Merge branch 'vendor/DIFFUTILS'
[dragonfly.git] / sys / dev / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/export.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <drm/drmP.h>
33 #include <drm/drm_atomic_helper.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_crtc_helper.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40
41 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
42
43 static int disable_aux_irq = 0;
44 TUNABLE_INT("drm.i915.disable_aux_irq", &disable_aux_irq);
45
46 /* Compliance test status bits  */
47 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
48 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
50 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
51
52 struct dp_link_dpll {
53         int clock;
54         struct dpll dpll;
55 };
56
57 static const struct dp_link_dpll gen4_dpll[] = {
58         { 162000,
59                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
60         { 270000,
61                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
62 };
63
64 static const struct dp_link_dpll pch_dpll[] = {
65         { 162000,
66                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
67         { 270000,
68                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
69 };
70
71 static const struct dp_link_dpll vlv_dpll[] = {
72         { 162000,
73                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
74         { 270000,
75                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
76 };
77
78 /*
79  * CHV supports eDP 1.4 that have  more link rates.
80  * Below only provides the fixed rate but exclude variable rate.
81  */
82 static const struct dp_link_dpll chv_dpll[] = {
83         /*
84          * CHV requires to program fractional division for m2.
85          * m2 is stored in fixed point format using formula below
86          * (m2_int << 22) | m2_fraction
87          */
88         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
89                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
90         { 270000,       /* m2_int = 27, m2_fraction = 0 */
91                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
92         { 540000,       /* m2_int = 27, m2_fraction = 0 */
93                 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
94 };
95
96 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
97                                   324000, 432000, 540000 };
98 static const int skl_rates[] = { 162000, 216000, 270000,
99                                   324000, 432000, 540000 };
100 static const int default_rates[] = { 162000, 270000, 540000 };
101
102 /**
103  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
104  * @intel_dp: DP struct
105  *
106  * If a CPU or PCH DP output is attached to an eDP panel, this function
107  * will return true, and false otherwise.
108  */
109 static bool is_edp(struct intel_dp *intel_dp)
110 {
111         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
112
113         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
114 }
115
116 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
117 {
118         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
119
120         return intel_dig_port->base.base.dev;
121 }
122
123 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
124 {
125         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
126 }
127
128 static void intel_dp_link_down(struct intel_dp *intel_dp);
129 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
130 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
131 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
132 static void vlv_steal_power_sequencer(struct drm_device *dev,
133                                       enum i915_pipe pipe);
134 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
135
136 static unsigned int intel_dp_unused_lane_mask(int lane_count)
137 {
138         return ~((1 << lane_count) - 1) & 0xf;
139 }
140
141 static int
142 intel_dp_max_link_bw(struct intel_dp  *intel_dp)
143 {
144         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
145
146         switch (max_link_bw) {
147         case DP_LINK_BW_1_62:
148         case DP_LINK_BW_2_7:
149         case DP_LINK_BW_5_4:
150                 break;
151         default:
152                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
153                      max_link_bw);
154                 max_link_bw = DP_LINK_BW_1_62;
155                 break;
156         }
157         return max_link_bw;
158 }
159
160 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
161 {
162         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
163         u8 source_max, sink_max;
164
165         source_max = intel_dig_port->max_lanes;
166         sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
167
168         return min(source_max, sink_max);
169 }
170
171 /*
172  * The units on the numbers in the next two are... bizarre.  Examples will
173  * make it clearer; this one parallels an example in the eDP spec.
174  *
175  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
176  *
177  *     270000 * 1 * 8 / 10 == 216000
178  *
179  * The actual data capacity of that configuration is 2.16Gbit/s, so the
180  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
181  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
182  * 119000.  At 18bpp that's 2142000 kilobits per second.
183  *
184  * Thus the strange-looking division by 10 in intel_dp_link_required, to
185  * get the result in decakilobits instead of kilobits.
186  */
187
188 static int
189 intel_dp_link_required(int pixel_clock, int bpp)
190 {
191         return (pixel_clock * bpp + 9) / 10;
192 }
193
194 static int
195 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
196 {
197         return (max_link_clock * max_lanes * 8) / 10;
198 }
199
200 static enum drm_mode_status
201 intel_dp_mode_valid(struct drm_connector *connector,
202                     struct drm_display_mode *mode)
203 {
204         struct intel_dp *intel_dp = intel_attached_dp(connector);
205         struct intel_connector *intel_connector = to_intel_connector(connector);
206         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
207         int target_clock = mode->clock;
208         int max_rate, mode_rate, max_lanes, max_link_clock;
209         int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
210
211         if (is_edp(intel_dp) && fixed_mode) {
212                 if (mode->hdisplay > fixed_mode->hdisplay)
213                         return MODE_PANEL;
214
215                 if (mode->vdisplay > fixed_mode->vdisplay)
216                         return MODE_PANEL;
217
218                 target_clock = fixed_mode->clock;
219         }
220
221         max_link_clock = intel_dp_max_link_rate(intel_dp);
222         max_lanes = intel_dp_max_lane_count(intel_dp);
223
224         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
225         mode_rate = intel_dp_link_required(target_clock, 18);
226
227         if (mode_rate > max_rate || target_clock > max_dotclk)
228                 return MODE_CLOCK_HIGH;
229
230         if (mode->clock < 10000)
231                 return MODE_CLOCK_LOW;
232
233         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
234                 return MODE_H_ILLEGAL;
235
236         return MODE_OK;
237 }
238
239 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
240 {
241         int     i;
242         uint32_t v = 0;
243
244         if (src_bytes > 4)
245                 src_bytes = 4;
246         for (i = 0; i < src_bytes; i++)
247                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
248         return v;
249 }
250
251 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
252 {
253         int i;
254         if (dst_bytes > 4)
255                 dst_bytes = 4;
256         for (i = 0; i < dst_bytes; i++)
257                 dst[i] = src >> ((3-i) * 8);
258 }
259
260 static void
261 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
262                                     struct intel_dp *intel_dp);
263 static void
264 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
265                                               struct intel_dp *intel_dp);
266
267 static void pps_lock(struct intel_dp *intel_dp)
268 {
269         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
270         struct intel_encoder *encoder = &intel_dig_port->base;
271         struct drm_device *dev = encoder->base.dev;
272         struct drm_i915_private *dev_priv = dev->dev_private;
273         enum intel_display_power_domain power_domain;
274
275         /*
276          * See vlv_power_sequencer_reset() why we need
277          * a power domain reference here.
278          */
279         power_domain = intel_display_port_aux_power_domain(encoder);
280         intel_display_power_get(dev_priv, power_domain);
281
282         mutex_lock(&dev_priv->pps_mutex);
283 }
284
285 static void pps_unlock(struct intel_dp *intel_dp)
286 {
287         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
288         struct intel_encoder *encoder = &intel_dig_port->base;
289         struct drm_device *dev = encoder->base.dev;
290         struct drm_i915_private *dev_priv = dev->dev_private;
291         enum intel_display_power_domain power_domain;
292
293         mutex_unlock(&dev_priv->pps_mutex);
294
295         power_domain = intel_display_port_aux_power_domain(encoder);
296         intel_display_power_put(dev_priv, power_domain);
297 }
298
299 static void
300 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
301 {
302         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
303         struct drm_device *dev = intel_dig_port->base.base.dev;
304         struct drm_i915_private *dev_priv = dev->dev_private;
305         enum i915_pipe pipe = intel_dp->pps_pipe;
306         bool pll_enabled, release_cl_override = false;
307         enum dpio_phy phy = DPIO_PHY(pipe);
308         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
309         uint32_t DP;
310
311         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
312                  "skipping pipe %c power seqeuncer kick due to port %c being active\n",
313                  pipe_name(pipe), port_name(intel_dig_port->port)))
314                 return;
315
316         DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
317                       pipe_name(pipe), port_name(intel_dig_port->port));
318
319         /* Preserve the BIOS-computed detected bit. This is
320          * supposed to be read-only.
321          */
322         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
323         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
324         DP |= DP_PORT_WIDTH(1);
325         DP |= DP_LINK_TRAIN_PAT_1;
326
327         if (IS_CHERRYVIEW(dev))
328                 DP |= DP_PIPE_SELECT_CHV(pipe);
329         else if (pipe == PIPE_B)
330                 DP |= DP_PIPEB_SELECT;
331
332         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
333
334         /*
335          * The DPLL for the pipe must be enabled for this to work.
336          * So enable temporarily it if it's not already enabled.
337          */
338         if (!pll_enabled) {
339                 release_cl_override = IS_CHERRYVIEW(dev) &&
340                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
341
342                 if (vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
343                                      &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
344                         DRM_ERROR("Failed to force on pll for pipe %c!\n",
345                                   pipe_name(pipe));
346                         return;
347                 }
348         }
349
350         /*
351          * Similar magic as in intel_dp_enable_port().
352          * We _must_ do this port enable + disable trick
353          * to make this power seqeuencer lock onto the port.
354          * Otherwise even VDD force bit won't work.
355          */
356         I915_WRITE(intel_dp->output_reg, DP);
357         POSTING_READ(intel_dp->output_reg);
358
359         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
360         POSTING_READ(intel_dp->output_reg);
361
362         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
363         POSTING_READ(intel_dp->output_reg);
364
365         if (!pll_enabled) {
366                 vlv_force_pll_off(dev, pipe);
367
368                 if (release_cl_override)
369                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
370         }
371 }
372
373 static enum i915_pipe
374 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
375 {
376         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
377         struct drm_device *dev = intel_dig_port->base.base.dev;
378         struct drm_i915_private *dev_priv = dev->dev_private;
379         struct intel_encoder *encoder;
380         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
381         enum i915_pipe pipe;
382
383         lockdep_assert_held(&dev_priv->pps_mutex);
384
385         /* We should never land here with regular DP ports */
386         WARN_ON(!is_edp(intel_dp));
387
388         if (intel_dp->pps_pipe != INVALID_PIPE)
389                 return intel_dp->pps_pipe;
390
391         /*
392          * We don't have power sequencer currently.
393          * Pick one that's not used by other ports.
394          */
395         for_each_intel_encoder(dev, encoder) {
396                 struct intel_dp *tmp;
397
398                 if (encoder->type != INTEL_OUTPUT_EDP)
399                         continue;
400
401                 tmp = enc_to_intel_dp(&encoder->base);
402
403                 if (tmp->pps_pipe != INVALID_PIPE)
404                         pipes &= ~(1 << tmp->pps_pipe);
405         }
406
407         /*
408          * Didn't find one. This should not happen since there
409          * are two power sequencers and up to two eDP ports.
410          */
411         if (WARN_ON(pipes == 0))
412                 pipe = PIPE_A;
413         else
414                 pipe = ffs(pipes) - 1;
415
416         vlv_steal_power_sequencer(dev, pipe);
417         intel_dp->pps_pipe = pipe;
418
419         DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
420                       pipe_name(intel_dp->pps_pipe),
421                       port_name(intel_dig_port->port));
422
423         /* init power sequencer on this pipe and port */
424         intel_dp_init_panel_power_sequencer(dev, intel_dp);
425         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
426
427         /*
428          * Even vdd force doesn't work until we've made
429          * the power sequencer lock in on the port.
430          */
431         vlv_power_sequencer_kick(intel_dp);
432
433         return intel_dp->pps_pipe;
434 }
435
436 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
437                                enum i915_pipe pipe);
438
439 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
440                                enum i915_pipe pipe)
441 {
442         return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
443 }
444
445 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
446                                 enum i915_pipe pipe)
447 {
448         return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
449 }
450
451 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
452                          enum i915_pipe pipe)
453 {
454         return true;
455 }
456
457 static enum i915_pipe
458 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
459                      enum port port,
460                      vlv_pipe_check pipe_check)
461 {
462         enum i915_pipe pipe;
463
464         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
465                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
466                         PANEL_PORT_SELECT_MASK;
467
468                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
469                         continue;
470
471                 if (!pipe_check(dev_priv, pipe))
472                         continue;
473
474                 return pipe;
475         }
476
477         return INVALID_PIPE;
478 }
479
480 static void
481 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
482 {
483         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
484         struct drm_device *dev = intel_dig_port->base.base.dev;
485         struct drm_i915_private *dev_priv = dev->dev_private;
486         enum port port = intel_dig_port->port;
487
488         lockdep_assert_held(&dev_priv->pps_mutex);
489
490         /* try to find a pipe with this port selected */
491         /* first pick one where the panel is on */
492         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
493                                                   vlv_pipe_has_pp_on);
494         /* didn't find one? pick one where vdd is on */
495         if (intel_dp->pps_pipe == INVALID_PIPE)
496                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
497                                                           vlv_pipe_has_vdd_on);
498         /* didn't find one? pick one with just the correct port */
499         if (intel_dp->pps_pipe == INVALID_PIPE)
500                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
501                                                           vlv_pipe_any);
502
503         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
504         if (intel_dp->pps_pipe == INVALID_PIPE) {
505                 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
506                               port_name(port));
507                 return;
508         }
509
510         DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
511                       port_name(port), pipe_name(intel_dp->pps_pipe));
512
513         intel_dp_init_panel_power_sequencer(dev, intel_dp);
514         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
515 }
516
517 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
518 {
519         struct drm_device *dev = dev_priv->dev;
520         struct intel_encoder *encoder;
521
522         if (WARN_ON(!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)))
523                 return;
524
525         /*
526          * We can't grab pps_mutex here due to deadlock with power_domain
527          * mutex when power_domain functions are called while holding pps_mutex.
528          * That also means that in order to use pps_pipe the code needs to
529          * hold both a power domain reference and pps_mutex, and the power domain
530          * reference get/put must be done while _not_ holding pps_mutex.
531          * pps_{lock,unlock}() do these steps in the correct order, so one
532          * should use them always.
533          */
534
535         for_each_intel_encoder(dev, encoder) {
536                 struct intel_dp *intel_dp;
537
538                 if (encoder->type != INTEL_OUTPUT_EDP)
539                         continue;
540
541                 intel_dp = enc_to_intel_dp(&encoder->base);
542                 intel_dp->pps_pipe = INVALID_PIPE;
543         }
544 }
545
546 static i915_reg_t
547 _pp_ctrl_reg(struct intel_dp *intel_dp)
548 {
549         struct drm_device *dev = intel_dp_to_dev(intel_dp);
550
551         if (IS_BROXTON(dev))
552                 return BXT_PP_CONTROL(0);
553         else if (HAS_PCH_SPLIT(dev))
554                 return PCH_PP_CONTROL;
555         else
556                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
557 }
558
559 static i915_reg_t
560 _pp_stat_reg(struct intel_dp *intel_dp)
561 {
562         struct drm_device *dev = intel_dp_to_dev(intel_dp);
563
564         if (IS_BROXTON(dev))
565                 return BXT_PP_STATUS(0);
566         else if (HAS_PCH_SPLIT(dev))
567                 return PCH_PP_STATUS;
568         else
569                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
570 }
571
572 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
573    This function only applicable when panel PM state is not to be tracked */
574 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
575                               void *unused)
576 {
577         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
578                                                  edp_notifier);
579         struct drm_device *dev = intel_dp_to_dev(intel_dp);
580         struct drm_i915_private *dev_priv = dev->dev_private;
581
582 #if 0
583         if (!is_edp(intel_dp) || code != SYS_RESTART)
584                 return 0;
585 #endif
586
587         pps_lock(intel_dp);
588
589         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
590                 enum i915_pipe pipe = vlv_power_sequencer_pipe(intel_dp);
591                 i915_reg_t pp_ctrl_reg, pp_div_reg;
592                 u32 pp_div;
593
594                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
595                 pp_div_reg  = VLV_PIPE_PP_DIVISOR(pipe);
596                 pp_div = I915_READ(pp_div_reg);
597                 pp_div &= PP_REFERENCE_DIVIDER_MASK;
598
599                 /* 0x1F write to PP_DIV_REG sets max cycle delay */
600                 I915_WRITE(pp_div_reg, pp_div | 0x1F);
601                 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
602                 msleep(intel_dp->panel_power_cycle_delay);
603         }
604
605         pps_unlock(intel_dp);
606
607         return 0;
608 }
609
610 static bool edp_have_panel_power(struct intel_dp *intel_dp)
611 {
612         struct drm_device *dev = intel_dp_to_dev(intel_dp);
613         struct drm_i915_private *dev_priv = dev->dev_private;
614
615         lockdep_assert_held(&dev_priv->pps_mutex);
616
617         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
618             intel_dp->pps_pipe == INVALID_PIPE)
619                 return false;
620
621         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
622 }
623
624 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
625 {
626         struct drm_device *dev = intel_dp_to_dev(intel_dp);
627         struct drm_i915_private *dev_priv = dev->dev_private;
628
629         lockdep_assert_held(&dev_priv->pps_mutex);
630
631         if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
632             intel_dp->pps_pipe == INVALID_PIPE)
633                 return false;
634
635         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
636 }
637
638 static void
639 intel_dp_check_edp(struct intel_dp *intel_dp)
640 {
641         struct drm_device *dev = intel_dp_to_dev(intel_dp);
642         struct drm_i915_private *dev_priv = dev->dev_private;
643
644         if (!is_edp(intel_dp))
645                 return;
646
647         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
648                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
649                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
650                               I915_READ(_pp_stat_reg(intel_dp)),
651                               I915_READ(_pp_ctrl_reg(intel_dp)));
652         }
653 }
654
655 static uint32_t
656 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
657 {
658         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
659         struct drm_device *dev = intel_dig_port->base.base.dev;
660         struct drm_i915_private *dev_priv = dev->dev_private;
661         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
662         uint32_t status;
663         bool done;
664
665 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
666         if (has_aux_irq)
667                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
668                                           msecs_to_jiffies_timeout(10));
669         else
670                 done = wait_for(C, 10) == 0;
671         if (!done)
672                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
673                           has_aux_irq);
674 #undef C
675
676         return status;
677 }
678
679 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
680 {
681         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
682         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
683
684         if (index)
685                 return 0;
686
687         /*
688          * The clock divider is based off the hrawclk, and would like to run at
689          * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
690          */
691         return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
692 }
693
694 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
695 {
696         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
697         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
698
699         if (index)
700                 return 0;
701
702         /*
703          * The clock divider is based off the cdclk or PCH rawclk, and would
704          * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
705          * divide by 2000 and use that
706          */
707         if (intel_dig_port->port == PORT_A)
708                 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
709         else
710                 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
711 }
712
713 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
714 {
715         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
716         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
717
718         if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
719                 /* Workaround for non-ULT HSW */
720                 switch (index) {
721                 case 0: return 63;
722                 case 1: return 72;
723                 default: return 0;
724                 }
725         }
726
727         return ilk_get_aux_clock_divider(intel_dp, index);
728 }
729
730 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
731 {
732         /*
733          * SKL doesn't need us to program the AUX clock divider (Hardware will
734          * derive the clock from CDCLK automatically). We still implement the
735          * get_aux_clock_divider vfunc to plug-in into the existing code.
736          */
737         return index ? 0 : 1;
738 }
739
740 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
741                                      bool has_aux_irq,
742                                      int send_bytes,
743                                      uint32_t aux_clock_divider)
744 {
745         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
746         struct drm_device *dev = intel_dig_port->base.base.dev;
747         uint32_t precharge, timeout;
748
749         if (IS_GEN6(dev))
750                 precharge = 3;
751         else
752                 precharge = 5;
753
754         if (IS_BROADWELL(dev) && intel_dig_port->port == PORT_A)
755                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
756         else
757                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
758
759         return DP_AUX_CH_CTL_SEND_BUSY |
760                DP_AUX_CH_CTL_DONE |
761                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
762                DP_AUX_CH_CTL_TIME_OUT_ERROR |
763                timeout |
764                DP_AUX_CH_CTL_RECEIVE_ERROR |
765                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
766                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
767                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
768 }
769
770 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
771                                       bool has_aux_irq,
772                                       int send_bytes,
773                                       uint32_t unused)
774 {
775         return DP_AUX_CH_CTL_SEND_BUSY |
776                DP_AUX_CH_CTL_DONE |
777                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
778                DP_AUX_CH_CTL_TIME_OUT_ERROR |
779                DP_AUX_CH_CTL_TIME_OUT_1600us |
780                DP_AUX_CH_CTL_RECEIVE_ERROR |
781                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
782                DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
783 }
784
785 static int
786 intel_dp_aux_ch(struct intel_dp *intel_dp,
787                 const uint8_t *send, int send_bytes,
788                 uint8_t *recv, int recv_size)
789 {
790         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
791         struct drm_device *dev = intel_dig_port->base.base.dev;
792         struct drm_i915_private *dev_priv = dev->dev_private;
793         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
794         uint32_t aux_clock_divider;
795         int i, ret, recv_bytes;
796         uint32_t status;
797         int try, clock = 0;
798 #ifdef __DragonFly__
799         bool has_aux_irq = HAS_AUX_IRQ(dev) && !disable_aux_irq;
800 #else
801         bool has_aux_irq = HAS_AUX_IRQ(dev);
802 #endif
803         bool vdd;
804
805         pps_lock(intel_dp);
806
807         /*
808          * We will be called with VDD already enabled for dpcd/edid/oui reads.
809          * In such cases we want to leave VDD enabled and it's up to upper layers
810          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
811          * ourselves.
812          */
813         vdd = edp_panel_vdd_on(intel_dp);
814
815         /* dp aux is extremely sensitive to irq latency, hence request the
816          * lowest possible wakeup latency and so prevent the cpu from going into
817          * deep sleep states.
