata #15
2223          *
2224          * Don't enable MSI on PCI/PCI-X chips, see:
2225          * 82540 specification update errata #6
2226          * 82545 specification update errata #4
2227          *
2228          * Don't enable MSI on 82571/82572, see:
2229          * 82571/82572 specification update errata #63
2230          */
2231         msi_enable = em_msi_enable;
2232         if (msi_enable &&
2233             (!pci_is_pcie(dev) ||
2234              adapter->hw.mac.type == e1000_82571 ||
2235              adapter->hw.mac.type == e1000_82572))
2236                 msi_enable = 0;
2237
2238         adapter->intr_type = pci_alloc_1intr(dev, msi_enable,
2239             &adapter->intr_rid, &intr_flags);
2240
2241         if (adapter->intr_type == PCI_INTR_TYPE_LEGACY) {
2242                 int unshared;
2243
2244                 unshared = device_getenv_int(dev, "irq.unshared", 0);
2245                 if (!unshared) {
2246                         adapter->flags |= EM_FLAG_SHARED_INTR;
2247                         if (bootverbose)
2248                                 device_printf(dev, "IRQ shared\n");
2249                 } else {
2250                         intr_flags &= ~RF_SHAREABLE;
2251                         if (bootverbose)
2252                                 device_printf(dev, "IRQ unshared\n");
2253                 }
2254         }
2255
2256         adapter->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
2257             &adapter->intr_rid, intr_flags);
2258         if (adapter->intr_res == NULL) {
2259                 device_printf(dev, "Unable to allocate bus resource: "
2260                     "interrupt\n");
2261                 return (ENXIO);
2262         }
2263
2264         adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2265         adapter->hw.back = &adapter->osdep;
2266         return (0);
2267 }
2268
2269 static void
2270 em_free_pci_res(struct adapter *adapter)
2271 {
2272         device_t dev = adapter->dev;
2273
2274         if (adapter->intr_res != NULL) {
2275                 bus_release_resource(dev, SYS_RES_IRQ,
2276                     adapter->intr_rid, adapter->intr_res);
2277         }
2278
2279         if (adapter->intr_type == PCI_INTR_TYPE_MSI)
2280                 pci_release_msi(dev);
2281
2282         if (adapter->memory != NULL) {
2283                 bus_release_resource(dev, SYS_RES_MEMORY,
2284                     adapter->memory_rid, adapter->memory);
2285         }
2286
2287         if (adapter->flash != NULL) {
2288                 bus_release_resource(dev, SYS_RES_MEMORY,
2289                     adapter->flash_rid, adapter->flash);
2290         }
2291
2292         if (adapter->ioport != NULL) {
2293                 bus_release_resource(dev, SYS_RES_IOPORT,
2294                     adapter->io_rid, adapter->ioport);
2295         }
2296 }
2297
2298 static int
2299 em_reset(struct adapter *adapter)
2300 {
2301         device_t dev = adapter->dev;
2302         uint16_t rx_buffer_size;
2303         uint32_t pba;
2304
2305         /* When hardware is reset, fifo_head is also reset */
2306         adapter->tx_fifo_head = 0;
2307
2308         /* Set up smart power down as default off on newer adapters. */
2309         if (!em_smart_pwr_down &&
2310             (adapter->hw.mac.type == e1000_82571 ||
2311              adapter->hw.mac.type == e1000_82572)) {
2312                 uint16_t phy_tmp = 0;
2313
2314                 /* Speed up time to link by disabling smart power down. */
2315                 e1000_read_phy_reg(&adapter->hw,
2316                     IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
2317                 phy_tmp &= ~IGP02E1000_PM_SPD;
2318                 e1000_write_phy_reg(&adapter->hw,
2319                     IGP02E1000_PHY_POWER_MGMT, phy_tmp);
2320         }
2321
2322         /*
2323          * Packet Buffer Allocation (PBA)
2324          * Writing PBA sets the receive portion of the buffer
2325          * the remainder is used for the transmit buffer.
2326          *
2327          * Devices before the 82547 had a Packet Buffer of 64K.
2328          *   Default allocation: PBA=48K for Rx, leaving 16K for Tx.
2329          * After the 82547 the buffer was reduced to 40K.
2330          *   Default allocation: PBA=30K for Rx, leaving 10K for Tx.
2331          *   Note: default does not leave enough room for Jumbo Frame >10k.
2332          */
2333         switch (adapter->hw.mac.type) {
2334         case e1000_82547:
2335         case e1000_82547_rev_2: /* 82547: Total Packet Buffer is 40K */
2336                 if (adapter->hw.mac.max_frame_size > 8192)
2337                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
2338                 else
2339                         pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
2340                 adapter->tx_fifo_head = 0;
2341                 adapter->tx_head_addr = pba << EM_TX_HEAD_ADDR_SHIFT;
2342                 adapter->tx_fifo_size =
2343                     (E1000_PBA_40K - pba) << EM_PBA_BYTES_SHIFT;
2344                 break;
2345
2346         /* Total Packet Buffer on these is 48K */
2347         case e1000_82571:
2348         case e1000_82572:
2349         case e1000_80003es2lan:
2350                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
2351                 break;
2352
2353         case e1000_82573: /* 82573: Total Packet Buffer is 32K */
2354                 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
2355                 break;
2356
2357         case e1000_82574:
2358         case e1000_82583:
2359                 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
2360                 break;
2361
2362         case e1000_ich8lan:
2363                 pba = E1000_PBA_8K;
2364                 break;
2365
2366         case e1000_ich9lan:
2367         case e1000_ich10lan:
2368 #define E1000_PBA_10K   0x000A
2369                 pba = E1000_PBA_10K;
2370                 break;
2371
2372         case e1000_pchlan:
2373         case e1000_pch2lan:
2374         case e1000_pch_lpt:
2375                 pba = E1000_PBA_26K;
2376                 break;
2377
2378         default:
2379                 /* Devices before 82547 had a Packet Buffer of 64K.   */
2380                 if (adapter->hw.mac.max_frame_size > 8192)
2381                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
2382                 else
2383                         pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
2384         }
2385         E1000_WRITE_REG(&adapter->hw, E1000_PBA, pba);
2386
2387         /*
2388          * These parameters control the automatic generation (Tx) and
2389          * response (Rx) to Ethernet PAUSE frames.
2390          * - High water mark should allow for at least two frames to be
2391          *   received after sending an XOFF.
2392          * - Low water mark works best when it is very near the high water mark.
2393          *   This allows the receiver to restart by sending XON when it has
2394          *   drained a bit. Here we use an arbitary value of 1500 which will
2395          *   restart after one full frame is pulled from the buffer. There
2396          *   could be several smaller frames in the buffer and if so they will
2397          *   not trigger the XON until their total number reduces the buffer
2398          *   by 1500.
2399          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
2400          */
2401         rx_buffer_size =
2402                 (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) << 10;
2403
2404         adapter->hw.fc.high_water = rx_buffer_size -
2405             roundup2(adapter->hw.mac.max_frame_size, 1024);
2406         adapter->hw.fc.low_water = adapter->hw.fc.high_water - 1500;
2407
2408         if (adapter->hw.mac.type == e1000_80003es2lan)
2409                 adapter->hw.fc.pause_time = 0xFFFF;
2410         else
2411                 adapter->hw.fc.pause_time = EM_FC_PAUSE_TIME;
2412
2413         adapter->hw.fc.send_xon = TRUE;
2414
2415         adapter->hw.fc.requested_mode = e1000_fc_full;
2416
2417         /*
2418          * Device specific overrides/settings
2419          */
2420         switch (adapter->hw.mac.type) {
2421         case e1000_pchlan:
2422                 /* Workaround: no TX flow ctrl for PCH */
2423                 adapter->hw.fc.requested_mode = e1000_fc_rx_pause;
2424                 adapter->hw.fc.pause_time = 0xFFFF; /* override */
2425                 if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2426                         adapter->hw.fc.high_water = 0x3500;
2427                         adapter->hw.fc.low_water = 0x1500;
2428                 } else {
2429                         adapter->hw.fc.high_water = 0x5000;
2430                         adapter->hw.fc.low_water = 0x3000;
2431                 }
2432                 adapter->hw.fc.refresh_time = 0x1000;
2433                 break;
2434
2435         case e1000_pch2lan:
2436         case e1000_pch_lpt:
2437                 adapter->hw.fc.high_water = 0x5C20;
2438                 adapter->hw.fc.low_water = 0x5048;
2439                 adapter->hw.fc.pause_time = 0x0650;
2440                 adapter->hw.fc.refresh_time = 0x0400;
2441                 /* Jumbos need adjusted PBA */
2442                 if (adapter->arpcom.ac_if.if_mtu > ETHERMTU)
2443                         E1000_WRITE_REG(&adapter->hw, E1000_PBA, 12);
2444                 else
2445                         E1000_WRITE_REG(&adapter->hw, E1000_PBA, 26);
2446                 break;
2447
2448         case e1000_ich9lan:
2449         case e1000_ich10lan:
2450                 if (adapter->arpcom.ac_if.if_mtu > ETHERMTU) {
2451                         adapter->hw.fc.high_water = 0x2800;
2452                         adapter->hw.fc.low_water =
2453                             adapter->hw.fc.high_water - 8;
2454                         break;
2455                 }
2456                 /* FALL THROUGH */
2457         default:
2458                 if (adapter->hw.mac.type == e1000_80003es2lan)
2459                         adapter->hw.fc.pause_time = 0xFFFF;
2460                 break;
2461         }
2462
2463         /* Issue a global reset */
2464         e1000_reset_hw(&adapter->hw);
2465         if (adapter->hw.mac.type >= e1000_82544)
2466                 E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
2467         em_disable_aspm(adapter);
2468
2469         if (e1000_init_hw(&adapter->hw) < 0) {
2470                 device_printf(dev, "Hardware Initialization Failed\n");
2471                 return (EIO);
2472         }
2473
2474         E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
2475         e1000_get_phy_info(&adapter->hw);
2476         e1000_check_for_link(&adapter->hw);
2477
2478         return (0);
2479 }
2480
2481 static void
2482 em_setup_ifp(struct adapter *adapter)
2483 {
2484         struct ifnet *ifp = &adapter->arpcom.ac_if;
2485
2486         if_initname(ifp, device_get_name(adapter->dev),
2487                     device_get_unit(adapter->dev));
2488         ifp->if_softc = adapter;
2489         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2490         ifp->if_init =  em_init;
2491         ifp->if_ioctl = em_ioctl;
2492         ifp->if_start = em_start;
2493 #ifdef IFPOLL_ENABLE
2494         ifp->if_npoll = em_npoll;
2495 #endif
2496         ifp->if_watchdog = em_watchdog;
2497         ifq_set_maxlen(&ifp->if_snd, adapter->num_tx_desc - 1);
2498         ifq_set_ready(&ifp->if_snd);
2499
2500         ether_ifattach(ifp, adapter->hw.mac.addr, NULL);
2501
2502         ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2503         if (adapter->hw.mac.type >= e1000_82543)
2504                 ifp->if_capabilities |= IFCAP_HWCSUM;
2505         if (adapter->flags & EM_FLAG_TSO)
2506                 ifp->if_capabilities |= IFCAP_TSO;
2507         ifp->if_capenable = ifp->if_capabilities;
2508
2509         if (ifp->if_capenable & IFCAP_TXCSUM)
2510                 ifp->if_hwassist |= EM_CSUM_FEATURES;
2511         if (ifp->if_capenable & IFCAP_TSO)
2512                 ifp->if_hwassist |= CSUM_TSO;
2513
2514         /*
2515          * Tell the upper layer(s) we support long frames.
