Update gcc-50 to SVN version 239798 (gcc-5-branch)
[dragonfly.git] / contrib / gcc-5.0 / gcc / sched-deps.c
1 /* Instruction scheduling pass.  This file computes dependencies between
2    instructions.
3    Copyright (C) 1992-2015 Free Software Foundation, Inc.
4    Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5    and currently maintained by, Jim Wilson (wilson@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3.  If not see
21 <http://www.gnu.org/licenses/>.  */
22 \f
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "rtl.h"
29 #include "hash-set.h"
30 #include "machmode.h"
31 #include "vec.h"
32 #include "double-int.h"
33 #include "input.h"
34 #include "alias.h"
35 #include "symtab.h"
36 #include "wide-int.h"
37 #include "inchash.h"
38 #include "tree.h"               /* FIXME: Used by call_may_noreturn_p.  */
39 #include "tm_p.h"
40 #include "hard-reg-set.h"
41 #include "regs.h"
42 #include "input.h"
43 #include "function.h"
44 #include "flags.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
47 #include "except.h"
48 #include "recog.h"
49 #include "emit-rtl.h"
50 #include "dominance.h"
51 #include "cfg.h"
52 #include "cfgbuild.h"
53 #include "predict.h"
54 #include "basic-block.h"
55 #include "sched-int.h"
56 #include "params.h"
57 #include "cselib.h"
58 #include "ira.h"
59 #include "ira-int.h"
60 #include "target.h"
61
62 #ifdef INSN_SCHEDULING
63
64 #ifdef ENABLE_CHECKING
65 #define CHECK (true)
66 #else
67 #define CHECK (false)
68 #endif
69
70 /* Holds current parameters for the dependency analyzer.  */
71 struct sched_deps_info_def *sched_deps_info;
72
73 /* The data is specific to the Haifa scheduler.  */
74 vec<haifa_deps_insn_data_def>
75     h_d_i_d = vNULL;
76
77 /* Return the major type present in the DS.  */
78 enum reg_note
79 ds_to_dk (ds_t ds)
80 {
81   if (ds & DEP_TRUE)
82     return REG_DEP_TRUE;
83
84   if (ds & DEP_OUTPUT)
85     return REG_DEP_OUTPUT;
86
87   if (ds & DEP_CONTROL)
88     return REG_DEP_CONTROL;
89
90   gcc_assert (ds & DEP_ANTI);
91
92   return REG_DEP_ANTI;
93 }
94
95 /* Return equivalent dep_status.  */
96 ds_t
97 dk_to_ds (enum reg_note dk)
98 {
99   switch (dk)
100     {
101     case REG_DEP_TRUE:
102       return DEP_TRUE;
103
104     case REG_DEP_OUTPUT:
105       return DEP_OUTPUT;
106
107     case REG_DEP_CONTROL:
108       return DEP_CONTROL;
109
110     default:
111       gcc_assert (dk == REG_DEP_ANTI);
112       return DEP_ANTI;
113     }
114 }
115
116 /* Functions to operate with dependence information container - dep_t.  */
117
118 /* Init DEP with the arguments.  */
119 void
120 init_dep_1 (dep_t dep, rtx_insn *pro, rtx_insn *con, enum reg_note type, ds_t ds)
121 {
122   DEP_PRO (dep) = pro;
123   DEP_CON (dep) = con;
124   DEP_TYPE (dep) = type;
125   DEP_STATUS (dep) = ds;
126   DEP_COST (dep) = UNKNOWN_DEP_COST;
127   DEP_NONREG (dep) = 0;
128   DEP_MULTIPLE (dep) = 0;
129   DEP_REPLACE (dep) = NULL;
130 }
131
132 /* Init DEP with the arguments.
133    While most of the scheduler (including targets) only need the major type
134    of the dependency, it is convenient to hide full dep_status from them.  */
135 void
136 init_dep (dep_t dep, rtx_insn *pro, rtx_insn *con, enum reg_note kind)
137 {
138   ds_t ds;
139
140   if ((current_sched_info->flags & USE_DEPS_LIST))
141     ds = dk_to_ds (kind);
142   else
143     ds = 0;
144
145   init_dep_1 (dep, pro, con, kind, ds);
146 }
147
148 /* Make a copy of FROM in TO.  */
149 static void
150 copy_dep (dep_t to, dep_t from)
151 {
152   memcpy (to, from, sizeof (*to));
153 }
154
155 static void dump_ds (FILE *, ds_t);
156
157 /* Define flags for dump_dep ().  */
158
159 /* Dump producer of the dependence.  */
160 #define DUMP_DEP_PRO (2)
161
162 /* Dump consumer of the dependence.  */
163 #define DUMP_DEP_CON (4)
164
165 /* Dump type of the dependence.  */
166 #define DUMP_DEP_TYPE (8)
167
168 /* Dump status of the dependence.  */
169 #define DUMP_DEP_STATUS (16)
170
171 /* Dump all information about the dependence.  */
172 #define DUMP_DEP_ALL (DUMP_DEP_PRO | DUMP_DEP_CON | DUMP_DEP_TYPE       \
173                       |DUMP_DEP_STATUS)
174
175 /* Dump DEP to DUMP.
176    FLAGS is a bit mask specifying what information about DEP needs
177    to be printed.
178    If FLAGS has the very first bit set, then dump all information about DEP
179    and propagate this bit into the callee dump functions.  */
180 static void
181 dump_dep (FILE *dump, dep_t dep, int flags)
182 {
183   if (flags & 1)
184     flags |= DUMP_DEP_ALL;
185
186   fprintf (dump, "<");
187
188   if (flags & DUMP_DEP_PRO)
189     fprintf (dump, "%d; ", INSN_UID (DEP_PRO (dep)));
190
191   if (flags & DUMP_DEP_CON)
192     fprintf (dump, "%d; ", INSN_UID (DEP_CON (dep)));
193
194   if (flags & DUMP_DEP_TYPE)
195     {
196       char t;
197       enum reg_note type = DEP_TYPE (dep);
198
199       switch (type)
200         {
201         case REG_DEP_TRUE:
202           t = 't';
203           break;
204
205         case REG_DEP_OUTPUT:
206           t = 'o';
207           break;
208
209         case REG_DEP_CONTROL:
210           t = 'c';
211           break;
212
213         case REG_DEP_ANTI:
214           t = 'a';
215           break;
216
217         default:
218           gcc_unreachable ();
219           break;
220         }
221
222       fprintf (dump, "%c; ", t);
223     }
224
225   if (flags & DUMP_DEP_STATUS)
226     {
227       if (current_sched_info->flags & USE_DEPS_LIST)
228         dump_ds (dump, DEP_STATUS (dep));
229     }
230
231   fprintf (dump, ">");
232 }
233
234 /* Default flags for dump_dep ().  */
235 static int dump_dep_flags = (DUMP_DEP_PRO | DUMP_DEP_CON);
236
237 /* Dump all fields of DEP to STDERR.  */
238 void
239 sd_debug_dep (dep_t dep)
240 {
241   dump_dep (stderr, dep, 1);
242   fprintf (stderr, "\n");
243 }
244
245 /* Determine whether DEP is a dependency link of a non-debug insn on a
246    debug insn.  */
247
248 static inline bool
249 depl_on_debug_p (dep_link_t dep)
250 {
251   return (DEBUG_INSN_P (DEP_LINK_PRO (dep))
252           && !DEBUG_INSN_P (DEP_LINK_CON (dep)));
253 }
254
255 /* Functions to operate with a single link from the dependencies lists -
256    dep_link_t.  */
257
258 /* Attach L to appear after link X whose &DEP_LINK_NEXT (X) is given by
259    PREV_NEXT_P.  */
260 static void
261 attach_dep_link (dep_link_t l, dep_link_t *prev_nextp)
262 {
263   dep_link_t next = *prev_nextp;
264
265   gcc_assert (DEP_LINK_PREV_NEXTP (l) == NULL
266               && DEP_LINK_NEXT (l) == NULL);
267
268   /* Init node being inserted.  */
269   DEP_LINK_PREV_NEXTP (l) = prev_nextp;
270   DEP_LINK_NEXT (l) = next;
271
272   /* Fix next node.  */
273   if (next != NULL)
274     {
275       gcc_assert (DEP_LINK_PREV_NEXTP (next) == prev_nextp);
276
277       DEP_LINK_PREV_NEXTP (next) = &DEP_LINK_NEXT (l);
278     }
279
280   /* Fix prev node.  */
281   *prev_nextp = l;
282 }
283
284 /* Add dep_link LINK to deps_list L.  */
285 static void
286 add_to_deps_list (dep_link_t link, deps_list_t l)
287 {
288   attach_dep_link (link, &DEPS_LIST_FIRST (l));
289
290   /* Don't count debug deps.  */
291   if (!depl_on_debug_p (link))
292     ++DEPS_LIST_N_LINKS (l);
293 }
294
295 /* Detach dep_link L from the list.  */
296 static void
297 detach_dep_link (dep_link_t l)
298 {
299   dep_link_t *prev_nextp = DEP_LINK_PREV_NEXTP (l);
300   dep_link_t next = DEP_LINK_NEXT (l);
301
302   *prev_nextp = next;
303
304   if (next != NULL)
305     DEP_LINK_PREV_NEXTP (next) = prev_nextp;
306
307   DEP_LINK_PREV_NEXTP (l) = NULL;
308   DEP_LINK_NEXT (l) = NULL;
309 }
310
311 /* Remove link LINK from list LIST.  */
312 static void
313 remove_from_deps_list (dep_link_t link, deps_list_t list)
314 {
315   detach_dep_link (link);
316
317   /* Don't count debug deps.  */
318   if (!depl_on_debug_p (link))
319     --DEPS_LIST_N_LINKS (list);
320 }
321
322 /* Move link LINK from list FROM to list TO.  */
323 static void
324 move_dep_link (dep_link_t link, deps_list_t from, deps_list_t to)
325 {
326   remove_from_deps_list (link, from);
327   add_to_deps_list (link, to);
328 }
329
330 /* Return true of LINK is not attached to any list.  */
331 static bool
332 dep_link_is_detached_p (dep_link_t link)
333 {
334   return DEP_LINK_PREV_NEXTP (link) == NULL;
335 }
336
337 /* Pool to hold all dependency nodes (dep_node_t).  */
338 static alloc_pool dn_pool;
339
340 /* Number of dep_nodes out there.  */
341 static int dn_pool_diff = 0;
342
343 /* Create a dep_node.  */
344 static dep_node_t
345 create_dep_node (void)
346 {
347   dep_node_t n = (dep_node_t) pool_alloc (dn_pool);
348   dep_link_t back = DEP_NODE_BACK (n);
349   dep_link_t forw = DEP_NODE_FORW (n);
350
351   DEP_LINK_NODE (back) = n;
352   DEP_LINK_NEXT (back) = NULL;
353   DEP_LINK_PREV_NEXTP (back) = NULL;
354
355   DEP_LINK_NODE (forw) = n;
356   DEP_LINK_NEXT (forw) = NULL;
357   DEP_LINK_PREV_NEXTP (forw) = NULL;
358
359   ++dn_pool_diff;
360
361   return n;
362 }
363
364 /* Delete dep_node N.  N must not be connected to any deps_list.  */
365 static void
366 delete_dep_node (dep_node_t n)
367 {
368   gcc_assert (dep_link_is_detached_p (DEP_NODE_BACK (n))
369               && dep_link_is_detached_p (DEP_NODE_FORW (n)));
370
371   XDELETE (DEP_REPLACE (DEP_NODE_DEP (n)));
372
373   --dn_pool_diff;
374
375   pool_free (dn_pool, n);
376 }
377
378 /* Pool to hold dependencies lists (deps_list_t).  */
379 static alloc_pool dl_pool;
380
381 /* Number of deps_lists out there.  */
382 static int dl_pool_diff = 0;
383
384 /* Functions to operate with dependences lists - deps_list_t.  */
385
386 /* Return true if list L is empty.  */
387 static bool
388 deps_list_empty_p (deps_list_t l)
389 {
390   return DEPS_LIST_N_LINKS (l) == 0;
391 }
392
393 /* Create a new deps_list.  */
394 static deps_list_t
395 create_deps_list (void)
396 {
397   deps_list_t l = (deps_list_t) pool_alloc (dl_pool);
398
399   DEPS_LIST_FIRST (l) = NULL;
400   DEPS_LIST_N_LINKS (l) = 0;
401
402   ++dl_pool_diff;
403   return l;
404 }
405
406 /* Free deps_list L.  */
407 static void
408 free_deps_list (deps_list_t l)
409 {
410   gcc_assert (deps_list_empty_p (l));
411
412   --dl_pool_diff;
413
414   pool_free (dl_pool, l);
415 }
416
417 /* Return true if there is no dep_nodes and deps_lists out there.
418    After the region is scheduled all the dependency nodes and lists
419    should [generally] be returned to pool.  */
420 bool
421 deps_pools_are_empty_p (void)
422 {
423   return dn_pool_diff == 0 && dl_pool_diff == 0;
424 }
425
426 /* Remove all elements from L.  */
427 static void
428 clear_deps_list (deps_list_t l)
429 {
430   do
431     {
432       dep_link_t link = DEPS_LIST_FIRST (l);
433
434       if (link == NULL)
435         break;
436
437       remove_from_deps_list (link, l);
438     }
439   while (1);
440 }
441
442 /* Decide whether a dependency should be treated as a hard or a speculative
443    dependency.  */
444 static bool
445 dep_spec_p (dep_t dep)
446 {
447   if (current_sched_info->flags & DO_SPECULATION)
448     {
449       if (DEP_STATUS (dep) & SPECULATIVE)
450         return true;
451     }
452   if (current_sched_info->flags & DO_PREDICATION)
453     {
454       if (DEP_TYPE (dep) == REG_DEP_CONTROL)
455         return true;
456     }
457   if (DEP_REPLACE (dep) != NULL)
458     return true;
459   return false;
460 }
461
462 static regset reg_pending_sets;
463 static regset reg_pending_clobbers;
464 static regset reg_pending_uses;
465 static regset reg_pending_control_uses;
466 static enum reg_pending_barrier_mode reg_pending_barrier;
467
468 /* Hard registers implicitly clobbered or used (or may be implicitly
469    clobbered or used) by the currently analyzed insn.  For example,
470    insn in its constraint has one register class.  Even if there is
471    currently no hard register in the insn, the particular hard
472    register will be in the insn after reload pass because the
473    constraint requires it.  */
474 static HARD_REG_SET implicit_reg_pending_clobbers;
475 static HARD_REG_SET implicit_reg_pending_uses;
476
477 /* To speed up the test for duplicate dependency links we keep a
478    record of dependencies created by add_dependence when the average
479    number of instructions in a basic block is very large.
480
481    Studies have shown that there is typically around 5 instructions between
482    branches for typical C code.  So we can make a guess that the average
483    basic block is approximately 5 instructions long; we will choose 100X
484    the average size as a very large basic block.
485
486    Each insn has associated bitmaps for its dependencies.  Each bitmap
487    has enough entries to represent a dependency on any other insn in
488    the insn chain.  All bitmap for true dependencies cache is
489    allocated then the rest two ones are also allocated.  */
490 static bitmap_head *true_dependency_cache = NULL;
491 static bitmap_head *output_dependency_cache = NULL;
492 static bitmap_head *anti_dependency_cache = NULL;
493 static bitmap_head *control_dependency_cache = NULL;
494 static bitmap_head *spec_dependency_cache = NULL;
495 static int cache_size;
496
497 /* True if we should mark added dependencies as a non-register deps.  */
498 static bool mark_as_hard;
499
500 static int deps_may_trap_p (const_rtx);
501 static void add_dependence_1 (rtx_insn *, rtx_insn *, enum reg_note);
502 static void add_dependence_list (rtx_insn *, rtx_insn_list *, int,
503                                  enum reg_note, bool);
504 static void add_dependence_list_and_free (struct deps_desc *, rtx_insn *,
505                                           rtx_insn_list **, int, enum reg_note,
506                                           bool);
507 static void delete_all_dependences (rtx);
508 static void chain_to_prev_insn (rtx_insn *);
509
510 static void flush_pending_lists (struct deps_desc *, rtx_insn *, int, int);
511 static void sched_analyze_1 (struct deps_desc *, rtx, rtx_insn *);
512 static void sched_analyze_2 (struct deps_desc *, rtx, rtx_insn *);
513 static void sched_analyze_insn (struct deps_desc *, rtx, rtx_insn *);
514
515 static bool sched_has_condition_p (const rtx_insn *);
516 static int conditions_mutex_p (const_rtx, const_rtx, bool, bool);
517
518 static enum DEPS_ADJUST_RESULT maybe_add_or_update_dep_1 (dep_t, bool,
519                                                           rtx, rtx);
520 static enum DEPS_ADJUST_RESULT add_or_update_dep_1 (dep_t, bool, rtx, rtx);
521
522 #ifdef ENABLE_CHECKING
523 static void check_dep (dep_t, bool);
524 #endif
525 \f
526 /* Return nonzero if a load of the memory reference MEM can cause a trap.  */
527
528 static int
529 deps_may_trap_p (const_rtx mem)
530 {
531   const_rtx addr = XEXP (mem, 0);
532
533   if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER)
534     {
535       const_rtx t = get_reg_known_value (REGNO (addr));
536       if (t)
537         addr = t;
538     }
539   return rtx_addr_can_trap_p (addr);
540 }
541 \f
542
543 /* Find the condition under which INSN is executed.  If REV is not NULL,
544    it is set to TRUE when the returned comparison should be reversed
545    to get the actual condition.  */
546 static rtx
547 sched_get_condition_with_rev_uncached (const rtx_insn *insn, bool *rev)
548 {
549   rtx pat = PATTERN (insn);
550   rtx src;
551
552   if (rev)
553     *rev = false;
554
555   if (GET_CODE (pat) == COND_EXEC)
556     return COND_EXEC_TEST (pat);
557
558   if (!any_condjump_p (insn) || !onlyjump_p (insn))
559     return 0;
560
561   src = SET_SRC (pc_set (insn));
562
563   if (XEXP (src, 2) == pc_rtx)
564     return XEXP (src, 0);
565   else if (XEXP (src, 1) == pc_rtx)
566     {
567       rtx cond = XEXP (src, 0);
568       enum rtx_code revcode = reversed_comparison_code (cond, insn);
569
570       if (revcode == UNKNOWN)
571         return 0;
572
573       if (rev)
574         *rev = true;
575       return cond;
576     }
577
578   return 0;
579 }
580
581 /* Return the condition under which INSN does not execute (i.e.  the
582    not-taken condition for a conditional branch), or NULL if we cannot
583    find such a condition.  The caller should make a copy of the condition
584    before using it.  */
585 rtx
586 sched_get_reverse_condition_uncached (const rtx_insn *insn)
587 {
588   bool rev;
589   rtx cond = sched_get_condition_with_rev_uncached (insn, &rev);
590   if (cond == NULL_RTX)
591     return cond;
592   if (!rev)
593     {
594       enum rtx_code revcode = reversed_comparison_code (cond, insn);
595       cond = gen_rtx_fmt_ee (revcode, GET_MODE (cond),
596                              XEXP (cond, 0),
597                              XEXP (cond, 1));
598     }
599   return cond;
600 }
601
602 /* Caching variant of sched_get_condition_with_rev_uncached.
603    We only do actual work the first time we come here for an insn; the
604    results are cached in INSN_CACHED_COND and INSN_REVERSE_COND.  */
605 static rtx
606 sched_get_condition_with_rev (const rtx_insn *insn, bool *rev)
607 {
608   bool tmp;
609
610   if (INSN_LUID (insn) == 0)
611     return sched_get_condition_with_rev_uncached (insn, rev);
612
613   if (INSN_CACHED_COND (insn) == const_true_rtx)
614     return NULL_RTX;
615
616   if (INSN_CACHED_COND (insn) != NULL_RTX)
617     {
618       if (rev)
619         *rev = INSN_REVERSE_COND (insn);
620       return INSN_CACHED_COND (insn);
621     }
622
623   INSN_CACHED_COND (insn) = sched_get_condition_with_rev_uncached (insn, &tmp);
624   INSN_REVERSE_COND (insn) = tmp;
625
626   if (INSN_CACHED_COND (insn) == NULL_RTX)
627     {
628       INSN_CACHED_COND (insn) = const_true_rtx;
629       return NULL_RTX;
630     }
631
632   if (rev)
633     *rev = INSN_REVERSE_COND (insn);
634   return INSN_CACHED_COND (insn);
635 }
636
637 /* True when we can find a condition under which INSN is executed.  */
638 static bool
639 sched_has_condition_p (const rtx_insn *insn)
640 {
641   return !! sched_get_condition_with_rev (insn, NULL);
642 }
643
644 \f
645
646 /* Return nonzero if conditions COND1 and COND2 can never be both true.  */
647 static int
648 conditions_mutex_p (const_rtx cond1, const_rtx cond2, bool rev1, bool rev2)
649 {
650   if (COMPARISON_P (cond1)
651       && COMPARISON_P (cond2)
652       && GET_CODE (cond1) ==
653           (rev1==rev2
654           ? reversed_comparison_code (cond2, NULL)
655           : GET_CODE (cond2))
656       && rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
657       && XEXP (cond1, 1) == XEXP (cond2, 1))
658     return 1;
659   return 0;
660 }
661
662 /* Return true if insn1 and insn2 can never depend on one another because
663    the conditions under which they are executed are mutually exclusive.  */
664 bool
665 sched_insns_conditions_mutex_p (const rtx_insn *insn1, const rtx_insn *insn2)
666 {
667   rtx cond1, cond2;
668   bool rev1 = false, rev2 = false;
669
670   /* df doesn't handle conditional lifetimes entirely correctly;
671      calls mess up the conditional lifetimes.  */
672   if (!CALL_P (insn1) && !CALL_P (insn2))
673     {
674       cond1 = sched_get_condition_with_rev (insn1, &rev1);
675       cond2 = sched_get_condition_with_rev (insn2, &rev2);
676       if (cond1 && cond2
677           && conditions_mutex_p (cond1, cond2, rev1, rev2)
678           /* Make sure first instruction doesn't affect condition of second
679              instruction if switched.  */
680           && !modified_in_p (cond1, insn2)
681           /* Make sure second instruction doesn't affect condition of first
682              instruction if switched.  */
683           && !modified_in_p (cond2, insn1))
684         return true;
685     }
686   return false;
687 }
688 \f
689
690 /* Return true if INSN can potentially be speculated with type DS.  */
691 bool
692 sched_insn_is_legitimate_for_speculation_p (const rtx_insn *insn, ds_t ds)
693 {
694   if (HAS_INTERNAL_DEP (insn))
695     return false;
696
697   if (!NONJUMP_INSN_P (insn))
698     return false;
699
700   if (SCHED_GROUP_P (insn))
701     return false;
702
703   if (IS_SPECULATION_CHECK_P (CONST_CAST_RTX_INSN (insn)))
704     return false;
705
706   if (side_effects_p (PATTERN (insn)))
707     return false;
708
709   if (ds & BE_IN_SPEC)
710     /* The following instructions, which depend on a speculatively scheduled
711        instruction, cannot be speculatively scheduled along.  */
712     {
713       if (may_trap_or_fault_p (PATTERN (insn)))
714         /* If instruction might fault, it cannot be speculatively scheduled.