818          */
819         pm_qos_update_request(&dev_priv->pm_qos, 0);
820
821         intel_dp_check_edp(intel_dp);
822
823         /* Try to wait for any previous AUX channel activity */
824         for (try = 0; try < 3; try++) {
825                 status = I915_READ_NOTRACE(ch_ctl);
826                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
827                         break;
828                 msleep(1);
829         }
830
831         if (try == 3) {
832                 static u32 last_status = -1;
833                 const u32 status = I915_READ(ch_ctl);
834
835                 if (status != last_status) {
836                         WARN(1, "dp_aux_ch not started status 0x%08x\n",
837                              status);
838                         last_status = status;
839                 }
840
841                 ret = -EBUSY;
842                 goto out;
843         }
844
845         /* Only 5 data registers! */
846         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
847                 ret = -E2BIG;
848                 goto out;
849         }
850
851         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
852                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
853                                                           has_aux_irq,
854                                                           send_bytes,
855                                                           aux_clock_divider);
856
857                 /* Must try at least 3 times according to DP spec */
858                 for (try = 0; try < 5; try++) {
859                         /* Load the send data into the aux channel data registers */
860                         for (i = 0; i < send_bytes; i += 4)
861                                 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
862                                            intel_dp_pack_aux(send + i,
863                                                              send_bytes - i));
864
865                         /* Send the command and wait for it to complete */
866                         I915_WRITE(ch_ctl, send_ctl);
867
868                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
869
870                         /* Clear done status and any errors */
871                         I915_WRITE(ch_ctl,
872                                    status |
873                                    DP_AUX_CH_CTL_DONE |
874                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
875                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
876
877                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
878                                 continue;
879
880                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
881                          *   400us delay required for errors and timeouts
882                          *   Timeout errors from the HW already meet this
883                          *   requirement so skip to next iteration
884                          */
885                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
886                                 usleep_range(400, 500);
887                                 continue;
888                         }
889                         if (status & DP_AUX_CH_CTL_DONE)
890                                 goto done;
891                 }
892         }
893
894         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
895                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
896                 ret = -EBUSY;
897                 goto out;
898         }
899
900 done:
901         /* Check for timeout or receive error.
902          * Timeouts occur when the sink is not connected
903          */
904         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
905                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
906                 ret = -EIO;
907                 goto out;
908         }
909
910         /* Timeouts occur when the device isn't connected, so they're
911          * "normal" -- don't fill the kernel log with these */
912         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
913                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
914                 ret = -ETIMEDOUT;
915                 goto out;
916         }
917
918         /* Unload any bytes sent back from the other side */
919         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
920                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
921
922         /*
923          * By BSpec: "Message sizes of 0 or >20 are not allowed."
924          * We have no idea of what happened so we return -EBUSY so
925          * drm layer takes care for the necessary retries.
926          */
927         if (recv_bytes == 0 || recv_bytes > 20) {
928                 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
929                               recv_bytes);
930                 /*
931                  * FIXME: This patch was created on top of a series that
932                  * organize the retries at drm level. There EBUSY should
933                  * also take care for 1ms wait before retrying.
934                  * That aux retries re-org is still needed and after that is
935                  * merged we remove this sleep from here.
936                  */
937                 usleep_range(1000, 1500);
938                 ret = -EBUSY;
939                 goto out;
940         }
941
942         if (recv_bytes > recv_size)
943                 recv_bytes = recv_size;
944
945         for (i = 0; i < recv_bytes; i += 4)
946                 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
947                                     recv + i, recv_bytes - i);
948
949         ret = recv_bytes;
950 out:
951         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
952
953         if (vdd)
954                 edp_panel_vdd_off(intel_dp, false);
955
956         pps_unlock(intel_dp);
957
958         return ret;
959 }
960
961 #define BARE_ADDRESS_SIZE       3
962 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
963 static ssize_t
964 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
965 {
966         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
967         uint8_t txbuf[20], rxbuf[20];
968         size_t txsize, rxsize;
969         int ret;
970
971         txbuf[0] = (msg->request << 4) |
972                 ((msg->address >> 16) & 0xf);
973         txbuf[1] = (msg->address >> 8) & 0xff;
974         txbuf[2] = msg->address & 0xff;
975         txbuf[3] = msg->size - 1;
976
977         switch (msg->request & ~DP_AUX_I2C_MOT) {
978         case DP_AUX_NATIVE_WRITE:
979         case DP_AUX_I2C_WRITE:
980         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
981                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
982                 rxsize = 2; /* 0 or 1 data bytes */
983
984                 if (WARN_ON(txsize > 20))
985                         return -E2BIG;
986
987                 if (msg->buffer)
988                         memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
989                 else
990                         WARN_ON(msg->size);
991
992                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
993                 if (ret > 0) {
994                         msg->reply = rxbuf[0] >> 4;
995
996                         if (ret > 1) {
997                                 /* Number of bytes written in a short write. */
998                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
999                         } else {
1000                                 /* Return payload size. */
1001                                 ret = msg->size;
1002                         }
1003                 }
1004                 break;
1005
1006         case DP_AUX_NATIVE_READ:
1007         case DP_AUX_I2C_READ:
1008                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1009                 rxsize = msg->size + 1;
1010
1011                 if (WARN_ON(rxsize > 20))
1012                         return -E2BIG;
1013
1014                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1015                 if (ret > 0) {
1016                         msg->reply = rxbuf[0] >> 4;
1017                         /*
1018                          * Assume happy day, and copy the data. The caller is
1019                          * expected to check msg->reply before touching it.
1020                          *
1021                          * Return payload size.
1022                          */
1023                         ret--;
1024                         memcpy(msg->buffer, rxbuf + 1, ret);
1025                 }
1026                 break;
1027
1028         default:
1029                 ret = -EINVAL;
1030                 break;
1031         }
1032
1033         return ret;
1034 }
1035
1036 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1037                                        enum port port)
1038 {
1039         switch (port) {
1040         case PORT_B:
1041         case PORT_C:
1042         case PORT_D:
1043                 return DP_AUX_CH_CTL(port);
1044         default:
1045                 MISSING_CASE(port);
1046                 return DP_AUX_CH_CTL(PORT_B);
1047         }
1048 }
1049
1050 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1051                                         enum port port, int index)
1052 {
1053         switch (port) {
1054         case PORT_B:
1055         case PORT_C:
1056         case PORT_D:
1057                 return DP_AUX_CH_DATA(port, index);
1058         default:
1059                 MISSING_CASE(port);
1060                 return DP_AUX_CH_DATA(PORT_B, index);
1061         }
1062 }
1063
1064 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1065                                        enum port port)
1066 {
1067         switch (port) {
1068         case PORT_A:
1069                 return DP_AUX_CH_CTL(port);
1070         case PORT_B:
1071         case PORT_C:
1072         case PORT_D:
1073                 return PCH_DP_AUX_CH_CTL(port);
1074         default:
1075                 MISSING_CASE(port);
1076                 return DP_AUX_CH_CTL(PORT_A);
1077         }
1078 }
1079
1080 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1081                                         enum port port, int index)
1082 {
1083         switch (port) {
1084         case PORT_A:
1085                 return DP_AUX_CH_DATA(port, index);
1086         case PORT_B:
1087         case PORT_C:
1088         case PORT_D:
1089                 return PCH_DP_AUX_CH_DATA(port, index);
1090         default:
1091                 MISSING_CASE(port);
1092                 return DP_AUX_CH_DATA(PORT_A, index);
1093         }
1094 }
1095
1096 /*
1097  * On SKL we don't have Aux for port E so we rely
1098  * on VBT to set a proper alternate aux channel.
1099  */
1100 static enum port skl_porte_aux_port(struct drm_i915_private *dev_priv)
1101 {
1102         const struct ddi_vbt_port_info *info =
1103                 &dev_priv->vbt.ddi_port_info[PORT_E];
1104
1105         switch (info->alternate_aux_channel) {
1106         case DP_AUX_A:
1107                 return PORT_A;
1108         case DP_AUX_B:
1109                 return PORT_B;
1110         case DP_AUX_C:
1111                 return PORT_C;
1112         case DP_AUX_D:
1113                 return PORT_D;
1114         default:
1115                 MISSING_CASE(info->alternate_aux_channel);
1116                 return PORT_A;
1117         }
1118 }
1119
1120 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1121                                        enum port port)
1122 {
1123         if (port == PORT_E)
1124                 port = skl_porte_aux_port(dev_priv);
1125
1126         switch (port) {
1127         case PORT_A:
1128         case PORT_B:
1129         case PORT_C:
1130         case PORT_D:
1131                 return DP_AUX_CH_CTL(port);
1132         default:
1133                 MISSING_CASE(port);
1134                 return DP_AUX_CH_CTL(PORT_A);
1135         }
1136 }
1137
1138 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1139                                         enum port port, int index)
1140 {
1141         if (port == PORT_E)
1142                 port = skl_porte_aux_port(dev_priv);
1143
1144         switch (port) {
1145         case PORT_A:
1146         case PORT_B:
1147         case PORT_C:
1148         case PORT_D:
1149                 return DP_AUX_CH_DATA(port, index);
1150         default:
1151                 MISSING_CASE(port);
1152                 return DP_AUX_CH_DATA(PORT_A, index);
1153         }
1154 }
1155
1156 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1157                                          enum port port)
1158 {
1159         if (INTEL_INFO(dev_priv)->gen >= 9)
1160                 return skl_aux_ctl_reg(dev_priv, port);
1161         else if (HAS_PCH_SPLIT(dev_priv))
1162                 return ilk_aux_ctl_reg(dev_priv, port);
1163         else
1164                 return g4x_aux_ctl_reg(dev_priv, port);
1165 }
1166
1167 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1168                                           enum port port, int index)
1169 {
1170         if (INTEL_INFO(dev_priv)->gen >= 9)
1171                 return skl_aux_data_reg(dev_priv, port, index);
1172         else if (HAS_PCH_SPLIT(dev_priv))
1173                 return ilk_aux_data_reg(dev_priv, port, index);
1174         else
1175                 return g4x_aux_data_reg(dev_priv, port, index);
1176 }
1177
1178 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1179 {
1180         struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1181         enum port port = dp_to_dig_port(intel_dp)->port;
1182         int i;
1183
1184         intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1185         for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1186                 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1187 }
1188
1189 static void
1190 intel_dp_aux_fini(struct intel_dp *intel_dp)
1191 {
1192         drm_dp_aux_unregister(&intel_dp->aux);
1193         kfree(intel_dp->aux.name);
1194 }
1195
1196 static int
1197 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1198 {
1199         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1200         enum port port = intel_dig_port->port;
1201         int ret;
1202
1203         intel_aux_reg_init(intel_dp);
1204
1205         intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1206         if (!intel_dp->aux.name)
1207                 return -ENOMEM;
1208
1209         intel_dp->aux.dev = connector->base.kdev;
1210         intel_dp->aux.transfer = intel_dp_aux_transfer;
1211
1212 #if 0
1213         DRM_DEBUG_KMS("registering %s bus for %s\n",
1214                       intel_dp->aux.name,
1215                       connector->base.kdev->kobj.name);
1216 #endif
1217
1218         ret = drm_dp_aux_register(&intel_dp->aux);
1219         if (ret < 0) {
1220                 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1221                           intel_dp->aux.name, ret);
1222                 kfree(intel_dp->aux.name);
1223                 return ret;
1224         }
1225
1226         return 0;
1227 }
1228
1229 static void
1230 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1231 {
1232         struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1233
1234         intel_dp_aux_fini(intel_dp);
1235         intel_connector_unregister(intel_connector);
1236 }
1237
1238 static int
1239 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1240 {
1241         if (intel_dp->num_sink_rates) {
1242                 *sink_rates = intel_dp->sink_rates;
1243                 return intel_dp->num_sink_rates;
1244         }
1245
1246         *sink_rates = default_rates;
1247
1248         return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1249 }
1250
1251 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1252 {
1253         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1254         struct drm_device *dev = dig_port->base.base.dev;
1255
1256         /* WaDisableHBR2:skl */
1257         if (IS_SKL_REVID(dev, 0, SKL_REVID_B0))
1258                 return false;
1259
1260         if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1261             (INTEL_INFO(dev)->gen >= 9))
1262                 return true;
1263         else
1264                 return false;
1265 }
1266
1267 static int
1268 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1269 {
1270         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1271         struct drm_device *dev = dig_port->base.base.dev;
1272         int size;
1273
1274         if (IS_BROXTON(dev)) {
1275                 *source_rates = bxt_rates;
1276                 size = ARRAY_SIZE(bxt_rates);
1277         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1278                 *source_rates = skl_rates;
1279                 size = ARRAY_SIZE(skl_rates);
1280         } else {
1281                 *source_rates = default_rates;
1282                 size = ARRAY_SIZE(default_rates);
1283         }
1284
1285         /* This depends on the fact that 5.4 is last value in the array */
1286         if (!intel_dp_source_supports_hbr2(intel_dp))
1287                 size--;
1288
1289         return size;
1290 }
1291
1292 static void
1293 intel_dp_set_clock(struct intel_encoder *encoder,
1294                    struct intel_crtc_state *pipe_config)
1295 {
1296         struct drm_device *dev = encoder->base.dev;
1297         const struct dp_link_dpll *divisor = NULL;
1298         int i, count = 0;
1299
1300         if (IS_G4X(dev)) {
1301                 divisor = gen4_dpll;
1302                 count = ARRAY_SIZE(gen4_dpll);
1303         } else if (HAS_PCH_SPLIT(dev)) {
1304                 divisor = pch_dpll;
1305                 count = ARRAY_SIZE(pch_dpll);
1306         } else if (IS_CHERRYVIEW(dev)) {
1307                 divisor = chv_dpll;
1308                 count = ARRAY_SIZE(chv_dpll);
1309         } else if (IS_VALLEYVIEW(dev)) {
1310                 divisor = vlv_dpll;
1311                 count = ARRAY_SIZE(vlv_dpll);
1312         }
1313
1314         if (divisor && count) {
1315                 for (i = 0; i < count; i++) {
1316                         if (pipe_config->port_clock == divisor[i].clock) {
1317                                 pipe_config->dpll = divisor[i].dpll;
1318                                 pipe_config->clock_set = true;
1319                                 break;
1320                         }
1321                 }
1322         }
1323 }
1324
1325 static int intersect_rates(const int *source_rates, int source_len,
1326                            const int *sink_rates, int sink_len,
1327                            int *common_rates)
1328 {
1329         int i = 0, j = 0, k = 0;
1330
1331         while (i < source_len && j < sink_len) {
1332                 if (source_rates[i] == sink_rates[j]) {
1333                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1334                                 return k;
1335                         common_rates[k] = source_rates[i];
1336                         ++k;
1337                         ++i;
1338                         ++j;
1339                 } else if (source_rates[i] < sink_rates[j]) {
1340                         ++i;
1341                 } else {
1342                         ++j;
1343                 }
1344         }
1345         return k;
1346 }
1347
1348 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1349                                  int *common_rates)
1350 {
1351         const int *source_rates, *sink_rates;
1352         int source_len, sink_len;
1353
1354         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1355         source_len = intel_dp_source_rates(intel_dp, &source_rates);
1356
1357         return intersect_rates(source_rates, source_len,
1358                                sink_rates, sink_len,
1359                                common_rates);
1360 }
1361
1362 static void snprintf_int_array(char *str, size_t len,
1363                                const int *array, int nelem)
1364 {
1365         int i;
1366
1367         str[0] = '\0';
1368
1369         for (i = 0; i < nelem; i++) {
1370                 int r = ksnprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1371                 if (r >= len)
1372                         return;
1373                 str += r;
1374                 len -= r;
1375         }
1376 }
1377
1378 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1379 {
1380         const int *source_rates, *sink_rates;
1381         int source_len, sink_len, common_len;
1382         int common_rates[DP_MAX_SUPPORTED_RATES];
1383         char str[128]; /* FIXME: too big for stack? */
1384
1385         if ((drm_debug & DRM_UT_KMS) == 0)
1386                 return;
1387
1388         source_len = intel_dp_source_rates(intel_dp, &source_rates);
1389         snprintf_int_array(str, sizeof(str), source_rates, source_len);
1390         DRM_DEBUG_KMS("source rates: %s\n", str);
1391
1392         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1393         snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1394         DRM_DEBUG_KMS("sink rates: %s\n", str);
1395
1396         common_len = intel_dp_common_rates(intel_dp, common_rates);
1397         snprintf_int_array(str, sizeof(str), common_rates, common_len);
1398         DRM_DEBUG_KMS("common rates: %s\n", str);
1399 }
1400
1401 static int rate_to_index(int find, const int *rates)
1402 {
1403         int i = 0;
1404
1405         for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1406                 if (find == rates[i])
1407                         break;
1408
1409         return i;
1410 }
1411
1412 int
1413 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1414 {
1415         int rates[DP_MAX_SUPPORTED_RATES] = {};
1416         int len;
1417
1418         len = intel_dp_common_rates(intel_dp, rates);
1419         if (WARN_ON(len <= 0))
1420                 return 162000;
1421
1422         return rates[rate_to_index(0, rates) - 1];
1423 }
1424
1425 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1426 {
1427         return rate_to_index(rate, intel_dp->sink_rates);
1428 }
1429
1430 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1431                            uint8_t *link_bw, uint8_t *rate_select)
1432 {
1433         if (intel_dp->num_sink_rates) {
1434                 *link_bw = 0;
1435                 *rate_select =
1436                         intel_dp_rate_select(intel_dp, port_clock);
1437         } else {
1438                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1439                 *rate_select = 0;
1440         }
1441 }
1442
1443 bool
1444 intel_dp_compute_config(struct intel_encoder *encoder,
1445                         struct intel_crtc_state *pipe_config)
1446 {
1447         struct drm_device *dev = encoder->base.dev;
1448         struct drm_i915_private *dev_priv = dev->dev_private;
1449         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1450         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1451         enum port port = dp_to_dig_port(intel_dp)->port;
1452         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1453         struct intel_connector *intel_connector = intel_dp->attached_connector;
1454         int lane_count, clock;
1455         int min_lane_count = 1;
1456         int max_lane_count = intel_dp_max_lane_count(intel_dp);
1457         /* Conveniently, the link BW constants become indices with a shift...*/
1458         int min_clock = 0;
1459         int max_clock;
1460         int bpp, mode_rate;
1461         int link_avail, link_clock;
1462         int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1463         int common_len;
1464         uint8_t link_bw, rate_select;
1465
1466         common_len = intel_dp_common_rates(intel_dp, common_rates);
1467
1468         /* No common link rates between source and sink */
1469         WARN_ON(common_len <= 0);
1470
1471         max_clock = common_len - 1;
1472
1473         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1474                 pipe_config->has_pch_encoder = true;
1475
1476         pipe_config->has_dp_encoder = true;
1477         pipe_config->has_drrs = false;
1478         pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1479
1480         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1481                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1482                                        adjusted_mode);
1483
1484                 if (INTEL_INFO(dev)->gen >= 9) {
1485                         int ret;
1486                         ret = skl_update_scaler_crtc(pipe_config);
1487                         if (ret)
1488                                 return ret;
1489                 }
1490
1491                 if (HAS_GMCH_DISPLAY(dev))
1492                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
1493                                                  intel_connector->panel.fitting_mode);
1494                 else
1495                         intel_pch_panel_fitting(intel_crtc, pipe_config,
1496                                                 intel_connector->panel.fitting_mode);
1497         }
1498
1499         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1500                 return false;
1501
1502         DRM_DEBUG_KMS("DP link computation with max lane count %i "
1503                       "max bw %d pixel clock %iKHz\n",
1504                       max_lane_count, common_rates[max_clock],
1505                       adjusted_mode->crtc_clock);
1506
1507         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1508          * bpc in between. */
1509         bpp = pipe_config->pipe_bpp;
1510         if (is_edp(intel_dp)) {
1511
1512                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1513                 if (intel_connector->base.display_info.bpc == 0 &&
1514                         (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1515                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1516                                       dev_priv->vbt.edp.bpp);
1517                         bpp = dev_priv->vbt.edp.bpp;
1518                 }
1519
1520                 /*
1521                  * Use the maximum clock and number of lanes the eDP panel
1522                  * advertizes being capable of. The panels are generally
1523                  * designed to support only a single clock and lane
1524                  * configuration, and typically these values correspond to the
1525                  * native resolution of the panel.
1526                  */
1527                 min_lane_count = max_lane_count;
1528                 min_clock = max_clock;
1529         }
1530
1531         for (; bpp >= 6*3; bpp -= 2*3) {
1532                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1533                                                    bpp);
1534
1535                 for (clock = min_clock; clock <= max_clock; clock++) {
1536                         for (lane_count = min_lane_count;
1537                                 lane_count <= max_lane_count;
1538                                 lane_count <<= 1) {
1539
1540                                 link_clock = common_rates[clock];
1541                                 link_avail = intel_dp_max_data_rate(link_clock,
1542                                                                     lane_count);
1543
1544                                 if (mode_rate <= link_avail) {
1545                                         goto found;
1546                                 }
1547                         }
1548                 }
1549         }
1550
1551         return false;
1552
1553 found:
1554         if (intel_dp->color_range_auto) {
1555                 /*
1556                  * See:
1557                  * CEA-861-E - 5.1 Default Encoding Parameters
1558                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1559                  */
1560                 pipe_config->limited_color_range =
1561                         bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1562         } else {
1563                 pipe_config->limited_color_range =
1564                         intel_dp->limited_color_range;
1565         }
1566
1567         pipe_config->lane_count = lane_count;
1568
1569         pipe_config->pipe_bpp = bpp;
1570         pipe_config->port_clock = common_rates[clock];
1571
1572         intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1573                               &link_bw, &rate_select);
1574
1575         DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1576                       link_bw, rate_select, pipe_config->lane_count,
1577                       pipe_config->port_clock, bpp);
1578         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1579                       mode_rate, link_avail);
1580
1581         intel_link_compute_m_n(bpp, lane_count,
1582                                adjusted_mode->crtc_clock,
1583                                pipe_config->port_clock,
1584                                &pipe_config->dp_m_n);
1585
1586         if (intel_connector->panel.downclock_mode != NULL &&
1587                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1588                         pipe_config->has_drrs = true;
1589                         intel_link_compute_m_n(bpp, lane_count,
1590                                 intel_connector->panel.downclock_mode->clock,
1591                                 pipe_config->port_clock,
1592                                 &pipe_config->dp_m2_n2);
1593         }
1594
1595         if (!HAS_DDI(dev))
1596                 intel_dp_set_clock(encoder, pipe_config);
1597
1598         return true;
1599 }
1600
1601 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1602                               const struct intel_crtc_state *pipe_config)
1603 {
1604         intel_dp->link_rate = pipe_config->port_clock;
1605         intel_dp->lane_count = pipe_config->lane_count;
1606 }
1607
1608 static void intel_dp_prepare(struct intel_encoder *encoder)
1609 {
1610         struct drm_device *dev = encoder->base.dev;
1611         struct drm_i915_private *dev_priv = dev->dev_private;
1612         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1613         enum port port = dp_to_dig_port(intel_dp)->port;
1614         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1615         const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1616
1617         intel_dp_set_link_params(intel_dp, crtc->config);
1618
1619         /*
1620          * There are four kinds of DP registers:
1621          *
1622          *      IBX PCH
1623          *      SNB CPU
1624          *      IVB CPU
1625          *      CPT PCH
1626          *
1627          * IBX PCH and CPU are the same for almost everything,
1628          * except that the CPU DP PLL is configured in this
1629          * register
1630          *
1631          * CPT PCH is quite different, having many bits moved
1632          * to the TRANS_DP_CTL register instead. That
1633          * configuration happens (oddly) in ironlake_pch_enable
1634          */
1635
1636         /* Preserve the BIOS-computed detected bit. This is
1637          * supposed to be read-only.