2516          */
2517         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
2518
2519         /*
2520          * Specify the media types supported by this adapter and register
2521          * callbacks to update media and link information
2522          */
2523         ifmedia_init(&adapter->media, IFM_IMASK,
2524                      em_media_change, em_media_status);
2525         if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2526             adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
2527                 u_char fiber_type = IFM_1000_SX; /* default type */
2528
2529                 if (adapter->hw.mac.type == e1000_82545)
2530                         fiber_type = IFM_1000_LX;
2531                 ifmedia_add(&adapter->media, IFM_ETHER | fiber_type | IFM_FDX, 
2532                             0, NULL);
2533                 ifmedia_add(&adapter->media, IFM_ETHER | fiber_type, 0, NULL);
2534         } else {
2535                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
2536                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
2537                             0, NULL);
2538                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
2539                             0, NULL);
2540                 ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
2541                             0, NULL);
2542                 if (adapter->hw.phy.type != e1000_phy_ife) {
2543                         ifmedia_add(&adapter->media,
2544                                 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
2545                         ifmedia_add(&adapter->media,
2546                                 IFM_ETHER | IFM_1000_T, 0, NULL);
2547                 }
2548         }
2549         ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
2550         ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
2551 }
2552
2553
2554 /*
2555  * Workaround for SmartSpeed on 82541 and 82547 controllers
2556  */
2557 static void
2558 em_smartspeed(struct adapter *adapter)
2559 {
2560         uint16_t phy_tmp;
2561
2562         if (adapter->link_active || adapter->hw.phy.type != e1000_phy_igp ||
2563             adapter->hw.mac.autoneg == 0 ||
2564             (adapter->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2565                 return;
2566
2567         if (adapter->smartspeed == 0) {
2568                 /*
2569                  * If Master/Slave config fault is asserted twice,
2570                  * we assume back-to-back
2571                  */
2572                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2573                 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2574                         return;
2575                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_tmp);
2576                 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2577                         e1000_read_phy_reg(&adapter->hw,
2578                             PHY_1000T_CTRL, &phy_tmp);
2579                         if (phy_tmp & CR_1000T_MS_ENABLE) {
2580                                 phy_tmp &= ~CR_1000T_MS_ENABLE;
2581                                 e1000_write_phy_reg(&adapter->hw,
2582                                     PHY_1000T_CTRL, phy_tmp);
2583                                 adapter->smartspeed++;
2584                                 if (adapter->hw.mac.autoneg &&
2585                                     !e1000_phy_setup_autoneg(&adapter->hw) &&
2586                                     !e1000_read_phy_reg(&adapter->hw,
2587                                      PHY_CONTROL, &phy_tmp)) {
2588                                         phy_tmp |= MII_CR_AUTO_NEG_EN |
2589                                                    MII_CR_RESTART_AUTO_NEG;
2590                                         e1000_write_phy_reg(&adapter->hw,
2591                                             PHY_CONTROL, phy_tmp);
2592                                 }
2593                         }
2594                 }
2595                 return;
2596         } else if (adapter->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2597                 /* If still no link, perhaps using 2/3 pair cable */
2598                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_tmp);
2599                 phy_tmp |= CR_1000T_MS_ENABLE;
2600                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_tmp);
2601                 if (adapter->hw.mac.autoneg &&
2602                     !e1000_phy_setup_autoneg(&adapter->hw) &&
2603                     !e1000_read_phy_reg(&adapter->hw, PHY_CONTROL, &phy_tmp)) {
2604                         phy_tmp |= MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG;
2605                         e1000_write_phy_reg(&adapter->hw, PHY_CONTROL, phy_tmp);
2606                 }
2607         }
2608
2609         /* Restart process after EM_SMARTSPEED_MAX iterations */
2610         if (adapter->smartspeed++ == EM_SMARTSPEED_MAX)
2611                 adapter->smartspeed = 0;
2612 }
2613
2614 static int
2615 em_dma_malloc(struct adapter *adapter, bus_size_t size,
2616               struct em_dma_alloc *dma)
2617 {
2618         dma->dma_vaddr = bus_dmamem_coherent_any(adapter->parent_dtag,
2619                                 EM_DBA_ALIGN, size, BUS_DMA_WAITOK,
2620                                 &dma->dma_tag, &dma->dma_map,
2621                                 &dma->dma_paddr);
2622         if (dma->dma_vaddr == NULL)
2623                 return ENOMEM;
2624         else
2625                 return 0;
2626 }
2627
2628 static void
2629 em_dma_free(struct adapter *adapter, struct em_dma_alloc *dma)
2630 {
2631         if (dma->dma_tag == NULL)
2632                 return;
2633         bus_dmamap_unload(dma->dma_tag, dma->dma_map);
2634         bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
2635         bus_dma_tag_destroy(dma->dma_tag);
2636 }
2637
2638 static int
2639 em_create_tx_ring(struct adapter *adapter)
2640 {
2641         device_t dev = adapter->dev;
2642         struct em_buffer *tx_buffer;
2643         int error, i;
2644
2645         adapter->tx_buffer_area =
2646                 kmalloc(sizeof(struct em_buffer) * adapter->num_tx_desc,
2647                         M_DEVBUF, M_WAITOK | M_ZERO);
2648
2649         /*
2650          * Create DMA tags for tx buffers
2651          */
2652         error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
2653                         1, 0,                   /* alignment, bounds */
2654                         BUS_SPACE_MAXADDR,      /* lowaddr */
2655                         BUS_SPACE_MAXADDR,      /* highaddr */
2656                         NULL, NULL,             /* filter, filterarg */
2657                         EM_TSO_SIZE,            /* maxsize */
2658                         EM_MAX_SCATTER,         /* nsegments */
2659                         PAGE_SIZE,              /* maxsegsize */
2660                         BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
2661                         BUS_DMA_ONEBPAGE,       /* flags */
2662                         &adapter->txtag);
2663         if (error) {
2664                 device_printf(dev, "Unable to allocate TX DMA tag\n");
2665                 kfree(adapter->tx_buffer_area, M_DEVBUF);
2666                 adapter->tx_buffer_area = NULL;
2667                 return error;
2668         }
2669
2670         /*
2671          * Create DMA maps for tx buffers
2672          */
2673         for (i = 0; i < adapter->num_tx_desc; i++) {
2674                 tx_buffer = &adapter->tx_buffer_area[i];
2675
2676                 error = bus_dmamap_create(adapter->txtag,
2677                                           BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
2678                                           &tx_buffer->map);
2679                 if (error) {
2680                         device_printf(dev, "Unable to create TX DMA map\n");
2681                         em_destroy_tx_ring(adapter, i);
2682                         return error;
2683                 }
2684         }
2685         return (0);
2686 }
2687
2688 static void
2689 em_init_tx_ring(struct adapter *adapter)
2690 {
2691         /* Clear the old ring contents */
2692         bzero(adapter->tx_desc_base,
2693             (sizeof(struct e1000_tx_desc)) * adapter->num_tx_desc);
2694
2695         /* Reset state */
2696         adapter->next_avail_tx_desc = 0;
2697         adapter->next_tx_to_clean = 0;
2698         adapter->num_tx_desc_avail = adapter->num_tx_desc;
2699 }
2700
2701 static void
2702 em_init_tx_unit(struct adapter *adapter)
2703 {
2704         uint32_t tctl, tarc, tipg = 0;
2705         uint64_t bus_addr;
2706
2707         /* Setup the Base and Length of the Tx Descriptor Ring */
2708         bus_addr = adapter->txdma.dma_paddr;
2709         E1000_WRITE_REG(&adapter->hw, E1000_TDLEN(0),
2710             adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
2711         E1000_WRITE_REG(&adapter->hw, E1000_TDBAH(0),
2712             (uint32_t)(bus_addr >> 32));
2713         E1000_WRITE_REG(&adapter->hw, E1000_TDBAL(0),
2714             (uint32_t)bus_addr);
2715         /* Setup the HW Tx Head and Tail descriptor pointers */
2716         E1000_WRITE_REG(&adapter->hw, E1000_TDT(0), 0);
2717         E1000_WRITE_REG(&adapter->hw, E1000_TDH(0), 0);
2718
2719         /* Set the default values for the Tx Inter Packet Gap timer */
2720         switch (adapter->hw.mac.type) {
2721         case e1000_82542:
2722                 tipg = DEFAULT_82542_TIPG_IPGT;
2723                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2724                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2725                 break;
2726
2727         case e1000_80003es2lan:
2728                 tipg = DEFAULT_82543_TIPG_IPGR1;
2729                 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
2730                     E1000_TIPG_IPGR2_SHIFT;
2731                 break;
2732
2733         default:
2734                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
2735                     adapter->hw.phy.media_type ==
2736                     e1000_media_type_internal_serdes)
2737                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
2738                 else
2739                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
2740                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
2741                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
2742                 break;
2743         }
2744
2745         E1000_WRITE_REG(&adapter->hw, E1000_TIPG, tipg);
2746
2747         /* NOTE: 0 is not allowed for TIDV */
2748         E1000_WRITE_REG(&adapter->hw, E1000_TIDV, 1);
2749         if(adapter->hw.mac.type >= e1000_82540)
2750                 E1000_WRITE_REG(&adapter->hw, E1000_TADV, 0);
2751
2752         if (adapter->hw.mac.type == e1000_82571 ||
2753             adapter->hw.mac.type == e1000_82572) {
2754                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2755                 tarc |= SPEED_MODE_BIT;
2756                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2757         } else if (adapter->hw.mac.type == e1000_80003es2lan) {
2758                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(0));
2759                 tarc |= 1;
2760                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(0), tarc);
2761                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2762                 tarc |= 1;
2763                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2764         }
2765
2766         /* Program the Transmit Control Register */
2767         tctl = E1000_READ_REG(&adapter->hw, E1000_TCTL);
2768         tctl &= ~E1000_TCTL_CT;
2769         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2770                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2771
2772         if (adapter->hw.mac.type >= e1000_82571)
2773                 tctl |= E1000_TCTL_MULR;
2774
2775         /* This write will effectively turn on the transmit unit. */
2776         E1000_WRITE_REG(&adapter->hw, E1000_TCTL, tctl);
2777
2778         if (adapter->hw.mac.type == e1000_82571 ||
2779             adapter->hw.mac.type == e1000_82572 ||
2780             adapter->hw.mac.type == e1000_80003es2lan) {
2781                 /* Bit 28 of TARC1 must be cleared when MULR is enabled */
2782                 tarc = E1000_READ_REG(&adapter->hw, E1000_TARC(1));
2783                 tarc &= ~(1 << 28);
2784                 E1000_WRITE_REG(&adapter->hw, E1000_TARC(1), tarc);
2785         }
2786 }
2787
2788 static void
2789 em_destroy_tx_ring(struct adapter *adapter, int ndesc)
2790 {
2791         struct em_buffer *tx_buffer;
2792         int i;
2793
2794         if (adapter->tx_buffer_area == NULL)
2795                 return;
2796
2797         for (i = 0; i < ndesc; i++) {
2798                 tx_buffer = &adapter->tx_buffer_area[i];
2799
2800                 KKASSERT(tx_buffer->m_head == NULL);
2801                 bus_dmamap_destroy(adapter->txtag, tx_buffer->map);
2802         }
2803         bus_dma_tag_destroy(adapter->txtag);
2804
2805         kfree(adapter->tx_buffer_area, M_DEVBUF);
2806         adapter->tx_buffer_area = NULL;
2807 }
2808
2809 /*
2810  * The offload context needs to be set when we transfer the first
2811  * packet of a particular protocol (TCP/UDP).  This routine has been
2812  * enhanced to deal with inserted VLAN headers.
