drm/i915: Update to Linux 3.16
[dragonfly.git] / sys / dev / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31
32 #include <linux/highmem.h>
33
34 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv);
35 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv);
36
37 bool intel_enable_ppgtt(struct drm_device *dev, bool full)
38 {
39         if (i915.enable_ppgtt == 0 || !HAS_ALIASING_PPGTT(dev))
40                 return false;
41
42         if (i915.enable_ppgtt == 1 && full)
43                 return false;
44
45 #ifdef CONFIG_INTEL_IOMMU
46         /* Disable ppgtt on SNB if VT-d is on. */
47         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
48                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
49                 return false;
50         }
51 #endif
52
53         /* Full ppgtt disabled by default for now due to issues. */
54         if (full)
55                 return HAS_PPGTT(dev) && (i915.enable_ppgtt == 2);
56         else
57                 return HAS_ALIASING_PPGTT(dev);
58 }
59
60 static void ppgtt_bind_vma(struct i915_vma *vma,
61                            enum i915_cache_level cache_level,
62                            u32 flags);
63 static void ppgtt_unbind_vma(struct i915_vma *vma);
64 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt);
65
66 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
67                                              enum i915_cache_level level,
68                                              bool valid)
69 {
70         gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
71         pte |= addr;
72
73         switch (level) {
74         case I915_CACHE_NONE:
75                 pte |= PPAT_UNCACHED_INDEX;
76                 break;
77         case I915_CACHE_WT:
78                 pte |= PPAT_DISPLAY_ELLC_INDEX;
79                 break;
80         default:
81                 pte |= PPAT_CACHED_INDEX;
82                 break;
83         }
84
85         return pte;
86 }
87
88 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
89                                              dma_addr_t addr,
90                                              enum i915_cache_level level)
91 {
92         gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
93         pde |= addr;
94         if (level != I915_CACHE_NONE)
95                 pde |= PPAT_CACHED_PDE_INDEX;
96         else
97                 pde |= PPAT_UNCACHED_INDEX;
98         return pde;
99 }
100
101 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
102                                      enum i915_cache_level level,
103                                      bool valid)
104 {
105         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
106         pte |= GEN6_PTE_ADDR_ENCODE(addr);
107
108         switch (level) {
109         case I915_CACHE_L3_LLC:
110         case I915_CACHE_LLC:
111                 pte |= GEN6_PTE_CACHE_LLC;
112                 break;
113         case I915_CACHE_NONE:
114                 pte |= GEN6_PTE_UNCACHED;
115                 break;
116         default:
117                 WARN_ON(1);
118         }
119
120         return pte;
121 }
122
123 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
124                                      enum i915_cache_level level,
125                                      bool valid)
126 {
127         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
128         pte |= GEN6_PTE_ADDR_ENCODE(addr);
129
130         switch (level) {
131         case I915_CACHE_L3_LLC:
132                 pte |= GEN7_PTE_CACHE_L3_LLC;
133                 break;
134         case I915_CACHE_LLC:
135                 pte |= GEN6_PTE_CACHE_LLC;
136                 break;
137         case I915_CACHE_NONE:
138                 pte |= GEN6_PTE_UNCACHED;
139                 break;
140         default:
141                 WARN_ON(1);
142         }
143
144         return pte;
145 }
146
147 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
148                                      enum i915_cache_level level,
149                                      bool valid)
150 {
151         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
152         pte |= GEN6_PTE_ADDR_ENCODE(addr);
153
154         /* Mark the page as writeable.  Other platforms don't have a
155          * setting for read-only/writable, so this matches that behavior.
156          */
157         pte |= BYT_PTE_WRITEABLE;
158
159         if (level != I915_CACHE_NONE)
160                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
161
162         return pte;
163 }
164
165 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
166                                      enum i915_cache_level level,
167                                      bool valid)
168 {
169         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
170         pte |= HSW_PTE_ADDR_ENCODE(addr);
171
172         if (level != I915_CACHE_NONE)
173                 pte |= HSW_WB_LLC_AGE3;
174
175         return pte;
176 }
177
178 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
179                                       enum i915_cache_level level,
180                                       bool valid)
181 {
182         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
183         pte |= HSW_PTE_ADDR_ENCODE(addr);
184
185         switch (level) {
186         case I915_CACHE_NONE:
187                 break;
188         case I915_CACHE_WT:
189                 pte |= HSW_WT_ELLC_LLC_AGE3;
190                 break;
191         default:
192                 pte |= HSW_WB_ELLC_LLC_AGE3;
193                 break;
194         }
195
196         return pte;
197 }
198
199 /* Broadwell Page Directory Pointer Descriptors */
200 static int gen8_write_pdp(struct intel_engine_cs *ring, unsigned entry,
201                            uint64_t val, bool synchronous)
202 {
203         struct drm_i915_private *dev_priv = ring->dev->dev_private;
204         int ret;
205
206         BUG_ON(entry >= 4);
207
208         if (synchronous) {
209                 I915_WRITE(GEN8_RING_PDP_UDW(ring, entry), val >> 32);
210                 I915_WRITE(GEN8_RING_PDP_LDW(ring, entry), (u32)val);
211                 return 0;
212         }
213
214         ret = intel_ring_begin(ring, 6);
215         if (ret)
216                 return ret;
217
218         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
219         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
220         intel_ring_emit(ring, (u32)(val >> 32));
221         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
222         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
223         intel_ring_emit(ring, (u32)(val));
224         intel_ring_advance(ring);
225
226         return 0;
227 }
228
229 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
230                           struct intel_engine_cs *ring,
231                           bool synchronous)
232 {
233         int i, ret;
234
235         /* bit of a hack to find the actual last used pd */
236         int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
237
238         for (i = used_pd - 1; i >= 0; i--) {
239                 dma_addr_t addr = ppgtt->pd_dma_addr[i];
240                 ret = gen8_write_pdp(ring, i, addr, synchronous);
241                 if (ret)
242                         return ret;
243         }
244
245         return 0;
246 }
247
248 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
249                                    uint64_t start,
250                                    uint64_t length,
251                                    bool use_scratch)
252 {
253         struct i915_hw_ppgtt *ppgtt =
254                 container_of(vm, struct i915_hw_ppgtt, base);
255         gen8_gtt_pte_t *pt_vaddr, scratch_pte;
256         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
257         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
258         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
259         unsigned num_entries = length >> PAGE_SHIFT;
260         unsigned last_pte, i;
261
262         scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
263                                       I915_CACHE_LLC, use_scratch);
264
265         while (num_entries) {
266                 struct vm_page *page_table = ppgtt->gen8_pt_pages[pdpe][pde];
267
268                 last_pte = pte + num_entries;
269                 if (last_pte > GEN8_PTES_PER_PAGE)
270                         last_pte = GEN8_PTES_PER_PAGE;
271
272                 pt_vaddr = kmap_atomic(page_table);
273
274                 for (i = pte; i < last_pte; i++) {
275                         pt_vaddr[i] = scratch_pte;
276                         num_entries--;
277                 }
278
279                 if (!HAS_LLC(ppgtt->base.dev))
280                         drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
281                 kunmap_atomic(pt_vaddr);
282
283                 pte = 0;
284                 if (++pde == GEN8_PDES_PER_PAGE) {
285                         pdpe++;
286                         pde = 0;
287                 }
288         }
289 }
290
291 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
292                                       vm_page_t *pages,
293                                       uint64_t start,
294                                       unsigned int num_entries,
295                                       enum i915_cache_level cache_level)
296 {
297         struct i915_hw_ppgtt *ppgtt =
298                 container_of(vm, struct i915_hw_ppgtt, base);
299         gen8_gtt_pte_t *pt_vaddr;
300         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
301         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
302         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
303         int i;
304
305         pt_vaddr = NULL;
306