1638          */
1639         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1640
1641         /* Handle DP bits in common between all three register formats */
1642         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1643         intel_dp->DP |= DP_PORT_WIDTH(crtc->config->lane_count);
1644
1645         /* Split out the IBX/CPU vs CPT settings */
1646
1647         if (IS_GEN7(dev) && port == PORT_A) {
1648                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1649                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1650                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1651                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1652                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1653
1654                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1655                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1656
1657                 intel_dp->DP |= crtc->pipe << 29;
1658         } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1659                 u32 trans_dp;
1660
1661                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1662
1663                 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1664                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1665                         trans_dp |= TRANS_DP_ENH_FRAMING;
1666                 else
1667                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
1668                 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1669         } else {
1670                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1671                     !IS_CHERRYVIEW(dev) && crtc->config->limited_color_range)
1672                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
1673
1674                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1675                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1676                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1677                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1678                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1679
1680                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1681                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1682
1683                 if (IS_CHERRYVIEW(dev))
1684                         intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1685                 else if (crtc->pipe == PIPE_B)
1686                         intel_dp->DP |= DP_PIPEB_SELECT;
1687         }
1688 }
1689
1690 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1691 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1692
1693 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1694 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1695
1696 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1697 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1698
1699 static void wait_panel_status(struct intel_dp *intel_dp,
1700                                        u32 mask,
1701                                        u32 value)
1702 {
1703         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1704         struct drm_i915_private *dev_priv = dev->dev_private;
1705         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1706
1707         lockdep_assert_held(&dev_priv->pps_mutex);
1708
1709         pp_stat_reg = _pp_stat_reg(intel_dp);
1710         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1711
1712         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1713                         mask, value,
1714                         I915_READ(pp_stat_reg),
1715                         I915_READ(pp_ctrl_reg));
1716
1717         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value,
1718                       5 * USEC_PER_SEC, 10 * USEC_PER_MSEC))
1719                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1720                                 I915_READ(pp_stat_reg),
1721                                 I915_READ(pp_ctrl_reg));
1722
1723         DRM_DEBUG_KMS("Wait complete\n");
1724 }
1725
1726 static void wait_panel_on(struct intel_dp *intel_dp)
1727 {
1728         DRM_DEBUG_KMS("Wait for panel power on\n");
1729         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1730 }
1731
1732 static void wait_panel_off(struct intel_dp *intel_dp)
1733 {
1734         DRM_DEBUG_KMS("Wait for panel power off time\n");
1735         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1736 }
1737
1738 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1739 {
1740         ktime_t panel_power_on_time;
1741         s64 panel_power_off_duration;
1742
1743         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1744
1745         /* take the difference of currrent time and panel power off time
1746          * and then make panel wait for t11_t12 if needed. */
1747         panel_power_on_time = ktime_get_boottime();
1748         panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1749
1750         /* When we disable the VDD override bit last we have to do the manual
1751          * wait. */
1752         if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
1753                 wait_remaining_ms_from_jiffies(jiffies,
1754                                        intel_dp->panel_power_cycle_delay - panel_power_off_duration);
1755
1756         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1757 }
1758
1759 static void wait_backlight_on(struct intel_dp *intel_dp)
1760 {
1761         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1762                                        intel_dp->backlight_on_delay);
1763 }
1764
1765 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1766 {
1767         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1768                                        intel_dp->backlight_off_delay);
1769 }
1770
1771 /* Read the current pp_control value, unlocking the register if it
1772  * is locked
1773  */
1774
1775 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1776 {
1777         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1778         struct drm_i915_private *dev_priv = dev->dev_private;
1779         u32 control;
1780
1781         lockdep_assert_held(&dev_priv->pps_mutex);
1782
1783         control = I915_READ(_pp_ctrl_reg(intel_dp));
1784         if (!IS_BROXTON(dev)) {
1785                 control &= ~PANEL_UNLOCK_MASK;
1786                 control |= PANEL_UNLOCK_REGS;
1787         }
1788         return control;
1789 }
1790
1791 /*
1792  * Must be paired with edp_panel_vdd_off().
1793  * Must hold pps_mutex around the whole on/off sequence.
1794  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1795  */
1796 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1797 {
1798         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1799         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1800         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1801         struct drm_i915_private *dev_priv = dev->dev_private;
1802         enum intel_display_power_domain power_domain;
1803         u32 pp;
1804         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1805         bool need_to_disable = !intel_dp->want_panel_vdd;
1806
1807         lockdep_assert_held(&dev_priv->pps_mutex);
1808
1809         if (!is_edp(intel_dp))
1810                 return false;
1811
1812         cancel_delayed_work(&intel_dp->panel_vdd_work);
1813         intel_dp->want_panel_vdd = true;
1814
1815         if (edp_have_panel_vdd(intel_dp))
1816                 return need_to_disable;
1817
1818         power_domain = intel_display_port_aux_power_domain(intel_encoder);
1819         intel_display_power_get(dev_priv, power_domain);
1820
1821         DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1822                       port_name(intel_dig_port->port));
1823
1824         if (!edp_have_panel_power(intel_dp))
1825                 wait_panel_power_cycle(intel_dp);
1826
1827         pp = ironlake_get_pp_control(intel_dp);
1828         pp |= EDP_FORCE_VDD;
1829
1830         pp_stat_reg = _pp_stat_reg(intel_dp);
1831         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1832
1833         I915_WRITE(pp_ctrl_reg, pp);
1834         POSTING_READ(pp_ctrl_reg);
1835         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1836                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1837         /*
1838          * If the panel wasn't on, delay before accessing aux channel
1839          */
1840         if (!edp_have_panel_power(intel_dp)) {
1841                 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1842                               port_name(intel_dig_port->port));
1843                 msleep(intel_dp->panel_power_up_delay);
1844         }
1845
1846         return need_to_disable;
1847 }
1848
1849 /*
1850  * Must be paired with intel_edp_panel_vdd_off() or
1851  * intel_edp_panel_off().
1852  * Nested calls to these functions are not allowed since
1853  * we drop the lock. Caller must use some higher level
1854  * locking to prevent nested calls from other threads.
1855  */
1856 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1857 {
1858         bool vdd;
1859
1860         if (!is_edp(intel_dp))
1861                 return;
1862
1863         pps_lock(intel_dp);
1864         vdd = edp_panel_vdd_on(intel_dp);
1865         pps_unlock(intel_dp);
1866
1867 #ifdef __DragonFly__
1868 /* XXX: limit dmesg spam to 16 warnings instead of 137, where is the bug? */
1869         if(!vdd)
1870                 DRM_ERROR_RATELIMITED("eDP port %c VDD already requested on\n",
1871                     port_name(dp_to_dig_port(intel_dp)->port));
1872 #else
1873         I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1874              port_name(dp_to_dig_port(intel_dp)->port));
1875 #endif
1876 }
1877
1878 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1879 {
1880         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1881         struct drm_i915_private *dev_priv = dev->dev_private;
1882         struct intel_digital_port *intel_dig_port =
1883                 dp_to_dig_port(intel_dp);
1884         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1885         enum intel_display_power_domain power_domain;
1886         u32 pp;
1887         i915_reg_t pp_stat_reg, pp_ctrl_reg;
1888
1889         lockdep_assert_held(&dev_priv->pps_mutex);
1890
1891         WARN_ON(intel_dp->want_panel_vdd);
1892
1893         if (!edp_have_panel_vdd(intel_dp))
1894                 return;
1895
1896         DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1897                       port_name(intel_dig_port->port));
1898
1899         pp = ironlake_get_pp_control(intel_dp);
1900         pp &= ~EDP_FORCE_VDD;
1901
1902         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1903         pp_stat_reg = _pp_stat_reg(intel_dp);
1904
1905         I915_WRITE(pp_ctrl_reg, pp);
1906         POSTING_READ(pp_ctrl_reg);
1907
1908         /* Make sure sequencer is idle before allowing subsequent activity */
1909         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1910         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1911
1912         if ((pp & POWER_TARGET_ON) == 0)
1913                 intel_dp->panel_power_off_time = ktime_get_boottime();
1914
1915         power_domain = intel_display_port_aux_power_domain(intel_encoder);
1916         intel_display_power_put(dev_priv, power_domain);
1917 }
1918
1919 static void edp_panel_vdd_work(struct work_struct *__work)
1920 {
1921         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1922                                                  struct intel_dp, panel_vdd_work);
1923
1924         pps_lock(intel_dp);
1925         if (!intel_dp->want_panel_vdd)
1926                 edp_panel_vdd_off_sync(intel_dp);
1927         pps_unlock(intel_dp);
1928 }
1929
1930 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1931 {
1932         unsigned long delay;
1933
1934         /*
1935          * Queue the timer to fire a long time from now (relative to the power
1936          * down delay) to keep the panel power up across a sequence of
1937          * operations.
1938          */
1939         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1940         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1941 }
1942
1943 /*
1944  * Must be paired with edp_panel_vdd_on().
1945  * Must hold pps_mutex around the whole on/off sequence.
1946  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1947  */
1948 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1949 {
1950         struct drm_i915_private *dev_priv =
1951                 intel_dp_to_dev(intel_dp)->dev_private;
1952
1953         lockdep_assert_held(&dev_priv->pps_mutex);
1954
1955         if (!is_edp(intel_dp))
1956                 return;
1957
1958         I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1959              port_name(dp_to_dig_port(intel_dp)->port));
1960
1961         intel_dp->want_panel_vdd = false;
1962
1963         if (sync)
1964                 edp_panel_vdd_off_sync(intel_dp);
1965         else
1966                 edp_panel_vdd_schedule_off(intel_dp);
1967 }
1968
1969 static void edp_panel_on(struct intel_dp *intel_dp)
1970 {
1971         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1972         struct drm_i915_private *dev_priv = dev->dev_private;
1973         u32 pp;
1974         i915_reg_t pp_ctrl_reg;
1975
1976         lockdep_assert_held(&dev_priv->pps_mutex);
1977
1978         if (!is_edp(intel_dp))
1979                 return;
1980
1981         DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1982                       port_name(dp_to_dig_port(intel_dp)->port));
1983
1984         if (WARN(edp_have_panel_power(intel_dp),
1985                  "eDP port %c panel power already on\n",
1986                  port_name(dp_to_dig_port(intel_dp)->port)))
1987                 return;
1988
1989         wait_panel_power_cycle(intel_dp);
1990
1991         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1992         pp = ironlake_get_pp_control(intel_dp);
1993         if (IS_GEN5(dev)) {
1994                 /* ILK workaround: disable reset around power sequence */
1995                 pp &= ~PANEL_POWER_RESET;
1996                 I915_WRITE(pp_ctrl_reg, pp);
1997                 POSTING_READ(pp_ctrl_reg);
1998         }
1999
2000         pp |= POWER_TARGET_ON;
2001         if (!IS_GEN5(dev))
2002                 pp |= PANEL_POWER_RESET;
2003
2004         I915_WRITE(pp_ctrl_reg, pp);
2005         POSTING_READ(pp_ctrl_reg);
2006
2007         wait_panel_on(intel_dp);
2008         intel_dp->last_power_on = jiffies;
2009
2010         if (IS_GEN5(dev)) {
2011                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2012                 I915_WRITE(pp_ctrl_reg, pp);
2013                 POSTING_READ(pp_ctrl_reg);
2014         }
2015 }
2016
2017 void intel_edp_panel_on(struct intel_dp *intel_dp)
2018 {
2019         if (!is_edp(intel_dp))
2020                 return;
2021
2022         pps_lock(intel_dp);
2023         edp_panel_on(intel_dp);
2024         pps_unlock(intel_dp);
2025 }
2026
2027
2028 static void edp_panel_off(struct intel_dp *intel_dp)
2029 {
2030         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2031         struct intel_encoder *intel_encoder = &intel_dig_port->base;
2032         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2033         struct drm_i915_private *dev_priv = dev->dev_private;
2034         enum intel_display_power_domain power_domain;
2035         u32 pp;
2036         i915_reg_t pp_ctrl_reg;
2037
2038         lockdep_assert_held(&dev_priv->pps_mutex);
2039
2040         if (!is_edp(intel_dp))
2041                 return;
2042
2043         DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2044                       port_name(dp_to_dig_port(intel_dp)->port));
2045
2046         WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2047              port_name(dp_to_dig_port(intel_dp)->port));
2048
2049         pp = ironlake_get_pp_control(intel_dp);
2050         /* We need to switch off panel power _and_ force vdd, for otherwise some
2051          * panels get very unhappy and cease to work. */
2052         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2053                 EDP_BLC_ENABLE);
2054
2055         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2056
2057         intel_dp->want_panel_vdd = false;
2058
2059         I915_WRITE(pp_ctrl_reg, pp);
2060         POSTING_READ(pp_ctrl_reg);
2061
2062         intel_dp->panel_power_off_time = ktime_get_boottime();
2063         wait_panel_off(intel_dp);
2064
2065         /* We got a reference when we enabled the VDD. */
2066         power_domain = intel_display_port_aux_power_domain(intel_encoder);
2067         intel_display_power_put(dev_priv, power_domain);
2068 }
2069
2070 void intel_edp_panel_off(struct intel_dp *intel_dp)
2071 {
2072         if (!is_edp(intel_dp))
2073                 return;
2074
2075         pps_lock(intel_dp);
2076         edp_panel_off(intel_dp);
2077         pps_unlock(intel_dp);
2078 }
2079
2080 /* Enable backlight in the panel power control. */
2081 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2082 {
2083         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2084         struct drm_device *dev = intel_dig_port->base.base.dev;
2085         struct drm_i915_private *dev_priv = dev->dev_private;
2086         u32 pp;
2087         i915_reg_t pp_ctrl_reg;
2088
2089         /*
2090          * If we enable the backlight right away following a panel power
2091          * on, we may see slight flicker as the panel syncs with the eDP
2092          * link.  So delay a bit to make sure the image is solid before
2093          * allowing it to appear.
2094          */
2095         wait_backlight_on(intel_dp);
2096
2097         pps_lock(intel_dp);
2098
2099         pp = ironlake_get_pp_control(intel_dp);
2100         pp |= EDP_BLC_ENABLE;
2101
2102         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2103
2104         I915_WRITE(pp_ctrl_reg, pp);
2105         POSTING_READ(pp_ctrl_reg);
2106
2107         pps_unlock(intel_dp);
2108 }
2109
2110 /* Enable backlight PWM and backlight PP control. */
2111 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2112 {
2113         if (!is_edp(intel_dp))
2114                 return;
2115
2116         DRM_DEBUG_KMS("\n");
2117
2118         intel_panel_enable_backlight(intel_dp->attached_connector);
2119         _intel_edp_backlight_on(intel_dp);
2120 }
2121
2122 /* Disable backlight in the panel power control. */
2123 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2124 {
2125         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2126         struct drm_i915_private *dev_priv = dev->dev_private;
2127         u32 pp;
2128         i915_reg_t pp_ctrl_reg;
2129
2130         if (!is_edp(intel_dp))
2131                 return;
2132
2133         pps_lock(intel_dp);
2134
2135         pp = ironlake_get_pp_control(intel_dp);
2136         pp &= ~EDP_BLC_ENABLE;
2137
2138         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2139
2140         I915_WRITE(pp_ctrl_reg, pp);
2141         POSTING_READ(pp_ctrl_reg);
2142
2143         pps_unlock(intel_dp);
2144
2145         intel_dp->last_backlight_off = jiffies;
2146         edp_wait_backlight_off(intel_dp);
2147 }
2148
2149 /* Disable backlight PP control and backlight PWM. */
2150 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2151 {
2152         if (!is_edp(intel_dp))
2153                 return;
2154
2155         DRM_DEBUG_KMS("\n");
2156
2157         _intel_edp_backlight_off(intel_dp);
2158         intel_panel_disable_backlight(intel_dp->attached_connector);
2159 }
2160
2161 /*
2162  * Hook for controlling the panel power control backlight through the bl_power
2163  * sysfs attribute. Take care to handle multiple calls.
2164  */
2165 static void intel_edp_backlight_power(struct intel_connector *connector,
2166                                       bool enable)
2167 {
2168         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2169         bool is_enabled;
2170
2171         pps_lock(intel_dp);
2172         is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2173         pps_unlock(intel_dp);
2174
2175         if (is_enabled == enable)
2176                 return;
2177
2178         DRM_DEBUG_KMS("panel power control backlight %s\n",
2179                       enable ? "enable" : "disable");
2180
2181         if (enable)
2182                 _intel_edp_backlight_on(intel_dp);
2183         else
2184                 _intel_edp_backlight_off(intel_dp);
2185 }
2186
2187 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2188 {
2189         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2190         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2191         bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2192
2193         I915_STATE_WARN(cur_state != state,
2194                         "DP port %c state assertion failure (expected %s, current %s)\n",
2195                         port_name(dig_port->port),
2196                         onoff(state), onoff(cur_state));
2197 }
2198 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2199
2200 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2201 {
2202         bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2203
2204         I915_STATE_WARN(cur_state != state,
2205                         "eDP PLL state assertion failure (expected %s, current %s)\n",
2206                         onoff(state), onoff(cur_state));
2207 }
2208 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2209 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2210
2211 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2212 {
2213         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2214         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2215         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2216
2217         assert_pipe_disabled(dev_priv, crtc->pipe);
2218         assert_dp_port_disabled(intel_dp);
2219         assert_edp_pll_disabled(dev_priv);
2220
2221         DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2222                       crtc->config->port_clock);
2223
2224         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2225
2226         if (crtc->config->port_clock == 162000)
2227                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2228         else
2229                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2230
2231         I915_WRITE(DP_A, intel_dp->DP);
2232         POSTING_READ(DP_A);
2233         udelay(500);
2234
2235         /*
2236          * [DevILK] Work around required when enabling DP PLL
2237          * while a pipe is enabled going to FDI:
2238          * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2239          * 2. Program DP PLL enable
2240          */
2241         if (IS_GEN5(dev_priv))
2242                 intel_wait_for_vblank_if_active(dev_priv->dev, !crtc->pipe);
2243
2244         intel_dp->DP |= DP_PLL_ENABLE;
2245
2246         I915_WRITE(DP_A, intel_dp->DP);
2247         POSTING_READ(DP_A);
2248         udelay(200);
2249 }
2250
2251 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2252 {
2253         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2254         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2255         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2256
2257         assert_pipe_disabled(dev_priv, crtc->pipe);
2258         assert_dp_port_disabled(intel_dp);
2259         assert_edp_pll_enabled(dev_priv);
2260
2261         DRM_DEBUG_KMS("disabling eDP PLL\n");
2262
2263         intel_dp->DP &= ~DP_PLL_ENABLE;
2264
2265         I915_WRITE(DP_A, intel_dp->DP);
2266         POSTING_READ(DP_A);
2267         udelay(200);
2268 }
2269
2270 /* If the sink supports it, try to set the power state appropriately */
2271 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2272 {
2273         int ret, i;
2274
2275         /* Should have a valid DPCD by this point */
2276         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2277                 return;
2278
2279         if (mode != DRM_MODE_DPMS_ON) {
2280                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2281                                          DP_SET_POWER_D3);
2282         } else {
2283                 /*
2284                  * When turning on, we need to retry for 1ms to give the sink
2285                  * time to wake up.
2286                  */
2287                 for (i = 0; i < 3; i++) {
2288                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2289                                                  DP_SET_POWER_D0);
2290                         if (ret == 1)
2291                                 break;
2292                         msleep(1);
2293                 }
2294         }
2295
2296         if (ret != 1)
2297                 DRM_DEBUG_KMS("failed to %s sink power state\n",
2298                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2299 }
2300
2301 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2302                                   enum i915_pipe *pipe)
2303 {
2304         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2305         enum port port = dp_to_dig_port(intel_dp)->port;
2306         struct drm_device *dev = encoder->base.dev;
2307         struct drm_i915_private *dev_priv = dev->dev_private;
2308         enum intel_display_power_domain power_domain;
2309         u32 tmp;
2310         bool ret;
2311
2312         power_domain = intel_display_port_power_domain(encoder);
2313         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2314                 return false;
2315
2316         ret = false;
2317
2318         tmp = I915_READ(intel_dp->output_reg);
2319
2320         if (!(tmp & DP_PORT_EN))
2321                 goto out;
2322
2323         if (IS_GEN7(dev) && port == PORT_A) {
2324                 *pipe = PORT_TO_PIPE_CPT(tmp);
2325         } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2326                 enum i915_pipe p;
2327
2328                 for_each_pipe(dev_priv, p) {
2329                         u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2330                         if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2331                                 *pipe = p;
2332                                 ret = true;
2333
2334                                 goto out;
2335                         }
2336                 }
2337
2338                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2339                               i915_mmio_reg_offset(intel_dp->output_reg));
2340         } else if (IS_CHERRYVIEW(dev)) {
2341                 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2342         } else {
2343                 *pipe = PORT_TO_PIPE(tmp);
2344         }
2345
2346         ret = true;
2347
2348 out:
2349         intel_display_power_put(dev_priv, power_domain);
2350
2351         return ret;
2352 }
2353
2354 static void intel_dp_get_config(struct intel_encoder *encoder,
2355                                 struct intel_crtc_state *pipe_config)
2356 {
2357         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2358         u32 tmp, flags = 0;
2359         struct drm_device *dev = encoder->base.dev;
2360         struct drm_i915_private *dev_priv = dev->dev_private;
2361         enum port port = dp_to_dig_port(intel_dp)->port;
2362         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2363
2364         tmp = I915_READ(intel_dp->output_reg);
2365
2366         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2367
2368         if (HAS_PCH_CPT(dev) && port != PORT_A) {
2369                 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2370
2371                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2372                         flags |= DRM_MODE_FLAG_PHSYNC;
2373                 else
2374                         flags |= DRM_MODE_FLAG_NHSYNC;
2375
2376                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2377                         flags |= DRM_MODE_FLAG_PVSYNC;
2378                 else
2379                         flags |= DRM_MODE_FLAG_NVSYNC;
2380         } else {
2381                 if (tmp & DP_SYNC_HS_HIGH)
2382                         flags |= DRM_MODE_FLAG_PHSYNC;
2383                 else
2384                         flags |= DRM_MODE_FLAG_NHSYNC;
2385
2386                 if (tmp & DP_SYNC_VS_HIGH)
2387                         flags |= DRM_MODE_FLAG_PVSYNC;
2388                 else
2389                         flags |= DRM_MODE_FLAG_NVSYNC;
2390         }
2391
2392         pipe_config->base.adjusted_mode.flags |= flags;
2393
2394         if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2395             !IS_CHERRYVIEW(dev) && tmp & DP_COLOR_RANGE_16_235)
2396                 pipe_config->limited_color_range = true;
2397
2398         pipe_config->has_dp_encoder = true;
2399
2400         pipe_config->lane_count =
2401                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2402
2403         intel_dp_get_m_n(crtc, pipe_config);
2404
2405         if (port == PORT_A) {
2406                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2407                         pipe_config->port_clock = 162000;
2408                 else
2409                         pipe_config->port_clock = 270000;
2410         }
2411
2412         pipe_config->base.adjusted_mode.crtc_clock =
2413                 intel_dotclock_calculate(pipe_config->port_clock,
2414                                          &pipe_config->dp_m_n);
2415
2416         if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2417             pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2418                 /*
2419                  * This is a big fat ugly hack.