2813  *
2814  * If the new packet's ether header length, ip header length and
2815  * csum offloading type are same as the previous packet, we should
2816  * avoid allocating a new csum context descriptor; mainly to take
2817  * advantage of the pipeline effect of the TX data read request.
2818  *
2819  * This function returns number of TX descrptors allocated for
2820  * csum context.
2821  */
2822 static int
2823 em_txcsum(struct adapter *adapter, struct mbuf *mp,
2824           uint32_t *txd_upper, uint32_t *txd_lower)
2825 {
2826         struct e1000_context_desc *TXD;
2827         int curr_txd, ehdrlen, csum_flags;
2828         uint32_t cmd, hdr_len, ip_hlen;
2829
2830         csum_flags = mp->m_pkthdr.csum_flags & EM_CSUM_FEATURES;
2831         ip_hlen = mp->m_pkthdr.csum_iphlen;
2832         ehdrlen = mp->m_pkthdr.csum_lhlen;
2833
2834         if (adapter->csum_lhlen == ehdrlen &&
2835             adapter->csum_iphlen == ip_hlen &&
2836             adapter->csum_flags == csum_flags) {
2837                 /*
2838                  * Same csum offload context as the previous packets;
2839                  * just return.
2840                  */
2841                 *txd_upper = adapter->csum_txd_upper;
2842                 *txd_lower = adapter->csum_txd_lower;
2843                 return 0;
2844         }
2845
2846         /*
2847          * Setup a new csum offload context.
2848          */
2849
2850         curr_txd = adapter->next_avail_tx_desc;
2851         TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
2852
2853         cmd = 0;
2854
2855         /* Setup of IP header checksum. */
2856         if (csum_flags & CSUM_IP) {
2857                 /*
2858                  * Start offset for header checksum calculation.
2859                  * End offset for header checksum calculation.
2860                  * Offset of place to put the checksum.
2861                  */
2862                 TXD->lower_setup.ip_fields.ipcss = ehdrlen;
2863                 TXD->lower_setup.ip_fields.ipcse =
2864                     htole16(ehdrlen + ip_hlen - 1);
2865                 TXD->lower_setup.ip_fields.ipcso =
2866                     ehdrlen + offsetof(struct ip, ip_sum);
2867                 cmd |= E1000_TXD_CMD_IP;
2868                 *txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2869         }
2870         hdr_len = ehdrlen + ip_hlen;
2871
2872         if (csum_flags & CSUM_TCP) {
2873                 /*
2874                  * Start offset for payload checksum calculation.
2875                  * End offset for payload checksum calculation.
2876                  * Offset of place to put the checksum.
2877                  */
2878                 TXD->upper_setup.tcp_fields.tucss = hdr_len;
2879                 TXD->upper_setup.tcp_fields.tucse = htole16(0);
2880                 TXD->upper_setup.tcp_fields.tucso =
2881                     hdr_len + offsetof(struct tcphdr, th_sum);
2882                 cmd |= E1000_TXD_CMD_TCP;
2883                 *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2884         } else if (csum_flags & CSUM_UDP) {
2885                 /*
2886                  * Start offset for header checksum calculation.
2887                  * End offset for header checksum calculation.
2888                  * Offset of place to put the checksum.
2889                  */
2890                 TXD->upper_setup.tcp_fields.tucss = hdr_len;
2891                 TXD->upper_setup.tcp_fields.tucse = htole16(0);
2892                 TXD->upper_setup.tcp_fields.tucso =
2893                     hdr_len + offsetof(struct udphdr, uh_sum);
2894                 *txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2895         }
2896
2897         *txd_lower = E1000_TXD_CMD_DEXT |       /* Extended descr type */
2898                      E1000_TXD_DTYP_D;          /* Data descr */
2899
2900         /* Save the information for this csum offloading context */
2901         adapter->csum_lhlen = ehdrlen;
2902         adapter->csum_iphlen = ip_hlen;
2903         adapter->csum_flags = csum_flags;
2904         adapter->csum_txd_upper = *txd_upper;
2905         adapter->csum_txd_lower = *txd_lower;
2906
2907         TXD->tcp_seg_setup.data = htole32(0);
2908         TXD->cmd_and_length =
2909             htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
2910
2911         if (++curr_txd == adapter->num_tx_desc)
2912                 curr_txd = 0;
2913
2914         KKASSERT(adapter->num_tx_desc_avail > 0);
2915         adapter->num_tx_desc_avail--;
2916
2917         adapter->next_avail_tx_desc = curr_txd;
2918         return 1;
2919 }
2920
2921 static void
2922 em_txeof(struct adapter *adapter)
2923 {
2924         struct ifnet *ifp = &adapter->arpcom.ac_if;
2925         struct em_buffer *tx_buffer;
2926         int first, num_avail;
2927
2928         if (adapter->tx_dd_head == adapter->tx_dd_tail)
2929                 return;
2930
2931         if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2932                 return;
2933
2934         num_avail = adapter->num_tx_desc_avail;
2935         first = adapter->next_tx_to_clean;
2936
2937         while (adapter->tx_dd_head != adapter->tx_dd_tail) {
2938                 struct e1000_tx_desc *tx_desc;
2939                 int dd_idx = adapter->tx_dd[adapter->tx_dd_head];
2940
2941                 tx_desc = &adapter->tx_desc_base[dd_idx];
2942                 if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) {
2943                         EM_INC_TXDD_IDX(adapter->tx_dd_head);
2944
2945                         if (++dd_idx == adapter->num_tx_desc)
2946                                 dd_idx = 0;
2947
2948                         while (first != dd_idx) {
2949                                 logif(pkt_txclean);
2950
2951                                 num_avail++;
2952
2953                                 tx_buffer = &adapter->tx_buffer_area[first];
2954                                 if (tx_buffer->m_head) {
2955                                         IFNET_STAT_INC(ifp, opackets, 1);
2956                                         bus_dmamap_unload(adapter->txtag,
2957                                                           tx_buffer->map);
2958                                         m_freem(tx_buffer->m_head);
2959                                         tx_buffer->m_head = NULL;
2960                                 }
2961
2962                                 if (++first == adapter->num_tx_desc)
2963                                         first = 0;
2964                         }
2965                 } else {
2966                         break;
2967                 }
2968         }
2969         adapter->next_tx_to_clean = first;
2970         adapter->num_tx_desc_avail = num_avail;
2971
2972         if (adapter->tx_dd_head == adapter->tx_dd_tail) {
2973                 adapter->tx_dd_head = 0;
2974                 adapter->tx_dd_tail = 0;
2975         }
2976
2977         if (!EM_IS_OACTIVE(adapter)) {
2978                 ifq_clr_oactive(&ifp->if_snd);
2979
2980                 /* All clean, turn off the timer */
2981                 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2982                         ifp->if_timer = 0;
2983         }
2984 }
2985
2986 static void
2987 em_tx_collect(struct adapter *adapter)
2988 {
2989         struct ifnet *ifp = &adapter->arpcom.ac_if;
2990         struct em_buffer *tx_buffer;
2991         int tdh, first, num_avail, dd_idx = -1;
2992
2993         if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
2994                 return;
2995
2996         tdh = E1000_READ_REG(&adapter->hw, E1000_TDH(0));
2997         if (tdh == adapter->next_tx_to_clean)
2998                 return;
2999
3000         if (adapter->tx_dd_head != adapter->tx_dd_tail)
3001                 dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3002
3003         num_avail = adapter->num_tx_desc_avail;
3004         first = adapter->next_tx_to_clean;
3005
3006         while (first != tdh) {
3007                 logif(pkt_txclean);
3008
3009                 num_avail++;
3010
3011                 tx_buffer = &adapter->tx_buffer_area[first];
3012                 if (tx_buffer->m_head) {
3013                         IFNET_STAT_INC(ifp, opackets, 1);
3014                         bus_dmamap_unload(adapter->txtag,
3015                                           tx_buffer->map);
3016                         m_freem(tx_buffer->m_head);
3017                         tx_buffer->m_head = NULL;
3018                 }
3019
3020                 if (first == dd_idx) {
3021                         EM_INC_TXDD_IDX(adapter->tx_dd_head);
3022                         if (adapter->tx_dd_head == adapter->tx_dd_tail) {
3023                                 adapter->tx_dd_head = 0;
3024                                 adapter->tx_dd_tail = 0;
3025                                 dd_idx = -1;
3026                         } else {
3027                                 dd_idx = adapter->tx_dd[adapter->tx_dd_head];
3028                         }
3029                 }
3030
3031                 if (++first == adapter->num_tx_desc)
3032                         first = 0;
3033         }
3034         adapter->next_tx_to_clean = first;
3035         adapter->num_tx_desc_avail = num_avail;
3036
3037         if (!EM_IS_OACTIVE(adapter)) {
3038                 ifq_clr_oactive(&ifp->if_snd);
3039
3040                 /* All clean, turn off the timer */
3041                 if (adapter->num_tx_desc_avail == adapter->num_tx_desc)
3042                         ifp->if_timer = 0;
3043         }
3044 }
3045
3046 /*
3047  * When Link is lost sometimes there is work still in the TX ring
3048  * which will result in a watchdog, rather than allow that do an
3049  * attempted cleanup and then reinit here.  Note that this has been
3050  * seens mostly with fiber adapters.