715            For control speculation it's obvious why and for data speculation
716            it's because the insn might get wrong input if speculation
717            wasn't successful.  */
718         return false;
719
720       if ((ds & BE_IN_DATA)
721           && sched_has_condition_p (insn))
722         /* If this is a predicated instruction, then it cannot be
723            speculatively scheduled.  See PR35659.  */
724         return false;
725     }
726
727   return true;
728 }
729
730 /* Initialize LIST_PTR to point to one of the lists present in TYPES_PTR,
731    initialize RESOLVED_P_PTR with true if that list consists of resolved deps,
732    and remove the type of returned [through LIST_PTR] list from TYPES_PTR.
733    This function is used to switch sd_iterator to the next list.
734    !!! For internal use only.  Might consider moving it to sched-int.h.  */
735 void
736 sd_next_list (const_rtx insn, sd_list_types_def *types_ptr,
737               deps_list_t *list_ptr, bool *resolved_p_ptr)
738 {
739   sd_list_types_def types = *types_ptr;
740
741   if (types & SD_LIST_HARD_BACK)
742     {
743       *list_ptr = INSN_HARD_BACK_DEPS (insn);
744       *resolved_p_ptr = false;
745       *types_ptr = types & ~SD_LIST_HARD_BACK;
746     }
747   else if (types & SD_LIST_SPEC_BACK)
748     {
749       *list_ptr = INSN_SPEC_BACK_DEPS (insn);
750       *resolved_p_ptr = false;
751       *types_ptr = types & ~SD_LIST_SPEC_BACK;
752     }
753   else if (types & SD_LIST_FORW)
754     {
755       *list_ptr = INSN_FORW_DEPS (insn);
756       *resolved_p_ptr = false;
757       *types_ptr = types & ~SD_LIST_FORW;
758     }
759   else if (types & SD_LIST_RES_BACK)
760     {
761       *list_ptr = INSN_RESOLVED_BACK_DEPS (insn);
762       *resolved_p_ptr = true;
763       *types_ptr = types & ~SD_LIST_RES_BACK;
764     }
765   else if (types & SD_LIST_RES_FORW)
766     {
767       *list_ptr = INSN_RESOLVED_FORW_DEPS (insn);
768       *resolved_p_ptr = true;
769       *types_ptr = types & ~SD_LIST_RES_FORW;
770     }
771   else
772     {
773       *list_ptr = NULL;
774       *resolved_p_ptr = false;
775       *types_ptr = SD_LIST_NONE;
776     }
777 }
778
779 /* Return the summary size of INSN's lists defined by LIST_TYPES.  */
780 int
781 sd_lists_size (const_rtx insn, sd_list_types_def list_types)
782 {
783   int size = 0;
784
785   while (list_types != SD_LIST_NONE)
786     {
787       deps_list_t list;
788       bool resolved_p;
789
790       sd_next_list (insn, &list_types, &list, &resolved_p);
791       if (list)
792         size += DEPS_LIST_N_LINKS (list);
793     }
794
795   return size;
796 }
797
798 /* Return true if INSN's lists defined by LIST_TYPES are all empty.  */
799
800 bool
801 sd_lists_empty_p (const_rtx insn, sd_list_types_def list_types)
802 {
803   while (list_types != SD_LIST_NONE)
804     {
805       deps_list_t list;
806       bool resolved_p;
807
808       sd_next_list (insn, &list_types, &list, &resolved_p);
809       if (!deps_list_empty_p (list))
810         return false;
811     }
812
813   return true;
814 }
815
816 /* Initialize data for INSN.  */
817 void
818 sd_init_insn (rtx insn)
819 {
820   INSN_HARD_BACK_DEPS (insn) = create_deps_list ();
821   INSN_SPEC_BACK_DEPS (insn) = create_deps_list ();
822   INSN_RESOLVED_BACK_DEPS (insn) = create_deps_list ();
823   INSN_FORW_DEPS (insn) = create_deps_list ();
824   INSN_RESOLVED_FORW_DEPS (insn) = create_deps_list ();
825
826   /* ??? It would be nice to allocate dependency caches here.  */
827 }
828
829 /* Free data for INSN.  */
830 void
831 sd_finish_insn (rtx insn)
832 {
833   /* ??? It would be nice to deallocate dependency caches here.  */
834
835   free_deps_list (INSN_HARD_BACK_DEPS (insn));
836   INSN_HARD_BACK_DEPS (insn) = NULL;
837
838   free_deps_list (INSN_SPEC_BACK_DEPS (insn));
839   INSN_SPEC_BACK_DEPS (insn) = NULL;
840
841   free_deps_list (INSN_RESOLVED_BACK_DEPS (insn));
842   INSN_RESOLVED_BACK_DEPS (insn) = NULL;
843
844   free_deps_list (INSN_FORW_DEPS (insn));
845   INSN_FORW_DEPS (insn) = NULL;
846
847   free_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
848   INSN_RESOLVED_FORW_DEPS (insn) = NULL;
849 }
850
851 /* Find a dependency between producer PRO and consumer CON.
852    Search through resolved dependency lists if RESOLVED_P is true.
853    If no such dependency is found return NULL,
854    otherwise return the dependency and initialize SD_IT_PTR [if it is nonnull]
855    with an iterator pointing to it.  */
856 static dep_t
857 sd_find_dep_between_no_cache (rtx pro, rtx con, bool resolved_p,
858                               sd_iterator_def *sd_it_ptr)
859 {
860   sd_list_types_def pro_list_type;
861   sd_list_types_def con_list_type;
862   sd_iterator_def sd_it;
863   dep_t dep;
864   bool found_p = false;
865
866   if (resolved_p)
867     {
868       pro_list_type = SD_LIST_RES_FORW;
869       con_list_type = SD_LIST_RES_BACK;
870     }
871   else
872     {
873       pro_list_type = SD_LIST_FORW;
874       con_list_type = SD_LIST_BACK;
875     }
876
877   /* Walk through either back list of INSN or forw list of ELEM
878      depending on which one is shorter.  */
879   if (sd_lists_size (con, con_list_type) < sd_lists_size (pro, pro_list_type))
880     {
881       /* Find the dep_link with producer PRO in consumer's back_deps.  */
882       FOR_EACH_DEP (con, con_list_type, sd_it, dep)
883         if (DEP_PRO (dep) == pro)
884           {
885             found_p = true;
886             break;
887           }
888     }
889   else
890     {
891       /* Find the dep_link with consumer CON in producer's forw_deps.  */
892       FOR_EACH_DEP (pro, pro_list_type, sd_it, dep)
893         if (DEP_CON (dep) == con)
894           {
895             found_p = true;
896             break;
897           }
898     }
899
900   if (found_p)
901     {
902       if (sd_it_ptr != NULL)
903         *sd_it_ptr = sd_it;
904
905       return dep;
906     }
907
908   return NULL;
909 }
910
911 /* Find a dependency between producer PRO and consumer CON.
912    Use dependency [if available] to check if dependency is present at all.
913    Search through resolved dependency lists if RESOLVED_P is true.
914    If the dependency or NULL if none found.  */
915 dep_t
916 sd_find_dep_between (rtx pro, rtx con, bool resolved_p)
917 {
918   if (true_dependency_cache != NULL)
919     /* Avoiding the list walk below can cut compile times dramatically
920        for some code.  */
921     {
922       int elem_luid = INSN_LUID (pro);
923       int insn_luid = INSN_LUID (con);
924
925       if (!bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid)
926           && !bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid)
927           && !bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid)
928           && !bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
929         return NULL;
930     }
931
932   return sd_find_dep_between_no_cache (pro, con, resolved_p, NULL);
933 }
934
935 /* Add or update  a dependence described by DEP.
936    MEM1 and MEM2, if non-null, correspond to memory locations in case of
937    data speculation.
938
939    The function returns a value indicating if an old entry has been changed
940    or a new entry has been added to insn's backward deps.
941
942    This function merely checks if producer and consumer is the same insn
943    and doesn't create a dep in this case.  Actual manipulation of
944    dependence data structures is performed in add_or_update_dep_1.  */
945 static enum DEPS_ADJUST_RESULT
946 maybe_add_or_update_dep_1 (dep_t dep, bool resolved_p, rtx mem1, rtx mem2)
947 {
948   rtx_insn *elem = DEP_PRO (dep);
949   rtx_insn *insn = DEP_CON (dep);
950
951   gcc_assert (INSN_P (insn) && INSN_P (elem));
952
953   /* Don't depend an insn on itself.  */
954   if (insn == elem)
955     {
956       if (sched_deps_info->generate_spec_deps)
957         /* INSN has an internal dependence, which we can't overcome.  */
958         HAS_INTERNAL_DEP (insn) = 1;
959
960       return DEP_NODEP;
961     }
962
963   return add_or_update_dep_1 (dep, resolved_p, mem1, mem2);
964 }
965
966 /* Ask dependency caches what needs to be done for dependence DEP.
967    Return DEP_CREATED if new dependence should be created and there is no
968    need to try to find one searching the dependencies lists.
969    Return DEP_PRESENT if there already is a dependence described by DEP and
970    hence nothing is to be done.
971    Return DEP_CHANGED if there already is a dependence, but it should be
972    updated to incorporate additional information from DEP.  */
973 static enum DEPS_ADJUST_RESULT
974 ask_dependency_caches (dep_t dep)
975 {
976   int elem_luid = INSN_LUID (DEP_PRO (dep));
977   int insn_luid = INSN_LUID (DEP_CON (dep));
978
979   gcc_assert (true_dependency_cache != NULL
980               && output_dependency_cache != NULL
981               && anti_dependency_cache != NULL
982               && control_dependency_cache != NULL);
983
984   if (!(current_sched_info->flags & USE_DEPS_LIST))
985     {
986       enum reg_note present_dep_type;
987
988       if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
989         present_dep_type = REG_DEP_TRUE;
990       else if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
991         present_dep_type = REG_DEP_OUTPUT;
992       else if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
993         present_dep_type = REG_DEP_ANTI;
994       else if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
995         present_dep_type = REG_DEP_CONTROL;
996       else
997         /* There is no existing dep so it should be created.  */
998         return DEP_CREATED;
999
1000       if ((int) DEP_TYPE (dep) >= (int) present_dep_type)
1001         /* DEP does not add anything to the existing dependence.  */
1002         return DEP_PRESENT;
1003     }
1004   else
1005     {
1006       ds_t present_dep_types = 0;
1007
1008       if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
1009         present_dep_types |= DEP_TRUE;
1010       if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
1011         present_dep_types |= DEP_OUTPUT;
1012       if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
1013         present_dep_types |= DEP_ANTI;
1014       if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
1015         present_dep_types |= DEP_CONTROL;
1016
1017       if (present_dep_types == 0)
1018         /* There is no existing dep so it should be created.  */
1019         return DEP_CREATED;
1020
1021       if (!(current_sched_info->flags & DO_SPECULATION)
1022           || !bitmap_bit_p (&spec_dependency_cache[insn_luid], elem_luid))
1023         {
1024           if ((present_dep_types | (DEP_STATUS (dep) & DEP_TYPES))
1025               == present_dep_types)
1026             /* DEP does not add anything to the existing dependence.  */
1027             return DEP_PRESENT;
1028         }
1029       else
1030         {
1031           /* Only true dependencies can be data speculative and
1032              only anti dependencies can be control speculative.  */
1033           gcc_assert ((present_dep_types & (DEP_TRUE | DEP_ANTI))
1034                       == present_dep_types);
1035
1036           /* if (DEP is SPECULATIVE) then
1037              ..we should update DEP_STATUS
1038              else
1039              ..we should reset existing dep to non-speculative.  */
1040         }
1041     }
1042
1043   return DEP_CHANGED;
1044 }
1045
1046 /* Set dependency caches according to DEP.  */
1047 static void
1048 set_dependency_caches (dep_t dep)
1049 {
1050   int elem_luid = INSN_LUID (DEP_PRO (dep));
1051   int insn_luid = INSN_LUID (DEP_CON (dep));
1052
1053   if (!(current_sched_info->flags & USE_DEPS_LIST))
1054     {
1055       switch (DEP_TYPE (dep))
1056         {
1057         case REG_DEP_TRUE:
1058           bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1059           break;
1060
1061         case REG_DEP_OUTPUT:
1062           bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1063           break;
1064
1065         case REG_DEP_ANTI:
1066           bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1067           break;
1068
1069         case REG_DEP_CONTROL:
1070           bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1071           break;
1072
1073         default:
1074           gcc_unreachable ();
1075         }
1076     }
1077   else
1078     {
1079       ds_t ds = DEP_STATUS (dep);
1080
1081       if (ds & DEP_TRUE)
1082         bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1083       if (ds & DEP_OUTPUT)
1084         bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1085       if (ds & DEP_ANTI)
1086         bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1087       if (ds & DEP_CONTROL)
1088         bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1089
1090       if (ds & SPECULATIVE)
1091         {
1092           gcc_assert (current_sched_info->flags & DO_SPECULATION);
1093           bitmap_set_bit (&spec_dependency_cache[insn_luid], elem_luid);
1094         }
1095     }
1096 }
1097
1098 /* Type of dependence DEP have changed from OLD_TYPE.  Update dependency
1099    caches accordingly.  */
1100 static void
1101 update_dependency_caches (dep_t dep, enum reg_note old_type)
1102 {
1103   int elem_luid = INSN_LUID (DEP_PRO (dep));
1104   int insn_luid = INSN_LUID (DEP_CON (dep));
1105
1106   /* Clear corresponding cache entry because type of the link
1107      may have changed.  Keep them if we use_deps_list.  */
1108   if (!(current_sched_info->flags & USE_DEPS_LIST))
1109     {
1110       switch (old_type)
1111         {
1112         case REG_DEP_OUTPUT:
1113           bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1114           break;
1115
1116         case REG_DEP_ANTI:
1117           bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1118           break;
1119
1120         case REG_DEP_CONTROL:
1121           bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1122           break;
1123
1124         default:
1125           gcc_unreachable ();
1126         }
1127     }
1128
1129   set_dependency_caches (dep);
1130 }
1131
1132 /* Convert a dependence pointed to by SD_IT to be non-speculative.  */
1133 static void
1134 change_spec_dep_to_hard (sd_iterator_def sd_it)
1135 {
1136   dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1137   dep_link_t link = DEP_NODE_BACK (node);
1138   dep_t dep = DEP_NODE_DEP (node);
1139   rtx_insn *elem = DEP_PRO (dep);
1140   rtx_insn *insn = DEP_CON (dep);
1141
1142   move_dep_link (link, INSN_SPEC_BACK_DEPS (insn), INSN_HARD_BACK_DEPS (insn));
1143
1144   DEP_STATUS (dep) &= ~SPECULATIVE;
1145
1146   if (true_dependency_cache != NULL)
1147     /* Clear the cache entry.  */
1148     bitmap_clear_bit (&spec_dependency_cache[INSN_LUID (insn)],
1149                       INSN_LUID (elem));
1150 }
1151
1152 /* Update DEP to incorporate information from NEW_DEP.
1153    SD_IT points to DEP in case it should be moved to another list.
1154    MEM1 and MEM2, if nonnull, correspond to memory locations in case if
1155    data-speculative dependence should be updated.  */
1156 static enum DEPS_ADJUST_RESULT
1157 update_dep (dep_t dep, dep_t new_dep,
1158             sd_iterator_def sd_it ATTRIBUTE_UNUSED,
1159             rtx mem1 ATTRIBUTE_UNUSED,
1160             rtx mem2 ATTRIBUTE_UNUSED)
1161 {
1162   enum DEPS_ADJUST_RESULT res = DEP_PRESENT;
1163   enum reg_note old_type = DEP_TYPE (dep);
1164   bool was_spec = dep_spec_p (dep);
1165
1166   DEP_NONREG (dep) |= DEP_NONREG (new_dep);
1167   DEP_MULTIPLE (dep) = 1;
1168
1169   /* If this is a more restrictive type of dependence than the
1170      existing one, then change the existing dependence to this
1171      type.  */
1172   if ((int) DEP_TYPE (new_dep) < (int) old_type)
1173     {
1174       DEP_TYPE (dep) = DEP_TYPE (new_dep);
1175       res = DEP_CHANGED;
1176     }
1177
1178   if (current_sched_info->flags & USE_DEPS_LIST)
1179     /* Update DEP_STATUS.  */
1180     {
1181       ds_t dep_status = DEP_STATUS (dep);
1182       ds_t ds = DEP_STATUS (new_dep);
1183       ds_t new_status = ds | dep_status;
1184
1185       if (new_status & SPECULATIVE)
1186         {
1187           /* Either existing dep or a dep we're adding or both are
1188              speculative.  */
1189           if (!(ds & SPECULATIVE)
1190               || !(dep_status & SPECULATIVE))
1191             /* The new dep can't be speculative.  */
1192             new_status &= ~SPECULATIVE;
1193           else
1194             {
1195               /* Both are speculative.  Merge probabilities.  */
1196               if (mem1 != NULL)
1197                 {
1198                   dw_t dw;
1199
1200                   dw = estimate_dep_weak (mem1, mem2);
1201                   ds = set_dep_weak (ds, BEGIN_DATA, dw);
1202                 }
1203
1204               new_status = ds_merge (dep_status, ds);
1205             }
1206         }
1207
1208       ds = new_status;
1209
1210       if (dep_status != ds)
1211         {
1212           DEP_STATUS (dep) = ds;
1213           res = DEP_CHANGED;
1214         }
1215     }
1216
1217   if (was_spec && !dep_spec_p (dep))
1218     /* The old dep was speculative, but now it isn't.  */
1219     change_spec_dep_to_hard (sd_it);
1220
1221   if (true_dependency_cache != NULL
1222       && res == DEP_CHANGED)
1223     update_dependency_caches (dep, old_type);
1224
1225   return res;
1226 }
1227
1228 /* Add or update  a dependence described by DEP.
1229    MEM1 and MEM2, if non-null, correspond to memory locations in case of
1230    data speculation.
1231
1232    The function returns a value indicating if an old entry has been changed
1233    or a new entry has been added to insn's backward deps or nothing has
1234    been updated at all.  */
1235 static enum DEPS_ADJUST_RESULT
1236 add_or_update_dep_1 (dep_t new_dep, bool resolved_p,
1237                      rtx mem1 ATTRIBUTE_UNUSED, rtx mem2 ATTRIBUTE_UNUSED)
1238 {
1239   bool maybe_present_p = true;
1240   bool present_p = false;
1241
1242   gcc_assert (INSN_P (DEP_PRO (new_dep)) && INSN_P (DEP_CON (new_dep))
1243               && DEP_PRO (new_dep) != DEP_CON (new_dep));
1244
1245 #ifdef ENABLE_CHECKING
1246   check_dep (new_dep, mem1 != NULL);
1247 #endif
1248
1249   if (true_dependency_cache != NULL)
1250     {
1251       switch (ask_dependency_caches (new_dep))
1252         {
1253         case DEP_PRESENT:
1254           dep_t present_dep;
1255           sd_iterator_def sd_it;
1256       
1257           present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1258                                                       DEP_CON (new_dep),
1259                                                       resolved_p, &sd_it);
1260           DEP_MULTIPLE (present_dep) = 1;
1261           return DEP_PRESENT;
1262
1263         case DEP_CHANGED:
1264           maybe_present_p = true;
1265           present_p = true;
1266           break;
1267
1268         case DEP_CREATED:
1269           maybe_present_p = false;
1270           present_p = false;
1271           break;
1272
1273         default:
1274           gcc_unreachable ();
1275           break;
1276         }
1277     }
1278
1279   /* Check that we don't already have this dependence.  */
1280   if (maybe_present_p)
1281     {
1282       dep_t present_dep;
1283       sd_iterator_def sd_it;
1284
1285       gcc_assert (true_dependency_cache == NULL || present_p);
1286
1287       present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1288                                                   DEP_CON (new_dep),
1289                                                   resolved_p, &sd_it);
1290
1291       if (present_dep != NULL)
1292         /* We found an existing dependency between ELEM and INSN.  */
1293         return update_dep (present_dep, new_dep, sd_it, mem1, mem2);
1294       else
1295         /* We didn't find a dep, it shouldn't present in the cache.  */
1296         gcc_assert (!present_p);
1297     }
1298
1299   /* Might want to check one level of transitivity to save conses.