2420                  *
2421                  * Some machines in UEFI boot mode provide us a VBT that has 18
2422                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2423                  * unknown we fail to light up. Yet the same BIOS boots up with
2424                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2425                  * max, not what it tells us to use.
2426                  *
2427                  * Note: This will still be broken if the eDP panel is not lit
2428                  * up by the BIOS, and thus we can't get the mode at module
2429                  * load.
2430                  */
2431                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2432                               pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2433                 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2434         }
2435 }
2436
2437 static void intel_disable_dp(struct intel_encoder *encoder)
2438 {
2439         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2440         struct drm_device *dev = encoder->base.dev;
2441         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2442
2443         if (crtc->config->has_audio)
2444                 intel_audio_codec_disable(encoder);
2445
2446         if (HAS_PSR(dev) && !HAS_DDI(dev))
2447                 intel_psr_disable(intel_dp);
2448
2449         /* Make sure the panel is off before trying to change the mode. But also
2450          * ensure that we have vdd while we switch off the panel. */
2451         intel_edp_panel_vdd_on(intel_dp);
2452         intel_edp_backlight_off(intel_dp);
2453         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2454         intel_edp_panel_off(intel_dp);
2455
2456         /* disable the port before the pipe on g4x */
2457         if (INTEL_INFO(dev)->gen < 5)
2458                 intel_dp_link_down(intel_dp);
2459 }
2460
2461 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2462 {
2463         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2464         enum port port = dp_to_dig_port(intel_dp)->port;
2465
2466         intel_dp_link_down(intel_dp);
2467
2468         /* Only ilk+ has port A */
2469         if (port == PORT_A)
2470                 ironlake_edp_pll_off(intel_dp);
2471 }
2472
2473 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2474 {
2475         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2476
2477         intel_dp_link_down(intel_dp);
2478 }
2479
2480 static void chv_data_lane_soft_reset(struct intel_encoder *encoder,
2481                                      bool reset)
2482 {
2483         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2484         enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
2485         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2486         enum i915_pipe pipe = crtc->pipe;
2487         uint32_t val;
2488
2489         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2490         if (reset)
2491                 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2492         else
2493                 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2494         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2495
2496         if (crtc->config->lane_count > 2) {
2497                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2498                 if (reset)
2499                         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2500                 else
2501                         val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2502                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2503         }
2504
2505         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2506         val |= CHV_PCS_REQ_SOFTRESET_EN;
2507         if (reset)
2508                 val &= ~DPIO_PCS_CLK_SOFT_RESET;
2509         else
2510                 val |= DPIO_PCS_CLK_SOFT_RESET;
2511         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2512
2513         if (crtc->config->lane_count > 2) {
2514                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2515                 val |= CHV_PCS_REQ_SOFTRESET_EN;
2516                 if (reset)
2517                         val &= ~DPIO_PCS_CLK_SOFT_RESET;
2518                 else
2519                         val |= DPIO_PCS_CLK_SOFT_RESET;
2520                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2521         }
2522 }
2523
2524 static void chv_post_disable_dp(struct intel_encoder *encoder)
2525 {
2526         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2527         struct drm_device *dev = encoder->base.dev;
2528         struct drm_i915_private *dev_priv = dev->dev_private;
2529
2530         intel_dp_link_down(intel_dp);
2531
2532         mutex_lock(&dev_priv->sb_lock);
2533
2534         /* Assert data lane reset */
2535         chv_data_lane_soft_reset(encoder, true);
2536
2537         mutex_unlock(&dev_priv->sb_lock);
2538 }
2539
2540 static void
2541 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2542                          uint32_t *DP,
2543                          uint8_t dp_train_pat)
2544 {
2545         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2546         struct drm_device *dev = intel_dig_port->base.base.dev;
2547         struct drm_i915_private *dev_priv = dev->dev_private;
2548         enum port port = intel_dig_port->port;
2549
2550         if (HAS_DDI(dev)) {
2551                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2552
2553                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2554                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2555                 else
2556                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2557
2558                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2559                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2560                 case DP_TRAINING_PATTERN_DISABLE:
2561                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2562
2563                         break;
2564                 case DP_TRAINING_PATTERN_1:
2565                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2566                         break;
2567                 case DP_TRAINING_PATTERN_2:
2568                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2569                         break;
2570                 case DP_TRAINING_PATTERN_3:
2571                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2572                         break;
2573                 }
2574                 I915_WRITE(DP_TP_CTL(port), temp);
2575
2576         } else if ((IS_GEN7(dev) && port == PORT_A) ||
2577                    (HAS_PCH_CPT(dev) && port != PORT_A)) {
2578                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2579
2580                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2581                 case DP_TRAINING_PATTERN_DISABLE:
2582                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2583                         break;
2584                 case DP_TRAINING_PATTERN_1:
2585                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2586                         break;
2587                 case DP_TRAINING_PATTERN_2:
2588                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2589                         break;
2590                 case DP_TRAINING_PATTERN_3:
2591                         DRM_ERROR("DP training pattern 3 not supported\n");
2592                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2593                         break;
2594                 }
2595
2596         } else {
2597                 if (IS_CHERRYVIEW(dev))
2598                         *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2599                 else
2600                         *DP &= ~DP_LINK_TRAIN_MASK;
2601
2602                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2603                 case DP_TRAINING_PATTERN_DISABLE:
2604                         *DP |= DP_LINK_TRAIN_OFF;
2605                         break;
2606                 case DP_TRAINING_PATTERN_1:
2607                         *DP |= DP_LINK_TRAIN_PAT_1;
2608                         break;
2609                 case DP_TRAINING_PATTERN_2:
2610                         *DP |= DP_LINK_TRAIN_PAT_2;
2611                         break;
2612                 case DP_TRAINING_PATTERN_3:
2613                         if (IS_CHERRYVIEW(dev)) {
2614                                 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2615                         } else {
2616                                 DRM_ERROR("DP training pattern 3 not supported\n");
2617                                 *DP |= DP_LINK_TRAIN_PAT_2;
2618                         }
2619                         break;
2620                 }
2621         }
2622 }
2623
2624 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2625 {
2626         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2627         struct drm_i915_private *dev_priv = dev->dev_private;
2628         struct intel_crtc *crtc =
2629                 to_intel_crtc(dp_to_dig_port(intel_dp)->base.base.crtc);
2630
2631         /* enable with pattern 1 (as per spec) */
2632         _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2633                                  DP_TRAINING_PATTERN_1);
2634
2635         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2636         POSTING_READ(intel_dp->output_reg);
2637
2638         /*
2639          * Magic for VLV/CHV. We _must_ first set up the register
2640          * without actually enabling the port, and then do another
2641          * write to enable the port. Otherwise link training will
2642          * fail when the power sequencer is freshly used for this port.
2643          */
2644         intel_dp->DP |= DP_PORT_EN;
2645         if (crtc->config->has_audio)
2646                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2647
2648         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2649         POSTING_READ(intel_dp->output_reg);
2650 }
2651
2652 static void intel_enable_dp(struct intel_encoder *encoder)
2653 {
2654         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2655         struct drm_device *dev = encoder->base.dev;
2656         struct drm_i915_private *dev_priv = dev->dev_private;
2657         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2658         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2659         enum i915_pipe pipe = crtc->pipe;
2660
2661         if (WARN_ON(dp_reg & DP_PORT_EN))
2662                 return;
2663
2664         pps_lock(intel_dp);
2665
2666         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2667                 vlv_init_panel_power_sequencer(intel_dp);
2668
2669         intel_dp_enable_port(intel_dp);
2670
2671         edp_panel_vdd_on(intel_dp);
2672         edp_panel_on(intel_dp);
2673         edp_panel_vdd_off(intel_dp, true);
2674
2675         pps_unlock(intel_dp);
2676
2677         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2678                 unsigned int lane_mask = 0x0;
2679
2680                 if (IS_CHERRYVIEW(dev))
2681                         lane_mask = intel_dp_unused_lane_mask(crtc->config->lane_count);
2682
2683                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2684                                     lane_mask);
2685         }
2686
2687         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2688         intel_dp_start_link_train(intel_dp);
2689         intel_dp_stop_link_train(intel_dp);
2690
2691         if (crtc->config->has_audio) {
2692                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2693                                  pipe_name(pipe));
2694                 intel_audio_codec_enable(encoder);
2695         }
2696 }
2697
2698 static void g4x_enable_dp(struct intel_encoder *encoder)
2699 {
2700         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2701
2702         intel_enable_dp(encoder);
2703         intel_edp_backlight_on(intel_dp);
2704 }
2705
2706 static void vlv_enable_dp(struct intel_encoder *encoder)
2707 {
2708         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2709
2710         intel_edp_backlight_on(intel_dp);
2711         intel_psr_enable(intel_dp);
2712 }
2713
2714 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2715 {
2716         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2717         enum port port = dp_to_dig_port(intel_dp)->port;
2718
2719         intel_dp_prepare(encoder);
2720
2721         /* Only ilk+ has port A */
2722         if (port == PORT_A)
2723                 ironlake_edp_pll_on(intel_dp);
2724 }
2725
2726 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2727 {
2728         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2729         struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2730         enum i915_pipe pipe = intel_dp->pps_pipe;
2731         i915_reg_t pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2732
2733         edp_panel_vdd_off_sync(intel_dp);
2734
2735         /*
2736          * VLV seems to get confused when multiple power seqeuencers
2737          * have the same port selected (even if only one has power/vdd
2738          * enabled). The failure manifests as vlv_wait_port_ready() failing
2739          * CHV on the other hand doesn't seem to mind having the same port
2740          * selected in multiple power seqeuencers, but let's clear the
2741          * port select always when logically disconnecting a power sequencer
2742          * from a port.
2743          */
2744         DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2745                       pipe_name(pipe), port_name(intel_dig_port->port));
2746         I915_WRITE(pp_on_reg, 0);
2747         POSTING_READ(pp_on_reg);
2748
2749         intel_dp->pps_pipe = INVALID_PIPE;
2750 }
2751
2752 static void vlv_steal_power_sequencer(struct drm_device *dev,
2753                                       enum i915_pipe pipe)
2754 {
2755         struct drm_i915_private *dev_priv = dev->dev_private;
2756         struct intel_encoder *encoder;
2757
2758         lockdep_assert_held(&dev_priv->pps_mutex);
2759
2760         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2761                 return;
2762
2763         for_each_intel_encoder(dev, encoder) {
2764                 struct intel_dp *intel_dp;
2765                 enum port port;
2766
2767                 if (encoder->type != INTEL_OUTPUT_EDP)
2768                         continue;
2769
2770                 intel_dp = enc_to_intel_dp(&encoder->base);
2771                 port = dp_to_dig_port(intel_dp)->port;
2772
2773                 if (intel_dp->pps_pipe != pipe)
2774                         continue;
2775
2776                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2777                               pipe_name(pipe), port_name(port));
2778
2779                 WARN(encoder->base.crtc,
2780                      "stealing pipe %c power sequencer from active eDP port %c\n",
2781                      pipe_name(pipe), port_name(port));
2782
2783                 /* make sure vdd is off before we steal it */
2784                 vlv_detach_power_sequencer(intel_dp);
2785         }
2786 }
2787
2788 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2789 {
2790         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2791         struct intel_encoder *encoder = &intel_dig_port->base;
2792         struct drm_device *dev = encoder->base.dev;
2793         struct drm_i915_private *dev_priv = dev->dev_private;
2794         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2795
2796         lockdep_assert_held(&dev_priv->pps_mutex);
2797
2798         if (!is_edp(intel_dp))
2799                 return;
2800
2801         if (intel_dp->pps_pipe == crtc->pipe)
2802                 return;
2803
2804         /*
2805          * If another power sequencer was being used on this
2806          * port previously make sure to turn off vdd there while
2807          * we still have control of it.
2808          */
2809         if (intel_dp->pps_pipe != INVALID_PIPE)
2810                 vlv_detach_power_sequencer(intel_dp);
2811
2812         /*
2813          * We may be stealing the power
2814          * sequencer from another port.
2815          */
2816         vlv_steal_power_sequencer(dev, crtc->pipe);
2817
2818         /* now it's all ours */
2819         intel_dp->pps_pipe = crtc->pipe;
2820
2821         DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2822                       pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2823
2824         /* init power sequencer on this pipe and port */
2825         intel_dp_init_panel_power_sequencer(dev, intel_dp);
2826         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2827 }
2828
2829 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2830 {
2831         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2832         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2833         struct drm_device *dev = encoder->base.dev;
2834         struct drm_i915_private *dev_priv = dev->dev_private;
2835         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2836         enum dpio_channel port = vlv_dport_to_channel(dport);
2837         int pipe = intel_crtc->pipe;
2838         u32 val;
2839
2840         mutex_lock(&dev_priv->sb_lock);
2841
2842         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2843         val = 0;
2844         if (pipe)
2845                 val |= (1<<21);
2846         else
2847                 val &= ~(1<<21);
2848         val |= 0x001000c4;
2849         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2850         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2851         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2852
2853         mutex_unlock(&dev_priv->sb_lock);
2854
2855         intel_enable_dp(encoder);
2856 }
2857
2858 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2859 {
2860         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2861         struct drm_device *dev = encoder->base.dev;
2862         struct drm_i915_private *dev_priv = dev->dev_private;
2863         struct intel_crtc *intel_crtc =
2864                 to_intel_crtc(encoder->base.crtc);
2865         enum dpio_channel port = vlv_dport_to_channel(dport);
2866         int pipe = intel_crtc->pipe;
2867
2868         intel_dp_prepare(encoder);
2869
2870         /* Program Tx lane resets to default */
2871         mutex_lock(&dev_priv->sb_lock);
2872         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2873                          DPIO_PCS_TX_LANE2_RESET |
2874                          DPIO_PCS_TX_LANE1_RESET);
2875         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2876                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2877                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2878                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2879                                  DPIO_PCS_CLK_SOFT_RESET);
2880
2881         /* Fix up inter-pair skew failure */
2882         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2883         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2884         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2885         mutex_unlock(&dev_priv->sb_lock);
2886 }
2887
2888 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2889 {
2890         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2891         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2892         struct drm_device *dev = encoder->base.dev;
2893         struct drm_i915_private *dev_priv = dev->dev_private;
2894         struct intel_crtc *intel_crtc =
2895                 to_intel_crtc(encoder->base.crtc);
2896         enum dpio_channel ch = vlv_dport_to_channel(dport);
2897         int pipe = intel_crtc->pipe;
2898         int data, i, stagger;
2899         u32 val;
2900
2901         mutex_lock(&dev_priv->sb_lock);
2902
2903         /* allow hardware to manage TX FIFO reset source */
2904         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2905         val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2906         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2907
2908         if (intel_crtc->config->lane_count > 2) {
2909                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2910                 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2911                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2912         }
2913
2914         /* Program Tx lane latency optimal setting*/
2915         for (i = 0; i < intel_crtc->config->lane_count; i++) {
2916                 /* Set the upar bit */
2917                 if (intel_crtc->config->lane_count == 1)
2918                         data = 0x0;
2919                 else
2920                         data = (i == 1) ? 0x0 : 0x1;
2921                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2922                                 data << DPIO_UPAR_SHIFT);
2923         }
2924
2925         /* Data lane stagger programming */
2926         if (intel_crtc->config->port_clock > 270000)
2927                 stagger = 0x18;
2928         else if (intel_crtc->config->port_clock > 135000)
2929                 stagger = 0xd;
2930         else if (intel_crtc->config->port_clock > 67500)
2931                 stagger = 0x7;
2932         else if (intel_crtc->config->port_clock > 33750)
2933                 stagger = 0x4;
2934         else
2935                 stagger = 0x2;
2936
2937         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2938         val |= DPIO_TX2_STAGGER_MASK(0x1f);
2939         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2940
2941         if (intel_crtc->config->lane_count > 2) {
2942                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2943                 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2944                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2945         }
2946
2947         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
2948                        DPIO_LANESTAGGER_STRAP(stagger) |
2949                        DPIO_LANESTAGGER_STRAP_OVRD |
2950                        DPIO_TX1_STAGGER_MASK(0x1f) |
2951                        DPIO_TX1_STAGGER_MULT(6) |
2952                        DPIO_TX2_STAGGER_MULT(0));
2953
2954         if (intel_crtc->config->lane_count > 2) {
2955                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
2956                                DPIO_LANESTAGGER_STRAP(stagger) |
2957                                DPIO_LANESTAGGER_STRAP_OVRD |
2958                                DPIO_TX1_STAGGER_MASK(0x1f) |
2959                                DPIO_TX1_STAGGER_MULT(7) |
2960                                DPIO_TX2_STAGGER_MULT(5));
2961         }
2962
2963         /* Deassert data lane reset */
2964         chv_data_lane_soft_reset(encoder, false);
2965
2966         mutex_unlock(&dev_priv->sb_lock);
2967
2968         intel_enable_dp(encoder);
2969
2970         /* Second common lane will stay alive on its own now */
2971         if (dport->release_cl2_override) {
2972                 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
2973                 dport->release_cl2_override = false;
2974         }
2975 }
2976
2977 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2978 {
2979         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2980         struct drm_device *dev = encoder->base.dev;
2981         struct drm_i915_private *dev_priv = dev->dev_private;
2982         struct intel_crtc *intel_crtc =
2983                 to_intel_crtc(encoder->base.crtc);
2984         enum dpio_channel ch = vlv_dport_to_channel(dport);
2985         enum i915_pipe pipe = intel_crtc->pipe;
2986         unsigned int lane_mask =
2987                 intel_dp_unused_lane_mask(intel_crtc->config->lane_count);
2988         u32 val;
2989
2990         intel_dp_prepare(encoder);
2991
2992         /*
2993          * Must trick the second common lane into life.
2994          * Otherwise we can't even access the PLL.
2995          */
2996         if (ch == DPIO_CH0 && pipe == PIPE_B)
2997                 dport->release_cl2_override =
2998                         !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
2999
3000         chv_phy_powergate_lanes(encoder, true, lane_mask);
3001
3002         mutex_lock(&dev_priv->sb_lock);
3003
3004         /* Assert data lane reset */
3005         chv_data_lane_soft_reset(encoder, true);
3006
3007         /* program left/right clock distribution */
3008         if (pipe != PIPE_B) {
3009                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
3010                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
3011                 if (ch == DPIO_CH0)
3012                         val |= CHV_BUFLEFTENA1_FORCE;
3013                 if (ch == DPIO_CH1)
3014                         val |= CHV_BUFRIGHTENA1_FORCE;
3015                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
3016         } else {
3017                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
3018                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
3019                 if (ch == DPIO_CH0)
3020                         val |= CHV_BUFLEFTENA2_FORCE;
3021                 if (ch == DPIO_CH1)
3022                         val |= CHV_BUFRIGHTENA2_FORCE;
3023                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
3024         }
3025
3026         /* program clock channel usage */
3027         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
3028         val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
3029         if (pipe != PIPE_B)
3030                 val &= ~CHV_PCS_USEDCLKCHANNEL;
3031         else
3032                 val |= CHV_PCS_USEDCLKCHANNEL;
3033         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
3034
3035         if (intel_crtc->config->lane_count > 2) {
3036                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
3037                 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
3038                 if (pipe != PIPE_B)
3039                         val &= ~CHV_PCS_USEDCLKCHANNEL;
3040                 else
3041                         val |= CHV_PCS_USEDCLKCHANNEL;
3042                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
3043         }
3044
3045         /*
3046          * This a a bit weird since generally CL
3047          * matches the pipe, but here we need to
3048          * pick the CL based on the port.
3049          */
3050         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
3051         if (pipe != PIPE_B)
3052                 val &= ~CHV_CMN_USEDCLKCHANNEL;
3053         else
3054                 val |= CHV_CMN_USEDCLKCHANNEL;
3055         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
3056
3057         mutex_unlock(&dev_priv->sb_lock);
3058 }
3059
3060 static void chv_dp_post_pll_disable(struct intel_encoder *encoder)
3061 {
3062         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3063         enum i915_pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
3064         u32 val;
3065
3066         mutex_lock(&dev_priv->sb_lock);
3067
3068         /* disable left/right clock distribution */
3069         if (pipe != PIPE_B) {
3070                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
3071                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
3072                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
3073         } else {
3074                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
3075                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
3076                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
3077         }
3078
3079         mutex_unlock(&dev_priv->sb_lock);
3080
3081         /*
3082          * Leave the power down bit cleared for at least one
3083          * lane so that chv_powergate_phy_ch() will power
3084          * on something when the channel is otherwise unused.