3051  */
3052 static void
3053 em_tx_purge(struct adapter *adapter)
3054 {
3055         struct ifnet *ifp = &adapter->arpcom.ac_if;
3056
3057         if (!adapter->link_active && ifp->if_timer) {
3058                 em_tx_collect(adapter);
3059                 if (ifp->if_timer) {
3060                         if_printf(ifp, "Link lost, TX pending, reinit\n");
3061                         ifp->if_timer = 0;
3062                         em_init(adapter);
3063                 }
3064         }
3065 }
3066
3067 static int
3068 em_newbuf(struct adapter *adapter, int i, int init)
3069 {
3070         struct mbuf *m;
3071         bus_dma_segment_t seg;
3072         bus_dmamap_t map;
3073         struct em_buffer *rx_buffer;
3074         int error, nseg;
3075
3076         m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
3077         if (m == NULL) {
3078                 adapter->mbuf_cluster_failed++;
3079                 if (init) {
3080                         if_printf(&adapter->arpcom.ac_if,
3081                                   "Unable to allocate RX mbuf\n");
3082                 }
3083                 return (ENOBUFS);
3084         }
3085         m->m_len = m->m_pkthdr.len = MCLBYTES;
3086
3087         if (adapter->hw.mac.max_frame_size <= MCLBYTES - ETHER_ALIGN)
3088                 m_adj(m, ETHER_ALIGN);
3089
3090         error = bus_dmamap_load_mbuf_segment(adapter->rxtag,
3091                         adapter->rx_sparemap, m,
3092                         &seg, 1, &nseg, BUS_DMA_NOWAIT);
3093         if (error) {
3094                 m_freem(m);
3095                 if (init) {
3096                         if_printf(&adapter->arpcom.ac_if,
3097                                   "Unable to load RX mbuf\n");
3098                 }
3099                 return (error);
3100         }
3101
3102         rx_buffer = &adapter->rx_buffer_area[i];
3103         if (rx_buffer->m_head != NULL)
3104                 bus_dmamap_unload(adapter->rxtag, rx_buffer->map);
3105
3106         map = rx_buffer->map;
3107         rx_buffer->map = adapter->rx_sparemap;
3108         adapter->rx_sparemap = map;
3109
3110         rx_buffer->m_head = m;
3111
3112         adapter->rx_desc_base[i].buffer_addr = htole64(seg.ds_addr);
3113         return (0);
3114 }
3115
3116 static int
3117 em_create_rx_ring(struct adapter *adapter)
3118 {
3119         device_t dev = adapter->dev;
3120         struct em_buffer *rx_buffer;
3121         int i, error;
3122
3123         adapter->rx_buffer_area =
3124                 kmalloc(sizeof(struct em_buffer) * adapter->num_rx_desc,
3125                         M_DEVBUF, M_WAITOK | M_ZERO);
3126
3127         /*
3128          * Create DMA tag for rx buffers
3129          */
3130         error = bus_dma_tag_create(adapter->parent_dtag, /* parent */
3131                         1, 0,                   /* alignment, bounds */
3132                         BUS_SPACE_MAXADDR,      /* lowaddr */
3133                         BUS_SPACE_MAXADDR,      /* highaddr */
3134                         NULL, NULL,             /* filter, filterarg */
3135                         MCLBYTES,               /* maxsize */
3136                         1,                      /* nsegments */
3137                         MCLBYTES,               /* maxsegsize */
3138                         BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
3139                         &adapter->rxtag);
3140         if (error) {
3141                 device_printf(dev, "Unable to allocate RX DMA tag\n");
3142                 kfree(adapter->rx_buffer_area, M_DEVBUF);
3143                 adapter->rx_buffer_area = NULL;
3144                 return error;
3145         }
3146
3147         /*
3148          * Create spare DMA map for rx buffers
3149          */
3150         error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3151                                   &adapter->rx_sparemap);
3152         if (error) {
3153                 device_printf(dev, "Unable to create spare RX DMA map\n");
3154                 bus_dma_tag_destroy(adapter->rxtag);
3155                 kfree(adapter->rx_buffer_area, M_DEVBUF);
3156                 adapter->rx_buffer_area = NULL;
3157                 return error;
3158         }
3159
3160         /*
3161          * Create DMA maps for rx buffers
3162          */
3163         for (i = 0; i < adapter->num_rx_desc; i++) {
3164                 rx_buffer = &adapter->rx_buffer_area[i];
3165
3166                 error = bus_dmamap_create(adapter->rxtag, BUS_DMA_WAITOK,
3167                                           &rx_buffer->map);
3168                 if (error) {
3169                         device_printf(dev, "Unable to create RX DMA map\n");
3170                         em_destroy_rx_ring(adapter, i);
3171                         return error;
3172                 }
3173         }
3174         return (0);
3175 }
3176
3177 static int
3178 em_init_rx_ring(struct adapter *adapter)
3179 {
3180         int i, error;
3181
3182         /* Reset descriptor ring */
3183         bzero(adapter->rx_desc_base,
3184             (sizeof(struct e1000_rx_desc)) * adapter->num_rx_desc);
3185
3186         /* Allocate new ones. */
3187         for (i = 0; i < adapter->num_rx_desc; i++) {
3188                 error = em_newbuf(adapter, i, 1);
3189                 if (error)
3190                         return (error);
3191         }
3192
3193         /* Setup our descriptor pointers */
3194         adapter->next_rx_desc_to_check = 0;
3195
3196         return (0);
3197 }
3198
3199 static void
3200 em_init_rx_unit(struct adapter *adapter)
3201 {
3202         struct ifnet *ifp = &adapter->arpcom.ac_if;
3203         uint64_t bus_addr;
3204         uint32_t rctl;
3205
3206         /*
3207          * Make sure receives are disabled while setting
3208          * up the descriptor ring
3209          */
3210         rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
3211         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3212
3213         if (adapter->hw.mac.type >= e1000_82540) {
3214                 uint32_t itr;
3215
3216                 /*
3217                  * Set the interrupt throttling rate. Value is calculated
3218                  * as ITR = 1 / (INT_THROTTLE_CEIL * 256ns)
3219                  */
3220                 if (adapter->int_throttle_ceil)
3221                         itr = 1000000000 / 256 / adapter->int_throttle_ceil;
3222                 else
3223                         itr = 0;
3224                 em_set_itr(adapter, itr);
3225         }
3226
3227         /* Disable accelerated ackknowledge */
3228         if (adapter->hw.mac.type == e1000_82574) {
3229                 E1000_WRITE_REG(&adapter->hw,
3230                     E1000_RFCTL, E1000_RFCTL_ACK_DIS);
3231         }
3232
3233         /* Receive Checksum Offload for TCP and UDP */
3234         if (ifp->if_capenable & IFCAP_RXCSUM) {
3235                 uint32_t rxcsum;
3236
3237                 rxcsum = E1000_READ_REG(&adapter->hw, E1000_RXCSUM);
3238                 rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3239                 E1000_WRITE_REG(&adapter->hw, E1000_RXCSUM, rxcsum);
3240         }
3241
3242         /*
3243          * XXX TEMPORARY WORKAROUND: on some systems with 82573
3244          * long latencies are observed, like Lenovo X60. This
3245          * change eliminates the problem, but since having positive
3246          * values in RDTR is a known source of problems on other
3247          * platforms another solution is being sought.
3248          */
3249         if (em_82573_workaround && adapter->hw.mac.type == e1000_82573) {
3250                 E1000_WRITE_REG(&adapter->hw, E1000_RADV, EM_RADV_82573);
3251                 E1000_WRITE_REG(&adapter->hw, E1000_RDTR, EM_RDTR_82573);
3252         }
3253
3254         /*
3255          * Setup the Base and Length of the Rx Descriptor Ring
3256          */
3257         bus_addr = adapter->rxdma.dma_paddr;
3258         E1000_WRITE_REG(&adapter->hw, E1000_RDLEN(0),
3259             adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
3260         E1000_WRITE_REG(&adapter->hw, E1000_RDBAH(0),
3261             (uint32_t)(bus_addr >> 32));
3262         E1000_WRITE_REG(&adapter->hw, E1000_RDBAL(0),
3263             (uint32_t)bus_addr);
3264
3265         /*
3266          * Setup the HW Rx Head and Tail Descriptor Pointers
3267          */
3268         E1000_WRITE_REG(&adapter->hw, E1000_RDH(0), 0);
3269         E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), adapter->num_rx_desc - 1);
3270
3271         /* Set PTHRESH for improved jumbo performance */
3272         if (((adapter->hw.mac.type == e1000_ich9lan) ||
3273             (adapter->hw.mac.type == e1000_pch2lan) ||
3274             (adapter->hw.mac.type == e1000_ich10lan)) &&
3275             (ifp->if_mtu > ETHERMTU)) {
3276                 uint32_t rxdctl;
3277
3278                 rxdctl = E1000_READ_REG(&adapter->hw, E1000_RXDCTL(0));
3279                 E1000_WRITE_REG(&adapter->hw, E1000_RXDCTL(0), rxdctl | 3);
3280         }
3281
3282         if (adapter->hw.mac.type >= e1000_pch2lan) {
3283                 if (ifp->if_mtu > ETHERMTU)
3284                         e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, TRUE);
3285                 else
3286                         e1000_lv_jumbo_workaround_ich8lan(&adapter->hw, FALSE);
3287         }
3288
3289         /* Setup the Receive Control Register */
3290         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3291         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
3292                 E1000_RCTL_RDMTS_HALF |
3293                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3294
3295         /* Make sure VLAN Filters are off */
3296         rctl &= ~E1000_RCTL_VFE;
3297
3298         if (e1000_tbi_sbp_enabled_82543(&adapter->hw))
3299                 rctl |= E1000_RCTL_SBP;
3300         else
3301                 rctl &= ~E1000_RCTL_SBP;
3302
3303         switch (adapter->rx_buffer_len) {
3304         default:
3305         case 2048:
3306                 rctl |= E1000_RCTL_SZ_2048;
3307                 break;
3308
3309         case 4096:
3310                 rctl |= E1000_RCTL_SZ_4096 |
3311                     E1000_RCTL_BSEX | E1000_RCTL_LPE;
3312                 break;
3313
3314         case 8192:
3315                 rctl |= E1000_RCTL_SZ_8192 |
3316                     E1000_RCTL_BSEX | E1000_RCTL_LPE;
3317                 break;
3318
3319         case 16384:
3320                 rctl |= E1000_RCTL_SZ_16384 |
3321                     E1000_RCTL_BSEX | E1000_RCTL_LPE;
3322                 break;
3323         }
3324
3325         if (ifp->if_mtu > ETHERMTU)
3326                 rctl |= E1000_RCTL_LPE;
3327         else
3328                 rctl &= ~E1000_RCTL_LPE;
3329
3330         /* Enable Receives */
3331         E1000_WRITE_REG(&adapter->hw, E1000_RCTL, rctl);
3332 }
3333
3334 static void
3335 em_destroy_rx_ring(struct adapter *adapter, int ndesc)
3336 {
3337         struct em_buffer *rx_buffer;
3338         int i;
3339
3340         if (adapter->rx_buffer_area == NULL)
3341                 return;
3342
3343         for (i = 0; i < ndesc; i++) {
3344                 rx_buffer = &adapter->rx_buffer_area[i];
3345
3346                 KKASSERT(rx_buffer->m_head == NULL);
3347                 bus_dmamap_destroy(adapter->rxtag, rx_buffer->map);
3348         }
3349         bus_dmamap_destroy(adapter->rxtag, adapter->rx_sparemap);
3350         bus_dma_tag_destroy(adapter->rxtag);
3351
3352         kfree(adapter->rx_buffer_area, M_DEVBUF);
3353         adapter->rx_buffer_area = NULL;
3354 }
3355
3356 static void
3357 em_rxeof(struct adapter *adapter, int count)
3358 {
3359         struct ifnet *ifp = &adapter->arpcom.ac_if;
3360         uint8_t status, accept_frame = 0, eop = 0;
3361         uint16_t len, desc_len, prev_len_adj;
3362         struct e1000_rx_desc *current_desc;
3363         struct mbuf *mp;
3364         int i;
3365
3366         i = adapter->next_rx_desc_to_check;
3367         current_desc = &adapter->rx_desc_base[i];
3368
3369         if (!(current_desc->status & E1000_RXD_STAT_DD))
3370                 return;
3371
3372         while ((current_desc->status & E1000_RXD_STAT_DD) && count != 0) {
3373                 struct mbuf *m = NULL;
3374
3375                 logif(pkt_receive);
3376
3377                 mp = adapter->rx_buffer_area[i].m_head;
3378
3379                 /*
3380                  * Can't defer bus_dmamap_sync(9) because TBI_ACCEPT
3381                  * needs to access the last received byte in the mbuf.