1300      This check should be done in maybe_add_or_update_dep_1.
1301      Since we made it to add_or_update_dep_1, we must create
1302      (or update) a link.  */
1303
1304   if (mem1 != NULL_RTX)
1305     {
1306       gcc_assert (sched_deps_info->generate_spec_deps);
1307       DEP_STATUS (new_dep) = set_dep_weak (DEP_STATUS (new_dep), BEGIN_DATA,
1308                                            estimate_dep_weak (mem1, mem2));
1309     }
1310
1311   sd_add_dep (new_dep, resolved_p);
1312
1313   return DEP_CREATED;
1314 }
1315
1316 /* Initialize BACK_LIST_PTR with consumer's backward list and
1317    FORW_LIST_PTR with producer's forward list.  If RESOLVED_P is true
1318    initialize with lists that hold resolved deps.  */
1319 static void
1320 get_back_and_forw_lists (dep_t dep, bool resolved_p,
1321                          deps_list_t *back_list_ptr,
1322                          deps_list_t *forw_list_ptr)
1323 {
1324   rtx_insn *con = DEP_CON (dep);
1325
1326   if (!resolved_p)
1327     {
1328       if (dep_spec_p (dep))
1329         *back_list_ptr = INSN_SPEC_BACK_DEPS (con);
1330       else
1331         *back_list_ptr = INSN_HARD_BACK_DEPS (con);
1332
1333       *forw_list_ptr = INSN_FORW_DEPS (DEP_PRO (dep));
1334     }
1335   else
1336     {
1337       *back_list_ptr = INSN_RESOLVED_BACK_DEPS (con);
1338       *forw_list_ptr = INSN_RESOLVED_FORW_DEPS (DEP_PRO (dep));
1339     }
1340 }
1341
1342 /* Add dependence described by DEP.
1343    If RESOLVED_P is true treat the dependence as a resolved one.  */
1344 void
1345 sd_add_dep (dep_t dep, bool resolved_p)
1346 {
1347   dep_node_t n = create_dep_node ();
1348   deps_list_t con_back_deps;
1349   deps_list_t pro_forw_deps;
1350   rtx_insn *elem = DEP_PRO (dep);
1351   rtx_insn *insn = DEP_CON (dep);
1352
1353   gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem);
1354
1355   if ((current_sched_info->flags & DO_SPECULATION) == 0
1356       || !sched_insn_is_legitimate_for_speculation_p (insn, DEP_STATUS (dep)))
1357     DEP_STATUS (dep) &= ~SPECULATIVE;
1358
1359   copy_dep (DEP_NODE_DEP (n), dep);
1360
1361   get_back_and_forw_lists (dep, resolved_p, &con_back_deps, &pro_forw_deps);
1362
1363   add_to_deps_list (DEP_NODE_BACK (n), con_back_deps);
1364
1365 #ifdef ENABLE_CHECKING
1366   check_dep (dep, false);
1367 #endif
1368
1369   add_to_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1370
1371   /* If we are adding a dependency to INSN's LOG_LINKs, then note that
1372      in the bitmap caches of dependency information.  */
1373   if (true_dependency_cache != NULL)
1374     set_dependency_caches (dep);
1375 }
1376
1377 /* Add or update backward dependence between INSN and ELEM
1378    with given type DEP_TYPE and dep_status DS.
1379    This function is a convenience wrapper.  */
1380 enum DEPS_ADJUST_RESULT
1381 sd_add_or_update_dep (dep_t dep, bool resolved_p)
1382 {
1383   return add_or_update_dep_1 (dep, resolved_p, NULL_RTX, NULL_RTX);
1384 }
1385
1386 /* Resolved dependence pointed to by SD_IT.
1387    SD_IT will advance to the next element.  */
1388 void
1389 sd_resolve_dep (sd_iterator_def sd_it)
1390 {
1391   dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1392   dep_t dep = DEP_NODE_DEP (node);
1393   rtx_insn *pro = DEP_PRO (dep);
1394   rtx_insn *con = DEP_CON (dep);
1395
1396   if (dep_spec_p (dep))
1397     move_dep_link (DEP_NODE_BACK (node), INSN_SPEC_BACK_DEPS (con),
1398                    INSN_RESOLVED_BACK_DEPS (con));
1399   else
1400     move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
1401                    INSN_RESOLVED_BACK_DEPS (con));
1402
1403   move_dep_link (DEP_NODE_FORW (node), INSN_FORW_DEPS (pro),
1404                  INSN_RESOLVED_FORW_DEPS (pro));
1405 }
1406
1407 /* Perform the inverse operation of sd_resolve_dep.  Restore the dependence
1408    pointed to by SD_IT to unresolved state.  */
1409 void
1410 sd_unresolve_dep (sd_iterator_def sd_it)
1411 {
1412   dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1413   dep_t dep = DEP_NODE_DEP (node);
1414   rtx_insn *pro = DEP_PRO (dep);
1415   rtx_insn *con = DEP_CON (dep);
1416
1417   if (dep_spec_p (dep))
1418     move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1419                    INSN_SPEC_BACK_DEPS (con));
1420   else
1421     move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1422                    INSN_HARD_BACK_DEPS (con));
1423
1424   move_dep_link (DEP_NODE_FORW (node), INSN_RESOLVED_FORW_DEPS (pro),
1425                  INSN_FORW_DEPS (pro));
1426 }
1427
1428 /* Make TO depend on all the FROM's producers.
1429    If RESOLVED_P is true add dependencies to the resolved lists.  */
1430 void
1431 sd_copy_back_deps (rtx_insn *to, rtx_insn *from, bool resolved_p)
1432 {
1433   sd_list_types_def list_type;
1434   sd_iterator_def sd_it;
1435   dep_t dep;
1436
1437   list_type = resolved_p ? SD_LIST_RES_BACK : SD_LIST_BACK;
1438
1439   FOR_EACH_DEP (from, list_type, sd_it, dep)
1440     {
1441       dep_def _new_dep, *new_dep = &_new_dep;
1442
1443       copy_dep (new_dep, dep);
1444       DEP_CON (new_dep) = to;
1445       sd_add_dep (new_dep, resolved_p);
1446     }
1447 }
1448
1449 /* Remove a dependency referred to by SD_IT.
1450    SD_IT will point to the next dependence after removal.  */
1451 void
1452 sd_delete_dep (sd_iterator_def sd_it)
1453 {
1454   dep_node_t n = DEP_LINK_NODE (*sd_it.linkp);
1455   dep_t dep = DEP_NODE_DEP (n);
1456   rtx_insn *pro = DEP_PRO (dep);
1457   rtx_insn *con = DEP_CON (dep);
1458   deps_list_t con_back_deps;
1459   deps_list_t pro_forw_deps;
1460
1461   if (true_dependency_cache != NULL)
1462     {
1463       int elem_luid = INSN_LUID (pro);
1464       int insn_luid = INSN_LUID (con);
1465
1466       bitmap_clear_bit (&true_dependency_cache[insn_luid], elem_luid);
1467       bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1468       bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1469       bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1470
1471       if (current_sched_info->flags & DO_SPECULATION)
1472         bitmap_clear_bit (&spec_dependency_cache[insn_luid], elem_luid);
1473     }
1474
1475   get_back_and_forw_lists (dep, sd_it.resolved_p,
1476                            &con_back_deps, &pro_forw_deps);
1477
1478   remove_from_deps_list (DEP_NODE_BACK (n), con_back_deps);
1479   remove_from_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1480
1481   delete_dep_node (n);
1482 }
1483
1484 /* Dump size of the lists.  */
1485 #define DUMP_LISTS_SIZE (2)
1486
1487 /* Dump dependencies of the lists.  */
1488 #define DUMP_LISTS_DEPS (4)
1489
1490 /* Dump all information about the lists.  */
1491 #define DUMP_LISTS_ALL (DUMP_LISTS_SIZE | DUMP_LISTS_DEPS)
1492
1493 /* Dump deps_lists of INSN specified by TYPES to DUMP.
1494    FLAGS is a bit mask specifying what information about the lists needs
1495    to be printed.
1496    If FLAGS has the very first bit set, then dump all information about
1497    the lists and propagate this bit into the callee dump functions.  */
1498 static void
1499 dump_lists (FILE *dump, rtx insn, sd_list_types_def types, int flags)
1500 {
1501   sd_iterator_def sd_it;
1502   dep_t dep;
1503   int all;
1504
1505   all = (flags & 1);
1506
1507   if (all)
1508     flags |= DUMP_LISTS_ALL;
1509
1510   fprintf (dump, "[");
1511
1512   if (flags & DUMP_LISTS_SIZE)
1513     fprintf (dump, "%d; ", sd_lists_size (insn, types));
1514
1515   if (flags & DUMP_LISTS_DEPS)
1516     {
1517       FOR_EACH_DEP (insn, types, sd_it, dep)
1518         {
1519           dump_dep (dump, dep, dump_dep_flags | all);
1520           fprintf (dump, " ");
1521         }
1522     }
1523 }
1524
1525 /* Dump all information about deps_lists of INSN specified by TYPES
1526    to STDERR.  */
1527 void
1528 sd_debug_lists (rtx insn, sd_list_types_def types)
1529 {
1530   dump_lists (stderr, insn, types, 1);
1531   fprintf (stderr, "\n");
1532 }
1533
1534 /* A wrapper around add_dependence_1, to add a dependence of CON on
1535    PRO, with type DEP_TYPE.  This function implements special handling
1536    for REG_DEP_CONTROL dependencies.  For these, we optionally promote
1537    the type to REG_DEP_ANTI if we can determine that predication is
1538    impossible; otherwise we add additional true dependencies on the
1539    INSN_COND_DEPS list of the jump (which PRO must be).  */
1540 void
1541 add_dependence (rtx_insn *con, rtx_insn *pro, enum reg_note dep_type)
1542 {
1543   if (dep_type == REG_DEP_CONTROL
1544       && !(current_sched_info->flags & DO_PREDICATION))
1545     dep_type = REG_DEP_ANTI;
1546
1547   /* A REG_DEP_CONTROL dependence may be eliminated through predication,
1548      so we must also make the insn dependent on the setter of the
1549      condition.  */
1550   if (dep_type == REG_DEP_CONTROL)
1551     {
1552       rtx_insn *real_pro = pro;
1553       rtx_insn *other = real_insn_for_shadow (real_pro);
1554       rtx cond;
1555
1556       if (other != NULL_RTX)
1557         real_pro = other;
1558       cond = sched_get_reverse_condition_uncached (real_pro);
1559       /* Verify that the insn does not use a different value in
1560          the condition register than the one that was present at
1561          the jump.  */
1562       if (cond == NULL_RTX)
1563         dep_type = REG_DEP_ANTI;
1564       else if (INSN_CACHED_COND (real_pro) == const_true_rtx)
1565         {
1566           HARD_REG_SET uses;
1567           CLEAR_HARD_REG_SET (uses);
1568           note_uses (&PATTERN (con), record_hard_reg_uses, &uses);
1569           if (TEST_HARD_REG_BIT (uses, REGNO (XEXP (cond, 0))))
1570             dep_type = REG_DEP_ANTI;
1571         }
1572       if (dep_type == REG_DEP_CONTROL)
1573         {
1574           if (sched_verbose >= 5)
1575             fprintf (sched_dump, "making DEP_CONTROL for %d\n",
1576                      INSN_UID (real_pro));
1577           add_dependence_list (con, INSN_COND_DEPS (real_pro), 0,
1578                                REG_DEP_TRUE, false);
1579         }
1580     }
1581           
1582   add_dependence_1 (con, pro, dep_type);
1583 }
1584
1585 /* A convenience wrapper to operate on an entire list.  HARD should be
1586    true if DEP_NONREG should be set on newly created dependencies.  */
1587
1588 static void
1589 add_dependence_list (rtx_insn *insn, rtx_insn_list *list, int uncond,
1590                      enum reg_note dep_type, bool hard)
1591 {
1592   mark_as_hard = hard;
1593   for (; list; list = list->next ())
1594     {
1595       if (uncond || ! sched_insns_conditions_mutex_p (insn, list->insn ()))
1596         add_dependence (insn, list->insn (), dep_type);
1597     }
1598   mark_as_hard = false;
1599 }
1600
1601 /* Similar, but free *LISTP at the same time, when the context
1602    is not readonly.  HARD should be true if DEP_NONREG should be set on
1603    newly created dependencies.  */
1604
1605 static void
1606 add_dependence_list_and_free (struct deps_desc *deps, rtx_insn *insn,
1607                               rtx_insn_list **listp,
1608                               int uncond, enum reg_note dep_type, bool hard)
1609 {
1610   add_dependence_list (insn, *listp, uncond, dep_type, hard);
1611
1612   /* We don't want to short-circuit dependencies involving debug
1613      insns, because they may cause actual dependencies to be
1614      disregarded.  */
1615   if (deps->readonly || DEBUG_INSN_P (insn))
1616     return;
1617
1618   free_INSN_LIST_list (listp);
1619 }
1620
1621 /* Remove all occurrences of INSN from LIST.  Return the number of
1622    occurrences removed.  */
1623
1624 static int
1625 remove_from_dependence_list (rtx insn, rtx_insn_list **listp)
1626 {
1627   int removed = 0;
1628
1629   while (*listp)
1630     {
1631       if ((*listp)->insn () == insn)
1632         {
1633           remove_free_INSN_LIST_node (listp);
1634           removed++;
1635           continue;
1636         }
1637
1638       listp = (rtx_insn_list **)&XEXP (*listp, 1);
1639     }
1640
1641   return removed;
1642 }
1643
1644 /* Same as above, but process two lists at once.  */
1645 static int
1646 remove_from_both_dependence_lists (rtx insn,
1647                                    rtx_insn_list **listp,
1648                                    rtx_expr_list **exprp)
1649 {
1650   int removed = 0;
1651
1652   while (*listp)
1653     {
1654       if (XEXP (*listp, 0) == insn)
1655         {
1656           remove_free_INSN_LIST_node (listp);
1657           remove_free_EXPR_LIST_node (exprp);
1658           removed++;
1659           continue;
1660         }
1661
1662       listp = (rtx_insn_list **)&XEXP (*listp, 1);
1663       exprp = (rtx_expr_list **)&XEXP (*exprp, 1);
1664     }
1665
1666   return removed;
1667 }
1668
1669 /* Clear all dependencies for an insn.  */
1670 static void
1671 delete_all_dependences (rtx insn)
1672 {
1673   sd_iterator_def sd_it;
1674   dep_t dep;
1675
1676   /* The below cycle can be optimized to clear the caches and back_deps
1677      in one call but that would provoke duplication of code from
1678      delete_dep ().  */
1679
1680   for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
1681        sd_iterator_cond (&sd_it, &dep);)
1682     sd_delete_dep (sd_it);
1683 }
1684
1685 /* All insns in a scheduling group except the first should only have
1686    dependencies on the previous insn in the group.  So we find the
1687    first instruction in the scheduling group by walking the dependence
1688    chains backwards. Then we add the dependencies for the group to
1689    the previous nonnote insn.  */
1690
1691 static void
1692 chain_to_prev_insn (rtx_insn *insn)
1693 {
1694   sd_iterator_def sd_it;
1695   dep_t dep;
1696   rtx_insn *prev_nonnote;
1697
1698   FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1699     {
1700       rtx_insn *i = insn;
1701       rtx_insn *pro = DEP_PRO (dep);
1702
1703       do
1704         {
1705           i = prev_nonnote_insn (i);
1706
1707           if (pro == i)
1708             goto next_link;
1709         } while (SCHED_GROUP_P (i) || DEBUG_INSN_P (i));
1710
1711       if (! sched_insns_conditions_mutex_p (i, pro))
1712         add_dependence (i, pro, DEP_TYPE (dep));
1713     next_link:;
1714     }
1715
1716   delete_all_dependences (insn);
1717
1718   prev_nonnote = prev_nonnote_nondebug_insn (insn);
1719   if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote)
1720       && ! sched_insns_conditions_mutex_p (insn, prev_nonnote))
1721     add_dependence (insn, prev_nonnote, REG_DEP_ANTI);
1722 }
1723 \f
1724 /* Process an insn's memory dependencies.  There are four kinds of
1725    dependencies:
1726
1727    (0) read dependence: read follows read
1728    (1) true dependence: read follows write
1729    (2) output dependence: write follows write
1730    (3) anti dependence: write follows read
1731
1732    We are careful to build only dependencies which actually exist, and
1733    use transitivity to avoid building too many links.  */
1734
1735 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
1736    The MEM is a memory reference contained within INSN, which we are saving
1737    so that we can do memory aliasing on it.  */
1738
1739 static void
1740 add_insn_mem_dependence (struct deps_desc *deps, bool read_p,
1741                          rtx_insn *insn, rtx mem)
1742 {
1743   rtx_insn_list **insn_list;
1744   rtx_insn_list *insn_node;
1745   rtx_expr_list **mem_list;
1746   rtx_expr_list *mem_node;
1747
1748   gcc_assert (!deps->readonly);
1749   if (read_p)
1750     {
1751       insn_list = &deps->pending_read_insns;
1752       mem_list = &deps->pending_read_mems;
1753       if (!DEBUG_INSN_P (insn))
1754         deps->pending_read_list_length++;
1755     }
1756   else
1757     {
1758       insn_list = &deps->pending_write_insns;
1759       mem_list = &deps->pending_write_mems;
1760       deps->pending_write_list_length++;
1761     }
1762
1763   insn_node = alloc_INSN_LIST (insn, *insn_list);
1764   *insn_list = insn_node;
1765
1766   if (sched_deps_info->use_cselib)
1767     {
1768       mem = shallow_copy_rtx (mem);
1769       XEXP (mem, 0) = cselib_subst_to_values_from_insn (XEXP (mem, 0),
1770                                                         GET_MODE (mem), insn);
1771     }
1772   mem_node = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list);
1773   *mem_list = mem_node;
1774 }
1775
1776 /* Make a dependency between every memory reference on the pending lists
1777    and INSN, thus flushing the pending lists.  FOR_READ is true if emitting
1778    dependencies for a read operation, similarly with FOR_WRITE.  */
1779
1780 static void
1781 flush_pending_lists (struct deps_desc *deps, rtx_insn *insn, int for_read,
1782                      int for_write)
1783 {
1784   if (for_write)
1785     {
1786       add_dependence_list_and_free (deps, insn, &deps->pending_read_insns,
1787                                     1, REG_DEP_ANTI, true);
1788       if (!deps->readonly)
1789         {
1790           free_EXPR_LIST_list (&deps->pending_read_mems);
1791           deps->pending_read_list_length = 0;
1792         }
1793     }
1794
1795   add_dependence_list_and_free (deps, insn, &deps->pending_write_insns, 1,
1796                                 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1797                                 true);
1798
1799   add_dependence_list_and_free (deps, insn,
1800                                 &deps->last_pending_memory_flush, 1,
1801                                 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1802                                 true);
1803
1804   add_dependence_list_and_free (deps, insn, &deps->pending_jump_insns, 1,
1805                                 REG_DEP_ANTI, true);
1806
1807   if (DEBUG_INSN_P (insn))
1808     {
1809       if (for_write)
1810         free_INSN_LIST_list (&deps->pending_read_insns);
1811       free_INSN_LIST_list (&deps->pending_write_insns);
1812       free_INSN_LIST_list (&deps->last_pending_memory_flush);
1813       free_INSN_LIST_list (&deps->pending_jump_insns);
1814     }
1815
1816   if (!deps->readonly)
1817     {
1818       free_EXPR_LIST_list (&deps->pending_write_mems);
1819       deps->pending_write_list_length = 0;
1820
1821       deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
1822       deps->pending_flush_length = 1;
1823     }
1824   mark_as_hard = false;
1825 }
1826 \f
1827 /* Instruction which dependencies we are analyzing.  */
1828 static rtx_insn *cur_insn = NULL;
1829
1830 /* Implement hooks for haifa scheduler.  */
1831
1832 static void
1833 haifa_start_insn (rtx_insn *insn)
1834 {
1835   gcc_assert (insn && !cur_insn);
1836
1837   cur_insn = insn;
1838 }
1839
1840 static void
1841 haifa_finish_insn (void)
1842 {
1843   cur_insn = NULL;
1844 }
1845
1846 void
1847 haifa_note_reg_set (int regno)
1848 {
1849   SET_REGNO_REG_SET (reg_pending_sets, regno);
1850 }
1851
1852 void
1853 haifa_note_reg_clobber (int regno)
1854 {
1855   SET_REGNO_REG_SET (reg_pending_clobbers, regno);
1856 }
1857
1858 void
1859 haifa_note_reg_use (int regno)
1860 {
1861   SET_REGNO_REG_SET (reg_pending_uses, regno);
1862 }
1863
1864 static void
1865 haifa_note_mem_dep (rtx mem, rtx pending_mem, rtx_insn *pending_insn, ds_t ds)
1866 {
1867   if (!(ds & SPECULATIVE))
1868     {
1869       mem = NULL_RTX;
1870       pending_mem = NULL_RTX;
1871     }
1872   else
1873     gcc_assert (ds & BEGIN_DATA);
1874
1875   {
1876     dep_def _dep, *dep = &_dep;