307         for (i=0;i<num_entries;i++) {
308                 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPS))
309                         break;
310
311                 if (pt_vaddr == NULL)
312                         pt_vaddr = kmap_atomic(ppgtt->gen8_pt_pages[pdpe][pde]);
313
314                 pt_vaddr[pte] =
315                         gen8_pte_encode(VM_PAGE_TO_PHYS(pages[i]),
316                                         cache_level, true);
317                 if (++pte == GEN8_PTES_PER_PAGE) {
318                         if (!HAS_LLC(ppgtt->base.dev))
319                                 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
320                         kunmap_atomic(pt_vaddr);
321                         pt_vaddr = NULL;
322                         if (++pde == GEN8_PDES_PER_PAGE) {
323                                 pdpe++;
324                                 pde = 0;
325                         }
326                         pte = 0;
327                 }
328         }
329         if (pt_vaddr) {
330                 if (!HAS_LLC(ppgtt->base.dev))
331                         drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
332                 kunmap_atomic(pt_vaddr);
333         }
334 }
335
336 static void gen8_free_page_tables(struct vm_page **pt_pages)
337 {
338         int i;
339
340         if (pt_pages == NULL)
341                 return;
342
343         for (i = 0; i < GEN8_PDES_PER_PAGE; i++)
344                 if (pt_pages[i])
345                         __free_pages(pt_pages[i], 0);
346 }
347
348 static void gen8_ppgtt_free(const struct i915_hw_ppgtt *ppgtt)
349 {
350         int i;
351
352         for (i = 0; i < ppgtt->num_pd_pages; i++) {
353                 gen8_free_page_tables(ppgtt->gen8_pt_pages[i]);
354                 kfree(ppgtt->gen8_pt_pages[i]);
355                 kfree(ppgtt->gen8_pt_dma_addr[i]);
356         }
357
358         __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
359 }
360
361 static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
362 {
363         struct pci_dev *hwdev = ppgtt->base.dev->pdev;
364         int i, j;
365
366         for (i = 0; i < ppgtt->num_pd_pages; i++) {
367                 /* TODO: In the future we'll support sparse mappings, so this
368                  * will have to change. */
369                 if (!ppgtt->pd_dma_addr[i])
370                         continue;
371
372                 pci_unmap_page(hwdev, ppgtt->pd_dma_addr[i], PAGE_SIZE,
373                                PCI_DMA_BIDIRECTIONAL);
374
375                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
376                         dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
377                         if (addr)
378                                 pci_unmap_page(hwdev, addr, PAGE_SIZE,
379                                                PCI_DMA_BIDIRECTIONAL);
380                 }
381         }
382 }
383
384 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
385 {
386         struct i915_hw_ppgtt *ppgtt =
387                 container_of(vm, struct i915_hw_ppgtt, base);
388
389         list_del(&vm->global_link);
390         drm_mm_takedown(&vm->mm);
391
392         gen8_ppgtt_unmap_pages(ppgtt);
393         gen8_ppgtt_free(ppgtt);
394 }
395
396 static struct vm_page **__gen8_alloc_page_tables(void)
397 {
398         struct vm_page **pt_pages;
399         int i;
400
401         pt_pages = kcalloc(GEN8_PDES_PER_PAGE, sizeof(struct vm_page *), GFP_KERNEL);
402         if (!pt_pages)
403                 return ERR_PTR(-ENOMEM);
404
405         for (i = 0; i < GEN8_PDES_PER_PAGE; i++) {
406                 pt_pages[i] = alloc_page(GFP_KERNEL);
407                 if (!pt_pages[i])
408                         goto bail;
409         }
410
411         return pt_pages;
412
413 bail:
414         gen8_free_page_tables(pt_pages);
415         kfree(pt_pages);
416         return ERR_PTR(-ENOMEM);
417 }
418
419 static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt,
420                                            const int max_pdp)
421 {
422         struct vm_page **pt_pages[GEN8_LEGACY_PDPS];
423         int i, ret;
424
425         for (i = 0; i < max_pdp; i++) {
426                 pt_pages[i] = __gen8_alloc_page_tables();
427                 if (IS_ERR(pt_pages[i])) {
428                         ret = PTR_ERR(pt_pages[i]);
429                         goto unwind_out;
430                 }
431         }
432
433         /* NB: Avoid touching gen8_pt_pages until last to keep the allocation,
434          * "atomic" - for cleanup purposes.
435          */
436         for (i = 0; i < max_pdp; i++)
437                 ppgtt->gen8_pt_pages[i] = pt_pages[i];
438
439         return 0;
440
441 unwind_out:
442         while (i--) {
443                 gen8_free_page_tables(pt_pages[i]);
444                 kfree(pt_pages[i]);
445         }
446
447         return ret;
448 }
449
450 static int gen8_ppgtt_allocate_dma(struct i915_hw_ppgtt *ppgtt)
451 {
452         int i;
453
454         for (i = 0; i < ppgtt->num_pd_pages; i++) {
455                 ppgtt->gen8_pt_dma_addr[i] = kcalloc(GEN8_PDES_PER_PAGE,
456                                                      sizeof(dma_addr_t),
457                                                      GFP_KERNEL);
458                 if (!ppgtt->gen8_pt_dma_addr[i])
459                         return -ENOMEM;
460         }
461
462         return 0;
463 }
464
465 static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
466                                                 const int max_pdp)
467 {
468         ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
469         if (!ppgtt->pd_pages)
470                 return -ENOMEM;
471
472         ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
473         BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
474
475         return 0;
476 }
477
478 static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
479                             const int max_pdp)
480 {
481         int ret;
482
483         ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
484         if (ret)
485                 return ret;
486
487         ret = gen8_ppgtt_allocate_page_tables(ppgtt, max_pdp);
488         if (ret) {
489                 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
490                 return ret;
491         }
492
493         ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
494
495         ret = gen8_ppgtt_allocate_dma(ppgtt);
496         if (ret)
497                 gen8_ppgtt_free(ppgtt);
498
499         return ret;
500 }
501
502 static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
503                                              const int pd)
504 {
505         dma_addr_t pd_addr;
506         int ret;
507
508         pd_addr = pci_map_page(ppgtt->base.dev->pdev,
509                                &ppgtt->pd_pages[pd], 0,
510                                PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
511
512         ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
513         if (ret)
514                 return ret;
515
516         ppgtt->pd_dma_addr[pd] = pd_addr;
517
518         return 0;
519 }
520
521 static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
522                                         const int pd,
523                                         const int pt)
524 {
525         dma_addr_t pt_addr;
526         struct vm_page *p;
527         int ret;
528
529         p = ppgtt->gen8_pt_pages[pd][pt];
530         pt_addr = pci_map_page(ppgtt->base.dev->pdev,
531                                p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
532         ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
533         if (ret)
534                 return ret;
535
536         ppgtt->gen8_pt_dma_addr[pd][pt] = pt_addr;
537
538         return 0;
539 }
540
541 /**
542  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
543  * with a net effect resembling a 2-level page table in normal x86 terms. Each
544  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
545  * space.
546  *
547  * FIXME: split allocation into smaller pieces. For now we only ever do this
548  * once, but with full PPGTT, the multiple contiguous allocations will be bad.
549  * TODO: Do something with the size parameter
550  */
551 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
552 {
553         const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
554         const int min_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
555         int i, j, ret;
556
557         if (size % (1<<30))
558                 DRM_INFO("Pages will be wasted unless GTT size (%lu) is divisible by 1GB\n", size);
559
560         /* 1. Do all our allocations for page directories and page tables. */
561         ret = gen8_ppgtt_alloc(ppgtt, max_pdp);
562         if (ret)
563                 return ret;
564
565         /*
566          * 2. Create DMA mappings for the page directories and page tables.
567          */
568         for (i = 0; i < max_pdp; i++) {
569                 ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
570                 if (ret)
571                         goto bail;
572
573                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
574                         ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
575                         if (ret)
576                                 goto bail;
577                 }
578         }
579
580         /*
581          * 3. Map all the page directory entires to point to the page tables
582          * we've allocated.
583          *
584          * For now, the PPGTT helper functions all require that the PDEs are
585          * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
586          * will never need to touch the PDEs again.