3382                  */
3383                 bus_dmamap_sync(adapter->rxtag, adapter->rx_buffer_area[i].map,
3384                                 BUS_DMASYNC_POSTREAD);
3385
3386                 accept_frame = 1;
3387                 prev_len_adj = 0;
3388                 desc_len = le16toh(current_desc->length);
3389                 status = current_desc->status;
3390                 if (status & E1000_RXD_STAT_EOP) {
3391                         count--;
3392                         eop = 1;
3393                         if (desc_len < ETHER_CRC_LEN) {
3394                                 len = 0;
3395                                 prev_len_adj = ETHER_CRC_LEN - desc_len;
3396                         } else {
3397                                 len = desc_len - ETHER_CRC_LEN;
3398                         }
3399                 } else {
3400                         eop = 0;
3401                         len = desc_len;
3402                 }
3403
3404                 if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
3405                         uint8_t last_byte;
3406                         uint32_t pkt_len = desc_len;
3407
3408                         if (adapter->fmp != NULL)
3409                                 pkt_len += adapter->fmp->m_pkthdr.len;
3410
3411                         last_byte = *(mtod(mp, caddr_t) + desc_len - 1);
3412                         if (TBI_ACCEPT(&adapter->hw, status,
3413                             current_desc->errors, pkt_len, last_byte,
3414                             adapter->min_frame_size,
3415                             adapter->hw.mac.max_frame_size)) {
3416                                 e1000_tbi_adjust_stats_82543(&adapter->hw,
3417                                     &adapter->stats, pkt_len,
3418                                     adapter->hw.mac.addr,
3419                                     adapter->hw.mac.max_frame_size);
3420                                 if (len > 0)
3421                                         len--;
3422                         } else {
3423                                 accept_frame = 0;
3424                         }
3425                 }
3426
3427                 if (accept_frame) {
3428                         if (em_newbuf(adapter, i, 0) != 0) {
3429                                 IFNET_STAT_INC(ifp, iqdrops, 1);
3430                                 goto discard;
3431                         }
3432
3433                         /* Assign correct length to the current fragment */
3434                         mp->m_len = len;
3435
3436                         if (adapter->fmp == NULL) {
3437                                 mp->m_pkthdr.len = len;
3438                                 adapter->fmp = mp; /* Store the first mbuf */
3439                                 adapter->lmp = mp;
3440                         } else {
3441                                 /*
3442                                  * Chain mbuf's together
3443                                  */
3444
3445                                 /*
3446                                  * Adjust length of previous mbuf in chain if
3447                                  * we received less than 4 bytes in the last
3448                                  * descriptor.
3449                                  */
3450                                 if (prev_len_adj > 0) {
3451                                         adapter->lmp->m_len -= prev_len_adj;
3452                                         adapter->fmp->m_pkthdr.len -=
3453                                             prev_len_adj;
3454                                 }
3455                                 adapter->lmp->m_next = mp;
3456                                 adapter->lmp = adapter->lmp->m_next;
3457                                 adapter->fmp->m_pkthdr.len += len;
3458                         }
3459
3460                         if (eop) {
3461                                 adapter->fmp->m_pkthdr.rcvif = ifp;
3462                                 IFNET_STAT_INC(ifp, ipackets, 1);
3463
3464                                 if (ifp->if_capenable & IFCAP_RXCSUM) {
3465                                         em_rxcsum(adapter, current_desc,
3466                                                   adapter->fmp);
3467                                 }
3468
3469                                 if (status & E1000_RXD_STAT_VP) {
3470                                         adapter->fmp->m_pkthdr.ether_vlantag =
3471                                             (le16toh(current_desc->special) &
3472                                             E1000_RXD_SPC_VLAN_MASK);
3473                                         adapter->fmp->m_flags |= M_VLANTAG;
3474                                 }
3475                                 m = adapter->fmp;
3476                                 adapter->fmp = NULL;
3477                                 adapter->lmp = NULL;
3478                         }
3479                 } else {
3480                         IFNET_STAT_INC(ifp, ierrors, 1);
3481 discard:
3482 #ifdef foo
3483                         /* Reuse loaded DMA map and just update mbuf chain */
3484                         mp = adapter->rx_buffer_area[i].m_head;
3485                         mp->m_len = mp->m_pkthdr.len = MCLBYTES;
3486                         mp->m_data = mp->m_ext.ext_buf;
3487                         mp->m_next = NULL;
3488                         if (adapter->hw.mac.max_frame_size <=
3489                             (MCLBYTES - ETHER_ALIGN))
3490                                 m_adj(mp, ETHER_ALIGN);
3491 #endif
3492                         if (adapter->fmp != NULL) {
3493                                 m_freem(adapter->fmp);
3494                                 adapter->fmp = NULL;
3495                                 adapter->lmp = NULL;
3496                         }
3497                         m = NULL;
3498                 }
3499
3500                 /* Zero out the receive descriptors status. */
3501                 current_desc->status = 0;
3502
3503                 if (m != NULL)
3504                         ifp->if_input(ifp, m);
3505
3506                 /* Advance our pointers to the next descriptor. */
3507                 if (++i == adapter->num_rx_desc)
3508                         i = 0;
3509                 current_desc = &adapter->rx_desc_base[i];
3510         }
3511         adapter->next_rx_desc_to_check = i;
3512
3513         /* Advance the E1000's Receive Queue #0  "Tail Pointer". */
3514         if (--i < 0)
3515                 i = adapter->num_rx_desc - 1;
3516         E1000_WRITE_REG(&adapter->hw, E1000_RDT(0), i);
3517 }
3518
3519 static void
3520 em_rxcsum(struct adapter *adapter, struct e1000_rx_desc *rx_desc,
3521           struct mbuf *mp)
3522 {
3523         /* 82543 or newer only */
3524         if (adapter->hw.mac.type < e1000_82543 ||
3525             /* Ignore Checksum bit is set */
3526             (rx_desc->status & E1000_RXD_STAT_IXSM))
3527                 return;
3528
3529         if ((rx_desc->status & E1000_RXD_STAT_IPCS) &&
3530             !(rx_desc->errors & E1000_RXD_ERR_IPE)) {
3531                 /* IP Checksum Good */
3532                 mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
3533         }
3534
3535         if ((rx_desc->status & E1000_RXD_STAT_TCPCS) &&
3536             !(rx_desc->errors & E1000_RXD_ERR_TCPE)) {
3537                 mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
3538                                            CSUM_PSEUDO_HDR |
3539                                            CSUM_FRAG_NOT_CHECKED;
3540                 mp->m_pkthdr.csum_data = htons(0xffff);
3541         }
3542 }
3543
3544 static void
3545 em_enable_intr(struct adapter *adapter)
3546 {
3547         uint32_t ims_mask = IMS_ENABLE_MASK;
3548
3549         lwkt_serialize_handler_enable(adapter->arpcom.ac_if.if_serializer);
3550
3551 #if 0
3552         /* XXX MSIX */
3553         if (adapter->hw.mac.type == e1000_82574) {
3554                 E1000_WRITE_REG(&adapter->hw, EM_EIAC, EM_MSIX_MASK);
3555                 ims_mask |= EM_MSIX_MASK;
3556         }
3557 #endif
3558         E1000_WRITE_REG(&adapter->hw, E1000_IMS, ims_mask);
3559 }
3560
3561 static void
3562 em_disable_intr(struct adapter *adapter)
3563 {
3564         uint32_t clear = 0xffffffff;
3565
3566         /*
3567          * The first version of 82542 had an errata where when link was forced
3568          * it would stay up even up even if the cable was disconnected.
3569          * Sequence errors were used to detect the disconnect and then the
3570          * driver would unforce the link.  This code in the in the ISR.  For
3571          * this to work correctly the Sequence error interrupt had to be
3572          * enabled all the time.
3573          */
3574         if (adapter->hw.mac.type == e1000_82542 &&
3575             adapter->hw.revision_id == E1000_REVISION_2)
3576                 clear &= ~E1000_ICR_RXSEQ;
3577         else if (adapter->hw.mac.type == e1000_82574)
3578                 E1000_WRITE_REG(&adapter->hw, EM_EIAC, 0);
3579
3580         E1000_WRITE_REG(&adapter->hw, E1000_IMC, clear);
3581
3582         adapter->npoll.ifpc_stcount = 0;
3583
3584         lwkt_serialize_handler_disable(adapter->arpcom.ac_if.if_serializer);
3585 }
3586
3587 /*
3588  * Bit of a misnomer, what this really means is
3589  * to enable OS management of the system... aka
3590  * to disable special hardware management features 
3591  */
3592 static void
3593 em_get_mgmt(struct adapter *adapter)
3594 {
3595         /* A shared code workaround */
3596 #define E1000_82542_MANC2H E1000_MANC2H
3597         if (adapter->flags & EM_FLAG_HAS_MGMT) {
3598                 int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
3599                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3600
3601                 /* disable hardware interception of ARP */
3602                 manc &= ~(E1000_MANC_ARP_EN);
3603
3604                 /* enable receiving management packets to the host */
3605                 if (adapter->hw.mac.type >= e1000_82571) {
3606                         manc |= E1000_MANC_EN_MNG2HOST;
3607 #define E1000_MNG2HOST_PORT_623 (1 << 5)
3608 #define E1000_MNG2HOST_PORT_664 (1 << 6)
3609                         manc2h |= E1000_MNG2HOST_PORT_623;
3610                         manc2h |= E1000_MNG2HOST_PORT_664;
3611                         E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
3612                 }
3613
3614                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3615         }
3616 }
3617
3618 /*
3619  * Give control back to hardware management
3620  * controller if there is one.