3085          * When the port is off and the override is removed
3086          * the lanes power down anyway, so otherwise it doesn't
3087          * really matter what the state of power down bits is
3088          * after this.
3089          */
3090         chv_phy_powergate_lanes(encoder, false, 0x0);
3091 }
3092
3093 /*
3094  * Fetch AUX CH registers 0x202 - 0x207 which contain
3095  * link status information
3096  */
3097 bool
3098 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3099 {
3100         return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3101                                 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3102 }
3103
3104 /* These are source-specific values. */
3105 uint8_t
3106 intel_dp_voltage_max(struct intel_dp *intel_dp)
3107 {
3108         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3109         struct drm_i915_private *dev_priv = dev->dev_private;
3110         enum port port = dp_to_dig_port(intel_dp)->port;
3111
3112         if (IS_BROXTON(dev))
3113                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3114         else if (INTEL_INFO(dev)->gen >= 9) {
3115                 if (dev_priv->vbt.edp.low_vswing && port == PORT_A)
3116                         return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3117                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3118         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3119                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3120         else if (IS_GEN7(dev) && port == PORT_A)
3121                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3122         else if (HAS_PCH_CPT(dev) && port != PORT_A)
3123                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3124         else
3125                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3126 }
3127
3128 uint8_t
3129 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3130 {
3131         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3132         enum port port = dp_to_dig_port(intel_dp)->port;
3133
3134         if (INTEL_INFO(dev)->gen >= 9) {
3135                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3136                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3137                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3138                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3139                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3140                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3141                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3142                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3143                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3144                 default:
3145                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3146                 }
3147         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3148                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3149                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3150                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3151                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3152                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3153                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3154                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3155                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3156                 default:
3157                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3158                 }
3159         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
3160                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3161                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3162                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3163                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3164                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3165                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3166                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3167                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3168                 default:
3169                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3170                 }
3171         } else if (IS_GEN7(dev) && port == PORT_A) {
3172                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3173                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3174                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3175                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3176                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3177                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3178                 default:
3179                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3180                 }
3181         } else {
3182                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3183                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3184                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3185                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3186                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3187                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3188                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3189                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3190                 default:
3191                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3192                 }
3193         }
3194 }
3195
3196 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3197 {
3198         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3199         struct drm_i915_private *dev_priv = dev->dev_private;
3200         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3201         struct intel_crtc *intel_crtc =
3202                 to_intel_crtc(dport->base.base.crtc);
3203         unsigned long demph_reg_value, preemph_reg_value,
3204                 uniqtranscale_reg_value;
3205         uint8_t train_set = intel_dp->train_set[0];
3206         enum dpio_channel port = vlv_dport_to_channel(dport);
3207         int pipe = intel_crtc->pipe;
3208
3209         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3210         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3211                 preemph_reg_value = 0x0004000;
3212                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3213                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3214                         demph_reg_value = 0x2B405555;
3215                         uniqtranscale_reg_value = 0x552AB83A;
3216                         break;
3217                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3218                         demph_reg_value = 0x2B404040;
3219                         uniqtranscale_reg_value = 0x5548B83A;
3220                         break;
3221                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3222                         demph_reg_value = 0x2B245555;
3223                         uniqtranscale_reg_value = 0x5560B83A;
3224                         break;
3225                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3226                         demph_reg_value = 0x2B405555;
3227                         uniqtranscale_reg_value = 0x5598DA3A;
3228                         break;
3229                 default:
3230                         return 0;
3231                 }
3232                 break;
3233         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3234                 preemph_reg_value = 0x0002000;
3235                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3236                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3237                         demph_reg_value = 0x2B404040;
3238                         uniqtranscale_reg_value = 0x5552B83A;
3239                         break;
3240                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3241                         demph_reg_value = 0x2B404848;
3242                         uniqtranscale_reg_value = 0x5580B83A;
3243                         break;
3244                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3245                         demph_reg_value = 0x2B404040;
3246                         uniqtranscale_reg_value = 0x55ADDA3A;
3247                         break;
3248                 default:
3249                         return 0;
3250                 }
3251                 break;
3252         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3253                 preemph_reg_value = 0x0000000;
3254                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3255                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3256                         demph_reg_value = 0x2B305555;
3257                         uniqtranscale_reg_value = 0x5570B83A;
3258                         break;
3259                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3260                         demph_reg_value = 0x2B2B4040;
3261                         uniqtranscale_reg_value = 0x55ADDA3A;
3262                         break;
3263                 default:
3264                         return 0;
3265                 }
3266                 break;
3267         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3268                 preemph_reg_value = 0x0006000;
3269                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3270                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3271                         demph_reg_value = 0x1B405555;
3272                         uniqtranscale_reg_value = 0x55ADDA3A;
3273                         break;
3274                 default:
3275                         return 0;
3276                 }
3277                 break;
3278         default:
3279                 return 0;
3280         }
3281
3282         mutex_lock(&dev_priv->sb_lock);
3283         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3284         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3285         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3286                          uniqtranscale_reg_value);
3287         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3288         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3289         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3290         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3291         mutex_unlock(&dev_priv->sb_lock);
3292
3293         return 0;
3294 }
3295
3296 static bool chv_need_uniq_trans_scale(uint8_t train_set)
3297 {
3298         return (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) == DP_TRAIN_PRE_EMPH_LEVEL_0 &&
3299                 (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3300 }
3301
3302 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3303 {
3304         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3305         struct drm_i915_private *dev_priv = dev->dev_private;
3306         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3307         struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3308         u32 deemph_reg_value, margin_reg_value, val;
3309         uint8_t train_set = intel_dp->train_set[0];
3310         enum dpio_channel ch = vlv_dport_to_channel(dport);
3311         enum i915_pipe pipe = intel_crtc->pipe;
3312         int i;
3313
3314         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3315         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3316                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3317                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3318                         deemph_reg_value = 128;
3319                         margin_reg_value = 52;
3320                         break;
3321                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3322                         deemph_reg_value = 128;
3323                         margin_reg_value = 77;
3324                         break;
3325                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3326                         deemph_reg_value = 128;
3327                         margin_reg_value = 102;
3328                         break;
3329                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3330                         deemph_reg_value = 128;
3331                         margin_reg_value = 154;
3332                         /* FIXME extra to set for 1200 */
3333                         break;
3334                 default:
3335                         return 0;
3336                 }
3337                 break;
3338         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3339                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3340                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3341                         deemph_reg_value = 85;
3342                         margin_reg_value = 78;
3343                         break;
3344                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3345                         deemph_reg_value = 85;
3346                         margin_reg_value = 116;
3347                         break;
3348                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3349                         deemph_reg_value = 85;
3350                         margin_reg_value = 154;
3351                         break;
3352                 default:
3353                         return 0;
3354                 }
3355                 break;
3356         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3357                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3358                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3359                         deemph_reg_value = 64;
3360                         margin_reg_value = 104;
3361                         break;
3362                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3363                         deemph_reg_value = 64;
3364                         margin_reg_value = 154;
3365                         break;
3366                 default:
3367                         return 0;
3368                 }
3369                 break;
3370         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3371                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3372                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3373                         deemph_reg_value = 43;
3374                         margin_reg_value = 154;
3375                         break;
3376                 default:
3377                         return 0;
3378                 }
3379                 break;
3380         default:
3381                 return 0;
3382         }
3383
3384         mutex_lock(&dev_priv->sb_lock);
3385
3386         /* Clear calc init */
3387         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3388         val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3389         val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3390         val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3391         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3392
3393         if (intel_crtc->config->lane_count > 2) {
3394                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3395                 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3396                 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3397                 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3398                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3399         }
3400
3401         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3402         val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3403         val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3404         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3405
3406         if (intel_crtc->config->lane_count > 2) {
3407                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3408                 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3409                 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3410                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3411         }
3412
3413         /* Program swing deemph */
3414         for (i = 0; i < intel_crtc->config->lane_count; i++) {
3415                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3416                 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3417                 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3418                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3419         }
3420
3421         /* Program swing margin */
3422         for (i = 0; i < intel_crtc->config->lane_count; i++) {
3423                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3424
3425                 val &= ~DPIO_SWING_MARGIN000_MASK;
3426                 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3427
3428                 /*
3429                  * Supposedly this value shouldn't matter when unique transition
3430                  * scale is disabled, but in fact it does matter. Let's just
3431                  * always program the same value and hope it's OK.
3432                  */
3433                 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3434                 val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
3435
3436                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3437         }
3438
3439         /*
3440          * The document said it needs to set bit 27 for ch0 and bit 26
3441          * for ch1. Might be a typo in the doc.
3442          * For now, for this unique transition scale selection, set bit
3443          * 27 for ch0 and ch1.
3444          */
3445         for (i = 0; i < intel_crtc->config->lane_count; i++) {
3446                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3447                 if (chv_need_uniq_trans_scale(train_set))
3448                         val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3449                 else
3450                         val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3451                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3452         }
3453
3454         /* Start swing calculation */
3455         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3456         val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3457         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3458
3459         if (intel_crtc->config->lane_count > 2) {
3460                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3461                 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3462                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3463         }
3464
3465         mutex_unlock(&dev_priv->sb_lock);
3466
3467         return 0;
3468 }
3469
3470 static uint32_t
3471 gen4_signal_levels(uint8_t train_set)
3472 {
3473         uint32_t        signal_levels = 0;
3474
3475         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3476         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3477         default:
3478                 signal_levels |= DP_VOLTAGE_0_4;
3479                 break;
3480         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3481                 signal_levels |= DP_VOLTAGE_0_6;
3482                 break;
3483         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3484                 signal_levels |= DP_VOLTAGE_0_8;
3485                 break;
3486         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3487                 signal_levels |= DP_VOLTAGE_1_2;
3488                 break;
3489         }
3490         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3491         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3492         default:
3493                 signal_levels |= DP_PRE_EMPHASIS_0;
3494                 break;
3495         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3496                 signal_levels |= DP_PRE_EMPHASIS_3_5;
3497                 break;
3498         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3499                 signal_levels |= DP_PRE_EMPHASIS_6;
3500                 break;
3501         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3502                 signal_levels |= DP_PRE_EMPHASIS_9_5;
3503                 break;
3504         }
3505         return signal_levels;
3506 }
3507
3508 /* Gen6's DP voltage swing and pre-emphasis control */
3509 static uint32_t
3510 gen6_edp_signal_levels(uint8_t train_set)
3511 {
3512         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3513                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3514         switch (signal_levels) {
3515         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3516         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3517                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3518         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3519                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3520         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3521         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3522                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3523         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3524         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3525                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3526         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3527         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3528                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3529         default:
3530                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3531                               "0x%x\n", signal_levels);
3532                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3533         }
3534 }
3535
3536 /* Gen7's DP voltage swing and pre-emphasis control */
3537 static uint32_t
3538 gen7_edp_signal_levels(uint8_t train_set)
3539 {
3540         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3541                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3542         switch (signal_levels) {
3543         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3544                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3545         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3546                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3547         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3548                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3549
3550         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3551                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3552         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3553                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3554
3555         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3556                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3557         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3558                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3559
3560         default:
3561                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3562                               "0x%x\n", signal_levels);
3563                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3564         }
3565 }
3566
3567 void
3568 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3569 {
3570         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3571         enum port port = intel_dig_port->port;
3572         struct drm_device *dev = intel_dig_port->base.base.dev;
3573         struct drm_i915_private *dev_priv = to_i915(dev);
3574         uint32_t signal_levels, mask = 0;
3575         uint8_t train_set = intel_dp->train_set[0];
3576
3577         if (HAS_DDI(dev)) {
3578                 signal_levels = ddi_signal_levels(intel_dp);
3579
3580                 if (IS_BROXTON(dev))
3581                         signal_levels = 0;
3582                 else
3583                         mask = DDI_BUF_EMP_MASK;
3584         } else if (IS_CHERRYVIEW(dev)) {
3585                 signal_levels = chv_signal_levels(intel_dp);
3586         } else if (IS_VALLEYVIEW(dev)) {
3587                 signal_levels = vlv_signal_levels(intel_dp);
3588         } else if (IS_GEN7(dev) && port == PORT_A) {
3589                 signal_levels = gen7_edp_signal_levels(train_set);
3590                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3591         } else if (IS_GEN6(dev) && port == PORT_A) {
3592                 signal_levels = gen6_edp_signal_levels(train_set);
3593                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3594         } else {
3595                 signal_levels = gen4_signal_levels(train_set);
3596                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3597         }
3598
3599         if (mask)
3600                 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3601
3602         DRM_DEBUG_KMS("Using vswing level %d\n",
3603                 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3604         DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3605                 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3606                         DP_TRAIN_PRE_EMPHASIS_SHIFT);
3607
3608         intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3609
3610         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3611         POSTING_READ(intel_dp->output_reg);
3612 }
3613
3614 void
3615 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3616                                        uint8_t dp_train_pat)
3617 {
3618         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3619         struct drm_i915_private *dev_priv =
3620                 to_i915(intel_dig_port->base.base.dev);
3621
3622         _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3623
3624         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3625         POSTING_READ(intel_dp->output_reg);
3626 }
3627
3628 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3629 {
3630         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3631         struct drm_device *dev = intel_dig_port->base.base.dev;
3632         struct drm_i915_private *dev_priv = dev->dev_private;
3633         enum port port = intel_dig_port->port;
3634         uint32_t val;
3635
3636         if (!HAS_DDI(dev))
3637                 return;
3638
3639         val = I915_READ(DP_TP_CTL(port));
3640         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3641         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3642         I915_WRITE(DP_TP_CTL(port), val);
3643
3644         /*
3645          * On PORT_A we can have only eDP in SST mode. There the only reason
3646          * we need to set idle transmission mode is to work around a HW issue
3647          * where we enable the pipe while not in idle link-training mode.
3648          * In this case there is requirement to wait for a minimum number of
3649          * idle patterns to be sent.
3650          */
3651         if (port == PORT_A)
3652                 return;
3653
3654         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3655                      1))
3656                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3657 }
3658
3659 static void
3660 intel_dp_link_down(struct intel_dp *intel_dp)
3661 {
3662         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3663         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3664         enum port port = intel_dig_port->port;
3665         struct drm_device *dev = intel_dig_port->base.base.dev;
3666         struct drm_i915_private *dev_priv = dev->dev_private;
3667         uint32_t DP = intel_dp->DP;
3668
3669         if (WARN_ON(HAS_DDI(dev)))
3670                 return;
3671
3672         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3673                 return;
3674
3675         DRM_DEBUG_KMS("\n");
3676
3677         if ((IS_GEN7(dev) && port == PORT_A) ||
3678             (HAS_PCH_CPT(dev) && port != PORT_A)) {
3679                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3680                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3681         } else {
3682                 if (IS_CHERRYVIEW(dev))
3683                         DP &= ~DP_LINK_TRAIN_MASK_CHV;
3684                 else
3685                         DP &= ~DP_LINK_TRAIN_MASK;
3686                 DP |= DP_LINK_TRAIN_PAT_IDLE;
3687         }
3688         I915_WRITE(intel_dp->output_reg, DP);
3689         POSTING_READ(intel_dp->output_reg);
3690
3691         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3692         I915_WRITE(intel_dp->output_reg, DP);
3693         POSTING_READ(intel_dp->output_reg);
3694
3695         /*
3696          * HW workaround for IBX, we need to move the port
3697          * to transcoder A after disabling it to allow the
3698          * matching HDMI port to be enabled on transcoder A.
3699          */
3700         if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3701                 /*
3702                  * We get CPU/PCH FIFO underruns on the other pipe when
3703                  * doing the workaround. Sweep them under the rug.
3704                  */
3705                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3706                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3707
3708                 /* always enable with pattern 1 (as per spec) */
3709                 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3710                 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3711                 I915_WRITE(intel_dp->output_reg, DP);
3712                 POSTING_READ(intel_dp->output_reg);
3713
3714                 DP &= ~DP_PORT_EN;
3715                 I915_WRITE(intel_dp->output_reg, DP);
3716                 POSTING_READ(intel_dp->output_reg);
3717
3718                 intel_wait_for_vblank_if_active(dev_priv->dev, PIPE_A);
3719                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3720                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3721         }
3722
3723         msleep(intel_dp->panel_power_down_delay);
3724
3725         intel_dp->DP = DP;
3726 }
3727
3728 static bool
3729 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3730 {
3731         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3732         struct drm_device *dev = dig_port->base.base.dev;
3733         struct drm_i915_private *dev_priv = dev->dev_private;
3734         uint8_t rev;
3735
3736         if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
3737                              sizeof(intel_dp->dpcd)) < 0)
3738                 return false; /* aux transfer failed */
3739
3740 #ifdef __DragonFly__
3741         char dpcd_hex_dump[DP_RECEIVER_CAP_SIZE * 3];
3742         DRM_DEBUG_KMS("DPCD: %s\n", hexncpy(intel_dp->dpcd, sizeof(intel_dp->dpcd),
3743                       dpcd_hex_dump, sizeof(dpcd_hex_dump), " "));
3744 #else
3745         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3746 #endif
3747
3748         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3749                 return false; /* DPCD not present */
3750
3751         if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT,
3752                              &intel_dp->sink_count, 1) < 0)
3753                 return false;
3754
3755         /*
3756          * Sink count can change between short pulse hpd hence
3757          * a member variable in intel_dp will track any changes
3758          * between short pulse interrupts.
3759          */
3760         intel_dp->sink_count = DP_GET_SINK_COUNT(intel_dp->sink_count);
3761
3762         /*
3763          * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3764          * a dongle is present but no display. Unless we require to know
3765          * if a dongle is present or not, we don't need to update
3766          * downstream port information. So, an early return here saves
3767          * time from performing other operations which are not required.