587          */
588         for (i = 0; i < max_pdp; i++) {
589                 gen8_ppgtt_pde_t *pd_vaddr;
590                 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
591                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
592                         dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
593                         pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
594                                                       I915_CACHE_LLC);
595                 }
596                 if (!HAS_LLC(ppgtt->base.dev))
597                         drm_clflush_virt_range(pd_vaddr, PAGE_SIZE);
598                 kunmap_atomic(pd_vaddr);
599         }
600
601         ppgtt->enable = gen8_ppgtt_enable;
602         ppgtt->switch_mm = gen8_mm_switch;
603         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
604         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
605         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
606         ppgtt->base.start = 0;
607         ppgtt->base.total = ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE * PAGE_SIZE;
608
609         ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
610
611         DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
612                          ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
613         DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%ld wasted)\n",
614                          ppgtt->num_pd_entries,
615                          (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30));
616         return 0;
617
618 bail:
619         gen8_ppgtt_unmap_pages(ppgtt);
620         gen8_ppgtt_free(ppgtt);
621         return ret;
622 }
623
624 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
625 {
626         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
627         struct i915_address_space *vm = &ppgtt->base;
628         gen6_gtt_pte_t __iomem *pd_addr;
629         gen6_gtt_pte_t scratch_pte;
630         uint32_t pd_entry;
631         int pte, pde;
632
633         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
634
635         pd_addr = (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm +
636                 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
637
638         seq_printf(m, "  VM %p (pd_offset %x-%x):\n", vm,
639                    ppgtt->pd_offset, ppgtt->pd_offset + ppgtt->num_pd_entries);
640         for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
641                 u32 expected;
642                 gen6_gtt_pte_t *pt_vaddr;
643                 dma_addr_t pt_addr = ppgtt->pt_dma_addr[pde];
644                 pd_entry = readl(pd_addr + pde);
645                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
646
647                 if (pd_entry != expected)
648                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
649                                    pde,
650                                    pd_entry,
651                                    expected);
652                 seq_printf(m, "\tPDE: %x\n", pd_entry);
653
654                 pt_vaddr = kmap_atomic(ppgtt->pt_pages[pde]);
655                 for (pte = 0; pte < I915_PPGTT_PT_ENTRIES; pte+=4) {
656                         unsigned long va =
657                                 (pde * PAGE_SIZE * I915_PPGTT_PT_ENTRIES) +
658                                 (pte * PAGE_SIZE);
659                         int i;
660                         bool found = false;
661                         for (i = 0; i < 4; i++)
662                                 if (pt_vaddr[pte + i] != scratch_pte)
663                                         found = true;
664                         if (!found)
665                                 continue;
666
667                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
668                         for (i = 0; i < 4; i++) {
669                                 if (pt_vaddr[pte + i] != scratch_pte)
670                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
671                                 else
672                                         seq_printf(m, "  SCRATCH ");
673                         }
674                         seq_printf(m, "\n");
675                 }
676                 kunmap_atomic(pt_vaddr);
677         }
678 }
679
680 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
681 {
682         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
683         gen6_gtt_pte_t __iomem *pd_addr;
684         uint32_t pd_entry;
685         int i;
686
687         WARN_ON(ppgtt->pd_offset & 0x3f);
688         pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
689                 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
690         for (i = 0; i < ppgtt->num_pd_entries; i++) {
691                 dma_addr_t pt_addr;
692
693                 pt_addr = ppgtt->pt_dma_addr[i];
694                 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
695                 pd_entry |= GEN6_PDE_VALID;
696
697                 writel(pd_entry, pd_addr + i);
698         }
699         readl(pd_addr);
700 }
701
702 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
703 {
704         BUG_ON(ppgtt->pd_offset & 0x3f);
705
706         return (ppgtt->pd_offset / 64) << 16;
707 }
708
709 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
710                          struct intel_engine_cs *ring,
711                          bool synchronous)
712 {
713         struct drm_device *dev = ppgtt->base.dev;
714         struct drm_i915_private *dev_priv = dev->dev_private;
715         int ret;
716
717         /* If we're in reset, we can assume the GPU is sufficiently idle to
718          * manually frob these bits. Ideally we could use the ring functions,
719          * except our error handling makes it quite difficult (can't use
720          * intel_ring_begin, ring->flush, or intel_ring_advance)
721          *
722          * FIXME: We should try not to special case reset
723          */
724         if (synchronous ||
725             i915_reset_in_progress(&dev_priv->gpu_error)) {
726                 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
727                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
728                 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
729                 POSTING_READ(RING_PP_DIR_BASE(ring));
730                 return 0;
731         }
732
733         /* NB: TLBs must be flushed and invalidated before a switch */
734         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
735         if (ret)
736                 return ret;
737
738         ret = intel_ring_begin(ring, 6);
739         if (ret)
740                 return ret;
741
742         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
743         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
744         intel_ring_emit(ring, PP_DIR_DCLV_2G);
745         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
746         intel_ring_emit(ring, get_pd_offset(ppgtt));
747         intel_ring_emit(ring, MI_NOOP);
748         intel_ring_advance(ring);
749
750         return 0;
751 }
752
753 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
754                           struct intel_engine_cs *ring,
755                           bool synchronous)
756 {
757         struct drm_device *dev = ppgtt->base.dev;
758         struct drm_i915_private *dev_priv = dev->dev_private;
759         int ret;
760
761         /* If we're in reset, we can assume the GPU is sufficiently idle to
762          * manually frob these bits. Ideally we could use the ring functions,
763          * except our error handling makes it quite difficult (can't use
764          * intel_ring_begin, ring->flush, or intel_ring_advance)
765          *
766          * FIXME: We should try not to special case reset
767          */
768         if (synchronous ||
769             i915_reset_in_progress(&dev_priv->gpu_error)) {
770                 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
771                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
772                 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
773                 POSTING_READ(RING_PP_DIR_BASE(ring));
774                 return 0;
775         }
776
777         /* NB: TLBs must be flushed and invalidated before a switch */
778         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
779         if (ret)
780                 return ret;
781
782         ret = intel_ring_begin(ring, 6);
783         if (ret)
784                 return ret;
785
786         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
787         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
788         intel_ring_emit(ring, PP_DIR_DCLV_2G);
789         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
790         intel_ring_emit(ring, get_pd_offset(ppgtt));
791         intel_ring_emit(ring, MI_NOOP);
792         intel_ring_advance(ring);
793
794         /* XXX: RCS is the only one to auto invalidate the TLBs? */
795         if (ring->id != RCS) {
796                 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
797                 if (ret)
798                         return ret;
799         }
800
801         return 0;
802 }
803
804 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
805                           struct intel_engine_cs *ring,
806                           bool synchronous)
807 {
808         struct drm_device *dev = ppgtt->base.dev;
809         struct drm_i915_private *dev_priv = dev->dev_private;
810
811         if (!synchronous)
812                 return 0;
813
814         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
815         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
816
817         POSTING_READ(RING_PP_DIR_DCLV(ring));
818
819         return 0;
820 }
821
822 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
823 {
824         struct drm_device *dev = ppgtt->base.dev;
825         struct drm_i915_private *dev_priv = dev->dev_private;
826         struct intel_engine_cs *ring;
827         int j, ret;
828
829         for_each_ring(ring, dev_priv, j) {
830                 I915_WRITE(RING_MODE_GEN7(ring),
831                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
832
833                 /* We promise to do a switch later with FULL PPGTT. If this is
834                  * aliasing, this is the one and only switch we'll do */
835                 if (USES_FULL_PPGTT(dev))
836                         continue;
837
838                 ret = ppgtt->switch_mm(ppgtt, ring, true);
839                 if (ret)
840                         goto err_out;
841         }
842
843         return 0;
844
845 err_out:
846         for_each_ring(ring, dev_priv, j)
847                 I915_WRITE(RING_MODE_GEN7(ring),