3621  */
3622 static void
3623 em_rel_mgmt(struct adapter *adapter)
3624 {
3625         if (adapter->flags & EM_FLAG_HAS_MGMT) {
3626                 int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
3627
3628                 /* re-enable hardware interception of ARP */
3629                 manc |= E1000_MANC_ARP_EN;
3630
3631                 if (adapter->hw.mac.type >= e1000_82571)
3632                         manc &= ~E1000_MANC_EN_MNG2HOST;
3633
3634                 E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
3635         }
3636 }
3637
3638 /*
3639  * em_get_hw_control() sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3640  * For ASF and Pass Through versions of f/w this means that
3641  * the driver is loaded.  For AMT version (only with 82573)
3642  * of the f/w this means that the network i/f is open.
3643  */
3644 static void
3645 em_get_hw_control(struct adapter *adapter)
3646 {
3647         /* Let firmware know the driver has taken over */
3648         if (adapter->hw.mac.type == e1000_82573) {
3649                 uint32_t swsm;
3650
3651                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3652                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3653                     swsm | E1000_SWSM_DRV_LOAD);
3654         } else {
3655                 uint32_t ctrl_ext;
3656
3657                 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3658                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3659                     ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
3660         }
3661         adapter->flags |= EM_FLAG_HW_CTRL;
3662 }
3663
3664 /*
3665  * em_rel_hw_control() resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
3666  * For ASF and Pass Through versions of f/w this means that the
3667  * driver is no longer loaded.  For AMT version (only with 82573)
3668  * of the f/w this means that the network i/f is closed.
3669  */
3670 static void
3671 em_rel_hw_control(struct adapter *adapter)
3672 {
3673         if ((adapter->flags & EM_FLAG_HW_CTRL) == 0)
3674                 return;
3675         adapter->flags &= ~EM_FLAG_HW_CTRL;
3676
3677         /* Let firmware taken over control of h/w */
3678         if (adapter->hw.mac.type == e1000_82573) {
3679                 uint32_t swsm;
3680
3681                 swsm = E1000_READ_REG(&adapter->hw, E1000_SWSM);
3682                 E1000_WRITE_REG(&adapter->hw, E1000_SWSM,
3683                     swsm & ~E1000_SWSM_DRV_LOAD);
3684         } else {
3685                 uint32_t ctrl_ext;
3686
3687                 ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
3688                 E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
3689                     ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
3690         }
3691 }
3692
3693 static int
3694 em_is_valid_eaddr(const uint8_t *addr)
3695 {
3696         char zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
3697
3698         if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
3699                 return (FALSE);
3700
3701         return (TRUE);
3702 }
3703
3704 /*
3705  * Enable PCI Wake On Lan capability
3706  */
3707 void
3708 em_enable_wol(device_t dev)
3709 {
3710         uint16_t cap, status;
3711         uint8_t id;
3712
3713         /* First find the capabilities pointer*/
3714         cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
3715
3716         /* Read the PM Capabilities */
3717         id = pci_read_config(dev, cap, 1);
3718         if (id != PCIY_PMG)     /* Something wrong */
3719                 return;
3720
3721         /*
3722          * OK, we have the power capabilities,
3723          * so now get the status register
3724          */
3725         cap += PCIR_POWER_STATUS;
3726         status = pci_read_config(dev, cap, 2);
3727         status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3728         pci_write_config(dev, cap, status, 2);
3729 }
3730
3731
3732 /*
3733  * 82544 Coexistence issue workaround.
3734  *    There are 2 issues.
3735  *       1. Transmit Hang issue.
3736  *    To detect this issue, following equation can be used...
3737  *        SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3738  *        If SUM[3:0] is in between 1 to 4, we will have this issue.
3739  *
3740  *       2. DAC issue.
3741  *    To detect this issue, following equation can be used...
3742  *        SIZE[3:0] + ADDR[2:0] = SUM[3:0].
3743  *        If SUM[3:0] is in between 9 to c, we will have this issue.
3744  *
3745  *    WORKAROUND:
3746  *        Make sure we do not have ending address
3747  *        as 1,2,3,4(Hang) or 9,a,b,c (DAC)
3748  */
3749 static uint32_t
3750 em_82544_fill_desc(bus_addr_t address, uint32_t length, PDESC_ARRAY desc_array)
3751 {
3752         uint32_t safe_terminator;
3753
3754         /*
3755          * Since issue is sensitive to length and address.
3756          * Let us first check the address...
3757          */
3758         if (length <= 4) {
3759                 desc_array->descriptor[0].address = address;
3760                 desc_array->descriptor[0].length = length;
3761                 desc_array->elements = 1;
3762                 return (desc_array->elements);
3763         }
3764
3765         safe_terminator =
3766         (uint32_t)((((uint32_t)address & 0x7) + (length & 0xF)) & 0xF);
3767
3768         /* If it does not fall between 0x1 to 0x4 and 0x9 to 0xC then return */
3769         if (safe_terminator == 0 ||
3770             (safe_terminator > 4 && safe_terminator < 9) ||
3771             (safe_terminator > 0xC && safe_terminator <= 0xF)) {
3772                 desc_array->descriptor[0].address = address;
3773                 desc_array->descriptor[0].length = length;
3774                 desc_array->elements = 1;
3775                 return (desc_array->elements);
3776         }
3777
3778         desc_array->descriptor[0].address = address;
3779         desc_array->descriptor[0].length = length - 4;
3780         desc_array->descriptor[1].address = address + (length - 4);
3781         desc_array->descriptor[1].length = 4;
3782         desc_array->elements = 2;
3783         return (desc_array->elements);
3784 }
3785
3786 static void
3787 em_update_stats(struct adapter *adapter)
3788 {
3789         struct ifnet *ifp = &adapter->arpcom.ac_if;
3790
3791         if (adapter->hw.phy.media_type == e1000_media_type_copper ||
3792             (E1000_READ_REG(&adapter->hw, E1000_STATUS) & E1000_STATUS_LU)) {
3793                 adapter->stats.symerrs +=
3794                         E1000_READ_REG(&adapter->hw, E1000_SYMERRS);
3795                 adapter->stats.sec += E1000_READ_REG(&adapter->hw, E1000_SEC);
3796         }
3797         adapter->stats.crcerrs += E1000_READ_REG(&adapter->hw, E1000_CRCERRS);
3798         adapter->stats.mpc += E1000_READ_REG(&adapter->hw, E1000_MPC);
3799         adapter->stats.scc += E1000_READ_REG(&adapter->hw, E1000_SCC);
3800         adapter->stats.ecol += E1000_READ_REG(&adapter->hw, E1000_ECOL);
3801
3802         adapter->stats.mcc += E1000_READ_REG(&adapter->hw, E1000_MCC);
3803         adapter->stats.latecol += E1000_READ_REG(&adapter->hw, E1000_LATECOL);
3804         adapter->stats.colc += E1000_READ_REG(&adapter->hw, E1000_COLC);
3805         adapter->stats.dc += E1000_READ_REG(&adapter->hw, E1000_DC);
3806         adapter->stats.rlec += E1000_READ_REG(&adapter->hw, E1000_RLEC);
3807         adapter->stats.xonrxc += E1000_READ_REG(&adapter->hw, E1000_XONRXC);
3808         adapter->stats.xontxc += E1000_READ_REG(&adapter->hw, E1000_XONTXC);
3809         adapter->stats.xoffrxc += E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
3810         adapter->stats.xofftxc += E1000_READ_REG(&adapter->hw, E1000_XOFFTXC);
3811         adapter->stats.fcruc += E1000_READ_REG(&adapter->hw, E1000_FCRUC);
3812         adapter->stats.prc64 += E1000_READ_REG(&adapter->hw, E1000_PRC64);
3813         adapter->stats.prc127 += E1000_READ_REG(&adapter->hw, E1000_PRC127);
3814         adapter->stats.prc255 += E1000_READ_REG(&adapter->hw, E1000_PRC255);
3815         adapter->stats.prc511 += E1000_READ_REG(&adapter->hw, E1000_PRC511);
3816         adapter->stats.prc1023 += E1000_READ_REG(&adapter->hw, E1000_PRC1023);
3817         adapter->stats.prc1522 += E1000_READ_REG(&adapter->hw, E1000_PRC1522);
3818         adapter->stats.gprc += E1000_READ_REG(&adapter->hw, E1000_GPRC);
3819         adapter->stats.bprc += E1000_READ_REG(&adapter->hw, E1000_BPRC);
3820         adapter->stats.mprc += E1000_READ_REG(&adapter->hw, E1000_MPRC);
3821         adapter->stats.gptc += E1000_READ_REG(&adapter->hw, E1000_GPTC);
3822
3823         /* For the 64-bit byte counters the low dword must be read first. */
3824         /* Both registers clear on the read of the high dword */
3825
3826         adapter->stats.gorc += E1000_READ_REG(&adapter->hw, E1000_GORCH);
3827         adapter->stats.gotc += E1000_READ_REG(&adapter->hw, E1000_GOTCH);
3828
3829         adapter->stats.rnbc += E1000_READ_REG(&adapter->hw, E1000_RNBC);
3830         adapter->stats.ruc += E1000_READ_REG(&adapter->hw, E1000_RUC);
3831         adapter->stats.rfc += E1000_READ_REG(&adapter->hw, E1000_RFC);
3832         adapter->stats.roc += E1000_READ_REG(&adapter->hw, E1000_ROC);
3833         adapter->stats.rjc += E1000_READ_REG(&adapter->hw, E1000_RJC);
3834
3835         adapter->stats.tor += E1000_READ_REG(&adapter->hw, E1000_TORH);
3836         adapter->stats.tot += E1000_READ_REG(&adapter->hw, E1000_TOTH);
3837
3838         adapter->stats.tpr += E1000_READ_REG(&adapter->hw, E1000_TPR);
3839         adapter->stats.tpt += E1000_READ_REG(&adapter->hw, E1000_TPT);
3840         adapter->stats.ptc64 += E1000_READ_REG(&adapter->hw, E1000_PTC64);
3841         adapter->stats.ptc127 += E1000_READ_REG(&adapter->hw, E1000_PTC127);
3842         adapter->stats.ptc255 += E1000_READ_REG(&adapter->hw, E1000_PTC255);
3843         adapter->stats.ptc511 += E1000_READ_REG(&adapter->hw, E1000_PTC511);
3844         adapter->stats.ptc1023 += E1000_READ_REG(&adapter->hw, E1000_PTC1023);
3845         adapter->stats.ptc1522 += E1000_READ_REG(&adapter->hw, E1000_PTC1522);
3846         adapter->stats.mptc += E1000_READ_REG(&adapter->hw, E1000_MPTC);
3847         adapter->stats.bptc += E1000_READ_REG(&adapter->hw, E1000_BPTC);
3848
3849         if (adapter->hw.mac.type >= e1000_82543) {
3850                 adapter->stats.algnerrc += 
3851                 E1000_READ_REG(&adapter->hw, E1000_ALGNERRC);
3852                 adapter->stats.rxerrc += 
3853                 E1000_READ_REG(&adapter->hw, E1000_RXERRC);
3854                 adapter->stats.tncrs += 
3855                 E1000_READ_REG(&adapter->hw, E1000_TNCRS);
3856                 adapter->stats.cexterr += 
3857                 E1000_READ_REG(&adapter->hw, E1000_CEXTERR);
3858                 adapter->stats.tsctc += 
3859                 E1000_READ_REG(&adapter->hw, E1000_TSCTC);
3860                 adapter->stats.tsctfc += 
3861                 E1000_READ_REG(&adapter->hw, E1000_TSCTFC);
3862         }
3863
3864         IFNET_STAT_SET(ifp, collisions, adapter->stats.colc);
3865
3866         /* Rx Errors */
3867         IFNET_STAT_SET(ifp, ierrors,
3868             adapter->dropped_pkts + adapter->stats.rxerrc +
3869             adapter->stats.crcerrs + adapter->stats.algnerrc +