1877
1878     init_dep_1 (dep, pending_insn, cur_insn, ds_to_dt (ds),
1879                 current_sched_info->flags & USE_DEPS_LIST ? ds : 0);
1880     DEP_NONREG (dep) = 1;
1881     maybe_add_or_update_dep_1 (dep, false, pending_mem, mem);
1882   }
1883
1884 }
1885
1886 static void
1887 haifa_note_dep (rtx_insn *elem, ds_t ds)
1888 {
1889   dep_def _dep;
1890   dep_t dep = &_dep;
1891
1892   init_dep (dep, elem, cur_insn, ds_to_dt (ds));
1893   if (mark_as_hard)
1894     DEP_NONREG (dep) = 1;
1895   maybe_add_or_update_dep_1 (dep, false, NULL_RTX, NULL_RTX);
1896 }
1897
1898 static void
1899 note_reg_use (int r)
1900 {
1901   if (sched_deps_info->note_reg_use)
1902     sched_deps_info->note_reg_use (r);
1903 }
1904
1905 static void
1906 note_reg_set (int r)
1907 {
1908   if (sched_deps_info->note_reg_set)
1909     sched_deps_info->note_reg_set (r);
1910 }
1911
1912 static void
1913 note_reg_clobber (int r)
1914 {
1915   if (sched_deps_info->note_reg_clobber)
1916     sched_deps_info->note_reg_clobber (r);
1917 }
1918
1919 static void
1920 note_mem_dep (rtx m1, rtx m2, rtx_insn *e, ds_t ds)
1921 {
1922   if (sched_deps_info->note_mem_dep)
1923     sched_deps_info->note_mem_dep (m1, m2, e, ds);
1924 }
1925
1926 static void
1927 note_dep (rtx_insn *e, ds_t ds)
1928 {
1929   if (sched_deps_info->note_dep)
1930     sched_deps_info->note_dep (e, ds);
1931 }
1932
1933 /* Return corresponding to DS reg_note.  */
1934 enum reg_note
1935 ds_to_dt (ds_t ds)
1936 {
1937   if (ds & DEP_TRUE)
1938     return REG_DEP_TRUE;
1939   else if (ds & DEP_OUTPUT)
1940     return REG_DEP_OUTPUT;
1941   else if (ds & DEP_ANTI)
1942     return REG_DEP_ANTI;
1943   else
1944     {
1945       gcc_assert (ds & DEP_CONTROL);
1946       return REG_DEP_CONTROL;
1947     }
1948 }
1949
1950 \f
1951
1952 /* Functions for computation of info needed for register pressure
1953    sensitive insn scheduling.  */
1954
1955
1956 /* Allocate and return reg_use_data structure for REGNO and INSN.  */
1957 static struct reg_use_data *
1958 create_insn_reg_use (int regno, rtx_insn *insn)
1959 {
1960   struct reg_use_data *use;
1961
1962   use = (struct reg_use_data *) xmalloc (sizeof (struct reg_use_data));
1963   use->regno = regno;
1964   use->insn = insn;
1965   use->next_insn_use = INSN_REG_USE_LIST (insn);
1966   INSN_REG_USE_LIST (insn) = use;
1967   return use;
1968 }
1969
1970 /* Allocate reg_set_data structure for REGNO and INSN.  */
1971 static void
1972 create_insn_reg_set (int regno, rtx insn)
1973 {
1974   struct reg_set_data *set;
1975
1976   set = (struct reg_set_data *) xmalloc (sizeof (struct reg_set_data));
1977   set->regno = regno;
1978   set->insn = insn;
1979   set->next_insn_set = INSN_REG_SET_LIST (insn);
1980   INSN_REG_SET_LIST (insn) = set;
1981 }
1982
1983 /* Set up insn register uses for INSN and dependency context DEPS.  */
1984 static void
1985 setup_insn_reg_uses (struct deps_desc *deps, rtx_insn *insn)
1986 {
1987   unsigned i;
1988   reg_set_iterator rsi;
1989   struct reg_use_data *use, *use2, *next;
1990   struct deps_reg *reg_last;
1991
1992   EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
1993     {
1994       if (i < FIRST_PSEUDO_REGISTER
1995           && TEST_HARD_REG_BIT (ira_no_alloc_regs, i))
1996         continue;
1997
1998       if (find_regno_note (insn, REG_DEAD, i) == NULL_RTX
1999           && ! REGNO_REG_SET_P (reg_pending_sets, i)
2000           && ! REGNO_REG_SET_P (reg_pending_clobbers, i))
2001         /* Ignore use which is not dying.  */
2002         continue;
2003
2004       use = create_insn_reg_use (i, insn);
2005       use->next_regno_use = use;
2006       reg_last = &deps->reg_last[i];
2007
2008       /* Create the cycle list of uses.  */
2009       for (rtx_insn_list *list = reg_last->uses; list; list = list->next ())
2010         {
2011           use2 = create_insn_reg_use (i, list->insn ());
2012           next = use->next_regno_use;
2013           use->next_regno_use = use2;
2014           use2->next_regno_use = next;
2015         }
2016     }
2017 }
2018
2019 /* Register pressure info for the currently processed insn.  */
2020 static struct reg_pressure_data reg_pressure_info[N_REG_CLASSES];
2021
2022 /* Return TRUE if INSN has the use structure for REGNO.  */
2023 static bool
2024 insn_use_p (rtx insn, int regno)
2025 {
2026   struct reg_use_data *use;
2027
2028   for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2029     if (use->regno == regno)
2030       return true;
2031   return false;
2032 }
2033
2034 /* Update the register pressure info after birth of pseudo register REGNO
2035    in INSN.  Arguments CLOBBER_P and UNUSED_P say correspondingly that
2036    the register is in clobber or unused after the insn.  */
2037 static void
2038 mark_insn_pseudo_birth (rtx insn, int regno, bool clobber_p, bool unused_p)
2039 {
2040   int incr, new_incr;
2041   enum reg_class cl;
2042
2043   gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2044   cl = sched_regno_pressure_class[regno];
2045   if (cl != NO_REGS)
2046     {
2047       incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2048       if (clobber_p)
2049         {
2050           new_incr = reg_pressure_info[cl].clobber_increase + incr;
2051           reg_pressure_info[cl].clobber_increase = new_incr;
2052         }
2053       else if (unused_p)
2054         {
2055           new_incr = reg_pressure_info[cl].unused_set_increase + incr;
2056           reg_pressure_info[cl].unused_set_increase = new_incr;
2057         }
2058       else
2059         {
2060           new_incr = reg_pressure_info[cl].set_increase + incr;
2061           reg_pressure_info[cl].set_increase = new_incr;
2062           if (! insn_use_p (insn, regno))
2063             reg_pressure_info[cl].change += incr;
2064           create_insn_reg_set (regno, insn);
2065         }
2066       gcc_assert (new_incr < (1 << INCREASE_BITS));
2067     }
2068 }
2069
2070 /* Like mark_insn_pseudo_regno_birth except that NREGS saying how many
2071    hard registers involved in the birth.  */
2072 static void
2073 mark_insn_hard_regno_birth (rtx insn, int regno, int nregs,
2074                             bool clobber_p, bool unused_p)
2075 {
2076   enum reg_class cl;
2077   int new_incr, last = regno + nregs;
2078
2079   while (regno < last)
2080     {
2081       gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2082       if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2083         {
2084           cl = sched_regno_pressure_class[regno];
2085           if (cl != NO_REGS)
2086             {
2087               if (clobber_p)
2088                 {
2089                   new_incr = reg_pressure_info[cl].clobber_increase + 1;
2090                   reg_pressure_info[cl].clobber_increase = new_incr;
2091                 }
2092               else if (unused_p)
2093                 {
2094                   new_incr = reg_pressure_info[cl].unused_set_increase + 1;
2095                   reg_pressure_info[cl].unused_set_increase = new_incr;
2096                 }
2097               else
2098                 {
2099                   new_incr = reg_pressure_info[cl].set_increase + 1;
2100                   reg_pressure_info[cl].set_increase = new_incr;
2101                   if (! insn_use_p (insn, regno))
2102                     reg_pressure_info[cl].change += 1;
2103                   create_insn_reg_set (regno, insn);
2104                 }
2105               gcc_assert (new_incr < (1 << INCREASE_BITS));
2106             }
2107         }
2108       regno++;
2109     }
2110 }
2111
2112 /* Update the register pressure info after birth of pseudo or hard
2113    register REG in INSN.  Arguments CLOBBER_P and UNUSED_P say
2114    correspondingly that the register is in clobber or unused after the
2115    insn.  */
2116 static void
2117 mark_insn_reg_birth (rtx insn, rtx reg, bool clobber_p, bool unused_p)
2118 {
2119   int regno;
2120
2121   if (GET_CODE (reg) == SUBREG)
2122     reg = SUBREG_REG (reg);
2123
2124   if (! REG_P (reg))
2125     return;
2126
2127   regno = REGNO (reg);
2128   if (regno < FIRST_PSEUDO_REGISTER)
2129     mark_insn_hard_regno_birth (insn, regno,
2130                                 hard_regno_nregs[regno][GET_MODE (reg)],
2131                                 clobber_p, unused_p);
2132   else
2133     mark_insn_pseudo_birth (insn, regno, clobber_p, unused_p);
2134 }
2135
2136 /* Update the register pressure info after death of pseudo register
2137    REGNO.  */
2138 static void
2139 mark_pseudo_death (int regno)
2140 {
2141   int incr;
2142   enum reg_class cl;
2143
2144   gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2145   cl = sched_regno_pressure_class[regno];
2146   if (cl != NO_REGS)
2147     {
2148       incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2149       reg_pressure_info[cl].change -= incr;
2150     }
2151 }
2152
2153 /* Like mark_pseudo_death except that NREGS saying how many hard
2154    registers involved in the death.  */
2155 static void
2156 mark_hard_regno_death (int regno, int nregs)
2157 {
2158   enum reg_class cl;
2159   int last = regno + nregs;
2160
2161   while (regno < last)
2162     {
2163       gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2164       if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2165         {
2166           cl = sched_regno_pressure_class[regno];
2167           if (cl != NO_REGS)
2168             reg_pressure_info[cl].change -= 1;
2169         }
2170       regno++;
2171     }
2172 }
2173
2174 /* Update the register pressure info after death of pseudo or hard
2175    register REG.  */
2176 static void
2177 mark_reg_death (rtx reg)
2178 {
2179   int regno;
2180
2181   if (GET_CODE (reg) == SUBREG)
2182     reg = SUBREG_REG (reg);
2183
2184   if (! REG_P (reg))
2185     return;
2186
2187   regno = REGNO (reg);
2188   if (regno < FIRST_PSEUDO_REGISTER)
2189     mark_hard_regno_death (regno, hard_regno_nregs[regno][GET_MODE (reg)]);
2190   else
2191     mark_pseudo_death (regno);
2192 }
2193
2194 /* Process SETTER of REG.  DATA is an insn containing the setter.  */
2195 static void
2196 mark_insn_reg_store (rtx reg, const_rtx setter, void *data)
2197 {
2198   if (setter != NULL_RTX && GET_CODE (setter) != SET)
2199     return;
2200   mark_insn_reg_birth
2201     ((rtx) data, reg, false,
2202      find_reg_note ((const_rtx) data, REG_UNUSED, reg) != NULL_RTX);
2203 }
2204
2205 /* Like mark_insn_reg_store except notice just CLOBBERs; ignore SETs.  */
2206 static void
2207 mark_insn_reg_clobber (rtx reg, const_rtx setter, void *data)
2208 {
2209   if (GET_CODE (setter) == CLOBBER)
2210     mark_insn_reg_birth ((rtx) data, reg, true, false);
2211 }
2212
2213 /* Set up reg pressure info related to INSN.  */
2214 void
2215 init_insn_reg_pressure_info (rtx insn)
2216 {
2217   int i, len;
2218   enum reg_class cl;
2219   static struct reg_pressure_data *pressure_info;
2220   rtx link;
2221
2222   gcc_assert (sched_pressure != SCHED_PRESSURE_NONE);
2223
2224   if (! INSN_P (insn))
2225     return;
2226
2227   for (i = 0; i < ira_pressure_classes_num; i++)
2228     {
2229       cl = ira_pressure_classes[i];
2230       reg_pressure_info[cl].clobber_increase = 0;
2231       reg_pressure_info[cl].set_increase = 0;
2232       reg_pressure_info[cl].unused_set_increase = 0;
2233       reg_pressure_info[cl].change = 0;
2234     }
2235
2236   note_stores (PATTERN (insn), mark_insn_reg_clobber, insn);
2237
2238   note_stores (PATTERN (insn), mark_insn_reg_store, insn);
2239
2240 #ifdef AUTO_INC_DEC
2241   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2242     if (REG_NOTE_KIND (link) == REG_INC)
2243       mark_insn_reg_store (XEXP (link, 0), NULL_RTX, insn);
2244 #endif
2245
2246   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2247     if (REG_NOTE_KIND (link) == REG_DEAD)
2248       mark_reg_death (XEXP (link, 0));
2249
2250   len = sizeof (struct reg_pressure_data) * ira_pressure_classes_num;
2251   pressure_info
2252     = INSN_REG_PRESSURE (insn) = (struct reg_pressure_data *) xmalloc (len);
2253   if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2254     INSN_MAX_REG_PRESSURE (insn) = (int *) xcalloc (ira_pressure_classes_num
2255                                                     * sizeof (int), 1);
2256   for (i = 0; i < ira_pressure_classes_num; i++)
2257     {
2258       cl = ira_pressure_classes[i];
2259       pressure_info[i].clobber_increase
2260         = reg_pressure_info[cl].clobber_increase;
2261       pressure_info[i].set_increase = reg_pressure_info[cl].set_increase;
2262       pressure_info[i].unused_set_increase
2263         = reg_pressure_info[cl].unused_set_increase;
2264       pressure_info[i].change = reg_pressure_info[cl].change;
2265     }
2266 }
2267
2268
2269 \f
2270
2271 /* Internal variable for sched_analyze_[12] () functions.
2272    If it is nonzero, this means that sched_analyze_[12] looks
2273    at the most toplevel SET.  */
2274 static bool can_start_lhs_rhs_p;
2275
2276 /* Extend reg info for the deps context DEPS given that
2277    we have just generated a register numbered REGNO.  */
2278 static void
2279 extend_deps_reg_info (struct deps_desc *deps, int regno)
2280 {
2281   int max_regno = regno + 1;
2282
2283   gcc_assert (!reload_completed);
2284
2285   /* In a readonly context, it would not hurt to extend info,
2286      but it should not be needed.  */
2287   if (reload_completed && deps->readonly)
2288     {
2289       deps->max_reg = max_regno;
2290       return;
2291     }
2292
2293   if (max_regno > deps->max_reg)
2294     {
2295       deps->reg_last = XRESIZEVEC (struct deps_reg, deps->reg_last,
2296                                    max_regno);
2297       memset (&deps->reg_last[deps->max_reg],
2298               0, (max_regno - deps->max_reg)
2299               * sizeof (struct deps_reg));
2300       deps->max_reg = max_regno;
2301     }
2302 }
2303
2304 /* Extends REG_INFO_P if needed.  */
2305 void
2306 maybe_extend_reg_info_p (void)
2307 {
2308   /* Extend REG_INFO_P, if needed.  */
2309   if ((unsigned int)max_regno - 1 >= reg_info_p_size)
2310     {
2311       size_t new_reg_info_p_size = max_regno + 128;
2312
2313       gcc_assert (!reload_completed && sel_sched_p ());
2314
2315       reg_info_p = (struct reg_info_t *) xrecalloc (reg_info_p,
2316                                                     new_reg_info_p_size,
2317                                                     reg_info_p_size,
2318                                                     sizeof (*reg_info_p));
2319       reg_info_p_size = new_reg_info_p_size;
2320     }
2321 }
2322
2323 /* Analyze a single reference to register (reg:MODE REGNO) in INSN.
2324    The type of the reference is specified by REF and can be SET,
2325    CLOBBER, PRE_DEC, POST_DEC, PRE_INC, POST_INC or USE.  */
2326
2327 static void
2328 sched_analyze_reg (struct deps_desc *deps, int regno, machine_mode mode,
2329                    enum rtx_code ref, rtx_insn *insn)
2330 {
2331   /* We could emit new pseudos in renaming.  Extend the reg structures.  */
2332   if (!reload_completed && sel_sched_p ()
2333       && (regno >= max_reg_num () - 1 || regno >= deps->max_reg))
2334     extend_deps_reg_info (deps, regno);
2335
2336   maybe_extend_reg_info_p ();
2337
2338   /* A hard reg in a wide mode may really be multiple registers.
2339      If so, mark all of them just like the first.  */
2340   if (regno < FIRST_PSEUDO_REGISTER)
2341     {
2342       int i = hard_regno_nregs[regno][mode];
2343       if (ref == SET)
2344         {
2345           while (--i >= 0)
2346             note_reg_set (regno + i);
2347         }
2348       else if (ref == USE)
2349         {
2350           while (--i >= 0)
2351             note_reg_use (regno + i);
2352         }
2353       else
2354         {
2355           while (--i >= 0)
2356             note_reg_clobber (regno + i);
2357         }
2358     }
2359
2360   /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
2361      it does not reload.  Ignore these as they have served their
2362      purpose already.  */
2363   else if (regno >= deps->max_reg)
2364     {
2365       enum rtx_code code = GET_CODE (PATTERN (insn));
2366       gcc_assert (code == USE || code == CLOBBER);
2367     }
2368
2369   else
2370     {
2371       if (ref == SET)
2372         note_reg_set (regno);
2373       else if (ref == USE)
2374         note_reg_use (regno);
2375       else
2376         note_reg_clobber (regno);
2377
2378       /* Pseudos that are REG_EQUIV to something may be replaced
2379          by that during reloading.  We need only add dependencies for
2380         the address in the REG_EQUIV note.  */
2381       if (!reload_completed && get_reg_known_equiv_p (regno))
2382         {
2383           rtx t = get_reg_known_value (regno);
2384           if (MEM_P (t))
2385             sched_analyze_2 (deps, XEXP (t, 0), insn);
2386         }
2387
2388       /* Don't let it cross a call after scheduling if it doesn't
2389          already cross one.  */
2390       if (REG_N_CALLS_CROSSED (regno) == 0)
2391         {
2392           if (!deps->readonly && ref == USE && !DEBUG_INSN_P (insn))
2393             deps->sched_before_next_call
2394               = alloc_INSN_LIST (insn, deps->sched_before_next_call);
2395           else
2396             add_dependence_list (insn, deps->last_function_call, 1,
2397                                  REG_DEP_ANTI, false);
2398         }
2399     }
2400 }
2401
2402 /* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
2403    rtx, X, creating all dependencies generated by the write to the
2404    destination of X, and reads of everything mentioned.  */
2405
2406 static void
2407 sched_analyze_1 (struct deps_desc *deps, rtx x, rtx_insn *insn)
2408 {
2409   rtx dest = XEXP (x, 0);
2410   enum rtx_code code = GET_CODE (x);
2411   bool cslr_p = can_start_lhs_rhs_p;
2412
2413   can_start_lhs_rhs_p = false;
2414
2415   gcc_assert (dest);
2416   if (dest == 0)
2417     return;
2418
2419   if (cslr_p && sched_deps_info->start_lhs)
2420     sched_deps_info->start_lhs (dest);
2421
2422   if (GET_CODE (dest) == PARALLEL)
2423     {
2424       int i;
2425
2426       for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2427         if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
2428           sched_analyze_1 (deps,
2429                            gen_rtx_CLOBBER (VOIDmode,
2430                                             XEXP (XVECEXP (dest, 0, i), 0)),
2431                            insn);
2432
2433       if (cslr_p && sched_deps_info->finish_lhs)
2434         sched_deps_info->finish_lhs ();
2435
2436       if (code == SET)
2437         {
2438           can_start_lhs_rhs_p = cslr_p;
2439
2440           sched_analyze_2 (deps, SET_SRC (x), insn);
2441
2442           can_start_lhs_rhs_p = false;
2443         }
2444
2445       return;
2446     }
2447
2448   while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
2449          || GET_CODE (dest) == ZERO_EXTRACT)
2450     {
2451       if (GET_CODE (dest) == STRICT_LOW_PART
2452          || GET_CODE (dest) == ZERO_EXTRACT
2453          || df_read_modify_subreg_p (dest))
2454         {
2455           /* These both read and modify the result.  We must handle
2456              them as writes to get proper dependencies for following
2457              instructions.  We must handle them as reads to get proper
2458              dependencies from this to previous instructions.