848                            _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
849         return ret;
850 }
851
852 static int gen7_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
853 {
854         struct drm_device *dev = ppgtt->base.dev;
855         struct drm_i915_private *dev_priv = dev->dev_private;
856         struct intel_engine_cs *ring;
857         uint32_t ecochk, ecobits;
858         int i;
859
860         ecobits = I915_READ(GAC_ECO_BITS);
861         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
862
863         ecochk = I915_READ(GAM_ECOCHK);
864         if (IS_HASWELL(dev)) {
865                 ecochk |= ECOCHK_PPGTT_WB_HSW;
866         } else {
867                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
868                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
869         }
870         I915_WRITE(GAM_ECOCHK, ecochk);
871
872         for_each_ring(ring, dev_priv, i) {
873                 int ret;
874                 /* GFX_MODE is per-ring on gen7+ */
875                 I915_WRITE(RING_MODE_GEN7(ring),
876                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
877
878                 /* We promise to do a switch later with FULL PPGTT. If this is
879                  * aliasing, this is the one and only switch we'll do */
880                 if (USES_FULL_PPGTT(dev))
881                         continue;
882
883                 ret = ppgtt->switch_mm(ppgtt, ring, true);
884                 if (ret)
885                         return ret;
886         }
887
888         return 0;
889 }
890
891 static int gen6_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
892 {
893         struct drm_device *dev = ppgtt->base.dev;
894         struct drm_i915_private *dev_priv = dev->dev_private;
895         struct intel_engine_cs *ring;
896         uint32_t ecochk, gab_ctl, ecobits;
897         int i;
898
899         ecobits = I915_READ(GAC_ECO_BITS);
900         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
901                    ECOBITS_PPGTT_CACHE64B);
902
903         gab_ctl = I915_READ(GAB_CTL);
904         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
905
906         ecochk = I915_READ(GAM_ECOCHK);
907         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
908
909         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
910
911         for_each_ring(ring, dev_priv, i) {
912                 int ret = ppgtt->switch_mm(ppgtt, ring, true);
913                 if (ret)
914                         return ret;
915         }
916
917         return 0;
918 }
919
920 /* PPGTT support for Sandybdrige/Gen6 and later */
921 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
922                                    uint64_t start,
923                                    uint64_t length,
924                                    bool use_scratch)
925 {
926         struct i915_hw_ppgtt *ppgtt =
927                 container_of(vm, struct i915_hw_ppgtt, base);
928         gen6_gtt_pte_t *pt_vaddr, scratch_pte;
929         unsigned first_entry = start >> PAGE_SHIFT;
930         unsigned num_entries = length >> PAGE_SHIFT;
931         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
932         unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
933         unsigned last_pte, i;
934
935         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
936
937         while (num_entries) {
938                 last_pte = first_pte + num_entries;
939                 if (last_pte > I915_PPGTT_PT_ENTRIES)
940                         last_pte = I915_PPGTT_PT_ENTRIES;
941
942                 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
943
944                 for (i = first_pte; i < last_pte; i++)
945                         pt_vaddr[i] = scratch_pte;
946
947                 kunmap_atomic(pt_vaddr);
948
949                 num_entries -= last_pte - first_pte;
950                 first_pte = 0;
951                 act_pt++;
952         }
953 }
954
955 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
956                                       vm_page_t *pages,
957                                       uint64_t start,
958                                       unsigned num_entries,
959                                       enum i915_cache_level cache_level)
960 {
961         struct i915_hw_ppgtt *ppgtt =
962                 container_of(vm, struct i915_hw_ppgtt, base);
963         gen6_gtt_pte_t *pt_vaddr;
964         unsigned first_entry = start >> PAGE_SHIFT;
965         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
966         unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
967
968         pt_vaddr = NULL;
969         for (int i=0;i<num_entries;i++) {
970                 if (pt_vaddr == NULL)
971                         pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
972
973                 pt_vaddr[act_pte] =
974                         vm->pte_encode(VM_PAGE_TO_PHYS(pages[i]),
975                                        cache_level, true);
976                 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
977                         kunmap_atomic(pt_vaddr);
978                         pt_vaddr = NULL;
979                         act_pt++;
980                         act_pte = 0;
981                 }
982         }
983         if (pt_vaddr)
984                 kunmap_atomic(pt_vaddr);
985 }
986
987 static void gen6_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
988 {
989         int i;
990
991         if (ppgtt->pt_dma_addr) {
992                 for (i = 0; i < ppgtt->num_pd_entries; i++)
993                         pci_unmap_page(ppgtt->base.dev->pdev,
994                                        ppgtt->pt_dma_addr[i],
995                                        4096, PCI_DMA_BIDIRECTIONAL);
996         }
997 }
998
999 static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
1000 {
1001         int i;
1002
1003         kfree(ppgtt->pt_dma_addr);
1004         for (i = 0; i < ppgtt->num_pd_entries; i++)
1005                 __free_page(ppgtt->pt_pages[i]);
1006         kfree(ppgtt->pt_pages);
1007 }
1008
1009 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1010 {
1011         struct i915_hw_ppgtt *ppgtt =
1012                 container_of(vm, struct i915_hw_ppgtt, base);
1013
1014         list_del(&vm->global_link);
1015         drm_mm_takedown(&ppgtt->base.mm);
1016         drm_mm_remove_node(&ppgtt->node);
1017
1018         gen6_ppgtt_unmap_pages(ppgtt);
1019         gen6_ppgtt_free(ppgtt);
1020 }
1021
1022 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1023 {
1024         struct drm_device *dev = ppgtt->base.dev;
1025         struct drm_i915_private *dev_priv = dev->dev_private;
1026         bool retried = false;
1027         int ret;
1028
1029         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1030          * allocator works in address space sizes, so it's multiplied by page
1031          * size. We allocate at the top of the GTT to avoid fragmentation.
1032          */
1033         BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1034 alloc:
1035         ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1036                                                   &ppgtt->node, GEN6_PD_SIZE,
1037                                                   GEN6_PD_ALIGN, 0,
1038                                                   0, dev_priv->gtt.base.total,
1039                                                   DRM_MM_TOPDOWN);
1040         if (ret == -ENOSPC && !retried) {
1041                 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1042                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
1043                                                I915_CACHE_NONE,
1044                                                0, dev_priv->gtt.base.total,
1045                                                0);
1046                 if (ret)
1047                         return ret;
1048
1049                 retried = true;
1050                 goto alloc;
1051         }
1052
1053         if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1054                 DRM_DEBUG("Forced to use aperture for PDEs\n");
1055
1056         ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
1057         return ret;
1058 }
1059
1060 static int gen6_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt)
1061 {
1062         int i;
1063
1064         ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct vm_page *),
1065                                   GFP_KERNEL);
1066
1067         if (!ppgtt->pt_pages)
1068                 return -ENOMEM;
1069
1070         for (i = 0; i < ppgtt->num_pd_entries; i++) {
1071                 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
1072                 if (!ppgtt->pt_pages[i]) {
1073                         gen6_ppgtt_free(ppgtt);
1074                         return -ENOMEM;
1075                 }
1076         }
1077
1078         return 0;
1079 }
1080
1081 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1082 {
1083         int ret;
1084
1085         ret = gen6_ppgtt_allocate_page_directories(ppgtt);
1086         if (ret)
1087                 return ret;
1088
1089         ret = gen6_ppgtt_allocate_page_tables(ppgtt);
1090         if (ret) {
1091                 drm_mm_remove_node(&ppgtt->node);
1092                 return ret;
1093         }
1094
1095         ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
1096                                      GFP_KERNEL);
1097         if (!ppgtt->pt_dma_addr) {
1098                 drm_mm_remove_node(&ppgtt->node);
1099                 gen6_ppgtt_free(ppgtt);
1100                 return -ENOMEM;
1101         }
1102
1103         return 0;
1104 }
1105
1106 static int gen6_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt)
1107 {
1108         struct drm_device *dev = ppgtt->base.dev;
1109         int i;
1110
1111         for (i = 0; i < ppgtt->num_pd_entries; i++) {
1112                 dma_addr_t pt_addr;
1113
1114                 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
1115                                        PCI_DMA_BIDIRECTIONAL);
1116
1117                 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
1118                         gen6_ppgtt_unmap_pages(ppgtt);
1119                         return -EIO;
1120                 }
1121
1122                 ppgtt->pt_dma_addr[i] = pt_addr;
1123         }
1124
1125         return 0;
1126 }
1127
1128 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1129 {
1130         struct drm_device *dev = ppgtt->base.dev;
1131         struct drm_i915_private *dev_priv = dev->dev_private;
1132         int ret;
1133
1134         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1135         if (IS_GEN6(dev)) {
1136                 ppgtt->enable = gen6_ppgtt_enable;
1137                 ppgtt->switch_mm = gen6_mm_switch;