3870             adapter->stats.ruc + adapter->stats.roc +
3871             adapter->stats.mpc + adapter->stats.cexterr);
3872
3873         /* Tx Errors */
3874         IFNET_STAT_SET(ifp, oerrors,
3875             adapter->stats.ecol + adapter->stats.latecol +
3876             adapter->watchdog_events);
3877 }
3878
3879 static void
3880 em_print_debug_info(struct adapter *adapter)
3881 {
3882         device_t dev = adapter->dev;
3883         uint8_t *hw_addr = adapter->hw.hw_addr;
3884
3885         device_printf(dev, "Adapter hardware address = %p \n", hw_addr);
3886         device_printf(dev, "CTRL = 0x%x RCTL = 0x%x \n",
3887             E1000_READ_REG(&adapter->hw, E1000_CTRL),
3888             E1000_READ_REG(&adapter->hw, E1000_RCTL));
3889         device_printf(dev, "Packet buffer = Tx=%dk Rx=%dk \n",
3890             ((E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff0000) >> 16),\
3891             (E1000_READ_REG(&adapter->hw, E1000_PBA) & 0xffff) );
3892         device_printf(dev, "Flow control watermarks high = %d low = %d\n",
3893             adapter->hw.fc.high_water,
3894             adapter->hw.fc.low_water);
3895         device_printf(dev, "tx_int_delay = %d, tx_abs_int_delay = %d\n",
3896             E1000_READ_REG(&adapter->hw, E1000_TIDV),
3897             E1000_READ_REG(&adapter->hw, E1000_TADV));
3898         device_printf(dev, "rx_int_delay = %d, rx_abs_int_delay = %d\n",
3899             E1000_READ_REG(&adapter->hw, E1000_RDTR),
3900             E1000_READ_REG(&adapter->hw, E1000_RADV));
3901         device_printf(dev, "fifo workaround = %lld, fifo_reset_count = %lld\n",
3902             (long long)adapter->tx_fifo_wrk_cnt,
3903             (long long)adapter->tx_fifo_reset_cnt);
3904         device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
3905             E1000_READ_REG(&adapter->hw, E1000_TDH(0)),
3906             E1000_READ_REG(&adapter->hw, E1000_TDT(0)));
3907         device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
3908             E1000_READ_REG(&adapter->hw, E1000_RDH(0)),
3909             E1000_READ_REG(&adapter->hw, E1000_RDT(0)));
3910         device_printf(dev, "Num Tx descriptors avail = %d\n",
3911             adapter->num_tx_desc_avail);
3912         device_printf(dev, "Tx Descriptors not avail1 = %ld\n",
3913             adapter->no_tx_desc_avail1);
3914         device_printf(dev, "Tx Descriptors not avail2 = %ld\n",
3915             adapter->no_tx_desc_avail2);
3916         device_printf(dev, "Std mbuf failed = %ld\n",
3917             adapter->mbuf_alloc_failed);
3918         device_printf(dev, "Std mbuf cluster failed = %ld\n",
3919             adapter->mbuf_cluster_failed);
3920         device_printf(dev, "Driver dropped packets = %ld\n",
3921             adapter->dropped_pkts);
3922         device_printf(dev, "Driver tx dma failure in encap = %ld\n",
3923             adapter->no_tx_dma_setup);
3924 }
3925
3926 static void
3927 em_print_hw_stats(struct adapter *adapter)
3928 {
3929         device_t dev = adapter->dev;
3930
3931         device_printf(dev, "Excessive collisions = %lld\n",
3932             (long long)adapter->stats.ecol);
3933 #if (DEBUG_HW > 0)  /* Dont output these errors normally */
3934         device_printf(dev, "Symbol errors = %lld\n",
3935             (long long)adapter->stats.symerrs);
3936 #endif
3937         device_printf(dev, "Sequence errors = %lld\n",
3938             (long long)adapter->stats.sec);
3939         device_printf(dev, "Defer count = %lld\n",
3940             (long long)adapter->stats.dc);
3941         device_printf(dev, "Missed Packets = %lld\n",
3942             (long long)adapter->stats.mpc);
3943         device_printf(dev, "Receive No Buffers = %lld\n",
3944             (long long)adapter->stats.rnbc);
3945         /* RLEC is inaccurate on some hardware, calculate our own. */
3946         device_printf(dev, "Receive Length Errors = %lld\n",
3947             ((long long)adapter->stats.roc + (long long)adapter->stats.ruc));
3948         device_printf(dev, "Receive errors = %lld\n",
3949             (long long)adapter->stats.rxerrc);
3950         device_printf(dev, "Crc errors = %lld\n",
3951             (long long)adapter->stats.crcerrs);
3952         device_printf(dev, "Alignment errors = %lld\n",
3953             (long long)adapter->stats.algnerrc);
3954         device_printf(dev, "Collision/Carrier extension errors = %lld\n",
3955             (long long)adapter->stats.cexterr);
3956         device_printf(dev, "RX overruns = %ld\n", adapter->rx_overruns);
3957         device_printf(dev, "watchdog timeouts = %ld\n",
3958             adapter->watchdog_events);
3959         device_printf(dev, "XON Rcvd = %lld\n",
3960             (long long)adapter->stats.xonrxc);
3961         device_printf(dev, "XON Xmtd = %lld\n",
3962             (long long)adapter->stats.xontxc);
3963         device_printf(dev, "XOFF Rcvd = %lld\n",
3964             (long long)adapter->stats.xoffrxc);
3965         device_printf(dev, "XOFF Xmtd = %lld\n",
3966             (long long)adapter->stats.xofftxc);
3967         device_printf(dev, "Good Packets Rcvd = %lld\n",
3968             (long long)adapter->stats.gprc);
3969         device_printf(dev, "Good Packets Xmtd = %lld\n",
3970             (long long)adapter->stats.gptc);
3971 }
3972
3973 static void
3974 em_print_nvm_info(struct adapter *adapter)
3975 {
3976         uint16_t eeprom_data;
3977         int i, j, row = 0;
3978
3979         /* Its a bit crude, but it gets the job done */
3980         kprintf("\nInterface EEPROM Dump:\n");
3981         kprintf("Offset\n0x0000  ");
3982         for (i = 0, j = 0; i < 32; i++, j++) {
3983                 if (j == 8) { /* Make the offset block */
3984                         j = 0; ++row;
3985                         kprintf("\n0x00%x0  ",row);
3986                 }
3987                 e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
3988                 kprintf("%04x ", eeprom_data);
3989         }
3990         kprintf("\n");
3991 }
3992
3993 static int
3994 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
3995 {
3996         struct adapter *adapter;
3997         struct ifnet *ifp;
3998         int error, result;
3999
4000         result = -1;
4001         error = sysctl_handle_int(oidp, &result, 0, req);
4002         if (error || !req->newptr)
4003                 return (error);
4004
4005         adapter = (struct adapter *)arg1;
4006         ifp = &adapter->arpcom.ac_if;
4007
4008         lwkt_serialize_enter(ifp->if_serializer);
4009
4010         if (result == 1)
4011                 em_print_debug_info(adapter);
4012
4013         /*
4014          * This value will cause a hex dump of the
4015          * first 32 16-bit words of the EEPROM to
4016          * the screen.
4017          */
4018         if (result == 2)
4019                 em_print_nvm_info(adapter);
4020
4021         lwkt_serialize_exit(ifp->if_serializer);
4022
4023         return (error);
4024 }
4025
4026 static int
4027 em_sysctl_stats(SYSCTL_HANDLER_ARGS)
4028 {
4029         int error, result;
4030
4031         result = -1;
4032         error = sysctl_handle_int(oidp, &result, 0, req);
4033         if (error || !req->newptr)
4034                 return (error);
4035
4036         if (result == 1) {
4037                 struct adapter *adapter = (struct adapter *)arg1;
4038                 struct ifnet *ifp = &adapter->arpcom.ac_if;
4039
4040                 lwkt_serialize_enter(ifp->if_serializer);
4041                 em_print_hw_stats(adapter);
4042                 lwkt_serialize_exit(ifp->if_serializer);
4043         }
4044         return (error);
4045 }
4046
4047 static void
4048 em_add_sysctl(struct adapter *adapter)
4049 {
4050         sysctl_ctx_init(&adapter->sysctl_ctx);
4051         adapter->sysctl_tree = SYSCTL_ADD_NODE(&adapter->sysctl_ctx,
4052                                         SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
4053                                         device_get_nameunit(adapter->dev),
4054                                         CTLFLAG_RD, 0, "");
4055         if (adapter->sysctl_tree == NULL) {
4056                 device_printf(adapter->dev, "can't add sysctl node\n");
4057         } else {
4058                 SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4059                     SYSCTL_CHILDREN(adapter->sysctl_tree),
4060                     OID_AUTO, "debug", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4061                     em_sysctl_debug_info, "I", "Debug Information");
4062
4063                 SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4064                     SYSCTL_CHILDREN(adapter->sysctl_tree),
4065                     OID_AUTO, "stats", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4066                     em_sysctl_stats, "I", "Statistics");
4067
4068                 SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4069                     SYSCTL_CHILDREN(adapter->sysctl_tree),
4070                     OID_AUTO, "rxd", CTLFLAG_RD,
4071                     &adapter->num_rx_desc, 0, NULL);
4072                 SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4073                     SYSCTL_CHILDREN(adapter->sysctl_tree),
4074                     OID_AUTO, "txd", CTLFLAG_RD,
4075                     &adapter->num_tx_desc, 0, NULL);
4076
4077                 if (adapter->hw.mac.type >= e1000_82540) {
4078                         SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4079                             SYSCTL_CHILDREN(adapter->sysctl_tree),
4080                             OID_AUTO, "int_throttle_ceil",
4081                             CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4082                             em_sysctl_int_throttle, "I",
4083                             "interrupt throttling rate");
4084                 }
4085                 SYSCTL_ADD_PROC(&adapter->sysctl_ctx,
4086                     SYSCTL_CHILDREN(adapter->sysctl_tree),
4087                     OID_AUTO, "int_tx_nsegs",
4088                     CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
4089                     em_sysctl_int_tx_nsegs, "I",
4090                     "# segments per TX interrupt");
4091                 SYSCTL_ADD_INT(&adapter->sysctl_ctx,
4092                     SYSCTL_CHILDREN(adapter->sysctl_tree),
4093                     OID_AUTO, "wreg_tx_nsegs", CTLFLAG_RW,
4094                     &adapter->tx_wreg_nsegs, 0,
4095                     "# segments before write to hardware register");
4096         }
4097 }
4098
4099 static int
4100 em_sysctl_int_throttle(SYSCTL_HANDLER_ARGS)
4101 {
4102         struct adapter *adapter = (void *)arg1;
4103         struct ifnet *ifp = &adapter->arpcom.ac_if;
4104         int error, throttle;
4105
4106         throttle = adapter->int_throttle_ceil;
4107         error = sysctl_handle_int(oidp, &throttle, 0, req);
4108         if (error || req->newptr == NULL)
4109                 return error;
4110         if (throttle < 0 || throttle > 1000000000 / 256)
4111                 return EINVAL;
4112
4113         if (throttle) {
4114                 /*
4115                  * Set the interrupt throttling rate in 256ns increments,
4116                  * recalculate sysctl value assignment to get exact frequency.