2459              Thus we need to call sched_analyze_2.  */
2460
2461           sched_analyze_2 (deps, XEXP (dest, 0), insn);
2462         }
2463       if (GET_CODE (dest) == ZERO_EXTRACT)
2464         {
2465           /* The second and third arguments are values read by this insn.  */
2466           sched_analyze_2 (deps, XEXP (dest, 1), insn);
2467           sched_analyze_2 (deps, XEXP (dest, 2), insn);
2468         }
2469       dest = XEXP (dest, 0);
2470     }
2471
2472   if (REG_P (dest))
2473     {
2474       int regno = REGNO (dest);
2475       machine_mode mode = GET_MODE (dest);
2476
2477       sched_analyze_reg (deps, regno, mode, code, insn);
2478
2479 #ifdef STACK_REGS
2480       /* Treat all writes to a stack register as modifying the TOS.  */
2481       if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2482         {
2483           /* Avoid analyzing the same register twice.  */
2484           if (regno != FIRST_STACK_REG)
2485             sched_analyze_reg (deps, FIRST_STACK_REG, mode, code, insn);
2486
2487           add_to_hard_reg_set (&implicit_reg_pending_uses, mode,
2488                                FIRST_STACK_REG);
2489         }
2490 #endif
2491     }
2492   else if (MEM_P (dest))
2493     {
2494       /* Writing memory.  */
2495       rtx t = dest;
2496
2497       if (sched_deps_info->use_cselib)
2498         {
2499           machine_mode address_mode = get_address_mode (dest);
2500
2501           t = shallow_copy_rtx (dest);
2502           cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2503                                    GET_MODE (t), insn);
2504           XEXP (t, 0)
2505             = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2506                                                 insn);
2507         }
2508       t = canon_rtx (t);
2509
2510       /* Pending lists can't get larger with a readonly context.  */
2511       if (!deps->readonly
2512           && ((deps->pending_read_list_length + deps->pending_write_list_length)
2513               >= MAX_PENDING_LIST_LENGTH))
2514         {
2515           /* Flush all pending reads and writes to prevent the pending lists
2516              from getting any larger.  Insn scheduling runs too slowly when
2517              these lists get long.  When compiling GCC with itself,
2518              this flush occurs 8 times for sparc, and 10 times for m88k using
2519              the default value of 32.  */
2520           flush_pending_lists (deps, insn, false, true);
2521         }
2522       else
2523         {
2524           rtx_insn_list *pending;
2525           rtx_expr_list *pending_mem;
2526
2527           pending = deps->pending_read_insns;
2528           pending_mem = deps->pending_read_mems;
2529           while (pending)
2530             {
2531               if (anti_dependence (pending_mem->element (), t)
2532                   && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
2533                 note_mem_dep (t, pending_mem->element (), pending->insn (),
2534                               DEP_ANTI);
2535
2536               pending = pending->next ();
2537               pending_mem = pending_mem->next ();
2538             }
2539
2540           pending = deps->pending_write_insns;
2541           pending_mem = deps->pending_write_mems;
2542           while (pending)
2543             {
2544               if (output_dependence (pending_mem->element (), t)
2545                   && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
2546                 note_mem_dep (t, pending_mem->element (),
2547                               pending->insn (),
2548                               DEP_OUTPUT);
2549
2550               pending = pending->next ();
2551               pending_mem = pending_mem-> next ();
2552             }
2553
2554           add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2555                                REG_DEP_ANTI, true);
2556           add_dependence_list (insn, deps->pending_jump_insns, 1,
2557                                REG_DEP_CONTROL, true);
2558
2559           if (!deps->readonly)
2560             add_insn_mem_dependence (deps, false, insn, dest);
2561         }
2562       sched_analyze_2 (deps, XEXP (dest, 0), insn);
2563     }
2564
2565   if (cslr_p && sched_deps_info->finish_lhs)
2566     sched_deps_info->finish_lhs ();
2567
2568   /* Analyze reads.  */
2569   if (GET_CODE (x) == SET)
2570     {
2571       can_start_lhs_rhs_p = cslr_p;
2572
2573       sched_analyze_2 (deps, SET_SRC (x), insn);
2574
2575       can_start_lhs_rhs_p = false;
2576     }
2577 }
2578
2579 /* Analyze the uses of memory and registers in rtx X in INSN.  */
2580 static void
2581 sched_analyze_2 (struct deps_desc *deps, rtx x, rtx_insn *insn)
2582 {
2583   int i;
2584   int j;
2585   enum rtx_code code;
2586   const char *fmt;
2587   bool cslr_p = can_start_lhs_rhs_p;
2588
2589   can_start_lhs_rhs_p = false;
2590
2591   gcc_assert (x);
2592   if (x == 0)
2593     return;
2594
2595   if (cslr_p && sched_deps_info->start_rhs)
2596     sched_deps_info->start_rhs (x);
2597
2598   code = GET_CODE (x);
2599
2600   switch (code)
2601     {
2602     CASE_CONST_ANY:
2603     case SYMBOL_REF:
2604     case CONST:
2605     case LABEL_REF:
2606       /* Ignore constants.  */
2607       if (cslr_p && sched_deps_info->finish_rhs)
2608         sched_deps_info->finish_rhs ();
2609
2610       return;
2611
2612 #ifdef HAVE_cc0
2613     case CC0:
2614       /* User of CC0 depends on immediately preceding insn.  */
2615       SCHED_GROUP_P (insn) = 1;
2616        /* Don't move CC0 setter to another block (it can set up the
2617         same flag for previous CC0 users which is safe).  */
2618       CANT_MOVE (prev_nonnote_insn (insn)) = 1;
2619
2620       if (cslr_p && sched_deps_info->finish_rhs)
2621         sched_deps_info->finish_rhs ();
2622
2623       return;
2624 #endif
2625
2626     case REG:
2627       {
2628         int regno = REGNO (x);
2629         machine_mode mode = GET_MODE (x);
2630
2631         sched_analyze_reg (deps, regno, mode, USE, insn);
2632
2633 #ifdef STACK_REGS
2634       /* Treat all reads of a stack register as modifying the TOS.  */
2635       if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2636         {
2637           /* Avoid analyzing the same register twice.  */
2638           if (regno != FIRST_STACK_REG)
2639             sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn);
2640           sched_analyze_reg (deps, FIRST_STACK_REG, mode, SET, insn);
2641         }
2642 #endif
2643
2644         if (cslr_p && sched_deps_info->finish_rhs)
2645           sched_deps_info->finish_rhs ();
2646
2647         return;
2648       }
2649
2650     case MEM:
2651       {
2652         /* Reading memory.  */
2653         rtx u;
2654         rtx_insn_list *pending;
2655         rtx_expr_list *pending_mem;
2656         rtx t = x;
2657
2658         if (sched_deps_info->use_cselib)
2659           {
2660             machine_mode address_mode = get_address_mode (t);
2661
2662             t = shallow_copy_rtx (t);
2663             cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2664                                      GET_MODE (t), insn);
2665             XEXP (t, 0)
2666               = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2667                                                   insn);
2668           }
2669
2670         if (!DEBUG_INSN_P (insn))
2671           {
2672             t = canon_rtx (t);
2673             pending = deps->pending_read_insns;
2674             pending_mem = deps->pending_read_mems;
2675             while (pending)
2676               {
2677                 if (read_dependence (pending_mem->element (), t)
2678                     && ! sched_insns_conditions_mutex_p (insn,
2679                                                          pending->insn ()))
2680                   note_mem_dep (t, pending_mem->element (),
2681                                 pending->insn (),
2682                                 DEP_ANTI);
2683
2684                 pending = pending->next ();
2685                 pending_mem = pending_mem->next ();
2686               }
2687
2688             pending = deps->pending_write_insns;
2689             pending_mem = deps->pending_write_mems;
2690             while (pending)
2691               {
2692                 if (true_dependence (pending_mem->element (), VOIDmode, t)
2693                     && ! sched_insns_conditions_mutex_p (insn,
2694                                                          pending->insn ()))
2695                   note_mem_dep (t, pending_mem->element (),
2696                                 pending->insn (),
2697                                 sched_deps_info->generate_spec_deps
2698                                 ? BEGIN_DATA | DEP_TRUE : DEP_TRUE);
2699
2700                 pending = pending->next ();
2701                 pending_mem = pending_mem->next ();
2702               }
2703
2704             for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
2705               add_dependence (insn, as_a <rtx_insn *> (XEXP (u, 0)),
2706                               REG_DEP_ANTI);
2707
2708             for (u = deps->pending_jump_insns; u; u = XEXP (u, 1))
2709               if (deps_may_trap_p (x))
2710                 {
2711                   if ((sched_deps_info->generate_spec_deps)
2712                       && sel_sched_p () && (spec_info->mask & BEGIN_CONTROL))
2713                     {
2714                       ds_t ds = set_dep_weak (DEP_ANTI, BEGIN_CONTROL,
2715                                               MAX_DEP_WEAK);
2716                       
2717                       note_dep (as_a <rtx_insn *> (XEXP (u, 0)), ds);
2718                     }
2719                   else
2720                     add_dependence (insn, as_a <rtx_insn *> (XEXP (u, 0)),
2721                                     REG_DEP_CONTROL);
2722                 }
2723           }
2724
2725         /* Always add these dependencies to pending_reads, since
2726            this insn may be followed by a write.  */
2727         if (!deps->readonly)
2728           {
2729             if ((deps->pending_read_list_length
2730                  + deps->pending_write_list_length)
2731                 >= MAX_PENDING_LIST_LENGTH
2732                 && !DEBUG_INSN_P (insn))
2733               flush_pending_lists (deps, insn, true, true);
2734             add_insn_mem_dependence (deps, true, insn, x);
2735           }
2736
2737         sched_analyze_2 (deps, XEXP (x, 0), insn);
2738
2739         if (cslr_p && sched_deps_info->finish_rhs)
2740           sched_deps_info->finish_rhs ();
2741
2742         return;
2743       }
2744
2745     /* Force pending stores to memory in case a trap handler needs them.
2746        Also force pending loads from memory; loads and stores can segfault
2747        and the signal handler won't be triggered if the trap insn was moved
2748        above load or store insn.  */
2749     case TRAP_IF:
2750       flush_pending_lists (deps, insn, true, true);
2751       break;
2752
2753     case PREFETCH:
2754       if (PREFETCH_SCHEDULE_BARRIER_P (x))
2755         reg_pending_barrier = TRUE_BARRIER;
2756       /* Prefetch insn contains addresses only.  So if the prefetch
2757          address has no registers, there will be no dependencies on
2758          the prefetch insn.  This is wrong with result code
2759          correctness point of view as such prefetch can be moved below
2760          a jump insn which usually generates MOVE_BARRIER preventing
2761          to move insns containing registers or memories through the
2762          barrier.  It is also wrong with generated code performance
2763          point of view as prefetch withouth dependecies will have a
2764          tendency to be issued later instead of earlier.  It is hard
2765          to generate accurate dependencies for prefetch insns as
2766          prefetch has only the start address but it is better to have
2767          something than nothing.  */
2768       if (!deps->readonly)
2769         {
2770           rtx x = gen_rtx_MEM (Pmode, XEXP (PATTERN (insn), 0));
2771           if (sched_deps_info->use_cselib)
2772             cselib_lookup_from_insn (x, Pmode, true, VOIDmode, insn);
2773           add_insn_mem_dependence (deps, true, insn, x);
2774         }
2775       break;
2776
2777     case UNSPEC_VOLATILE:
2778       flush_pending_lists (deps, insn, true, true);
2779       /* FALLTHRU */
2780
2781     case ASM_OPERANDS:
2782     case ASM_INPUT:
2783       {
2784         /* Traditional and volatile asm instructions must be considered to use
2785            and clobber all hard registers, all pseudo-registers and all of
2786            memory.  So must TRAP_IF and UNSPEC_VOLATILE operations.
2787
2788            Consider for instance a volatile asm that changes the fpu rounding
2789            mode.  An insn should not be moved across this even if it only uses
2790            pseudo-regs because it might give an incorrectly rounded result.  */
2791         if ((code != ASM_OPERANDS || MEM_VOLATILE_P (x))
2792             && !DEBUG_INSN_P (insn))
2793           reg_pending_barrier = TRUE_BARRIER;
2794
2795         /* For all ASM_OPERANDS, we must traverse the vector of input operands.
2796            We can not just fall through here since then we would be confused
2797            by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
2798            traditional asms unlike their normal usage.  */
2799
2800         if (code == ASM_OPERANDS)
2801           {
2802             for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
2803               sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
2804
2805             if (cslr_p && sched_deps_info->finish_rhs)
2806               sched_deps_info->finish_rhs ();
2807
2808             return;
2809           }
2810         break;
2811       }
2812
2813     case PRE_DEC:
2814     case POST_DEC:
2815     case PRE_INC:
2816     case POST_INC:
2817       /* These both read and modify the result.  We must handle them as writes
2818          to get proper dependencies for following instructions.  We must handle
2819          them as reads to get proper dependencies from this to previous
2820          instructions.  Thus we need to pass them to both sched_analyze_1
2821          and sched_analyze_2.  We must call sched_analyze_2 first in order
2822          to get the proper antecedent for the read.  */
2823       sched_analyze_2 (deps, XEXP (x, 0), insn);
2824       sched_analyze_1 (deps, x, insn);
2825
2826       if (cslr_p && sched_deps_info->finish_rhs)
2827         sched_deps_info->finish_rhs ();
2828
2829       return;
2830
2831     case POST_MODIFY:
2832     case PRE_MODIFY:
2833       /* op0 = op0 + op1 */
2834       sched_analyze_2 (deps, XEXP (x, 0), insn);
2835       sched_analyze_2 (deps, XEXP (x, 1), insn);
2836       sched_analyze_1 (deps, x, insn);
2837
2838       if (cslr_p && sched_deps_info->finish_rhs)
2839         sched_deps_info->finish_rhs ();
2840
2841       return;
2842
2843     default:
2844       break;
2845     }
2846
2847   /* Other cases: walk the insn.  */
2848   fmt = GET_RTX_FORMAT (code);
2849   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2850     {
2851       if (fmt[i] == 'e')
2852         sched_analyze_2 (deps, XEXP (x, i), insn);
2853       else if (fmt[i] == 'E')
2854         for (j = 0; j < XVECLEN (x, i); j++)
2855           sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
2856     }
2857
2858   if (cslr_p && sched_deps_info->finish_rhs)
2859     sched_deps_info->finish_rhs ();
2860 }
2861
2862 /* Try to group two fuseable insns together to prevent scheduler
2863    from scheduling them apart.  */
2864
2865 static void
2866 sched_macro_fuse_insns (rtx_insn *insn)
2867 {
2868   rtx_insn *prev;
2869
2870   if (any_condjump_p (insn))
2871     {
2872       unsigned int condreg1, condreg2;
2873       rtx cc_reg_1;
2874       targetm.fixed_condition_code_regs (&condreg1, &condreg2);
2875       cc_reg_1 = gen_rtx_REG (CCmode, condreg1);
2876       prev = prev_nonnote_nondebug_insn (insn);
2877       if (!reg_referenced_p (cc_reg_1, PATTERN (insn))
2878           || !prev
2879           || !modified_in_p (cc_reg_1, prev))
2880         return;
2881     }
2882   else
2883     {
2884       rtx insn_set = single_set (insn);
2885
2886       prev = prev_nonnote_nondebug_insn (insn);
2887       if (!prev
2888           || !insn_set
2889           || !single_set (prev))
2890         return;
2891
2892     }
2893
2894   if (targetm.sched.macro_fusion_pair_p (prev, insn))
2895     SCHED_GROUP_P (insn) = 1;
2896
2897 }
2898
2899 /* Get the implicit reg pending clobbers for INSN and save them in TEMP.  */
2900 void
2901 get_implicit_reg_pending_clobbers (HARD_REG_SET *temp, rtx_insn *insn)
2902 {
2903   extract_insn (insn);
2904   preprocess_constraints (insn);
2905   alternative_mask preferred = get_preferred_alternatives (insn);
2906   ira_implicitly_set_insn_hard_regs (temp, preferred);
2907   AND_COMPL_HARD_REG_SET (*temp, ira_no_alloc_regs);
2908 }
2909
2910 /* Analyze an INSN with pattern X to find all dependencies.  */
2911 static void
2912 sched_analyze_insn (struct deps_desc *deps, rtx x, rtx_insn *insn)
2913 {
2914   RTX_CODE code = GET_CODE (x);
2915   rtx link;
2916   unsigned i;
2917   reg_set_iterator rsi;
2918
2919   if (! reload_completed)
2920     {
2921       HARD_REG_SET temp;
2922       get_implicit_reg_pending_clobbers (&temp, insn);
2923       IOR_HARD_REG_SET (implicit_reg_pending_clobbers, temp);
2924     }
2925
2926   can_start_lhs_rhs_p = (NONJUMP_INSN_P (insn)
2927                          && code == SET);
2928
2929   /* Group compare and branch insns for macro-fusion.  */
2930   if (targetm.sched.macro_fusion_p
2931       && targetm.sched.macro_fusion_p ())
2932     sched_macro_fuse_insns (insn);
2933
2934   if (may_trap_p (x))
2935     /* Avoid moving trapping instructions across function calls that might
2936        not always return.  */
2937     add_dependence_list (insn, deps->last_function_call_may_noreturn,
2938                          1, REG_DEP_ANTI, true);
2939
2940   /* We must avoid creating a situation in which two successors of the
2941      current block have different unwind info after scheduling.  If at any
2942      point the two paths re-join this leads to incorrect unwind info.  */
2943   /* ??? There are certain situations involving a forced frame pointer in
2944      which, with extra effort, we could fix up the unwind info at a later
2945      CFG join.  However, it seems better to notice these cases earlier
2946      during prologue generation and avoid marking the frame pointer setup
2947      as frame-related at all.  */
2948   if (RTX_FRAME_RELATED_P (insn))
2949     {
2950       /* Make sure prologue insn is scheduled before next jump.  */
2951       deps->sched_before_next_jump
2952         = alloc_INSN_LIST (insn, deps->sched_before_next_jump);
2953
2954       /* Make sure epilogue insn is scheduled after preceding jumps.  */
2955       add_dependence_list (insn, deps->pending_jump_insns, 1, REG_DEP_ANTI,
2956                            true);
2957     }
2958
2959   if (code == COND_EXEC)
2960     {
2961       sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
2962
2963       /* ??? Should be recording conditions so we reduce the number of
2964          false dependencies.  */
2965       x = COND_EXEC_CODE (x);
2966       code = GET_CODE (x);
2967     }
2968   if (code == SET || code == CLOBBER)
2969     {
2970       sched_analyze_1 (deps, x, insn);
2971
2972       /* Bare clobber insns are used for letting life analysis, reg-stack
2973          and others know that a value is dead.  Depend on the last call
2974          instruction so that reg-stack won't get confused.  */
2975       if (code == CLOBBER)
2976         add_dependence_list (insn, deps->last_function_call, 1,
2977                              REG_DEP_OUTPUT, true);
2978     }
2979   else if (code == PARALLEL)
2980     {
2981       for (i = XVECLEN (x, 0); i--;)
2982         {
2983           rtx sub = XVECEXP (x, 0, i);
2984           code = GET_CODE (sub);
2985
2986           if (code == COND_EXEC)
2987             {
2988               sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
2989               sub = COND_EXEC_CODE (sub);
2990               code = GET_CODE (sub);
2991             }
2992           if (code == SET || code == CLOBBER)
2993             sched_analyze_1 (deps, sub, insn);
2994           else
2995             sched_analyze_2 (deps, sub, insn);
2996         }
2997     }
2998   else
2999     sched_analyze_2 (deps, x, insn);
3000
3001   /* Mark registers CLOBBERED or used by called function.  */
3002   if (CALL_P (insn))
3003     {
3004       for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
3005         {
3006           if (GET_CODE (XEXP (link, 0)) == CLOBBER)
3007             sched_analyze_1 (deps, XEXP (link, 0), insn);
3008           else if (GET_CODE (XEXP (link, 0)) != SET)
3009             sched_analyze_2 (deps, XEXP (link, 0), insn);
3010         }
3011       /* Don't schedule anything after a tail call, tail call needs
3012          to use at least all call-saved registers.  */
3013       if (SIBLING_CALL_P (insn))
3014         reg_pending_barrier = TRUE_BARRIER;
3015       else if (find_reg_note (insn, REG_SETJMP, NULL))
3016         reg_pending_barrier = MOVE_BARRIER;
3017     }
3018
3019   if (JUMP_P (insn))
3020     {
3021       rtx next;
3022       next = next_nonnote_nondebug_insn (insn);
3023       if (next && BARRIER_P (next))
3024         reg_pending_barrier = MOVE_BARRIER;
3025       else
3026         {
3027           rtx_insn_list *pending;
3028           rtx_expr_list *pending_mem;
3029
3030           if (sched_deps_info->compute_jump_reg_dependencies)
3031             {
3032               (*sched_deps_info->compute_jump_reg_dependencies)
3033                 (insn, reg_pending_control_uses);
3034
3035               /* Make latency of jump equal to 0 by using anti-dependence.  */
3036               EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3037                 {
3038                   struct deps_reg *reg_last = &deps->reg_last[i];
3039                   add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI,
3040                                        false);
3041                   add_dependence_list (insn, reg_last->implicit_sets,
3042                                        0, REG_DEP_ANTI, false);
3043                   add_dependence_list (insn, reg_last->clobbers, 0,
3044                                        REG_DEP_ANTI, false);
3045                 }
3046             }
3047
3048           /* All memory writes and volatile reads must happen before the
3049              jump.  Non-volatile reads must happen before the jump iff
3050              the result is needed by the above register used mask.  */
3051
3052           pending = deps->pending_write_insns;
3053           pending_mem = deps->pending_write_mems;
3054           while (pending)
3055             {
3056               if (! sched_insns_conditions_mutex_p (insn, pending->insn ()))
3057                 add_dependence (insn, pending->insn (),
3058                                 REG_DEP_OUTPUT);
3059               pending = pending->next ();
3060               pending_mem = pending_mem->next ();
3061             }
3062
3063           pending = deps->pending_read_insns;
3064           pending_mem = deps->pending_read_mems;
3065           while (pending)
3066             {
3067               if (MEM_VOLATILE_P (pending_mem->element ())
3068                   && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
3069                 add_dependence (insn, pending->insn (),
3070                                 REG_DEP_OUTPUT);
3071               pending = pending->next ();
3072               pending_mem = pending_mem->next ();
3073             }
3074
3075           add_dependence_list (insn, deps->last_pending_memory_flush, 1,
3076                                REG_DEP_ANTI, true);
3077           add_dependence_list (insn, deps->pending_jump_insns, 1,
3078                                REG_DEP_ANTI, true);
3079         }
3080     }
3081
3082   /* If this instruction can throw an exception, then moving it changes
3083      where block boundaries fall.  This is mighty confusing elsewhere.
3084      Therefore, prevent such an instruction from being moved.  Same for
3085      non-jump instructions that define block boundaries.