1138         } else if (IS_HASWELL(dev)) {
1139                 ppgtt->enable = gen7_ppgtt_enable;
1140                 ppgtt->switch_mm = hsw_mm_switch;
1141         } else if (IS_GEN7(dev)) {
1142                 ppgtt->enable = gen7_ppgtt_enable;
1143                 ppgtt->switch_mm = gen7_mm_switch;
1144         } else
1145                 BUG();
1146
1147         ret = gen6_ppgtt_alloc(ppgtt);
1148         if (ret)
1149                 return ret;
1150
1151         ret = gen6_ppgtt_setup_page_tables(ppgtt);
1152         if (ret) {
1153                 gen6_ppgtt_free(ppgtt);
1154                 return ret;
1155         }
1156
1157         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1158         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1159         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1160         ppgtt->base.start = 0;
1161         ppgtt->base.total =  ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
1162         ppgtt->debug_dump = gen6_dump_ppgtt;
1163
1164         ppgtt->pd_offset =
1165                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
1166
1167         ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1168
1169         DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
1170                          ppgtt->node.size >> 20,
1171                          ppgtt->node.start / PAGE_SIZE);
1172
1173         return 0;
1174 }
1175
1176 int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1177 {
1178         struct drm_i915_private *dev_priv = dev->dev_private;
1179         int ret = 0;
1180
1181         ppgtt->base.dev = dev;
1182         ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1183
1184         if (INTEL_INFO(dev)->gen < 8)
1185                 ret = gen6_ppgtt_init(ppgtt);
1186         else if (IS_GEN8(dev))
1187                 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
1188         else
1189                 BUG();
1190
1191         if (!ret) {
1192                 struct drm_i915_private *dev_priv = dev->dev_private;
1193                 kref_init(&ppgtt->ref);
1194                 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1195                             ppgtt->base.total);
1196                 i915_init_vm(dev_priv, &ppgtt->base);
1197                 if (INTEL_INFO(dev)->gen < 8) {
1198                         gen6_write_pdes(ppgtt);
1199                         DRM_DEBUG("Adding PPGTT at offset %x\n",
1200                                   ppgtt->pd_offset << 10);
1201                 }
1202         }
1203
1204         return ret;
1205 }
1206
1207 static void
1208 ppgtt_bind_vma(struct i915_vma *vma,
1209                enum i915_cache_level cache_level,
1210                u32 flags)
1211 {
1212         const unsigned int num_entries = vma->obj->base.size >> PAGE_SHIFT;
1213
1214         vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
1215                                 num_entries,
1216                                 cache_level);
1217 }
1218
1219 static void ppgtt_unbind_vma(struct i915_vma *vma)
1220 {
1221         vma->vm->clear_range(vma->vm,
1222                              vma->node.start,
1223                              vma->obj->base.size,
1224                              true);
1225 }
1226
1227 extern int intel_iommu_gfx_mapped;
1228 /* Certain Gen5 chipsets require require idling the GPU before
1229  * unmapping anything from the GTT when VT-d is enabled.
1230  */
1231 static inline bool needs_idle_maps(struct drm_device *dev)
1232 {
1233 #ifdef CONFIG_INTEL_IOMMU
1234         /* Query intel_iommu to see if we need the workaround. Presumably that
1235          * was loaded first.
1236          */
1237         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1238                 return true;
1239 #endif
1240         return false;
1241 }
1242
1243 static bool do_idling(struct drm_i915_private *dev_priv)
1244 {
1245         bool ret = dev_priv->mm.interruptible;
1246
1247         if (unlikely(dev_priv->gtt.do_idle_maps)) {
1248                 dev_priv->mm.interruptible = false;
1249                 if (i915_gpu_idle(dev_priv->dev)) {
1250                         DRM_ERROR("Couldn't idle GPU\n");
1251                         /* Wait a bit, in hopes it avoids the hang */
1252                         udelay(10);
1253                 }
1254         }
1255
1256         return ret;
1257 }
1258
1259 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1260 {
1261         if (unlikely(dev_priv->gtt.do_idle_maps))
1262                 dev_priv->mm.interruptible = interruptible;
1263 }
1264
1265 void i915_check_and_clear_faults(struct drm_device *dev)
1266 {
1267         struct drm_i915_private *dev_priv = dev->dev_private;
1268         struct intel_engine_cs *ring;
1269         int i;
1270
1271         if (INTEL_INFO(dev)->gen < 6)
1272                 return;
1273
1274         for_each_ring(ring, dev_priv, i) {
1275                 u32 fault_reg;
1276                 fault_reg = I915_READ(RING_FAULT_REG(ring));
1277                 if (fault_reg & RING_FAULT_VALID) {
1278 #if 0
1279                         DRM_DEBUG_DRIVER("Unexpected fault\n"
1280                                          "\tAddr: 0x%08lx\\n"
1281                                          "\tAddress space: %s\n"
1282                                          "\tSource ID: %d\n"
1283                                          "\tType: %d\n",
1284                                          fault_reg & PAGE_MASK,
1285                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1286                                          RING_FAULT_SRCID(fault_reg),
1287                                          RING_FAULT_FAULT_TYPE(fault_reg));
1288 #endif
1289                         I915_WRITE(RING_FAULT_REG(ring),
1290                                    fault_reg & ~RING_FAULT_VALID);
1291                 }
1292         }
1293         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1294 }
1295
1296 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1297 {
1298         struct drm_i915_private *dev_priv = dev->dev_private;
1299
1300         /* Don't bother messing with faults pre GEN6 as we have little
1301          * documentation supporting that it's a good idea.
1302          */
1303         if (INTEL_INFO(dev)->gen < 6)
1304                 return;
1305
1306         i915_check_and_clear_faults(dev);
1307
1308         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1309                                        dev_priv->gtt.base.start,
1310                                        dev_priv->gtt.base.total,
1311                                        true);
1312 }
1313
1314 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1315 {
1316         struct drm_i915_private *dev_priv = dev->dev_private;
1317         struct drm_i915_gem_object *obj;
1318         struct i915_address_space *vm;
1319
1320         i915_check_and_clear_faults(dev);
1321
1322         /* First fill our portion of the GTT with scratch pages */
1323         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1324                                        dev_priv->gtt.base.start,
1325                                        dev_priv->gtt.base.total,
1326                                        true);
1327
1328         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1329                 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1330                                                            &dev_priv->gtt.base);
1331                 if (!vma)
1332                         continue;
1333
1334                 i915_gem_clflush_object(obj, obj->pin_display);
1335                 /* The bind_vma code tries to be smart about tracking mappings.
1336                  * Unfortunately above, we've just wiped out the mappings
1337                  * without telling our object about it. So we need to fake it.
1338                  */
1339                 obj->has_global_gtt_mapping = 0;
1340                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
1341         }
1342
1343
1344         if (INTEL_INFO(dev)->gen >= 8) {
1345                 if (IS_CHERRYVIEW(dev))
1346                         chv_setup_private_ppat(dev_priv);
1347                 else
1348                         bdw_setup_private_ppat(dev_priv);
1349
1350                 return;
1351         }
1352
1353         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1354                 /* TODO: Perhaps it shouldn't be gen6 specific */
1355                 if (i915_is_ggtt(vm)) {
1356                         if (dev_priv->mm.aliasing_ppgtt)
1357                                 gen6_write_pdes(dev_priv->mm.aliasing_ppgtt);
1358                         continue;
1359                 }
1360
1361                 gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base));
1362         }
1363
1364         i915_gem_chipset_flush(dev);
1365 }
1366
1367 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1368 {
1369         if (obj->has_dma_mapping)
1370                 return 0;
1371
1372 #if 0
1373         if (!dma_map_sg(&obj->base.dev->pdev->dev,
1374                         obj->pages->sgl, obj->pages->nents,
1375                         PCI_DMA_BIDIRECTIONAL))
1376                 return -ENOSPC;
1377 #endif
1378
1379         return 0;
1380 }
1381
1382 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
1383 {
1384 #if 0
1385         writeq(pte, addr);
1386 #else
1387         iowrite32((u32)pte, addr);
1388         iowrite32(pte >> 32, addr + 4);
1389 #endif
1390 }
1391
1392 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1393                                      vm_page_t *pages,
1394                                      uint64_t start,
1395                                      unsigned int num_entries,
1396                                      enum i915_cache_level level)
1397 {
1398         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1399         unsigned first_entry = start >> PAGE_SHIFT;
1400         gen8_gtt_pte_t __iomem *gtt_entries =
1401                 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1402         int i = 0;
1403         dma_addr_t addr = 0;
1404
1405         for (i=0;i<num_entries;i++) {
1406                 addr = VM_PAGE_TO_PHYS(pages[i]);
1407                 gen8_set_pte(&gtt_entries[i],
1408                              gen8_pte_encode(addr, level, true));
1409         }
1410
1411         /*
1412          * XXX: This serves as a posting read to make sure that the PTE has
1413          * actually been updated. There is some concern that even though
1414          * registers and PTEs are within the same BAR that they are potentially
1415          * of NUMA access patterns. Therefore, even with the way we assume
1416          * hardware should work, we must keep this posting read for paranoia.