3768          */
3769         if (!is_edp(intel_dp) && !intel_dp->sink_count)
3770                 return false;
3771
3772         /* Check if the panel supports PSR */
3773         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3774         if (is_edp(intel_dp)) {
3775                 drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT,
3776                                  intel_dp->psr_dpcd,
3777                                  sizeof(intel_dp->psr_dpcd));
3778                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3779                         dev_priv->psr.sink_support = true;
3780                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3781                 }
3782
3783                 if (INTEL_INFO(dev)->gen >= 9 &&
3784                         (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3785                         uint8_t frame_sync_cap;
3786
3787                         dev_priv->psr.sink_support = true;
3788                         drm_dp_dpcd_read(&intel_dp->aux,
3789                                          DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3790                                          &frame_sync_cap, 1);
3791                         dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3792                         /* PSR2 needs frame sync as well */
3793                         dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3794                         DRM_DEBUG_KMS("PSR2 %s on sink",
3795                                 dev_priv->psr.psr2_support ? "supported" : "not supported");
3796                 }
3797         }
3798
3799         DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
3800                       yesno(intel_dp_source_supports_hbr2(intel_dp)),
3801                       yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
3802
3803         /* Intermediate frequency support */
3804         if (is_edp(intel_dp) &&
3805             (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3806             (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
3807             (rev >= 0x03)) { /* eDp v1.4 or higher */
3808                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3809                 int i;
3810
3811                 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
3812                                 sink_rates, sizeof(sink_rates));
3813
3814                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3815                         int val = le16_to_cpu(sink_rates[i]);
3816
3817                         if (val == 0)
3818                                 break;
3819
3820                         /* Value read is in kHz while drm clock is saved in deca-kHz */
3821                         intel_dp->sink_rates[i] = (val * 200) / 10;
3822                 }
3823                 intel_dp->num_sink_rates = i;
3824         }
3825
3826         intel_dp_print_rates(intel_dp);
3827
3828         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3829               DP_DWN_STRM_PORT_PRESENT))
3830                 return true; /* native DP sink */
3831
3832         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3833                 return true; /* no per-port downstream info */
3834
3835         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3836                              intel_dp->downstream_ports,
3837                              DP_MAX_DOWNSTREAM_PORTS) < 0)
3838                 return false; /* downstream port status fetch failed */
3839
3840         return true;
3841 }
3842
3843 static void
3844 intel_dp_probe_oui(struct intel_dp *intel_dp)
3845 {
3846         u8 buf[3];
3847
3848         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3849                 return;
3850
3851         if (drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3852                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3853                               buf[0], buf[1], buf[2]);
3854
3855         if (drm_dp_dpcd_read(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3856                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3857                               buf[0], buf[1], buf[2]);
3858 }
3859
3860 static bool
3861 intel_dp_probe_mst(struct intel_dp *intel_dp)
3862 {
3863         u8 buf[1];
3864
3865         if (!i915.enable_dp_mst)
3866                 return false;
3867
3868         if (!intel_dp->can_mst)
3869                 return false;
3870
3871         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3872                 return false;
3873
3874         if (drm_dp_dpcd_read(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3875                 if (buf[0] & DP_MST_CAP) {
3876                         DRM_DEBUG_KMS("Sink is MST capable\n");
3877                         intel_dp->is_mst = true;
3878                 } else {
3879                         DRM_DEBUG_KMS("Sink is not MST capable\n");
3880                         intel_dp->is_mst = false;
3881                 }
3882         }
3883
3884         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3885         return intel_dp->is_mst;
3886 }
3887
3888 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3889 {
3890         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3891         struct drm_device *dev = dig_port->base.base.dev;
3892         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3893         u8 buf;
3894         int ret = 0;
3895         int count = 0;
3896         int attempts = 10;
3897
3898         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3899                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3900                 ret = -EIO;
3901                 goto out;
3902         }
3903
3904         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3905                                buf & ~DP_TEST_SINK_START) < 0) {
3906                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3907                 ret = -EIO;
3908                 goto out;
3909         }
3910
3911         do {
3912                 intel_wait_for_vblank(dev, intel_crtc->pipe);
3913
3914                 if (drm_dp_dpcd_readb(&intel_dp->aux,
3915                                       DP_TEST_SINK_MISC, &buf) < 0) {
3916                         ret = -EIO;
3917                         goto out;
3918                 }
3919                 count = buf & DP_TEST_COUNT_MASK;
3920         } while (--attempts && count);
3921
3922         if (attempts == 0) {
3923                 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3924                 ret = -ETIMEDOUT;
3925         }
3926
3927  out:
3928         hsw_enable_ips(intel_crtc);
3929         return ret;
3930 }
3931
3932 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3933 {
3934         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3935         struct drm_device *dev = dig_port->base.base.dev;
3936         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3937         u8 buf;
3938         int ret;
3939
3940         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3941                 return -EIO;
3942
3943         if (!(buf & DP_TEST_CRC_SUPPORTED))
3944                 return -ENOTTY;
3945
3946         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3947                 return -EIO;
3948
3949         if (buf & DP_TEST_SINK_START) {
3950                 ret = intel_dp_sink_crc_stop(intel_dp);
3951                 if (ret)
3952                         return ret;
3953         }
3954
3955         hsw_disable_ips(intel_crtc);
3956
3957         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3958                                buf | DP_TEST_SINK_START) < 0) {
3959                 hsw_enable_ips(intel_crtc);
3960                 return -EIO;
3961         }
3962
3963         intel_wait_for_vblank(dev, intel_crtc->pipe);
3964         return 0;
3965 }
3966
3967 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3968 {
3969         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3970         struct drm_device *dev = dig_port->base.base.dev;
3971         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3972         u8 buf;
3973         int count, ret;
3974         int attempts = 6;
3975
3976         ret = intel_dp_sink_crc_start(intel_dp);
3977         if (ret)
3978                 return ret;
3979
3980         do {
3981                 intel_wait_for_vblank(dev, intel_crtc->pipe);
3982
3983                 if (drm_dp_dpcd_readb(&intel_dp->aux,
3984                                       DP_TEST_SINK_MISC, &buf) < 0) {
3985                         ret = -EIO;
3986                         goto stop;
3987                 }
3988                 count = buf & DP_TEST_COUNT_MASK;
3989
3990         } while (--attempts && count == 0);
3991
3992         if (attempts == 0) {
3993                 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3994                 ret = -ETIMEDOUT;
3995                 goto stop;
3996         }
3997
3998         if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3999                 ret = -EIO;
4000                 goto stop;
4001         }
4002
4003 stop:
4004         intel_dp_sink_crc_stop(intel_dp);
4005         return ret;
4006 }
4007
4008 static bool
4009 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4010 {
4011         return drm_dp_dpcd_read(&intel_dp->aux,
4012                                        DP_DEVICE_SERVICE_IRQ_VECTOR,
4013                                        sink_irq_vector, 1) == 1;
4014 }
4015
4016 static bool
4017 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4018 {
4019         int ret;
4020
4021         ret = drm_dp_dpcd_read(&intel_dp->aux,
4022                                              DP_SINK_COUNT_ESI,
4023                                              sink_irq_vector, 14);
4024         if (ret != 14)
4025                 return false;
4026
4027         return true;
4028 }
4029
4030 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4031 {
4032         uint8_t test_result = DP_TEST_ACK;
4033         return test_result;
4034 }
4035
4036 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4037 {
4038         uint8_t test_result = DP_TEST_NAK;
4039         return test_result;
4040 }
4041
4042 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4043 {
4044         uint8_t test_result = DP_TEST_NAK;
4045         struct intel_connector *intel_connector = intel_dp->attached_connector;
4046         struct drm_connector *connector = &intel_connector->base;
4047
4048         if (intel_connector->detect_edid == NULL ||
4049             connector->edid_corrupt ||
4050             intel_dp->aux.i2c_defer_count > 6) {
4051                 /* Check EDID read for NACKs, DEFERs and corruption
4052                  * (DP CTS 1.2 Core r1.1)
4053                  *    4.2.2.4 : Failed EDID read, I2C_NAK
4054                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
4055                  *    4.2.2.6 : EDID corruption detected
4056                  * Use failsafe mode for all cases
4057                  */
4058                 if (intel_dp->aux.i2c_nack_count > 0 ||
4059                         intel_dp->aux.i2c_defer_count > 0)
4060                         DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4061                                       intel_dp->aux.i2c_nack_count,
4062                                       intel_dp->aux.i2c_defer_count);
4063                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
4064         } else {
4065                 struct edid *block = intel_connector->detect_edid;
4066
4067                 /* We have to write the checksum
4068                  * of the last block read
4069                  */
4070                 block += intel_connector->detect_edid->extensions;
4071
4072                 if (!drm_dp_dpcd_write(&intel_dp->aux,
4073                                         DP_TEST_EDID_CHECKSUM,
4074                                         &block->checksum,
4075                                         1))
4076                         DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4077
4078                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4079                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
4080         }
4081
4082         /* Set test active flag here so userspace doesn't interrupt things */
4083         intel_dp->compliance_test_active = 1;
4084
4085         return test_result;
4086 }
4087
4088 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4089 {
4090         uint8_t test_result = DP_TEST_NAK;
4091         return test_result;
4092 }
4093
4094 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4095 {
4096         uint8_t response = DP_TEST_NAK;
4097         uint8_t rxdata = 0;
4098         int status = 0;
4099
4100         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
4101         if (status <= 0) {
4102                 DRM_DEBUG_KMS("Could not read test request from sink\n");
4103                 goto update_status;
4104         }
4105
4106         switch (rxdata) {
4107         case DP_TEST_LINK_TRAINING:
4108                 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4109                 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
4110                 response = intel_dp_autotest_link_training(intel_dp);
4111                 break;
4112         case DP_TEST_LINK_VIDEO_PATTERN:
4113                 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4114                 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
4115                 response = intel_dp_autotest_video_pattern(intel_dp);
4116                 break;
4117         case DP_TEST_LINK_EDID_READ:
4118                 DRM_DEBUG_KMS("EDID test requested\n");
4119                 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
4120                 response = intel_dp_autotest_edid(intel_dp);
4121                 break;
4122         case DP_TEST_LINK_PHY_TEST_PATTERN:
4123                 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4124                 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
4125                 response = intel_dp_autotest_phy_pattern(intel_dp);
4126                 break;
4127         default:
4128                 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
4129                 break;
4130         }
4131
4132 update_status:
4133         status = drm_dp_dpcd_write(&intel_dp->aux,
4134                                    DP_TEST_RESPONSE,
4135                                    &response, 1);
4136         if (status <= 0)
4137                 DRM_DEBUG_KMS("Could not write test response to sink\n");
4138 }
4139
4140 static int
4141 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4142 {
4143         bool bret;
4144
4145         if (intel_dp->is_mst) {
4146                 u8 esi[16] = { 0 };
4147                 int ret = 0;
4148                 int retry;
4149                 bool handled;
4150                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4151 go_again:
4152                 if (bret == true) {
4153
4154                         /* check link status - esi[10] = 0x200c */
4155                         if (intel_dp->active_mst_links &&
4156                             !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4157                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4158                                 intel_dp_start_link_train(intel_dp);
4159                                 intel_dp_stop_link_train(intel_dp);
4160                         }
4161
4162                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
4163                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4164
4165                         if (handled) {
4166                                 for (retry = 0; retry < 3; retry++) {
4167                                         int wret;
4168                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
4169                                                                  DP_SINK_COUNT_ESI+1,
4170                                                                  &esi[1], 3);
4171                                         if (wret == 3) {
4172                                                 break;
4173                                         }
4174                                 }
4175
4176                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4177                                 if (bret == true) {
4178                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4179                                         goto go_again;
4180                                 }
4181                         } else
4182                                 ret = 0;
4183
4184                         return ret;
4185                 } else {
4186                         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4187                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4188                         intel_dp->is_mst = false;
4189                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4190                         /* send a hotplug event */
4191                         drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4192                 }
4193         }
4194         return -EINVAL;
4195 }
4196
4197 static void
4198 intel_dp_check_link_status(struct intel_dp *intel_dp)
4199 {
4200         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4201         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4202         u8 link_status[DP_LINK_STATUS_SIZE];
4203
4204         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4205
4206         if (!intel_dp_get_link_status(intel_dp, link_status)) {
4207                 DRM_ERROR("Failed to get link status\n");
4208                 return;
4209         }
4210
4211         if (!intel_encoder->base.crtc)
4212                 return;
4213
4214         if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4215                 return;
4216
4217         /* if link training is requested we should perform it always */
4218         if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
4219             (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
4220                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4221                               intel_encoder->base.name);
4222                 intel_dp_start_link_train(intel_dp);
4223                 intel_dp_stop_link_train(intel_dp);
4224         }
4225 }
4226
4227 /*
4228  * According to DP spec
4229  * 5.1.2:
4230  *  1. Read DPCD
4231  *  2. Configure link according to Receiver Capabilities
4232  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
4233  *  4. Check link status on receipt of hot-plug interrupt
4234  *
4235  * intel_dp_short_pulse -  handles short pulse interrupts
4236  * when full detection is not required.
4237  * Returns %true if short pulse is handled and full detection
4238  * is NOT required and %false otherwise.
4239  */
4240 static bool
4241 intel_dp_short_pulse(struct intel_dp *intel_dp)
4242 {
4243         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4244         u8 sink_irq_vector;
4245         u8 old_sink_count = intel_dp->sink_count;
4246         bool ret;
4247
4248         /*
4249          * Clearing compliance test variables to allow capturing
4250          * of values for next automated test request.
4251          */
4252         intel_dp->compliance_test_active = 0;
4253         intel_dp->compliance_test_type = 0;
4254         intel_dp->compliance_test_data = 0;
4255
4256         /*
4257          * Now read the DPCD to see if it's actually running
4258          * If the current value of sink count doesn't match with
4259          * the value that was stored earlier or dpcd read failed
4260          * we need to do full detection
4261          */
4262         ret = intel_dp_get_dpcd(intel_dp);
4263
4264         if ((old_sink_count != intel_dp->sink_count) || !ret) {
4265                 /* No need to proceed if we are going to do full detect */
4266                 return false;
4267         }
4268
4269         /* Try to read the source of the interrupt */
4270         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4271             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4272                 /* Clear interrupt source */
4273                 drm_dp_dpcd_writeb(&intel_dp->aux,
4274                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4275                                    sink_irq_vector);
4276
4277                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4278                         DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4279                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4280                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4281         }
4282
4283         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4284         intel_dp_check_link_status(intel_dp);
4285         drm_modeset_unlock(&dev->mode_config.connection_mutex);
4286
4287         return true;
4288 }
4289
4290 /* XXX this is probably wrong for multiple downstream ports */
4291 static enum drm_connector_status
4292 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4293 {
4294         uint8_t *dpcd = intel_dp->dpcd;
4295         uint8_t type;
4296
4297         if (!intel_dp_get_dpcd(intel_dp))
4298                 return connector_status_disconnected;
4299
4300         if (is_edp(intel_dp))
4301                 return connector_status_connected;
4302
4303         /* if there's no downstream port, we're done */
4304         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4305                 return connector_status_connected;
4306
4307         /* If we're HPD-aware, SINK_COUNT changes dynamically */
4308         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4309             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4310
4311                 return intel_dp->sink_count ?
4312                 connector_status_connected : connector_status_disconnected;
4313         }
4314
4315         /* If no HPD, poke DDC gently */
4316         if (drm_probe_ddc(&intel_dp->aux.ddc))
4317                 return connector_status_connected;
4318
4319         /* Well we tried, say unknown for unreliable port types */
4320         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4321                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4322                 if (type == DP_DS_PORT_TYPE_VGA ||
4323                     type == DP_DS_PORT_TYPE_NON_EDID)
4324                         return connector_status_unknown;
4325         } else {
4326                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4327                         DP_DWN_STRM_PORT_TYPE_MASK;
4328                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4329                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
4330                         return connector_status_unknown;
4331         }
4332
4333         /* Anything else is out of spec, warn and ignore */
4334         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4335         return connector_status_disconnected;
4336 }
4337
4338 static enum drm_connector_status
4339 edp_detect(struct intel_dp *intel_dp)
4340 {
4341         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4342         enum drm_connector_status status;
4343
4344         status = intel_panel_detect(dev);
4345         if (status == connector_status_unknown)
4346                 status = connector_status_connected;
4347
4348         return status;
4349 }
4350
4351 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4352                                        struct intel_digital_port *port)
4353 {
4354         u32 bit;
4355
4356         switch (port->port) {
4357         case PORT_A:
4358                 return true;
4359         case PORT_B:
4360                 bit = SDE_PORTB_HOTPLUG;
4361                 break;
4362         case PORT_C:
4363                 bit = SDE_PORTC_HOTPLUG;
4364                 break;
4365         case PORT_D:
4366                 bit = SDE_PORTD_HOTPLUG;
4367                 break;
4368         default:
4369                 MISSING_CASE(port->port);
4370                 return false;
4371         }
4372
4373         return I915_READ(SDEISR) & bit;
4374 }
4375
4376 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4377                                        struct intel_digital_port *port)
4378 {
4379         u32 bit;
4380
4381         switch (port->port) {
4382         case PORT_A:
4383                 return true;
4384         case PORT_B:
4385                 bit = SDE_PORTB_HOTPLUG_CPT;
4386                 break;
4387         case PORT_C:
4388                 bit = SDE_PORTC_HOTPLUG_CPT;
4389                 break;
4390         case PORT_D:
4391                 bit = SDE_PORTD_HOTPLUG_CPT;
4392                 break;
4393         case PORT_E:
4394                 bit = SDE_PORTE_HOTPLUG_SPT;
4395                 break;
4396         default:
4397                 MISSING_CASE(port->port);
4398                 return false;
4399         }
4400
4401         return I915_READ(SDEISR) & bit;
4402 }
4403
4404 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4405                                        struct intel_digital_port *port)
4406 {
4407         u32 bit;
4408
4409         switch (port->port) {
4410         case PORT_B:
4411                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4412                 break;
4413         case PORT_C:
4414                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4415                 break;
4416         case PORT_D:
4417                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4418                 break;
4419         default:
4420                 MISSING_CASE(port->port);
4421                 return false;
4422         }
4423
4424         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4425 }
4426
4427 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4428                                         struct intel_digital_port *port)
4429 {
4430         u32 bit;
4431
4432         switch (port->port) {
4433         case PORT_B:
4434                 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4435                 break;
4436         case PORT_C:
4437                 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4438                 break;
4439         case PORT_D:
4440                 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4441                 break;
4442         default:
4443                 MISSING_CASE(port->port);
4444                 return false;
4445         }
4446
4447         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4448 }
4449
4450 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4451                                        struct intel_digital_port *intel_dig_port)
4452 {
4453         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4454         enum port port;
4455         u32 bit;
4456
4457         intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4458         switch (port) {
4459         case PORT_A:
4460                 bit = BXT_DE_PORT_HP_DDIA;
4461                 break;
4462         case PORT_B:
4463                 bit = BXT_DE_PORT_HP_DDIB;
4464                 break;
4465         case PORT_C:
4466                 bit = BXT_DE_PORT_HP_DDIC;
4467                 break;
4468         default:
4469                 MISSING_CASE(port);
4470                 return false;
4471         }
4472
4473         return I915_READ(GEN8_DE_PORT_ISR) & bit;
4474 }
4475
4476 /*
4477  * intel_digital_port_connected - is the specified port connected?
4478  * @dev_priv: i915 private structure
4479  * @port: the port to test
4480  *
4481  * Return %true if @port is connected, %false otherwise.
4482  */
4483 bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4484                                          struct intel_digital_port *port)
4485 {
4486         if (HAS_PCH_IBX(dev_priv))
4487                 return ibx_digital_port_connected(dev_priv, port);
4488         else if (HAS_PCH_SPLIT(dev_priv))
4489                 return cpt_digital_port_connected(dev_priv, port);
4490         else if (IS_BROXTON(dev_priv))
4491                 return bxt_digital_port_connected(dev_priv, port);
4492         else if (IS_GM45(dev_priv))
4493                 return gm45_digital_port_connected(dev_priv, port);
4494         else
4495                 return g4x_digital_port_connected(dev_priv, port);
4496 }
4497
4498 static struct edid *
4499 intel_dp_get_edid(struct intel_dp *intel_dp)
4500 {
4501         struct intel_connector *intel_connector = intel_dp->attached_connector;
4502
4503         /* use cached edid if we have one */
4504         if (intel_connector->edid) {
4505                 /* invalid edid */
4506                 if (IS_ERR(intel_connector->edid))
4507                         return NULL;
4508
4509                 return drm_edid_duplicate(intel_connector->edid);
4510         } else
4511                 return drm_get_edid(&intel_connector->base,
4512                                     &intel_dp->aux.ddc);
4513 }
4514
4515 static void
4516 intel_dp_set_edid(struct intel_dp *intel_dp)
4517 {
4518         struct intel_connector *intel_connector = intel_dp->attached_connector;
4519         struct edid *edid;
4520
4521         intel_dp_unset_edid(intel_dp);
4522         edid = intel_dp_get_edid(intel_dp);
4523         intel_connector->detect_edid = edid;
4524
4525         if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4526                 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4527         else
4528                 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4529 }
4530
4531 static void
4532 intel_dp_unset_edid(struct intel_dp *intel_dp)
4533 {
4534         struct intel_connector *intel_connector = intel_dp->attached_connector;
4535
4536         kfree(intel_connector->detect_edid);
4537         intel_connector->detect_edid = NULL;
4538
4539         intel_dp->has_audio = false;
4540 }
4541
4542 static void
4543 intel_dp_long_pulse(struct intel_connector *intel_connector)
4544 {
4545         struct drm_connector *connector = &intel_connector->base;
4546         struct intel_dp *intel_dp = intel_attached_dp(connector);
4547         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4548         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4549         struct drm_device *dev = connector->dev;
4550         enum drm_connector_status status;
4551         enum intel_display_power_domain power_domain;
4552         bool ret;
4553         u8 sink_irq_vector;
4554
4555         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4556         intel_display_power_get(to_i915(dev), power_domain);
4557
4558         /* Can't disconnect eDP, but you can close the lid... */
4559         if (is_edp(intel_dp))
4560                 status = edp_detect(intel_dp);
4561         else if (intel_digital_port_connected(to_i915(dev),
4562                                               dp_to_dig_port(intel_dp)))
4563                 status = intel_dp_detect_dpcd(intel_dp);
4564         else
4565                 status = connector_status_disconnected;
4566
4567         if (status != connector_status_connected) {
4568                 intel_dp->compliance_test_active = 0;
4569                 intel_dp->compliance_test_type = 0;
4570                 intel_dp->compliance_test_data = 0;
4571
4572                 if (intel_dp->is_mst) {
4573                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4574                                       intel_dp->is_mst,
4575                                       intel_dp->mst_mgr.mst_state);
4576                         intel_dp->is_mst = false;
4577                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4578                                                         intel_dp->is_mst);
4579                 }
4580
4581                 goto out;
4582         }
4583
4584         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4585                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4586
4587         intel_dp_probe_oui(intel_dp);
4588
4589         ret = intel_dp_probe_mst(intel_dp);
4590         if (ret) {
4591                 /*
4592                  * If we are in MST mode then this connector
4593                  * won't appear connected or have anything
4594                  * with EDID on it
4595                  */
4596                 status = connector_status_disconnected;
4597                 goto out;
4598         } else if (connector->status == connector_status_connected) {
4599                 /*
4600                  * If display was connected already and is still connected
4601                  * check links status, there has been known issues of
4602                  * link loss triggerring long pulse!!!!