3086      ??? Unclear whether this is still necessary in EBB mode.  If not,
3087      add_branch_dependences should be adjusted for RGN mode instead.  */
3088   if (((CALL_P (insn) || JUMP_P (insn)) && can_throw_internal (insn))
3089       || (NONJUMP_INSN_P (insn) && control_flow_insn_p (insn)))
3090     reg_pending_barrier = MOVE_BARRIER;
3091
3092   if (sched_pressure != SCHED_PRESSURE_NONE)
3093     {
3094       setup_insn_reg_uses (deps, insn);
3095       init_insn_reg_pressure_info (insn);
3096     }
3097
3098   /* Add register dependencies for insn.  */
3099   if (DEBUG_INSN_P (insn))
3100     {
3101       rtx_insn *prev = deps->last_debug_insn;
3102       rtx u;
3103
3104       if (!deps->readonly)
3105         deps->last_debug_insn = insn;
3106
3107       if (prev)
3108         add_dependence (insn, prev, REG_DEP_ANTI);
3109
3110       add_dependence_list (insn, deps->last_function_call, 1,
3111                            REG_DEP_ANTI, false);
3112
3113       if (!sel_sched_p ())
3114         for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
3115           add_dependence (insn, as_a <rtx_insn *> (XEXP (u, 0)), REG_DEP_ANTI);
3116
3117       EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3118         {
3119           struct deps_reg *reg_last = &deps->reg_last[i];
3120           add_dependence_list (insn, reg_last->sets, 1, REG_DEP_ANTI, false);
3121           /* There's no point in making REG_DEP_CONTROL dependencies for
3122              debug insns.  */
3123           add_dependence_list (insn, reg_last->clobbers, 1, REG_DEP_ANTI,
3124                                false);
3125
3126           if (!deps->readonly)
3127             reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3128         }
3129       CLEAR_REG_SET (reg_pending_uses);
3130
3131       /* Quite often, a debug insn will refer to stuff in the
3132          previous instruction, but the reason we want this
3133          dependency here is to make sure the scheduler doesn't
3134          gratuitously move a debug insn ahead.  This could dirty
3135          DF flags and cause additional analysis that wouldn't have
3136          occurred in compilation without debug insns, and such
3137          additional analysis can modify the generated code.  */
3138       prev = PREV_INSN (insn);
3139
3140       if (prev && NONDEBUG_INSN_P (prev))
3141         add_dependence (insn, prev, REG_DEP_ANTI);
3142     }
3143   else
3144     {
3145       regset_head set_or_clobbered;
3146
3147       EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3148         {
3149           struct deps_reg *reg_last = &deps->reg_last[i];
3150           add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3151           add_dependence_list (insn, reg_last->implicit_sets, 0, REG_DEP_ANTI,
3152                                false);
3153           add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3154                                false);
3155
3156           if (!deps->readonly)
3157             {
3158               reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3159               reg_last->uses_length++;
3160             }
3161         }
3162
3163       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3164         if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i))
3165           {
3166             struct deps_reg *reg_last = &deps->reg_last[i];
3167             add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3168             add_dependence_list (insn, reg_last->implicit_sets, 0,
3169                                  REG_DEP_ANTI, false);
3170             add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3171                                  false);
3172
3173             if (!deps->readonly)
3174               {
3175                 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3176                 reg_last->uses_length++;
3177               }
3178           }
3179
3180       if (targetm.sched.exposed_pipeline)
3181         {
3182           INIT_REG_SET (&set_or_clobbered);
3183           bitmap_ior (&set_or_clobbered, reg_pending_clobbers,
3184                       reg_pending_sets);
3185           EXECUTE_IF_SET_IN_REG_SET (&set_or_clobbered, 0, i, rsi)
3186             {
3187               struct deps_reg *reg_last = &deps->reg_last[i];
3188               rtx list;
3189               for (list = reg_last->uses; list; list = XEXP (list, 1))
3190                 {
3191                   rtx other = XEXP (list, 0);
3192                   if (INSN_CACHED_COND (other) != const_true_rtx
3193                       && refers_to_regno_p (i, INSN_CACHED_COND (other)))
3194                     INSN_CACHED_COND (other) = const_true_rtx;
3195                 }
3196             }
3197         }
3198
3199       /* If the current insn is conditional, we can't free any
3200          of the lists.  */
3201       if (sched_has_condition_p (insn))
3202         {
3203           EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3204             {
3205               struct deps_reg *reg_last = &deps->reg_last[i];
3206               add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3207                                    false);
3208               add_dependence_list (insn, reg_last->implicit_sets, 0,
3209                                    REG_DEP_ANTI, false);
3210               add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3211                                    false);
3212               add_dependence_list (insn, reg_last->control_uses, 0,
3213                                    REG_DEP_CONTROL, false);
3214
3215               if (!deps->readonly)
3216                 {
3217                   reg_last->clobbers
3218                     = alloc_INSN_LIST (insn, reg_last->clobbers);
3219                   reg_last->clobbers_length++;
3220                 }
3221             }
3222           EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3223             {
3224               struct deps_reg *reg_last = &deps->reg_last[i];
3225               add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3226                                    false);
3227               add_dependence_list (insn, reg_last->implicit_sets, 0,
3228                                    REG_DEP_ANTI, false);
3229               add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_OUTPUT,
3230                                    false);
3231               add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3232                                    false);
3233               add_dependence_list (insn, reg_last->control_uses, 0,
3234                                    REG_DEP_CONTROL, false);
3235
3236               if (!deps->readonly)
3237                 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3238             }
3239         }
3240       else
3241         {
3242           EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3243             {
3244               struct deps_reg *reg_last = &deps->reg_last[i];
3245               if (reg_last->uses_length >= MAX_PENDING_LIST_LENGTH
3246                   || reg_last->clobbers_length >= MAX_PENDING_LIST_LENGTH)
3247                 {
3248                   add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3249                                                 REG_DEP_OUTPUT, false);
3250                   add_dependence_list_and_free (deps, insn,
3251                                                 &reg_last->implicit_sets, 0,
3252                                                 REG_DEP_ANTI, false);
3253                   add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3254                                                 REG_DEP_ANTI, false);
3255                   add_dependence_list_and_free (deps, insn,
3256                                                 &reg_last->control_uses, 0,
3257                                                 REG_DEP_ANTI, false);
3258                   add_dependence_list_and_free (deps, insn,
3259                                                 &reg_last->clobbers, 0,
3260                                                 REG_DEP_OUTPUT, false);
3261
3262                   if (!deps->readonly)
3263                     {
3264                       reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3265                       reg_last->clobbers_length = 0;
3266                       reg_last->uses_length = 0;
3267                     }
3268                 }
3269               else
3270                 {
3271                   add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3272                                        false);
3273                   add_dependence_list (insn, reg_last->implicit_sets, 0,
3274                                        REG_DEP_ANTI, false);
3275                   add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3276                                        false);
3277                   add_dependence_list (insn, reg_last->control_uses, 0,
3278                                        REG_DEP_CONTROL, false);
3279                 }
3280
3281               if (!deps->readonly)
3282                 {
3283                   reg_last->clobbers_length++;
3284                   reg_last->clobbers
3285                     = alloc_INSN_LIST (insn, reg_last->clobbers);
3286                 }
3287             }
3288           EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3289             {
3290               struct deps_reg *reg_last = &deps->reg_last[i];
3291
3292               add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3293                                             REG_DEP_OUTPUT, false);
3294               add_dependence_list_and_free (deps, insn,
3295                                             &reg_last->implicit_sets,
3296                                             0, REG_DEP_ANTI, false);
3297               add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3298                                             REG_DEP_OUTPUT, false);
3299               add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3300                                             REG_DEP_ANTI, false);
3301               add_dependence_list (insn, reg_last->control_uses, 0,
3302                                    REG_DEP_CONTROL, false);
3303
3304               if (!deps->readonly)
3305                 {
3306                   reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3307                   reg_last->uses_length = 0;
3308                   reg_last->clobbers_length = 0;
3309                 }
3310             }
3311         }
3312       if (!deps->readonly)
3313         {
3314           EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3315             {
3316               struct deps_reg *reg_last = &deps->reg_last[i];
3317               reg_last->control_uses
3318                 = alloc_INSN_LIST (insn, reg_last->control_uses);
3319             }
3320         }
3321     }
3322
3323   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3324     if (TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3325       {
3326         struct deps_reg *reg_last = &deps->reg_last[i];
3327         add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI, false);
3328         add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_ANTI, false);
3329         add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI, false);
3330         add_dependence_list (insn, reg_last->control_uses, 0, REG_DEP_ANTI,
3331                              false);
3332
3333         if (!deps->readonly)
3334           reg_last->implicit_sets
3335             = alloc_INSN_LIST (insn, reg_last->implicit_sets);
3336       }
3337
3338   if (!deps->readonly)
3339     {
3340       IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
3341       IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
3342       IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
3343       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3344         if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i)
3345             || TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3346           SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3347
3348       /* Set up the pending barrier found.  */
3349       deps->last_reg_pending_barrier = reg_pending_barrier;
3350     }
3351
3352   CLEAR_REG_SET (reg_pending_uses);
3353   CLEAR_REG_SET (reg_pending_clobbers);
3354   CLEAR_REG_SET (reg_pending_sets);
3355   CLEAR_REG_SET (reg_pending_control_uses);
3356   CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
3357   CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
3358
3359   /* Add dependencies if a scheduling barrier was found.  */
3360   if (reg_pending_barrier)
3361     {
3362       /* In the case of barrier the most added dependencies are not
3363          real, so we use anti-dependence here.  */
3364       if (sched_has_condition_p (insn))
3365         {
3366           EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3367             {
3368               struct deps_reg *reg_last = &deps->reg_last[i];
3369               add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3370                                    true);
3371               add_dependence_list (insn, reg_last->sets, 0,
3372                                    reg_pending_barrier == TRUE_BARRIER
3373                                    ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3374               add_dependence_list (insn, reg_last->implicit_sets, 0,
3375                                    REG_DEP_ANTI, true);
3376               add_dependence_list (insn, reg_last->clobbers, 0,
3377                                    reg_pending_barrier == TRUE_BARRIER
3378                                    ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3379             }
3380         }
3381       else
3382         {
3383           EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3384             {
3385               struct deps_reg *reg_last = &deps->reg_last[i];
3386               add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3387                                             REG_DEP_ANTI, true);
3388               add_dependence_list_and_free (deps, insn,
3389                                             &reg_last->control_uses, 0,
3390                                             REG_DEP_CONTROL, true);
3391               add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3392                                             reg_pending_barrier == TRUE_BARRIER
3393                                             ? REG_DEP_TRUE : REG_DEP_ANTI,
3394                                             true);
3395               add_dependence_list_and_free (deps, insn,
3396                                             &reg_last->implicit_sets, 0,
3397                                             REG_DEP_ANTI, true);
3398               add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3399                                             reg_pending_barrier == TRUE_BARRIER
3400                                             ? REG_DEP_TRUE : REG_DEP_ANTI,
3401                                             true);
3402
3403               if (!deps->readonly)
3404                 {
3405                   reg_last->uses_length = 0;
3406                   reg_last->clobbers_length = 0;
3407                 }
3408             }
3409         }
3410
3411       if (!deps->readonly)
3412         for (i = 0; i < (unsigned)deps->max_reg; i++)
3413           {
3414             struct deps_reg *reg_last = &deps->reg_last[i];
3415             reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3416             SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3417           }
3418
3419       /* Don't flush pending lists on speculative checks for
3420          selective scheduling.  */
3421       if (!sel_sched_p () || !sel_insn_is_speculation_check (insn))
3422         flush_pending_lists (deps, insn, true, true);
3423
3424       reg_pending_barrier = NOT_A_BARRIER;
3425     }
3426
3427   /* If a post-call group is still open, see if it should remain so.
3428      This insn must be a simple move of a hard reg to a pseudo or
3429      vice-versa.
3430
3431      We must avoid moving these insns for correctness on targets
3432      with small register classes, and for special registers like
3433      PIC_OFFSET_TABLE_REGNUM.  For simplicity, extend this to all
3434      hard regs for all targets.  */
3435
3436   if (deps->in_post_call_group_p)
3437     {
3438       rtx tmp, set = single_set (insn);
3439       int src_regno, dest_regno;
3440
3441       if (set == NULL)
3442         {
3443           if (DEBUG_INSN_P (insn))
3444             /* We don't want to mark debug insns as part of the same
3445                sched group.  We know they really aren't, but if we use
3446                debug insns to tell that a call group is over, we'll
3447                get different code if debug insns are not there and
3448                instructions that follow seem like they should be part
3449                of the call group.
3450
3451                Also, if we did, chain_to_prev_insn would move the
3452                deps of the debug insn to the call insn, modifying
3453                non-debug post-dependency counts of the debug insn
3454                dependencies and otherwise messing with the scheduling
3455                order.
3456
3457                Instead, let such debug insns be scheduled freely, but
3458                keep the call group open in case there are insns that
3459                should be part of it afterwards.  Since we grant debug
3460                insns higher priority than even sched group insns, it
3461                will all turn out all right.  */
3462             goto debug_dont_end_call_group;
3463           else
3464             goto end_call_group;
3465         }
3466
3467       tmp = SET_DEST (set);
3468       if (GET_CODE (tmp) == SUBREG)
3469         tmp = SUBREG_REG (tmp);
3470       if (REG_P (tmp))
3471         dest_regno = REGNO (tmp);
3472       else
3473         goto end_call_group;
3474
3475       tmp = SET_SRC (set);
3476       if (GET_CODE (tmp) == SUBREG)
3477         tmp = SUBREG_REG (tmp);
3478       if ((GET_CODE (tmp) == PLUS
3479            || GET_CODE (tmp) == MINUS)
3480           && REG_P (XEXP (tmp, 0))
3481           && REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM
3482           && dest_regno == STACK_POINTER_REGNUM)
3483         src_regno = STACK_POINTER_REGNUM;
3484       else if (REG_P (tmp))
3485         src_regno = REGNO (tmp);
3486       else
3487         goto end_call_group;
3488
3489       if (src_regno < FIRST_PSEUDO_REGISTER
3490           || dest_regno < FIRST_PSEUDO_REGISTER)
3491         {
3492           if (!deps->readonly
3493               && deps->in_post_call_group_p == post_call_initial)
3494             deps->in_post_call_group_p = post_call;
3495
3496           if (!sel_sched_p () || sched_emulate_haifa_p)
3497             {
3498               SCHED_GROUP_P (insn) = 1;
3499               CANT_MOVE (insn) = 1;
3500             }
3501         }
3502       else
3503         {
3504         end_call_group:
3505           if (!deps->readonly)
3506             deps->in_post_call_group_p = not_post_call;
3507         }
3508     }
3509
3510  debug_dont_end_call_group:
3511   if ((current_sched_info->flags & DO_SPECULATION)
3512       && !sched_insn_is_legitimate_for_speculation_p (insn, 0))
3513     /* INSN has an internal dependency (e.g. r14 = [r14]) and thus cannot
3514        be speculated.  */
3515     {
3516       if (sel_sched_p ())
3517         sel_mark_hard_insn (insn);
3518       else
3519         {
3520           sd_iterator_def sd_it;
3521           dep_t dep;
3522
3523           for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3524                sd_iterator_cond (&sd_it, &dep);)
3525             change_spec_dep_to_hard (sd_it);
3526         }
3527     }
3528
3529   /* We do not yet have code to adjust REG_ARGS_SIZE, therefore we must
3530      honor their original ordering.  */
3531   if (find_reg_note (insn, REG_ARGS_SIZE, NULL))
3532     {
3533       if (deps->last_args_size)
3534         add_dependence (insn, deps->last_args_size, REG_DEP_OUTPUT);
3535       if (!deps->readonly)
3536         deps->last_args_size = insn;
3537     }
3538 }
3539
3540 /* Return TRUE if INSN might not always return normally (e.g. call exit,
3541    longjmp, loop forever, ...).  */
3542 /* FIXME: Why can't this function just use flags_from_decl_or_type and
3543    test for ECF_NORETURN?  */
3544 static bool
3545 call_may_noreturn_p (rtx insn)
3546 {
3547   rtx call;
3548
3549   /* const or pure calls that aren't looping will always return.  */
3550   if (RTL_CONST_OR_PURE_CALL_P (insn)
3551       && !RTL_LOOPING_CONST_OR_PURE_CALL_P (insn))
3552     return false;
3553
3554   call = get_call_rtx_from (insn);
3555   if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
3556     {
3557       rtx symbol = XEXP (XEXP (call, 0), 0);
3558       if (SYMBOL_REF_DECL (symbol)
3559           && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
3560         {
3561           if (DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
3562               == BUILT_IN_NORMAL)
3563             switch (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol)))
3564               {
3565               case BUILT_IN_BCMP:
3566               case BUILT_IN_BCOPY:
3567               case BUILT_IN_BZERO:
3568               case BUILT_IN_INDEX:
3569               case BUILT_IN_MEMCHR:
3570               case BUILT_IN_MEMCMP:
3571               case BUILT_IN_MEMCPY:
3572               case BUILT_IN_MEMMOVE:
3573               case BUILT_IN_MEMPCPY:
3574               case BUILT_IN_MEMSET:
3575               case BUILT_IN_RINDEX:
3576               case BUILT_IN_STPCPY:
3577               case BUILT_IN_STPNCPY:
3578               case BUILT_IN_STRCAT:
3579               case BUILT_IN_STRCHR:
3580               case BUILT_IN_STRCMP:
3581               case BUILT_IN_STRCPY:
3582               case BUILT_IN_STRCSPN:
3583               case BUILT_IN_STRLEN:
3584               case BUILT_IN_STRNCAT:
3585               case BUILT_IN_STRNCMP:
3586               case BUILT_IN_STRNCPY:
3587               case BUILT_IN_STRPBRK:
3588               case BUILT_IN_STRRCHR:
3589               case BUILT_IN_STRSPN:
3590               case BUILT_IN_STRSTR:
3591                 /* Assume certain string/memory builtins always return.  */
3592                 return false;
3593               default:
3594                 break;
3595               }
3596         }
3597     }
3598
3599   /* For all other calls assume that they might not always return.  */
3600   return true;
3601 }
3602
3603 /* Return true if INSN should be made dependent on the previous instruction
3604    group, and if all INSN's dependencies should be moved to the first
3605    instruction of that group.  */
3606
3607 static bool
3608 chain_to_prev_insn_p (rtx insn)
3609 {
3610   rtx prev, x;
3611
3612   /* INSN forms a group with the previous instruction.  */
3613   if (SCHED_GROUP_P (insn))
3614     return true;
3615
3616   /* If the previous instruction clobbers a register R and this one sets
3617      part of R, the clobber was added specifically to help us track the
3618      liveness of R.  There's no point scheduling the clobber and leaving
3619      INSN behind, especially if we move the clobber to another block.  */
3620   prev = prev_nonnote_nondebug_insn (insn);
3621   if (prev
3622       && INSN_P (prev)
3623       && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
3624       && GET_CODE (PATTERN (prev)) == CLOBBER)
3625     {
3626       x = XEXP (PATTERN (prev), 0);
3627       if (set_of (x, insn))
3628         return true;
3629     }
3630
3631   return false;
3632 }
3633
3634 /* Analyze INSN with DEPS as a context.  */
3635 void
3636 deps_analyze_insn (struct deps_desc *deps, rtx_insn *insn)
3637 {
3638   if (sched_deps_info->start_insn)
3639     sched_deps_info->start_insn (insn);
3640
3641   /* Record the condition for this insn.  */
3642   if (NONDEBUG_INSN_P (insn))
3643     {
3644       rtx t;
3645       sched_get_condition_with_rev (insn, NULL);
3646       t = INSN_CACHED_COND (insn);
3647       INSN_COND_DEPS (insn) = NULL;
3648       if (reload_completed
3649           && (current_sched_info->flags & DO_PREDICATION)
3650           && COMPARISON_P (t)
3651           && REG_P (XEXP (t, 0))
3652           && CONSTANT_P (XEXP (t, 1)))
3653         {
3654           unsigned int regno;
3655           int nregs;
3656           rtx_insn_list *cond_deps = NULL;
3657           t = XEXP (t, 0);
3658           regno = REGNO (t);
3659           nregs = hard_regno_nregs[regno][GET_MODE (t)];
3660           while (nregs-- > 0)
3661             {
3662               struct deps_reg *reg_last = &deps->reg_last[regno + nregs];
3663               cond_deps = concat_INSN_LIST (reg_last->sets, cond_deps);
3664               cond_deps = concat_INSN_LIST (reg_last->clobbers, cond_deps);
3665               cond_deps = concat_INSN_LIST (reg_last->implicit_sets, cond_deps);
3666             }
3667           INSN_COND_DEPS (insn) = cond_deps;
3668         }
3669     }
3670
3671   if (JUMP_P (insn))
3672     {
3673       /* Make each JUMP_INSN (but not a speculative check)
3674          a scheduling barrier for memory references.  */
3675       if (!deps->readonly
3676           && !(sel_sched_p ()
3677                && sel_insn_is_speculation_check (insn)))
3678         {
3679           /* Keep the list a reasonable size.  */
3680           if (deps->pending_flush_length++ >= MAX_PENDING_LIST_LENGTH)
3681             flush_pending_lists (deps, insn, true, true);
3682           else
3683             deps->pending_jump_insns
3684               = alloc_INSN_LIST (insn, deps->pending_jump_insns);
3685         }
3686
3687       /* For each insn which shouldn't cross a jump, add a dependence.  */
3688       add_dependence_list_and_free (deps, insn,
3689                                     &deps->sched_before_next_jump, 1,
3690                                     REG_DEP_ANTI, true);
3691
3692       sched_analyze_insn (deps, PATTERN (insn), insn);
3693     }
3694   else if (NONJUMP_INSN_P (insn) || DEBUG_INSN_P (insn))
3695     {
3696       sched_analyze_insn (deps, PATTERN (insn), insn);
3697     }
3698   else if (CALL_P (insn))
3699     {
3700       int i;
3701
3702       CANT_MOVE (insn) = 1;
3703
3704       if (find_reg_note (insn, REG_SETJMP, NULL))
3705         {
3706           /* This is setjmp.  Assume that all registers, not just
3707              hard registers, may be clobbered by this call.  */
3708           reg_pending_barrier = MOVE_BARRIER;
3709         }
3710       else
3711         {
3712           for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3713             /* A call may read and modify global register variables.  */
3714             if (global_regs[i])
3715               {
3716                 SET_REGNO_REG_SET (reg_pending_sets, i);
3717                 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3718               }
3719           /* Other call-clobbered hard regs may be clobbered.
3720              Since we only have a choice between 'might be clobbered'
3721              and 'definitely not clobbered', we must include all
3722              partly call-clobbered registers here.  */
3723             else if (HARD_REGNO_CALL_PART_CLOBBERED (i, reg_raw_mode[i])
3724                      || TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
3725               SET_REGNO_REG_SET (reg_pending_clobbers, i);
3726           /* We don't know what set of fixed registers might be used
3727              by the function, but it is certain that the stack pointer
3728              is among them, but be conservative.  */
3729             else if (fixed_regs[i])
3730               SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3731           /* The frame pointer is normally not used by the function
3732              itself, but by the debugger.  */
3733           /* ??? MIPS o32 is an exception.  It uses the frame pointer
3734              in the macro expansion of jal but does not represent this
3735              fact in the call_insn rtl.  */
3736             else if (i == FRAME_POINTER_REGNUM
3737                      || (i == HARD_FRAME_POINTER_REGNUM
3738                          && (! reload_completed || frame_pointer_needed)))
3739               SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3740         }
3741
3742       /* For each insn which shouldn't cross a call, add a dependence
3743          between that insn and this call insn.  */
3744       add_dependence_list_and_free (deps, insn,
3745                                     &deps->sched_before_next_call, 1,
3746                                     REG_DEP_ANTI, true);
3747
3748       sched_analyze_insn (deps, PATTERN (insn), insn);
3749
3750       /* If CALL would be in a sched group, then this will violate
3751          convention that sched group insns have dependencies only on the
3752          previous instruction.