1417          */
1418         if (i != 0)
1419                 WARN_ON(readq(&gtt_entries[i-1])
1420                         != gen8_pte_encode(addr, level, true));
1421
1422         /* This next bit makes the above posting read even more important. We
1423          * want to flush the TLBs only after we're certain all the PTE updates
1424          * have finished.
1425          */
1426         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1427         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1428 }
1429
1430 /*
1431  * Binds an object into the global gtt with the specified cache level. The object
1432  * will be accessible to the GPU via commands whose operands reference offsets
1433  * within the global GTT as well as accessible by the GPU through the GMADR
1434  * mapped BAR (dev_priv->mm.gtt->gtt).
1435  */
1436 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1437                                      vm_page_t *pages,
1438                                      uint64_t start,
1439                                      unsigned int num_entries,
1440                                      enum i915_cache_level level)
1441 {
1442         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1443         unsigned first_entry = start >> PAGE_SHIFT;
1444         gen6_gtt_pte_t __iomem *gtt_entries =
1445                 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1446         int i = 0;
1447         dma_addr_t addr;
1448
1449         for (i = 0; i < num_entries; i++) {
1450                 addr = VM_PAGE_TO_PHYS(pages[i]);
1451                 iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
1452         }
1453
1454         /* XXX: This serves as a posting read to make sure that the PTE has
1455          * actually been updated. There is some concern that even though
1456          * registers and PTEs are within the same BAR that they are potentially
1457          * of NUMA access patterns. Therefore, even with the way we assume
1458          * hardware should work, we must keep this posting read for paranoia.
1459          */
1460         if (i != 0)
1461                 WARN_ON(readl(&gtt_entries[i-1]) !=
1462                         vm->pte_encode(addr, level, true));
1463
1464         /* This next bit makes the above posting read even more important. We
1465          * want to flush the TLBs only after we're certain all the PTE updates
1466          * have finished.
1467          */
1468         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1469         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1470 }
1471
1472 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1473                                   uint64_t start,
1474                                   uint64_t length,
1475                                   bool use_scratch)
1476 {
1477         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1478         unsigned first_entry = start >> PAGE_SHIFT;
1479         unsigned num_entries = length >> PAGE_SHIFT;
1480         gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
1481                 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1482         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1483         int i;
1484
1485         if (WARN(num_entries > max_entries,
1486                  "First entry = %d; Num entries = %d (max=%d)\n",
1487                  first_entry, num_entries, max_entries))
1488                 num_entries = max_entries;
1489
1490         scratch_pte = gen8_pte_encode(vm->scratch.addr,
1491                                       I915_CACHE_LLC,
1492                                       use_scratch);
1493         for (i = 0; i < num_entries; i++)
1494                 gen8_set_pte(&gtt_base[i], scratch_pte);
1495         readl(gtt_base);
1496 }
1497
1498 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1499                                   uint64_t start,
1500                                   uint64_t length,
1501                                   bool use_scratch)
1502 {
1503         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1504         unsigned first_entry = start >> PAGE_SHIFT;
1505         unsigned num_entries = length >> PAGE_SHIFT;
1506         gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1507                 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1508         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1509         int i;
1510
1511         if (WARN(num_entries > max_entries,
1512                  "First entry = %d; Num entries = %d (max=%d)\n",
1513                  first_entry, num_entries, max_entries))
1514                 num_entries = max_entries;
1515
1516         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
1517
1518         for (i = 0; i < num_entries; i++)
1519                 iowrite32(scratch_pte, &gtt_base[i]);
1520         readl(gtt_base);
1521 }
1522
1523 static void i915_ggtt_bind_vma(struct i915_vma *vma,
1524                                enum i915_cache_level cache_level,
1525                                u32 unused)
1526 {
1527         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1528         const unsigned int num_entries = vma->obj->base.size >> PAGE_SHIFT;
1529         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1530                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1531
1532         BUG_ON(!i915_is_ggtt(vma->vm));
1533         intel_gtt_insert_pages(entry, num_entries, vma->obj->pages, flags);
1534         vma->obj->has_global_gtt_mapping = 1;
1535 }
1536
1537 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1538                                   uint64_t start,
1539                                   uint64_t length,
1540                                   bool unused)
1541 {
1542         unsigned first_entry = start >> PAGE_SHIFT;
1543         unsigned num_entries = length >> PAGE_SHIFT;
1544         intel_gtt_clear_range(first_entry, num_entries);
1545 }
1546
1547 static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1548 {
1549         const unsigned int first = vma->node.start >> PAGE_SHIFT;
1550         const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
1551
1552         BUG_ON(!i915_is_ggtt(vma->vm));
1553         vma->obj->has_global_gtt_mapping = 0;
1554         intel_gtt_clear_range(first, size);
1555 }
1556
1557 static void ggtt_bind_vma(struct i915_vma *vma,
1558                           enum i915_cache_level cache_level,
1559                           u32 flags)
1560 {
1561         struct drm_device *dev = vma->vm->dev;
1562         struct drm_i915_private *dev_priv = dev->dev_private;
1563         struct drm_i915_gem_object *obj = vma->obj;
1564
1565         /* If there is no aliasing PPGTT, or the caller needs a global mapping,
1566          * or we have a global mapping already but the cacheability flags have
1567          * changed, set the global PTEs.
1568          *
1569          * If there is an aliasing PPGTT it is anecdotally faster, so use that
1570          * instead if none of the above hold true.
1571          *
1572          * NB: A global mapping should only be needed for special regions like
1573          * "gtt mappable", SNB errata, or if specified via special execbuf
1574          * flags. At all other times, the GPU will use the aliasing PPGTT.
1575          */
1576         if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1577                 if (!obj->has_global_gtt_mapping ||
1578                     (cache_level != obj->cache_level)) {
1579                         vma->vm->insert_entries(vma->vm, obj->pages,
1580                                                 vma->node.start,
1581                                                 obj->base.size >> PAGE_SHIFT,
1582                                                 cache_level);
1583                         obj->has_global_gtt_mapping = 1;
1584                 }
1585         }
1586
1587         if (dev_priv->mm.aliasing_ppgtt &&
1588             (!obj->has_aliasing_ppgtt_mapping ||
1589              (cache_level != obj->cache_level))) {
1590                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1591                 appgtt->base.insert_entries(&appgtt->base,
1592                                             vma->obj->pages,
1593                                             vma->node.start,
1594                                             obj->base.size >> PAGE_SHIFT,
1595                                             cache_level);
1596                 vma->obj->has_aliasing_ppgtt_mapping = 1;
1597         }
1598 }
1599
1600 static void ggtt_unbind_vma(struct i915_vma *vma)
1601 {
1602         struct drm_device *dev = vma->vm->dev;
1603         struct drm_i915_private *dev_priv = dev->dev_private;
1604         struct drm_i915_gem_object *obj = vma->obj;
1605
1606         if (obj->has_global_gtt_mapping) {
1607                 vma->vm->clear_range(vma->vm,
1608                                      vma->node.start,
1609                                      obj->base.size,
1610                                      true);
1611                 obj->has_global_gtt_mapping = 0;
1612         }
1613
1614         if (obj->has_aliasing_ppgtt_mapping) {
1615                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1616                 appgtt->base.clear_range(&appgtt->base,
1617                                          vma->node.start,
1618                                          obj->base.size,
1619                                          true);
1620                 obj->has_aliasing_ppgtt_mapping = 0;
1621         }
1622 }
1623
1624 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1625 {
1626         struct drm_device *dev = obj->base.dev;
1627         struct drm_i915_private *dev_priv = dev->dev_private;
1628         bool interruptible;
1629
1630         interruptible = do_idling(dev_priv);
1631
1632 #if 0
1633         if (!obj->has_dma_mapping)
1634                 dma_unmap_sg(&dev->pdev->dev,
1635                              obj->pages->sgl, obj->pages->nents,
1636                              PCI_DMA_BIDIRECTIONAL);
1637 #endif
1638
1639         undo_idling(dev_priv, interruptible);
1640 }
1641
1642 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1643                                   unsigned long color,
1644                                   unsigned long *start,
1645                                   unsigned long *end)
1646 {
1647         if (node->color != color)
1648                 *start += 4096;
1649
1650         if (!list_empty(&node->node_list)) {
1651                 node = list_entry(node->node_list.next,
1652                                   struct drm_mm_node,
1653                                   node_list);
1654                 if (node->allocated && node->color != color)
1655                         *end -= 4096;
1656         }
1657 }
1658
1659 void i915_gem_setup_global_gtt(struct drm_device *dev,
1660                                unsigned long start,
1661                                unsigned long mappable_end,
1662                                unsigned long end)
1663 {
1664         /* Let GEM Manage all of the aperture.