4603                  */
4604                 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4605                 intel_dp_check_link_status(intel_dp);
4606                 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4607                 goto out;
4608         }
4609
4610         /*
4611          * Clearing NACK and defer counts to get their exact values
4612          * while reading EDID which are required by Compliance tests
4613          * 4.2.2.4 and 4.2.2.5
4614          */
4615         intel_dp->aux.i2c_nack_count = 0;
4616         intel_dp->aux.i2c_defer_count = 0;
4617
4618         intel_dp_set_edid(intel_dp);
4619
4620         status = connector_status_connected;
4621         intel_dp->detect_done = true;
4622
4623         /* Try to read the source of the interrupt */
4624         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4625             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4626                 /* Clear interrupt source */
4627                 drm_dp_dpcd_writeb(&intel_dp->aux,
4628                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4629                                    sink_irq_vector);
4630
4631                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4632                         intel_dp_handle_test_request(intel_dp);
4633                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4634                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4635         }
4636
4637 out:
4638         if ((status != connector_status_connected) &&
4639             (intel_dp->is_mst == false))
4640                 intel_dp_unset_edid(intel_dp);
4641
4642         intel_display_power_put(to_i915(dev), power_domain);
4643         return;
4644 }
4645
4646 static enum drm_connector_status
4647 intel_dp_detect(struct drm_connector *connector, bool force)
4648 {
4649         struct intel_dp *intel_dp = intel_attached_dp(connector);
4650         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4651         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4652         struct intel_connector *intel_connector = to_intel_connector(connector);
4653
4654         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4655                       connector->base.id, connector->name);
4656
4657         if (intel_dp->is_mst) {
4658                 /* MST devices are disconnected from a monitor POV */
4659                 intel_dp_unset_edid(intel_dp);
4660                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4661                         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4662                 return connector_status_disconnected;
4663         }
4664
4665         /* If full detect is not performed yet, do a full detect */
4666         if (!intel_dp->detect_done)
4667                 intel_dp_long_pulse(intel_dp->attached_connector);
4668
4669         intel_dp->detect_done = false;
4670
4671         if (is_edp(intel_dp) || intel_connector->detect_edid)
4672                 return connector_status_connected;
4673         else
4674                 return connector_status_disconnected;
4675 }
4676
4677 static void
4678 intel_dp_force(struct drm_connector *connector)
4679 {
4680         struct intel_dp *intel_dp = intel_attached_dp(connector);
4681         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4682         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4683         enum intel_display_power_domain power_domain;
4684
4685         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4686                       connector->base.id, connector->name);
4687         intel_dp_unset_edid(intel_dp);
4688
4689         if (connector->status != connector_status_connected)
4690                 return;
4691
4692         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4693         intel_display_power_get(dev_priv, power_domain);
4694
4695         intel_dp_set_edid(intel_dp);
4696
4697         intel_display_power_put(dev_priv, power_domain);
4698
4699         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4700                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4701 }
4702
4703 static int intel_dp_get_modes(struct drm_connector *connector)
4704 {
4705         struct intel_connector *intel_connector = to_intel_connector(connector);
4706         struct edid *edid;
4707
4708         edid = intel_connector->detect_edid;
4709         if (edid) {
4710                 int ret = intel_connector_update_modes(connector, edid);
4711                 if (ret)
4712                         return ret;
4713         }
4714
4715         /* if eDP has no EDID, fall back to fixed mode */
4716         if (is_edp(intel_attached_dp(connector)) &&
4717             intel_connector->panel.fixed_mode) {
4718                 struct drm_display_mode *mode;
4719
4720                 mode = drm_mode_duplicate(connector->dev,
4721                                           intel_connector->panel.fixed_mode);
4722                 if (mode) {
4723                         drm_mode_probed_add(connector, mode);
4724                         return 1;
4725                 }
4726         }
4727
4728         return 0;
4729 }
4730
4731 static bool
4732 intel_dp_detect_audio(struct drm_connector *connector)
4733 {
4734         bool has_audio = false;
4735         struct edid *edid;
4736
4737         edid = to_intel_connector(connector)->detect_edid;
4738         if (edid)
4739                 has_audio = drm_detect_monitor_audio(edid);
4740
4741         return has_audio;
4742 }
4743
4744 static int
4745 intel_dp_set_property(struct drm_connector *connector,
4746                       struct drm_property *property,
4747                       uint64_t val)
4748 {
4749         struct drm_i915_private *dev_priv = connector->dev->dev_private;
4750         struct intel_connector *intel_connector = to_intel_connector(connector);
4751         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4752         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4753         int ret;
4754
4755         ret = drm_object_property_set_value(&connector->base, property, val);
4756         if (ret)
4757                 return ret;
4758
4759         if (property == dev_priv->force_audio_property) {
4760                 int i = val;
4761                 bool has_audio;
4762
4763                 if (i == intel_dp->force_audio)
4764                         return 0;
4765
4766                 intel_dp->force_audio = i;
4767
4768                 if (i == HDMI_AUDIO_AUTO)
4769                         has_audio = intel_dp_detect_audio(connector);
4770                 else
4771                         has_audio = (i == HDMI_AUDIO_ON);
4772
4773                 if (has_audio == intel_dp->has_audio)
4774                         return 0;
4775
4776                 intel_dp->has_audio = has_audio;
4777                 goto done;
4778         }
4779
4780         if (property == dev_priv->broadcast_rgb_property) {
4781                 bool old_auto = intel_dp->color_range_auto;
4782                 bool old_range = intel_dp->limited_color_range;
4783
4784                 switch (val) {
4785                 case INTEL_BROADCAST_RGB_AUTO:
4786                         intel_dp->color_range_auto = true;
4787                         break;
4788                 case INTEL_BROADCAST_RGB_FULL:
4789                         intel_dp->color_range_auto = false;
4790                         intel_dp->limited_color_range = false;
4791                         break;
4792                 case INTEL_BROADCAST_RGB_LIMITED:
4793                         intel_dp->color_range_auto = false;
4794                         intel_dp->limited_color_range = true;
4795                         break;
4796                 default:
4797                         return -EINVAL;
4798                 }
4799
4800                 if (old_auto == intel_dp->color_range_auto &&
4801                     old_range == intel_dp->limited_color_range)
4802                         return 0;
4803
4804                 goto done;
4805         }
4806
4807         if (is_edp(intel_dp) &&
4808             property == connector->dev->mode_config.scaling_mode_property) {
4809                 if (val == DRM_MODE_SCALE_NONE) {
4810                         DRM_DEBUG_KMS("no scaling not supported\n");
4811                         return -EINVAL;
4812                 }
4813                 if (HAS_GMCH_DISPLAY(dev_priv) &&
4814                     val == DRM_MODE_SCALE_CENTER) {
4815                         DRM_DEBUG_KMS("centering not supported\n");
4816                         return -EINVAL;
4817                 }
4818
4819                 if (intel_connector->panel.fitting_mode == val) {
4820                         /* the eDP scaling property is not changed */
4821                         return 0;
4822                 }
4823                 intel_connector->panel.fitting_mode = val;
4824
4825                 goto done;
4826         }
4827
4828         return -EINVAL;
4829
4830 done:
4831         if (intel_encoder->base.crtc)
4832                 intel_crtc_restore_mode(intel_encoder->base.crtc);
4833
4834         return 0;
4835 }
4836
4837 static void
4838 intel_dp_connector_destroy(struct drm_connector *connector)
4839 {
4840         struct intel_connector *intel_connector = to_intel_connector(connector);
4841
4842         kfree(intel_connector->detect_edid);
4843
4844         if (!IS_ERR_OR_NULL(intel_connector->edid))
4845                 kfree(intel_connector->edid);
4846
4847         /* Can't call is_edp() since the encoder may have been destroyed
4848          * already. */
4849         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4850                 intel_panel_fini(&intel_connector->panel);
4851
4852         drm_connector_cleanup(connector);
4853         kfree(connector);
4854 }
4855
4856 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4857 {
4858         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4859         struct intel_dp *intel_dp = &intel_dig_port->dp;
4860
4861         intel_dp_mst_encoder_cleanup(intel_dig_port);
4862         if (is_edp(intel_dp)) {
4863                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4864                 /*
4865                  * vdd might still be enabled do to the delayed vdd off.
4866                  * Make sure vdd is actually turned off here.
4867                  */
4868                 pps_lock(intel_dp);
4869                 edp_panel_vdd_off_sync(intel_dp);
4870                 pps_unlock(intel_dp);
4871
4872 #if 0
4873                 if (intel_dp->edp_notifier.notifier_call) {
4874                         unregister_reboot_notifier(&intel_dp->edp_notifier);
4875                         intel_dp->edp_notifier.notifier_call = NULL;
4876                 }
4877 #endif
4878         }
4879         drm_encoder_cleanup(encoder);
4880         kfree(intel_dig_port);
4881 }
4882
4883 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4884 {
4885         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4886
4887         if (!is_edp(intel_dp))
4888                 return;
4889
4890         /*
4891          * vdd might still be enabled do to the delayed vdd off.
4892          * Make sure vdd is actually turned off here.
4893          */
4894         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4895         pps_lock(intel_dp);
4896         edp_panel_vdd_off_sync(intel_dp);
4897         pps_unlock(intel_dp);
4898 }
4899
4900 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4901 {
4902         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4903         struct drm_device *dev = intel_dig_port->base.base.dev;
4904         struct drm_i915_private *dev_priv = dev->dev_private;
4905         enum intel_display_power_domain power_domain;
4906
4907         lockdep_assert_held(&dev_priv->pps_mutex);
4908
4909         if (!edp_have_panel_vdd(intel_dp))
4910                 return;
4911
4912         /*
4913          * The VDD bit needs a power domain reference, so if the bit is
4914          * already enabled when we boot or resume, grab this reference and
4915          * schedule a vdd off, so we don't hold on to the reference
4916          * indefinitely.
4917          */
4918         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4919         power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4920         intel_display_power_get(dev_priv, power_domain);
4921
4922         edp_panel_vdd_schedule_off(intel_dp);
4923 }
4924
4925 void intel_dp_encoder_reset(struct drm_encoder *encoder)
4926 {
4927         struct drm_i915_private *dev_priv = to_i915(encoder->dev);
4928         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4929
4930         if (!HAS_DDI(dev_priv))
4931                 intel_dp->DP = I915_READ(intel_dp->output_reg);
4932
4933         if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4934                 return;
4935
4936         pps_lock(intel_dp);
4937
4938         /*
4939          * Read out the current power sequencer assignment,
4940          * in case the BIOS did something with it.
4941          */
4942         if (IS_VALLEYVIEW(encoder->dev) || IS_CHERRYVIEW(encoder->dev))
4943                 vlv_initial_power_sequencer_setup(intel_dp);
4944
4945         intel_edp_panel_vdd_sanitize(intel_dp);
4946
4947         pps_unlock(intel_dp);
4948 }
4949
4950 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4951         .dpms = drm_atomic_helper_connector_dpms,
4952         .detect = intel_dp_detect,
4953         .force = intel_dp_force,
4954         .fill_modes = drm_helper_probe_single_connector_modes,
4955         .set_property = intel_dp_set_property,
4956         .atomic_get_property = intel_connector_atomic_get_property,
4957         .destroy = intel_dp_connector_destroy,
4958         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4959         .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4960 };
4961
4962 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4963         .get_modes = intel_dp_get_modes,
4964         .mode_valid = intel_dp_mode_valid,
4965         .best_encoder = intel_best_encoder,
4966 };
4967
4968 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4969         .reset = intel_dp_encoder_reset,
4970         .destroy = intel_dp_encoder_destroy,
4971 };
4972
4973 enum irqreturn
4974 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4975 {
4976         struct intel_dp *intel_dp = &intel_dig_port->dp;
4977         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4978         struct drm_device *dev = intel_dig_port->base.base.dev;
4979         struct drm_i915_private *dev_priv = dev->dev_private;
4980         enum intel_display_power_domain power_domain;
4981         enum irqreturn ret = IRQ_NONE;
4982
4983         if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
4984             intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
4985                 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4986
4987         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4988                 /*
4989                  * vdd off can generate a long pulse on eDP which
4990                  * would require vdd on to handle it, and thus we
4991                  * would end up in an endless cycle of
4992                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4993                  */
4994                 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4995                               port_name(intel_dig_port->port));
4996                 return IRQ_HANDLED;
4997         }
4998
4999         DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5000                       port_name(intel_dig_port->port),
5001                       long_hpd ? "long" : "short");
5002
5003         power_domain = intel_display_port_aux_power_domain(intel_encoder);
5004         intel_display_power_get(dev_priv, power_domain);
5005
5006         if (long_hpd) {
5007                 intel_dp_long_pulse(intel_dp->attached_connector);
5008                 if (intel_dp->is_mst)
5009                         ret = IRQ_HANDLED;
5010                 goto put_power;
5011
5012         } else {
5013                 if (intel_dp->is_mst) {
5014                         if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
5015                                 /*
5016                                  * If we were in MST mode, and device is not
5017                                  * there, get out of MST mode
5018                                  */
5019                                 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5020                                               intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5021                                 intel_dp->is_mst = false;
5022                                 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5023                                                                 intel_dp->is_mst);
5024                                 goto put_power;
5025                         }
5026                 }
5027
5028                 if (!intel_dp->is_mst) {
5029                         if (!intel_dp_short_pulse(intel_dp)) {
5030                                 intel_dp_long_pulse(intel_dp->attached_connector);
5031                                 goto put_power;
5032                         }
5033                 }
5034         }
5035
5036         ret = IRQ_HANDLED;
5037
5038 put_power:
5039         intel_display_power_put(dev_priv, power_domain);
5040
5041         return ret;
5042 }
5043
5044 /* check the VBT to see whether the eDP is on another port */
5045 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
5046 {
5047         struct drm_i915_private *dev_priv = dev->dev_private;
5048
5049         /*
5050          * eDP not supported on g4x. so bail out early just
5051          * for a bit extra safety in case the VBT is bonkers.
5052          */
5053         if (INTEL_INFO(dev)->gen < 5)
5054                 return false;
5055
5056         if (port == PORT_A)
5057                 return true;
5058
5059         return intel_bios_is_port_edp(dev_priv, port);
5060 }
5061
5062 void
5063 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5064 {
5065         struct intel_connector *intel_connector = to_intel_connector(connector);
5066
5067         intel_attach_force_audio_property(connector);
5068         intel_attach_broadcast_rgb_property(connector);
5069         intel_dp->color_range_auto = true;
5070
5071         if (is_edp(intel_dp)) {
5072                 drm_mode_create_scaling_mode_property(connector->dev);
5073                 drm_object_attach_property(
5074                         &connector->base,
5075                         connector->dev->mode_config.scaling_mode_property,
5076                         DRM_MODE_SCALE_ASPECT);
5077                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
5078         }
5079 }
5080
5081 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5082 {
5083         intel_dp->panel_power_off_time = ktime_get_boottime();
5084         intel_dp->last_power_on = jiffies;
5085         intel_dp->last_backlight_off = jiffies;
5086 }
5087
5088 static void
5089 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5090                                     struct intel_dp *intel_dp)
5091 {
5092         struct drm_i915_private *dev_priv = dev->dev_private;
5093         struct edp_power_seq cur, vbt, spec,
5094                 *final = &intel_dp->pps_delays;
5095         u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5096         i915_reg_t pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
5097
5098         lockdep_assert_held(&dev_priv->pps_mutex);
5099
5100         /* already initialized? */
5101         if (final->t11_t12 != 0)
5102                 return;
5103
5104         if (IS_BROXTON(dev)) {
5105                 /*
5106                  * TODO: BXT has 2 sets of PPS registers.
5107                  * Correct Register for Broxton need to be identified
5108                  * using VBT. hardcoding for now
5109                  */
5110                 pp_ctrl_reg = BXT_PP_CONTROL(0);
5111                 pp_on_reg = BXT_PP_ON_DELAYS(0);
5112                 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5113         } else if (HAS_PCH_SPLIT(dev)) {
5114                 pp_ctrl_reg = PCH_PP_CONTROL;
5115                 pp_on_reg = PCH_PP_ON_DELAYS;
5116                 pp_off_reg = PCH_PP_OFF_DELAYS;
5117                 pp_div_reg = PCH_PP_DIVISOR;
5118         } else {
5119                 enum i915_pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5120
5121                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
5122                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5123                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5124                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5125         }
5126
5127         /* Workaround: Need to write PP_CONTROL with the unlock key as
5128          * the very first thing. */
5129         pp_ctl = ironlake_get_pp_control(intel_dp);
5130
5131         pp_on = I915_READ(pp_on_reg);
5132         pp_off = I915_READ(pp_off_reg);
5133         if (!IS_BROXTON(dev)) {
5134                 I915_WRITE(pp_ctrl_reg, pp_ctl);
5135                 pp_div = I915_READ(pp_div_reg);
5136         }
5137
5138         /* Pull timing values out of registers */
5139         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5140                 PANEL_POWER_UP_DELAY_SHIFT;
5141
5142         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5143                 PANEL_LIGHT_ON_DELAY_SHIFT;
5144
5145         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5146                 PANEL_LIGHT_OFF_DELAY_SHIFT;
5147
5148         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5149                 PANEL_POWER_DOWN_DELAY_SHIFT;
5150
5151         if (IS_BROXTON(dev)) {
5152                 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
5153                         BXT_POWER_CYCLE_DELAY_SHIFT;
5154                 if (tmp > 0)
5155                         cur.t11_t12 = (tmp - 1) * 1000;
5156                 else
5157                         cur.t11_t12 = 0;
5158         } else {
5159                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5160                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5161         }
5162
5163         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5164                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
5165
5166         vbt = dev_priv->vbt.edp.pps;
5167
5168         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5169          * our hw here, which are all in 100usec. */
5170         spec.t1_t3 = 210 * 10;
5171         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5172         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5173         spec.t10 = 500 * 10;
5174         /* This one is special and actually in units of 100ms, but zero
5175          * based in the hw (so we need to add 100 ms). But the sw vbt
5176          * table multiplies it with 1000 to make it in units of 100usec,
5177          * too. */
5178         spec.t11_t12 = (510 + 100) * 10;
5179
5180         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5181                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
5182
5183         /* Use the max of the register settings and vbt. If both are
5184          * unset, fall back to the spec limits. */
5185 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
5186                                        spec.field : \
5187                                        max(cur.field, vbt.field))
5188         assign_final(t1_t3);
5189         assign_final(t8);
5190         assign_final(t9);
5191         assign_final(t10);
5192         assign_final(t11_t12);
5193 #undef assign_final
5194
5195 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
5196         intel_dp->panel_power_up_delay = get_delay(t1_t3);
5197         intel_dp->backlight_on_delay = get_delay(t8);
5198         intel_dp->backlight_off_delay = get_delay(t9);
5199         intel_dp->panel_power_down_delay = get_delay(t10);
5200         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5201 #undef get_delay
5202
5203         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5204                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5205                       intel_dp->panel_power_cycle_delay);
5206
5207         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5208                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5209 }
5210
5211 static void
5212 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5213                                               struct intel_dp *intel_dp)
5214 {
5215         struct drm_i915_private *dev_priv = dev->dev_private;
5216         u32 pp_on, pp_off, pp_div, port_sel = 0;
5217         int div = dev_priv->rawclk_freq / 1000;
5218         i915_reg_t pp_on_reg, pp_off_reg, pp_div_reg, pp_ctrl_reg;
5219         enum port port = dp_to_dig_port(intel_dp)->port;
5220         const struct edp_power_seq *seq = &intel_dp->pps_delays;
5221
5222         lockdep_assert_held(&dev_priv->pps_mutex);
5223
5224         if (IS_BROXTON(dev)) {
5225                 /*
5226                  * TODO: BXT has 2 sets of PPS registers.
5227                  * Correct Register for Broxton need to be identified
5228                  * using VBT. hardcoding for now
5229                  */
5230                 pp_ctrl_reg = BXT_PP_CONTROL(0);
5231                 pp_on_reg = BXT_PP_ON_DELAYS(0);
5232                 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5233
5234         } else if (HAS_PCH_SPLIT(dev)) {
5235                 pp_on_reg = PCH_PP_ON_DELAYS;
5236                 pp_off_reg = PCH_PP_OFF_DELAYS;
5237                 pp_div_reg = PCH_PP_DIVISOR;
5238         } else {
5239                 enum i915_pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5240
5241                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5242                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5243                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5244         }
5245
5246         /*
5247          * And finally store the new values in the power sequencer. The
5248          * backlight delays are set to 1 because we do manual waits on them. For
5249          * T8, even BSpec recommends doing it. For T9, if we don't do this,
5250          * we'll end up waiting for the backlight off delay twice: once when we
5251          * do the manual sleep, and once when we disable the panel and wait for
5252          * the PP_STATUS bit to become zero.
5253          */
5254         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5255                 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
5256         pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5257                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5258         /* Compute the divisor for the pp clock, simply match the Bspec
5259          * formula. */
5260         if (IS_BROXTON(dev)) {
5261                 pp_div = I915_READ(pp_ctrl_reg);
5262                 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5263                 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5264                                 << BXT_POWER_CYCLE_DELAY_SHIFT);
5265         } else {
5266                 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5267                 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5268                                 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5269         }
5270
5271         /* Haswell doesn't have any port selection bits for the panel
5272          * power sequencer any more. */
5273         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5274                 port_sel = PANEL_PORT_SELECT_VLV(port);
5275         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5276                 if (port == PORT_A)
5277                         port_sel = PANEL_PORT_SELECT_DPA;
5278                 else
5279                         port_sel = PANEL_PORT_SELECT_DPD;
5280         }
5281
5282         pp_on |= port_sel;
5283
5284         I915_WRITE(pp_on_reg, pp_on);
5285         I915_WRITE(pp_off_reg, pp_off);
5286         if (IS_BROXTON(dev))
5287                 I915_WRITE(pp_ctrl_reg, pp_div);
5288         else
5289                 I915_WRITE(pp_div_reg, pp_div);
5290
5291         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5292                       I915_READ(pp_on_reg),
5293                       I915_READ(pp_off_reg),
5294                       IS_BROXTON(dev) ?
5295                       (I915_READ(pp_ctrl_reg) & BXT_POWER_CYCLE_DELAY_MASK) :
5296                       I915_READ(pp_div_reg));
5297 }
5298
5299 /**
5300  * intel_dp_set_drrs_state - program registers for RR switch to take effect
5301  * @dev: DRM device
5302  * @refresh_rate: RR to be programmed
5303  *
5304  * This function gets called when refresh rate (RR) has to be changed from
5305  * one frequency to another. Switches can be between high and low RR
5306  * supported by the panel or to any other RR based on media playback (in
5307  * this case, RR value needs to be passed from user space).
5308  *
5309  * The caller of this function needs to take a lock on dev_priv->drrs.
5310  */
5311 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5312 {
5313         struct drm_i915_private *dev_priv = dev->dev_private;
5314         struct intel_encoder *encoder;
5315         struct intel_digital_port *dig_port = NULL;
5316         struct intel_dp *intel_dp = dev_priv->drrs.dp;
5317         struct intel_crtc_state *config = NULL;
5318         struct intel_crtc *intel_crtc = NULL;
5319         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5320
5321         if (refresh_rate <= 0) {
5322                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5323                 return;
5324         }
5325
5326         if (intel_dp == NULL) {
5327                 DRM_DEBUG_KMS("DRRS not supported.\n");
5328                 return;
5329         }
5330
5331         /*
5332          * FIXME: This needs proper synchronization with psr state for some
5333          * platforms that cannot have PSR and DRRS enabled at the same time.