3753
3754          Of course one can say: "Hey!  What about head of the sched group?"
3755          And I will answer: "Basic principles (one dep per insn) are always
3756          the same."  */
3757       gcc_assert (!SCHED_GROUP_P (insn));
3758
3759       /* In the absence of interprocedural alias analysis, we must flush
3760          all pending reads and writes, and start new dependencies starting
3761          from here.  But only flush writes for constant calls (which may
3762          be passed a pointer to something we haven't written yet).  */
3763       flush_pending_lists (deps, insn, true, ! RTL_CONST_OR_PURE_CALL_P (insn));
3764
3765       if (!deps->readonly)
3766         {
3767           /* Remember the last function call for limiting lifetimes.  */
3768           free_INSN_LIST_list (&deps->last_function_call);
3769           deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
3770
3771           if (call_may_noreturn_p (insn))
3772             {
3773               /* Remember the last function call that might not always return
3774                  normally for limiting moves of trapping insns.  */
3775               free_INSN_LIST_list (&deps->last_function_call_may_noreturn);
3776               deps->last_function_call_may_noreturn
3777                 = alloc_INSN_LIST (insn, NULL_RTX);
3778             }
3779
3780           /* Before reload, begin a post-call group, so as to keep the
3781              lifetimes of hard registers correct.  */
3782           if (! reload_completed)
3783             deps->in_post_call_group_p = post_call;
3784         }
3785     }
3786
3787   if (sched_deps_info->use_cselib)
3788     cselib_process_insn (insn);
3789
3790   if (sched_deps_info->finish_insn)
3791     sched_deps_info->finish_insn ();
3792
3793   /* Fixup the dependencies in the sched group.  */
3794   if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
3795       && chain_to_prev_insn_p (insn)
3796       && !sel_sched_p ())
3797     chain_to_prev_insn (insn);
3798 }
3799
3800 /* Initialize DEPS for the new block beginning with HEAD.  */
3801 void
3802 deps_start_bb (struct deps_desc *deps, rtx_insn *head)
3803 {
3804   gcc_assert (!deps->readonly);
3805
3806   /* Before reload, if the previous block ended in a call, show that
3807      we are inside a post-call group, so as to keep the lifetimes of
3808      hard registers correct.  */
3809   if (! reload_completed && !LABEL_P (head))
3810     {
3811       rtx_insn *insn = prev_nonnote_nondebug_insn (head);
3812
3813       if (insn && CALL_P (insn))
3814         deps->in_post_call_group_p = post_call_initial;
3815     }
3816 }
3817
3818 /* Analyze every insn between HEAD and TAIL inclusive, creating backward
3819    dependencies for each insn.  */
3820 void
3821 sched_analyze (struct deps_desc *deps, rtx_insn *head, rtx_insn *tail)
3822 {
3823   rtx_insn *insn;
3824
3825   if (sched_deps_info->use_cselib)
3826     cselib_init (CSELIB_RECORD_MEMORY);
3827
3828   deps_start_bb (deps, head);
3829
3830   for (insn = head;; insn = NEXT_INSN (insn))
3831     {
3832
3833       if (INSN_P (insn))
3834         {
3835           /* And initialize deps_lists.  */
3836           sd_init_insn (insn);
3837           /* Clean up SCHED_GROUP_P which may be set by last
3838              scheduler pass.  */
3839           if (SCHED_GROUP_P (insn))
3840             SCHED_GROUP_P (insn) = 0;
3841         }
3842
3843       deps_analyze_insn (deps, insn);
3844
3845       if (insn == tail)
3846         {
3847           if (sched_deps_info->use_cselib)
3848             cselib_finish ();
3849           return;
3850         }
3851     }
3852   gcc_unreachable ();
3853 }
3854
3855 /* Helper for sched_free_deps ().
3856    Delete INSN's (RESOLVED_P) backward dependencies.  */
3857 static void
3858 delete_dep_nodes_in_back_deps (rtx insn, bool resolved_p)
3859 {
3860   sd_iterator_def sd_it;
3861   dep_t dep;
3862   sd_list_types_def types;
3863
3864   if (resolved_p)
3865     types = SD_LIST_RES_BACK;
3866   else
3867     types = SD_LIST_BACK;
3868
3869   for (sd_it = sd_iterator_start (insn, types);
3870        sd_iterator_cond (&sd_it, &dep);)
3871     {
3872       dep_link_t link = *sd_it.linkp;
3873       dep_node_t node = DEP_LINK_NODE (link);
3874       deps_list_t back_list;
3875       deps_list_t forw_list;
3876
3877       get_back_and_forw_lists (dep, resolved_p, &back_list, &forw_list);
3878       remove_from_deps_list (link, back_list);
3879       delete_dep_node (node);
3880     }
3881 }
3882
3883 /* Delete (RESOLVED_P) dependencies between HEAD and TAIL together with
3884    deps_lists.  */
3885 void
3886 sched_free_deps (rtx_insn *head, rtx_insn *tail, bool resolved_p)
3887 {
3888   rtx_insn *insn;
3889   rtx_insn *next_tail = NEXT_INSN (tail);
3890
3891   /* We make two passes since some insns may be scheduled before their
3892      dependencies are resolved.  */
3893   for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3894     if (INSN_P (insn) && INSN_LUID (insn) > 0)
3895       {
3896         /* Clear forward deps and leave the dep_nodes to the
3897            corresponding back_deps list.  */
3898         if (resolved_p)
3899           clear_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
3900         else
3901           clear_deps_list (INSN_FORW_DEPS (insn));
3902       }
3903   for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3904     if (INSN_P (insn) && INSN_LUID (insn) > 0)
3905       {
3906         /* Clear resolved back deps together with its dep_nodes.  */
3907         delete_dep_nodes_in_back_deps (insn, resolved_p);
3908
3909         sd_finish_insn (insn);
3910       }
3911 }
3912 \f
3913 /* Initialize variables for region data dependence analysis.
3914    When LAZY_REG_LAST is true, do not allocate reg_last array
3915    of struct deps_desc immediately.  */
3916
3917 void
3918 init_deps (struct deps_desc *deps, bool lazy_reg_last)
3919 {
3920   int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
3921
3922   deps->max_reg = max_reg;
3923   if (lazy_reg_last)
3924     deps->reg_last = NULL;
3925   else
3926     deps->reg_last = XCNEWVEC (struct deps_reg, max_reg);
3927   INIT_REG_SET (&deps->reg_last_in_use);
3928
3929   deps->pending_read_insns = 0;
3930   deps->pending_read_mems = 0;
3931   deps->pending_write_insns = 0;
3932   deps->pending_write_mems = 0;
3933   deps->pending_jump_insns = 0;
3934   deps->pending_read_list_length = 0;
3935   deps->pending_write_list_length = 0;
3936   deps->pending_flush_length = 0;
3937   deps->last_pending_memory_flush = 0;
3938   deps->last_function_call = 0;
3939   deps->last_function_call_may_noreturn = 0;
3940   deps->sched_before_next_call = 0;
3941   deps->sched_before_next_jump = 0;
3942   deps->in_post_call_group_p = not_post_call;
3943   deps->last_debug_insn = 0;
3944   deps->last_args_size = 0;
3945   deps->last_reg_pending_barrier = NOT_A_BARRIER;
3946   deps->readonly = 0;
3947 }
3948
3949 /* Init only reg_last field of DEPS, which was not allocated before as
3950    we inited DEPS lazily.  */
3951 void
3952 init_deps_reg_last (struct deps_desc *deps)
3953 {
3954   gcc_assert (deps && deps->max_reg > 0);
3955   gcc_assert (deps->reg_last == NULL);
3956
3957   deps->reg_last = XCNEWVEC (struct deps_reg, deps->max_reg);
3958 }
3959
3960
3961 /* Free insn lists found in DEPS.  */
3962
3963 void
3964 free_deps (struct deps_desc *deps)
3965 {
3966   unsigned i;
3967   reg_set_iterator rsi;
3968
3969   /* We set max_reg to 0 when this context was already freed.  */
3970   if (deps->max_reg == 0)
3971     {
3972       gcc_assert (deps->reg_last == NULL);
3973       return;
3974     }
3975   deps->max_reg = 0;
3976
3977   free_INSN_LIST_list (&deps->pending_read_insns);
3978   free_EXPR_LIST_list (&deps->pending_read_mems);
3979   free_INSN_LIST_list (&deps->pending_write_insns);
3980   free_EXPR_LIST_list (&deps->pending_write_mems);
3981   free_INSN_LIST_list (&deps->last_pending_memory_flush);
3982
3983   /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
3984      times.  For a testcase with 42000 regs and 8000 small basic blocks,
3985      this loop accounted for nearly 60% (84 sec) of the total -O2 runtime.  */
3986   EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3987     {
3988       struct deps_reg *reg_last = &deps->reg_last[i];
3989       if (reg_last->uses)
3990         free_INSN_LIST_list (&reg_last->uses);
3991       if (reg_last->sets)
3992         free_INSN_LIST_list (&reg_last->sets);
3993       if (reg_last->implicit_sets)
3994         free_INSN_LIST_list (&reg_last->implicit_sets);
3995       if (reg_last->control_uses)
3996         free_INSN_LIST_list (&reg_last->control_uses);
3997       if (reg_last->clobbers)
3998         free_INSN_LIST_list (&reg_last->clobbers);
3999     }
4000   CLEAR_REG_SET (&deps->reg_last_in_use);
4001
4002   /* As we initialize reg_last lazily, it is possible that we didn't allocate
4003      it at all.  */
4004   free (deps->reg_last);
4005   deps->reg_last = NULL;
4006
4007   deps = NULL;
4008 }
4009
4010 /* Remove INSN from dependence contexts DEPS.  */
4011 void
4012 remove_from_deps (struct deps_desc *deps, rtx_insn *insn)
4013 {
4014   int removed;
4015   unsigned i;
4016   reg_set_iterator rsi;
4017
4018   removed = remove_from_both_dependence_lists (insn, &deps->pending_read_insns,
4019                                                &deps->pending_read_mems);
4020   if (!DEBUG_INSN_P (insn))
4021     deps->pending_read_list_length -= removed;
4022   removed = remove_from_both_dependence_lists (insn, &deps->pending_write_insns,
4023                                                &deps->pending_write_mems);
4024   deps->pending_write_list_length -= removed;
4025
4026   removed = remove_from_dependence_list (insn, &deps->pending_jump_insns);
4027   deps->pending_flush_length -= removed;
4028   removed = remove_from_dependence_list (insn, &deps->last_pending_memory_flush);
4029   deps->pending_flush_length -= removed;
4030
4031   EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
4032     {
4033       struct deps_reg *reg_last = &deps->reg_last[i];
4034       if (reg_last->uses)
4035         remove_from_dependence_list (insn, &reg_last->uses);
4036       if (reg_last->sets)
4037         remove_from_dependence_list (insn, &reg_last->sets);
4038       if (reg_last->implicit_sets)
4039         remove_from_dependence_list (insn, &reg_last->implicit_sets);
4040       if (reg_last->clobbers)
4041         remove_from_dependence_list (insn, &reg_last->clobbers);
4042       if (!reg_last->uses && !reg_last->sets && !reg_last->implicit_sets
4043           && !reg_last->clobbers)
4044         CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, i);
4045     }
4046
4047   if (CALL_P (insn))
4048     {
4049       remove_from_dependence_list (insn, &deps->last_function_call);
4050       remove_from_dependence_list (insn,
4051                                    &deps->last_function_call_may_noreturn);
4052     }
4053   remove_from_dependence_list (insn, &deps->sched_before_next_call);
4054 }
4055
4056 /* Init deps data vector.  */
4057 static void
4058 init_deps_data_vector (void)
4059 {
4060   int reserve = (sched_max_luid + 1 - h_d_i_d.length ());
4061   if (reserve > 0 && ! h_d_i_d.space (reserve))
4062     h_d_i_d.safe_grow_cleared (3 * sched_max_luid / 2);
4063 }
4064
4065 /* If it is profitable to use them, initialize or extend (depending on
4066    GLOBAL_P) dependency data.  */
4067 void
4068 sched_deps_init (bool global_p)
4069 {
4070   /* Average number of insns in the basic block.
4071      '+ 1' is used to make it nonzero.  */
4072   int insns_in_block = sched_max_luid / n_basic_blocks_for_fn (cfun) + 1;
4073
4074   init_deps_data_vector ();
4075
4076   /* We use another caching mechanism for selective scheduling, so
4077      we don't use this one.  */
4078   if (!sel_sched_p () && global_p && insns_in_block > 100 * 5)
4079     {
4080       /* ?!? We could save some memory by computing a per-region luid mapping
4081          which could reduce both the number of vectors in the cache and the
4082          size of each vector.  Instead we just avoid the cache entirely unless
4083          the average number of instructions in a basic block is very high.  See
4084          the comment before the declaration of true_dependency_cache for
4085          what we consider "very high".  */
4086       cache_size = 0;
4087       extend_dependency_caches (sched_max_luid, true);
4088     }
4089
4090   if (global_p)
4091     {
4092       dl_pool = create_alloc_pool ("deps_list", sizeof (struct _deps_list),
4093                                    /* Allocate lists for one block at a time.  */
4094                                    insns_in_block);
4095       dn_pool = create_alloc_pool ("dep_node", sizeof (struct _dep_node),
4096                                    /* Allocate nodes for one block at a time.
4097                                       We assume that average insn has
4098                                       5 producers.  */
4099                                    5 * insns_in_block);
4100     }
4101 }
4102
4103
4104 /* Create or extend (depending on CREATE_P) dependency caches to
4105    size N.  */
4106 void
4107 extend_dependency_caches (int n, bool create_p)
4108 {
4109   if (create_p || true_dependency_cache)
4110     {
4111       int i, luid = cache_size + n;
4112
4113       true_dependency_cache = XRESIZEVEC (bitmap_head, true_dependency_cache,
4114                                           luid);
4115       output_dependency_cache = XRESIZEVEC (bitmap_head,
4116                                             output_dependency_cache, luid);
4117       anti_dependency_cache = XRESIZEVEC (bitmap_head, anti_dependency_cache,
4118                                           luid);
4119       control_dependency_cache = XRESIZEVEC (bitmap_head, control_dependency_cache,
4120                                           luid);
4121
4122       if (current_sched_info->flags & DO_SPECULATION)
4123         spec_dependency_cache = XRESIZEVEC (bitmap_head, spec_dependency_cache,
4124                                             luid);
4125
4126       for (i = cache_size; i < luid; i++)
4127         {
4128           bitmap_initialize (&true_dependency_cache[i], 0);
4129           bitmap_initialize (&output_dependency_cache[i], 0);
4130           bitmap_initialize (&anti_dependency_cache[i], 0);
4131           bitmap_initialize (&control_dependency_cache[i], 0);
4132
4133           if (current_sched_info->flags & DO_SPECULATION)
4134             bitmap_initialize (&spec_dependency_cache[i], 0);
4135         }
4136       cache_size = luid;
4137     }
4138 }
4139
4140 /* Finalize dependency information for the whole function.  */
4141 void
4142 sched_deps_finish (void)
4143 {
4144   gcc_assert (deps_pools_are_empty_p ());
4145   free_alloc_pool_if_empty (&dn_pool);
4146   free_alloc_pool_if_empty (&dl_pool);
4147   gcc_assert (dn_pool == NULL && dl_pool == NULL);
4148
4149   h_d_i_d.release ();
4150   cache_size = 0;
4151
4152   if (true_dependency_cache)
4153     {
4154       int i;
4155
4156       for (i = 0; i < cache_size; i++)
4157         {
4158           bitmap_clear (&true_dependency_cache[i]);
4159           bitmap_clear (&output_dependency_cache[i]);
4160           bitmap_clear (&anti_dependency_cache[i]);
4161           bitmap_clear (&control_dependency_cache[i]);
4162
4163           if (sched_deps_info->generate_spec_deps)
4164             bitmap_clear (&spec_dependency_cache[i]);
4165         }
4166       free (true_dependency_cache);
4167       true_dependency_cache = NULL;
4168       free (output_dependency_cache);
4169       output_dependency_cache = NULL;
4170       free (anti_dependency_cache);
4171       anti_dependency_cache = NULL;
4172       free (control_dependency_cache);
4173       control_dependency_cache = NULL;
4174
4175       if (sched_deps_info->generate_spec_deps)
4176         {
4177           free (spec_dependency_cache);
4178           spec_dependency_cache = NULL;
4179         }
4180
4181     }
4182 }
4183
4184 /* Initialize some global variables needed by the dependency analysis
4185    code.  */
4186
4187 void
4188 init_deps_global (void)
4189 {
4190   CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
4191   CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
4192   reg_pending_sets = ALLOC_REG_SET (&reg_obstack);
4193   reg_pending_clobbers = ALLOC_REG_SET (&reg_obstack);
4194   reg_pending_uses = ALLOC_REG_SET (&reg_obstack);
4195   reg_pending_control_uses = ALLOC_REG_SET (&reg_obstack);
4196   reg_pending_barrier = NOT_A_BARRIER;
4197
4198   if (!sel_sched_p () || sched_emulate_haifa_p)
4199     {
4200       sched_deps_info->start_insn = haifa_start_insn;
4201       sched_deps_info->finish_insn = haifa_finish_insn;
4202
4203       sched_deps_info->note_reg_set = haifa_note_reg_set;
4204       sched_deps_info->note_reg_clobber = haifa_note_reg_clobber;
4205       sched_deps_info->note_reg_use = haifa_note_reg_use;
4206
4207       sched_deps_info->note_mem_dep = haifa_note_mem_dep;
4208       sched_deps_info->note_dep = haifa_note_dep;
4209    }
4210 }
4211
4212 /* Free everything used by the dependency analysis code.  */
4213
4214 void
4215 finish_deps_global (void)
4216 {
4217   FREE_REG_SET (reg_pending_sets);
4218   FREE_REG_SET (reg_pending_clobbers);
4219   FREE_REG_SET (reg_pending_uses);
4220   FREE_REG_SET (reg_pending_control_uses);
4221 }
4222
4223 /* Estimate the weakness of dependence between MEM1 and MEM2.  */
4224 dw_t
4225 estimate_dep_weak (rtx mem1, rtx mem2)
4226 {
4227   rtx r1, r2;
4228
4229   if (mem1 == mem2)
4230     /* MEMs are the same - don't speculate.  */
4231     return MIN_DEP_WEAK;
4232
4233   r1 = XEXP (mem1, 0);
4234   r2 = XEXP (mem2, 0);
4235
4236   if (r1 == r2
4237       || (REG_P (r1) && REG_P (r2)
4238           && REGNO (r1) == REGNO (r2)))
4239     /* Again, MEMs are the same.  */
4240     return MIN_DEP_WEAK;
4241   else if ((REG_P (r1) && !REG_P (r2))
4242            || (!REG_P (r1) && REG_P (r2)))
4243     /* Different addressing modes - reason to be more speculative,
4244        than usual.  */
4245     return NO_DEP_WEAK - (NO_DEP_WEAK - UNCERTAIN_DEP_WEAK) / 2;
4246   else
4247     /* We can't say anything about the dependence.  */
4248     return UNCERTAIN_DEP_WEAK;
4249 }
4250
4251 /* Add or update backward dependence between INSN and ELEM with type DEP_TYPE.
4252    This function can handle same INSN and ELEM (INSN == ELEM).
4253    It is a convenience wrapper.  */
4254 static void
4255 add_dependence_1 (rtx_insn *insn, rtx_insn *elem, enum reg_note dep_type)
4256 {
4257   ds_t ds;
4258   bool internal;
4259
4260   if (dep_type == REG_DEP_TRUE)
4261     ds = DEP_TRUE;
4262   else if (dep_type == REG_DEP_OUTPUT)
4263     ds = DEP_OUTPUT;
4264   else if (dep_type == REG_DEP_CONTROL)
4265     ds = DEP_CONTROL;
4266   else
4267     {
4268       gcc_assert (dep_type == REG_DEP_ANTI);
4269       ds = DEP_ANTI;
4270     }
4271
4272   /* When add_dependence is called from inside sched-deps.c, we expect
4273      cur_insn to be non-null.  */
4274   internal = cur_insn != NULL;
4275   if (internal)
4276     gcc_assert (insn == cur_insn);
4277   else
4278     cur_insn = insn;
4279
4280   note_dep (elem, ds);
4281   if (!internal)
4282     cur_insn = NULL;
4283 }
4284
4285 /* Return weakness of speculative type TYPE in the dep_status DS,
4286    without checking to prevent ICEs on malformed input.  */
4287 static dw_t
4288 get_dep_weak_1 (ds_t ds, ds_t type)
4289 {
4290   ds = ds & type;
4291
4292   switch (type)
4293     {
4294     case BEGIN_DATA: ds >>= BEGIN_DATA_BITS_OFFSET; break;
4295     case BE_IN_DATA: ds >>= BE_IN_DATA_BITS_OFFSET; break;
4296     case BEGIN_CONTROL: ds >>= BEGIN_CONTROL_BITS_OFFSET; break;
4297     case BE_IN_CONTROL: ds >>= BE_IN_CONTROL_BITS_OFFSET; break;
4298     default: gcc_unreachable ();
4299     }
4300
4301   return (dw_t) ds;
4302 }
4303
4304 /* Return weakness of speculative type TYPE in the dep_status DS.  */
4305 dw_t
4306 get_dep_weak (ds_t ds, ds_t type)
4307 {
4308   dw_t dw = get_dep_weak_1 (ds, type);
4309
4310   gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4311   return dw;
4312 }
4313
4314 /* Return the dep_status, which has the same parameters as DS, except for
4315    speculative type TYPE, that will have weakness DW.  */
4316 ds_t
4317 set_dep_weak (ds_t ds, ds_t type, dw_t dw)
4318 {
4319   gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4320
4321   ds &= ~type;
4322   switch (type)
4323     {
4324     case BEGIN_DATA: ds |= ((ds_t) dw) << BEGIN_DATA_BITS_OFFSET; break;
4325     case BE_IN_DATA: ds |= ((ds_t) dw) << BE_IN_DATA_BITS_OFFSET; break;
4326     case BEGIN_CONTROL: ds |= ((ds_t) dw) << BEGIN_CONTROL_BITS_OFFSET; break;
4327     case BE_IN_CONTROL: ds |= ((ds_t) dw) << BE_IN_CONTROL_BITS_OFFSET; break;
4328     default: gcc_unreachable ();
4329     }
4330   return ds;
4331 }
4332
4333 /* Return the join of two dep_statuses DS1 and DS2.
4334    If MAX_P is true then choose the greater probability,
4335    otherwise multiply probabilities.