1665          *
1666          * However, leave one page at the end still bound to the scratch page.
1667          * There are a number of places where the hardware apparently prefetches
1668          * past the end of the object, and we've seen multiple hangs with the
1669          * GPU head pointer stuck in a batchbuffer bound at the last page of the
1670          * aperture.  One page should be enough to keep any prefetching inside
1671          * of the aperture.
1672          */
1673         struct drm_i915_private *dev_priv = dev->dev_private;
1674         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1675         unsigned long mappable;
1676         int error;
1677         struct drm_mm_node *entry;
1678         struct drm_i915_gem_object *obj;
1679         unsigned long hole_start, hole_end;
1680
1681         kprintf("MAPPABLE_END VS END %016jx %016jx\n", mappable_end, end);
1682         tsleep(&mappable_end, 0, "DELAY", hz); /* for kprintf */
1683         /*BUG_ON(mappable_end > end);*/
1684
1685         mappable = min(end, mappable_end) - start;
1686
1687         /* Subtract the guard page ... */
1688         drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1689         if (!HAS_LLC(dev))
1690                 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1691
1692         /* Mark any preallocated objects as occupied */
1693         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1694                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1695                 int ret;
1696                 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1697                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
1698
1699                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
1700                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1701                 if (ret)
1702                         DRM_DEBUG_KMS("Reservation failed\n");
1703                 obj->has_global_gtt_mapping = 1;
1704         }
1705
1706         dev_priv->gtt.base.start = start;
1707         dev_priv->gtt.base.total = end - start;
1708
1709         /* Clear any non-preallocated blocks */
1710         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1711                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1712                               hole_start, hole_end);
1713                 ggtt_vm->clear_range(ggtt_vm, hole_start,
1714                                      hole_end - hole_start, true);
1715         }
1716         /* ... but ensure that we clear the entire range. */
1717         intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
1718         device_printf(dev->dev,
1719             "taking over the fictitious range 0x%lx-0x%lx\n",
1720             dev->agp->base + start, dev->agp->base + start + mappable);
1721         error = -vm_phys_fictitious_reg_range(dev->agp->base + start,
1722             dev->agp->base + start + mappable, VM_MEMATTR_WRITE_COMBINING);
1723
1724         /* And finally clear the reserved guard page */
1725         ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
1726 }
1727
1728 void i915_gem_init_global_gtt(struct drm_device *dev)
1729 {
1730         struct drm_i915_private *dev_priv = dev->dev_private;
1731         unsigned long gtt_size, mappable_size;
1732
1733         gtt_size = dev_priv->gtt.base.total;
1734         mappable_size = dev_priv->gtt.mappable_end;
1735
1736         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1737 }
1738
1739 static int setup_scratch_page(struct drm_device *dev)
1740 {
1741         struct drm_i915_private *dev_priv = dev->dev_private;
1742         struct vm_page *page;
1743         dma_addr_t dma_addr;
1744
1745         page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1746         if (page == NULL)
1747                 return -ENOMEM;
1748         get_page(page);
1749         set_pages_uc(page, 1);
1750
1751 #ifdef CONFIG_INTEL_IOMMU
1752         dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1753                                 PCI_DMA_BIDIRECTIONAL);
1754         if (pci_dma_mapping_error(dev->pdev, dma_addr))
1755                 return -EINVAL;
1756 #else
1757         dma_addr = page_to_phys(page);
1758 #endif
1759         dev_priv->gtt.base.scratch.page = page;
1760         dev_priv->gtt.base.scratch.addr = dma_addr;
1761
1762         return 0;
1763 }
1764
1765 #if 0
1766 static void teardown_scratch_page(struct drm_device *dev)
1767 {
1768         struct drm_i915_private *dev_priv = dev->dev_private;
1769         struct vm_page *page = dev_priv->gtt.base.scratch.page;
1770
1771         set_pages_wb(page, 1);
1772         pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1773                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1774         put_page(page);
1775         __free_page(page);
1776 }
1777 #endif
1778
1779 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1780 {
1781         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1782         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1783         return snb_gmch_ctl << 20;
1784 }
1785
1786 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1787 {
1788         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1789         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1790         if (bdw_gmch_ctl)
1791                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1792
1793 #ifdef CONFIG_X86_32
1794         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
1795         if (bdw_gmch_ctl > 4)
1796                 bdw_gmch_ctl = 4;
1797 #endif
1798
1799         return bdw_gmch_ctl << 20;
1800 }
1801
1802 static inline unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
1803 {
1804         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
1805         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
1806
1807         if (gmch_ctrl)
1808                 return 1 << (20 + gmch_ctrl);
1809
1810         return 0;
1811 }
1812
1813 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1814 {
1815         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1816         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1817         return snb_gmch_ctl << 25; /* 32 MB units */
1818 }
1819
1820 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1821 {
1822         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1823         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1824         return bdw_gmch_ctl << 25; /* 32 MB units */
1825 }
1826
1827 static size_t chv_get_stolen_size(u16 gmch_ctrl)
1828 {
1829         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
1830         gmch_ctrl &= SNB_GMCH_GMS_MASK;
1831
1832         /*
1833          * 0x0  to 0x10: 32MB increments starting at 0MB
1834          * 0x11 to 0x16: 4MB increments starting at 8MB
1835          * 0x17 to 0x1d: 4MB increments start at 36MB
1836          */
1837         if (gmch_ctrl < 0x11)
1838                 return gmch_ctrl << 25;
1839         else if (gmch_ctrl < 0x17)
1840                 return (gmch_ctrl - 0x11 + 2) << 22;
1841         else
1842                 return (gmch_ctrl - 0x17 + 9) << 22;
1843 }
1844
1845 static int ggtt_probe_common(struct drm_device *dev,
1846                              size_t gtt_size)
1847 {
1848         struct drm_i915_private *dev_priv = dev->dev_private;
1849         phys_addr_t gtt_phys_addr;
1850         int ret;
1851
1852         /* For Modern GENs the PTEs and register space are split in the BAR */
1853         gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
1854                 (pci_resource_len(dev->pdev, 0) / 2);
1855
1856         kprintf("gtt_probe_common: gtt_phys_addr=0x%lx\n", gtt_phys_addr);
1857         dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
1858         if (!dev_priv->gtt.gsm) {
1859                 DRM_ERROR("Failed to map the gtt page table\n");
1860                 return -ENOMEM;
1861         }
1862
1863         ret = setup_scratch_page(dev);
1864         if (ret) {
1865                 DRM_ERROR("Scratch setup failed\n");
1866                 /* iounmap will also get called at remove, but meh */
1867 #if 0
1868                 iounmap(dev_priv->gtt.gsm);
1869 #endif
1870         }
1871
1872         return ret;
1873 }
1874
1875 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1876  * bits. When using advanced contexts each context stores its own PAT, but
1877  * writing this data shouldn't be harmful even in those cases. */
1878 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
1879 {
1880         uint64_t pat;
1881
1882         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
1883               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1884               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1885               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
1886               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1887               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1888               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1889               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1890
1891         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1892          * write would work. */
1893         I915_WRITE(GEN8_PRIVATE_PAT, pat);
1894         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1895 }
1896
1897 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
1898 {
1899         uint64_t pat;
1900
1901         /*
1902          * Map WB on BDW to snooped on CHV.