5334          */
5335
5336         dig_port = dp_to_dig_port(intel_dp);
5337         encoder = &dig_port->base;
5338         intel_crtc = to_intel_crtc(encoder->base.crtc);
5339
5340         if (!intel_crtc) {
5341                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5342                 return;
5343         }
5344
5345         config = intel_crtc->config;
5346
5347         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5348                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5349                 return;
5350         }
5351
5352         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5353                         refresh_rate)
5354                 index = DRRS_LOW_RR;
5355
5356         if (index == dev_priv->drrs.refresh_rate_type) {
5357                 DRM_DEBUG_KMS(
5358                         "DRRS requested for previously set RR...ignoring\n");
5359                 return;
5360         }
5361
5362         if (!intel_crtc->active) {
5363                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5364                 return;
5365         }
5366
5367         if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5368                 switch (index) {
5369                 case DRRS_HIGH_RR:
5370                         intel_dp_set_m_n(intel_crtc, M1_N1);
5371                         break;
5372                 case DRRS_LOW_RR:
5373                         intel_dp_set_m_n(intel_crtc, M2_N2);
5374                         break;
5375                 case DRRS_MAX_RR:
5376                 default:
5377                         DRM_ERROR("Unsupported refreshrate type\n");
5378                 }
5379         } else if (INTEL_INFO(dev)->gen > 6) {
5380                 i915_reg_t reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5381                 u32 val;
5382
5383                 val = I915_READ(reg);
5384                 if (index > DRRS_HIGH_RR) {
5385                         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5386                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5387                         else
5388                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5389                 } else {
5390                         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5391                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5392                         else
5393                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5394                 }
5395                 I915_WRITE(reg, val);
5396         }
5397
5398         dev_priv->drrs.refresh_rate_type = index;
5399
5400         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5401 }
5402
5403 /**
5404  * intel_edp_drrs_enable - init drrs struct if supported
5405  * @intel_dp: DP struct
5406  *
5407  * Initializes frontbuffer_bits and drrs.dp
5408  */
5409 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5410 {
5411         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5412         struct drm_i915_private *dev_priv = dev->dev_private;
5413         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5414         struct drm_crtc *crtc = dig_port->base.base.crtc;
5415         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5416
5417         if (!intel_crtc->config->has_drrs) {
5418                 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5419                 return;
5420         }
5421
5422         mutex_lock(&dev_priv->drrs.mutex);
5423         if (WARN_ON(dev_priv->drrs.dp)) {
5424                 DRM_ERROR("DRRS already enabled\n");
5425                 goto unlock;
5426         }
5427
5428         dev_priv->drrs.busy_frontbuffer_bits = 0;
5429
5430         dev_priv->drrs.dp = intel_dp;
5431
5432 unlock:
5433         mutex_unlock(&dev_priv->drrs.mutex);
5434 }
5435
5436 /**
5437  * intel_edp_drrs_disable - Disable DRRS
5438  * @intel_dp: DP struct
5439  *
5440  */
5441 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5442 {
5443         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5444         struct drm_i915_private *dev_priv = dev->dev_private;
5445         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5446         struct drm_crtc *crtc = dig_port->base.base.crtc;
5447         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5448
5449         if (!intel_crtc->config->has_drrs)
5450                 return;
5451
5452         mutex_lock(&dev_priv->drrs.mutex);
5453         if (!dev_priv->drrs.dp) {
5454                 mutex_unlock(&dev_priv->drrs.mutex);
5455                 return;
5456         }
5457
5458         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5459                 intel_dp_set_drrs_state(dev_priv->dev,
5460                         intel_dp->attached_connector->panel.
5461                         fixed_mode->vrefresh);
5462
5463         dev_priv->drrs.dp = NULL;
5464         mutex_unlock(&dev_priv->drrs.mutex);
5465
5466         cancel_delayed_work_sync(&dev_priv->drrs.work);
5467 }
5468
5469 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5470 {
5471         struct drm_i915_private *dev_priv =
5472                 container_of(work, typeof(*dev_priv), drrs.work.work);
5473         struct intel_dp *intel_dp;
5474
5475         mutex_lock(&dev_priv->drrs.mutex);
5476
5477         intel_dp = dev_priv->drrs.dp;
5478
5479         if (!intel_dp)
5480                 goto unlock;
5481
5482         /*
5483          * The delayed work can race with an invalidate hence we need to
5484          * recheck.
5485          */
5486
5487         if (dev_priv->drrs.busy_frontbuffer_bits)
5488                 goto unlock;
5489
5490         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5491                 intel_dp_set_drrs_state(dev_priv->dev,
5492                         intel_dp->attached_connector->panel.
5493                         downclock_mode->vrefresh);
5494
5495 unlock:
5496         mutex_unlock(&dev_priv->drrs.mutex);
5497 }
5498
5499 /**
5500  * intel_edp_drrs_invalidate - Disable Idleness DRRS
5501  * @dev: DRM device
5502  * @frontbuffer_bits: frontbuffer plane tracking bits
5503  *
5504  * This function gets called everytime rendering on the given planes start.
5505  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5506  *
5507  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5508  */
5509 void intel_edp_drrs_invalidate(struct drm_device *dev,
5510                 unsigned frontbuffer_bits)
5511 {
5512         struct drm_i915_private *dev_priv = dev->dev_private;
5513         struct drm_crtc *crtc;
5514         enum i915_pipe pipe;
5515
5516         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5517                 return;
5518
5519         cancel_delayed_work(&dev_priv->drrs.work);
5520
5521         mutex_lock(&dev_priv->drrs.mutex);
5522         if (!dev_priv->drrs.dp) {
5523                 mutex_unlock(&dev_priv->drrs.mutex);
5524                 return;
5525         }
5526
5527         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5528         pipe = to_intel_crtc(crtc)->pipe;
5529
5530         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5531         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5532
5533         /* invalidate means busy screen hence upclock */
5534         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5535                 intel_dp_set_drrs_state(dev_priv->dev,
5536                                 dev_priv->drrs.dp->attached_connector->panel.
5537                                 fixed_mode->vrefresh);
5538
5539         mutex_unlock(&dev_priv->drrs.mutex);
5540 }
5541
5542 /**
5543  * intel_edp_drrs_flush - Restart Idleness DRRS
5544  * @dev: DRM device
5545  * @frontbuffer_bits: frontbuffer plane tracking bits
5546  *
5547  * This function gets called every time rendering on the given planes has
5548  * completed or flip on a crtc is completed. So DRRS should be upclocked
5549  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5550  * if no other planes are dirty.
5551  *
5552  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5553  */
5554 void intel_edp_drrs_flush(struct drm_device *dev,
5555                 unsigned frontbuffer_bits)
5556 {
5557         struct drm_i915_private *dev_priv = dev->dev_private;
5558         struct drm_crtc *crtc;
5559         enum i915_pipe pipe;
5560
5561         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5562                 return;
5563
5564         cancel_delayed_work(&dev_priv->drrs.work);
5565
5566         mutex_lock(&dev_priv->drrs.mutex);
5567         if (!dev_priv->drrs.dp) {
5568                 mutex_unlock(&dev_priv->drrs.mutex);
5569                 return;
5570         }
5571
5572         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5573         pipe = to_intel_crtc(crtc)->pipe;
5574
5575         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5576         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5577
5578         /* flush means busy screen hence upclock */
5579         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5580                 intel_dp_set_drrs_state(dev_priv->dev,
5581                                 dev_priv->drrs.dp->attached_connector->panel.
5582                                 fixed_mode->vrefresh);
5583
5584         /*
5585          * flush also means no more activity hence schedule downclock, if all
5586          * other fbs are quiescent too
5587          */
5588         if (!dev_priv->drrs.busy_frontbuffer_bits)
5589                 schedule_delayed_work(&dev_priv->drrs.work,
5590                                 msecs_to_jiffies(1000));
5591         mutex_unlock(&dev_priv->drrs.mutex);
5592 }
5593
5594 /**
5595  * DOC: Display Refresh Rate Switching (DRRS)
5596  *
5597  * Display Refresh Rate Switching (DRRS) is a power conservation feature
5598  * which enables swtching between low and high refresh rates,
5599  * dynamically, based on the usage scenario. This feature is applicable
5600  * for internal panels.
5601  *
5602  * Indication that the panel supports DRRS is given by the panel EDID, which
5603  * would list multiple refresh rates for one resolution.
5604  *
5605  * DRRS is of 2 types - static and seamless.
5606  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5607  * (may appear as a blink on screen) and is used in dock-undock scenario.
5608  * Seamless DRRS involves changing RR without any visual effect to the user
5609  * and can be used during normal system usage. This is done by programming
5610  * certain registers.
5611  *
5612  * Support for static/seamless DRRS may be indicated in the VBT based on
5613  * inputs from the panel spec.
5614  *
5615  * DRRS saves power by switching to low RR based on usage scenarios.
5616  *
5617  * eDP DRRS:-
5618  *        The implementation is based on frontbuffer tracking implementation.
5619  * When there is a disturbance on the screen triggered by user activity or a
5620  * periodic system activity, DRRS is disabled (RR is changed to high RR).
5621  * When there is no movement on screen, after a timeout of 1 second, a switch
5622  * to low RR is made.
5623  *        For integration with frontbuffer tracking code,
5624  * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5625  *
5626  * DRRS can be further extended to support other internal panels and also
5627  * the scenario of video playback wherein RR is set based on the rate
5628  * requested by userspace.
5629  */
5630
5631 /**
5632  * intel_dp_drrs_init - Init basic DRRS work and mutex.
5633  * @intel_connector: eDP connector
5634  * @fixed_mode: preferred mode of panel
5635  *
5636  * This function is  called only once at driver load to initialize basic
5637  * DRRS stuff.
5638  *
5639  * Returns:
5640  * Downclock mode if panel supports it, else return NULL.
5641  * DRRS support is determined by the presence of downclock mode (apart
5642  * from VBT setting).
5643  */
5644 static struct drm_display_mode *
5645 intel_dp_drrs_init(struct intel_connector *intel_connector,
5646                 struct drm_display_mode *fixed_mode)
5647 {
5648         struct drm_connector *connector = &intel_connector->base;
5649         struct drm_device *dev = connector->dev;
5650         struct drm_i915_private *dev_priv = dev->dev_private;
5651         struct drm_display_mode *downclock_mode = NULL;
5652
5653         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5654         lockinit(&dev_priv->drrs.mutex, "i915dm", 0, LK_CANRECURSE);
5655
5656         if (INTEL_INFO(dev)->gen <= 6) {
5657                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5658                 return NULL;
5659         }
5660
5661         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5662                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5663                 return NULL;
5664         }
5665
5666         downclock_mode = intel_find_panel_downclock
5667                                         (dev, fixed_mode, connector);
5668
5669         if (!downclock_mode) {
5670                 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5671                 return NULL;
5672         }
5673
5674         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5675
5676         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5677         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5678         return downclock_mode;
5679 }
5680
5681 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5682                                      struct intel_connector *intel_connector)
5683 {
5684         struct drm_connector *connector = &intel_connector->base;
5685         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5686         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5687         struct drm_device *dev = intel_encoder->base.dev;
5688         struct drm_i915_private *dev_priv = dev->dev_private;
5689         struct drm_display_mode *fixed_mode = NULL;
5690         struct drm_display_mode *downclock_mode = NULL;
5691         bool has_dpcd;
5692         struct drm_display_mode *scan;
5693         struct edid *edid;
5694         enum i915_pipe pipe = INVALID_PIPE;
5695
5696         if (!is_edp(intel_dp))
5697                 return true;
5698
5699         pps_lock(intel_dp);
5700         intel_edp_panel_vdd_sanitize(intel_dp);
5701         pps_unlock(intel_dp);
5702
5703         /* Cache DPCD and EDID for edp. */
5704         has_dpcd = intel_dp_get_dpcd(intel_dp);
5705
5706         if (has_dpcd) {
5707                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5708                         dev_priv->no_aux_handshake =
5709                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5710                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5711         } else {
5712                 /* if this fails, presume the device is a ghost */
5713                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5714                 return false;
5715         }
5716
5717         /* We now know it's not a ghost, init power sequence regs. */
5718         pps_lock(intel_dp);
5719         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5720         pps_unlock(intel_dp);
5721
5722         mutex_lock(&dev->mode_config.mutex);
5723         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5724         if (edid) {
5725                 if (drm_add_edid_modes(connector, edid)) {
5726                         drm_mode_connector_update_edid_property(connector,
5727                                                                 edid);
5728                         drm_edid_to_eld(connector, edid);
5729                 } else {
5730                         kfree(edid);
5731                         edid = ERR_PTR(-EINVAL);
5732                 }
5733         } else {
5734                 edid = ERR_PTR(-ENOENT);
5735         }
5736         intel_connector->edid = edid;
5737
5738         /* prefer fixed mode from EDID if available */
5739         list_for_each_entry(scan, &connector->probed_modes, head) {
5740                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5741                         fixed_mode = drm_mode_duplicate(dev, scan);
5742                         downclock_mode = intel_dp_drrs_init(
5743                                                 intel_connector, fixed_mode);
5744                         break;
5745                 }
5746         }
5747
5748         /* fallback to VBT if available for eDP */
5749         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5750                 fixed_mode = drm_mode_duplicate(dev,
5751                                         dev_priv->vbt.lfp_lvds_vbt_mode);
5752                 if (fixed_mode) {
5753                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5754                         connector->display_info.width_mm = fixed_mode->width_mm;
5755                         connector->display_info.height_mm = fixed_mode->height_mm;
5756                 }
5757         }
5758         mutex_unlock(&dev->mode_config.mutex);
5759
5760         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5761                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5762 #if 0
5763                 register_reboot_notifier(&intel_dp->edp_notifier);
5764 #endif
5765
5766                 /*
5767                  * Figure out the current pipe for the initial backlight setup.
5768                  * If the current pipe isn't valid, try the PPS pipe, and if that
5769                  * fails just assume pipe A.
5770                  */
5771                 if (IS_CHERRYVIEW(dev))
5772                         pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5773                 else
5774                         pipe = PORT_TO_PIPE(intel_dp->DP);
5775
5776                 if (pipe != PIPE_A && pipe != PIPE_B)
5777                         pipe = intel_dp->pps_pipe;
5778
5779                 if (pipe != PIPE_A && pipe != PIPE_B)
5780                         pipe = PIPE_A;
5781
5782                 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5783                               pipe_name(pipe));
5784         }
5785
5786         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5787         intel_connector->panel.backlight.power = intel_edp_backlight_power;
5788         intel_panel_setup_backlight(connector, pipe);
5789
5790         return true;
5791 }
5792
5793 bool
5794 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5795                         struct intel_connector *intel_connector)
5796 {
5797         struct drm_connector *connector = &intel_connector->base;
5798         struct intel_dp *intel_dp = &intel_dig_port->dp;
5799         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5800         struct drm_device *dev = intel_encoder->base.dev;
5801         struct drm_i915_private *dev_priv = dev->dev_private;
5802         enum port port = intel_dig_port->port;
5803         int type, ret;
5804
5805         if (WARN(intel_dig_port->max_lanes < 1,
5806                  "Not enough lanes (%d) for DP on port %c\n",
5807                  intel_dig_port->max_lanes, port_name(port)))
5808                 return false;
5809
5810         intel_dp->pps_pipe = INVALID_PIPE;
5811
5812         /* intel_dp vfuncs */
5813         if (INTEL_INFO(dev)->gen >= 9)
5814                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5815         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5816                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5817         else if (HAS_PCH_SPLIT(dev))
5818                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5819         else
5820                 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
5821
5822         if (INTEL_INFO(dev)->gen >= 9)
5823                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5824         else
5825                 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
5826
5827         if (HAS_DDI(dev))
5828                 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5829
5830         /* Preserve the current hw state. */
5831         intel_dp->DP = I915_READ(intel_dp->output_reg);
5832         intel_dp->attached_connector = intel_connector;
5833
5834         if (intel_dp_is_edp(dev, port))
5835                 type = DRM_MODE_CONNECTOR_eDP;
5836         else
5837                 type = DRM_MODE_CONNECTOR_DisplayPort;
5838
5839         /*
5840          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5841          * for DP the encoder type can be set by the caller to
5842          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5843          */
5844         if (type == DRM_MODE_CONNECTOR_eDP)
5845                 intel_encoder->type = INTEL_OUTPUT_EDP;
5846
5847         /* eDP only on port B and/or C on vlv/chv */
5848         if (WARN_ON((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
5849                     is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5850                 return false;
5851
5852         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5853                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5854                         port_name(port));
5855
5856         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5857         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5858
5859         connector->interlace_allowed = true;
5860         connector->doublescan_allowed = 0;
5861
5862         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5863                           edp_panel_vdd_work);
5864
5865         intel_connector_attach_encoder(intel_connector, intel_encoder);
5866         drm_connector_register(connector);
5867
5868         if (HAS_DDI(dev))
5869                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5870         else
5871                 intel_connector->get_hw_state = intel_connector_get_hw_state;
5872         intel_connector->unregister = intel_dp_connector_unregister;
5873
5874         /* Set up the hotplug pin. */
5875         switch (port) {
5876         case PORT_A:
5877                 intel_encoder->hpd_pin = HPD_PORT_A;
5878                 break;
5879         case PORT_B:
5880                 intel_encoder->hpd_pin = HPD_PORT_B;
5881                 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
5882                         intel_encoder->hpd_pin = HPD_PORT_A;
5883                 break;
5884         case PORT_C:
5885                 intel_encoder->hpd_pin = HPD_PORT_C;
5886                 break;
5887         case PORT_D:
5888                 intel_encoder->hpd_pin = HPD_PORT_D;
5889                 break;
5890         case PORT_E:
5891                 intel_encoder->hpd_pin = HPD_PORT_E;
5892                 break;
5893         default:
5894                 BUG();
5895         }
5896
5897         if (is_edp(intel_dp)) {
5898                 pps_lock(intel_dp);
5899                 intel_dp_init_panel_power_timestamps(intel_dp);
5900                 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5901                         vlv_initial_power_sequencer_setup(intel_dp);
5902                 else
5903                         intel_dp_init_panel_power_sequencer(dev, intel_dp);
5904                 pps_unlock(intel_dp);
5905         }
5906
5907         ret = intel_dp_aux_init(intel_dp, intel_connector);
5908         if (ret)
5909                 goto fail;
5910
5911         /* init MST on ports that can support it */
5912         if (HAS_DP_MST(dev) &&
5913             (port == PORT_B || port == PORT_C || port == PORT_D))
5914                 intel_dp_mst_encoder_init(intel_dig_port,
5915                                           intel_connector->base.base.id);
5916
5917         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5918                 intel_dp_aux_fini(intel_dp);
5919                 intel_dp_mst_encoder_cleanup(intel_dig_port);
5920                 goto fail;
5921         }
5922
5923         intel_dp_add_properties(intel_dp, connector);
5924
5925         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5926          * 0xd.  Failure to do so will result in spurious interrupts being
5927          * generated on the port when a cable is not attached.
5928          */
5929         if (IS_G4X(dev) && !IS_GM45(dev)) {
5930                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5931                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5932         }
5933
5934         i915_debugfs_connector_add(connector);
5935
5936         return true;
5937
5938 fail:
5939         if (is_edp(intel_dp)) {
5940                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5941                 /*
5942                  * vdd might still be enabled do to the delayed vdd off.
5943                  * Make sure vdd is actually turned off here.
5944                  */
5945                 pps_lock(intel_dp);
5946                 edp_panel_vdd_off_sync(intel_dp);
5947                 pps_unlock(intel_dp);
5948         }
5949         drm_connector_unregister(connector);
5950         drm_connector_cleanup(connector);
5951
5952         return false;
5953 }
5954
5955 bool intel_dp_init(struct drm_device *dev,
5956                    i915_reg_t output_reg,
5957                    enum port port)
5958 {
5959         struct drm_i915_private *dev_priv = dev->dev_private;
5960         struct intel_digital_port *intel_dig_port;
5961         struct intel_encoder *intel_encoder;
5962         struct drm_encoder *encoder;
5963         struct intel_connector *intel_connector;
5964
5965         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5966         if (!intel_dig_port)
5967                 return false;
5968
5969         intel_connector = intel_connector_alloc();
5970         if (!intel_connector)
5971                 goto err_connector_alloc;
5972
5973         intel_encoder = &intel_dig_port->base;
5974         encoder = &intel_encoder->base;
5975
5976         if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5977                              DRM_MODE_ENCODER_TMDS, NULL))
5978                 goto err_encoder_init;
5979
5980         intel_encoder->compute_config = intel_dp_compute_config;
5981         intel_encoder->disable = intel_disable_dp;
5982         intel_encoder->get_hw_state = intel_dp_get_hw_state;
5983         intel_encoder->get_config = intel_dp_get_config;
5984         intel_encoder->suspend = intel_dp_encoder_suspend;
5985         if (IS_CHERRYVIEW(dev)) {
5986                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5987                 intel_encoder->pre_enable = chv_pre_enable_dp;
5988                 intel_encoder->enable = vlv_enable_dp;
5989                 intel_encoder->post_disable = chv_post_disable_dp;
5990                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
5991         } else if (IS_VALLEYVIEW(dev)) {
5992                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5993                 intel_encoder->pre_enable = vlv_pre_enable_dp;
5994                 intel_encoder->enable = vlv_enable_dp;
5995                 intel_encoder->post_disable = vlv_post_disable_dp;
5996         } else {
5997                 intel_encoder->pre_enable = g4x_pre_enable_dp;
5998                 intel_encoder->enable = g4x_enable_dp;
5999                 if (INTEL_INFO(dev)->gen >= 5)
6000                         intel_encoder->post_disable = ilk_post_disable_dp;
6001         }
6002
6003         intel_dig_port->port = port;
6004         intel_dig_port->dp.output_reg = output_reg;
6005         intel_dig_port->max_lanes = 4;
6006
6007         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
6008         if (IS_CHERRYVIEW(dev)) {
6009                 if (port == PORT_D)
6010                         intel_encoder->crtc_mask = 1 << 2;
6011                 else
6012                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
6013         } else {
6014                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
6015         }
6016         intel_encoder->cloneable = 0;
6017
6018         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
6019         dev_priv->hotplug.irq_port[port] = intel_dig_port;
6020
6021         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
6022                 goto err_init_connector;
6023
6024         return true;
6025
6026 err_init_connector:
6027         drm_encoder_cleanup(encoder);
6028 err_encoder_init:
6029         kfree(intel_connector);
6030 err_connector_alloc:
6031         kfree(intel_dig_port);
6032         return false;
6033 }
6034
6035 #if 0
6036 void intel_dp_mst_suspend(struct drm_device *dev)
6037 {
6038         struct drm_i915_private *dev_priv = dev->dev_private;
6039         int i;
6040
6041         /* disable MST */
6042         for (i = 0; i < I915_MAX_PORTS; i++) {
6043                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6044                 if (!intel_dig_port)
6045                         continue;
6046
6047                 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6048                         if (!intel_dig_port->dp.can_mst)
6049                                 continue;
6050                         if (intel_dig_port->dp.is_mst)
6051                                 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
6052                 }
6053         }
6054 }
6055 #endif
6056
6057 void intel_dp_mst_resume(struct drm_device *dev)
6058 {
6059         struct drm_i915_private *dev_priv = dev->dev_private;
6060         int i;
6061
6062         for (i = 0; i < I915_MAX_PORTS; i++) {
6063                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6064                 if (!intel_dig_port)
6065                         continue;
6066                 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6067                         int ret;
6068
6069                         if (!intel_dig_port->dp.can_mst)
6070                                 continue;
6071
6072                         ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
6073                         if (ret != 0) {
6074                                 intel_dp_check_mst_status(&intel_dig_port->dp);
6075                         }
6076                 }
6077         }
6078 }