4336    This function assumes that both DS1 and DS2 contain speculative bits.  */
4337 static ds_t
4338 ds_merge_1 (ds_t ds1, ds_t ds2, bool max_p)
4339 {
4340   ds_t ds, t;
4341
4342   gcc_assert ((ds1 & SPECULATIVE) && (ds2 & SPECULATIVE));
4343
4344   ds = (ds1 & DEP_TYPES) | (ds2 & DEP_TYPES);
4345
4346   t = FIRST_SPEC_TYPE;
4347   do
4348     {
4349       if ((ds1 & t) && !(ds2 & t))
4350         ds |= ds1 & t;
4351       else if (!(ds1 & t) && (ds2 & t))
4352         ds |= ds2 & t;
4353       else if ((ds1 & t) && (ds2 & t))
4354         {
4355           dw_t dw1 = get_dep_weak (ds1, t);
4356           dw_t dw2 = get_dep_weak (ds2, t);
4357           ds_t dw;
4358
4359           if (!max_p)
4360             {
4361               dw = ((ds_t) dw1) * ((ds_t) dw2);
4362               dw /= MAX_DEP_WEAK;
4363               if (dw < MIN_DEP_WEAK)
4364                 dw = MIN_DEP_WEAK;
4365             }
4366           else
4367             {
4368               if (dw1 >= dw2)
4369                 dw = dw1;
4370               else
4371                 dw = dw2;
4372             }
4373
4374           ds = set_dep_weak (ds, t, (dw_t) dw);
4375         }
4376
4377       if (t == LAST_SPEC_TYPE)
4378         break;
4379       t <<= SPEC_TYPE_SHIFT;
4380     }
4381   while (1);
4382
4383   return ds;
4384 }
4385
4386 /* Return the join of two dep_statuses DS1 and DS2.
4387    This function assumes that both DS1 and DS2 contain speculative bits.  */
4388 ds_t
4389 ds_merge (ds_t ds1, ds_t ds2)
4390 {
4391   return ds_merge_1 (ds1, ds2, false);
4392 }
4393
4394 /* Return the join of two dep_statuses DS1 and DS2.  */
4395 ds_t
4396 ds_full_merge (ds_t ds, ds_t ds2, rtx mem1, rtx mem2)
4397 {
4398   ds_t new_status = ds | ds2;
4399
4400   if (new_status & SPECULATIVE)
4401     {
4402       if ((ds && !(ds & SPECULATIVE))
4403           || (ds2 && !(ds2 & SPECULATIVE)))
4404         /* Then this dep can't be speculative.  */
4405         new_status &= ~SPECULATIVE;
4406       else
4407         {
4408           /* Both are speculative.  Merging probabilities.  */
4409           if (mem1)
4410             {
4411               dw_t dw;
4412
4413               dw = estimate_dep_weak (mem1, mem2);
4414               ds = set_dep_weak (ds, BEGIN_DATA, dw);
4415             }
4416
4417           if (!ds)
4418             new_status = ds2;
4419           else if (!ds2)
4420             new_status = ds;
4421           else
4422             new_status = ds_merge (ds2, ds);
4423         }
4424     }
4425
4426   return new_status;
4427 }
4428
4429 /* Return the join of DS1 and DS2.  Use maximum instead of multiplying
4430    probabilities.  */
4431 ds_t
4432 ds_max_merge (ds_t ds1, ds_t ds2)
4433 {
4434   if (ds1 == 0 && ds2 == 0)
4435     return 0;
4436
4437   if (ds1 == 0 && ds2 != 0)
4438     return ds2;
4439
4440   if (ds1 != 0 && ds2 == 0)
4441     return ds1;
4442
4443   return ds_merge_1 (ds1, ds2, true);
4444 }
4445
4446 /* Return the probability of speculation success for the speculation
4447    status DS.  */
4448 dw_t
4449 ds_weak (ds_t ds)
4450 {
4451   ds_t res = 1, dt;
4452   int n = 0;
4453
4454   dt = FIRST_SPEC_TYPE;
4455   do
4456     {
4457       if (ds & dt)
4458         {
4459           res *= (ds_t) get_dep_weak (ds, dt);
4460           n++;
4461         }
4462
4463       if (dt == LAST_SPEC_TYPE)
4464         break;
4465       dt <<= SPEC_TYPE_SHIFT;
4466     }
4467   while (1);
4468
4469   gcc_assert (n);
4470   while (--n)
4471     res /= MAX_DEP_WEAK;
4472
4473   if (res < MIN_DEP_WEAK)
4474     res = MIN_DEP_WEAK;
4475
4476   gcc_assert (res <= MAX_DEP_WEAK);
4477
4478   return (dw_t) res;
4479 }
4480
4481 /* Return a dep status that contains all speculation types of DS.  */
4482 ds_t
4483 ds_get_speculation_types (ds_t ds)
4484 {
4485   if (ds & BEGIN_DATA)
4486     ds |= BEGIN_DATA;
4487   if (ds & BE_IN_DATA)
4488     ds |= BE_IN_DATA;
4489   if (ds & BEGIN_CONTROL)
4490     ds |= BEGIN_CONTROL;
4491   if (ds & BE_IN_CONTROL)
4492     ds |= BE_IN_CONTROL;
4493
4494   return ds & SPECULATIVE;
4495 }
4496
4497 /* Return a dep status that contains maximal weakness for each speculation
4498    type present in DS.  */
4499 ds_t
4500 ds_get_max_dep_weak (ds_t ds)
4501 {
4502   if (ds & BEGIN_DATA)
4503     ds = set_dep_weak (ds, BEGIN_DATA, MAX_DEP_WEAK);
4504   if (ds & BE_IN_DATA)
4505     ds = set_dep_weak (ds, BE_IN_DATA, MAX_DEP_WEAK);
4506   if (ds & BEGIN_CONTROL)
4507     ds = set_dep_weak (ds, BEGIN_CONTROL, MAX_DEP_WEAK);
4508   if (ds & BE_IN_CONTROL)
4509     ds = set_dep_weak (ds, BE_IN_CONTROL, MAX_DEP_WEAK);
4510
4511   return ds;
4512 }
4513
4514 /* Dump information about the dependence status S.  */
4515 static void
4516 dump_ds (FILE *f, ds_t s)
4517 {
4518   fprintf (f, "{");
4519
4520   if (s & BEGIN_DATA)
4521     fprintf (f, "BEGIN_DATA: %d; ", get_dep_weak_1 (s, BEGIN_DATA));
4522   if (s & BE_IN_DATA)
4523     fprintf (f, "BE_IN_DATA: %d; ", get_dep_weak_1 (s, BE_IN_DATA));
4524   if (s & BEGIN_CONTROL)
4525     fprintf (f, "BEGIN_CONTROL: %d; ", get_dep_weak_1 (s, BEGIN_CONTROL));
4526   if (s & BE_IN_CONTROL)
4527     fprintf (f, "BE_IN_CONTROL: %d; ", get_dep_weak_1 (s, BE_IN_CONTROL));
4528
4529   if (s & HARD_DEP)
4530     fprintf (f, "HARD_DEP; ");
4531
4532   if (s & DEP_TRUE)
4533     fprintf (f, "DEP_TRUE; ");
4534   if (s & DEP_OUTPUT)
4535     fprintf (f, "DEP_OUTPUT; ");
4536   if (s & DEP_ANTI)
4537     fprintf (f, "DEP_ANTI; ");
4538   if (s & DEP_CONTROL)
4539     fprintf (f, "DEP_CONTROL; ");
4540
4541   fprintf (f, "}");
4542 }
4543
4544 DEBUG_FUNCTION void
4545 debug_ds (ds_t s)
4546 {
4547   dump_ds (stderr, s);
4548   fprintf (stderr, "\n");
4549 }
4550
4551 #ifdef ENABLE_CHECKING
4552 /* Verify that dependence type and status are consistent.
4553    If RELAXED_P is true, then skip dep_weakness checks.  */
4554 static void
4555 check_dep (dep_t dep, bool relaxed_p)
4556 {
4557   enum reg_note dt = DEP_TYPE (dep);
4558   ds_t ds = DEP_STATUS (dep);
4559
4560   gcc_assert (DEP_PRO (dep) != DEP_CON (dep));
4561
4562   if (!(current_sched_info->flags & USE_DEPS_LIST))
4563     {
4564       gcc_assert (ds == 0);
4565       return;
4566     }
4567
4568   /* Check that dependence type contains the same bits as the status.  */
4569   if (dt == REG_DEP_TRUE)
4570     gcc_assert (ds & DEP_TRUE);
4571   else if (dt == REG_DEP_OUTPUT)
4572     gcc_assert ((ds & DEP_OUTPUT)
4573                 && !(ds & DEP_TRUE));
4574   else if (dt == REG_DEP_ANTI)
4575     gcc_assert ((ds & DEP_ANTI)
4576                 && !(ds & (DEP_OUTPUT | DEP_TRUE)));
4577   else
4578     gcc_assert (dt == REG_DEP_CONTROL
4579                 && (ds & DEP_CONTROL)
4580                 && !(ds & (DEP_OUTPUT | DEP_ANTI | DEP_TRUE)));
4581
4582   /* HARD_DEP can not appear in dep_status of a link.  */
4583   gcc_assert (!(ds & HARD_DEP));
4584
4585   /* Check that dependence status is set correctly when speculation is not
4586      supported.  */
4587   if (!sched_deps_info->generate_spec_deps)
4588     gcc_assert (!(ds & SPECULATIVE));
4589   else if (ds & SPECULATIVE)
4590     {
4591       if (!relaxed_p)
4592         {
4593           ds_t type = FIRST_SPEC_TYPE;
4594
4595           /* Check that dependence weakness is in proper range.  */
4596           do
4597             {
4598               if (ds & type)
4599                 get_dep_weak (ds, type);
4600
4601               if (type == LAST_SPEC_TYPE)
4602                 break;
4603               type <<= SPEC_TYPE_SHIFT;
4604             }
4605           while (1);
4606         }
4607
4608       if (ds & BEGIN_SPEC)
4609         {
4610           /* Only true dependence can be data speculative.  */
4611           if (ds & BEGIN_DATA)
4612             gcc_assert (ds & DEP_TRUE);
4613
4614           /* Control dependencies in the insn scheduler are represented by
4615              anti-dependencies, therefore only anti dependence can be
4616              control speculative.  */
4617           if (ds & BEGIN_CONTROL)
4618             gcc_assert (ds & DEP_ANTI);
4619         }
4620       else
4621         {
4622           /* Subsequent speculations should resolve true dependencies.  */
4623           gcc_assert ((ds & DEP_TYPES) == DEP_TRUE);
4624         }
4625
4626       /* Check that true and anti dependencies can't have other speculative
4627          statuses.  */
4628       if (ds & DEP_TRUE)
4629         gcc_assert (ds & (BEGIN_DATA | BE_IN_SPEC));
4630       /* An output dependence can't be speculative at all.  */
4631       gcc_assert (!(ds & DEP_OUTPUT));
4632       if (ds & DEP_ANTI)
4633         gcc_assert (ds & BEGIN_CONTROL);
4634     }
4635 }
4636 #endif /* ENABLE_CHECKING */
4637
4638 /* The following code discovers opportunities to switch a memory reference
4639    and an increment by modifying the address.  We ensure that this is done
4640    only for dependencies that are only used to show a single register
4641    dependence (using DEP_NONREG and DEP_MULTIPLE), and so that every memory
4642    instruction involved is subject to only one dep that can cause a pattern
4643    change.
4644
4645    When we discover a suitable dependency, we fill in the dep_replacement
4646    structure to show how to modify the memory reference.  */
4647
4648 /* Holds information about a pair of memory reference and register increment
4649    insns which depend on each other, but could possibly be interchanged.  */
4650 struct mem_inc_info
4651 {
4652   rtx_insn *inc_insn;
4653   rtx_insn *mem_insn;
4654
4655   rtx *mem_loc;
4656   /* A register occurring in the memory address for which we wish to break
4657      the dependence.  This must be identical to the destination register of
4658      the increment.  */
4659   rtx mem_reg0;
4660   /* Any kind of index that is added to that register.  */
4661   rtx mem_index;
4662   /* The constant offset used in the memory address.  */
4663   HOST_WIDE_INT mem_constant;
4664   /* The constant added in the increment insn.  Negated if the increment is
4665      after the memory address.  */
4666   HOST_WIDE_INT inc_constant;
4667   /* The source register used in the increment.  May be different from mem_reg0
4668      if the increment occurs before the memory address.  */
4669   rtx inc_input;
4670 };
4671
4672 /* Verify that the memory location described in MII can be replaced with
4673    one using NEW_ADDR.  Return the new memory reference or NULL_RTX.  The
4674    insn remains unchanged by this function.  */
4675
4676 static rtx
4677 attempt_change (struct mem_inc_info *mii, rtx new_addr)
4678 {
4679   rtx mem = *mii->mem_loc;
4680   rtx new_mem;
4681
4682   /* Jump through a lot of hoops to keep the attributes up to date.  We
4683      do not want to call one of the change address variants that take
4684      an offset even though we know the offset in many cases.  These
4685      assume you are changing where the address is pointing by the
4686      offset.  */
4687   new_mem = replace_equiv_address_nv (mem, new_addr);
4688   if (! validate_change (mii->mem_insn, mii->mem_loc, new_mem, 0))
4689     {
4690       if (sched_verbose >= 5)
4691         fprintf (sched_dump, "validation failure\n");
4692       return NULL_RTX;
4693     }
4694
4695   /* Put back the old one.  */
4696   validate_change (mii->mem_insn, mii->mem_loc, mem, 0);
4697
4698   return new_mem;
4699 }
4700
4701 /* Return true if INSN is of a form "a = b op c" where a and b are
4702    regs.  op is + if c is a reg and +|- if c is a const.  Fill in
4703    informantion in MII about what is found.
4704    BEFORE_MEM indicates whether the increment is found before or after
4705    a corresponding memory reference.  */
4706
4707 static bool
4708 parse_add_or_inc (struct mem_inc_info *mii, rtx_insn *insn, bool before_mem)
4709 {
4710   rtx pat = single_set (insn);
4711   rtx src, cst;
4712   bool regs_equal;
4713
4714   if (RTX_FRAME_RELATED_P (insn) || !pat)
4715     return false;
4716
4717   /* Result must be single reg.  */
4718   if (!REG_P (SET_DEST (pat)))
4719     return false;
4720
4721   if (GET_CODE (SET_SRC (pat)) != PLUS)
4722     return false;
4723
4724   mii->inc_insn = insn;
4725   src = SET_SRC (pat);
4726   mii->inc_input = XEXP (src, 0);
4727
4728   if (!REG_P (XEXP (src, 0)))
4729     return false;
4730
4731   if (!rtx_equal_p (SET_DEST (pat), mii->mem_reg0))
4732     return false;
4733
4734   cst = XEXP (src, 1);
4735   if (!CONST_INT_P (cst))
4736     return false;
4737   mii->inc_constant = INTVAL (cst);
4738
4739   regs_equal = rtx_equal_p (mii->inc_input, mii->mem_reg0);
4740
4741   if (!before_mem)
4742     {
4743       mii->inc_constant = -mii->inc_constant;
4744       if (!regs_equal)
4745         return false;
4746     }
4747
4748   if (regs_equal && REGNO (SET_DEST (pat)) == STACK_POINTER_REGNUM)
4749     {
4750       /* Note that the sign has already been reversed for !before_mem.  */
4751 #ifdef STACK_GROWS_DOWNWARD
4752       return mii->inc_constant > 0;
4753 #else
4754       return mii->inc_constant < 0;
4755 #endif
4756     }
4757   return true;
4758 }
4759
4760 /* Once a suitable mem reference has been found and the corresponding data
4761    in MII has been filled in, this function is called to find a suitable
4762    add or inc insn involving the register we found in the memory
4763    reference.  */
4764
4765 static bool
4766 find_inc (struct mem_inc_info *mii, bool backwards)
4767 {
4768   sd_iterator_def sd_it;
4769   dep_t dep;
4770
4771   sd_it = sd_iterator_start (mii->mem_insn,
4772                              backwards ? SD_LIST_HARD_BACK : SD_LIST_FORW);
4773   while (sd_iterator_cond (&sd_it, &dep))
4774     {
4775       dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
4776       rtx_insn *pro = DEP_PRO (dep);
4777       rtx_insn *con = DEP_CON (dep);
4778       rtx_insn *inc_cand = backwards ? pro : con;
4779       if (DEP_NONREG (dep) || DEP_MULTIPLE (dep))
4780         goto next;
4781       if (parse_add_or_inc (mii, inc_cand, backwards))
4782         {
4783           struct dep_replacement *desc;
4784           df_ref def;
4785           rtx newaddr, newmem;
4786
4787           if (sched_verbose >= 5)
4788             fprintf (sched_dump, "candidate mem/inc pair: %d %d\n",
4789                      INSN_UID (mii->mem_insn), INSN_UID (inc_cand));
4790
4791           /* Need to assure that none of the operands of the inc
4792              instruction are assigned to by the mem insn.  */
4793           FOR_EACH_INSN_DEF (def, mii->mem_insn)
4794             if (reg_overlap_mentioned_p (DF_REF_REG (def), mii->inc_input)
4795                 || reg_overlap_mentioned_p (DF_REF_REG (def), mii->mem_reg0))
4796               {
4797                 if (sched_verbose >= 5)
4798                   fprintf (sched_dump,
4799                            "inc conflicts with store failure.\n");
4800                 goto next;
4801               }
4802
4803           newaddr = mii->inc_input;
4804           if (mii->mem_index != NULL_RTX)
4805             newaddr = gen_rtx_PLUS (GET_MODE (newaddr), newaddr,
4806                                     mii->mem_index);
4807           newaddr = plus_constant (GET_MODE (newaddr), newaddr,
4808                                    mii->mem_constant + mii->inc_constant);
4809           newmem = attempt_change (mii, newaddr);
4810           if (newmem == NULL_RTX)
4811             goto next;
4812           if (sched_verbose >= 5)
4813             fprintf (sched_dump, "successful address replacement\n");
4814           desc = XCNEW (struct dep_replacement);
4815           DEP_REPLACE (dep) = desc;
4816           desc->loc = mii->mem_loc;
4817           desc->newval = newmem;
4818           desc->orig = *desc->loc;
4819           desc->insn = mii->mem_insn;
4820           move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
4821                          INSN_SPEC_BACK_DEPS (con));
4822           if (backwards)
4823             {
4824               FOR_EACH_DEP (mii->inc_insn, SD_LIST_BACK, sd_it, dep)
4825                 add_dependence_1 (mii->mem_insn, DEP_PRO (dep),
4826                                   REG_DEP_TRUE);
4827             }
4828           else
4829             {
4830               FOR_EACH_DEP (mii->inc_insn, SD_LIST_FORW, sd_it, dep)
4831                 add_dependence_1 (DEP_CON (dep), mii->mem_insn,
4832                                   REG_DEP_ANTI);
4833             }
4834           return true;
4835         }
4836     next:
4837       sd_iterator_next (&sd_it);
4838     }
4839   return false;
4840 }
4841
4842 /* A recursive function that walks ADDRESS_OF_X to find memory references
4843    which could be modified during scheduling.  We call find_inc for each
4844    one we find that has a recognizable form.  MII holds information about
4845    the pair of memory/increment instructions.
4846    We ensure that every instruction with a memory reference (which will be
4847    the location of the replacement) is assigned at most one breakable
4848    dependency.  */
4849
4850 static bool
4851 find_mem (struct mem_inc_info *mii, rtx *address_of_x)
4852 {
4853   rtx x = *address_of_x;
4854   enum rtx_code code = GET_CODE (x);
4855   const char *const fmt = GET_RTX_FORMAT (code);
4856   int i;
4857
4858   if (code == MEM)
4859     {
4860       rtx reg0 = XEXP (x, 0);
4861
4862       mii->mem_loc = address_of_x;
4863       mii->mem_index = NULL_RTX;
4864       mii->mem_constant = 0;
4865       if (GET_CODE (reg0) == PLUS && CONST_INT_P (XEXP (reg0, 1)))
4866         {
4867           mii->mem_constant = INTVAL (XEXP (reg0, 1));
4868           reg0 = XEXP (reg0, 0);
4869         }
4870       if (GET_CODE (reg0) == PLUS)
4871         {
4872           mii->mem_index = XEXP (reg0, 1);
4873           reg0 = XEXP (reg0, 0);
4874         }
4875       if (REG_P (reg0))
4876         {
4877           df_ref use;
4878           int occurrences = 0;
4879
4880           /* Make sure this reg appears only once in this insn.  Can't use
4881              count_occurrences since that only works for pseudos.  */
4882           FOR_EACH_INSN_USE (use, mii->mem_insn)
4883             if (reg_overlap_mentioned_p (reg0, DF_REF_REG (use)))
4884               if (++occurrences > 1)
4885                 {
4886                   if (sched_verbose >= 5)
4887                     fprintf (sched_dump, "mem count failure\n");
4888                   return false;
4889                 }
4890
4891           mii->mem_reg0 = reg0;
4892           return find_inc (mii, true) || find_inc (mii, false);
4893         }
4894       return false;
4895     }
4896
4897   if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4898     {
4899       /* If REG occurs inside a MEM used in a bit-field reference,
4900          that is unacceptable.  */
4901       return false;
4902     }
4903
4904   /* Time for some deep diving.  */
4905   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4906     {
4907       if (fmt[i] == 'e')
4908         {
4909           if (find_mem (mii, &XEXP (x, i)))
4910             return true;
4911         }
4912       else if (fmt[i] == 'E')
4913         {
4914           int j;
4915           for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4916             if (find_mem (mii, &XVECEXP (x, i, j)))
4917               return true;
4918         }
4919     }
4920   return false;
4921 }
4922
4923
4924 /* Examine the instructions between HEAD and TAIL and try to find
4925    dependencies that can be broken by modifying one of the patterns.  */
4926
4927 void
4928 find_modifiable_mems (rtx_insn *head, rtx_insn *tail)
4929 {
4930   rtx_insn *insn, *next_tail = NEXT_INSN (tail);
4931   int success_in_block = 0;
4932
4933   for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4934     {
4935       struct mem_inc_info mii;
4936
4937       if (!NONDEBUG_INSN_P (insn) || RTX_FRAME_RELATED_P (insn))
4938         continue;
4939
4940       mii.mem_insn = insn;
4941       if (find_mem (&mii, &PATTERN (insn)))
4942         success_in_block++;
4943     }
4944   if (success_in_block && sched_verbose >= 5)
4945     fprintf (sched_dump, "%d candidates for address modification found.\n",
4946              success_in_block);
4947 }
4948
4949 #endif /* INSN_SCHEDULING */