1903          *
1904          * Only the snoop bit has meaning for CHV, the rest is
1905          * ignored.
1906          *
1907          * Note that the harware enforces snooping for all page
1908          * table accesses. The snoop bit is actually ignored for
1909          * PDEs.
1910          */
1911         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
1912               GEN8_PPAT(1, 0) |
1913               GEN8_PPAT(2, 0) |
1914               GEN8_PPAT(3, 0) |
1915               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
1916               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
1917               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
1918               GEN8_PPAT(7, CHV_PPAT_SNOOP);
1919
1920         I915_WRITE(GEN8_PRIVATE_PAT, pat);
1921         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1922 }
1923
1924 static int gen8_gmch_probe(struct drm_device *dev,
1925                            size_t *gtt_total,
1926                            size_t *stolen,
1927                            phys_addr_t *mappable_base,
1928                            unsigned long *mappable_end)
1929 {
1930         struct drm_i915_private *dev_priv = dev->dev_private;
1931         unsigned int gtt_size;
1932         u16 snb_gmch_ctl;
1933         int ret;
1934
1935         /* TODO: We're not aware of mappable constraints on gen8 yet */
1936         *mappable_base = pci_resource_start(dev->pdev, 2);
1937         *mappable_end = pci_resource_len(dev->pdev, 2);
1938
1939 #if 0
1940         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1941                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1942 #endif
1943
1944         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1945
1946         if (IS_CHERRYVIEW(dev)) {
1947                 *stolen = chv_get_stolen_size(snb_gmch_ctl);
1948                 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
1949         } else {
1950                 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
1951                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1952         }
1953
1954         *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1955
1956         if (IS_CHERRYVIEW(dev))
1957                 chv_setup_private_ppat(dev_priv);
1958         else
1959                 bdw_setup_private_ppat(dev_priv);
1960
1961         ret = ggtt_probe_common(dev, gtt_size);
1962
1963         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1964         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1965
1966         return ret;
1967 }
1968
1969 static int gen6_gmch_probe(struct drm_device *dev,
1970                            size_t *gtt_total,
1971                            size_t *stolen,
1972                            phys_addr_t *mappable_base,
1973                            unsigned long *mappable_end)
1974 {
1975         struct drm_i915_private *dev_priv = dev->dev_private;
1976         unsigned int gtt_size;
1977         u16 snb_gmch_ctl;
1978         int ret;
1979
1980         *mappable_base = pci_resource_start(dev->pdev, 2);
1981         *mappable_end = pci_resource_len(dev->pdev, 2);
1982
1983         /* 64/512MB is the current min/max we actually know of, but this is just
1984          * a coarse sanity check.
1985          */
1986         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1987                 DRM_ERROR("Unknown GMADR size (%lx)\n",
1988                           dev_priv->gtt.mappable_end);
1989                 return -ENXIO;
1990         }
1991
1992 #if 0
1993         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1994                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1995 #endif
1996         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1997
1998         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
1999
2000         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
2001         *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
2002
2003         ret = ggtt_probe_common(dev, gtt_size);
2004
2005         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2006         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2007
2008         return ret;
2009 }
2010
2011 static void gen6_gmch_remove(struct i915_address_space *vm)
2012 {
2013 #if 0
2014         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2015
2016         if (drm_mm_initialized(&vm->mm)) {
2017                 drm_mm_takedown(&vm->mm);
2018                 list_del(&vm->global_link);
2019         }
2020         iounmap(gtt->gsm);
2021         teardown_scratch_page(vm->dev);
2022 #endif
2023 }
2024
2025 static int i915_gmch_probe(struct drm_device *dev,
2026                            size_t *gtt_total,
2027                            size_t *stolen,
2028                            phys_addr_t *mappable_base,
2029                            unsigned long *mappable_end)
2030 {
2031         struct drm_i915_private *dev_priv = dev->dev_private;
2032 #if 0
2033         int ret;
2034
2035         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2036         if (!ret) {
2037                 DRM_ERROR("failed to set up gmch\n");
2038                 return -EIO;
2039         }
2040 #endif
2041
2042         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2043
2044         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2045         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2046
2047         if (unlikely(dev_priv->gtt.do_idle_maps))
2048                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2049
2050         return 0;
2051 }
2052
2053 static void i915_gmch_remove(struct i915_address_space *vm)
2054 {
2055         if (drm_mm_initialized(&vm->mm)) {
2056                 drm_mm_takedown(&vm->mm);
2057                 list_del(&vm->global_link);
2058         }
2059 }
2060
2061 int i915_gem_gtt_init(struct drm_device *dev)
2062 {
2063         struct drm_i915_private *dev_priv = dev->dev_private;
2064         struct i915_gtt *gtt = &dev_priv->gtt;
2065         int ret;
2066
2067         if (INTEL_INFO(dev)->gen <= 5) {
2068                 gtt->gtt_probe = i915_gmch_probe;
2069                 gtt->base.cleanup = i915_gmch_remove;
2070         } else if (INTEL_INFO(dev)->gen < 8) {
2071                 gtt->gtt_probe = gen6_gmch_probe;
2072                 gtt->base.cleanup = gen6_gmch_remove;
2073                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2074                         gtt->base.pte_encode = iris_pte_encode;
2075                 else if (IS_HASWELL(dev))
2076                         gtt->base.pte_encode = hsw_pte_encode;
2077                 else if (IS_VALLEYVIEW(dev))
2078                         gtt->base.pte_encode = byt_pte_encode;
2079                 else if (INTEL_INFO(dev)->gen >= 7)
2080                         gtt->base.pte_encode = ivb_pte_encode;
2081                 else
2082                         gtt->base.pte_encode = snb_pte_encode;
2083         } else {
2084                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2085                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2086         }
2087
2088         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2089                              &gtt->mappable_base, &gtt->mappable_end);
2090         if (ret)
2091                 return ret;
2092
2093         gtt->base.dev = dev;
2094
2095         /* GMADR is the PCI mmio aperture into the global GTT. */
2096         DRM_INFO("Memory usable by graphics device = %zdM\n",
2097                  gtt->base.total >> 20);
2098         DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2099         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2100 #ifdef CONFIG_INTEL_IOMMU
2101         if (intel_iommu_gfx_mapped)
2102                 DRM_INFO("VT-d active for gfx access\n");
2103 #endif
2104
2105         return 0;
2106 }
2107
2108 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
2109                                               struct i915_address_space *vm)
2110 {
2111         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
2112         if (vma == NULL)
2113                 return ERR_PTR(-ENOMEM);
2114
2115         INIT_LIST_HEAD(&vma->vma_link);
2116         INIT_LIST_HEAD(&vma->mm_list);
2117         INIT_LIST_HEAD(&vma->exec_list);
2118         vma->vm = vm;
2119         vma->obj = obj;
2120
2121         switch (INTEL_INFO(vm->dev)->gen) {
2122         case 8:
2123         case 7:
2124         case 6:
2125                 if (i915_is_ggtt(vm)) {
2126                         vma->unbind_vma = ggtt_unbind_vma;
2127                         vma->bind_vma = ggtt_bind_vma;
2128                 } else {
2129                         vma->unbind_vma = ppgtt_unbind_vma;
2130                         vma->bind_vma = ppgtt_bind_vma;
2131                 }
2132                 break;
2133         case 5:
2134         case 4:
2135         case 3:
2136         case 2:
2137                 BUG_ON(!i915_is_ggtt(vm));
2138                 vma->unbind_vma = i915_ggtt_unbind_vma;
2139                 vma->bind_vma = i915_ggtt_bind_vma;
2140                 break;
2141         default:
2142                 BUG();
2143         }
2144
2145         /* Keep GGTT vmas first to make debug easier */
2146         if (i915_is_ggtt(vm))
2147                 list_add(&vma->vma_link, &obj->vma_list);
2148         else
2149                 list_add_tail(&vma->vma_link, &obj->vma_list);
2150
2151         return vma;
2152 }
2153
2154 struct i915_vma *
2155 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2156                                   struct i915_address_space *vm)
2157 {
2158         struct i915_vma *vma;
2159
2160         vma = i915_gem_obj_to_vma(obj, vm);
2161         if (!vma)
2162                 vma = __i915_gem_vma_create(obj, vm);
2163
2164         return vma;
2165 }