4117                  */
4118                 throttle = 1000000000 / 256 / throttle;
4119
4120                 /* Upper 16bits of ITR is reserved and should be zero */
4121                 if (throttle & 0xffff0000)
4122                         return EINVAL;
4123         }
4124
4125         lwkt_serialize_enter(ifp->if_serializer);
4126
4127         if (throttle)
4128                 adapter->int_throttle_ceil = 1000000000 / 256 / throttle;
4129         else
4130                 adapter->int_throttle_ceil = 0;
4131
4132         if (ifp->if_flags & IFF_RUNNING)
4133                 em_set_itr(adapter, throttle);
4134
4135         lwkt_serialize_exit(ifp->if_serializer);
4136
4137         if (bootverbose) {
4138                 if_printf(ifp, "Interrupt moderation set to %d/sec\n",
4139                           adapter->int_throttle_ceil);
4140         }
4141         return 0;
4142 }
4143
4144 static int
4145 em_sysctl_int_tx_nsegs(SYSCTL_HANDLER_ARGS)
4146 {
4147         struct adapter *adapter = (void *)arg1;
4148         struct ifnet *ifp = &adapter->arpcom.ac_if;
4149         int error, segs;
4150
4151         segs = adapter->tx_int_nsegs;
4152         error = sysctl_handle_int(oidp, &segs, 0, req);
4153         if (error || req->newptr == NULL)
4154                 return error;
4155         if (segs <= 0)
4156                 return EINVAL;
4157
4158         lwkt_serialize_enter(ifp->if_serializer);
4159
4160         /*
4161          * Don't allow int_tx_nsegs to become:
4162          * o  Less the oact_tx_desc
4163          * o  Too large that no TX desc will cause TX interrupt to
4164          *    be generated (OACTIVE will never recover)
4165          * o  Too small that will cause tx_dd[] overflow
4166          */
4167         if (segs < adapter->oact_tx_desc ||
4168             segs >= adapter->num_tx_desc - adapter->oact_tx_desc ||
4169             segs < adapter->num_tx_desc / EM_TXDD_SAFE) {
4170                 error = EINVAL;
4171         } else {
4172                 error = 0;
4173                 adapter->tx_int_nsegs = segs;
4174         }
4175
4176         lwkt_serialize_exit(ifp->if_serializer);
4177
4178         return error;
4179 }
4180
4181 static void
4182 em_set_itr(struct adapter *adapter, uint32_t itr)
4183 {
4184         E1000_WRITE_REG(&adapter->hw, E1000_ITR, itr);
4185         if (adapter->hw.mac.type == e1000_82574) {
4186                 int i;
4187
4188                 /*
4189                  * When using MSIX interrupts we need to
4190                  * throttle using the EITR register
4191                  */
4192                 for (i = 0; i < 4; ++i) {
4193                         E1000_WRITE_REG(&adapter->hw,
4194                             E1000_EITR_82574(i), itr);
4195                 }
4196         }
4197 }
4198
4199 static void
4200 em_disable_aspm(struct adapter *adapter)
4201 {
4202         uint16_t link_cap, link_ctrl, disable;
4203         uint8_t pcie_ptr, reg;
4204         device_t dev = adapter->dev;
4205
4206         switch (adapter->hw.mac.type) {
4207         case e1000_82571:
4208         case e1000_82572:
4209         case e1000_82573:
4210                 /*
4211                  * 82573 specification update
4212                  * errata #8 disable L0s
4213                  * errata #41 disable L1
4214                  *
4215                  * 82571/82572 specification update
4216                  # errata #13 disable L1
4217                  * errata #68 disable L0s
4218                  */
4219                 disable = PCIEM_LNKCTL_ASPM_L0S | PCIEM_LNKCTL_ASPM_L1;
4220                 break;
4221
4222         case e1000_82574:
4223         case e1000_82583:
4224                 /*
4225                  * 82574 specification update errata #20
4226                  * 82583 specification update errata #9
4227                  *
4228                  * There is no need to disable L1
4229                  */
4230                 disable = PCIEM_LNKCTL_ASPM_L0S;
4231                 break;
4232
4233         default:
4234                 return;
4235         }
4236
4237         pcie_ptr = pci_get_pciecap_ptr(dev);
4238         if (pcie_ptr == 0)
4239                 return;
4240
4241         link_cap = pci_read_config(dev, pcie_ptr + PCIER_LINKCAP, 2);
4242         if ((link_cap & PCIEM_LNKCAP_ASPM_MASK) == 0)
4243                 return;
4244
4245         if (bootverbose) {
4246                 if_printf(&adapter->arpcom.ac_if,
4247                     "disable ASPM %#02x\n", disable);
4248         }
4249
4250         reg = pcie_ptr + PCIER_LINKCTRL;
4251         link_ctrl = pci_read_config(dev, reg, 2);
4252         link_ctrl &= ~disable;
4253         pci_write_config(dev, reg, link_ctrl, 2);
4254 }
4255
4256 static int
4257 em_tso_pullup(struct adapter *adapter, struct mbuf **mp)
4258 {
4259         int iphlen, hoff, thoff, ex = 0;
4260         struct mbuf *m;
4261         struct ip *ip;
4262
4263         m = *mp;
4264         KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4265
4266         iphlen = m->m_pkthdr.csum_iphlen;
4267         thoff = m->m_pkthdr.csum_thlen;
4268         hoff = m->m_pkthdr.csum_lhlen;
4269
4270         KASSERT(iphlen > 0, ("invalid ip hlen"));
4271         KASSERT(thoff > 0, ("invalid tcp hlen"));
4272         KASSERT(hoff > 0, ("invalid ether hlen"));
4273
4274         if (adapter->flags & EM_FLAG_TSO_PULLEX)
4275                 ex = 4;
4276
4277         if (m->m_len < hoff + iphlen + thoff + ex) {
4278                 m = m_pullup(m, hoff + iphlen + thoff + ex);
4279                 if (m == NULL) {
4280                         *mp = NULL;
4281                         return ENOBUFS;
4282                 }
4283                 *mp = m;
4284         }
4285         ip = mtodoff(m, struct ip *, hoff);
4286         ip->ip_len = 0;
4287
4288         return 0;
4289 }
4290
4291 static int
4292 em_tso_setup(struct adapter *adapter, struct mbuf *mp,
4293     uint32_t *txd_upper, uint32_t *txd_lower)
4294 {
4295         struct e1000_context_desc *TXD;
4296         int hoff, iphlen, thoff, hlen;
4297         int mss, pktlen, curr_txd;
4298
4299         iphlen = mp->m_pkthdr.csum_iphlen;
4300         thoff = mp->m_pkthdr.csum_thlen;
4301         hoff = mp->m_pkthdr.csum_lhlen;
4302         mss = mp->m_pkthdr.tso_segsz;
4303         pktlen = mp->m_pkthdr.len;
4304
4305         if (adapter->csum_flags == CSUM_TSO &&
4306             adapter->csum_iphlen == iphlen &&
4307             adapter->csum_lhlen == hoff &&
4308             adapter->csum_thlen == thoff &&
4309             adapter->csum_mss == mss &&
4310             adapter->csum_pktlen == pktlen) {
4311                 *txd_upper = adapter->csum_txd_upper;
4312                 *txd_lower = adapter->csum_txd_lower;
4313                 return 0;
4314         }
4315         hlen = hoff + iphlen + thoff;
4316
4317         /*
4318          * Setup a new TSO context.
4319          */
4320
4321         curr_txd = adapter->next_avail_tx_desc;
4322         TXD = (struct e1000_context_desc *)&adapter->tx_desc_base[curr_txd];
4323
4324         *txd_lower = E1000_TXD_CMD_DEXT |       /* Extended descr type */
4325                      E1000_TXD_DTYP_D |         /* Data descr type */
4326                      E1000_TXD_CMD_TSE;         /* Do TSE on this packet */
4327
4328         /* IP and/or TCP header checksum calculation and insertion. */
4329         *txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
4330
4331         /*
4332          * Start offset for header checksum calculation.
4333          * End offset for header checksum calculation.
4334          * Offset of place put the checksum.
4335          */
4336         TXD->lower_setup.ip_fields.ipcss = hoff;
4337         TXD->lower_setup.ip_fields.ipcse = htole16(hoff + iphlen - 1);
4338         TXD->lower_setup.ip_fields.ipcso = hoff + offsetof(struct ip, ip_sum);
4339
4340         /*
4341          * Start offset for payload checksum calculation.
4342          * End offset for payload checksum calculation.
4343          * Offset of place to put the checksum.
4344          */
4345         TXD->upper_setup.tcp_fields.tucss = hoff + iphlen;
4346         TXD->upper_setup.tcp_fields.tucse = 0;
4347         TXD->upper_setup.tcp_fields.tucso =
4348             hoff + iphlen + offsetof(struct tcphdr, th_sum);
4349
4350         /*
4351          * Payload size per packet w/o any headers.
4352          * Length of all headers up to payload.
4353          */
4354         TXD->tcp_seg_setup.fields.mss = htole16(mss);
4355         TXD->tcp_seg_setup.fields.hdr_len = hlen;
4356         TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS |
4357                                 E1000_TXD_CMD_DEXT |    /* Extended descr */
4358                                 E1000_TXD_CMD_TSE |     /* TSE context */
4359                                 E1000_TXD_CMD_IP |      /* Do IP csum */
4360                                 E1000_TXD_CMD_TCP |     /* Do TCP checksum */
4361                                 (pktlen - hlen));       /* Total len */
4362
4363         /* Save the information for this TSO context */
4364         adapter->csum_flags = CSUM_TSO;
4365         adapter->csum_lhlen = hoff;
4366         adapter->csum_iphlen = iphlen;
4367         adapter->csum_thlen = thoff;
4368         adapter->csum_mss = mss;
4369         adapter->csum_pktlen = pktlen;
4370         adapter->csum_txd_upper = *txd_upper;
4371         adapter->csum_txd_lower = *txd_lower;
4372
4373         if (++curr_txd == adapter->num_tx_desc)
4374                 curr_txd = 0;
4375
4376         KKASSERT(adapter->num_tx_desc_avail > 0);
4377         adapter->num_tx_desc_avail--;
4378
4379         adapter->next_avail_tx_desc = curr_txd;
4380         return 1;
4381 }